
Empirical Economics (2023) 64:2543–2588
https://doi.org/10.1007/s00181-023-02402-0

Identification and estimation of categorical random
coefficient models

Zhan Gao1 ·M. Hashem Pesaran1,2

Received: 25 April 2022 / Accepted: 27 February 2023 / Published online: 6 April 2023
© The Author(s) 2023

Abstract
This paper proposes a linear categorical randomcoefficientmodel, inwhich the random
coefficients follow parametric categorical distributions. The distributional parameters
are identified based on a linear recurrence structure of moments of the random coef-
ficients. A generalized method of moments estimation procedure is proposed, also
employed by Peter Schmidt and his coauthors to address heterogeneity in time effects
in panel data models. Using Monte Carlo simulations, we find that moments of the
random coefficients can be estimated reasonably accurately, but large samples are
required for the estimation of the parameters of the underlying categorical distribu-
tion. The utility of the proposed estimator is illustrated by estimating the distribution
of returns to education in the USA by gender and educational levels. We find that ris-
ing heterogeneity between educational groups is mainly due to the increasing returns
to education for those with postsecondary education, whereas within-group hetero-
geneity has been rising mostly in the case of individuals with high school or less
education.
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1 Introduction

Random coefficient models have been used extensively in time series, cross-section
and panel regressions. Nicholls and Pagan (1985) consider the estimation of first
and second moments of the random coefficient βi and the error term ui , in a linear
regression model. In a seminal paper, Beran and Hall (1992) establish conditions
for identifying and estimating the distribution of βi and ui nonparametrically. The
baseline linear univariate regression in Beran and Hall (1992) has been extended in
nonparametric framework by Beran (1993), Beran and Millar (1994), Beran et al.
(1996), Hoderlein et al. (2010), Hoderlein et al. (2017) and Breunig and Hoderlein
(2018), to just name a few.Hsiao and Pesaran (2008) survey random coefficientmodels
in linear panel data models.

In some econometric applications, Hausman (1981), Hausman and Newey (1995),
Foster and Hahn (2000), for examples, the main interest is to estimate the consumer
surplus distribution based on a linear demand system where the coefficient associated
with the price is random. In such settings, the distribution of the random coefficients
is needed when computing the consumer surplus function, and the nonparametric
estimation is more general, flexible and suitable for the purpose. On the other hand,
parametric models may be favored in applications in which the implied economic
meaning of the distribution of the random coefficients is of interests. Examples include
estimation of the return to education (Lemieux 2006b, c) and the labor supply equation
(Bick et al. 2022).

In this paper, we consider a linear regression model with a random coefficient βi
that is assumed to follow a categorical distribution, i.e., βi has a discrete support
{b1, b2, . . . , bK }, and βi = bk with probability πk . The discretization of the support
of the random coefficient βi naturally corresponds to the interpretation that each indi-
vidual belongs to a certain category, or group, k with probability πk . Compared to a
nonparametric distribution with continuous support, assuming a categorical distribu-
tion allows us not only to model the heterogeneous responses across individuals but
also to interpret the results with sharper economic meaning. As we will illustrate in
the empirical application in Sect. 6, it is hard to clearly interpret the distribution of
returns to education without imposing some form of parametric restrictions.

In addition, with the categorical distribution imposed, the identification and esti-
mation of the distribution of βi do not rely on identically distributed error terms ui
and regressorswi , as shown in Sect. 2 and 3. Heterogeneously generated errors can be
allowed, which is important in many empirical applications. To the best of our knowl-
edge, this is the first identification result in linear random coefficient model without a
strict IID setting.

The identification of the distribution of βi is established in this paper based on the
identification of the moments of βi , which coincides with the identification condition
in Beran and Hall (1992) that the distribution of βi is uniquely determined by its
moments, which is assumed to exist up to an arbitrary order. Since under our setup
the distribution of βi is parametrically specified, the moments of βi exist and can be
derived explicitly. The parameters of the assumed categorical distribution can then be
uniquely determined by a system of equations in terms of the moments, as in Theorem
2. The parameters of the categorical distribution are then estimated consistently by the
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generalized method of moments (GMM). The estimation procedure based on moment
conditions shares similar spirits as in Ahn et al. (2001, 2013) in which Peter Schmidt
and coauthors study panel data models with interactive effects where they allow for
the time effects to vary across individual units. Compared to alternative nonparametric
random coefficient models, the standard GMM estimation is easy to implement, and
the identified categorical structure has a clear economic interpretation.

Using Monte Carlo (MC) simulations, we find that moments of the random coef-
ficients can be estimated reasonably accurately, but large samples are required for
estimation of the parameters of the underlying categorical distributions. Our theo-
retical and MC results also suggest that our method is suitable when the number of
heterogeneous coefficients and the number of categories are small (2 or 3). With the
number of categories rising the burden on identification from the moments to the
parameters of the categorical distribution also rises rapidly. The quality of identifica-
tion also deteriorates as we need to rely on higher and higher moments to identify a
larger number of categories, since the information content of the moments tends to
decline with their order.

The proposed method is also illustrated by providing estimates of the distribution
of returns to education in the USA by gender and educational levels, using the May
and Outgoing Rotation Group (ORG) supplements of the Current Population Survey
(CPS) data. Comparing the estimates obtained over the sub-periods 1973–1975 and
2001–2003, we find that rising between group heterogeneity is largely due to rising
returns to education in the case of individuals with postsecondary education, while
within-group heterogeneity has been rising in the case of individuals with high school
or less education.

RelatedLiteratureThis paper drawsmainly upon the literature of randomcoefficient
models. As already mentioned, the main body of the recent literature is focused on
nonparametric identification and estimation. Following Beran and Hall (1992), Beran
(1993) and Beran and Millar (1994) extend the model to a linear semi-parametric
model with a multivariate setup and propose a minimum distance estimator for the
unknowndistribution. Foster andHahn (2000) extend the identification results inBeran
and Hall (1992) and apply the minimum distance estimator to a gasoline consumption
data to estimate the consumer surplus function. Beran et al. (1996) and Hoderlein et al.
(2010) propose kernel density estimators based on the Radon inverse transformation
in linear models.

In addition to linear models, Ichimura and Thompson (1998) and Gautier and Kita-
mura (2013) incorporate the random coefficients in binary choice models. Gautier and
Hoderlein (2015) and Hoderlein et al. (2017) consider triangular models with random
coefficients allowing for causal inference. Matzkin (2012) and Masten (2018) discuss
the identification of random coefficients in simultaneous equation models. Breunig
and Hoderlein (2018) propose a general specification test in a variety of random coef-
ficient models. Random coefficients are also widely studied in panel data models, for
example Hsiao and Pesaran (2008) and Arellano and Bonhomme (2012)

The rest of the paper is organized as follows: Sect. 2 establishes the main identifi-
cation results. The GMM estimation procedure is proposed and discussed in Sect. 3.
An extension to a multivariate setting is considered in Sect. 4. Small sample properties
of the proposed estimator are investigated in Sect. 5, using Monte Carlo techniques
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under different regressor and error distributions. Section6 presents and discusses our
empirical application to the return to education. Section7 provides some concluding
remarks and suggestions for future work. Technical proofs are given in “Appendix
A.1.”
Notations Largest and smallest eigenvalues of the p× pmatrixA = (ai j

)
are denoted

by λmax (A) and λmin (A) , respectively, its spectral norm by ‖A‖ = λ
1/2
max
(
A′A

)
,

A � 0 means that A is positive definite, vech (A) denotes the vectorization of distinct
elements of A, 0 denotes zero matrix (or vector). For a ∈ R

p, diag (a) represents the
diagonal matrix with elements of a1, a2, . . . , ap. For random variables (or vectors) u
and v, u ⊥ v represents u is independent of v. We use c (C) to denote some small
(large) positive constants. For a differentiable real-valued function f (θ), ∇θ f (θ)

denotes the gradient vector. Operator →p denotes convergence in probability, and
→d convergence in distribution. The symbols O(1), and Op(1) denote asymptotically
bounded deterministic and random sequences, respectively.

2 Categorical random coefficient model

Wesuppose the single cross-section observations, {yi , xi , zi }ni=1, follow the categorical
random coefficient model

yi = xiβi + z′
iγ + ui , (2.1)

where yi , xi ∈ R, zi ∈ R
pz , and βi ∈ {b1, b2, . . . , bK } admits the following K -

categorical distribution,

βi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1, w.p. π1,

b2, w.p. π2,

...
...

bK , w.p. πK ,

(2.2)

w.p. denotes “with probability,” πk ∈ (0, 1),
∑K

k=1 πk = 1, b1 < b2 < · · · < bK ,
γ ∈ R

pz is homogeneous and zi could include an intercept term as its first element. It
is assumed that βi ⊥ wi = (xi , z′

i

)′, and the idiosyncratic errors ui are independently
distributed with mean 0.

Remark 1 The model can be extended to allow xi ,β i ∈ R
p, with β i following a

multivariate categorical distribution, though with more complicated notations. We
will consider possible extensions in Sect. 4.

Remark 2 Since we consider a pure cross-sectional setting, the key assumption that βi
and xi are independently distributed cannot be relaxed. Allowing βi to vary with wi ,
without any further restrictions, is tantamount to assuming yi is a general function of
wi , in effect rendering a nonparametric specification.
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Remark 3 The number of categories, K , is assumed to be fixed and known. Conditions∑K
k=1 πk = 1, b1 < b2 < · · · < bK , and πk ∈ (0, 1) together are sufficient for the

existence of K categories. For example, if bk = bk′ , then we can merge categories k
and k′, and the number of categories reduces to K − 1. Similarly, if πk = 0 for some
k, then category k can be deleted, and the number of categories is again reduced to
K − 1. Information criteria can be used to determine K , but this will not be pursued
in this paper. Model specification tests could also be considered. See, for examples,
Andrews (2001) and Breunig and Hoderlein (2018).

In the rest of this section, we focus on the model (2.1) and establish the conditions
under which the distribution of βi is identified.

