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O  Present value calculations require predictions of cash flows both at near and distant future
points in time. Such predictions are generally surrounded by considerable uncertainty and may
critically depend on assumptions about parameter values as well as the form and stability of the
data generating process underlying the cash flows. This paper presents new theovetical results for
the existence of the infinite sum of discounted expected future values under uncertainty about
the parameters characterizing the growth rate of the cash flow process. Furthermore, we explore
the consequences for present values of relaxing the stability assumption in a way that allows for
past and future breaks to the underlying cash flow process. We find that such breaks can lead
to considerable changes in present values.
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1. INTRODUCTION

Present value relations play a key role in economics and finance and are
used in testing the permanent income hypothesis, in standard inventory
models, and to calculate the present value of assets such as stocks and
bonds. Computing present values requires forecasting a stream of future
values of the variable of interest at horizons that can be long, but finite
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(as in the case of bonds) or even infinitely long (as in the case of stocks).
It is customary in such calculations to assume that the underlying driving
process follows a simple ARMA process with stable and known parameter
values. This assumption is a gross oversimplification in almost any realistic
economic context and so it becomes important both to dispense with the
assumption of known parameters and to consider the possibility of past and
future breaks in the data generating process of the driving variable.

As an example of a present value relationship, in this paper we study
long-lived assets such as stocks. Stocks are claims on unknown future
dividends and so the stock price at any point in time must reflect the
present value of the expected future dividends. A key question that
investors are faced with is therefore how to compute expected values
of future dividends in the presence of the considerable uncertainty
surrounding not just dividends in the near future but dividends at very
distant future points in time. In particular, how high is the growth rate
of future dividends likely to be and how much does it vary through time?
These are key issues that investors must answer when pricing long-lived
assets with unknown future payoffs.

We shall consider the problem of present value calculations under
a variety of circumstances. To begin with we assume that the process of
the driving variable is known with stable parameters but consider the
implications of incomplete learning and parameter uncertainty that arises
when dividends or incomes are predicted into an infinite future from a
finite past. In the case of geometric random walks with normally distributed
innovations we show that expected present value can be divergent even if
the parameter uncertainty is confined to the mean of the dividend process.
This is a new finding and differs from similar results by Geweke (2001)
and Weitzmann (2005) who show that the expected utility does not exist
in the case of power utility functions where the consumption growth is
normally distributed but with unknown mean and variance. In their setup,
expected utility is well defined when consumption growth is normally
distributed with a known innovation variance. The nonconvergence of
the discounted sum of expected future values arises because parameter
uncertainty increases at a faster rate than the discounting of future
outcomes.

In practice, dividends or labour income processes are unlikely to
remain stable and may be subject to structural breaks. Indeed, empirical
studies have increasingly found evidence of incomplete learning and
instability in a range of macroeconomic and financial time series processes
that are likely to be related to the determinants of asset payoffs. Stock and
Watson (1996) document evidence of breaks in the univariate time-series
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representation of a wide variety of financial and macroeconomic variables.'
Similarly, Clements and Hendry (1998, 1999) emphasize the importance of
breaks to forecasting performance.

Such evidence opens up the possibility that the dividend process
underlying common stock portfolios is also subject to breaks, a point
verified by Timmermann (2001). Our paper presents new evidence of
breaks in U.S. dividends over the period 1872-2003. We find evidence
of five breaks, three of which cluster over the period 1911-1930 (before
the Great Depression), with the other two occurring in 1952 (around the
Korean War), and in 1960 (the start of the Golden Age). The parameter
estimates in the associated regimes differ significantly both in economic
and statistical terms in a way that suggests that the dividend process has
become less volatile but also more persistent through time.

Building on this evidence, we next explore how to forecast future
dividends and compute the present value of dividends in the context
of a model where the dividend growth process is subject to occasional
structural breaks. Such breaks give rise to considerable uncertainty about
the stock price when compared to a model that ignores breaks although
the latter, as we argue in this paper, is clearly mis-specified. Our analysis
uses the hierarchical hidden Markov chain model introduced in Pesaran
et al. (2006) for the purpose of forecasting time-series that are subject
to multiple breaks. Building on work by Chib (1998), this approach
introduces a meta distribution that characterizes the distribution from
which parameters within each dividend growth regime are drawn following
a new break. Without this approach, forecasting future values of dividends
is infeasible unless, of course, the possibility of future breaks to the
parameters of the dividend process is ruled out. Using Gibbs sampling
techniques we draw values from the parameter distribution within the
regime that is in effect at the time of the forecast. To allow for possible
breaks, we next draw new values of the discrete state indicator that
characterizes how future states evolve. In the event that a future break
occurs, new values of the parameters of the subsequent regime are drawn
from the meta distribution.

Using the parameter estimates for the break point process fitted to U.S.
dividends, we find that the present value stock price is very sensitive to the
underlying modeling assumptions for the dividend process. In particular,
it depends on whether the possibility of past breaks during the historical
sample is considered and also whether future breaks are allowed for.
Since the regimes identified for the dividend process are typically quite

'Other studies finding evidence of breaks in such time series include Alogoskoufis and
Smith (1991), Banerjee et al. (1992), Garcia and Perron (1996), Koop and Potter (2004a,b),
Pastor and Stambaugh (2001), Paye and Timmermann (2006), Pesaran and Timmermann (2002),
Pesaran et al. (2006), and Timmermann (2001).
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persistent, there is no particular ranking of the present value stock price
computed under no (historical or future) breaks, under historical breaks
only, or under past and future break scenarios. Instead, the ranking will
reflect the value of the dividend growth rate in the current state relative to
its historical average computed across different regimes.

The outline of the paper is as follows. Section 2 presents new
theoretical results on the existence of present values under parameter
estimation uncertainty. Section 3 discusses the role of structural breaks and
presents empirical results for a model with multiple break points fitted to
U.S. dividend data. Section 4 shows how the present value stock price can
be computed under different assumptions concerning parameter instability
and reports empirical results for U.S. data. Section 5 reports the results of
an out-of-sample forecasting experiment for the U.S. price-dividend ratio.
Finally, Section 6 concludes.

2. PARAMETER UNCERTAINTY AND PRESENT
VALUE CALCULATIONS

Many intertemporal optimization problems result in rational
expectations models with future expectations whose solution involves
calculation of the discounted value of an infinite sum of forecasts formed
at time 7, for many periods ahead into the future. A simple example is
given by

H
yszlliiIgo{ZéhE(xTHJjT)}, (1)
=1

where 74 is the forecaster’s information at time 7', r > 0 is the (known)
discount rate so the discount factor 6 = (1+ r)~!, lies in (0,1), and
E(xy4, | S7r) is the conditional expectation taken with respect to the
probability distribution(s) assumed for the driving process, {x;}, over the
past m periods (t =T —m+1,T—m+2,...,T), and the future (¢t = T +
1,T+2,..., T+ h), where m is the length of the estimation window while
h is the forecast horizon. In general, the driving process need not be known
or stable. In many applications in finance and economics it is assumed that
{x,} follows the geometric random walk model

Alnx = u+ o0&, (2)

where u and o are fixed constants, and &, is identically and independently
distributed with zero means and unit variances. For given (known) values
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of u and o, and assuming that these values apply to the past as well as to
the indefinite future, we have

E(xrin | Irsu,0) = (") [M(0)]", (3)

where M,(o) is the moment generating function of g,, assuming that it
exists. Under the above assumptions the present value, y;, is convergent
and is given by

oe' M, (o) xr

= T e M.(0) W

Yr

so long as A =0¢"M.(0) < 1. In the case of normally distributed errors
M, (o) exists and is given by exp(0.562). This yields the familiar result in
the literature, 2 = dexp(u + 0.55%).2

