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Abstract

This paper proposes a linear categorical random coefficient model, in which the random
coefficients follow parametric categorical distributions. The distributional parameters
are identified based on a linear recurrence structure of moments of the random coef-
ficients. A generalized method of moments estimation procedure is proposed, also
employed by Peter Schmidt and his coauthors to address heterogeneity in time effects
in panel data models. Using Monte Carlo simulations, we find that moments of the
random coefficients can be estimated reasonably accurately, but large samples are
required for the estimation of the parameters of the underlying categorical distribu-
tion. The utility of the proposed estimator is illustrated by estimating the distribution
of returns to education in the USA by gender and educational levels. We find that ris-
ing heterogeneity between educational groups is mainly due to the increasing returns
to education for those with postsecondary education, whereas within-group hetero-
geneity has been rising mostly in the case of individuals with high school or less
education.
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1 Introduction

Random coefficient models have been used extensively in time series, cross-section
and panel regressions. Nicholls and Pagan (1985) consider the estimation of first
and second moments of the random coefficient 8; and the error term u;, in a linear
regression model. In a seminal paper, Beran and Hall (1992) establish conditions
for identifying and estimating the distribution of B; and u; nonparametrically. The
baseline linear univariate regression in Beran and Hall (1992) has been extended in
nonparametric framework by Beran (1993), Beran and Millar (1994), Beran et al.
(1996), Hoderlein et al. (2010), Hoderlein et al. (2017) and Breunig and Hoderlein
(2018), to just name a few. Hsiao and Pesaran (2008) survey random coefficient models
in linear panel data models.

In some econometric applications, Hausman (1981), Hausman and Newey (1995),
Foster and Hahn (2000), for examples, the main interest is to estimate the consumer
surplus distribution based on a linear demand system where the coefficient associated
with the price is random. In such settings, the distribution of the random coefficients
is needed when computing the consumer surplus function, and the nonparametric
estimation is more general, flexible and suitable for the purpose. On the other hand,
parametric models may be favored in applications in which the implied economic
meaning of the distribution of the random coefficients is of interests. Examples include
estimation of the return to education (Lemieux 2006b, ¢) and the labor supply equation
(Bick et al. 2022).

In this paper, we consider a linear regression model with a random coefficient g;
that is assumed to follow a categorical distribution, i.e., B; has a discrete support
{b1,ba, ..., bk}, and B; = by with probability 7rx. The discretization of the support
of the random coefficient 8; naturally corresponds to the interpretation that each indi-
vidual belongs to a certain category, or group, k with probability ;. Compared to a
nonparametric distribution with continuous support, assuming a categorical distribu-
tion allows us not only to model the heterogeneous responses across individuals but
also to interpret the results with sharper economic meaning. As we will illustrate in
the empirical application in Sect.6, it is hard to clearly interpret the distribution of
returns to education without imposing some form of parametric restrictions.

In addition, with the categorical distribution imposed, the identification and esti-
mation of the distribution of 8; do not rely on identically distributed error terms u;
and regressors w;, as shown in Sect. 2 and 3. Heterogeneously generated errors can be
allowed, which is important in many empirical applications. To the best of our knowl-
edge, this is the first identification result in linear random coefficient model without a
strict IID setting.

The identification of the distribution of f; is established in this paper based on the
identification of the moments of B;, which coincides with the identification condition
in Beran and Hall (1992) that the distribution of B; is uniquely determined by its
moments, which is assumed to exist up to an arbitrary order. Since under our setup
the distribution of B; is parametrically specified, the moments of B; exist and can be
derived explicitly. The parameters of the assumed categorical distribution can then be
uniquely determined by a system of equations in terms of the moments, as in Theorem
2. The parameters of the categorical distribution are then estimated consistently by the
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generalized method of moments (GMM). The estimation procedure based on moment
conditions shares similar spirits as in Ahn et al. (2001, 2013) in which Peter Schmidt
and coauthors study panel data models with interactive effects where they allow for
the time effects to vary across individual units. Compared to alternative nonparametric
random coefficient models, the standard GMM estimation is easy to implement, and
the identified categorical structure has a clear economic interpretation.

Using Monte Carlo (MC) simulations, we find that moments of the random coef-
ficients can be estimated reasonably accurately, but large samples are required for
estimation of the parameters of the underlying categorical distributions. Our theo-
retical and MC results also suggest that our method is suitable when the number of
heterogeneous coefficients and the number of categories are small (2 or 3). With the
number of categories rising the burden on identification from the moments to the
parameters of the categorical distribution also rises rapidly. The quality of identifica-
tion also deteriorates as we need to rely on higher and higher moments to identify a
larger number of categories, since the information content of the moments tends to
decline with their order.

The proposed method is also illustrated by providing estimates of the distribution
of returns to education in the USA by gender and educational levels, using the May
and Outgoing Rotation Group (ORG) supplements of the Current Population Survey
(CPS) data. Comparing the estimates obtained over the sub-periods 1973—-1975 and
2001-2003, we find that rising between group heterogeneity is largely due to rising
returns to education in the case of individuals with postsecondary education, while
within-group heterogeneity has been rising in the case of individuals with high school
or less education.

Related Literature This paper draws mainly upon the literature of random coefficient
models. As already mentioned, the main body of the recent literature is focused on
nonparametric identification and estimation. Following Beran and Hall (1992), Beran
(1993) and Beran and Millar (1994) extend the model to a linear semi-parametric
model with a multivariate setup and propose a minimum distance estimator for the
unknown distribution. Foster and Hahn (2000) extend the identification results in Beran
and Hall (1992) and apply the minimum distance estimator to a gasoline consumption
data to estimate the consumer surplus function. Beran et al. (1996) and Hoderlein et al.
(2010) propose kernel density estimators based on the Radon inverse transformation
in linear models.

In addition to linear models, Ichimura and Thompson (1998) and Gautier and Kita-
mura (2013) incorporate the random coefficients in binary choice models. Gautier and
Hoderlein (2015) and Hoderlein et al. (2017) consider triangular models with random
coefficients allowing for causal inference. Matzkin (2012) and Masten (2018) discuss
the identification of random coefficients in simultaneous equation models. Breunig
and Hoderlein (2018) propose a general specification test in a variety of random coef-
ficient models. Random coefficients are also widely studied in panel data models, for
example Hsiao and Pesaran (2008) and Arellano and Bonhomme (2012)

The rest of the paper is organized as follows: Sect.?2 establishes the main identifi-
cation results. The GMM estimation procedure is proposed and discussed in Sect. 3.
An extension to a multivariate setting is considered in Sect. 4. Small sample properties
of the proposed estimator are investigated in Sect.5, using Monte Carlo techniques
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under different regressor and error distributions. Section 6 presents and discusses our
empirical application to the return to education. Section7 provides some concluding
remarks and suggestions for future work. Technical proofs are given in “Appendix
Al

Notations Largest and smallest eigenvalues of the p x p matrix A = (ai j) are denoted
by Amax (A) and Apin (A), respectively, its spectral norm by ||A|| = krln/azx (A’ A),
A > 0 means that A is positive definite, vech (A) denotes the vectorization of distinct
elements of A, 0 denotes zero matrix (or vector). For a € R?, diag (a) represents the
diagonal matrix with elements of ai, a, ..., a,. For random variables (or vectors) u
and v, u L v represents u is independent of v. We use ¢ (C) to denote some small
(large) positive constants. For a differentiable real-valued function f (@), Vg f (0)
denotes the gradient vector. Operator — , denotes convergence in probability, and
— 4 convergence in distribution. The symbols O (1), and O, (1) denote asymptotically
bounded deterministic and random sequences, respectively.

2 Categorical random coefficient model

n

We suppose the single cross-section observations, {y;, x;, Z; }7_,

random coefficient model

follow the categorical

yi = xifi + 2y +u;, 2.1

where y;,x; € R, z; € RP:, and B; € {by, b2, ..., bk} admits the following K-
categorical distribution,

by, w.p.m,
by, Ww.p.m2,

Bi = : : (2.2)

bg, w.p.7ng,

w.p. denotes “with probability,” m; € (0, 1), Zle = 1,b; < by <--- < bg,
y € RPz is homogeneous and z; could include an intercept term as its first element. It
. "N C . . .

is assumed that 8; L w; = (x,-, zi) , and the idiosyncratic errors u; are independently
distributed with mean 0.