2.1 Identifying themoments ofˇi

Assumption 1 (a) (i) ui is distributed independently of wi = (
xi , z′

i

)′ and βi . (ii)
supi E

(∣∣uri
∣∣) < C , r = 1, 2, . . . , 2K − 1. (iii) n−1∑n

i=1 u
4
i = Op(1).

(b) (i) LetQn,ww = n−1∑n
i=1 wiw′

i , andqn,wy = n−1∑n
i=1 wi yi . Then

∥∥E
(
Qn,ww

)∥∥

< C < ∞, and
∥
∥E
(
qn,wy

)∥∥ < C < ∞, and there exists n0 ∈ N such that for all
n ≥ n0,

0 < c < λmin
(
Qn,ww

)
< λmax

(
Qn,ww

)
< C < ∞.

(ii) supi E
(‖wi‖r

)
< C < ∞, r = 1, 2, . . . , 4K − 2.

(iii) n−1∑n
i=1 ‖wi‖4 = Op(1).

(c)
∥∥Qn,ww − E

(
Qn,ww

)∥∥ = Op
(
n−1/2

)
,
∥∥q n,wy − E

(
qn,wy

)∥∥ = Op
(
n−1/2

)
,

and

E
(
Qn,ww

) = n−1
n∑

i=1

E
(
wiw′

i

) � 0.

(d)
∥
∥E
(
Qn,ww

)− Qww

∥
∥ = O

(
n−1/2

)
,
∥
∥E
(
qn,wy

)− qwy

∥
∥ = O

(
n−1/2

)
, where

qwy = lim
n→∞ E

(
qn,wy

)
, Qww = lim

n→∞ E
(
Qn,ww

)
and Qww � 0.

Remark 4 Part (a) of Assumption 1 relaxes the assumption that ui is identically dis-
tributed, and allows for heterogeneously generated errors. For identification of the
distribution of βi , we require ui to be distributed independently of wi and βi , which
rules out conditional heteroskedasticity. However, estimation and inference involving
E (βi ) and γ can be carried out in presence of conditionally error heteroskedastic,
as shown in Theorem 3. Parts (c) and (d) of Assumption 1 relax the condition that
wi is identically distributed across i . As we proceed, only βi , whose distribution is
of interest, is assumed to be IID across i , and it is not required for wi and ui to be
identically distributed over i .

Remark 5 The high-level conditions in Assumption 1, concerning the convergence in
probability of averages such as Qn,ww = n−1∑n

i=1 wiw′
i , can be verified under weak
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cross-sectional dependence. Let fi = f (wi , βi , ui ) be a generic function of wi , βi

and ui .1 Assume that supi E
(
f 2i
)

< C , and sup j
∑n

i=1

∣∣cov
(
fi , f j

)∣∣ < C , for some
fixed C < ∞. Then,

var

(
1

n

n∑

i=1

fi

)

≤ 1

n2

n∑

i=1

n∑

j=1

∣∣cov
(
fi , f j

)∣∣ ≤ 1

n
sup
j

n∑

i=1

∣∣cov
(
fi , f j

)∣∣ ≤ C

n
.

By Chebyshev’s inequality, for any ε > 0, we have Mε >
√
C/ε such that

Pr

(√
n

∣∣∣
∣∣
1

n

n∑

i=1

[ fi − E ( fi )]

∣∣∣
∣∣
> Mε

)

≤ nvar
(
n−1∑n

i=1 fi
)

C
ε ≤ ε,

i.e., n−1∑n
i=1 [ fi − E ( fi )] = Op

(
n−1/2

)
.

Denote φi = (
βi , γ

′)′ and φ = E
(
φi
) = (

E (βi ) , γ ′)′. Consider the moment
condition,

E (wi yi ) = E
(
wiw′

i

)
φ, (2.3)

and sum (2.3) over i

1

n

n∑

i=1

E (wi yi ) =
[
1

n

n∑

i=1

E
(
wiw′

i

)
]

φ. (2.4)

Let n → ∞, then φ is identified by

φ = Q−1
wwqwy, (2.5)

under Assumption 1.

Assumption 2 Let ỹi = yi − z′
iγ .

(a)
∣
∣n−1∑n

i=1 E
(
ỹri x

s
i

)− ρr ,s
∣
∣ = O

(
n−1/2

)
, and

∣
∣ρr ,s

∣
∣ < ∞, for r , s =

0, 1, . . . , 2K − 1.
(b)

∣∣n−1∑n
i=1 E

(
uri
)− σr

∣∣ = O
(
n−1/2

)
, and |σr | < ∞, for r = 2, 3, . . . , 2K − 1.

(c) n−1∑n
i=1

[
var(xri ) −

(
ρ0,2r − ρ2

0,r

)]
= O

(
n−1/2

)
where ρ0,2r − ρ2

0,r > 0, for

r = 2, 3, . . . , 2K − 1.

Remark 6 The above assumption allows for a limited degree of heterogeneity of the
moments. As an example, let E

(
uri
) = σir and denote the heterogeneity of the r th

moment of ui by eir = σir − σr . Then

∣
∣∣∣∣
n−1

n∑

i=1

E
(
uri
)− σr

∣
∣∣∣∣
≤ n−1

n∑

i=1

|eir | ,

1 fi is assumed to be a scalar, and we can apply the analysis element-by-element to a matrix, for example
wiw′

i .
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and condition (b) of Assumption 2 is met if
∑n

i=1 |eir | = O(nαr ) with αr < 1/2. αr
measures the degree of heterogeneity with αr = 1 representing the highest degree of
heterogeneity. A similar idea is used by Pesaran and Zhou (2018) in their analysis of
poolability in panel data models.

Theorem 1 Under Assumptions 1 and 2, E
(
βr
i

)
and σr , r = 2, 3, . . . , 2K − 1 are

identified.

Proof For r = 2, . . . , 2K − 1,

E
(
ỹri
) = E

(
xri
)
E
(
βr
i

)+ E
(
uri
)+

r−1∑

q=2

(
r

q

)
E
(
xr−q
i

)
E
(
uqi
)
E
(
β
r−q
i

)
, (2.6)

E
(
ỹri x

r
i

) = E
(
x2ri
)
E
(
βr
i

)+ E
(
xri
)
E
(
uri
)+

r−1∑

q=2

(
r

q

)
E
(
x2r−q
i

)
E
(
uqi
)
E
(
β
r−q
i

)
.

(2.7)

where
(r
q

) = r !
q!(r−q)! are binomial coefficients, for nonnegative integers q ≤ r .

Sum over i , then by parts (a) and (b) of Assumption 2,

ρ0,r E
(
βr
i

)+ σr = ρr ,0 −
r−1∑

q=2

(
r

q

)
ρ0,r−qσq E

(
β
r−q
i

)
, (2.8)

ρ0,2r E
(
βr
i

)+ ρ0,rσr = ρr ,r −
r−1∑

q=2

(
r

q

)
ρ0,2r−qσq E

(
β
r−q
i

)
. (2.9)

Derivation details are relegated to “Appendix A.1.” By part (c) of Assumption 2,

the matrix

(
ρ0,r 1
ρ0,2r ρ0,r

)
is invertible for r = 2, 3, . . . , 2K − 1. As a result, we can

sequentially solve (2.8) and (2.9) for E
(
βr
i

)
and σr , for r = 2, 3, . . . , 2K − 1. �

2.2 Identifying the distribution ofˇi

Beran and Hall (1992, Theorem 2.1, pp. 1972) prove the identification of the distribu-
tion of the random coefficient, βi , in a canonical model without covariates, zi , under
the condition that the distribution of βi is uniquely determined by its moments. We
show the identification of moments of βi holds more generally when xi and ui are not
identically distributed and the distribution of βi is identified if it follows a categorical
distribution. Note that under (2.2),

E
(
βr
i

) =
K∑

k=1

πkb
r
k, r = 0, 1, 2, . . . , 2K − 1, (2.10)

with E
(
βr
i

)
identified under Assumption 1. To identify π = (π1, π2, . . . , πK )′ and

b = (b1, b2, . . . , bK )′, we need to verify that the system of 2K equations in (2.10)
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has a unique solution if b1 < b2 < · · · < bK , and πk ∈ (0, 1). In the proof, we
construct a linear recurrence relation and make use of the corresponding characteristic
polynomial.

Theorem 2 Consider the random coefficient regression model (2.1), suppose that
Assumptions 1 and 2 hold. Then θ = (

π ′, b′)′ is identified subject to b1 < b2 <

· · · < bK and πk ∈ (0, 1), for all k = 1, 2, . . . , K.

Proof We motivate the key idea of the proof in the special case where K = 2, and
relegate the proof of the general case to the “Appendix A.1.” Let b1 = βL , b2 = βH ,
π1 = π and π2 = 1 − π . Note that

E (βi ) = πβL + (1 − π) βH , (2.11)

E
(
β2
i

)
= πβ2

L + (1 − π) β2
H , (2.12)

E
(
β3
i

)
= πβ3

L + (1 − π) β3
H , (2.13)

and E
(
βk
i

)
, k = 1, 2, 3 are identified. (π, βL , βH ) can be identified if the system of

Eqs. (2.11)–(2.13), has a unique solution. By (2.11),

π = βH − E (βi )

βH − βL
, and 1 − π = E (βi ) − βL

βH − βL
. (2.14)

Plug (2.14) into (2.12) and (2.13),

E (βi ) (βL + βH ) − βLβH = E
(
β2
i

)
, (2.15)

E
(
β2
i

)
(βL + βH ) − E (βi ) βLβH = E

(
β3
i

)
. (2.16)

Denote βL+H = βL + βH and βLH = βLβH , and write (2.15) and (2.16) in matrix
form,

MDb∗ = m, (2.17)

where

M =
(

1 E (βi )

E (βi ) E
(
β2
i

)
)

, D =
(−1 0

0 1

)
, b∗ =

(
βLH

βL+H

)
, and m =

(
E
(
β2
i

)

E
(
β3
i

)
)

.