2.1. Unknown p with a Known o2

Consider next the case where ¢ is known but p is unknown
and estimated based on the past observations, X, r = (x7_yut1,
X7—_m+2s - - -, %), with a Gaussian prior:

9 9
pu~N(gal), o >0. (5)

U

Assuming that g,4; ~ N(0,1), the posterior distribution of p will also be
Gaussian and is given by

u | Xm,T: g, H)Qi ~ N(ﬁ, 62),

where (see, for example, Geweke, 2005, pp. 25-27),
o B mXx,,
H=Ui(%+ QT), (6)
@ o
D_Cm’T = m_l ZszTfmJﬁl Xt and
s 1 m\ "
O-u = <g—i + ;) (7)

2Notice, however, that even when u and ¢ are known, the present value calculations are quite

fragile in the case of geometric random walk models, where nonconvergent outcomes will follow
if the innovations, &, are distributed as a Student-f. A similar result has also been pointed out by
Geweke (2001) in the case of expected utility optimization where the consumption growth follows
a geometric random walk model and the utility function is of the constant relative risk aversion
(CRRA) variety.
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In this case,

E(xrin ) Iri 0, 1, 0%) = xe[E(e" | Iri 0, 1, 02) |[M(0)]"

= 'xTE(ehH | jT’ g, Ea gi)e%hﬂz’ (8)
where

ny 1,229
E(eM" | Ir;0,p,0,) = 200,

and the individual elements in the infinite sum, (1), exist and are given by

i+ 5 h262+ 1 ho? spla=2.1 9vh
E(xT+h | jTZU) = xpelitaitaitghet xT(e;tho—ﬁQg ) .

(9)

Finally, the present value, truncated at forecast horizon H, becomes

u H
i+ h52+ 62\ P l
yroren = xr ) (8T = Y N p(h,m))', (10)
h=1 P
where
p(h, m) — e—ln(l+'r)+ﬁ+%h6§+%52. (11)

To check if this is convergent as H — 0o, we first note that

St ()5 o? ?
e = ] C)E) G

jan
2 2
o O 1 o 1
O 2T i) 12
e brere (m) (12)
m g‘l

Using these results in (11) yields p(h, m) = §¢2° e¢%™  where
_ o?\ (1 a®\ [ K a® (h h
ghym)=%7 |1 =\ — 5|+ = )|SZ])+5\2)+Ol= )
m a m [y 2 \m m
or after some algebra

_ o2\ | K — Xn1 o (h h
ghm)y=xr+(—)|=F—|+5\|2)+0|=]-
m [y 2 \m m
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Typically one expects (¢ — ch,T)/(mgi) to be quite small and the present
value would be dominated by the term "—2(1). Therefore,

2 \m

Ja

_ 1,2 X h
VrTeH ~ Xy Z (g In(14+7r)+50 (l+h/m)+xmv7~) L, (13)
h=1

and even if jvm,T =exp(—In(1 4+ r) + x,,r + 0.56%) <1 (the estimated
certainty equivalence convergence condition), yr.ry will be divergent as
H — 00.?

The only case where the present value convergences in the presence
of the estimation uncertainty will be if the limit of A/m as h — o0 is
bounded from above by some constant, k < 2[x,,r — In(1 + r)]/o* — 1.
This corresponds to a thought experiment in which the length of the
estimation sample (m) somehow grows at a sufficiently fast rate with the
forecast horizon, %, so that lim(4/m) tends to k < 2[u — In(1 + r)]/6* — 1,
as h and m tend to infinity jointly. In practice, of course, such thought
experiments have little relevance since the estimation window (often
determined by the historical data set available) and the forecast horizon
are separate concepts and there is no reason why they should be linked
in any particular way. Furthermore, in cases with evidence of instability
in the parameters of the dividend process, an unbiased estimator of the
parameters of the dividend generating process can only be obtained by
restricting the estimation sample to the post-break data. This provides
another reason for why m is finite in practice. In the following we shall,
without loss of generality, assume m = 7" and suppress the m notation for
simplicity.

2.2. Unknown u and o?

The nonconvergence problem of the present value will be accentuated
if we also assume that ¢ is unknown and is estimated from the past data,
X,.r. For example, using conjugate priors for p and ¢* the posterior
distribution of u will be ¢-distributed and E (eh“ | Fr; 1y gi,gQ, y) ceases to
exist for any & > 0, where ¢” and v are the parameters of the gamma prior
density assumed for ¢* which can be written conveniently as

As pointed out by Geweke (2001), the use of nonconjugate priors for u
and ¢ does help in resolving the nonexistence of E(e"“ | Fr5 1, gi,gg,y).

3The above analysis also shows the danger of letting m — oo first before computing the limit
of the present value with H — oo. In reality, m could be quite large but still finite as H — oo.
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However, it does not resolve the nonconvergence of the infinite sums that
are involved in present value calculations.

Non-Bayesian approaches to dealing with the uncertainty of p and ¢
are unlikely to help either. One possible approach would be to bootstrap
the present values. This involves (i) drawing u” and ¢” from the observed
empirical distribution of the estimators of u and ¢* (say i, r and 831,’7),
(ii) computing present values for each choice of u” and ¢’ denoted as
y”, and (iii) obtaining the bootstrap present value as B! Zle 3, where
B is the total number of bootstraps. However, for this procedure to yield
a convergent outcome it will be required that y(Tb ' is convergent for each
b, which is extremely unlikely unless the empirical distribution of i, r
and 67, ; is constrained so that all draws from that distribution satisfy the

conditions §¢"” M,(¢?) < 1 for all b.

2.3. Trend Stationary Log-Linear Driving Processes

The nonconvergence problem continues to be present if the unit root
process in (2) is replaced by the following trend stationary process:

Allnxy — a—p(t+ 1] = —(1—p)(Inx — a— pt) + oer,  (14)

where |p|< 1, and as before pu represents the average growth of the
logarithm of the driving process, x,. In the case of this process,

h
In(xris/xr) = =1 = p")Y(Inxy —a—pT) +ph+0) pery,

J=1

and

h
E(xr41 | 75 0, 1, p,0) = e—“—ﬂ’”(‘“”—“—“T’(e’”‘>[1_[ M€<apf'>}, (15)

j=1

which is a direct generalization of (8) and reduces to it for p = 1. It is clear
that the various issues discussed for the unit root case readily apply here.
Even if ,1; has a moment generating function, the present value is unlikely
to exist if u is not known with certainty. For example, suppose a, p, and ¢
are known and p is estimated based on the regression of Inx, — plnx,_; —
a(l — p) on (1 — p)t + p. Assuming, as before, that conditional on a, p, and
o the prior probability distribution of u is Gaussian and given by (5), then
the posterior distribution of u will be given by

.ulea a, P,Uaﬁ’gi ~ N(ﬁ’ 62)7
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where, assuming that data back to ¢ = 1 is used in the estimation,

Yl [Inx —plnx_y —a(l— p)|[(1 = p)t + p]
Y [ = p)t+ o]

a9 o* R (1 L1 )‘1

o = an o, ==+ = .

Tl = pyi+p) a2 6
Hence

E(xXrqi | S5 a,p,0)

h
h S - _h
— |:e—(1—ﬂ )(In x7p—a) | |Mg(0'p]):|E“(€[h+(l P )T]#)’
J=1

h
2
= |:€(1ph)(l“T“)l_[ Mg(aﬂ)i|e[h+(1p’l>7‘]ﬁ+§[h+<1p")'r] 7.

j=1

and for a fixed T its rate of expansion is governed by the term exp(.B&L h*).
Therefore, as far as the existence of the present value is concerned the
outcomes are very similar irrespective of whether the logarithm of the
driving variable has a unit root or is trend stationary. The differences
between the two cases are a matter of degree and differ only due to the
differences in the precision with which p is estimated under the two cases.
Under the unit root process the precision of u is of order 7!, while when
In x; is trend stationary it is given by 77/2.