Remark 1 The model can be extended to allow x;, 8; € R”, with B; following a
multivariate categorical distribution, though with more complicated notations. We
will consider possible extensions in Sect. 4.

Remark 2 Since we consider a pure cross-sectional setting, the key assumption that §;
and x; are independently distributed cannot be relaxed. Allowing B; to vary with w;,
without any further restrictions, is tantamount to assuming y; is a general function of
w;, in effect rendering a nonparametric specification.
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Remark 3 The number of categories, K, is assumed to be fixed and known. Conditions
Z,le me=1,b1 < by <--- < bk, and m € (0, 1) together are sufficient for the
existence of K categories. For example, if by = by, then we can merge categories k
and k', and the number of categories reduces to K — 1. Similarly, if 7z = 0 for some
k, then category k can be deleted, and the number of categories is again reduced to
K — 1. Information criteria can be used to determine K, but this will not be pursued
in this paper. Model specification tests could also be considered. See, for examples,
Andrews (2001) and Breunig and Hoderlein (2018).

In the rest of this section, we focus on the model (2.1) and establish the conditions
under which the distribution of §; is identified.

2.1 Identifying the moments of G;

Assumption 1 (a) (i) u; is distributed independently of w; = (x,-, z;)/ and B;. (ii)
sup, E (|uf]) < C,r=1,2,...,2K — 1. (i) n ' Y1, u} = O,(D).

(b) ()LetQ, = n~" 1y wiwj,andq, ,y, =n~" 327 Wiy;. Then || E (Qy )|
< C < o0, and ||E (qn’wy) || < C < oo, and there exists ng € N such that for all
n = no,

0 < ¢ < Amin (Qn’ww) < Amax (Qn,ww) < C < 0.

(i) sup; E ([will") < C <o0,r =1,2,....4K —2.
(i) n =1 Y0 Iwill* = 0,(1).
(©) ”Qn,ww —E (Qn,ww)“ = 0’7 (n_l/z)’

and

dnwy — E (qn,wy)” = 0p (n—1/2)’

n

E(Quuw)=n" ZE (wiw}) > 0.

i=1

@ |E(Quuww) = Quu| = 0 (72), [ E (d4uy) = duy| = O (n7172), where
qu = n]ggo E (qn,wy)’ wa = nlggo E (anw) and wa > 0.

Remark 4 Part (a) of Assumption 1 relaxes the assumption that u; is identically dis-
tributed, and allows for heterogeneously generated errors. For identification of the
distribution of B;, we require u; to be distributed independently of w; and B;, which
rules out conditional heteroskedasticity. However, estimation and inference involving
E (Bi) and y can be carried out in presence of conditionally error heteroskedastic,
as shown in Theorem 3. Parts (c) and (d) of Assumption 1 relax the condition that
w; is identically distributed across i. As we proceed, only S;, whose distribution is
of interest, is assumed to be IID across i, and it is not required for w; and u; to be
identically distributed over i.

Remark 5 The high-level conditions in Assumption 1, concerning the convergence in
probability of averages such as Q,, y = n"! YW w;, can be verified under weak
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cross-sectional dependence. Let f; = f (w;, B;, u;) be a generic function of w;, B;
and u;." Assume that sup; E (f{?) < C,and sup; Y"i; |cov (fi, fj)| < C, for some
fixed C < o0. Then,

< Zf’> 2ZZ|COV fis fi |<_SHPZ|COV fir )] S%-

i=1 j=1

By Chebyshev’s inequality, for any ¢ > 0, we have M, > /C/¢ such that

—1 n
var P i
Pr( >M8)5" (X )

- <e,
UYL = E(f)] = 0, (n71/?).

Denote ¢;, = (,3,-, y) and ¢ = E (¢;) = (E (i), »’)". Consider the moment
condition,

n

1
n|= Y i —E]

i=1

E (Wiyi) = E (wiw}) ¢, (2.3)

and sum (2.3) over i

- Z E(wiyi) = |:% Z i| é. (2.4)

i=1

Let n — o0, then ¢ is identified by

¢ = Qpiy Gy 2.5)

under Assumption 1.

Assumption2 Let j; = y; — z.p.

@ [n 'Y Ex) —prs] = OmT2), and |prs| < oo, for s =
0,1,...,2K — 1.

®) |n 'Y E(uf) —or| =0 (n/?), and |o,| < o0, forr =2,3,...,2K — 1.

© n'Y", [var(xl.’) - (,00,2, - p(%,r):l = 0 (n='/?) where po o — pg’r > 0, for
r=2,3...,2K—1.

Remark 6 The above assumption allows for a limited degree of heterogeneity of the

moments. As an example, let £ (ul’ ) = 0;, and denote the heterogeneity of the r'"
moment of u; by e¢; = oij — 0. Then

n n

—1 —1

n E Eul)—o|<n E leir]
i=l1 i=l1

1 fi is assumed to be a scalar, and we can apply the analysis element-by-element to a matrix, for example
/
Ww; Wi .
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and condition (b) of Assumption 2 is metif Y 7, |e;| = O(n*) witha, < 1/2. a,
measures the degree of heterogeneity with o, = 1 representing the highest degree of
heterogeneity. A similar idea is used by Pesaran and Zhou (2018) in their analysis of
poolability in panel data models.

Theorem 1 Under Assumptions 1 and 2, E (,81’) and oy, r = 2,3,...,2K — 1 are
identified.

Proof Forr =2,...,2K — 1,

r—1

G =EEE) +E@)+ X (0)e() EW) E(5). @0

g=2
r—1
B = B E () + B G E @) + X (7)E (27 B ) £ (57)
q=2
2.7)
where (; ) = q!(rr—iq)! are binomial coefficients, for nonnegative integers g < r.
Sum over i, then by parts (a) and (b) of Assumption 2,
r—1 ’
porE(B)) +0r =pro—3 (q)po,r_qoqE (7). 2.8)

q=2

r—1
r —
P0.2rE (B) + P0.ror = prr — 3 (q)po,zrqaqE (5. 9

q=2

Derivation details are relegated to “Appendix A.1.” By part (c) of Assumption 2,

the matrix (,Oo,r ! ) is invertible for r = 2,3,...,2K — 1. As a result, we can
£0,2r P0,r

sequentially solve (2.8) and (2.9) for E (ﬂl’) and o), forr =2,3,...,2K — 1. m|

2.2 Identifying the distribution of §3;

Beran and Hall (1992, Theorem 2.1, pp. 1972) prove the identification of the distribu-
tion of the random coefficient, 8;, in a canonical model without covariates, z;, under
the condition that the distribution of §; is uniquely determined by its moments. We
show the identification of moments of §; holds more generally when x; and u; are not
identically distributed and the distribution of g; is identified if it follows a categorical
distribution. Note that under (2.2),

K
E(p) =Y mbl, r=0,1,2,...,2K 1, (2.10)

k=1
with E (B!) identified under Assumption 1. To identify & = (1, 72, ..., 7g)" and

b = (b1, by, ..., bk)’, we need to verify that the system of 2K equations in (2.10)
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has a unique solution if by < by < --- < bk, and mx € (0, 1). In the proof, we
construct a linear recurrence relation and make use of the corresponding characteristic
polynomial.

Theorem 2 Consider the random coefficient regression model (2.1), suppose that
Assumptions 1 and 2 hold. Then 6 = (Jt/ ,b’)/ is identified subject to by < by <
-<bgandm € (0, 1), forallk =1,2,..., K.