Under the conditions 0 < π < 1 and βH > βL ,

det (M) = var (βi ) = E
(
β2
i

)
− E (βi )

2 = π (1 − π) (βH − βL)2 > 0.
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As a result, we can solve (2.17) for βL+H and βLH as

βL+H = E
(
β3
i

)− E (βi ) E
(
β2
i

)

var (βi )
, (2.18)

βLH = E (βi ) E
(
β3
i

)− E
(
β2
i

)2

var (βi )
. (2.19)

βL and βH are solutions to the quadratic equation,

β2 − βL+Hβ + βLH = 0. (2.20)

We can verify that 	 = β2
L+H − 4βLH > 0 by direct calculation using (2.18) and

(2.19). Simplifying	 in terms of E
(
βk
i

)
and then plugging in (2.11), (2.12) and (2.13),

	 =
[
E
(
β3
i

)− E (βi ) E
(
β2
i

)]2 − 4var (βi )
[
E (βi ) E

(
β3
i

)− E
(
β2
i

)2]

[var (βi )]2

= (βH − βL)2 > 0.

Then, we obtain the unique solutions,

βL = 1

2

(
βL+H −

√
β2
L+H − 4βLH

)
, (2.21)

βH = 1

2

(
βL+H +

√
β2
L+H − 4βLH

)
, (2.22)

and π can be determined by (2.14) correspondingly. �
Remark 7 The key identifying assumption in (2) is the assumed existence of the strict
ordinal relation b1 < b2 < · · · < bK so that bk and bk′ are not symmetric for
k �= k′, and 0 < πk < 1 so that the distribution of βi does not degenerate. When
K = 2, the conditions b1 < b2 < · · · < bK , and πk ∈ (0, 1), are equivalent to
var (βi ) = π1 (1 − π1) (b2 − b1)2 > 0. In other words, not surprisingly, the categori-
cal distribution of βi is identified only if var (βi ) > 0.

In practice, a test for H0 : var (βi ) = 0 is possible, by noting that var (βi ) = 0 is
equivalent to

κ2 = E (βi )
2

E
(
β2
i

) = 1,

where κ2 is well defined as long as βi �≡ 0. One important advantage of basing
the test of slope homogeneity on κ2 rather than on var(βi ) = 0 is that κ2 is scale-
invariant. E (βi ) and E

(
β2
i

)
are identified as in Sect. 2.1, whose consistent estimation

does not require var (βi ) > 0. Consequently, in principle it is possible to test slope
homogeneity by testing H0 : κ2 = 1. However, the problem becomes much more

123



2552 Z. Gao, M. H. Pesaran

complicated when there are more than two categories and/or there are more than one
regressor under consideration. A full treatment of testing slope homogeneity in such
general settings is beyond the scope of the present paper.

Remark 8 Note that in the special case of the proof of Theorem 2 where K = 2,
βL+H = βL +βH and βLH = βLβH corresponds to b∗

1 and b
∗
2, and (2.17) is the same

as (A.1.6) when K = 2. This special case illustrates the procedure of identification:
identify

(
b∗
k

)K
k=1 by the moments of βi , then solve for (bk)Kk=1 and finally identify

(πk)
K
k=1.

3 Estimation

In this section, we propose a generalized method of moments estimator for the distri-
butional parameters of βi . To reduce the complexity of the moment equations, we first
obtain a

√
n-consistent estimator of γ and consider the estimation of the distribution

of βi by replacing γ by γ̂ .

3.1 Estimation of �

Let φ = (E (βi ) , γ ′)′, vi = βi − E (βi ) and using the notation in Assumption 1, (2.1)
can be written as

yi = w′
iφ + ξi , (3.1)

where ξi = ui + xivi . Then, φ can be estimated consistently by φ̂ = Q−1
n,wwqn,wy

where Qn,ww and qn,wy are defined in Assumption 1.

Assumption 3
∥∥n−1∑n

i=1 E
(
wiw′

iξ
2
i

)− Vwξ

∥∥ = O
(
n−1/2

)
, Vwξ � 0, and

∥∥∥∥
∥
1

n

n∑

i=1

wiw′
iξ

2
i − 1

n

n∑

i=1

E
(
wiw′

iξ
2
i

)
∥∥∥∥
∥

= Op

(
n−1/2

)
. (3.2)

Remark 9 As in the case of Assumption 1, the high-level condition (3.2) can be shown
to hold under weak cross-sectional dependence, assuming that elements of wiw′

iξ
2
i

are cross-sectionally weakly correlated over i . See Remark 5.

Theorem 3 Under Assumption 1, φ̂ is a consistent estimator for φ. In addition, under
Assumptions 1 and 3, as n → ∞,

√
n
(
φ̂ − φ

)
→d N

(
0,Vφ

)
, (3.3)

where Vφ = Q−1
wwVwξQ−1

ww. Vφ is consistently estimated by

V̂φ = Q−1
n,wwV̂wξQ−1

n,ww →p Vφ,
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as n → ∞, where V̂wξ = n−1∑n
i=1 wiw′

i ξ̂
2
i , and ξ̂i = yi − w′

i φ̂.

The proof of Theorem 3 is provided in Sect. S.2 in the online supplement.

3.2 Estimation of the distribution ofˇi

Denote the moments of βi on the right-hand side of (2.10) by

mβ = (m1,m2, . . . ,m2K−1)
′

= [E (βr
i

)]2K−1
r=1 ∈ m ⊂

{
mβ ∈ R

2K−1 : mr ≥ 0, r is even
}

,

and note that

mβ =

⎛

⎜⎜⎜
⎝

m1
m2
...

m2K−1

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

b1 b2 · · · bK
b21 b22 · · · b2K
...

...
...

...

b2K−1
1 b2K−1

2 · · · b2K−1
K

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

π1
π2
...

πK

⎞

⎟⎟⎟
⎠

, (3.4)

so in general we can write mβ � h (θ) , where θ = (
π ′,b′)′ ∈ , and θ can be

uniquely determined in terms ofmβ byTheorem2. To estimate θ , we considermoment
conditions following a similar procedure as inSect. 2 andpropose a generalizedmethod
of moments (GMM) estimator.

We consider the following moment conditions:

E
(
ỹri
) =

r∑

q=0

(
r

q

)
E
(
xr−q
i

)
E
(
uqi
)
mr−q ,

and

E
(
ỹri x

sr
i

) =
r∑

q=0

(
r

q

)
E
(
xr−q+sr
i

)
E
(
uqi
)
mr−q , (3.5)

where E (ui ) = 0, ỹi = yi − z′
iγ , r = 1, 2, . . . , 2K − 1, and sr = 0, 1, . . . , S − r ,

where S is a user-specific tuning parameter, chosen such that the highest ordermoments
of xi included is at most S, where S > 2K − 1.2

2 For identification, we require the moments of xi to exist up to order 4K − 2. S can take values between
2K to 4K − 2. In practice, the choice of S affects the trade-off between bias and efficiency.
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Let σ0 = 1 and σ1 = 0 such that σr is well defined for r = 0, 1, . . . , 2K − 1. Sum
(3.5) over i and rearrange terms,

0 =
r∑

q=0

(
r

q

)[
1

n

n∑

i=1

E
(
xr−q+sr
i

)
E
(
uqi
)
]

mr−q − 1

n

n∑

i=1

E
(
ỹri x

sr
i

)

=
r∑

q=0

(
r

q

)[
1

n

n∑

i=1

E
(
xr−q+sr
i

)]

σqmr−q − 1

n

n∑

i=1

E
(
ỹri x

sr
i

)+ δ(r ,sr )
n , (3.6)

where

δ(r ,sr )
n =

r∑

q=0

(
r

q

)[
1

n

n∑

i=1

E
(
xr−q+sr
i

) [
E
(
uqi
)− σq

]
]

mr−q = O
(
n−1/2

)
,

as shown in the proof of Theorem 1.
Letting n → ∞ in (3.6),

r∑

q=0

(
r

q

)
ρ0,r−q+sr σqmr−q − ρr ,sr = 0, (3.7)

by Assumption 2. We stack the left-hand side of (3.7) over r = 1, 2, . . . , 2K − 1, and
sr = 0, 1, . . . , S − r and transformmβ = h (θ) to obtain g0 (θ , σ , γ ).

To implement the GMM estimation, we replace ỹi , by ˆ̃yi = yi − z′
i γ̂ , and ρr ,sr by

n−1∑n
i=1

ˆ̃yri xsri . Noting that mβ = h (θ), denote the sample version of the left-hand
side of (3.7) by

ĝ(r ,sr )
n

(
θ , σ , γ̂

) = 1

n

n∑

i=1

ĝ(r ,sr )
i

(
θ , σ , γ̂

)
, (3.8)

where

ĝ(r ,sr )
i

(
θ, σ , γ̂

) =
r∑

q=0

(
r

q

)
xr−q+sr
i σq [h (θ)]r−q − ˆ̃yri xsri ,

and σ = (σ2, σ3, . . . , σ2K−1)
′. Stack the equations in (3.8), over r = 0, 1, . . . , 2K −1

and sr = 0, 1, . . . , S − r (S > 2K − 1), in vector notations we have

ĝn
(
θ, σ , γ̂

) = 1

n

n∑

i=1

ĝi
(
θ, σ , γ̂

)
. (3.9)
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Given γ̂ , the GMM estimator of
(
θ ′, σ ′)′ is now computed as

(
θ̂

′
, σ̂

′)′ = arg min
θ∈,σ∈S

�̂n
(
θ , σ , γ̂

)
,

where �̂n = ĝn
(
θ , σ , γ̂

)′ An ĝn
(
θ , σ , γ̂

)
, and An is a positive definite matrix. We

follow the GMM literature using the following choice of An ,

Ân =
[
1

n

n∑

i=1

ĝi
(
θ̃ , σ̃ , γ̂

)
ĝi
(
θ̃, σ̃ , γ̂

)′ − ḡn ḡ
′
n

]−1

, (3.10)

where ḡn = 1
n

∑n
i=1 ĝi

(
θ̃ , σ̃ , γ̂

)
, and θ̃ and σ̃ are preliminary estimators.