2.4. Present Values with a Stochastic Discount Factor:
The Lucas Tree Model

Normally the discount rate is formed as the risk-free rate plus some
risk-premium to reflect the uncertain nature of future payoffs and correct
for correlations between dividend shocks and variations in the stochastic
discount factor. It is clearly of interest to relate the discount rate—taken
to be fixed and strictly exogenous so far—to the growth rate in dividends,
using equilibrium consumption based asset pricing models. In the case of
consumption based asset pricing models the expression for the present
value is more complicated and depends on a stochastic discount factor that
varies with x. In the context of a representative agent model with the utility
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function, u(c,), we have*

= | Do e )| 1

which reduces to the present value expression (1) in the risk neutral case
where u(c) is linear. But for a general specification of u(c) the analysis
of convergence of the present value depends on the form of the utility
function and the nature of the dependence of ¢, and x,;, in a general
equilibrium context. Although such a general analysis is beyond the scope
of the present paper, certain analytical results can be obtained for the
Lucas’s tree model (Lucas, 1978) where consumption is equal to dividends
(¢r4n = %741) and the utility function is specified to have the power form
u(e) = (1 —9)"'(c"77=1) (y # 1). In this case,

H
yr = ;1_{20 { ZE(e—/zln(l+r)+(l—*,v)(1nx7~+;,—1nxT) | j'z‘) }’
h=1

and under the geometric random walk model (2) with a known mean and
variance we have

H

c . _ . 5(1—)242 S
E(y'[ | 1, 0_2) = xp lim { ZE(e hn(141r)+(1—=p)ph+0.5(1—=y)?c* h | 1, Gz’j’[)}’
H—o00 sl

which is convergent for given values of u and ¢? so long as —In(1 + r) +
(1—ypu+0.51—y)?? <0.

Consider now the case where u is unknown and continue to assume
that ¢? is given (known). Then using the above results we have

_y 242 N 242 —275,252
E(e(l Mph4+0.5(1—=y)*ch | UQajT) — e(l P ith+0.5(1=y)*6*h+0.5(1-y)*h (rﬂ’ (17)

where u and 62 are the posterior mean and variance of u given by (6)
and (7) where m = T and that do not vary with 4. Hence, the elements in
the series expansion of £ (yT /xr | 02) eventually will be dominated by terms
QI p = 1,2, .. and the present value expression will be divergent
unless y = 1, corresponding to the special case of log-utility.

*See, for example, Cochrane (2005, p. 24). Deriving (16) from the first order inter-temporal
optimization conditions also requires that the transversality condition

lim E(“ (ersn)

w'(er)

h—o00

Yrn | 71) =0,

is satisfied.
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2.5. Possible Solutions to the Nonconvergence Problem

The reason for the fragility of the present value under the geometric
random walk model with constant but unknown parameters can be
illustrated using a simple discrete state process for u. Suppose that over the
forecast horizon T4+ 1, T +2,..., T 4+ H, u can take any one of the values
Ui, to, . . ., Uy, with probabilities my, 7o, ..., m, where Z:”:l m;=1, and 1 >
7; > 0. To simplify the analysis also assume that 62, y;, and 7; are known at
time 7. Under this example, the present value is given by

m

Yr = XT{ E T; lim
1 H—o00
1=

Since 1 > m; > 0, y7 exists if 0e" M, (o) < 1 for all i. Contrast this result with
the associated certainty equivalent expression that accounts for uncertainty
about the value of the underlying mean parameter (but disregards
uncertainty about future dividend innovations):

efhln(lJrr)Jrhui [Ms (O')]h } ) (18)

H
h=1

H—o00
h=1

H
Yo = xT{ lim )" e—h'“““”hﬁn[Mg(a)]"}, (19)

where [, =Y ., mu;. The conditon for y%* to exist is given by

de"* M, (o) < 1. Clearly, it is possible for the latter to be satisfied without
oe'iM,(0) < 1 being satisfied for all i. A sufficiently large u;, even if it is
extremely unlikely (with m; very close to zero), can result in divergence
of yr, although for all other outcomes that are much more likely the
associated infinite sums could be convergent.

As suggested by this example, irrespective of whether the underlying
parameters of the dividend process are known or whether investors have
to learn their values from past realizations, one way to deal with the
nonexistence of expectations and the nonconvergence of the infinite sum
of present values of future dividends is to truncate the distribution from
which future dividends are drawn. In the absence of learning, truncating
the conditional distribution of future dividends given current information
will ensure both that the present value of future dividends exists even
for very large h and that the infinite sum converges. In the presence
of learning, truncating the posterior predictive distribution of future
dividends will have the same effect. This provides a way to rule out too
‘extreme’ future scenarios for the dividend process.

It is clear from this discussion that the nonconvergence of the
present value arises from the particular combinations of (i) a geometric
random walk driving process, (ii) an infinite horizon, and (iii) constant,
but unknown parameters drawn from a Gaussian posterior distribution.
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One could consider relaxing any one or all of these elements. We discuss
the first two assumptions below and then deal with the parameter stability
assumption in more detail in the next section.

2.5.1. Use of Linear Driving Processes

The nonconvergence problem can be avoided altogether if the
geometric random walk model is abandoned in favor of a linear driving
process. Consider for example the simple random walk model with drift

Xt = 'u, + xt_l + 0'8,;. (20)

Then E(xpyp | Fr) = xr + ph, and
H
= fim 15 5B 57)
h=1

x o0
= 1_T5+“Zh5h’
h=1

or

Xr ,Ll5
T—o =02

yr = (21)

Uncertainty surrounding p can easily be dealt with in a way that does not
cause nonconvergence problems. Generalizing the process to higher order
models with possible serial correlation in the innovations, &,, would not
alter the main conclusion. For example, for the pth order driving process

/2 P
X = (1 — Zp_,»),u + Zp]-x,_j +o¢g,,
j=1 j=1

conditional on p = (py, ps, ..., p,)" we have

0 i)y ou(1 =30 py)
L — o (9) (1 =0)(1 = do(8))’

yrlp=

where

j4
¢;(6) =Y _ pid7,  forj=0,1,...,p—1.

i=j+1
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Under parameter uncertainty

]
&

Pl[ b;(5)
yr = T s

0 E(#(l - ][):1 Pj)
1 — ¢o(0)

XJ“”+1—5 1 $u(d)

XT) , o (23)

j=0

where expectations are taken with respect to the posterior distribution of u
and p. These expectations are likely to exist for a sufficiently large 7, and
do not depend on the forecast horizon.

The problem with this approach is, as pointed out by Campbell
et al. (1997, p. 258), that linear models for real dividends, consumption,
or labour income do not fit the data well since these series tend to
grow exponentially over time. This means that linear models are usually
dominated by log-linear specifications.