Proof We motivate the key idea of the proof in the special case where K = 2, and
relegate the proof of the general case to the “Appendix A.1.” Let by = B, b» = BH,
w1 = and 1o = 1 — 7. Note that

E (B = npr+ (1~ ) B, @.11)
E(B7) =B + (1 —m) B, 2.12)
E(8}) =8 + 1 —m) B 2.13)

and E (BF), k = 1,2, 3 are identified. (z, Bz, Bu) can be identified if the system of
Egs. (2.11)—(2.13), has a unique solution. By (2.11),

n_:,BH—E(ﬂi)’andl_an(ﬂi)_ﬂL. 2.14)
Br — BL Br — BL
Plug (2.14) into (2.12) and (2.13),
E(B) B+ Pi) — BLbi = E (7). 2.15)
E(B) B+ Bu) — E (B Brbu = E (7). (2.16)

Denote fr+y = Br + By and By = BLPu, and write (2.15) and (2.16) in matrix
form,

MDb* = m, (2.17)
where
M ( 1 E(ﬁi)) D (—1 0) b* = (m) and m — (E(ﬂ?)).
EB) E(B)) 0 1) Brin)’ E (8})
Under the conditions 0 < 7 < 1 and By > B,

det M) = var (8) = E (B?) = E (B)* == (1 =) (B — Bu)* > 0.
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As aresult, we can solve (2.17) for 8.+ and By as

E(B)) - E(B) E (B)

BL+H = var o) , (2.18)
EB)E (83) — E (B)°
BLH = (B E (6)) (%) . (2.19)
var (6;)

Br and By are solutions to the quadratic equation,

B> — BriuB + Bru = 0. (2.20)

We can verify that A = ﬂ% +n — 4BrLm > 0 by direct calculation using (2.18) and
(2.19). Simplifying A in terms of E (,Blk) and then plugging in (2.11), (2.12) and (2.13),

[£(87) = E B E (B)] = 4var (8) | E (B) E (8) — E (67)’]
[var ()1

A:
= (Bu — Br)* > 0.

Then, we obtain the unique solutions,

1

=7 (ﬁL+H —Biin - 4ﬂLH> : (2.21)
1

B =5 (ﬂL+H +/Biin — 4ﬂLH> : (2.22)

and 7 can be determined by (2.14) correspondingly. O

Remark 7 The key identifying assumption in (2) is the assumed existence of the strict
ordinal relation by < by < --- < bg so that by and by are not symmetric for
k # k', and 0 < mx < 1 so that the distribution of 8; does not degenerate. When
K = 2, the conditions b; < by < -+ < bk, and m; € (0, 1), are equivalent to
var (Bi) = m (1 — ) (by — b1)2 > (. In other words, not surprisingly, the categori-
cal distribution of §; is identified only if var (8;) > 0.

In practice, a test for Hy : var (8;) = 0 is possible, by noting that var (8;) = 0 is
equivalent to

»_EG)’ _
K= ~ =1
E ()
where «? is well defined as long as B; # 0. One important advantage of basing

the test of slope homogeneity on 2 rather than on var(g;) = 0 is that k2 is scale-

invariant. E (B;) and E (,Blz) are identified as in Sect. 2.1, whose consistent estimation
does not require var (8;) > 0. Consequently, in principle it is possible to test slope
homogeneity by testing Hy : k> = 1. However, the problem becomes much more
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2552 Z.Gao, M. H. Pesaran

complicated when there are more than two categories and/or there are more than one
regressor under consideration. A full treatment of testing slope homogeneity in such
general settings is beyond the scope of the present paper.

Remark 8 Note that in the special case of the proof of Theorem 2 where K = 2,
BrL+u = Br+Br and By = PPy corresponds to b} and b3, and (2.17) is the same
as (A.1.6) when K = 2. This special case illustrates the procedure of identification:

identify (b,’(“)f: , by the moments of g;, then solve for (bt)/_; and finally identify
(T -

3 Estimation

In this section, we propose a generalized method of moments estimator for the distri-
butional parameters of ;. To reduce the complexity of the moment equations, we first
obtain a /n-consistent estimator of y and consider the estimation of the distribution

of B; by replacing y by p.
3.1 Estimation of y

Let¢ = (E (Bi), y’)’, v; = B; — E (B;) and using the notation in Assumption 1, (2.1)
can be written as

Vi =W +&, 3.1

-1
n,wqu,wy

where & = u; + x;v;. Then, ¢ can be estimated consistently by $ =Q
where Q,, ,,,, and q,, ,,,, are defined in Assumption 1.

Assumption3 ||n=! Y| E (W;w/7) — Ve | = O (n71/2), Ve > 0, and

1 1 & i
—D Wiwig =~ E (WiW§$l-2) H =0, <n 1/2) . (3.2)
i=1 i=1

Remark 9 As in the case of Assumption 1, the high-level condition (3.2) can be shown
to hold under weak cross-sectional dependence, assuming that elements of w; W’ §,~2
are cross-sectionally weakly correlated over i. See Remark 5.

Theorem 3 Under Assumption 1, ¢ is a consistent estimator for ¢. In addition, under
Assumptions 1 and 3, as n — 00,

Vi ($—8) >a N(0.Vs), (3.3)
where Vg = QL Ve QL . Vi is consistently estimated by
V¢ = Qr?,%waUJfQ;,}uw —p V(b’
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asn — 0o, where f/wg =n"! > w,-w;éiz, and & = y; — w;&)
The proof of Theorem 3 is provided in Sect. S.2 in the online supplement.

3.2 Estimation of the distribution of §;

Denote the moments of g; on the right-hand side of (2.10) by

mg = (my,my,...,myg—1)

= [E (,Bir)]ZK_l €0, C {mﬂ e R, >0, ris even},

r=1
and note that

mi by by --- bg T
2 2 2
my by by - by b9}
m,g = . = . . . . . s (3~4)
Mok 1 b%K—] b%K—l b%{l{—l Tk
so in general we can write mg = h (), where 6 = (n’, b’)/ € O, and 0 can be
uniquely determined in terms of mg by Theorem 2. To estimate @, we consider moment
conditions following a similar procedure as in Sect. 2 and propose a generalized method
of moments (GMM) estimator.
We consider the following moment conditions:

£ =3 (0 e () B G

g=0 1

and
B =30 ()8 (7 £ )y 6:5)

where E (u;) =0,y =y —zy,r =1,2,...,2K — l,ands, =0,1,...,5 —r,
where S is auser-specific tuning parameter, chosen such that the highest order moments
of x; included is at most S, where S > 2K — 1.2

2 For identification, we require the moments of x; to exist up to order 4K — 2. S can take values between
2K to 4K — 2. In practice, the choice of S affects the trade-off between bias and efficiency.
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2554 Z.Gao, M. H. Pesaran

Let ogp = 1 and 01 = 0 such that o, is well defined forr =0,1,...,2K — 1. Sum
(3.5) over i and rearrange terms,

0= Z (’) B Z E (x;—qﬂr) E (uf.’):| my_g — % Z E (5/x")

q=0 4 i=1

r l n - 1 ‘
> ()3 e G o s i o
q=0 i=1 ,

where

r

00 =2 (1) [ A5 () ) -yl ey = 0 (7).

q=0

as shown in the proof of Theorem 1.
Letting n — oo in (3.6),

-
r

Z ( )pO,r—q—ﬁ—squmr—q — Pr,s, = 0, 3.7)

g=0 1

by Assumption 2. We stack the left-hand side of (3.7) overr = 1,2, ...,2K — 1, and
s, =0,1,..., 8 —r and transform mg = & (0) to obtain g, (8, o, ).
To implement the GMM estimation, we replace y;, by y; = y; — z;p, and p, s, by

n~! h ;lr xis ". Noting that mg = & (), denote the sample version of the left-hand
side of (3.7) by

N . 1 A (ro5y .
g (0,0,7) = - 8" (0,0,7), (3.8)
i=1
where
d r
2" (0,0,7) = > ( )xl.r_q""SrO'q (7 (0)],—q — Vi X",
— \4
qg=0
ando = (02,03, ...,02x—1) . Stack the equations in (3.8),overr = 0, 1, ...,2K —1
ands, =0,1,...,8 —r (§ > 2K — 1), in vector notations we have

. N R X
8,(0.0.7)= - Zgi (0.0.7). (3.9)
i=1
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Given y, the GMM estimator of (0’, o’ )/ is now computed as

A~ / A
0,6/) =arg min D, (0,0,7),
( g()e@,aeS n( }’)

where &, = g, (0, o, ?)/Angrn (0, o, )7), and A, is a positive definite matrix. We
follow the GMM literature using the following choice of A,,,

—1
R IS/« o N /o N
An=|:; g (0,a,y)g,- (0,0,;/) —gng;,:| , (3.10)

where g, = % Yo 8 (5, G, f/), and @ and & are preliminary estimators.

Assumption 4 Denote the true values of @, o and y by 0, 0 and y,,.

(a) ® and S are compact. 0 € int (®) and ¢ € int (S).
(b) A, —, Aasn — oo, where A is some positive definite matrix.

