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Abstract

Based on a state-dependent pricing model, we specify and estimate a non-linear
factor model allowing us to identify the relative importance of the degree of price
rigidity that is inherent to the price setting mechanism (intrinsic) and that which
is due to cost and/or demand factors (extrinsic). We find that intrinsic price stick-
iness, related to price adjustment costs, is indeed an important determinant of the
frequency of price changes. However, the volatility of the shocks affecting optimal
prices also plays a significant role in the determination of the frequency of price
changes. We also find that this volatility is the major determining factor of the
magnitude of price changes.
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1 Introduction

Following the contributions of Cecchetti (1986) on newspaper prices, Kashyap (1995) on
catalog prices (both using US data), and Lach and Tsiddon (1992) on meat and wine
prices in Israel, a recent wave of empirical research has provided new evidence on the
nature and sources of consumer and producer price stickiness at the micro level. These
studies include Bils and Klenow (2004), Klenow and Kryvstov (2008) and Nakamura and
Steinson (2008) who study consumer prices in the US, and Dhyne et al. (2006) who give
a synthesis of recent empirical analyses carried out for the euro area countries. Studies
of producer prices include Vermeulen et al. (2007), Cornille and Dossche (2008), Loupias
and Sevestre (2008), among others.

One of the main conclusions of these studies is the existence of a significant degree of
heterogeneity in the frequency of price changes across different product categories. Some
products are characterized by a high frequency of price changes, with outlets resetting
their prices almost on a continuous basis (for instance, oil products and perishable food),
whilst other product categories are characterized by a very low frequency of price changes
(for instance, some durable goods and many services). Aucremanne and Dhyne (2004)
also document a high degree of heterogeneity in the duration of price spells (and hence in
the frequency of price changes) even within relatively homogeneous product categories.
Indeed, several studies have shown that the frequency of consumer price changes not only
differs across product categories, but also varies across categories of retailers.! Hyper and
super-markets also tend to change their prices more frequently than local corner shops.

A vast majority of these studies is, however, silent as to the reasons for such infrequent
price changes. A low frequency of price change has sometimes been taken as evidence of
intrinsic price rigidity, namely price rigidity that is inherent to the price-setting mech-
anism, such as the presence of menu costs. This, however, ignores the role of extrinsic
price rigidity that originates from the sluggishness of costs and mark-ups.? Indeed, in-
frequent price changes are not necessarily due to high menu costs and could arise when
marginal costs or other market conditions do not vary. In such situations firms will have
little or no incentive to change their prices even if menu costs are negligible. The aim
of this paper is to provide an empirical assessment of the relative importance of these

two sources of price rigidities across a large number of product categories. To this end

!See Baudry et al. (2007), Fougere, Le Bihan and Sevestre (2007), Jonker, Blijenberg and Folkertsma
(2004), and Veronese et al. (2005).

2Here we are adopting a terminology used in Altissimo, Ehrmann and Smets (2006) to characterize
the different sources of inflation persistence.



we begin with the theoretical contribution of Dixit (1999) and develop an (S, s) state
dependent price-setting model that relates price changes to the variations in an optimal
price reflecting common and idiosyncratic variations in marginal costs and/or in the de-
sired mark-up, but where price changes are subject to price adjustment costs. Since the
optimal price targeted by outlets is unobserved, we decompose it into three components:
first, a component that is shared across all outlets selling a given fairly homogeneous
product. From an economic point of view, this component reflects the average marginal
cost augmented with the average desired mark-up associated with this particular prod-
uct. From an econometric point of view, we model this as a common factor which is
estimated by aggregating the non-linear pricing equations across the outlets. The second
component of the unobserved optimal price is an outlet specific effect, which accounts for
price differences due to product differentiation, local competition conditions, etc. The
third component of the optimal price is an idiosyncratic term, reflecting shocks that may
affect the outlet specific optimal price in a given period (possibly due to outlet specific
demand shocks or unexpected changes in costs). This set up allows us to decompose
price stickiness into intrinsic and extrinsic components, the latter being associated with
the variability of the various components of the unobserved optimal price.

From the perspective of econometric modelling, the (.S, s) model represents a non-
linear extension of the factor models used extensively in the empirical finance and macro-
economic literature (e. g. Bai and Ng, 2002, 2006, Connor and Korajczyk, 1986, 1988,
Forni et al., 2000 and Stock and Watson, 1998, 2002). Making use of two large data sets
composed of consumer price records used to compute the CPI in Belgium and France,
the model is estimated for more than 180 narrowly defined product categories where we
have a relatively large number of outlets supplying fairly homogeneous products. Our
results show that the now well-documented differences across products in the frequency
of price changes do not strictly correspond to differences in terms of adjustment costs;
i.e. intrinsic rigidity does not suffice to explain the frequency of price changes. This
frequency also depends, in a significant way, on the magnitude of the shocks, common
and/or idiosyncratic, to the unobserved optimal price. We also show that idiosyncratic
shocks strongly contribute to the occurrence of price changes as they appear to be of a
larger magnitude than common shocks affecting all the outlets selling a given product.

The outline of the rest of the paper is as follows. Section 2 presents the (S, s) model
and discusses the identification of intrinsic and extrinsic sources of price rigidities. Section
3 considers alternative approaches to the estimation of the model. Section 4 describes

the micro price data sets, presents the estimation results, and discusses the main findings



in relation to the observed frequency and the magnitude of price changes by product

categories. Section 5 offers some concluding remarks.

2 (S,s) Models of Sticky Prices

It is now a well-established stylized fact that most consumer prices remain unchanged
for periods that can last several months (see, for example, Bils and Klenow, 2004,
Dhyne et al., 2006). Presence of physical menu costs, fear of customer anger, exis-
tence of implicit or explicit contracts might deter retailers from immediately adjusting
their prices to changes in their market conditions such as changes in costs and demand
factors, or variations in local competition. This behavior can be modelled assuming fixed
price adjustment costs that do not depend on the size of the price change,® leading to an
optimal price strategy of the (.9, s) variety (see, for example, Sheshinski and Weiss, 1977,
1983, Cecchetti, 1986, Dixit, 1991, Hansen, 1999, and Gertler and Leahy, 2006).

A simple representation of the (.S, s) model can be written as:

.._7if M <S-',
Djit = { Pjit—1 |pﬂt Pjit 1’ > Sjit 1)

* : *
Pii, 1 |pjz't - pjz‘,t—1| > Sjit,

where pji;; is the (log) observed price of a product j in outlet i at time ¢, p;, is the (log)
optimal price that would be set in the absence of any adjustment costs, and sj; denotes
the thresholds beyond which outlets find it profitable to adjust their prices in response
to a shock. In what follows, to simplify the notation, we drop the subscript j and refer to

st as the adjustment threshold (or band of inaction) for outlet ¢ in period ¢t. We refer to

D5 — Pit—1| > Sit, (2)

as the ‘price change trigger’ condition.

Assuming monopolistic competition prevails, the optimal price, pj, is specified as a
product-specific mark up over marginal costs. The threshold, s;, typically depends on
three parameters: the size of the fixed menu cost, c¢,,;, which is paid every time the

price is changed; the coefficient on the flow costs of being out of equilibrium between two

3Several papers have found evidence of fixed physical menu costs of price adjustment (Levy et al.,
1997, Zbaracki et al., 2004). However, Zbaracki et al. (2004) argue that, in addition to these fixed
physical menu costs, managerial and customer-related costs are convex in the price change, while survey
responses discussed in Blinder et al. (1998) suggest that price adjustment costs might be fixed.



successive price changes, c.;,! and the variance of the innovations to the optimal price.
In the case where p}, — p;; follows a Brownian motion with a constant variance, o2, Dixit
(1991) and Hansen (1999) show that s;; = s; = (6¢i02/ce;)™*. In cases where p¥, — pi
follows a more general stochastic process, the adjustment threshold could be time varying,
and its relationship to ¢,,;/ce; and the parameters of the underlying stochastic process
is likely to be more complicated. Nevertheless, Dixit’s theoretical derivation provides a
simple, yet useful, link between the reduced form parameters characterizing s;, and the
structural parameters, ¢,,;/c.; and o;. Clearly the magnitude of the menu cost can not
be inferred from the size of the band of inaction alone but also depends on the volatility
of the optimal price. Increased uncertainty widens the band of inaction but also induces
more frequent price changes in the long run. As Hansen ( 1999, p.1066) points out, higher
volatility whilst increasing the band also at the same time increases the probability of
observing large changes in the optimal price which makes it more likely for the band to
be breached. However, a rise in the menu cost increases the band of inaction without
inducing changes in the volatility of the optimal price. It is these independent sources
of variations of s that can be used to distinguish the intrinsic (menu cost changes) from
the extrinsic (volatility changes) sources of price rigidities and the average size of price
changes.