2.5.2. Use of Finite Horizons
A simple, but rather ad hoc, solution would be to define the present
values over a given finite future, say H, and then write the solution as

H
yr(ﬁ) = Z 5hE(x'1‘+h | F1), (24)
=1
which is finite so long as E(xry, | fr) exists for h=1,... ,I:?. In practice,

the choice of H could be problematic. In the case of the life cycle
consumption model, H can be viewed as the life of the household and

treated as a truncated random variable. For example, we could assume that
(for0 <0 <1)

- (1—0)0° _
Pr(H:S):m, fors:l,?,...,H
=0, for s > H, (25)

where H is an arbitrarily large but finite value. The non-truncated case
where H — oo yields the familiar geometric distribution used by Yaari
(1965), Cass and Yaari (1967), and Blanchard and Fischer (1989) to model
uncertain life times in models of household consumption. Integrating out
the uncertainty of H we have

B 11— Lo
Eplyr(H)] = m Z 0°6"E(x720 | I7),
s=1 h=1
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which can be written more compactly as

H gr-s+1
Egilyr(H)] :Z o= o) (06)'E (xr4 | 7). (26)

s=1

In this setup, the choice of H is of secondary importance. However, it
is worth noting that for H — oo, the uncertain life time present value
problem reduces to

lim EH[yT(H) = 0! Z xTJrs | jT); (27)

o0
H—>o0

s=1

which is the infinite horizon problem with a lower discount factor given
by 06. By increasing the discount rate, the stochastic life-time assumption
will help towards achieving convergence, but does not resolve the problem
altogether. A finite H would still be required in general.

3. PRESENT VALUE MODELS WITH STRUCTURAL BREAKS

Perhaps a more appealing way to handle the nonconvergence problem
is to relax the assumption that the parameters of the underlying growth
process are constant through time. This assumption clearly goes to the
root of the nonconvergence: As long as there is even an infinitesimal
probability of drawing a set of parameters for which the (constant) growth
rate exceeds the discount rate, the present value will not exist. Conversely,
if the parameters of the growth rate are subject to structural breaks, there
are cases where the growth rate temporarily exceeds the discount rate,
yet the present value continues to exist. This happens provided that the
underlying driving process most of the time grows at a slower rate than
the discount rate. The condition for the existence of the present value is
now the rather weaker one that paths leading to an unbounded present
value have zero probability. This will trivially hold if the distribution of the
maximum growth rate is truncated so that it always falls below the discount
rate, but can also hold in the absence of this assumption.

Breaks to the cash flow process will not, however, in and of itself, resolve
the problem. This can easily be seen as follows. Suppose that the mean
of the increment to the logarithm of the first-differenced future dividend
process falls in different regimes during the period T +1,...,T + h.
Denote the number of these regimes by N, and let their duration be
hi, ..., hy,, so that Z;__”l h; = h. Equivalently, the fraction of the time spent
in regime ¢ is given by ©; = h;/h, 0 < w; < 1. Suppose that p; ~ N(ﬁ,aﬁ).
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We then get the present value as follows:

H Ny, h
yr = E»,~|:x»,~ Z exp |:— In(14+r)h+h Z il + 0 Z 8]-:|j|
h=1 i=1 j=1
N,

H
1 . 1, .
= Xy Zexp [— In(1+r)h+ h(ﬁ + §O'2> + §th2 Z nf:| (28)
h=1 i=1

Notice that the last term is not convergent as H — oo. Hence while the
possibility of breaks adds some flexibility to the model, one has to be
careful to ensure convergence of the present value either by using a
finite H, by truncating the distribution from which the future growth rate
is drawn, or through some other means.

3.1. A Dividend Model with Breaks

To illustrate the above issues, we next consider the empirical evidence
of breaks in the dividend process underlying U.S. stocks. Real dividends
underlying broadly diversified stock market indices are often assumed to
follow a simple process of the form (2) with &1 ~ N(0, 1). Depending on
the frequency at which dividends are modelled, autoregressive dynamics
may also be present, in which case the process can be generalized to

j4
Aln(x) — =Y B(AIN(x41-) — 4) + 08,41, (29)

i=1
where f; (i=1,...,p) are autoregressive parameters and u reflects the
long-run mean of the dividend growth rate, whereas it = u(1 — le B

is the intercept for the AR(p) process in Aln(x.;). Both specifications
(2) and (29) assume that the parameters of the dividend growth process
remain constant through time—an assumption that, in view of the
significant shocks to economic growth observed throughout the twentieth
century, is unlikely to be satisfied over the long sample periods typically
used for estimation of the parameters of the dividend growth process, see
Timmermann (2001).

To capture the possibility of structural shifts in the parameters of the
dividend growth process, we adopt the change-point process proposed
by Chib (1998).° This approach assumes that shifts to the parameters
of a time-series process are determined by the evolution in a discrete
state variable, S,, initialized so that $; =1 and increasing over time to

SMcCulloch and Tsay (1993) is another prominent example of breakpoint analysis in a Bayesian
setting.
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capture the possibility of breaks. Every time the state variable increases by
one unit, the parameters of the process shift. Hence, if the break point
indicator Sy = K + 1, this means that there were K breaks between time
1 and time 7. For example, assuming that the dividend process can be
characterized as an AR(1) model whose parameters are subject to breaks,
we have

Aln(xy1) — iy = P1(AIn(x) — 1) + 018441, To=l=T1
AIn(xpy1) — po = Po(AIn(x,) — po) + 98441, n+l1=<it=<1

AIn(x41) — pry1 = Pr(Aln(x) — pixi1) + 018041, xk+1<t<T
(30)

where 1y,...,7x¢ are the breakpoints and {ugt“,ﬂ_gm,a%w} are the
parameters associated with the dividend process regime that is in effect
at time ¢+ 1. Our other assumptions follow Pesaran et al. (2006) which
we next briefly review. The state variable, S,;;, can either remain in the
kth regime, which happens with probability p, or move on to the next
regime, which happens with probability p; ;41 = 1 — py. These probabilities
are assumed to be drawn independently across regimes from a beta
distribution with prior parameters a and b:

pii ~ Beta(a, b), fori=1,2,...,K. (31)

For the AR(1) specification the parameters determining the
conditional mean of the dividend growth process, f; = (ii;, ;) for
i=12,...,K+1, are drawn from a Gaussian distribution, g, ~
N(by,By), while the error term precision parameters, o'gil, are identically,
independently distributed (i.i.d.) draws from a Gamma distribution, 0]72 ~
G(vo, do). At the level of the meta distribution, we make the distributional
assumptions

by ~ N(@, E) (32)
B, ~ W(u,V,"), (33)

where W(-) is a Wishart distribution. ug, Xg, v, and VEI are
hyperparameters that are specified a prio?i. F?lall}r the error term
precision, v, and dy are assumed to follow an exponential and Gamma
distribution, respectively, with hyperparameters py, 6, and dy:

vy ~ Exp(po) (34)
dy ~ Gamma(c, dy). (35)
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TABLE 1 Sample statistics for the monthly growth rate of the real dividends,
Alog(x,). The sample period is 1871:3-2003:9. Dividend growth figures in this
and the following tables are reported in percent per month

Alog(x;) Sample statistics

Mean Std. dev. Skewness Kurtosis 1st order AC 12th order AC

0.0916 1.4801 —0.5133 7.5251 0.5222 0.0478

We refer to this specification as the composite-meta model. All prior
parameters are underscored.

3.2. Estimation Results

We use data from Shiller (2000) available at http://www.econ.yale.edu/
“shiller/data.htm. This provides monthly dividends paid by the firms
included in a broad index of U.S. firms. The data runs from 1871:03
to 2003:09. Nominal dividends are divided by the consumer price index
to get a time-series of real dividends. Statistics on the first-differenced
values of this series are provided in Table 1. Monthly dividend growth
rates are serially correlated and left-skewed with fat tails. Figure 1 plots
the associated time-series and indicates strong evidence of instability in the
underlying process as it has evolved over the sample. Most notably, the
volatility was very high in the early parts of the sample, and around World
War II, and has become much lower after this period. In addition, the
persistence of the series appears to have shifted over time as reflected in
a more volatile (less persistent) time-series plot in the early parts of the
sample. These are of course only visual impressions and must be confirmed
by a more formal econometric analysis.