(©)

LT3 wfores g
=3 [ —E )| = 0, (n717).

i=1
forr=0,1,2,...,2K—-1,5,=0,1,..., S —r,and § > 2K — 1.

Remark 10 Parts (a) and (b) of Assumption 4 are standard regularity conditions in
the GMM literature. Part (c) together with Assumption 2 are high-level regularity
conditions which allow us to generalize the usual IID assumption and nest the IID
data generation process as a special case. The sample analog terms in (c) include
Vi = yi — z.p, instead of the infeasible ; = y; — z!y. The \/n-consistency of y
shown in Theorem 3 ensures that replacing y; by §,~ does not alter the convergence
rate.

Theorem 4 Let n = (0’, a’)/ and 1y = ( 6, 06),. Under Assumptions 1, 2, and 4,
0 —pngasn— oo.

The proof of Theorem 4 is provided in “Appendix A.1.”

Assumption 5 Follow the notations as in Assumption 4 and in addition denote
G(oaa’ )’) == V(o’,g/)’go (0707 }’), GO == G(OO’O-O’ }’O)’ G}/ (050—? }’)
= V}'gO 0,0, V), GO,V = Gy (007 g9, )’0)-

(@) V/ng, (90, 00, )’0) -4 ¢ ~N(0,V)asn — oo.
(b) G,AGg > 0.

Remark 11 In Assumption 5, parts (a) is the high-level condition required to ensure
the asymptotic normality of g, (00, 00, yO), which can be verified by Lindeberg cen-
tral limit theorem under low-level regularity conditions. Part (c) of Assumption 5
represents the full-rank condition on Gy, required for identification of 8y and o .
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By Theorem 3, we have /n (f/ - y) —4 & ~ N(0, V,). The following theorem
shows the asymptotic normality of the GMM estimator #.

Theorem 5 Under Assumptions 1, 3, 4 and 5,

. ~1
V(i =m9) ~a (GpAGo) ~ GoA (8 +Goygy)
asn — oQ.
The proof of Theorem 5 is provided in “Appendix A.1.”

Remark 12 In practice, we estimate the variance of the asymptotic distribution of 7
by

A,,G)fl : 3.11)

where G = V(a,,e,)/gn (é, o, ;?), A, is given by (3.10), and

R 1 n
V. = n Z ‘/’n,i'/,;,i’
i=1
where
Voi=8& (é’ 7, f’) +Vyg, (é, 7, }A’) LQ, . (Wiéi) ,

and L = (0 pex1 1 Pz) is the loading matrix that selects y out of ¢.

4 Multiple regressors with random coefficients
One important extension of the regression model (2.1) is to allow for multiple regres-

sors with random coefficients having categorical distribution. With this in mind
consider

yi =X;B; +zjy +u, 4.1

where the p x 1 vector of random coefficients, 8; € R? follows the multivariate
distribution’

Pr(Bi1 = biky, Biz = bakys - - Bip = bpk,) = Thy koo 4.2

3 We assume the number of categories K is homogeneous across j = 1,2, ..., p. This is for notational
simplicity, and can be readily generalized to allow for K ; # K ! without affecting the main results.
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Table 1 Distribution of 8; with p =2 and K =2

kr =L ky=H
ky =L 7L =Pr(Bi1 =biL. Bio =bar) 7L =Pr(Bi1 =biL. Bio = bay)
ki =H mpL =Pr(Bi1 = b1y, Bi2 = bar) wHH =Pr(Bi1 =biy, Bi2 = ban)

Withkj E{l,Z,...,K},bjl <bj2 < v <ij,and

ki,ka,..., kp€{1,2,...,K}

Asin Sect.2,y € RP:, w; = (x; z;.)/, B; L wi,u; L w;, and u; are independently
distributed over i with mean 0.

Example 1 Consider the simple case with p = 2 and K = 2. For j = 1, 2, denote two
categories as {L, H}. The probabilities of four possible combinations of realized f;
are summarized in Table 1, where w7 + g + gL + g = 1.

!/
We first identify the moments of ;. Asin Sect.2, ¢ = (E (/3 i)/ Y ) is identified
by

¢ = Q;llvqu’ 4.3)

under Assumption 1. We now consider the identification of the higher-order moments
of B, up to the finite order 2K — 1.

Since p is identified as in (4.3), we treat it as known and let §/ = y; — z;y. For
r=2,3,...,2K — 1, consider the moment conditions

E(57) = E[(xiB: +ui)']

= E[(x8) ]+ E () + 3 (;)E ()~ ]E@). @4

s=2
Note that x/8; = Z;-’:l Bijxij, and

r

P P
E Z BijXij = Z <:;)E 1_[ X,-q]j E 1_[ ﬂiqjj )
j=1 j=1 j

Yiiaj=r j=l

1 . . .
where ((’1) = m for nonnegative 1ntegers r, ¢i, ..., qp with r =
qj

>-0_14j, denotes the multinomial coefficients. We stack []/_;x;/ with q €
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{q e{0,1,...r}": 5):1 qj = r} in a vector form by denoting*

7, (%) =[¢ (%, q1) . ¢ (i q2) 7-~’<P(Xi,qw)]/7

where ¢ (xi, q) = [17_; x; j’ and v, = (r;’i ') is the number of distinct monomials
of degree r on the variables x;1, x;2, ..., x;p. Similarly,

Tr (ﬂi) = [(0 (ﬁi’ (h) % (/3,', Q2) yeen @ (ﬂi’ qu,)]/»
where ¢ (B;. q) = [1_, ..
Example 2 Consider p = 2 and r = 2, we have
T2 (%) = (xizl,xilxiz,xizz)/,
2 (B;) = (,3,-21, Bi1Biz, ,3,-22>/,
and

E [(xi1Bi1 + x2Bi2)?] = E (¥3) E (B}) + 2E (xinxin) E (B Bin) + E (x3) E (B3)
d

= [E(xR) . E (i) E (v)] diag [(1.2, 1] [E (82) . E (B Bi) . E (83)]
=E[1, (Xz)] A2E [‘l’g ( )] ’

where A, = diag [(1, 2, 1)’].

Then, the moment condition (4.4) can be written as

E(3)=Elt, &) AE [z, (B)] + E (u])

1
+ X (el ] AE [ BIIEG) . @)
2

§=

where A, = diag |:[( )]Zp i| is the v, x v, diagonal matrix of multinomial
149j=T

coefficients. We further cons1der the moment conditions
E (5t ) = E[r, ) 1, )] AvE [1, ()] + E [z, )] E (u])
r—1
+ Z (Z)E [Tr (Xi) Tr—s (Xi)/] A E [Tr—s (ﬂz)] E (uf) )
s=2
(4.6)

r=2,3,...,2K — 1. (4.5) and (4.6) reduce to (2.6) and (2.7) when p = 1.

4 For x € R?, note that 70 (x) =1, 71 (x) = x and 77 (x) = vech (xx/).
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Assumption 6 (a) |n~!' Y1 E (377, (xi)) — p,s|| = O (n™'/2), and |p, |
oo, r,s =0,1,...,2K — 1.

®) |2 'Y E[r ) T 5] = Ers| =0 (n7V?), and | B || < 00,7 s =
0,1,...,2K — 1.

© [ 'Y EW) —o]=0 (n_1/2) ,and |o,| < ocoforr =2,3,...,2K — 1.

@ [ S [var o 00 = (20 = po,op, ) || = 002, where &, -
po,rp{),r >0forr=2,3...,2K — 1.

A

Theorem 6 Foranyq € {q e{0,1,...r}": ?:1 qj = r} andr =2,3,...,2K —
1, E ( 521 ﬁl.qj:" ) and o, are identified under Assumptions 1 and 6.