In our empirical analysis, for each product category, we estimate the mean and the
variance of s; which we denote by s and o,. We also estimate a?, which we assume to
be constant over time and across outlets by 0? = Var(p}, |Z;_1 ), where Z, ; denotes the
publicly available information. We then recover an estimate of the menu cost parameter,
c= \/T/Cev from Dixit’s formula. See Section 4 for further details.

Let I(A) denote an indicator function that takes the value of unity if A > 0 and zero

otherwise. Then model (1), can be written as:

pit = DPig—1+ Pi — Pie-1) I (Pl — Pii—1 — Sit) (3)
+ (i = Pie— 1) (Pii—1 — Djy — Sit)-
This formulation is reasonably general and allows the adjustment threshold to vary both

over time and across outlets. Assuming a constant and identical threshold might be

considered as a too strong assumption since price setting may be strongly heterogeneous

“In other words, when the observed price, p;;, deviates from its optimal level, pJ,, firm i faces a
quadratic inaction cost given by ce; (pir — p;kt)z. If firm ¢ decides to set its price p;; to its optimal level,
pi, it then faces a fixed menu cost of ¢,,;. See, for example, Dixit (1991). Note that in this framework
only the ratio ¢p,;/ce; enters the optimal solution, and hence can be identified.



across outlets, even within relatively homogeneous product categories (Aucremanne and
Dhyne, 2004, and Fougere, Le Bihan and Sevestre, 2007). At the outlet level, some price
trajectories are characterized by very frequent price changes, while others are character-
ized by infrequent price changes. Moreover, as described in Campbell and Eden (2007),
some price trajectories at the micro level exhibit long periods of price stability followed
by periods of frenetic price changes. As noted by Caballero and Engel (2007), this pattern
of price changes suggests that s;; is best modelled as a stochastic process. Another argu-
ment for adopting such an approach lies in the synchronization of price changes within
stores. Midrigan (2006) documents that a lot of price changes are particularly small com-
pared to the average magnitude of price changes.’ Following Lach and Tsiddon (2007),
he rationalizes these small price changes by the existence of economies of scales in price
setting behavior for multi-product sellers.

Now, the question arises as to whether such a framework also allows us to identify
extrinsic rigidities, i.e. those corresponding to the low variability of the fundamentals
underlying prices such as changes in marginal costs caused by input price variations or
demand variations, changes in the mark-up caused by varying market competition, etc.
Unfortunately, despite their size and coverage, the data sets on consumer prices do not
provide any information on costs and demand conditions faced by outlets. In spite of
this, it is possible, as we shall show below, to extract information on the probability
distribution of p},, using a non-linear unobserved common factor model. To this end, we

consider the following decomposition of the (unobserved) optimal price:
P = XuB + fi + vi + €ar, (4)

where x;; is a vector of observable retail-specific variables with the associated coefficients,
B, and f; represents the unobserved common cost or demand component of p},. The
remaining terms in (4) are intended to capture the retail-specific, v;, or purely random
differences, ¢, in optimal prices across the outlets. The variables in x;; are introduced to
control for possible effects of store types (such as hyper or supermarket versus corner shop)
or geographical location (city centre or suburbs), and other observable characteristics that
might affect the price setting behavior of the outlets. The retail-specific unobservable
effects, v;, account for the heterogeneity in the level of observed prices at the product

category level that cannot be traced to observables (product differentiation and/or the

5Using US data, Midrigan (2006) indicates that 30% of the observed price changes are smaller than
half of the average absolute size of price changes. This figure is 34% for Belgium and close to 50% in
France.



ability of retailer ¢ to consistently price above or below the common component f;, e.g.
because of local competitive demand conditions).

The optimal price can be further decomposed into a component which is known to
the outlet, namely 2,5 + E (f; |Z;—1) + vi, and the unpredictable component given by
wi + €4, where wy = fy — E (f; |Z;—1), and Z;_; is the information which is common across
the outlets. Without loss of generality we will assume that w; and ¢;; are independently
distributed. Within Dixit model the variance of w; + €;; captures the degree of extrinsic
price rigidities, which together with an estimate of the mean of s;;, namely s, allows us to
estimate the mean of ¢;, namely ¢, which measures the degree of intrinsic price rigidities.
A low value of Var(w;+e¢;;) indicates that costs and/or mark-up variations are expected to
be infrequent and/or of a small magnitude. It is also worth noticing that the retail-specific
random effect, v;, and time-invariant regressors x;;, if any, have a priori no impact on the
price dynamics but only on the price level, as both are embodied in the optimal price
p;; and in p; ;1. Therefore, these elements do not constitute a source of price rigidity,
either intrinsic or extrinsic. Should we have included time varying regressors x;; in our
model, they might be considered as a supplementary source of extrinsic price rigidity
if, for instance, x;; were capturing the evolution of marginal costs over time. However,
since in this paper, the only x;; variable included in our model is a time invariant dummy
variable that indicates whether outlet ¢ is a supermarket or not, this is not an issue here.

Although our model is relatively close to the one presented for instance by Rosett (1959)
for the analysis of frictions in yield changes and more recently, by Tsiddon (1993) or Rat-
fai (2006), we depart from the existing empirical literature in several ways. First, instead
of using a producer price index to proxy the common movements in consumer price tra-
jectories as in Ratfai (2006), we rely on an unobserved common component. This allows
us to conduct our analysis of the relative importance of intrinsic and extrinsic price sticki-
ness for products for which there is no directly observable or not easily identified common
variables. One important advantage of proceeding in this way is to ensure the coherency
of this common component with the dynamics of micro price decisions as stated by our
model. Further we avoid the drawback that if the observed variable fails to capture the
common factor, part of the common variation will be relegated in the error term, which
will therefore violate the condition of cross-sectional independence.

Second, we also depart from the existing empirical literature in the information used in
our estimation procedure. Most of the literature estimates state-dependent pricing model
using binary response or duration models (Cecchetti, 1986, Aucremanne and Dhyne, 2005,
Campbell and Eden, 2007, Fougere, Le Bihan and Sevestre, 2007, Ratfai, 2006) and there-



fore neglects the information contained in the magnitude of price changes. However, this
information is crucial in order to identify the volatility of the idiosyncratic component and
for disentangling the idiosyncratic component of the optimal prices from the idiosyncratic
threshold parameter, s;;.

Third, our approach does not impose any restrictions on the dynamics of the common
factors, but assumes, for ease of estimation, that the idiosyncratic shocks are serially
uncorrelated. The latter may be viewed as unduly restrictive, but given the Monte Carlo
results reported in Appendix B, we find that neglecting (positive) serial correlation in
the idiosyncratic shocks tends to result in over-estimation of the range of inaction. This
indirectly reinforces our main conclusion that, besides intrinsic (or nominal) rigidities,

extrinsic price rigidity plays an important role in explaining the observed price stickiness.

3 Alternative Approaches to Estimation of (S, s) Model

One can combine equations (3) and (4) to obtain the following econometric representation:

pit — Pit—1 = (i +x,B+vi+eiw—pir—1)I(ft + X8 +vi +eiw — piz—1— si) (D)
+(fe + X8 + vi + €t — Pig—1)I(Pir—1 — fr — X8 — v — i — Sit).

There are essentially two groups of parameters to be estimated. First, the unobserved
common components, f;, which can also be viewed as unobserved time effects. Second,
the parameters that do not vary over time, namely s and o, which respectively denote
the mean and standard deviation of s;, 0., the standard deviation of the idiosyncratic
component €;, o,, the standard deviation of the firm specific random effect, v;, and 3,
the parameters associated with the observed explanatory variables, x;;.

The estimation of the baseline model can be carried out in two ways. One can use
an iterative procedure that combines the estimation of the f;’s using the cross-sectional
dimension of the data with the maximum likelihood estimation of the remaining parame-
ters, conditional on the first-stage estimate of f;. Alternatively, one can use a standard
maximum likelihood procedure, where the f;’s are estimated simultaneously with the
other parameters. The two procedures lead to consistent estimates, provided N and T
are sufficiently large. It is worthwhile noting that if N is small, one would face the well-
known incidental parameters problem: the bias in estimating f;, due to the limited size of
the cross-sectional dimension, would contaminate the other parameter estimates. In the

alternative situation where 7" happens to be small, the problem of the initial observation



would become an important issue. Therefore, our estimation procedure is essentially valid
for relatively large N and T'. Fortunately, in our context, prices of most of the products
we consider have been observed monthly over the period 1994:7 - 2003:2 (i.e. more than
100 months), and the number of outlets selling the various products we consider are also
relatively large, being, on average, only slightly less than 300, both in Belgium and in

France.