To this end we next document the presence of breaks in the dividend
process. The change-point algorithm proposed by Chib (1998) conditions
on a fixed number of breaks. We therefore consider different number
of breaks and then use model selection methods to choose a particular
specification. Table 2 shows the outcome of this analysis.® Bayes factors
based on the ratios of the marginal likelihoods for models with different
numbers of breaks suggest selecting a model with five breaks, i.e., a break
occurring roughly every 25 years. In fact, assuming equal prior probabilities
on the models with between zero and six breaks, almost all of the posterior
probability mass goes to the model with five breaks.’

SAlternative approaches that allow for unknown numbers of breaks have been suggested by
Koop and Potter (2004a,b) and Gerlach et al. (2000).

"The change-point algorithm proposed by Chib (1998) conditions on a fixed number of breaks.
We adopt this procedure for different number of breaks and then use model selection methods to
choose a particular number of breaks.
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FIGURE 1 Monthly real dividend growth rates, 1871:3-2003:9.

Based on the posterior modes for the probability of a shift in the
state variable, §,, the five breaks are estimated to have occurred in 1911,
1922, 1930 (at the beginning of the Great Depression), 1952 (around the
Korean War), and in 1960 (the start of the Golden Age of Capitalism).
Figure 2 shows that the date of the first break is very poorly determined
with probabilities of break in individual months well below 6% and spread
out between 1900 and 1920. The remaining break dates are more precisely
determined with modal probabilities varying from 0.15 to 0.35.

TABLE 2 Model comparison. This table shows log likelihoods, marginal log likelihoods, and
posterior probabilities (assuming equal priors) for first-order autoregressive models with different
numbers of breaks. Also reported are posterior modes of the time of the breaks

No. of breaks Log lik. (LL) Marginal LL.  Posterior prob Break dates

0 —2624.9985  —2654.6837 0.0000

1 —2133.5739  —2229.9407 0.0000 May-52

2 —2077.0646  —2189.6929 0.0000 Aug-11  Jul-60

3 —2049.5172  —2176.6019 0.0000 Aug-11  Apr52  Jul-60

4 —2033.8167  —2168.5174 0.0003 Jan-22  Feb-31 Jan-52  Apr-60

5 —2020.3715  —2160.2843 0.9997 May-11 ~ Jan-22  Nov-30  Jan-52
Apr-60

6 —2019.0175 N.A. N.A. Sep-11  Apr-22  Feb-31 Apr52

Jun-60  Jul-60




FIGURE 2 Posterior probability of break occurrence in the AR(1) model for
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growth rate, assuming K = 5.
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the real dividend

TABLE 3 Posterior parameter estimates for the AR(1) hierarchical Hidden Markov Chain model
with five break points in the monthly growth rate of real dividends

Parameters estimates

date

Mean
s.e.

Mean
s.e.

Mean
s.e.

Mean
s.e.

71-11

0.187
0.073

0.370
0.042

1.804
0.064

0.997
0.003

Regimes
2 3 4
11-22 22-30 30-52
Constant
—0.008 0.323 —0.017
0.083 0.129 0.072
AR(1)coefficient
0.624 0.397 0.729
0.073 0.113 0.042
Standard deviation
1.356 0.722 1.383
0.092 0.054 0.063
Transition probability matrix
0.989 0.986 0.994
0.011 0.011 0.005

52-60

0.063
0.056

0.629
0.067

0.620
0.048

0.985
0.011

60-04

0.022
0.016

0.662
0.033

0.342
0.011
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TABLE 4 Posterior estimates of the hyperparameters of the meta
distribution for the AR(1) hierarchical hidden Markov Chain model with
five break points for the monthly growth rate of real dividends

Mean s.e. 95% conf interval

Mean parameters

by(1) 0.097 0.086 —0.050 0.264
by(2) 0.564 0.086 0.382 0.724
Variance parameters
By(1,1) 0.036 0.084
By(2,2) 0.037 0.049
Error term precision
Uy 1.294 0.591 0.416 2.80
do 0.616 0.335 0.122 1.478
8 2
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FIGURE 3 The graphs show the predictive densities for the dividend series under various forecast
horizons. The solid line represents the predictive density from the composite-meta model (assuming
K =5 breaks) while the dotted line represents the predictive density under the last regime (1960-
2003). Finally, the dashed/dotted line represents the predictive density from the full sample/no-
breaks model.
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Table 3 reports parameter estimates for the model with five breaks
(six regimes). As one might expect from a sample period as heterogenous
as the 20th century, there is considerable variation in the parameters across
regimes. The intercept parameter varies from —0.02 to 0.32, while the
AR(1) parameter varies from a low point of 0.37 (between 1871 and 1911)
to a high point of 0.73 between 1930 and 1952. Confirming the visual
impression from Figure 1, the standard deviation of the dividend process
has varied considerably from a peak of 1.80 prior to 1911 to its value of
0.34 after 1960. Clearly the dividend process has become less volatile but
also more persistent through time. Finally, the mean value of the ‘stayer’
probability parameter that characterizes the duration of the various states
has varied from a high of 0.997 in the regime prior to 1911 to 0.985 in the
regime over the period 1952 to 1960.

Consistent with the large variation across regimes in the parameters
of the dividend growth process, the mean value of the standard errors
of the meta distribution parameters (b(1), 5,(2)) are quite large at 0.086.
In fact, Table 4 shows that the 95% confidence interval for b,(1), the

8 o 2
6 15
4 1
2 0.5
0 - = 0
6.4 6.6 6.8 7 7.2 5 9
1 month ahead
1 0.8
0.6 :
0.5 0.4
0.2
0 0
2 4 2 4 12
36 months ahead
0.6 0.8
“ 0.6
0.4
0.4 " ..,
0.2 I\
0.2 ;
0 . K e o 0 . N
0 5 10 15 0 5 10 15 20
48 months ahead 60 months ahead

FIGURE 4 The graphs show the predictive densities for the dividend series under various forecast
horizons. The solid line represents the predictive density from the composite-meta model (assuming
K =5 breaks) while the dotted line represents the predictive density under regime 3 (1922-1930).
Finally, the dashed/dotted line represents the predictive density from the full sample/no-breaks
model.
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parameter in the meta-distribution characterizing the mean intercept
across regimes, goes from —0.050 to 0.264 and from 0.382 to 0.724 for
by(2), the parameter in the meta distribution characterizing the mean
persistence across regimes. Following a future break, the parameters of the
dividend process will be drawn from the meta distribution so these values
indicate that there is considerable uncertainty about the process driving
future dividend growth.

Figure 3 shows that parameter instability of the dividend growth process
has a large effect on the predictive density. It shows the predictive density
under three different models at horizons of 1, 12, 24, 36, 48, and 60
months. The first model is the full-sample, no-break model, while the
other two models allow for past breaks and past and future breaks. The
model that allows for past breaks effectively bases predictions of future
values on the parameters from the last regime—the regime prevailing from
1960-2003 in this case—while the model that allows for future breaks starts
off from this regime but lets new parameters following a future break be
drawn from the meta distribution. This also explains why the predictive
densities are more concentrated under the break regimes in Figure 3 since

8 1.5
6
1
4
0.5
2 /
0 0 =L >
9.5 10.5 8 9 10 11 12
12 months ahead
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 = 0
8 10 12 14 6 8 10 12 14 16
24 months ahead 36 months ahead
0.4
0.4
0.3
0.2
0.1
5 10 15 5 10 15

48 months ahead 60 months ahead

FIGURE 5 The graphs show the predictive densities for the dividend series under various forecast
horizons. The solid line represents the predictive density from the composite-meta model (assuming
K =5 breaks) while the dotted line represents the predictive density under regime 5 (1952-1960).
Finally, the dashed/dotted line represents the predictive density from the full sample/no-breaks
model.
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the standard deviation of innovations to dividends was very low in this
regime compared with the full-sample average value. While the dispersions
of the densities are quite different, however, in this regime the centering
of the dividend growth process is not greatly affected by the presence of
breaks.