Proof Forr =2,3,...,2K —1,sum (4.5) and (4.6) over i, go through the same steps
as in the proof of Theorem 1, then by Assumptions 6(a) to (c), we have (for n — 00)

r—1

p;,()ArE [Tr (.Bz)] +or=p,0— Z <Z)p0,r—sAr—SE [Tr—s (ﬂz)] os, (4.7)
s=2

r—1

roArE [TV (ﬂl)] + 00,01 = Prr — Z (Z) Err—sAr—E [r"_S (ﬂl)] Os-

s=2

[1]

(4.8)

Note that

_(Err por A0
w= () (01):

is invertible since det (M,) = det (:.,,r —po‘,pé)’r) det(A,) > 0, for r =

2,3,..., R, by Assumption 6(d). As a result, we can sequentially solve (4.7) and
(4.8) for E [z, (B;)] and oy, for r =2,3,...,2K — 1. o

We now move from the moments of B; to the distribution of ;. We first focus
on the identification of the marginal probabilities obtained from (4.2) by averaging
out the effects of the other coefficients except for 8;;, namely we initially focus on
identification of Ajx = Pr (8;; = bji),fork=1,2,...,K,and j = 1,2,..., p.

Remark 13 Focusing on the marginal distribution of §; is similar to focusing on
estimation of partial derivatives in the context of nonparametric estimation, where
the curse of dimensionality applies. Consider the estimation of regressing y; on

X; = (X,’], Xi2y ooy xip)/,

Vi = F(xﬂ,x,-z,....xip) + u;.

@ Springer



2560 Z.Gao, M. H. Pesaran

Then if F (x1, Xi2, ..., Xip) is a homogeneous function (of degree 1/, then
p
oF (+)
= Z‘: (M dxij )xu i
iz

and under certain conditions we can treat i ‘)31; f',) = Bij.
ij

By Theorem 6, E (,82) isidentified forr = 1,2, ..., 2K — 1 under Assumptions 1
and 6. By (4.2), we have equations

K
E () = kil 4.9)

k=1
r=20,1,...,2K — 1, which is of the same form as (2.10) and (3.4). To identify
Aj=(rj1,Aj2, ..., hjx) and bj = (bj1,bja, ..., bjk), we can verify the system
of 2K equations in (4.9) has a unique solution if bj; < bj» < --- < bjk and

Ajk € (0, 1). The following corollary is a direct application of Theorem 2.

Corollary 7 Consider the model (4.1) and suppose that Assumptions 1 and 6 hold.
/

Then, the parameters 0 j = ()Jj, b’,) of the marginal distribution of B; with respect
to Bij is identified subject to bj1 < bjp < --- < bjx and Aj; € (0,1) for j =
1,2,...,p.

The problem of identification and estimation of the joint distribution of §; is subject
to the curse of dimensionality. We have K” — 1 probability weights, Ty ky....kps 1O
be identified in addition to the pK categorical coefficients b;; that are identified by
Corollary 7. The number of parameters increases rapidly with p. Even in the simplest
case with K = 2, the total number of unknown parameters is 2p + 27 — 1, which
grows exponentially.

Note that the marginal probabilities A j; are related to the joint distribution by

)\jk = Z nk],kz,...,kj_],k,k_jH ,,,,, kp» (410)
ki,ookj—1.kjr1,.kpe(l,2,....K}

k=1,2,...,Kand j =1,2,..., p. The number of linearly independent equations
in (4.10)is pK — (p — 1).

Example 3 Consider the same setup as in Example 1 with p = 2 and K = 2. The
marginal probabilities are obtained by

ML =Pr(Bi1=b1L) =7LL +T7LH,
Mu =Pr(Bi1=big)=1—-AL =7uL +7HH,
Ap =Pr(Bip="by) =7LL +THL,
‘Mg =Pr(Bir=bg)=1—2dop =7Ly +T7Hn. (4.11)
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Note that any equation in (4.11) can be expressed as a linear combination of other
three equations, for example Aoy = A1 + A1 g — A2 .

i i P g
The equations corresponding to the cross-moments, £ ( i=1Bij ), are
P p
7] = aj
e\Ila )= X 180, | ki @12)
j=l1 kika,...kpe{l,2,.. K} \j=1

forq € {qe{O,l,...r—l}f’:Zleqj :r},r=2,...,2K—1.Thelinearsys-
tem (4.12) has

2K—1

—1
3 (“”’ )—p(2K—l)
r=1 p_l

equations. Then the total number of equations in (4.10) and (4.12) that can be utilized
to identify joint probabilities is C, = >-7X; ("177") — pK, which is smaller than
the number of joint probabilities K” — 1 for large p. When K =2, C, < K? — 1 for
p=1.

Identification and estimation of the joint distribution of f; in the general setting
will not be pursued in this paper due to the curse of dimensionality. Instead, we
consider special cases, that are empirically relevant, in which identification of the
joint distribution of B; can be readily established. We first consider small p and K, in

particular p = 2 and K = 2 as in Example 1.

Example 4 Consider the same setup as in Example 1 with p = 2 and K = 2. In
addition to (4.11), consider the cross-moment,

E (Bi1Bi2) = birbarmrr +bitboumig +biabarwar +biaboumay. (4.13)

Writing (4.11) and (4.13) in matrix form, we have

Br =2,
where
1 1 0 0 TLL AL
0 e[
biLbar bipban biubar biuban THH E (Bi1Bi2)

Note that E (B;1i2) is identified by Theorem 6, and b jkj and X\ jk; are identified by
Corollary 7, and matrix B is invertible given that b1, < b1y and bo; < by (see
“Appendix A.17). As a result, the joint probabilities, &, are identified.

Remark 14 The argument in Example 4 is applicable for identification of the joint
distribution of (f;;, ,3,-,]-/)/ for j # j' when p > 2 and K = 2.
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5 Finite sample properties using Monte Carlo experiments

We examine the finite sample performance of the categorical coefficient estimator
proposed in Sect.3 by Monte Carlo experiments.

5.1 Data generating processes

we generate y; as
Vi =a+xiBi +zity1 +zioye +uy, fori =1,2,...,n, (5.1

with B; distributed as in (2.2) with K = 2, and the parameters 7, 8z and By .

We draw B; for each individual i independently by setting 8; = S, with probability
7 and B; = By with probability 1 — 7, through a sequence of independent Bernoulli
draws. We consider two sets of parameters in all DGPs, denoted as high variance and
low variance parametrization, respectively,

0.5,1,2,1.5,0.25) (high varianc% 2
(0.3,0.5,1.345,1.0915, 0.15) (low variance) '

(7, BL, Bu, E (Bi) , var (Bi)) =
Bu/BL = 2 for the high variance parametrization, and By /B = 2.69, for the
low variance parametrization, which is motivated by the estimates in our empiri-
cal illustration in Sect.6.® The values of E(B;) and var (B;) are obtained noting that
E(Bi) = nBr + (1 — m)By, and var (B;) = n(1 — 7)(By — ,BL)Z. The remaining
parameters are set as « = 0.25, and y = (1, 1)’ , across DGPs.

We generate the regressors and the error terms as follows.

DGP 1 (Baseline) We first generate X; ~ IIDx2(2), and then set x; = (¥; — 2)/2
so that x; has O mean and unit variance. The additional regressors, z;;, for j = 1,2
with homogeneous slopes are generated as

zi1 = x; +v;1 and zj2 = z;1 + V2,

with v;; ~1ID N (0, 1), for j = 1, 2. This ensures that the regressors are sufficiently
2

correlated. The error term, u;, is generated as u; = o;¢;, where o/ are generated as
0.5(1 + IIDx2(1)), and &; ~ IIDN (0, 1). Note that &; and oiz are generated indepen-
dently, and E(ul.z) =1.

DGP 2 (Categorical x) This setup deviates from the baseline DGP, and allows
the distribution of x; to differ across i. Accordingly, we generate x; = (x1; — 2) /2
where x1; ~ IID)(2 ) fori =1,2,...,|n/2], and x; = (X3; — 2) /4 where Xp; ~
IID)(2 (4),fori = [n/2] +1, ..., n. The additional regressors, z;;, for j = 1, 2 with
homogeneous slopes are generated as

Zi1 = Xx; +v;1 and zj2 = zi1 + V2,

5 A Monte Carlo experiment with K = 3 is relegated to Sect. S.3.5 in the online supplement.
6 The estimates for Br /Br in our empirical analysis range from 1.50 to 2.79.
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with v;; ~ IID N (0, 1), for j = 1, 2. The error term u; is generated the same as in
DGP 1.

DGP 3 (Categorical u) We generate x; and z; the same as in DGP 1, but allow the
error term u; to have a heterogeneous distribution over i. Fori = 1,2,..., |n/2],
we set u; = o;¢&;, where 0 ~ IIDx? (2) and &; ~ IIDN(0, 1), and fori = [n/2] +
1,....,n,wesetu; = (ii; —2) /2, where ii; ~ IIDx? (2).