Assumption 4 Denote the true values of θ , σ and γ by θ0, σ 0 and γ 0.

(a)  and S are compact. θ0 ∈ int () and σ 0 ∈ int (S).
(b) An →p A as n → ∞, where A is some positive definite matrix.
(c)

1

n

n∑

i=1

[ ˆ̃yri xsri − E
(
ỹri x

sr
i

)] = Op

(
n−1/2

)
,

for r = 0, 1, 2, . . . , 2K − 1, sr = 0, 1, . . . , S − r , and S > 2K − 1.

Remark 10 Parts (a) and (b) of Assumption 4 are standard regularity conditions in
the GMM literature. Part (c) together with Assumption 2 are high-level regularity
conditions which allow us to generalize the usual IID assumption and nest the IID
data generation process as a special case. The sample analog terms in (c) include
ˆ̃yi = yi − z′

i γ̂ , instead of the infeasible ỹi = yi − z′
iγ . The

√
n-consistency of γ̂

shown in Theorem 3 ensures that replacing ỹi by ˆ̃yi does not alter the convergence
rate.

Theorem 4 Let η = (
θ ′, σ ′)′ and η0 = (

θ ′
0, σ

′
0

)′
. Under Assumptions 1, 2, and 4,

η̂ →p η0 as n → ∞.

The proof of Theorem 4 is provided in “Appendix A.1.”

Assumption 5 Follow the notations as in Assumption 4 and in addition denote
G (θ , σ , γ ) = ∇(θ ′,σ ′)′g0 (θ , σ , γ ), G0 = G

(
θ0, σ 0, γ 0

)
, Gγ (θ , σ , γ )

= ∇γ g0 (θ , σ , γ ), G0,γ = Gγ

(
θ0, σ 0, γ 0

)
.

(a)
√
n ĝn

(
θ0, σ 0, γ 0

)→d ζ ∼ N (0,V) as n → ∞.
(b) G′

0AG0 � 0.

Remark 11 In Assumption 5, parts (a) is the high-level condition required to ensure
the asymptotic normality of ĝn

(
θ0, σ 0, γ 0

)
, which can be verified by Lindeberg cen-

tral limit theorem under low-level regularity conditions. Part (c) of Assumption 5
represents the full-rank condition on G0, required for identification of θ0 and σ 0.
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By Theorem 3, we have
√
n
(
γ̂ − γ

) →d ζγ ∼ N (0, Vγ ). The following theorem
shows the asymptotic normality of the GMM estimator η̂.

Theorem 5 Under Assumptions 1, 3, 4 and 5,

√
n
(
η̂ − η0

)→d
(
G′
0AG0

)−1 G′
0A
(
ζ + G0,γ ζ γ

)
,

as n → ∞.

The proof of Theorem 5 is provided in “Appendix A.1.”

Remark 12 In practice, we estimate the variance of the asymptotic distribution of η̂

by

V̂η =
(
Ĝ

′
ÂnĜ

)−1
Ĝ

′
ÂnV̂ζ Â

′
nĜ
(
Ĝ

′
ÂnĜ

)−1
, (3.11)

where Ĝ = ∇(σ ′,θ ′)′ ĝn
(
θ̂ , σ̂ , γ̂

)
, Ân is given by (3.10), and

V̂ζ = 1

n

n∑

i=1

ψn,iψ
′
n,i ,

where

ψn,i = ĝi
(
θ̂ , σ̂ , γ̂

)
+ ∇γ ĝn

(
θ̂ , σ̂ , γ̂

)
LQ−1

n,ww

(
wi ξ̂i

)
,

and L = (0pz×1 Ipz
)
is the loading matrix that selects γ out of φ.

4 Multiple regressors with random coefficients

One important extension of the regression model (2.1) is to allow for multiple regres-
sors with random coefficients having categorical distribution. With this in mind
consider

yi = x′
iβ i + z′

iγ + ui , (4.1)

where the p × 1 vector of random coefficients, β i ∈ R
p follows the multivariate

distribution3

Pr
(
βi1 = b1k1 , βi2 = b2k2 , . . . , βi p = bpkp

) = πk1,k2,...,kp , (4.2)

3 We assume the number of categories K is homogeneous across j = 1, 2, . . . , p. This is for notational
simplicity, and can be readily generalized to allow for K j �= K j ′ without affecting the main results.
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Table 1 Distribution of βi with p = 2 and K = 2

k2 = L k2 = H

k1 = L πLL = Pr (βi1 = b1L , βi2 = b2L ) πLH = Pr (βi1 = b1L , βi2 = b2H )

k1 = H πHL = Pr (βi1 = b1H , βi2 = b2L ) πHH = Pr (βi1 = b1H , βi2 = b2H )

with k j ∈ {1, 2, . . . , K }, b j1 < b j2 < · · · < b jK , and

∑

k1,k2,...,kp∈{1,2,...,K }
πk1,k2,...,kp = 1.

As in Sect. 2, γ ∈ R
pz , wi = (

x′
i , z

′
i

)′, β i ⊥ wi , ui ⊥ wi , and ui are independently
distributed over i with mean 0.

Example 1 Consider the simple case with p = 2 and K = 2. For j = 1, 2, denote two
categories as {L, H}. The probabilities of four possible combinations of realized β i
are summarized in Table 1, where πLL + πLH + πHL + πHH = 1.

We first identify the moments of β i . As in Sect. 2, φ =
(
E
(
β i
)′

, γ ′
)′

is identified

by

φ = Q−1
wwqwy, (4.3)

under Assumption 1. We now consider the identification of the higher-order moments
of β i up to the finite order 2K − 1.

Since γ is identified as in (4.3), we treat it as known and let ỹri = yi − z′
iγ . For

r = 2, 3, . . . , 2K − 1, consider the moment conditions

E
(
ỹri
) = E

[(
x′
iβ i + ui

)r ]

= E
[(
x′
iβ i
)r ]+ E

(
uri
)+

r−1∑

s=2

(
r

s

)
E
[(
x′
iβ i
)r−s

]
E
(
usi
)
. (4.4)

Note that x′
iβ i =∑p

j=1 βi j xi j , and

E

⎡

⎣

⎛

⎝
p∑

j=1

βi j xi j

⎞

⎠

r⎤

⎦ =
∑

∑p
j=1 q j=r

(
r

q

)
E

⎛

⎝
p∏

j=1

x
q j
i j

⎞

⎠ E

⎛

⎝
p∏

j=1

β
q j
i j

⎞

⎠ ,

where
(r
q

) = r !
q1!q2!···qp ! , for nonnegative integers r , q1, . . ., qp with r =

∑p
j=1 q j , denotes the multinomial coefficients. We stack

∏p
j=1 x

q j
i j with q ∈
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{
q ∈ {0, 1, . . . r}p :∑p

j=1 q j = r
}
in a vector form by denoting4

τ r (xi ) = [ϕ (xi ,q1
)
, ϕ
(
xi ,q2

)
, . . . , ϕ

(
xi ,qνr

)]′
,

where ϕ (xi ,q) = ∏p
j=1 x

q j
i j and νr = (r+p−1

p−1

)
is the number of distinct monomials

of degree r on the variables xi1, xi2, . . . , xip. Similarly,

τ r
(
β i
) = [ϕ (β i ,q1

)
, ϕ
(
β i ,q2

)
, . . . , ϕ

(
β i ,qνr

)]′
,

where ϕ
(
β i ,q

) =∏p
j=1 β

q j
i j .

Example 2 Consider p = 2 and r = 2, we have

τ 2 (xi ) =
(
x2i1, xi1xi2, x

2
i2

)′
,

τ 2
(
β i
) =

(
β2
i1, βi1βi2, β

2
i2

)′
,

and

E
[
(xi1βi1 + xi2βi2)

2] = E
(
x2i1
)
E
(
β2
i1

)+ 2E (xi1xi2) E (βi1βi2) + E
(
x2i2
)
E
(
β2
i2

)

= [E (x2i1
)
, E (xi1xi2) , E

(
x2i2
)]
diag

[
(1, 2, 1)′

] [
E
(
β2
i1

)
, E (βi1βi2) , E

(
β2
i2

)]′

= E [τ 2 (xi )]′ �2E
[
τ 2
(
β i
)]

,

where �2 = diag
[
(1, 2, 1)′

]
.

Then, the moment condition (4.4) can be written as

E
(
ỹri
) = E [τ r (xi )]′ �r E

[
τ r
(
β i
)]+ E

(
uri
)

+
r−1∑

s=2

(
r

s

)
E
[
τ r−s (xi )

]′
�r−s E

[
τ r−s

(
β i
)]

E
(
usi
)
, (4.5)

where �r = diag

[[(r
q

)]
∑p

j=1 q j=r

]
is the νr × νr diagonal matrix of multinomial

coefficients. We further consider the moment conditions

E
(
ỹri τ r (xi )

) = E
[
τ r (xi ) τ r (xi )′

]
�r E

[
τ r
(
β i
)]+ E [τ r (xi )] E

(
uri
)

+
r−1∑

s=2

(
r

s

)
E
[
τ r (xi ) τ r−s (xi )′

]
�r−s E

[
τ r−s

(
β i
)]

E
(
usi
)
,

(4.6)

r = 2, 3, . . . , 2K − 1. (4.5) and (4.6) reduce to (2.6) and (2.7) when p = 1.

4 For x ∈ R
p , note that τ0 (x) = 1, τ1 (x) = x and τ2 (x) = vech

(
xx′).
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Assumption 6 (a)
∥∥n−1∑n

i=1 E
(
ỹri τ s (xi )

)− ρr ,s

∥∥ = O
(
n−1/2

)
, and

∥∥ρr ,s

∥∥ <

∞, r , s = 0, 1, . . . , 2K − 1.
(b)

∥∥n−1∑n
i=1 E

[
τ r (xi ) τ s (xi )′

]− �r ,s
∥∥ = O

(
n−1/2

)
, and

∥∥�r ,s
∥∥ < ∞, r , s =

0, 1, . . . , 2K − 1.
(c)

∣∣n−1∑n
i=1 E

(
uri
)− σr

∣∣ = O
(
n−1/2

)
, and |σr | < ∞ for r = 2, 3, . . . , 2K − 1.