The relationship between the predictive density under breaks and
under no breaks can be quite different depending on the parameter values
in the regime from which the forecast is calculated. To see this, we plot in
Figure 4 the same three graphs but now for the case where the parameters
in the last regime are based on their values in the regime prevailing during
1922-1930. It now becomes clear that, particularly at the longer horizons,
the three predictive densities are very different once breaks are considered.
In this case breaks shift the mean growth rate to the right compared with
the no-break case. The reason why the difference is largest at the longer
horizons is due to the cumulated effect of having different mean and
persistence parameters under the three scenarios. Since the forecasts from
the AR(1) model are computed based on the same initial value of the
dividend process, differences in the parameters have a relatively smaller
effect at short horizons. This observation is by no means unique to the
regime from 1922-1930 and—as shown in Figure 5—also holds for the
regime that was in effect from 1952-1960.

Prob(s, , | = K+1ls; = K+1)

0.84 - hl

0.82 b

0.8 I I I I I
0

FIGURE 6 Posterior probabiliy of staying in regime K 41 at time T+ k, Pr(spyy =K+ 1|sp =
K +1). h is the forecast horizon that ranges from 1 to 60 months.
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Differences between predictive densities under the two breakpoint
models can be explained with reference to Figure 6. This figure plots the
weight on the current regime (thus assuming that the parameter values for
the final regime remain in effect) as a function of the forecast horizon.
This is similar to a survival plot for the current state and shows how the
probability of a break (computed as one minus the ‘stayer’ probability
plotted in Figure 6) increases as the forecast horizon is extended.

4. PRESENT VALUE STOCK PRICE UNDER BREAKS

As we showed in Section 2, to compute the present value of future
dividends, we need to evaluate an expression of the form

H H
lim yp = lim hz;éhET[xm] = lim ;exp(—hln(l + 1) Erlxras]. (36)
Notice that E7[-] is calculated not just conditional on current dividends,
x7, but on the entire past sequence {x,}",. Hence the complete historical
track record of dividends matters when forecasting future dividends.

To compute the future stream of dividends, we use the Gibbs
sampler to generate draws from the predictive distribution of Aln(xz ),
Aln(x749),...,Aln(xryy). To see how this works, consider the sum of log
first-differences of dividends between period T + 1 and period T + H:

H
Y Aln(xry) =In(eryn/x),  (H=1) (37)
h=1
SO
H
XryH = Xr eXp< Z A ln(x”h)),
h=1

or, in terms of present values,

H
Mxrin = xp exp( > Aln(xpy) — H 1n(5)>. (38)

h=1

First assume that there are no breaks between period 7 and T + h. When
dividends follow the AR(1) process (30), the value of Aln(xr,) is given by

h
Aln(xpy,) — Hsy = ﬁfé,,(Aln(xr) - HST) + Z ﬁg;ib‘rﬂwm- (39)

i=1
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Using (37), we see after some algebra that
ﬂST(l - ﬂgr)
1 — B,

where &7.1.74, denotes the weighted shocks to the present value of
dividends between period T and T + h, defined by

&€ =¢ —i—(l_ ‘%T>s +(1_ﬁ27‘)8 +<1_B£T>8
THLT+h = ET4h T4h-1 T4h—2-- T+1-
* N i l_ﬁST * 1_ﬁST thee l_ﬂST *

It is now easily seen that

In(xryn/x7r) = hus, + [Aln(xr) — s, | + €rs1:740s (40)

5, 0-08) o, (1-84,)
1-65,. 1-Bs;

(1 - ﬂS']’)Q

Future dividends can therefore be simulated by drawing a set of
parameters, {{s,, s, }, and, for these parameters, compute

ﬁs’r(l - ﬁgr)
1 — By,
where &7,1.74, has mean zero and variance as given in (41).

Turning to the case that allows for breaks between periods 7"+ 1 and
T + h, and recalling that fig,,, = us,,,(1 — Bg,,,), we have

h+

(41)

Var(eri1:140) =

Xryp = Xt eXP{h,UST + [AIn(xr) — ps, ] + 8T+1:T+h}, (42)

Aln(xpyr) = flsy,, + Bsp Aln(xr) + 74
A ln(xT+2) = ﬁS1‘+2 + ﬁ~§7‘+2ﬁsr+1 + ﬂS'1‘+2 ﬁxg7‘+] A ln(xT) + Er49 + ﬁS'['+28T+l
A In(x743) = IZLST+3 + ﬁST+3:aST+2 + ﬁST+SﬁST+2 IZLS'1‘+1 + ﬁSTJra :BST+2 ﬁS’r+1 Aln(xr)

+&erys + Bspa €142 + By Psp €1

h—1 h

Aln(xpi,) = fisy,, +&ron+ ) ( I1 ﬁsm)msw +&74;)

j=1 Ni=jtl
h
+ ( I ﬁ.g,,.H)Aln(xT). (43)
i=j+1

Comparing this expression to (39), clearly, the presence of breaks
complicates calculations of future expected dividends very considerably
and numerical methods are required to compute the present value.
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4.1. Computing Present Values

In practice we calculate the present value of the stock price as follows:

H
lim y; = hl,lggo Z exp(—hln(l + 7)) / xronp(Xrn | 1) dxXryn, (44)
h=1

H—o00

where ., is again the forecaster’s information set at time 7', which we shall
assume comprises past dividends only, i.e., Fr = {xi, ..., x7}. pQxriy | Fr) is
the predictive density of dividends at time 7" + % conditional on 7.

The expectation is computed under three different scenarios capturing
different assumptions about the forecaster’s beliefs, as follows.

1. A model that accounts for parameter estimation uncertainty but
ignores past and future breaks to dividends by using the predictive density:

pCxrin | S =1, F7)

= /P(th 10, Sr =1, Ip0)(Or | Sryy = 1, F7)dOr, (45)

where O are the constant model parameters whose posterior distribution
given the data at time 7 is n(® | Sy, = 1, 7).

2. A model that accounts for historical breaks to the dividend process
but ignores the possibility of future breaks (and hence assumes that the last
regime stays in effect forever but with uncertain parameters) by using the
predictive density:

p(xrgn | S =K+ 1, 97)
= fP(XT+h | Oks1, Sr4p = Sr =K +1, jT)TC(®K+1 |7, p, jT)d®K+1’
(46)
where Ok, ; are the parameters in the last regime (labeled K + 1), while #
is the set of hyper-parameters.