We investigate the finite sample performance of the estimator proposed in Sect. 3
across DGP 1 to 3 with low variance and high variance scenarios.” Details of the
computational algorithm used to carry out the Monte Carlo experiments (and the
empirical results that follow) are given in Sect. S.5 of the online supplement. An
accompanying R package is available at https://github.com/zhan-gao/ccrm.

5.2 Summary of the MC results

For each sample size n = 100, 1000, 2000, 5000, 10, 000 and 100, 000 we run
5000 replications of experiments for DGP 1 (baseline), DGP 2 (categorical x) and
DGP 3 (categorical u) with high variance and low variance parametrization, as set
out in (5.2).

We first investigate the finite sample performance of g?), as an estimator of ¢ =
(E B,y )/. Bias, root mean squared errors (RMSE) for estimation of E (8;), y1
and y», as well as the size of testing of the null values at the 5 percent nominal value
are reported in Table 2. In addition, we plot the associated empirical power functions
in Figs. 1 and 2, for cases of high and low var(g;). The results show that (i has very
good small sample properties with small bias and RMSEs, with size very close to the
nominal value of 5 percent across all DGPs and parametrization, even when sample
size is relatively small. The power of the test increases steadily as the sample size
increases.

Then, we turn to the GMM estimator for the distributional parameters of 8; proposed
in Sect.3.2. The bias, RMSE and the test size based on the asymptotic distribution
given in Theorem 5, for 7, 81 and By, are reported in Table 3. The empirical power
functions are reported in Figs. 3 and 4. The reported results are based on § = 4, where
S (> 2K — 1 = 3) denotes the highest order of moments of x; included in estimation.3

The upper panel of this table reports the results of the high variance and the lower
panel for the low variance parametrization, as set out in (5.2). For all parameters and
under all DGPs, the bias and RMSE decline steadily with the sample size as predicted
by Theorem 4, and confirm the robustness of the GMM estimates to the heterogeneity
in the regressor and the error processes. But for a given sample size, the relative

7 We can consider a DGP with conditional heteroskedasticity, in which we follow the baseline DGP and
generate the error term as u; = x;¢&;, where &; ~ N (0, 1). The least square estimator for ¢ is valid in this
setup in terms of estimation and inference, whereas the GMM estimator for the distributional parameters 6
breaks down, which is to be expected since we can only identify the first moment of §; under conditional
heteroskedasticity. The results are available on request.

8 We also tried estimation based on a larger number of moments (using S = 5 and § = 6). In the case
of current Monte Carlo results, adding more moments does not seem to add much to the precision of the
estimates and could be counterproductive when # is not sufficiently large. The results are available in Sect.
S.3.1 in the online supplement.
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Fig. 1 Empirical power functions for the least square estimator (i with the high variance parametrization
(var (B;) = 0.25). Notes: The data generating process is (5.1) with high variance parametrization that
is described in (5.2). “Baseline,” “Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Sect.5.1.

Generically, power is calculated by R~! Zf:l 1 Hé(r) — 05’ /[7é(r> > cv0.05], for O3 in a symmetric neigh-
borhood of the true parameter 6, the estimate at the r-th replication, ot ), the estimated standard error of
60, &fr), and the critical value cvg g5 = @1 (0.975) across R = 5000 replications, where ® (-) is the
cumulative distribution function of standard normal distribution

precision of the estimates depends on the variability of §;, as characterized by the true
value of var(B;). The precision of the estimates with high variance parametrization is
relatively higher than that with low variance parametrization. This is to be expected
since, unlike E(8;), the distributional parameters are only identified if var(8;) > 0. As
shown in (2.18) and (2.19) for the current case of K = 2, var(;) is in the denominator
when we recover the distributional parameters from the moments of 8;. When var(5;)
is small, estimation errors in the moments of §; can be amplified in the estimation
of m, B and By. On the other hand, the larger the variance the more precisely m,
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Fig. 2 Empirical power functions for the least square estimator 43 with the low variance parametrization
(var (B;) = 0.15). Notes: The data generating process is (5.1) with low variance parametrization that
is described in (5.2). “Baseline,” “Categorical x”* and “Categorical u” refer to DGP 1 to 3 as in Sect.5.1.

Generically, power is calculated by R~ Zf:l 1 Hé ") — 65’ /&9@ > cv0'05], for 6 in a symmetric neigh-
borhood of the true parameter 6, the estimate at the r-th replication, o ), the estimated standard error of
6, &ér), and the critical value cvq g5 = @1 (0.975) across R = 5000 replications, where ® (-) is the
cumulative distribution function of standard normal distribution

By and B; can be estimated for a given n.” The size and power also depends on the
parametrization. With both high variance and low variance parametrization, we can
achieve correct size and reasonable power when n is quite large (n =100,000). We
plot the empirical power functions for n > 5000 for v, By and B; since the size is far

9 Section S.3.4 in the online supplement presents parametrization with var (g;) = 6.35 and 18.95, which
further confirms the pattern that the larger the variance the more precisely 7, B and B can be estimated
for a given n.
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Fig. 3 Empirical power functions for the GMM estimator of distributional parameters of g with the high
variance parametrization(var (f;) = 0.25). Notes: The data generating process is (5.1) with high variance
parametrization that is described in (5.2). “Baseline,” “Categorical x” and “Categorical u” refer to DGP
1 to 3 as in Sect.5.1. The model is estimated with S = 4, the highest order of moments of x; used
in estimation. Generically, power is calculated by R~ 25:1 1 Hé(’ ) — 95‘ /&;r) > cv0.05}, for O in a
symmetric neighborhood of the true parameter 6, the estimate at the r-th replication, 6, the estimated
standard error of (), &Er), and the critical value cvg g5 = @1 (0.975) across R = 5000 replications,
where @ (-) is the cumulative distribution function of standard normal distribution

above 5 percent for smaller values of n, and power comparisons are not meaningful
in such cases.

Remark 15 Note that GMM estimators of moments of 8;, namely m 8 can be obtained
using the moment conditions in (3.7),and the transformations mg = £ (@) in (3.4) are
required only to derive the estimators of 8, the parameters of the underlying categorical
distribution. The Monte Carlo results in Sect. S.3.2 in the online supplement show that
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Fig. 4 Empirical power functions for the GMM estimator of distributional parameters of g with the low
variance parametrization (var (8;) = 0.15). Notes: The data generating process is (5.1) with low variance
parametrization that is described in (5.2). “Baseline,” “Categorical x” and “Categorical u” refer to DGP
1 to 3 as in Sect.5.1. The model is estimated with S = 4, the highest order of moments of x; used
in estimation. Generically, power is calculated by R~ 25:1 1 Hé(’ ) — 95‘ /&;r) > cv0.05}, for O in a
symmetric neighborhood of the true parameter 6, the estimate at the r-th replication, 67, the standard
error of 0, &Er), and the critical value cv g5 = @1 (0.975) across R = 5,000 replications, where & (-)
is the cumulative distribution function of standard normal distribution

myg can be accurately estimated with relatively small sample sizes. In the estimation
of both mg and 6, the same set of moment conditions are included, so the estima-
tion of distributional parameters @ essentially relies on the relation § = h~! (m,g).
Sampling uncertainties in the estimation of mg, particularly in higher-order moments,
are potentially amplified through the inverse transformation 2! that involves matrix
inversion, which causes the difficulties in estimation and inference of # when sample
sizes are small. This is analogous to the problem of precision matrix estimation from
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2572 Z.Gao, M. H. Pesaran

an estimated covariance matrix. In practice, estimation of the categorical parameters
is recommended for applications where the sample size is relatively large, otherwise
it is advisable to focus on estimates of the lower-order moments of ;.

6 Heterogeneous return to education: an empirical application

Since the pioneering work by Becker (1962, 1964) on the effects of investments in
human capital, estimating returns to education has been one of the focal points of
labor economics research. In his pioneering contribution Mincer (1974) models the
logarithm of earnings as a function of years of education and years of potential labor
market experience (age minus years of education minus six), which can be written in
a generic form:

log wage; = o; + Biedu; + ¢ (z;) + &, 6.1)

asin Heckman et al. (2018, Eq. (1)), where z; includes the labor market experience and
other relevant control variables. The above wage equation, also known as the “Mincer
equation”, has become of the workhorse of the empirical works on estimating the
return to education. In the most widely used specification of the Mincer equation
(6.1),

¢ (z:) = prexper; + p2 exper; + 77,

where 7; is the vector of control variables other than potential labor market experience.