(d)
∥∥∥n−1∑n

i=1

[
var (τ r (xi)) −

(
�r ,r − ρ0,rρ

′
0,r

)]∥∥∥ = O(n−1/2), where �r ,r −
ρ0,rρ

′
0,r � 0 for r = 2, 3 . . . , 2K − 1.

Theorem 6 For any q ∈
{
q ∈ {0, 1, . . . r}p :∑p

j=1 q j = r
}
and r = 2, 3, . . . , 2K −

1, E
(∏p

j=1 β
q j
i j

)
and σr are identified under Assumptions 1 and 6.

Proof For r = 2, 3, . . . , 2K −1, sum (4.5) and (4.6) over i, go through the same steps
as in the proof of Theorem 1, then by Assumptions 6(a) to (c), we have (for n → ∞)

ρ′
r ,0�r E

[
τ r
(
β i
)]+ σr = ρr ,0 −

r−1∑

s=2

(
r

s

)
ρ0,r−s�r−s E

[
τ r−s

(
β i
)]

σs, (4.7)

�r ,r�r E
[
τ r
(
β i
)]+ ρ0,rσr = ρr ,r −

r−1∑

s=2

(
r

s

)
�r ,r−s�r−s E

[
τ r−s

(
β i
)]

σs .

(4.8)

Note that

Mr =
(

�r ,r ρ0,r
ρ′
0,r 1

)(
�r 0
0 1

)
,

is invertible since det (Mr ) = det
(
�r ,r − ρ0,rρ

′
0,r

)
det (�r ) > 0, for r =

2, 3, . . . , R, by Assumption 6(d). As a result, we can sequentially solve (4.7) and
(4.8) for E

[
τ r
(
β i
)]

and σr , for r = 2, 3, . . . , 2K − 1. �

We now move from the moments of β i to the distribution of β i . We first focus
on the identification of the marginal probabilities obtained from (4.2) by averaging
out the effects of the other coefficients except for βi j , namely we initially focus on
identification of λ jk = Pr

(
βi j = b jk

)
, for k = 1, 2, . . . , K , and j = 1, 2, . . . , p.

Remark 13 Focusing on the marginal distribution of βi is similar to focusing on
estimation of partial derivatives in the context of nonparametric estimation, where
the curse of dimensionality applies. Consider the estimation of regressing yi on
xi = (xi1, xi2, . . . , xip

)′,

yi = F
(
xi1, xi2, . . . .xip

)+ ui .
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Then if F
(
x1, xi2, . . . , xip

)
is a homogeneous function (of degree 1/μ), then

yi =
p∑

j=1

(
μ

∂F (·)
∂xi j

)
xi j + ui ,

and under certain conditions we can treat μ∂F(·)
∂xi j

≡ βi j .

By Theorem 6, E
(
βr
i j

)
is identified for r = 1, 2, . . . , 2K −1 under Assumptions 1

and 6. By (4.2), we have equations

E
(
βr
i j

)
=

K∑

k=1

λ jkb
r
jk, (4.9)

r = 0, 1, . . . , 2K − 1, which is of the same form as (2.10) and (3.4). To identify
λ j = (

λ j1, λ j2, . . . , λ j K
)′ and b j = (

b j1, b j2, . . . , b jK
)′, we can verify the system

of 2K equations in (4.9) has a unique solution if b j1 < b j2 < · · · < b jK and
λ jk ∈ (0, 1). The following corollary is a direct application of Theorem 2.

Corollary 7 Consider the model (4.1) and suppose that Assumptions 1 and 6 hold.

Then, the parameters θ j =
(
λ′
j , b

′
j

)′
of the marginal distribution of βi with respect

to βi j is identified subject to b j1 < b j2 < · · · < b jK and λ jk ∈ (0, 1) for j =
1, 2, . . . , p.

The problem of identification and estimation of the joint distribution of β i is subject
to the curse of dimensionality. We have K p − 1 probability weights, πk1,k2,...,kp , to
be identified in addition to the pK categorical coefficients bi j that are identified by
Corollary 7. The number of parameters increases rapidly with p. Even in the simplest
case with K = 2, the total number of unknown parameters is 2p + 2p − 1, which
grows exponentially.

Note that the marginal probabilities λ jk are related to the joint distribution by

λ jk =
∑

k1,...,k j−1,k j+1,...,kp∈{1,2,...,K }
πk1,k2,...,k j−1,k,k j+1,...,kp , (4.10)

k = 1, 2, . . . , K and j = 1, 2, . . . , p. The number of linearly independent equations
in (4.10) is pK − (p − 1).

Example 3 Consider the same setup as in Example 1 with p = 2 and K = 2. The
marginal probabilities are obtained by

λ1L = Pr (βi1 = b1L) = πLL + πLH ,

λ1H = Pr (βi1 = b1H ) = 1 − λ1L = πHL + πHH ,

λ2L = Pr (βi2 = b2L) = πLL + πHL ,

λ2H = Pr (βi2 = b2H ) = 1 − λ2L = πLH + πHH . (4.11)
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Note that any equation in (4.11) can be expressed as a linear combination of other
three equations, for example λ2 H = λ1 L + λ1 H − λ2 L .

The equations corresponding to the cross-moments, E
(∏p

j=1 β
q j
i j

)
, are

E

⎛

⎝
p∏

j=1

β
q j
i j

⎞

⎠ =
∑

k1,k2,...,kp∈{1,2,...,K }

⎛

⎝
p∏

j=1

b
q j
jk j

⎞

⎠πk1,k2,...,kp , (4.12)

for q ∈
{
q ∈ {0, 1, . . . r − 1}p :∑p

j=1 q j = r
}
, r = 2, . . . , 2K − 1. The linear sys-

tem (4.12) has

2K−1∑

r=1

(
r + p − 1

p − 1

)
− p(2K − 1)

equations. Then the total number of equations in (4.10) and (4.12) that can be utilized
to identify joint probabilities is Cr = ∑2K−1

r=1

(r+p−1
p−1

) − pK , which is smaller than
the number of joint probabilities K p − 1 for large p. When K = 2, Cr < K p − 1 for
p ≥ 7.

Identification and estimation of the joint distribution of β i in the general setting
will not be pursued in this paper due to the curse of dimensionality. Instead, we
consider special cases, that are empirically relevant, in which identification of the
joint distribution of β i can be readily established. We first consider small p and K , in
particular p = 2 and K = 2 as in Example 1.

Example 4 Consider the same setup as in Example 1 with p = 2 and K = 2. In
addition to (4.11), consider the cross-moment,

E (βi1βi2) = b1Lb2LπLL + b1Lb2HπLH + b1Hb2LπHL + b1Hb2HπHH . (4.13)

Writing (4.11) and (4.13) in matrix form, we have

Bπ = λ,

where

B =

⎛

⎜⎜
⎝

1 1 0 0
0 0 1 1
1 0 1 0

b1Lb2L b1Lb2H b1Hb2L b1Hb2H

⎞

⎟⎟
⎠ , π =

⎛

⎜⎜
⎝

πLL

πLH

πHL

πHH

⎞

⎟⎟
⎠ , λ =

⎛

⎜⎜
⎝

λ1L
λ1H
λ2L

E (βi1βi2)

⎞

⎟⎟
⎠ .

Note that E (βi1βi2) is identified by Theorem 6, and b jk j and λ jk j are identified by
Corollary 7, and matrix B is invertible given that b1 L < b1 H and b2 L < b2 H (see
“Appendix A.1”). As a result, the joint probabilities, π , are identified.

Remark 14 The argument in Example 4 is applicable for identification of the joint
distribution of

(
βi j , βi, j ′

)′ for j �= j ′ when p > 2 and K = 2.
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5 Finite sample properties usingMonte Carlo experiments

We examine the finite sample performance of the categorical coefficient estimator
proposed in Sect. 3 by Monte Carlo experiments.

5.1 Data generating processes

we generate yi as

yi = α + xiβi + zi1γ1 + zi2γ2 + ui , for i = 1, 2, . . . , n, (5.1)

with βi distributed as in (2.2) with K = 2, and the parameters π, βL and βH .5

We draw βi for each individual i independently by setting βi = βL with probability
π and βi = βH with probability 1− π , through a sequence of independent Bernoulli
draws. We consider two sets of parameters in all DGPs, denoted as high variance and
low variance parametrization, respectively,

(π, βL , βH , E (βi ) , var (βi )) =
{

(0.5, 1, 2, 1.5, 0.25) (high variance)

(0.3, 0.5, 1.345, 1.0915, 0.15) (low variance)
.(5.2)

βH/βL = 2 for the high variance parametrization, and βH/βL = 2.69, for the
low variance parametrization, which is motivated by the estimates in our empiri-
cal illustration in Sect. 6.6 The values of E(βi ) and var (βi ) are obtained noting that
E(βi ) = πβL + (1 − π)βH , and var (βi ) = π(1 − π)(βH − βL)2. The remaining
parameters are set as α = 0.25, and γ = (1, 1)′ , across DGPs.

We generate the regressors and the error terms as follows.
DGP 1 (Baseline) We first generate x̃i ∼ IIDχ2(2), and then set xi = (x̃i − 2)/2

so that xi has 0 mean and unit variance. The additional regressors, zi j , for j = 1, 2
with homogeneous slopes are generated as

zi1 = xi + vi1 and zi2 = zi1 + vi2,

with vi j ∼ IID N (0, 1), for j = 1, 2. This ensures that the regressors are sufficiently
correlated. The error term, ui , is generated as ui = σiεi , where σ 2

i are generated as
0.5(1 + IIDχ2(1)), and εi ∼ IIDN (0, 1). Note that εi and σ 2

i are generated indepen-
dently, and E(u2i ) = 1.