3. A model that accounts for parameter estimation uncertainty as well
as past and future breaks to the dividend process by using the following
predictive density:

/p(xT+h|ST+h:K+nb+1>ST:K+1ajT)7 (47)
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where 7, is the maximum number of out-of-sample breaks so the predictive
density can be calculated (integrating out uncertainty about the dates of
the breaks, tx 1 = T 4 ji, ..., Tk4n, = Ju,) S

p(xrin | Sron=K+n,+ 1,8 =K+ 1,5)
h—np+1 h

= Z Z f"'/p(xT+ha®K+2,---,®K+nb+l;%asT+h

n=1 Jnp=Jny—1+1
=K + ny + 1>TK+1 =T +j17 s TRmy = T +].n;,7ST =K + l’j'l‘)

X (tke1 =T + i, Tkan, =L+ Juy | St =K + my + 1,7 =K + 1)
X T(Oktos -, Ogspyit, # | F1)dOk s ... dOxey, 11 dT. (48)

To get a more complete picture of the possible impact of breaks on
the present value price, we compute the stock price under the three
scenarios, based on different terminal regimes. One thousand draws from
the Gibbs sampler were used (after discarding the first 500 draws) to
forecast dividends and the present value of dividends. In computing the
monthly dividends, we set the forecast horizon at H = 1000 and assumed
an annualized discount rate of 10%. The parameters of the prior were as
follows: p; ~ Beta(a, b) with @ = b = 0.5. We assume an uninformative prior
for the parameters of the conditional mean of the dividend process by
setting py = 09,1, V5 = 10001, (recall that f; = (fi;, f;)’ in the ith regime).
The hyperparameters determining the error term precision are ¢ = 1;
dy = 1/100; py = 100, while the prior for the transition probability matrix
is assumed to be drawn from a Gamma(a,,b,) distribution with a, = 1;
b,=1/10.

In computing stock prices in the model with future breaks we chose a
large value of H, but to ensure convergence of the sum of present values of
future dividends, as discussed above, we truncated the posterior predictive
distribution of future dividends. More specifically, at each horizon draws
from the posterior predictive distribution of the composite model more
than two standard deviations away from its mean were discarded. Naturally
the truncation point could be chosen differently, but this choice seemed
sensible and did ensure convergence of the sums of present values.

To shed light on the practical importance of our choice of H, the
terminal value at which dividends are computed. Figure 7 plots the present
value of the expected dividend as a function of the forecast horizon, H.
The sum of expected discounted dividends stabilizes rapidly under all three
models, suggesting that, in this parameterization and for our choice of
discount rate r = 10% per annum, the present value is not very sensitive
to our choice of H. Our earlier theoretical results suggest, however, that



280 H. Pesaran et al.

2000 T T T T T T T T T

1800

1600

1400

1200

1000

800

600

400

----- Full sample/No hreaks | |

------- Lastregime

Composite-meta

D 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
h

200

FIGURE 7 Cumulative discounted dividend ]h:l (’::;7 under different scenarios, where 1 < h <

1000 months and r =10% per annum. The solid line represents the predictive density from the
composite-meta model (assuming K =5 breaks) while the dotted line represents the predictive
density under the last regime. Finally, the dashed/dotted line represents the predictive density from
the full sample/no-breaks model. The dividend is set at the end of sample value, x7 = 15.12.

if we were to let H — oo, the results could be quite different. Consistent
with this, when we chose a smaller value for the discount rate of r = 5%
per annum, the present value series failed to converge, blowing up in the
process. These results suggest that in the presence of parameter estimation
uncertainty and model instability, the present value stock price can be very
sensitive to modeling assumptions.

4.2. Empirical Results

Table 5 reports the stock price computed under these assumptions
relative to the stock price from the model that ignores model instability
which we normalize at 100.® As indicated by the parameter estimates in
Table 3, the mean value of the log first-differenced dividends in the regime
prevailing during 1922-1930 was unusually high. As a result, in this regime
the stock price computed under the assumption that the last regime stays in
effect and no future breaks occur (the middle column in Table 5) was 40%

8Since we are using a finite horizon in these calculations, normalizing the present values in
this way is innocuous.
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TABLE 5 Stock price y; under different scenarios when the
interest rate is set at 10% per annum

yr
Regime Full sample/No breaks Last regime Composite-Meta
1960-2003 100 96.190 103.256
1922-1930 100 140.970 124.176
1930-1952 100 90.545 104.112
1952-1960 100 113.820 123.786

higher than the full-sample, no-break stock price. In this regime, the stock
price computed under the composite-meta model that allows for both past
and future breaks lies in the middle of the full-sample and current regime
values, 24% above the no-break price. Stock prices under past and/or
present breaks that exceed the value under the no-break assumption are
also observed under the parameters based on the regime that was in effect
during the period 1952-1960.

Conversely, the stock price based on dividend growth parameter values
from the regime prevailing from 1930-1952 falls below the full-sample
value by 10% since dividend growth was quite low in this regime as
indicated by the negative intercept for this state shown in Table 3.
Furthermore, in this regime the stock price computed under the composite
meta distribution, at 104, is only marginally above the full-sample value.
A similar set of results is obtained on the basis of the parameters from the
last regime prevailing during 1960-2003.

The reason for these rankings is easy to understand from Figure 7: At
short investment horizons, the weight on the current state tends to be very
high, but this weight declines gradually as the horizon is expanded and the
weight on draws from the meta distribution increases. Consequently, the
stock price under the current regime lies above both the full-sample value
and the price computed under the composite-meta distribution whenever
dividend growth is very high in the current regime, i.e., the parameters
associated with the current regime are drawn from the right tail of the
meta distribution. In this situation, the stock price under the composite-
meta distribution is also likely to be considerably higher than its full-sample
counterpart, but it falls below the value conditioned on remaining in the
last regime since dividend growth after a future break is likely to be below
the growth rate in the current regime.

These results also demonstrate that, in general, the stock price under
the composite-meta distribution will tend to be above the full-sample value
due to the convexity of the mapping from the dividend growth rate to the
stock price implied by the present value relation (see Timmermann, 2001).
This explains why we see higher stock prices as a result of accounting
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for parameter uncertainty and model instability. Furthermore, model
instability generally increases the effect of parameter uncertainty. The
intuition for this finding is that under breaks fewer observations are
effectively used to estimate the model parameters in the last regime, so the
standard errors of the parameters tend to increase under breaks compared
with full-sample estimates.

However, in a given regime, any ranking between stock prices under
the three scenarios is in fact possible. For example, if the current state
experiences a sufficiently low dividend growth rate and the state is highly
persistent, then the effect of conditioning the stock price on the dividend
growth parameters from the current state will dominate the convexity effect
and hence the stock price under the composite-meta distribution (as well
as under the assumption that the current state remains in effect) will be
smaller than the full-sample, no break price.

Furthermore, stock prices under the model that accounts for breaks
need not exceed prices under a no-break assumption in models where
shocks to the dividend growth process are correlated with a stochastic
discount factor and uncertainty surrounding future dividend growth leads
to a higher risk premium. This will occur, for example, in consumption
asset pricing models where dividends have a large positive correlation
with consumption growth. But our discussion of the Lucas model in
Section 2.4 suggests that taking account of possible correlations between
dividends and consumption growth might not be sufficient to resolve the
non-convergence problem so long as there are important uncertainties
surrounding the future mean dividend growth rates.

5. Out-of-Sample Forecasting Experiment

So far we have illustrated the effects on stock prices of structural
breaks through a set of numerical experiments, but it is natural also to
explore whether the presence of breaks can be used to shed light on actual
stock price data. The present value model considered in the theoretical
analysis is highly stylized in that it only considers the effect of breaks to the
dividend growth rate and ignores the possibility of breaks in the discount
rate. Accounting for the latter is important, however, particularly when
considering the relatively long span covered by our data, reflecting shifts
in investors’ attitude towards risk, see Pastor and Stambaugh (2001). For
example, lower discount rates offer a more plausible explanation for the
run-up in stock prices during the 1990s than higher dividend growth rates.

Rather than conducting tests on stock prices—which drift upwards over
time and are clearly non-stationary—it is more natural to consider the
price-dividend ratio, yr/xy which is better behaved and less likely to be
trended. When both the dividend growth rate and the discount rate are
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constant, the price-dividend ratio implied by the present value model will
also remain constant. A natural benchmark model is therefore

T
T=uten (49)
xr
where the error term could be due to parameter uncertainty. In contrast,
breaks in either the discount rate or dividend growth rate should show up
in the form of breaks in the price-dividend ratio,

T (50)

xr
where S7 is a state variable that follows a Bernoulli process with stayer
probabilities as determined by (31). This should only be considered an
approximate model since the price-dividend ratio is known to be highly
persistent. Such persistence could in part be due to structural breaks in the
underlying discount rate or dividend growth rate processes since shifts in
the mean of a process can induce persistence.