Along with the advancement of empirical research on this topic, there has been a
growing awareness of the importance of heterogeneity in individual cognitive and non-
cognitive abilities (Heckman 2001) and their significance for explaining the observed
heterogeneity in return to education. Accordingly, it is important to allow the parame-
ters of the wage equation to differ across individuals. In Eq. (6.1), we allow «; and B;
to differ across individuals, but assume that ¢ (z;) can be approximated as nonlinear
functions of experience and other control variables with homogeneous coefficients.

Specifically, following Lemieux (2006b, c) we also allow for time variations in the
parameters of the wage equation and consider the following categorical coefficient
model over a given cross-section sample indexed by ¢

log wage;, = a;; + Biredu;; + piexper;, + pztexperizt +Z,y, +eir, (62)
where the return to education follows the categorical distribution,

ﬂit _ b[L w.p. iy,

big wp. 1l —m,

10" Some investigators have suggested including higher powers of the experience variable in the wage
equation. Lemieux (2006a), for example, proposes using a quartic rather than a quadratic function. As a
robustness check we also provide estimation results with quartic experience specification in Sect. S.4 in the
online supplement.
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and Zz;; includes gender, martial status and race. oj; = o + 8;; where §;; is mean
0 random variable assumed to be distributed independently of edu;; and z;; =

(exper;,, exper?, i;)/ Let u;; = &;; + 8i;, and write (6.2) as
log wage;, = o; + Bisedu;; + p1, exper;, + ,oztexper,-z, + i;t)?t +uir. (6.3)

The correlation between «;; and edu;; in (6.1) is the source of “ability bias” (Griliches
1977). Given the pure cross-sectional nature of our analysis, we do not allow for
the endogeneity from “ability bias” or dynamics. To allow for nonzero correlations
between «;;, edu;; and z;;, a panel data approach is required, which has its own
challenges, as education and experience variables tend to very slow moving (if at all)
for many individuals in the panel. Time delays between changes in education and
experience and the wage outcomes also further complicate the interpretation of the
mean estimates of B;; which we shall be reporting. To partially address the possible
dynamic spillover effects, we provide estimates of the distribution of ;; using cross-
sectional data from two different sample periods, and investigate the extent to which
the distribution of return to education has changed over time, by gender and the level
of educational achievements.'!

We estimate the categorical distribution of the return to education in (6.3) using
the May and Outgoing Rotation Group (ORG) supplements of the Current Population
Survey (CPS) data, as in Lemieux (2006b, ¢).'2 We pool observations from 1973 to
1975 for the first sample period, ¢t = {1973—1975} and observations from 2001 to
2003 for the second sample period, t = {2001—2003}. Following Lemieux (2006b),
we consider subsamples of those with less than 12 years of education, “high school
or less,” and those with more than 12 years of education, “postsecondary education,”
as well as the combined sample. We also present results by gender. The summary
statistics are reported in Table 4. As to be expected, the mean log wages are higher
for those with postsecondary education (for male and female), with the number of
years of schooling and experience rising by about one year across the two sub-period
samples. There are also important differences across male and female, and the two
educational groupings, which we hope to capture in our estimation.

We treat the cross-section observations in the two sample periods, t = {1973—1975}
and {2001—2003}, as repeated cross sections, rather than a panel data since the data
in these two periods do not cover the same individuals, and represent random samples
from the population of wage earners in two periods. It should also be noted that
sample sizes (n,), although quite large, are much larger during {2001—2003}, which
could be a factor when we come to compare estimates from the two sample periods.
For example, for both male and female n73_75 = 111,632 as compared to ng;—o3 =
511,819, a difference which becomes more pronounced when we consider the number
observations in postsecondary/female category—which rises from 12,882 for the first
period to 100,007 in the second period.

' Time variations in return to education have also been investigated in the literature as a possible expla-
nation of increasing wage inequality in the USA. See, for example, the papers by Lemieux (2006b, c).

12' The data are retrieved from https://www.openicpsr.org/openicpst/project/116216/version/V1/view.
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Wereportestimates of 7r;, 81 ; and B 1, as well as corresponding mean and standard
deviations (denoted by s.d.(én)) of the return to education (g;;) for t = {1973—1975}
and {2001—2003}. For a given m;, the ratio Sy ;/BL.; provides a measure of within-
group heterogeneity and allows us to augment information on changes in mean with
changes in the distribution of return of education. The estimates for the distribution
of the return to education (f;,) are summarized in Table 5, with the estimation results
for control variables (such as experience, experienced squared, and other individual
specific characteristic) reported in Table 6.

As can be seen from Table 5, estimates of s.d. (B;;) are strictly positive for all
subgroups, except for the “high school or less” group during the first sample period.
For this group during the first period the estimate of s.d. (8;;) for the male subsample
is zero, 7 is not identified, and we have identical estimates for 8 and Bg. For this
subsample, the associated estimates and their standard errors are shown as unavailable
(n/a). In case of the female subsample as well as both male and female subsamples
where the estimates of s.d.(,éi,) are close to zero and m is poorly estimated, only
the mean of the return to education is informative. In the case of the samples where
the estimates of s.d. (B;;) are strictly positive, the estimate of the ratio By ;/BL .+
provides a good measure of within-group heterogeneity of return to education. The
estimates of By (/Br.: lie between 1.50 and 2.79, with the high estimate obtained
for the females with high school or less education during {2001 —2003}, and the low
estimate is obtained for females with postsecondary education during the same period.

As our theory suggests the mean estimates of return to education, E (B;;) are very
precisely estimated and inferences involving them tend to be robust to conditional error
heteroskedasticity. The results in Table 5 show that estimates of E (8;;) have increased
over the two sample periods ¢+ = {1973—1975} to + = {2001 —-2003}, regardless of
gender or educational grouping. The postsecondary educational group show larger
increases in the estimates of E (B;;) as compared to those with high school or less.
Estimates of E (8;;) increase by 36 percent for the postsecondary group, while the
estimates of mean return to education rise only by around 5 percent in the case of
those with high school or less. This result holds for both genders. Comparing the
mean returns across the two educational groups, we find that mean return to education
of individuals with postsecondary education is 45 percent higher than those with high
school or less in the {1973—1975} period, but this gap increases to 87 percent in
the second period, {2001—2003}. Similar patterns are observed in the subsamples by
gender. The estimates suggest rising between group heterogeneity, which is mainly
due to the increasing returns to education for the postsecondary group.

Turning to within-group heterogeneity, we focus on the estimates of By /BL .1
and first note that over the two periods, within-group heterogeneity has been rising
mainly in the case of those with high school or less, for both male and female. For the
combined male and female samples and the male subsample, there is little evidence
of within-group heterogeneity for the first period {1973—1975}. However, for the
second period {2001 —2003} we find a sizeable degree of within-group heterogeneity
where By ./ /BL.; 1S estimated to be around 2.41, with s.d. (8;;) ~ 0.03. For the female
subsample with high school or less, little evidence of heterogeneity was found for
the first period, estimates of By ;/BL.; increase to 2.79 for the second sample period,
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that corresponds to a commensurate rise in s.d. (§;) to 0.032. The pattern of within-
group heterogeneity is very different for those with postsecondary educational. For
this group, we in fact observe a slight decline in the estimates of Sy ;/B1.; by gender
and over two sample periods.

Overall, our estimates of return to education and the within and between group
comparisons are in line with the evidence of rising wage inequality documented in the
literature (Corak 2013).

7 Conclusion

In this paper, we consider random coefficient models for repeated cross sections in
which the random coefficients follow categorical distributions. Identification is estab-
lished using moments of the random coefficients in terms of the moments of the
underlying observations. We propose two-step generalized method of moments to
estimate the parameters of the categorical distributions. The consistency and asymp-
totic normality of the GMM estimators are established without the IID assumption
typically assumed in the literature. Small sample properties of the proposed estimator
are investigated by means of Monte Carlo experiments and shown to be robust to het-
erogeneously generated regressors and errors, although relatively large samples are
required to estimate the parameters of the underling categorical distributions. This is
largely due to the highly nonlinear mapping between the parameters of the categorical
distribution and the higher-order moments of the coefficients. This problem is likely
to become more pronounced with a larger number of categories and coefficients.