3.1 Estimation of f; using cross-sectional averages

As mentioned above, f; is in practice an unobserved time effect that needs to be estimated
along with the other unknown parameters. It reflects the common component in the
optimal prices for each particular product for which we estimate the model. Moreover,
because we are able to consider precisely defined types of products sold in a particular
outlet, it is reasonable to assume that any remaining cross-sectional heterogeneity in the
price level can be modelled through the observable outlet-specific characteristics, x;;, and
through random specific effects (accounting for outlets unobserved characteristics).
Accordingly, we assume that, conditional on h; = (f;, %}, pit—1)"s (sit, vi, i) are
distributed independently across i, and that s; and e;; are serially uncorrelated. Due to
the non-linear nature of the pricing process and to make the analysis tractable, we shall

also assume that

Sit s ai 0 O
v; | |hy v idd N 0.] 0 o2 0
Eit 0 0 0'?

The assumption of zero covariances across the errors is made for convenience and can be
relaxed.

Before discussing the derivation of f; we state the following lemma, established in the
Appendix, which provides a few results needed below.

Lemma 3.1 Suppose that y «~ N(u,0?) then

Elyl(y+a)] = 06 (ﬂ) t o (#) |

yt+a\| b a-+p
oo (450)] - e ()

n e ()] =+ ()




where ¢ () and @ (-) are, respectively, the density and the cumulative distribution function
of the standard normal variate, and I (A) is the indicator function defined above.
Let

di = fi + X8 — Dig—1, &= vi+ e N(OJ?)?

and note that 0? = 02 + 02, Consider now the baseline model, (5), and using the above,

write it as

Apir = (dig + &) L (di + & — 5it) + (din + E) I (—diy — € — Sur),

or
Apit = (dit + §3¢) + (die + &) [I(die + & — i) — L(die + iy + 50t)] -

Denote the unknown parameters of the model by 8 = (s, 3', 02,02, 02)’, and note that

E (Apit |hi, 0) = dit + git,
where gi; = g1t + 92,1, With
Grit = du B [I(diy + & — sit) — I(diy + & + Sit) [hir, 0],

and
Goit = E[E I (die + &5y — Sit) — E L (die + &5 + Sat) D, 0]

Also, under our assumptions

Sit o S 03 0
|hy v ii.d.N , )
£, 0 0 o%+o?

It is easily seen that

EI(dit + & — Sit) — I(dix + &y + sit) |, O]

- & _di—s —® diy + 3

,/o—§+o§ ,/a?—i—a?

10



Using the results in Lemma 3.1 and noting that &, [hy, @ «~ N(0,07), then

dz’ — S5
B (dit + &5 — sit) [Dig, 500, 0] = 0¢ < ! t) :

O¢

Hence, taking expectations with respect to s;;, we have

dit — Si
B (dit + &y — sit) [y, 0] = 0c B [¢ ( t(ng t> |hy, 9} -

Again using the results in Lemma 3.1 we have

d:s — S d:; —
E |:¢ ( it Szt) |hzt70:| — O-E ¢ it S ’
O¢ \/a§+a§ \/U§+a§

and therefore,

0'2 dit_s

¢
o2 +oi \ o2+ o

B (dit + &5 — sit) |y, 0] =

Similarly,

o2 dit + s
B I (dit + &5y + si) |hit, 0] = : d

NGB 02 + o}

Collecting the various results we obtain

di — S dl S
gl,it:dit | ——— | - L )
NG R NG R
and
Ug dit—S d,-t—i-s

Pit=—F—7— || ——= | — —
,/0?—1—02 ,/a§+a§ @/034—02

Note that ¢; 4 and go;; are non-linear functions of f; and depend on 7 only through the
observable, p;; 1 and x;;. It is therefore possible to compute f; for each ¢ in terms of

Pit—1, X;ir and 6. Then, following Pesaran (2006), the cross-sectional average estimator of

11



f:, denoted by f;, can be obtained as the solution to the following non-linear equation

b= fi + %8+ a/(f.), (6)

where
N N N
Dt = E Wit Pit, X¢ = g wy X, and gi(f) = E Wit Git,

and {w;,i = 1,2,.., N} represent a predetermined set of weights such that
N
Wi = O(]\771>7 andzw?t = O(Nil)
i=1

For a given value of 6 and each t, (6) provides a non-linear function in f,. This
equation clearly shows that unlike the linear models considered in Pesaran (2006), here
the solution to the common component f; does not reduce to an average of (log) prices. In
particular, f; also accounts for the dynamic feature of the price-setting behavior through
the §; component, which depends on p;; 1. Equation (6) has a unique solution as long
as s > 0. A proof is provided in Appendix A. It is also easily seen that under the

cross-sectional independence of v; and ey, g, (f;) — E (gi¢) and fi—fi 20,as N — 0.8

3.2 Conditional likelihood estimation with no individual effects

In this section, we derive the maximum likelihood estimation of the structural parameters,
0, conditional on f; and assuming there are no firm-specific effects, so that 2 = 0, and
hence in this case 8 = (s,3,0%,0%). Given the distributional assumptions stated in

£

Section 3.1, and defining (,, as s; — s, our baseline model can be rewritten as

Apit = dip + et + (dig + ) {I [dit + it — Ciy — 8] — I [dit + it + (i + 8]}

. 0 20
Sit ) g N NEE Cfori=1,2,. N:t=1,2 ..T
Eit 0 0 O'g

6For the sake of simplicity, we assume here that the panel data sample is balanced. This is not the case
in practice. However, the result can be easily generalized to unbalanced panels assuming that N; — oo
for each ¢ (see the Appendix A).

where

12



Equivalently

Apit = dip + €t + (dig + i) {I [dit — s+ €13t] — I [dir + 5+ €21¢] }

where
€1it = €t — Cita Eoit = €t T Citv
with
E1it 0 02 +02 o2—0? o?
€24t ~ 1idN 0 s . O'?—FO'? 0'? ,fOI‘izl,Z,...,N;t:1,2,...,
Eit 0 O-z
Let
1if Apy=0fori=1,2,... Nandt=1,2,...,T,
Tt =
' 0 otherwise
T

1if Apy >0fori=1,2,.... Nandt=1,2,...
T2 =
2 0 otherwise

T3it

1if Apy <Ofore=1,2,...,. Nandt=1,2,...,T,
0 otherwise

Then conditional on f;,t = 1,2, ..., T and the initial value p;q, the log-likelihood func-

tion of the model for each ¢ can be written as

Li(e |f ) = Pr (Apil |pi0) Pr (Apm |pi07pi1)
X Pr (Api,T |Dio, Pit, ~~api,T—1> X Pr (pio)

where f = (f1, fa, ..., fr)’. In view of the first-order Markovian property of the model we

have

Li(@0|f) = Pr(Api|pio)Pr(Api2|pi1)
X Pr (Api,T |pz’,T—1) X Pr (pio) -

When T is small, the contribution of Pr(p;) could be important. In what follows we
assume that p;o is given and T reasonably large so that the contribution of the initial

observations to the log-likelihood function can be ignored.
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To derive Pr (Apit |pit—1, fi) we distinguish between cases where Ap;; = 0, Ap; > 0
and Ap;; < 0, noting that

Pr(Apy =01, pit—1, fr) = Pr(erie < s—dit ; €2t > —5 — diy)

= Pr(eiy <s—dy) —Pr(eip <s—dit ;e < —s—di)
2

_ s —diy o s—dy —s—dy ol—0 -
= ——— | — Dy — M1ty
Voi+ol Voitol ot ottal)
where ®, (z;y; p) is the cumulative distribution function of the standard bivariate normal.

Similarly

Pr (Ap;y > 0| Dit—1, ft) = Pr(eit = Api — dip) Pr(e1is > s — dit 5 €0it > —s — di |€it)

———w(é@—ij[@(ﬁiﬁ@>—®ﬁfié@)}—mW
0-6 US O-S

Pr (Apy < 0| Dit—1, ft) =Pr(e; = Apy —di) Pr(e1yp < s —diy 5 €91 < —5 — dit |eir)

A —s— Ap; —s+ Ap;
_ _¢C£LJL)F(JL_ﬁg_¢<;ﬁ;ﬁ0}:mW
Oc Os Os

Hence

N N T
= Z InL;(0.f) = Z Z Tt (7 13e) + Toie In(250) + Tai In(mai)] . (7)
i=1 i=1 t=1

The ML estimator of 0 is given by

A~

0, (f) = arg meaxﬁ (6,f)
and for N and T sufficiently large we have:
VNT (Bun(£) = 0) & N(0, Vo),

where Vy is the asymptotic variance of the ML estimator and can be estimated consis-

tently using the second derivatives of the log likelihood function.