Figure 8 shows the probabilities of the break dates for the model (50).
Based on the marginal likelihood, there is evidence of 14 breaks in the
price-dividend ratio over the sample. Since only five of these can be related
to breaks in the dividend growth rate, this highlights the importance of
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FIGURE 8 Posterior probability of break occurrence for price/dividend series, assuming K=14 breaks.
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considering breaks to both the dividend growth rate and the discount rate
in empirical applications. This is again consistent with evidence in Pastor
and Stambaugh (2001) who find evidence of 15 breaks to the discount rate
over their sample period from 1834 to 1999.

To illustrate the two models, Figure 9 presents plots of the predictive
density for the price-dividend ratio under the no-break model and the
hierarchical hidden Markov chain model computed at six different forecast
horizons at the end of the sample (2001:12). In each case the realized
price-dividend ratio lies in the extreme tail of the predictive density under
the no-break model. In contrast it is better covered by the model that allows
for breaks.

We next undertook a simple out-of-sample forecast experiment.
Starting in 1990:12, we estimated the parameters of the two models
(49) and (50) and produced out-ofssample forecasts at horizons of h =
1,2,...,12 months. This exercise was next repeated in 1991:12 for another
twelve months and so forth up to the end of the sample. Both the number
of break points as well as the posterior estimates of the most recent break

150
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-50 0 50 100 150 -50 0 50 100 150

FIGURE 9 Predictive densities for the price dividend ratio series at different forecast horizons.
The price dividend series is modeled using a break point model and data up to 2001:12, and the
predictive densities are constructed for horizons spanning between 1 month and one year. The black
solid line refers to the composite-meta predictive density, while the red dotted line corresponds to
the full sample/no-break predictive density. Finally, the blue vertical bar indicates the location of
the realized price dividend value.
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point, the parameters of the current regime and the parameters of the
meta-distribution are updated recursively. This procedure ensures that
there are no look-ahead biases in our results.”?

Since the predictive densities are highly non-normal, root mean
squared forecast error comparisons provide at best a partial view of
the models’ forecasting performance. Instead we report predictive Bayes
factors. This measure can be applied for pair-wise model comparison, cf.
Geweke and Whiteman (2006). A value greater than one suggests out-
performance of the alternative model relative to the benchmark model
which in our case is the no-break model. We consider two alternative
models, namely the composite hierarchical hidden Markov chain model
which allows for both current and future breaks as well as a simple
forecasting model that allows for past breaks but ignores future breaks
(labeled the ‘last regime’ model).

Since the posterior distributions for the different scenarios do not
have simple closed form solutions, we compute the predictive Bayes factors
as follows. To get the predictive Bayes factor that compares, say, the
full sample/no break (nb) model against the composite (¢) model for a
particular time period ¢, we first generate, for both models, an empirical
probability density function (pdf) by using a kernel estimator.!” The
predictive Bayes factor for ¢ against nb is given by the ratio of their pdfs
evaluated at the realized value y,,

BFnb — _f((yt | ﬂﬂ" O-?aYt—l)
t f"b(yt | B, Gib’Yt—l) .

A number greater than one suggests that the composite model better
predicts y, than the no break model. This calculation is performed for
each observation in the recursive forecasting exercise and the average value
across the sample is reported.

Empirical results are shown in Table 6 which for each forecast horizon,
h, reports the Bayes factor averaged across the out-of-sample period.
Results vary somewhat across forecast horizons due to the short out-of-
sample period and the fact that many of the price-dividend values fell in
the extreme tails under the no-break model. Even so, across all forecast
horizons A =1,...,12, the composite model produces Bayes factors that
exceed unity and thus performs better than the full sample/no break
model. In fact, for this particular sample the forecasts from the ‘last

(51)

9The post-1990 period constitutes a particularly challenging sample where prices initially soared
followed by a decline caused by the end of the stock market boom of the 1990s. We did not
experiment with other out-ofsample periods.

Results did not appear to be sensitive to the choice of kernel estimator; the results reported
here are obtained using an Epanechinov kernel with Silverman bandwidth.
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TABLE 6 Out of sample predictive Bayes factors at different
forecast horizons. The predictive density under the model
assuming no breaks is taken as the benchmark and is compared
with the predictive density under the composite hierarchical
hidden Markov chain model (column 2) and the last regime
model (column 3)

Forecasting horizon JelrlBeop¥im) m“”i’“’” PLALIL/ A IIII,,GZ,Y,_O
Jub Ot 1 B0 Y1-1) Jub Ot 1 B0y Y1-1)
1 33.80 265.30
2 8.24 61.47
3 12.62 141.54
4 31.84 292.23
5 17.41 144.15
6 3.45 19.35
7 2.12 9.84
8 2.11 9.48
9 9.64 152.24
10 1.23 5.49
11 1.28 7.27
12 1.32 7.08

regime’ model did even better due to the significant run-up in the price-
dividend ratio during the 1990s which only came down towards the very
end of the period.

These results are purely illustrative and it is likely that even better
forecasting models (such as autoregressive representations in In(y,/x;))
could be developed. It is worth emphasizing, however, that such models
lack theoretical motivation and that the presence of breaks offers new
insights into the source of persistence in the price-dividend ratio.
Moreover, the results indicate that allowing for breaks in the present
value model offers not only a better theoretical understanding of how
stock prices are determined but also can prove useful in out-of-sample
forecasting experiments compared with benchmark models that ignore
breaks.

6. CONCLUSION

This paper showed how to compute stock prices as the present value of
future dividends when we do not assume that the dividend process is stable
through time and that its parameters are known. We showed that stock
prices can be quite sensitive to the nature of the assumptions concerning
uncertainty and instability of the parameters of the dividend process. These
findings suggest that our understanding of the dynamics in stock prices can
be improved by focusing on the uncertainty surrounding the underlying
fundamental process.
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Our emphasis on the sensitivity of present values to uncertainty about
the growth rate in different ‘regimes’ or states of nature is closely related
to the literature on how investors’ learning about the dividend growth
process can give rise to the ‘excess volatility’ patterns observed for asset
prices, cf. Timmermann (1993). Even with a finite horizon, present values
can be very sensitive to small changes in the estimated growth rate,
particularly as this gets close to the discount rate. It is also related to
recent work on asset pricing puzzles by Weitzmann (2005) who, following
earlier insights by Geweke (2001), points out the sensitivity of equilibrium
asset prices and returns to assumptions concerning the precision of
the parameters characterizing the distribution from which fundamentals
are generated, questions the ergodicity assumption made in much of
the rational expectations literature and proposes modifications to this.
For example, Weitzmann (2005) writes that “the unobservable nature of
structural growth parameters adds to expectation beliefs a permanent
thick-tailed background layer of uncertainty that never converges to a
stationary-ergodic rational expectations equilibrium.”

The empirical results presented here clearly have implications for the
equity premium puzzle, although we chose not to address this issue here.
Recent papers by Barro (2005), de Santis (2005), Jobert et al. (2006), and
Weitzmann (2005) emphasize the importance of parameter uncertainty,
instability, and rare events as potential explanations of the historically large
equity premium. Indeed, through their large effect on the present value
stock price, persistent shifts in the dividend growth rate tend to increase
the uncertainty about future returns which may be a reason why a larger
equity premium is required compared to the standard model that ignores
such effects."!
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