In the empirical application, we apply the model to study the evolution of returns to
education over two sub-periods, also considered in the literature by Lemieux (2006b).
Our estimates show that mean (ex post) returns to education have risen over the periods
from 1973-1975 to 2001-2003 mainly in the case of individuals with postsecondary
education, and this result is robust by gender. We find evidence of within-group het-
erogeneity in the case of high school or less educational group as compared to those
with postsecondary education.

In our model specification, the number of categories, K, is treated as a tuning
parameter and assumed to be known. An information criterion, as in Bonhomme and
Manresa (2015) and Su et al. (2016), to determine K could be considered. Further
investigation of models with multiple regressors subject to parameter heterogeneity is
also required. These and other related issues are topics for future research.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/s00181-023-02402-0.
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A.1 Proofs

We include proofs and technical details in this section.
Proof of Theorem 1 Sum (2.6) over i and rearrange terms,

%i;s(x;) E(ﬂ{)+%§n:E(u?)=%Xn:E(9f)

i=1 i=1 i=1
(" (! < r—q q r—q
-y ; ;ZE(XI- JE @) E (877 (A1)
q=2 i=1
Note that
1 ¢ 1 1 ¢
BT E@) = (S E () Jou - DB (x7) (B W) — o).
i=1 i=1 i=1

and

L E ) = )| = 0671,

n-
i=1

LS () (5 ) — o)

e ()
i

by Assumption 1(b) and 2(b), then by taking n — oo on both sides of (A.1.1), we
have (2.8). Similar steps for (2.7) give (2.9). O

Proofof Theorem2 Let m, = E (,Bi’), r = 1,2,...,2K — 1, which are taken as
known. We show that

K
my =Y mbf. (A.1.2)
k=1
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r=0,1,2,...,2K—1,hasaunique solution = (n’, b/)/,withbl <by<---<bg
and 7 € (0, 1) imposed.
Let

K
g0 =[] =bo=2K+D'piak 44 DK b, (AL3)
k=1

2K—1

be the polynomial with K distinct roots by, by, . . ., bg . Note that for each k, (b,’()rzo

satisfies the linear homogeneous recurrence relation,
bET = bib T - (=D BT T (DK bR, (A1)

forr =0, 1, ... K —1,since g is the characteristic polynomial of the linear recurrence

relation (A.1.4) and by is a root of g (Rosen 2006, Chapter 5.2). (mr)ffo_ Uis a linear
combination of (b7)2X ", (b5)25, 1 .. (0)2E, ! by (A.1.2), then (m,)2K! also
satisfies the linear recurrence relation (A.1.4), i.e.,

mg+r = bTmK—&-r—l + (_1)1 b;mK—i-r—Z + -+ (_1)K_1 b}((mra (A.1.5)

forr =0,1,..., K—1.(A.1.5)is alinear system of K equations in terms of (b,f)f:
In matrix form,

1

MDb* = m, (A.1.6)
where

I my - mg_

mi my --- meg

Mmg—1 Mg -+ mMpg—2

D = diag((-DX1, (=DK2,..)1), b* = (b, bk |,....b%), and m =
(mg,mg1,...,meg—1). /
Denote ¢, = (l,bk,b,%...,b,f*]) and W = (Y1, ¥,....,¥g). Then

1 by - b]f*I
by b* ... bK
M; = . .k ¢

@ Springer



Identification and estimation of categorical random... 2585

and M = YK | ;M = Wdiag (r) ¥'. Note that ¥’ is a Vandermonde matrix then
det (W) = [ [ pr<x (i —bx) > Osince by < by < --- < bg.

det (MD) = det (Wdiag (7) ¥') det (D)

2
K
= 1—[ (b — by) (1_[ ﬂk) <(_1)%K(K—1)) £0,
k=1

1<k<k’<K

since ;. € (0, 1) for any k. Then, we can identify (b,’;)f:l by (mr)ff(;l in (A.1.6),
and hence the characteristic polynomial is determined, and we can identify (by) ,f: 1

by (A.1.3).
Since both (bk),f: 1 and (mr)zf ~1are identified, the first K equations of (A.1.2) is

r=1
/ 1
Vg = (1,m1,m2,...,m1<_1) s

and 7 is identified by inverting the Vandermonde matrix W', which completes the
proof. O

Proof of Theorem 4 Denote

<DO (03 o, }’) =20 (07 o, y)/AgO (07 o, )’) ’

where we stack the left-hand side of (3.7) and transformmg = / () to get g, (0, o, p).
We suppress and the argument y and denote n = (0/ ,o' )/ for notation simplicity and
proceed by verifying the conditions of Newey and McFadden (1994, Theorem 2.1).
Theorem 2 provides the identification results which together with the positive definite-
ness of A verifies that ®¢ (n, y) is uniquely minimized to O at . The compactness
of the parameter space holds by Assumption 4(a). Note that g, (3, ¥) is a polynomial
in n, which is continuous in 9. g, (, y) is bounded on ® x S. We proceed by verify
the uniform convergence condition. The additive terms in g, (n, )7) —go (n, y) are of
the form H, 1h"9) (y) or H, >, where

n

A
—q+s
; E X; i P0,r—q+sr

i=1

n n

)

i=1 i=1
— 0, ().

|Haa| =

IA

1 —q+s;
;ZE(%" ) = por-gts
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R4 () is a polynomial in #, and

|Hn,2| - ‘ Zyr - Pr.,s,

n

1 ~r s, ~r Sr
;Z —‘ZE

i=1
— 0, (w17).

H,) = 0, (n"/?) and H, » = 0, (n~'/?) are due to Assumption 2(a) and 4(c).
By the compactness of © x S, sup,coxs h"9 () < C < oo for some positive
constant C. By triangle inequality, we have

<

sup &, (n.7) —go (. ¥)| =, 0, (A.1.7)
neEOXS

as n — oo. Following the proof of Newey and McFadden (1994, Theorem 2.1),

b, (1, 9) — Po (n, y)‘

n,

< |[&, (1.%) — 20 1. 9] Au [8, (1. 7) — 20 (0. )]
+ |20 . ¥) (An +A}) [, (0. 7) — 80 (0. »)]|
+ 20 . ¥) Ay —A) gy (0, p)|

< |18 (1. %) — 20 0. )| 1AWl +2 g0 1. 2] |80 (0. ) — 20 0. »)| 1A
+ g0 1. 2] 1A, — Al

By (A.1.7) and the boundedness of gy, sup,, o, (17, f/) — o, (7, y)‘ — p 0, which
completes the proof. O

Proof of Theorem 5 We denote n = ( ) for notation simplicity. The first-order

condition, Vg, (ﬁ y) A8, (ﬁ )7) = 0, holds with probability 1. Denote Gy =
V&, (1, y) and expand g, ( ) in the first-order condition around 7, we have

V(i n0) == [6(3.9) MG (1.9)] 6 (3. 9) An (Vs (0. 7))
=[G (.7 A6 (13)] 6(.7) A [V, (10, 70)

(
where 7 and p are between 7 ancj No; and ;? and y, respectively. Note that by term-
by-term convergence, we have G (7, 7),G (7, 7) —p Go and V, 8, (19, 7) —
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Vy 8o (770’ yo) = Gy,,. By Assumption 4(b), A,, — , A. By Assumption 5(a) and (b)
and Slutsky theorem,

Vi (il = 19) ~a (GpAGo) ™ GiA (2 +Go,y L) .
which completes the proof. O

Further details for Example 4 We need to verify the invertibility of the matrix

| | 0 0
0 0 1 1
B=1 0 | 0

biLbar birboy bigbar biabon
The span of the first three rows of B is
S={l+o,a,00+0a3,03) a1, 00,03 € R},

(brobar,bibym, biubar, bigbog)' ¢ S is equivalent to bigboy — biybar #
bipbog — b1rbar. This can be verified by

(biabog — biubar) — (biLboy — bipbar) = (big — b1r) (boy — bar) > 0,

given that by 1 < by g and by < by g hold. O
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