Remark 1 In the case where f;, t =1,2,..., T, are estimated, the ML estimator will

continue to be consistent as both N and T tend to infinity. However, the asymptotic

14



distribution of the ML estimator is likely to be subject to the generated regressor problem.
The importance of the generated regressor problem in the present application could be

1nvestigated using a bootstrap procedure.

3.3 Conditional likelihood estimation with random effects

Consider now the random effects specification where p}, = f; + x,8 + v; + €;1, and note
that
Cov(pl,, piy |hi, hy ) = 02 for all t and ¢, t # 1.

Under this model, the probability of no price change in a given period, conditional on
the previous price, p;¢—1, will not be independent of episodes of no price changes in the
past. So we need to consider the joint probability distribution of successive unchanged
prices. For example, suppose that prices for outlet ¢ have remained unchanged over the

period ¢ and t + 1, then the relevant joint events of interest are

Aip :{=s—Cy —dir < e+ v < s+ —din},

and

At {=s =Gy —divr < i + v < s+ —digpr ) -

An explicit derivation of the joint distribution of A; and A;,; would seem rather
difficult. An alternative strategy is to use the conditional independence property of
successive price changes, and note that for each ¢, and conditional on v = (v, v, ...., vx)’
and f, the likelihood function will be given by

N T
L(0,v,£) = [ [ TT [uie (wi)] ™ o (0] [rgia (v:)] ™,

=1 t=1

where

s —v; — dy s—v;—dy —s—v;—dy o?—o?
(v, fi) = | ———— ] — ®2 ; ; 5
o2+ o2 Voi+o2 \Jo2+o2 oitol
1 Az—l}l—dz —S+AZ —S—Ai
i) - 2o{B) () ()
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and

T3 (i, fr) = —¢ (Ap” - — dit) [@ (_S;—Ap”) _® <_S4O_-Apit)} .

The random effects can now be integrated out with respect to the distribution of v;
[assuming v; ~ N (0,02), for example] and then the integrated log-likelihood function,
E, [((0,v,f)], maximized with respect to 6.7

3.4 Full maximum likelihood estimation

In the case where N and T are sufficiently large, the incidental parameters problem does
not arise and the effects of the initial distributions, Pr(p;p), on the likelihood function
can be ignored. Then, the maximum likelihood estimators of @ and f can be obtained as

the solution to the following maximization problem:

T N
(Farz, Barr) = argmax S-S [rraen(muie) + 7o In(mai) + 7o In(ma)] . (8)

£.6 t=1 i=1
Note that for a given value of @ the ML estimator of f; can be obtained as

N
ft(e) = arg mfftixz (7130 (7 150) + T2 In(7230) + T35 In(7331)]
i=1

and will be consistent as N — oo, since conditional on @ and f;, the elements in the
above sum are independently distributed. Also for a given estimate of f, the optimization
problem defined by (8) will yield a consistent estimate of @ as N and T" — oc. Iterating
between the solutions of the two optimization problems will deliver consistent estimates
of @ and f1, f, ..., fr, even though the number of incidental parameters, f;,t =1,2,....T,
is rising without bounds as T" — oo. This is analogous to the problem of estimating time
and individual fixed effects in standard linear panel data models. Individual fixed effects
can be consistently estimated from the time dimension and time effects from the cross
section dimension.

In order to evaluate the performance of these estimation methods, a number of Monte
Carlo simulations are reported in Appendix B. We evaluate the ML estimation with and

without random effects. These roughly leads to qualitatively similar results. We also

TA further extension of the model would consist of including also a firm specific effect into the menu
cost. However, the estimation of this model would then requires a double integration with respect to the
distribution of the two individual effects.
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report a set of ML estimations for alternative values of the parameters and frequency
of price changes. We then perform a set of Monte Carlo simulations to evaluate the
robustness of the model under deviations from the underlying assumptions. We first
examine the small sample properties of our estimator. We then consider the case of
serially correlated idiosyncratic shocks. Lastly we investigate the impact of cross-sectional
dependence on the estimates of the model’s parameters.

The results of these simulations may be briefly summarized as follows. The estimation
of the common component is adversely affected only if the cross-section dimension is
relatively small. Ignoring serial correlation of the idiosyncratic component leads to a
positive bias in the estimates of s and o,. However, the bias becomes substantial only as
one approaches the unit root case. For the level of serial correlation estimated by Ratfai
(2006) for meat (0.34), our simulations suggest that the upward bias in the estimates of s
should be below 8 percent. Lastly, as is the case with linear factor models, estimates of the
common components are not adversely affected by the presence of weak cross-sectional

dependence in the idiosyncratic shocks.®

4 Empirical Results

The model discussed in Section 2 has been estimated using individual consumer price
quotes compiled by the Belgian and French statistical institutes for the computation of
their respective consumer price indices. Each data set contains more than 10 millions
observations referring to monthly price quotes of individual products sold in a particular
outlet. For each product category price in a given outlet is computed as logarithm of
sales per unit of product so that promotions in quantities are captured in our analysis.
The period covered has been restricted to the intersection of the two databases, that is
July 1994 - February 2003.° Since one of the aims of our approach is the identification
of the common factors affecting the price of a given product in different outlets, price
series have been grouped into narrowly defined product categories (368 for Belgium and
305 for France). However, as the estimation procedure is particularly time consuming,’

the estimation has been conducted on a subset of randomly selected product categories,

8Results not reported for the sake of brevity indicate that the same conclusions hold in the presence
of serial correlation or cross-sectional dependance of s;;.

9Further details of the two data sets are given in Appendix C, with a more thorough description
provided in Aucremanne and Dhyne (2004) and Baudry et al. (2007).

0The estimation of our model for a typical product category, using S.A.S. 8.02 on a 1.6 Ghz P4
computer takes between 3 to 5 days.
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restricting ourselves to those price trajectories that are at least 20 months long.!! As a
result, we end up estimating our baseline model for 94 product categories in Belgium and
88 categories in France.

All estimates reported below are computed by the full maximum likelihood method
where for each product category the unobserved common components, f;, fort = 1,2, ..., T,
as well as the other parameters, namely, the average level of the adjustment threshold,
s, and its variability, o, the variability of the idiosyncratic component, 0., and the vari-
ability of firms specific random effects, o, are estimated simultaneously. Also to allow for
possible differences in the price setting behavior by supermarkets and by corner shops,
x; is chosen to be a dummy variable that takes the value of 1 whenever the outlet where
the product is sold is a supermarket and 0 otherwise.

The full set of estimation results for all the 182 product categories (94 for Belgium
and 88 for France) is given in Appendix D. The results for Belgium are given in Table
D.1 and for France in Table D.2. Each table provides ML estimates of the reduced form
parameters (8, dg, 0, 0¢), the unobserved common factors, ft, as well as the estimates

~ ~2  ~92 ~ g~ ~2 . .
of the structural parameters, ¢ = /0 + ., and ¢ = 52/(5v/6), where G, is the variance

2

of the shock to the estimated common factors, f;. To compute o7,

we assume that f;
follows a general autoregressive process possibly with a linear trend. Therefore, for each

product category, the estimates fl, f/;, ceey J?T are used to fit an AR(K) model defined as
~ K
fi = Bo+Bit+ D prfiok+wi, widd. (0,02).1% As shown in Section 2, the estimated

threshold pararkn:elter, S, cannot be directly interpreted as reflecting the only intrinsic
component of price rigidity, i.e. the nominal rigidity. This parameter also incorporates
an extrinsic rigidity component, corresponding to the volatility of the underlying costs
and mark-ups. As discussed earlier, ¢ and ¢ will be interpreted as measures of intrinsic
and extrinsic price rigidities, respectively.

In addition to the estimated parameters, Tables D.1 and D.2 also give a number of
summary statistics such as the average number of observations per month, the correlation
coefficient of ft and the corresponding product category price index, the frequency and

3

the average size (in absolute terms) of price changes.'”® The latter two statistics are

then compared with those obtained from simulation of the estimated models by product

1A price trajectory is a continuous sequence of price reports referring to one particular product sold
in store 1.

12For each product category, K is selected using AIC applied to autoregressions with the maximum
value of K set to 12.

