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1 Introduction

Following the contributions of Cecchetti (1986) on newspaper prices, Kashyap (1995) on

catalog prices (both using US data), and Lach and Tsiddon (1992) on meat and wine

prices in Israel, a recent wave of empirical research has provided new evidence on the

nature and sources of consumer and producer price stickiness at the micro level. These

studies include Bils and Klenow (2004), Klenow and Kryvstov (2008) and Nakamura and

Steinson (2008) who study consumer prices in the US, and Dhyne et al. (2006) who give

a synthesis of recent empirical analyses carried out for the euro area countries. Studies

of producer prices include Vermeulen et al. (2007), Cornille and Dossche (2008), Loupias

and Sevestre (2008), among others.

One of the main conclusions of these studies is the existence of a signi�cant degree of

heterogeneity in the frequency of price changes across di¤erent product categories. Some

products are characterized by a high frequency of price changes, with outlets resetting

their prices almost on a continuous basis (for instance, oil products and perishable food),

whilst other product categories are characterized by a very low frequency of price changes

(for instance, some durable goods and many services). Aucremanne and Dhyne (2004)

also document a high degree of heterogeneity in the duration of price spells (and hence in

the frequency of price changes) even within relatively homogeneous product categories.

Indeed, several studies have shown that the frequency of consumer price changes not only

di¤ers across product categories, but also varies across categories of retailers.1 Hyper and

super-markets also tend to change their prices more frequently than local corner shops.

A vast majority of these studies is, however, silent as to the reasons for such infrequent

price changes. A low frequency of price change has sometimes been taken as evidence of

intrinsic price rigidity, namely price rigidity that is inherent to the price-setting mech-

anism, such as the presence of menu costs. This, however, ignores the role of extrinsic

price rigidity that originates from the sluggishness of costs and mark-ups.2 Indeed, in-

frequent price changes are not necessarily due to high menu costs and could arise when

marginal costs or other market conditions do not vary. In such situations �rms will have

little or no incentive to change their prices even if menu costs are negligible. The aim

of this paper is to provide an empirical assessment of the relative importance of these

two sources of price rigidities across a large number of product categories. To this end

1See Baudry et al. (2007), Fougère, Le Bihan and Sevestre (2007), Jonker, Blijenberg and Folkertsma
(2004), and Veronese et al. ( 2005).

2Here we are adopting a terminology used in Altissimo, Ehrmann and Smets (2006) to characterize
the di¤erent sources of in�ation persistence.
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we begin with the theoretical contribution of Dixit (1999) and develop an (S; s) state

dependent price-setting model that relates price changes to the variations in an optimal

price re�ecting common and idiosyncratic variations in marginal costs and/or in the de-

sired mark-up, but where price changes are subject to price adjustment costs. Since the

optimal price targeted by outlets is unobserved, we decompose it into three components:

�rst, a component that is shared across all outlets selling a given fairly homogeneous

product. From an economic point of view, this component re�ects the average marginal

cost augmented with the average desired mark-up associated with this particular prod-

uct. From an econometric point of view, we model this as a common factor which is

estimated by aggregating the non-linear pricing equations across the outlets. The second

component of the unobserved optimal price is an outlet speci�c e¤ect, which accounts for

price di¤erences due to product di¤erentiation, local competition conditions, etc. The

third component of the optimal price is an idiosyncratic term, re�ecting shocks that may

a¤ect the outlet speci�c optimal price in a given period (possibly due to outlet speci�c

demand shocks or unexpected changes in costs). This set up allows us to decompose

price stickiness into intrinsic and extrinsic components, the latter being associated with

the variability of the various components of the unobserved optimal price.