DGP 2 (Categorical x) This setup deviates from the baseline DGP, and allows
the distribution of xi to differ across i . Accordingly, we generate xi = (x̃1i − 2) /2
where x̃1i ∼ IIDχ2 (2) for i = 1, 2, . . . , �n/2�, and xi = (x̃2i − 2) /4 where x̃2i ∼
IIDχ2 (4), for i = �n/2� + 1, . . . , n. The additional regressors, zi j , for j = 1, 2 with
homogeneous slopes are generated as

zi1 = xi + vi1 and zi2 = zi1 + vi2,

5 A Monte Carlo experiment with K = 3 is relegated to Sect. S.3.5 in the online supplement.
6 The estimates for βH /βL in our empirical analysis range from 1.50 to 2.79.
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with vi j ∼ IID N (0, 1), for j = 1, 2. The error term ui is generated the same as in
DGP 1.

DGP 3 (Categorical u)We generate xi and zi the same as in DGP 1, but allow the
error term ui to have a heterogeneous distribution over i . For i = 1, 2, . . . , �n/2�,
we set ui = σiεi , where σ 2

i ∼ IIDχ2 (2) and εi ∼ IIDN (0, 1), and for i = �n/2� +
1, . . . , n, we set ui = (ũi − 2) /2, where ũi ∼ IIDχ2 (2).

We investigate the finite sample performance of the estimator proposed in Sect. 3
across DGP 1 to 3 with low variance and high variance scenarios.7 Details of the
computational algorithm used to carry out the Monte Carlo experiments (and the
empirical results that follow) are given in Sect. S.5 of the online supplement. An
accompanying R package is available at https://github.com/zhan-gao/ccrm.

5.2 Summary of theMC results

For each sample size n = 100, 1000, 2000, 5000, 10, 000 and 100, 000 we run
5000 replications of experiments for DGP 1 (baseline), DGP 2 (categorical x) and
DGP 3 (categorical u) with high variance and low variance parametrization, as set
out in (5.2).

We first investigate the finite sample performance of φ̂, as an estimator of φ =(
E (βi ) , γ ′)′. Bias, root mean squared errors (RMSE) for estimation of E (βi ), γ1
and γ2, as well as the size of testing of the null values at the 5 percent nominal value
are reported in Table 2. In addition, we plot the associated empirical power functions
in Figs. 1 and 2, for cases of high and low var(βi ). The results show that φ̂ has very
good small sample properties with small bias and RMSEs, with size very close to the
nominal value of 5 percent across all DGPs and parametrization, even when sample
size is relatively small. The power of the test increases steadily as the sample size
increases.

Then,we turn to theGMMestimator for the distributional parameters ofβi proposed
in Sect. 3.2. The bias, RMSE and the test size based on the asymptotic distribution
given in Theorem 5, for π , βL and βH , are reported in Table 3. The empirical power
functions are reported in Figs. 3 and 4. The reported results are based on S = 4, where
S (> 2K −1 = 3) denotes the highest order of moments of xi included in estimation.8

The upper panel of this table reports the results of the high variance and the lower
panel for the low variance parametrization, as set out in (5.2). For all parameters and
under all DGPs, the bias and RMSE decline steadily with the sample size as predicted
by Theorem 4, and confirm the robustness of the GMM estimates to the heterogeneity
in the regressor and the error processes. But for a given sample size, the relative

7 We can consider a DGP with conditional heteroskedasticity, in which we follow the baseline DGP and
generate the error term as ui = xi εi , where εi ∼ N (0, 1). The least square estimator for φ is valid in this
setup in terms of estimation and inference, whereas the GMM estimator for the distributional parameters θ

breaks down, which is to be expected since we can only identify the first moment of βi under conditional
heteroskedasticity. The results are available on request.
8 We also tried estimation based on a larger number of moments (using S = 5 and S = 6). In the case
of current Monte Carlo results, adding more moments does not seem to add much to the precision of the
estimates and could be counterproductive when n is not sufficiently large. The results are available in Sect.
S.3.1 in the online supplement.
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Fig. 1 Empirical power functions for the least square estimator φ̂ with the high variance parametrization
(var (βi ) = 0.25). Notes: The data generating process is (5.1) with high variance parametrization that
is described in (5.2). “Baseline,” “Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Sect. 5.1.

Generically, power is calculated by R−1∑R
r=1 1

[∣∣
∣θ̂ (r) − θδ

∣∣
∣ /σ̂ (r)

θ̂
> cv0.05

]
, for θδ in a symmetric neigh-

borhood of the true parameter θ0, the estimate at the r-th replication, θ̂ (r), the estimated standard error of

θ̂ (r), σ̂ (r)
θ̂

, and the critical value cv0.05 = �−1 (0.975) across R = 5000 replications, where �(·) is the
cumulative distribution function of standard normal distribution

precision of the estimates depends on the variability of βi , as characterized by the true
value of var(βi ). The precision of the estimates with high variance parametrization is
relatively higher than that with low variance parametrization. This is to be expected
since, unlike E(βi ), the distributional parameters are only identified if var(βi ) > 0. As
shown in (2.18) and (2.19) for the current case of K = 2, var(βi ) is in the denominator
when we recover the distributional parameters from the moments of βi . When var(βi )
is small, estimation errors in the moments of βi can be amplified in the estimation
of π , βL and βH . On the other hand, the larger the variance the more precisely π ,
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Fig. 2 Empirical power functions for the least square estimator φ̂ with the low variance parametrization
(var (βi ) = 0.15). Notes: The data generating process is (5.1) with low variance parametrization that
is described in (5.2). “Baseline,” “Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Sect. 5.1.

Generically, power is calculated by R−1∑R
r=1 1

[∣∣
∣θ̂ (r) − θδ

∣∣
∣ /σ̂ (r)

θ̂
> cv0.05

]
, for θδ in a symmetric neigh-

borhood of the true parameter θ0, the estimate at the r-th replication, θ̂ (r), the estimated standard error of

θ̂ (r), σ̂ (r)
θ̂

, and the critical value cv0.05 = �−1 (0.975) across R = 5000 replications, where �(·) is the
cumulative distribution function of standard normal distribution

βH and βL can be estimated for a given n.9 The size and power also depends on the
parametrization. With both high variance and low variance parametrization, we can
achieve correct size and reasonable power when n is quite large (n =100,000). We
plot the empirical power functions for n ≥ 5000 for π , βH and βL since the size is far

9 Section S.3.4 in the online supplement presents parametrization with var (βi ) = 6.35 and 18.95, which
further confirms the pattern that the larger the variance the more precisely π , βH and βL can be estimated
for a given n.
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Fig. 3 Empirical power functions for the GMM estimator of distributional parameters of β with the high
variance parametrization(var (βi ) = 0.25). Notes: The data generating process is (5.1) with high variance
parametrization that is described in (5.2). “Baseline,” “Categorical x” and “Categorical u” refer to DGP
1 to 3 as in Sect. 5.1. The model is estimated with S = 4, the highest order of moments of xi used

in estimation. Generically, power is calculated by R−1∑R
r=1 1

[∣∣
∣θ̂ (r) − θδ

∣∣
∣ /σ̂ (r)

θ̂
> cv0.05

]
, for θδ in a

symmetric neighborhood of the true parameter θ0, the estimate at the r-th replication, θ̂ (r), the estimated

standard error of θ̂ (r), σ̂
(r)
θ̂

, and the critical value cv0.05 = �−1 (0.975) across R = 5000 replications,

where �(·) is the cumulative distribution function of standard normal distribution

above 5 percent for smaller values of n, and power comparisons are not meaningful
in such cases.

Remark 15 Note that GMM estimators of moments of βi , namelymβ , can be obtained
using the moment conditions in (3.7),and the transformationsmβ = h (θ) in (3.4) are
required only to derive the estimators of θ , the parameters of the underlying categorical
distribution. TheMonte Carlo results in Sect. S.3.2 in the online supplement show that
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Fig. 4 Empirical power functions for the GMM estimator of distributional parameters of β with the low
variance parametrization (var (βi ) = 0.15). Notes: The data generating process is (5.1) with low variance
parametrization that is described in (5.2). “Baseline,” “Categorical x” and “Categorical u” refer to DGP
1 to 3 as in Sect. 5.1. The model is estimated with S = 4, the highest order of moments of xi used

in estimation. Generically, power is calculated by R−1∑R
r=1 1

[∣∣
∣θ̂ (r) − θδ

∣∣
∣ /σ̂ (r)

θ̂
> cv0.05

]
, for θδ in a

symmetric neighborhood of the true parameter θ0, the estimate at the r-th replication, θ̂ (r), the standard

error of θ̂ (r), σ̂ (r)
θ̂

, and the critical value cv0.05 = �−1 (0.975) across R = 5,000 replications, where �(·)
is the cumulative distribution function of standard normal distribution

mβ can be accurately estimated with relatively small sample sizes. In the estimation
of both mβ and θ , the same set of moment conditions are included, so the estima-
tion of distributional parameters θ essentially relies on the relation θ = h−1

(
mβ

)
.

Sampling uncertainties in the estimation ofmβ , particularly in higher-order moments,
are potentially amplified through the inverse transformation h−1 that involves matrix
inversion, which causes the difficulties in estimation and inference of θ when sample
sizes are small. This is analogous to the problem of precision matrix estimation from
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an estimated covariance matrix. In practice, estimation of the categorical parameters
is recommended for applications where the sample size is relatively large, otherwise
it is advisable to focus on estimates of the lower-order moments of βi .