IBWe have also computed standard errors for the parameter estimates reported in Tables D.1 and
D.2. They all tend to be very small suggesting highly significant estimates. To save space these are not
included in the result tables but are available on request.
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Figure 1: OBSERVED VERSUS SIMULATED FREQUENCIES OF PRICE CHANGES

categories. The details of the simulation exercise are provided in Appendix E. The results
are generally supportive of the model. Estimates of s are all positive and tend to take
plausible values. The estimated error variances also seem plausible although difficult to
evaluate individually. With a few exceptions the correlation between ft and the associated
(log) price index is positive and often quite high, falling in the range of 0.85-0.98 in the
case of the majority of product categories.

Most importantly, for each product category, the simulated frequency of price changes
matches quite well the observed one. Scatter plots of the realized and simulated frequen-
cies for the 94 product categories in the Belgian CPI and the 88 product categories in
the French CPI are presented in Figure 1.

This figure shows that, except for a small number of products (8 out of the 94 product
categories of the Belgian CPI, 2 out of the 88 product categories of the French CPI), the
observed frequencies of price changes match the simulated ones quite well. The few cases
where the simulations do not match the realizations are confined to product categories
with relatively rigid prices.!* For these 10 products, our simulations over-estimate the

frequency and under-estimate the average size of price changes. In what follows we

4The 8 product categories with poor fit for Belgium were, "Dining room oak furniture", "Cup and
saucer", "Parking spot in a garage", "Fabric for dress", "Wallet", "Small anorak"; "Men T Shirt" and
"Hair spray 400 ml", and the two product category with poor fit for France, were "Classic lunch in a
restaurant" and "Pasta".
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exclude these products and focus on the remaining 172 products that seem to fit the
observed price changes reasonably well.

Table 1 provides a summary of the CPI weighted average estimates of the main para-
meters of interest for six broad product categories: energy, perishable food, non-perishable
food, non-durable manufactured goods, durable manufactured goods and services, for
Belgium and France separately. This table also includes the estimates of the structural
parameters ¢ and o, that characterize the intrinsic and extrinsic components of price

rigidity.

TABLE 1: PARAMETER ESTIMATES BY BROAD PRODUCT CATEGORIES - CPI

WEIGHTED AVERAGES
Perishable Non perishable Non durable Durable

Energy Services
food food goods goods
Belgium
s 0.013 0.219 0.304 0.367 0.522 0.378
0. 0.020 0.108 0.080 0.076 0.074 0.046
0w 0.032 0.036 0.016 0.018 0.016 0.009
c 0.002 0.401 0.479 0.947 1.540 1.245
o 0.038 0.115 0.082 0.079 0.095 0.048
Freq 0.723 0.315 0.127 0.145 0.056 0.041
M 0.039 0.139 0.102 0.083 0.072 0.056
France
s 0.004 0.215 0.203 0.396 0.304 0.308
0. 0.023 0.106 0.074 0.104 0.074 0.053
Oy 0.017 0.015 0.063 0.037 0.028 0.015
c 0.000 0.181 0.226 0.601 0.486 0.780
o 0.029 0.107 0.076 0.112 0.081 0.057
Freq 0.799 0.247 0.204 0.124 0.134 0.077
M 0.022 0.119 0.064 0.166 0.083 0.047

Notes: S is the estimated size of the price inaction band. 0, is the estimated standard deviation of
the idiosyncratic component. 0, is the estimated standard deviation of the common shock. F' Treq is
the observed frequency of price changes. |Ap| is the observed average absolute value of price changes.

C is estimated as 3\2/((/7\\/6), and 0 = \/35 + 6’2.

The detailed results in Tables D.1 and D.2 and the average estimates in Table 1, allow

us to draw a number of important conclusions. First, the size of the inaction band, as
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measured by 3, clearly depends on the magnitude of both parameters of the intrinsic
and extrinsic price rigidities. The service sector provides a good example where both of
these two components contribute to the overall observed price stickiness in an important
way. For this sector we obtain relatively high values of ¢ and relatively low values of
0. For Belgium these estimates are 1.245 and 0.048, respectively, whilst for France we
obtain the estimates 0.780 and 0.057. In other words, service prices do not change very
frequently not only because of the existence of strong nominal rigidities (possibly due to
high menu costs and/or costs of consumers reaction to price changes) but also because
their production costs are not subject to frequent and/or large changes.

Indeed, considering that wages are the most important cost component for the pro-
duction of services, the variations of this cost component are not very frequent and appear
to be of a rather small magnitude (e.g. see Heckel et al., 2008). This also explains why,
despite the existence of large menu costs, service prices change by rather limited amounts:
the magnitude of the variations in the underlying costs is indeed quite small. It is worth
mentioning here what might be considered as a rather puzzling result: for services, but
also for other products except oil products, the average size of price changes is smaller
than the average estimated inaction band parameters s. In fact, this result can be ra-
tionalized noting the stochastic nature of the bound, s;. Since the distribution of s;; is
assumed to be symmetric around its mean, s, the likelihood of a price change is larger
when the menu cost, ¢,,;, is temporarily small or when the parameter of the quadratic
cost of inaction, c;, is larger than usual. Such situations would correspond for instance
to multi-product retailers, for which the menu cost associated to a price change of a par-
ticular product may be smaller whenever prices of other products are also changed (e.g.
see Lach and Tsiddon, 2007, Midrigan, 2006), or in situations where competitors of an
outlet decrease their price, thus increasing the cost of price inaction for this particular
outlet. The randomness of the inaction band is a way to allow for small price changes
that are observed in the data. One of its consequences is that small price changes are
more likely than large ones, thus lowering the average size of price changes.

Let us now consider energy prices, which tend to exhibit opposite characteristics to
those of service prices. The estimated intrinsic rigidity appears to be negligible, pointing
to very small menu costs and/or very large costs of inaction. Moreover, the estimate
of o is quite low, showing that shocks affecting energy prices are of a relatively small
magnitude, at least during our observation period and as compared to the other product
categories. On the whole, these results are consistent with the observation that energy

prices change often and do so by small amounts and imply that energy prices are flexible
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and extrinsic price rigidities do not seem to play an important role in energy price changes.
However, an alternative explanation of the observed pattern of energy price changes (high
frequency, small magnitude) might be that the structure of adjustment costs differs from
the one assumed here. Indeed, quadratic adjustment costs may also explain this pattern
of price changes. Such a pattern might be due to the highly homogenous nature of energy
products and the high degree of competition that exists in this sector. As a consequence,
one may tentatively make the conjecture that customers’ anger stemming from large price
increases would be quite high so that energy retailers are more likely to adopt a strategy
of frequent small price changes. However, the frequent price changes of oil products at
the wholesale level leads us to believe the former explanation to be more likely.

The contribution of both the intrinsic and extrinsic price rigidities to the observed
price stickiness as measured by the magnitude of the inaction band (the s parameter)
can be observed for the other broad categories of products, both for Belgium and France.
For a given level of intrinsic rigidity (price adjustment costs), a larger magnitude of the
shocks is associated with a wider band of inaction: firms/outlets react to shocks that are
important, relative to the "usual" costs variations as measured by o. This explains why,
despite the higher level of intrinsic rigidity of service prices as compared to that associated
with non-durable goods, the inaction band for this last group of products is, in Belgium,
quite similar to that of services: the larger volatility of the shocks to non-durable goods
prices contributes to increasing the magnitude of the inaction band for these products.
Similar observations can be made as regards perishable food and non-perishable food
products in France as well as for durable goods and services.'?

A second important feature of the results is that intrinsic/nominal rigidities (as mea-
sured by the size of ¢) seem to be the main determining factor of the observed differences
in the frequencies of price changes across products, whilst the size of shocks () seems
to largely explain the differences in the magnitude of price changes. This would explain
why despite the fact that energy products and services exhibit strongly different degrees
of nominal rigidities and frequencies of price changes, the sizes of observed price changes
are relatively small for both products. This conclusion seems to hold also for the other
products we consider. Indeed, the ranking of products we get from the frequency of price

changes and from the estimated ¢ measuring the intrinsic price rigidity are quite similar.