From the perspective of econometric modelling, the (S; s) model represents a non-

linear extension of the factor models used extensively in the empirical �nance and macro-

economic literature (e. g. Bai and Ng, 2002, 2006, Connor and Korajczyk, 1986, 1988,

Forni et al., 2000 and Stock and Watson, 1998, 2002). Making use of two large data sets

composed of consumer price records used to compute the CPI in Belgium and France,

the model is estimated for more than 180 narrowly de�ned product categories where we

have a relatively large number of outlets supplying fairly homogeneous products. Our

results show that the now well-documented di¤erences across products in the frequency

of price changes do not strictly correspond to di¤erences in terms of adjustment costs;

i.e. intrinsic rigidity does not su¢ ce to explain the frequency of price changes. This

frequency also depends, in a signi�cant way, on the magnitude of the shocks, common

and/or idiosyncratic, to the unobserved optimal price. We also show that idiosyncratic

shocks strongly contribute to the occurrence of price changes as they appear to be of a

larger magnitude than common shocks a¤ecting all the outlets selling a given product.

The outline of the rest of the paper is as follows. Section 2 presents the (S; s) model

and discusses the identi�cation of intrinsic and extrinsic sources of price rigidities. Section

3 considers alternative approaches to the estimation of the model. Section 4 describes

the micro price data sets, presents the estimation results, and discusses the main �ndings
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in relation to the observed frequency and the magnitude of price changes by product

categories. Section 5 o¤ers some concluding remarks.

2 (S; s) Models of Sticky Prices

It is now a well-established stylized fact that most consumer prices remain unchanged

for periods that can last several months (see, for example, Bils and Klenow, 2004,

Dhyne et al., 2006). Presence of physical menu costs, fear of customer anger, exis-

tence of implicit or explicit contracts might deter retailers from immediately adjusting

their prices to changes in their market conditions such as changes in costs and demand

factors, or variations in local competition. This behavior can be modelled assuming �xed

price adjustment costs that do not depend on the size of the price change,3 leading to an

optimal price strategy of the (S; s) variety (see, for example, Sheshinski and Weiss, 1977,

1983, Cecchetti, 1986, Dixit, 1991, Hansen, 1999, and Gertler and Leahy, 2006).

A simple representation of the (S; s) model can be written as:

pjit =

(
pji;t�1; if

��p�jit � pji;t�1�� � sjit;
p�jit; if

��p�jit � pji;t�1�� > sjit; (1)

where pjit is the (log) observed price of a product j in outlet i at time t, p�jit is the (log)

optimal price that would be set in the absence of any adjustment costs, and sjit denotes

the thresholds beyond which outlets �nd it pro�table to adjust their prices in response

to a shock. In what follows, to simplify the notation, we drop the subscript j and refer to

sit as the adjustment threshold (or band of inaction) for outlet i in period t. We refer to

jp�it � pi;t�1j � sit; (2)

as the �price change trigger�condition.

Assuming monopolistic competition prevails, the optimal price, p�it, is speci�ed as a

product-speci�c mark up over marginal costs. The threshold, sit; typically depends on

three parameters: the size of the �xed menu cost, cmi, which is paid every time the

price is changed; the coe¢ cient on the �ow costs of being out of equilibrium between two

3Several papers have found evidence of �xed physical menu costs of price adjustment (Levy et al.,
1997, Zbaracki et al., 2004). However, Zbaracki et al. (2004) argue that, in addition to these �xed
physical menu costs, managerial and customer-related costs are convex in the price change, while survey
responses discussed in Blinder et al. (1998) suggest that price adjustment costs might be �xed.

4



successive price changes, cei,4 and the variance of the innovations to the optimal price.

In the case where p�it� pit follows a Brownian motion with a constant variance, �2i , Dixit
(1991) and Hansen (1999) show that sit = si = (6cmi�2i =cei)

1=4. In cases where p�it � pit
follows a more general stochastic process, the adjustment threshold could be time varying,

and its relationship to cmi=cei and the parameters of the underlying stochastic process

is likely to be more complicated. Nevertheless, Dixit�s theoretical derivation provides a

simple, yet useful, link between the reduced form parameters characterizing si; and the

structural parameters, cmi=cei and �i. Clearly the magnitude of the menu cost can not

be inferred from the size of the band of inaction alone but also depends on the volatility

of the optimal price. Increased uncertainty widens the band of inaction but also induces

more frequent price changes in the long run. As Hansen ( 1999, p.1066) points out, higher

volatility whilst increasing the band also at the same time increases the probability of

observing large changes in the optimal price which makes it more likely for the band to

be breached. However, a rise in the menu cost increases the band of inaction without

inducing changes in the volatility of the optimal price. It is these independent sources

of variations of s that can be used to distinguish the intrinsic (menu cost changes) from

the extrinsic (volatility changes) sources of price rigidities and the average size of price

changes.