6 Heterogeneous return to education: an empirical application

Since the pioneering work by Becker (1962, 1964) on the effects of investments in
human capital, estimating returns to education has been one of the focal points of
labor economics research. In his pioneering contribution Mincer (1974) models the
logarithm of earnings as a function of years of education and years of potential labor
market experience (age minus years of education minus six), which can be written in
a generic form:

logwagei = αi + βiedui + φ (zi ) + εi , (6.1)

as in Heckman et al. (2018, Eq. (1)), where zi includes the labor market experience and
other relevant control variables. The above wage equation, also known as the “Mincer
equation”, has become of the workhorse of the empirical works on estimating the
return to education. In the most widely used specification of the Mincer equation
(6.1),

φ (zi ) = ρ1experi + ρ2 exper
2
i + z̃′

i γ̃ ,

where z̃i is the vector of control variables other than potential labor market experience.
Along with the advancement of empirical research on this topic, there has been a

growing awareness of the importance of heterogeneity in individual cognitive and non-
cognitive abilities (Heckman 2001) and their significance for explaining the observed
heterogeneity in return to education. Accordingly, it is important to allow the parame-
ters of the wage equation to differ across individuals. In Eq. (6.1), we allow αi and βi

to differ across individuals, but assume that φ (zi ) can be approximated as nonlinear
functions of experience and other control variables with homogeneous coefficients.

Specifically, following Lemieux (2006b, c) we also allow for time variations in the
parameters of the wage equation and consider the following categorical coefficient
model over a given cross-section sample indexed by t10:

logwagei t = αi t + βi tedui t + ρ1texperi t + ρ2texper
2
i t + z̃′

i t γ̃ t + εi t , (6.2)

where the return to education follows the categorical distribution,

βi t =
{
btL w.p. πt ,

btH w.p. 1 − πt ,

10 Some investigators have suggested including higher powers of the experience variable in the wage
equation. Lemieux (2006a), for example, proposes using a quartic rather than a quadratic function. As a
robustness check we also provide estimation results with quartic experience specification in Sect. S.4 in the
online supplement.
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and z̃i t includes gender, martial status and race. αi t = αt + δi t where δi t is mean
0 random variable assumed to be distributed independently of edui t and zi t =(
experi t , exper

2
i t , z̃

′
t

)′
. Let uit = εi t + δi t , and write (6.2) as

logwagei t = αt + βi tedui t + ρ1t experi t + ρ2texper
2
i t + z̃′

i t γ̃ t + uit . (6.3)

The correlation between αi t and edui t in (6.1) is the source of “ability bias” (Griliches
1977). Given the pure cross-sectional nature of our analysis, we do not allow for
the endogeneity from “ability bias” or dynamics. To allow for nonzero correlations
between αi t , edui t and zi t , a panel data approach is required, which has its own
challenges, as education and experience variables tend to very slow moving (if at all)
for many individuals in the panel. Time delays between changes in education and
experience and the wage outcomes also further complicate the interpretation of the
mean estimates of βi t which we shall be reporting. To partially address the possible
dynamic spillover effects, we provide estimates of the distribution of βi t using cross-
sectional data from two different sample periods, and investigate the extent to which
the distribution of return to education has changed over time, by gender and the level
of educational achievements.11

We estimate the categorical distribution of the return to education in (6.3) using
the May and Outgoing Rotation Group (ORG) supplements of the Current Population
Survey (CPS) data, as in Lemieux (2006b, c).12 We pool observations from 1973 to
1975 for the first sample period, t = {1973−1975} and observations from 2001 to
2003 for the second sample period, t = {2001−2003}. Following Lemieux (2006b),
we consider subsamples of those with less than 12 years of education, “high school
or less,” and those with more than 12 years of education, “postsecondary education,”
as well as the combined sample. We also present results by gender. The summary
statistics are reported in Table 4. As to be expected, the mean log wages are higher
for those with postsecondary education (for male and female), with the number of
years of schooling and experience rising by about one year across the two sub-period
samples. There are also important differences across male and female, and the two
educational groupings, which we hope to capture in our estimation.

We treat the cross-sectionobservations in the two sample periods, t = {1973−1975}
and {2001−2003}, as repeated cross sections, rather than a panel data since the data
in these two periods do not cover the same individuals, and represent random samples
from the population of wage earners in two periods. It should also be noted that
sample sizes (nt ), although quite large, are much larger during {2001−2003}, which
could be a factor when we come to compare estimates from the two sample periods.
For example, for both male and female n73−75 = 111,632 as compared to n01−03 =
511,819, a difference which becomes more pronounced when we consider the number
observations in postsecondary/female category—which rises from 12,882 for the first
period to 100,007 in the second period.

11 Time variations in return to education have also been investigated in the literature as a possible expla-
nation of increasing wage inequality in the USA. See, for example, the papers by Lemieux (2006b, c).
12 The data are retrieved from https://www.openicpsr.org/openicpsr/project/116216/version/V1/view.
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Wereport estimates ofπt ,βL,t andβH ,t , aswell as correspondingmean and standard
deviations (denoted by s.d.(β̂i t )) of the return to education (βi t ) for t = {1973−1975}
and {2001−2003}. For a given πt , the ratio βH ,t/βL,t provides a measure of within-
group heterogeneity and allows us to augment information on changes in mean with
changes in the distribution of return of education. The estimates for the distribution
of the return to education (βi t ) are summarized in Table 5, with the estimation results
for control variables (such as experience, experienced squared, and other individual
specific characteristic) reported in Table 6.

As can be seen from Table 5, estimates of s.d. (βi t ) are strictly positive for all
subgroups, except for the “high school or less” group during the first sample period.
For this group during the first period the estimate of s.d. (βi t ) for the male subsample
is zero, π is not identified, and we have identical estimates for βL and βH . For this
subsample, the associated estimates and their standard errors are shown as unavailable
(n/a). In case of the female subsample as well as both male and female subsamples
where the estimates of s.d.(β̂i t ) are close to zero and π is poorly estimated, only
the mean of the return to education is informative. In the case of the samples where
the estimates of s.d. (βi t ) are strictly positive, the estimate of the ratio βH ,t/βL,t

provides a good measure of within-group heterogeneity of return to education. The
estimates of βH ,t/βL,t lie between 1.50 and 2.79, with the high estimate obtained
for the females with high school or less education during {2001−2003}, and the low
estimate is obtained for females with postsecondary education during the same period.

As our theory suggests the mean estimates of return to education, E (βi t ) are very
precisely estimated and inferences involving them tend to be robust to conditional error
heteroskedasticity. The results in Table 5 show that estimates of E (βi t ) have increased
over the two sample periods t = {1973−1975} to t = {2001−2003}, regardless of
gender or educational grouping. The postsecondary educational group show larger
increases in the estimates of E (βi t ) as compared to those with high school or less.
Estimates of E (βi t ) increase by 36 percent for the postsecondary group, while the
estimates of mean return to education rise only by around 5 percent in the case of
those with high school or less. This result holds for both genders. Comparing the
mean returns across the two educational groups, we find that mean return to education
of individuals with postsecondary education is 45 percent higher than those with high
school or less in the {1973−1975} period, but this gap increases to 87 percent in
the second period, {2001−2003}. Similar patterns are observed in the subsamples by
gender. The estimates suggest rising between group heterogeneity, which is mainly
due to the increasing returns to education for the postsecondary group.

Turning to within-group heterogeneity, we focus on the estimates of βH ,t/βL,t

and first note that over the two periods, within-group heterogeneity has been rising
mainly in the case of those with high school or less, for both male and female. For the
combined male and female samples and the male subsample, there is little evidence
of within-group heterogeneity for the first period {1973−1975}. However, for the
second period {2001−2003} we find a sizeable degree of within-group heterogeneity
where βH ,t/βL,t is estimated to be around 2.41, with s.d. (βi t ) ≈ 0.03. For the female
subsample with high school or less, little evidence of heterogeneity was found for
the first period, estimates of βH ,t/βL,t increase to 2.79 for the second sample period,
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that corresponds to a commensurate rise in s.d. (βi ) to 0.032. The pattern of within-
group heterogeneity is very different for those with postsecondary educational. For
this group, we in fact observe a slight decline in the estimates of βH ,t/βL,t by gender
and over two sample periods.

Overall, our estimates of return to education and the within and between group
comparisons are in line with the evidence of rising wage inequality documented in the
literature (Corak 2013).

7 Conclusion

In this paper, we consider random coefficient models for repeated cross sections in
which the random coefficients follow categorical distributions. Identification is estab-
lished using moments of the random coefficients in terms of the moments of the
underlying observations. We propose two-step generalized method of moments to
estimate the parameters of the categorical distributions. The consistency and asymp-
totic normality of the GMM estimators are established without the IID assumption
typically assumed in the literature. Small sample properties of the proposed estimator
are investigated by means of Monte Carlo experiments and shown to be robust to het-
erogeneously generated regressors and errors, although relatively large samples are
required to estimate the parameters of the underling categorical distributions. This is
largely due to the highly nonlinear mapping between the parameters of the categorical
distribution and the higher-order moments of the coefficients. This problem is likely
to become more pronounced with a larger number of categories and coefficients.

In the empirical application, we apply the model to study the evolution of returns to
education over two sub-periods, also considered in the literature by Lemieux (2006b).
Our estimates show that mean (ex post) returns to education have risen over the periods
from 1973–1975 to 2001–2003 mainly in the case of individuals with postsecondary
education, and this result is robust by gender. We find evidence of within-group het-
erogeneity in the case of high school or less educational group as compared to those
with postsecondary education.

In our model specification, the number of categories, K , is treated as a tuning
parameter and assumed to be known. An information criterion, as in Bonhomme and
Manresa (2015) and Su et al. (2016), to determine K could be considered. Further
investigation of models with multiple regressors subject to parameter heterogeneity is
also required. These and other related issues are topics for future research.
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A.1 Proofs

We include proofs and technical details in this section.