15Qur evaluation of the relative importance of extrinsic and intrinsic rigidities for explaining the mag-
nitude of the inaction band may be affected by our assumptions regarding the idiosyncratic component.
Indeed, assuming these to be uncorrelated if in fact they are serially correlated is likely to induce a bias
in our estimates. We have run some Monte Carlo simulations to check the possible magnitude of such
biases (see Appendix B). It appears that unless ¢;; is highly serially correlated, the biases introduced by
neglecting such serial correlation do not seem to be not be too serious.
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Moreover, the ranking obtained from the magnitude of price changes on the one hand and
from the estimated variance of shocks on the other hand appear to be close to each other
too. In order to evaluate the strength of these correlations, we have run a number of cross
section regressions of the frequency and the size of price changes on ¢ and & across the
172 product categories that pass our initial diagnostic test explained above. The results
are presented in Table 2. First, we have estimated a simple equation relating the observed
frequency of price changes to ¢ either alone or together with o, plus the interaction term,
¢ x 6.6 Because the frequency of price changes lie between 0 and 1, this first equation
is estimated by the quasi maximum likelihood (QML) estimation procedure proposed by
Papke and Wooldridge (1996). Second, we have run a linear regression explaining the
observed magnitude of price changes by & alone, and together with ¢ and the interaction
term. All the regressions include a country dummy which takes the value of unity for

France.

TABLE 2: CROSS SECTION REGRESSIONS OF THE FREQUENCY AND THE MAGNITUDE

OF PRICE CHANGES ON MEASURES OF INTRINSIC (¢) AND EXTRINSIC RIGIDITIES (&)

Frequency Magnitude

Constant ~ —0.080 —2.525 —0.307 —0.017 —0.024  0.102
(—0.23) (—4.59) (—1.06) (—1.68) (—3.94) (9.37)
D_France —0.393 —0.006 —0.388 0002 0005 0.015
(—3.09) (—0.02) (—2.88) (0.44)  (0.98)  (1.41)

¢ 3471 — 2229  —0.011  —  —0.010
(—6.84) (—10.32) (—0.93) (—1.18)
Gl 7.677  9.136 - 1.391  1.437 -
(2.93)  (1.99) (16.15)  (23.08)
x5 1.792 - - 0.090 - -
(0.38) (0.72)
R 0.72 0.13 0.63 0.76 0.76 0.02

Note: The figures in bracket are t-ratios. ) F'rance is a dummy variable equal to one for France.
Cis estimated as §2/(3\/6), where 5 is the estimated size of the price inaction band, 0 = A/ 32 + 33},
0 is the estimated standard deviation of the idiosyncratic component, and 7, is the estimated standard

deviation of the common shock.

The first set of regressions support the existence a strong negative link between the

frequency of price changes and the estimates of the degree of intrinsic price rigidities.

16The regression also includes a constant and a dummy variable for France.
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The coefficient of ¢ in this regression has a t-ratio of -10.32 which is highly significant
statistically. Comparing the regression where this component is included alone with the
one where the extrinsic rigidity and an interaction term are also included shows that,
though the influence of the extrinsic rigidity on the frequency of price changes cannot be
denied, most of the explanatory power comes from the intrinsic rigidity. The variations
in ¢ explains as much as 63% of the observed frequency of price changes. In contrast,
the regressions aimed at explaining the magnitude of price changes show that these are
essentially related to the size of the shocks, . The coefficient of & in these regressions
have t-ratios in excess of 16 and explain around 76% of the cross section variations of the
size of price changes. These results suggest that smaller observed price changes mainly
result from smaller variations of the underlying optimal price rather than from a low level
of intrinsic rigidity that would allow outlets to adjust their prices frequently and by small
magnitudes.

Returning to the results presented in Tables D.1 and D.2 and summarized in Table 1, it
is worth noting that . is larger than &, in almost all cases, i.e. idiosyncratic shocks seem
to be of a larger magnitude than common shocks affecting all the outlets selling a given
product. Indeed, one may observe from the results provided in appendix D that with very
few exceptions (mainly energy products), the volatility of the idiosyncratic component is
generally larger than the variability of the shocks affecting common component ﬁ Over
our set of 172 products, the ratio of o, to o, takes values above one for 165 product
categories (84 in Belgium and 81 in France). This result is in line with the conclusion of
Golosov and Lucas (2007) who state that price trajectories at the micro level are largely
affected by idiosyncratic shocks.

Finally, this set of results, and in particular the strong correlation obtained between
the intrinsic price rigidity and the frequency of price changes on the one hand, and that
between the extrinsic price rigidity and the magnitude of price changes on the other
hand, has interesting implications for the modelling of price rigidities in macroeconomic
models. First, these results can be considered to validate to a certain extent the use of
the frequency of price changes as an indicator of nominal rigidity in these models. Indeed,
the correlation between the (log of) ¢ and the (log) of the frequency of price changes is
quite high but not perfect. Second, nominal rigidity is indeed not sufficient for explaining
the observed price stickiness: the extrinsic rigidity also plays an important role. A large
part of the rigidity of service prices stem from this extrinsic component of price rigidity.
Given that, in models with (often implicitly) heterogenous sectors, the stickiness of the

aggregate basically comes from its more rigid component, this shows the importance of
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the extrinsic rigidity in explaining price rigidity at the macroeconomic level. Finally, the
results in Table 2 also indicate that magnitude of price changes could be a good proxy

for the extent of "extrinsic" price rigidity.

5 Conclusion

Modern macroeconomics has emphasized the role of price rigidity in the impact of mone-
tary policy on economic activity and inflation dynamics. The slope of the New Keynesian
Phillips curve typically depends on nominal (intrinsic) price rigidity. Most previous em-
pirical literature approximated these intrinsic rigidities by the frequency of price changes.
However, in the case of state dependent rules, the frequency of price changes does not
only depend on the size of the adjustment costs (intrinsic rigidity), but it is also affected
by the distribution of shocks that affect outlets (extrinsic rigidity).

Following this new strand in theoretical models (see Dotsey, King and Wolman, 1999,
and Gertler and Leahy, 2006), we specify a state-dependent (S,s) type model. Since the
optimal price targeted by outlets is unobserved, we decompose it into three components:
a common factor, an idiosyncratic component, and a random outlet-specific effect. This
setup involves modeling of the price changes as a non-linear dynamic panel model with
unobserved common effects and allows us to decompose price stickiness into intrinsic
and extrinsic rigidities. Assuming fixed cost of price adjustment and quadratic costs of
inaction, intrinsic rigidity is derived from our estimates of the average range of price
inaction, s, using Dixit (1991) characterization of the (S, s) model. Extrinsic rigidity is
associated with the variability of the various components of the (unobserved) optimal
price.

Making use of two large data sets composed of consumer price records used to compute
the CPI in Belgium and France, the (.S, s) model is estimated for more than 180 narrowly
defined product categories where we have a relatively large number of outlets supplying
relatively homogeneous products. Our results show that the now well-documented dif-
ferences across products in the frequency of price changes do not strictly correspond to
differences in terms of intrinsic rigidities. Intrinsic price rigidity alone is not enough to
explain the sectoral heterogeneity in the frequency of price changes. These frequencies
also depend in a significant way on the magnitude of the shocks, common and/or idio-
syncratic, to the unobserved optimal prices. For instance, a large part of the rigidity of
service prices stem from the extrinsic component of price rigidity.

Our results also strongly favor the introduction of heterogenous price behaviors in
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macroeconomic models. Two recent papers examine the implications of heterogeneity
of (Calvo) pricing for the New Keynesian Phillips Curve. Using sectoral data on prices
and marginal costs, Imbs et al. (2007) show that estimates of the NKPC that do not
account for industry-level heterogeneity substantially overestimate the backward look-
ing component, and slightly underestimate the role of marginal costs on inflation. In a
multi-sector general equilibrium model, Carvalho (2006) shows that under heterogeneous
pricing, monetary policy has larger and more persistent real effects than those predicted
by single-firm models. Our results indicate that to take account of the observed het-
erogeneity across firms (or product categories) would require paying attention to both
sources of price rigidities. Differences in extrinsic rigidities are important not only in
capturing part of the heterogeneity in the overall degree of price stickiness measured
by the frequency of price changes, but also to capture the sectoral heterogeneity in the

magnitude of price changes.
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Appendix A: Mathematical Proofs
Proof of the first part of Lemma 3.1.
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Letting z = (y — p)/o, the above expression becomes

—+o0 “+o00
1 1.2 1 1.2
Elyl (y+a)l = a/z e 2% dz + / e 2% dz
[yl (y + a)] Vo N
_aty _atp

[ 1 éz2:|+00 N / 1 _%z2d
= O |— e e z
Vor e M) Vor

= () e ()

Proof of the second part of Lemma 3.1.
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Stating that # = w, the expression above becomes
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Proof of the uniqueness of ft (the non-linear cross section average estimator
of fi). Let
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and note that we have

Apy = zulf) + zu(£2) 1@ (2u(f) = 3) — @ (za(fy) + 3)] 9)
+6% [0 (2 f1) = 3) — & (zu(f2) + 5)] + 7t (10)