In our empirical analysis, for each product category, we estimate the mean and the

variance of sit which we denote by s and �s. We also estimate �2i , which we assume to

be constant over time and across outlets by �2 = V ar(p�it jIt�1 ), where It�1 denotes the
publicly available information. We then recover an estimate of the menu cost parameter,

c =
p
cm=ce, from Dixit�s formula. See Section 4 for further details.

Let I(A) denote an indicator function that takes the value of unity if A > 0 and zero

otherwise. Then model (1), can be written as:

pit = pi;t�1 + (p
�
it � pi;t�1)I(p�it � pi;t�1 � sit) (3)

+(p�it � pi;t�1)I(pi;t�1 � p�it � sit):

This formulation is reasonably general and allows the adjustment threshold to vary both

over time and across outlets. Assuming a constant and identical threshold might be

considered as a too strong assumption since price setting may be strongly heterogeneous

4In other words, when the observed price, pit; deviates from its optimal level, p�it, �rm i faces a
quadratic inaction cost given by cei (pit � p�it)

2. If �rm i decides to set its price pit to its optimal level,
p�it, it then faces a �xed menu cost of cmi. See, for example, Dixit (1991). Note that in this framework
only the ratio cmi=cei enters the optimal solution, and hence can be identi�ed.
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across outlets, even within relatively homogeneous product categories (Aucremanne and

Dhyne, 2004, and Fougère, Le Bihan and Sevestre, 2007). At the outlet level, some price

trajectories are characterized by very frequent price changes, while others are character-

ized by infrequent price changes. Moreover, as described in Campbell and Eden (2007),

some price trajectories at the micro level exhibit long periods of price stability followed

by periods of frenetic price changes. As noted by Caballero and Engel (2007), this pattern

of price changes suggests that sit is best modelled as a stochastic process. Another argu-

ment for adopting such an approach lies in the synchronization of price changes within

stores. Midrigan (2006) documents that a lot of price changes are particularly small com-

pared to the average magnitude of price changes.5 Following Lach and Tsiddon (2007),

he rationalizes these small price changes by the existence of economies of scales in price

setting behavior for multi-product sellers.

Now, the question arises as to whether such a framework also allows us to identify

extrinsic rigidities, i.e. those corresponding to the low variability of the fundamentals

underlying prices such as changes in marginal costs caused by input price variations or

demand variations, changes in the mark-up caused by varying market competition, etc.

Unfortunately, despite their size and coverage, the data sets on consumer prices do not

provide any information on costs and demand conditions faced by outlets. In spite of

this, it is possible, as we shall show below, to extract information on the probability

distribution of p�it, using a non-linear unobserved common factor model. To this end, we

consider the following decomposition of the (unobserved) optimal price:

p�it = x
0
it� + ft + vi + "it; (4)

where xit is a vector of observable retail-speci�c variables with the associated coe¢ cients,

�, and ft represents the unobserved common cost or demand component of p�it. The

remaining terms in (4) are intended to capture the retail-speci�c, vi, or purely random

di¤erences, "it, in optimal prices across the outlets. The variables in xit are introduced to

control for possible e¤ects of store types (such as hyper or supermarket versus corner shop)

or geographical location (city centre or suburbs), and other observable characteristics that

might a¤ect the price setting behavior of the outlets. The retail-speci�c unobservable

e¤ects, vi; account for the heterogeneity in the level of observed prices at the product

category level that cannot be traced to observables (product di¤erentiation and/or the

5Using US data, Midrigan (2006) indicates that 30% of the observed price changes are smaller than
half of the average absolute size of price changes. This �gure is 34% for Belgium and close to 50% in
France.
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ability of retailer i to consistently price above or below the common component ft, e.g.

because of local competitive demand conditions).