Proof of Theorem 1 Sum (2.6) over i and rearrange terms,

(
1

n

n∑

i=1

E
(
xri
)
)

E
(
βr
i

)+ 1

n

n∑
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E
(
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(
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uqi
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. (A.1.1)

Note that

1

n

n∑
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E
(
xr−q
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)
E
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uqi
) =

(
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n∑
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E
(
xr−q
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E
(
xr−q
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) (
E
(
uqi
)− σq

)
,
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∣
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E
(
xr−q
i

) (
E
(
uqi
)− σq
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∣∣
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∣
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∣∣E
(
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)∣∣∣
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∣
1

n

n∑

i=1

(
E
(
uqi
)− σq

)
∣∣
∣∣
∣
= O(n−1/2),

by Assumption 1(b) and 2(b), then by taking n → ∞ on both sides of (A.1.1), we
have (2.8). Similar steps for (2.7) give (2.9). �
Proof of Theorem 2 Let mr = E

(
βr
i

)
, r = 1, 2, . . . , 2K − 1, which are taken as

known. We show that

mr =
K∑

k=1

πkb
r
k, (A.1.2)
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r = 0, 1, 2, . . . , 2K−1, has a unique solution θ = (π ′,b′)′, with b1 < b2 < · · · < bK
and πk ∈ (0, 1) imposed.

Let

q (λ) =
K∏

k=1

(λ − bk) = λK + (−1)1 b∗
1λ

K−1 + · · · + (−1)K b∗
K , (A.1.3)

be the polynomial with K distinct roots b1, b2, . . ., bK . Note that for each k,
(
brk
)2K−1
r=0

satisfies the linear homogeneous recurrence relation,

bK+r
k = b∗

1b
K+r−1
k + (−1)1 b∗

2b
K+r−2
k + · · · + (−1)K−1 b∗

K b
r
k, (A.1.4)

for r = 0, 1, . . . K −1, since q is the characteristic polynomial of the linear recurrence
relation (A.1.4) and bk is a root of q (Rosen 2006, Chapter 5.2). (mr )

2K−1
r=0 is a linear

combination of
(
br1
)2K−1
r=0 ,

(
br2
)2K−1
r=0 , . . .,

(
brK
)2K−1
r=0 by (A.1.2), then (mr )

2K−1
r=0 also

satisfies the linear recurrence relation (A.1.4), i.e.,

mK+r = b∗
1mK+r−1 + (−1)1 b∗

2mK+r−2 + · · · + (−1)K−1 b∗
Kmr , (A.1.5)

for r = 0, 1, . . . , K −1. (A.1.5) is a linear system of K equations in terms of
(
b∗
k

)K
k=1.

In matrix form,

MDb∗ = m, (A.1.6)

where

M =

⎛

⎜⎜
⎜
⎝

1 m1 · · · mK−1
m1 m2 · · · mK
...

...
. . .

...

mK−1 mK · · · m2K−2

⎞

⎟⎟
⎟
⎠

,

D = diag
(
(−1)K−1 , (−1)K−2 , . . . , 1

)
, b∗ = (

b∗
K , b∗

K−1, . . . , b
∗
1

)′, and m =
(mK ,mK+1, . . . ,m2K−1)

′.
Denote ψk =

(
1, bk, b2k . . . , bK−1

k

)′
and � = (ψ1,ψ2, . . . ,ψK

)
. Then

Mk =

⎛

⎜⎜⎜
⎝

1 bk · · · bK−1
k

bk b2k · · · bKk
...

...
. . .

...

bK−1
k bKk · · · b2K−2

k

⎞

⎟⎟⎟
⎠

= ψkψ
′
k,
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and M = ∑K
k=1 πkMk = �diag (π)� ′. Note that � ′ is a Vandermonde matrix then

det (�) =∏1≤k<k′≤K (bk′ − bk) > 0 since b1 < b2 < · · · < bK .

det (MD) = det
(
�diag (π)� ′) det (D)

=
⎛

⎝
∏

1≤k<k′≤K

(bk′ − bk)

⎞

⎠

2 (
K∏

k=1

πk

)(
(−1)

1
2 K (K−1)

)
�= 0,

since πk ∈ (0, 1) for any k. Then, we can identify
(
b∗
k

)K
k=1 by (mr )

2K−1
r=0 in (A.1.6),

and hence the characteristic polynomial is determined, and we can identify (bk)Kk=1
by (A.1.3).

Since both (bk)Kk=1 and (mr )
2K−1
r=1 are identified, the first K equations of (A.1.2) is

� ′π = (1,m1,m2, . . . ,mK−1)
′ ,

and π is identified by inverting the Vandermonde matrix � ′, which completes the
proof. �

Proof of Theorem 4 Denote

�0 (θ , σ , γ ) = g0 (θ , σ , γ )′ Ag0 (θ, σ , γ ) ,

wherewe stack the left-hand side of (3.7) and transformmβ = h (θ) to get g0 (θ, σ , γ ).
We suppress and the argument γ̂ and denote η = (θ ′, σ ′)′ for notation simplicity and
proceed by verifying the conditions of Newey and McFadden (1994, Theorem 2.1).
Theorem 2 provides the identification results which together with the positive definite-
ness of A verifies that �0 (η, γ ) is uniquely minimized to 0 at η0. The compactness
of the parameter space holds by Assumption 4(a). Note that g0 (η, γ ) is a polynomial
in η, which is continuous in η. g0 (η, γ ) is bounded on  × S. We proceed by verify
the uniform convergence condition. The additive terms in ĝn

(
η, γ̂

)− g0 (η, γ ) are of
the form Hn,1h(r ,q) (η) or Hn,2, where

∣∣Hn,1
∣∣ =

∣∣
∣∣∣
1

n

n∑
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xr−q+sr
i − ρ0,r−q+sr
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∣∣∣
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∣∣∣
∣∣
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n
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i − 1
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E
(
xr−q+sr
i

)
∣∣∣
∣∣
+
∣∣∣
∣∣
1

n

n∑

i=1

E
(
xr−q+sr
i

)
− ρ0,r−q+sr

∣∣∣
∣∣

= Op

(
n−1/2

)
,
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h(r ,q}) (η) is a polynomial in η, and

∣∣Hn,2
∣∣ =

∣∣∣∣∣
1

n

n∑

i=1

ˆ̃yri xsri − ρr ,sr
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ỹri x

sr
i

)− ρr ,sr

∣
∣∣∣∣

= Op

(
n−1/2

)
.

Hn,1 = Op
(
n−1/2

)
and Hn,2 = Op

(
n−1/2

)
are due to Assumption 2(a) and 4(c).

By the compactness of  × S, supη∈×S h(r ,q) (η) < C < ∞ for some positive
constant C . By triangle inequality, we have

sup
η∈×S

∥∥ĝn
(
η, γ̂

)− g0 (η, γ )
∥∥→p 0, (A.1.7)

as n → ∞. Following the proof of Newey and McFadden (1994, Theorem 2.1),

∣∣∣�̂n
(
η, γ̂

)− �0 (η, γ )

∣∣∣

≤
∣∣∣
[
ĝn
(
η, γ̂

)− g0 (η, γ )
]′ An

[
ĝn
(
η, γ̂

)− g0 (η, γ )
]∣∣∣

+ ∣∣g0 (η, γ )′
(
An + A′

n

) [
ĝn
(
η, γ̂

)− g0 (η, γ )
]∣∣

+ ∣∣g0 (η, γ )′ (An − A) g0 (η, γ )
∣∣

≤ ∥∥ĝn
(
η, γ̂

)− g0 (η, γ )
∥∥2 ‖An‖ + 2

∥∥g0 (η, γ )
∥∥ ∥∥ĝn

(
η, γ̂

)− g0 (η, γ )
∥∥ ‖An‖

+ ∥∥g0 (η, γ )
∥
∥2 ‖An − A‖ .

By (A.1.7) and the boundedness of g0, supη∈η

∣∣∣�̂n
(
η, γ̂

)− �n (η, γ )

∣∣∣→p 0, which

completes the proof. �
Proof of Theorem 5 We denote η = (

θ ′, σ ′)′ for notation simplicity. The first-order

condition, ∇ηĝn
(
η̂, γ̂

)
An ĝn

(
η̂, γ̂

) = 0, holds with probability 1. Denote Ĝ (η, γ ) =
∇ηĝn (η, γ ) and expand ĝn

(
η̂, γ̂

)
in the first-order condition around η0, we have

√
n
(
η̂ − η0

) = −
[
Ĝ
(
η̂, γ̂

)′ AnĜ
(
η̄, γ̂

)]−1
Ĝ
(
η̂, γ̂

)′ An
(√

nĝn
(
η0, γ̂

))

= −
[
Ĝ
(
η̂, γ̂

)′ AnĜ
(
η̄, γ̂

)]−1
Ĝ
(
η̂, γ̂

)′ An
[√

nĝn
(
η0, γ 0

)

+∇γ ĝn
(
η0, γ̄

)√
n
(
γ̂ − γ 0

)]
,

where η̄ and γ̄ are between η̂ and η0; and γ̂ and γ 0, respectively. Note that by term-
by-term convergence, we have Ĝ

(
η̂, γ̂

)
, Ĝ
(
η̄, γ̂

) →p G0 and ∇γ ĝn
(
η0, γ̄

) →p
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∇γ g0
(
η0,γ 0

) = G0,γ . By Assumption 4(b), An →p A. By Assumption 5(a) and (b)
and Slutsky theorem,

√
n
(
η̂ − η0

)→d
(
G′

0AG0
)−1G′

0A
(
ζ + G0,γ ζ γ

)
,

which completes the proof. �
Further details for Example 4 We need to verify the invertibility of the matrix

B =

⎛

⎜⎜
⎝

1 1 0 0
0 0 1 1
1 0 1 0

b1Lb2L b1Lb2H b1Hb2L b1Hb2H

⎞

⎟⎟
⎠ .

The span of the first three rows of B is

S = {(α1 + α3, α1, α2 + α3, α3)
′ : α1, α2, α3 ∈ R

}
.

(b1 Lb2 L , b1 Lb2 H , b1 Hb2 L , b1 Hb2 H )′ /∈ S is equivalent to b1Hb2H − b1Hb2L �=
b1Lb2H − b1Lb2L . This can be verified by

(b1Hb2H − b1Hb2L) − (b1Lb2H − b1Lb2L) = (b1H − b1L) (b2H − b2L) > 0,

given that b1 L < b1 H and b2 L < b2 H hold. �
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