The cross-sectional average estimate of f; is now given by the solution of the non-linear

equation

w(f) = iwnwﬁ)wm @ (2l =3) @ (=(f) +3)] ()

+02 [0 () = 5) = 0 (2u(f) +5) |} = an (12)
= 0, (13)

where ay; = Zi\il Wit APy
First it is clear that U(f,) is a continuous and differentiable function of f;, and it is

now easily seen that

lim ¥(f,) — +oo and lim ¥(f,) — —oo.

ft—+oo Jft——o0

Also the first derivative of W(f;) is given by'7

where
Ge =1+ (2a(F) =3) = @ (=ulf) +3) + (1 = h(z( o).
and
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But since 1 — @ (zzt(ﬁ) + §> = (—zit(ﬁ) - 5), then
1@ (2alfi) = 3) = @ (zlfo) +3) = @ (2alf) = 3) + @ (—zalf) = 3) >0,

and it is easily seen that h(z(f;)) is symmetric, namely h(z(f;)) = h(—zu(f;)). Focusing

1"Recall that the weights, w;;, are non-zero pre-determined constants, and in particular do not depend
on ft-
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on the non-negative values of z;( ft) it is easily seen that
Zit
V2T
and by symmetry h(z;)) > 0, for all s > 0. Hence, ¢; > 0 for all ¢ and ¢, and s > 0.
Therefore, it also follows that ¥'(f;) > 0, for all value of w;; > 0 and s > 0. Thus, by the

fixed point theorem, ¥( f;) must cut the horizontal axis but only once.

h(zi)) = [6_0'5(Z“_S P05’ S 0 for §> 0,

Proof of the consistency of f, as an estimator of f, as N — oo.

Let

V(fi) = Zwit {zie(fe) + 2z (fo) [® (zae(fr) = 5) — @ (2 f2) + )]
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and note that N
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Consider now the mean-value expansion of ¥(f,) around f,

\I’(ft) - \If(ft) = Wl(ﬁ)(ft - ﬁ),

where f, lies on the line segment between f; and f,. Since ¥(f,) = 0 and ¥/(f,) > 0 for

all f, (as established above) we have
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Recall that 7, = (0% + 02)—1/2 [Apit — E (Apit |hi )], where hyy = (fi, X, pit—1), and
hence F (7;;) = 0. Further, conditional on f; and x;;, price changes, Ap;;, being functions
of independent shocks v; and ¢; over 7, will be cross sectionally independent. There-
fore, n;, will also be cross sectionally independent; although they need not be identically

distributed even if the underlying shocks, v; and ¢;;, are identically distributed over .

Given the above results we now have (for each ¢t and as N — o)

N —1/2
(Z wi) (fi= i) = v (0.9%),
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where .
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Note that as N — oo, Zf\il wyil; = 0, and hence f, 2 f,, since W'(f,) > 0 for all f,.It
must also be that f, = f;.

In the case where w;; = 1/N, we have
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It also follows that f, — f, = O, (N7Y/2). m
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Appendix B: Monte Carlo Simulations

We generated the log price series according to the baseline model, (5), and simulating
the common factors as [a] first order autoregressive process. In our reference case, the
sample size is set at N = 50, T = 50. In Table B.1, we report the average (across
1000 replications) of the point estimates of s, 0., o, and ¢, and their average standard
errors in different setups. Concerning the estimation of f;, we compute the RMSE with
respect to the true f; and compare the standard deviation of the true f; with that of the
estimated f;. Initial values for the estimation of f; are set to p,. The standard errors of the
parameter estimates are computed from the second derivatives of the full log-likelihood
function. This table also reports the value of ¢ computed from the point estimates of s,
o.and 0, = 0 fﬂ , where o is the standard deviation of the estimated f; and p
is the true autoregressive coefficient of the AR(1) process assumed for f;.

Results reported in Table B.1 allow a comparison of the following cases: (i) with and
without random effects, (ii) panels with N small, N = 25 versus N = 50, (iii) cases
where the average frequency of price changes is 0.27 versus 0.12, (iv) the case of a small
idiosyncratic component and a large common factor versus the case of a large idiosyncratic
component and a relatively small common component, which corresponds to parameter
values close to the estimates based on observed data. In general, estimated parameters
are close to their true values. Our simulations show that the range of inaction is estimated
with high precision. The estimate of the variance of the idiosyncratic component is closer
to its theoretical value in the model with random effects. This drives the ¢ above its
true value, as it is related to the ratio of s to the size of the idiosyncratic and common
shocks. Not surprisingly, the estimation of the common factor improves as the cross-
section dimension increases. The results in Table B.1 also suggest that the estimation
of f; deteriorates as the frequency of price changes and the size of the common shock

diminishes.
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TABLE B.1 - MONTE CARLO SIMULATIONS

Average frequency of price changes ~ 0.27 with random effects

S Oc Os Oy c
True values 0.15 0.05 0.01 0.025 0.082
5 5. 7, 6, RMSE(f,) ey ¢
N =50,7=50 0.151 0.049 0.011 0.027 0.00019 1.0018 0.096

(0.0014)  (0.0011)  (0.0013)  (0.0030)

Average frequency of price changes ~ 0.27 without random effect

s o, O o c
True values 0.15 0.05 0.01 0 0.082
5 5 3, RMSE(f)  farepes ¢
N =50,7=50 0.150 0.049 0.007 0.00014 1.0018 0.099
(0.0013)  (0.0011)  (0.0013)
N =25T=50 0.150 0.048 0.006 0.00029 1.0052 0.099

(0.0019)  (0.0015)  (0.0018)

Average frequency of price changes ~ 0.12 with random effect - large common component

s 0. O O c
True values 0.300 0.0560 0.100 0.025 0.329
s 6. 5 & RMSE()  HEEE ¢
N =50,7=50 0302 0.047 0.103 0.029 0.00049 1.0052 0.430

(0.0071)  (0.0017)  (0.0055)  (0.0036)

Average frequency of price changes ~ 0.12 with random effect - large common component

s 0. O O c

True values 0.300 0.100 0.125 0.250 0.260
5 5. 5y 6, RMSE(f,) e ¢

N =100,7 =100 0.307 0.099 0.131 0.247 0.00593 1.1841 0.380

(0.0108)  (0.0027)  (0.0080)  (0.0246)

Notes: 1000 replications, estimation by full ML. The figures in brackets are standard errors. f; is
simulated as a first order autoregressive process with intercept equal to 0.05 and slope equal to 0.90.
0f = 1, except in the last simulation exercise (large idiosyncratic component) where oy = 0.00625.
S is the size of the price inaction band, 0‘? is the variance of the idiosyncratic component, Ug is the

variance of Sj the threshold parameter for price changes. € is estimated as 52 / (/0\\/6), where § is the
2

s 0. is the estimated standard deviation

estimated size of the price inaction band, 0 = 8? +0
of the idiosyncratic component, and 0, is the estimated standard deviation of the common shock.
RMSE(fi)/RMSE(f,) stands for the ratio of the standard deviation of the estimated f; over the

standard deviation of the true f;.
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Our second set of Monte Carlo simulations consider the case of serial correlation of
the idiosyncratic component. We model it as an AR(1) process where the variance of
g;¢ 1s identical to that of the base case. The results indicate that serial correlation in
the idiosyncratic component introduces an upward bias in the estimated 5 and o .and
a small downward bias in the estimates of o.. The results are summarized in table
B.2. The bias is negligible for low values of the serial correlation coefficient. It remains
limited for small values of p (for p = 0.50, the estimate of s is only 0.03 higher than
the true value). The bias becomes important only as serial correlation approaches the
unit root case. However, because our measure of intrinsic price rigidity c is a function of
s/\0:2 + 0,2, its computed value involves an upward bias that increases with the degree

of serial correlation of ¢;. For p = 0.50, the bias amounts to 0.08.

TABLE B.2 - MONTE CARLO SIMULATIONS WITH SERIALLY CORRELATED

IDIOSYNCRATIC COMPONENT
2 2

S 0-8 Us

True values  0.35 0.005625  0.010 0.54

g o2 02 RMSE(f,) misedd @

p=0 0.357 0.0038 0.0011 0.0021 1.343 0.55
(0.020) (0.005)  (0.002)

p=0.10 0.359 0.007 0.011 0.0021 1.356 0.56
(0.021) (0.0004)  (0.002)

p=0.50 0.379 0.0033 0.013 0.0024 1.400 0.63
(0.024) (0.0004)  (0.003)

p=0.90 0.464 0.0022  0.023 0.0030 1.425 1.00
(0.042) (0.0004)  (0.006)

p=0.95 0.510 0.0017  0.029 0.0031 1.376 1.28
(0.054) (0.0003)  (0.009)

p=0.99 0.574 0.0012  0.038 0.0029 1.162 2.00
(0.087) (0.0003)  (0.015)

Notes: 1000 replications, N = 50, T" = 50, estimation by full ML. The figures in bracket are
standard errors. f; is simulated as a first order autoregressive process with intercept equal to 0.05 and
slope equal to 0.75. €;; is simulated as a first order autoregressive process with zero intercept and the
serial correlation coefficient given by p. oy = 0.057 and . = 0.075. See also the notes to Table B.1.

The third set of Monte Carlo simulations examines the case of cross-sectional de-
pendence. Cross-sectional dependence may be motivated on two grounds. First, local
competition may lead outlets to be influenced by their neighbor pricing policies. Evidence
on this can be found in Pinske et al. (2002) for US wholesale gasoline markets. Second,
outlets of the same chain may have a common pricing policy, when pricing decision are
centralized. In order to investigate this, two alternative specifications are chosen. The

first is a Spatial Moving Average Model. The second is factor error structure where the
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cross-section dependence is generated according to a finite number of unobserved common
factors. We include 10 factors for the 50 outlets considered in the experiments. The
results are summarized in Table B.3.

As is well known in the literature on the linear factor model, "weak" cross sectional
dependence (in the sense defined in Pesaran and Tosetti, 2007) does not affect the con-
sistency of the estimates of the common factors using cross section averages or principle
component approaches.'® The Monte Carlo experiments suggest that this property also
holds in the case of our non linear factor model. Whether this result holds more generally

clearly require further investigation.

TABLE B.3 - MONTE CARLO SIMULATIONS WITH CROSS SECTIONALLY DEPENDENT

IDIOSYNCRATIC COMPONENT

s o? o2 c
True values 0.35 0.005625 0.010 0.54
g o2 02 RMSE(f) mZUd @
no cross-sectional dependence 0.357 0.0038 0.011 0.0021 1.343 0.55
(0.020) (0.0005)  (0.011)
SMA® 0.357 0.0035 0.011 0.0024 1.369 0.55
(0.020) (0.0004)  (0.002)
10 factors® 0.357 0.0036 0.011 0.0024 1.375 0.55
(0.020) (0.0004)  (0.002)

Notes: Simulations are based on 1000 replications with N = 50 and T" = 50. Estimation is by full
ML. The figures in bracket are standard errors. f; is simulated as f; = 0.05 4 0.75f;_1 + w;, w; "iid
N(0,02), with 02 = 0.0002734. See also the notes to Table B.1

(1) stands for the Spatial Moving Average model €;; = Xy + Tj_1¢ + Tjy1,¢ with x5 7iid N(O, 0‘2).
The value of 0 is set so that 0. = 0.075, the same value used in the experiments summarized in Table
B.2.

10
() stands for the multifactor error structure Eit = Z VijZjt + T , where z;;"iid N(O o:

2) and

j
74 "iid N(0,02) are drawn independently, Wlth a = 02 =0.0028125. v,; = 1 for i=1, ...,5,

and 0 otherwise, ;o = 1 for i=6, ...,10, and 0 otherwise, v;3=1, for ¢ = 11, ..., 15, and so on.

18Stock and Watson (1998) show that their estimator is robust with limited serial and cross-sectionnally
correlated idiosyncratic component and time varying factor loadings. Consistency if obtains as N and T
go to infinity with T/N going to zero (for large N small T panels). Pesaran and Tosetti (2007) derive
the conditions under which the Pesaran (2006) Common Correlated Effect estimator is robust to cross-
sectionally weakly dependant processes such as SMA and multifactor structures. Consistency is obtained
in N alone.
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Appendix C: Data Sources

The Belgian CPI data set :

The Belgian CPI data set contains monthly individual price reports collected by the
Federal Public Service "Economy, SMEs, Self-Employed and Energy" for the computation
of the Belgian National and Harmonized Index of Consumer Prices. In its complete
version, it covers the 1989:01 - 2005:12 period. Considering the whole sample, would have
involved analyzing more than 20,000,000 price records. For this project, we restricted the
analysis to the product categories included in the Belgian CPI basket for the base year
1996, and restricted our period of observation to the 1994:07 - 2003:02 period. Our data
set covers only the product categories for which the prices are recorded throughout the
entire year in a decentralized way, i.e. 65.5%. of the Belgian CPI basket for the base year
1996. The remaining 34.5% relate to product categories that are monitored centrally by
the Federal Public Services, such as housing rents, electricity, gas, telecommunications,
health care, newspapers and insurance services and to product categories that are not
available for sale during the entire year (some fruits and vegetables, winter and summer
fees in tennis club). Price reports take into account all types of rebates and promotions,
except those relating to the winter and summer sales period, which typically take place
in January and July. In addition to the price records, the Belgian CPI data sets provides
information on the location of the seller, a seller identifier, the packaging of the product (in
order to identify promotions in quantity) and the brand of the product. For all products,
the price concept used in this paper correspond to the log of price per unit.

The French CPI data set :

The French CPI data set contains more than 13,000,000 monthly individual price
records collected by the INSEE for the computation of the French National and Harmo-
nized Index of Consumer Prices. It covers the period July 1994:07 - February 2003. This
data set covers 65.5%. of the French CPI basket. Indeed, the prices of some categories of
goods and services are not available in our sample: centrally collected prices - of which
major items are car prices and administered or public utility prices (e.g. electricity)- as
well as other types of products such as fresh food and rents. At the COICOP 5-digit
level, we have access to 128 product categories out of 160 in the CPI. As a result, the
coverage rate is above 70% for food and non-energy industrial goods, but closer to 50% in
the services, since a large part of services prices are centrally collected, e.g. for transport
or administrative or financial services.

Each individual price quote consists of the exact price level of a precisely defined
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product. What is meant by “product” is a particular product, of a particular brand
and quality, sold in a particular outlet. The individual product identification number
allows us to follow the price of a product through time, and to recover information
on the type of outlet (hypermarket, supermarket, department store, specialized store,
corner shop, service shop, etc.), the category of product and the regional area where the
outlet is located (for confidentiality reasons, a more precise location of outlets was not
made available to us). The sequences of records corresponding to such defined individual
products are referred to as price trajectories. Importantly, if in a given outlet a given
product is definitively replaced by a similar product of another brand or of a different
quality, a new identification number is created, and a new price trajectory is started. On
top of the above mentioned information, the following additional information is recorded
: the year and month of the record, a qualitative “type of record” code and (when
relevant) the quantity sold. When relevant, division by the indicator of the quantity is
used in order to recover a consistent price per unit.

Confidentiality data restrictions

Due to strong confidentiality restrictions, we are not allowed to provide anyone with
the micro price reports underlying this work. However, a data set containing simulated
data and the MatLab code of the estimation procedures are available on request. A SAS

code is also available.
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Appendix D - Detailed Estimates by Product Categories

The results for Belgium are given in Table D.1, and for France in Table D.2. The
estimated values of the different parameters are presented in columns (2) to (9). Col-
umn (10) provides the correlation between the estimated component ﬁ and the product
category price index. Columns (11) to (13) provide descriptive statistics of the data
set (the average number of observations per month, NNV, the frequency of price changes,
Freq, and the average size of price changes in absolute term, |Ap|. Columns (14) to (15)
provide averages of the frequency of price changes, @, and the average size of price
changes in absolute term, |Z;|, obtained on the basis of simulated data generated using
the estimated structural parameters and the estimated f; of each product categories. The
simulation exercise is replicated 1000 times. The name of product categories for which

the model fits the data poorly is right-aligned.
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Appendix E - Simulation of Price Changes

In order to assess how well the model fits the data, we compare the realized frequency
and average size of price changes with those obtained by simulating the model. More
specifically, for each product category we simulate an unbalanced panel of price trajec-
tories starting with p;o, the observed initial value of each price trajectory ¢, using the
estimate , ﬁ and randomly generated £;;’s and s;’s with respective standard-errors o,
o, as well as estimated v;. Indeed, as the true initial value p; is used as starting value
of the " price trajectory, the true v; should be used to simulate the subsequent price
observations of that trajectory. Since v; is unknown, the simulation exercise is based on
an estimated v; which is computed by re-estimating our baseline model with trajectory
specific fixed effects, keeping the other parameters of the model (s, 7., 05, fAt) as given.
The time dimension of the simulated trajectory for outlet i is set to coincide with the
length of the associated realized price trajectory and the number of price trajectories in
the simulated panels is given by the number of trajectories in the observed panels. The

experiment is repeated 1000 times for each trajectory.
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