The optimal price can be further decomposed into a component which is known to

the outlet, namely x0it� + E (ft jIt�1 ) + vi, and the unpredictable component given by
!t+ "it, where !t = ft�E (ft jIt�1 ), and It�1 is the information which is common across
the outlets. Without loss of generality we will assume that !t and "it are independently

distributed. Within Dixit model the variance of !t + "it captures the degree of extrinsic

price rigidities, which together with an estimate of the mean of sit, namely s, allows us to

estimate the mean of ci, namely c, which measures the degree of intrinsic price rigidities.

A low value of V ar(!t+"it) indicates that costs and/or mark-up variations are expected to

be infrequent and/or of a small magnitude. It is also worth noticing that the retail-speci�c

random e¤ect, vi, and time-invariant regressors xit, if any, have a priori no impact on the

price dynamics but only on the price level, as both are embodied in the optimal price

p�it and in pi;t�1. Therefore, these elements do not constitute a source of price rigidity,

either intrinsic or extrinsic. Should we have included time varying regressors xit in our

model, they might be considered as a supplementary source of extrinsic price rigidity

if, for instance, xit were capturing the evolution of marginal costs over time. However,

since in this paper, the only xit variable included in our model is a time invariant dummy

variable that indicates whether outlet i is a supermarket or not, this is not an issue here.

Although our model is relatively close to the one presented for instance by Rosett (1959)

for the analysis of frictions in yield changes and more recently, by Tsiddon (1993) or Rat-

fai (2006), we depart from the existing empirical literature in several ways. First, instead

of using a producer price index to proxy the common movements in consumer price tra-

jectories as in Ratfai (2006), we rely on an unobserved common component. This allows

us to conduct our analysis of the relative importance of intrinsic and extrinsic price sticki-

ness for products for which there is no directly observable or not easily identi�ed common

variables. One important advantage of proceeding in this way is to ensure the coherency

of this common component with the dynamics of micro price decisions as stated by our

model. Further we avoid the drawback that if the observed variable fails to capture the

common factor, part of the common variation will be relegated in the error term, which

will therefore violate the condition of cross-sectional independence.

Second, we also depart from the existing empirical literature in the information used in

our estimation procedure. Most of the literature estimates state-dependent pricing model

using binary response or duration models (Cecchetti, 1986, Aucremanne and Dhyne, 2005,

Campbell and Eden, 2007, Fougère, Le Bihan and Sevestre, 2007, Ratfai, 2006) and there-
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fore neglects the information contained in the magnitude of price changes. However, this

information is crucial in order to identify the volatility of the idiosyncratic component and

for disentangling the idiosyncratic component of the optimal prices from the idiosyncratic

threshold parameter, sit.

Third, our approach does not impose any restrictions on the dynamics of the common

factors, but assumes, for ease of estimation, that the idiosyncratic shocks are serially

uncorrelated. The latter may be viewed as unduly restrictive, but given the Monte Carlo

results reported in Appendix B, we �nd that neglecting (positive) serial correlation in

the idiosyncratic shocks tends to result in over-estimation of the range of inaction. This

indirectly reinforces our main conclusion that, besides intrinsic (or nominal) rigidities,

extrinsic price rigidity plays an important role in explaining the observed price stickiness.

3 Alternative Approaches to Estimation of (S; s)Model

One can combine equations (3) and (4) to obtain the following econometric representation:

pit � pi;t�1 = (ft + x
0
it� + vi + "it � pi;t�1)I(ft + x0it� + vi + "it � pi;t�1 � sit) (5)

+(ft + x
0
it� + vi + "it � pi;t�1)I(pi;t�1 � ft � x0it� � vi � "it � sit):

There are essentially two groups of parameters to be estimated. First, the unobserved

common components, ft, which can also be viewed as unobserved time e¤ects. Second,

the parameters that do not vary over time, namely s and �s which respectively denote

the mean and standard deviation of sit, �", the standard deviation of the idiosyncratic

component "it, �v, the standard deviation of the �rm speci�c random e¤ect, vi, and �;

the parameters associated with the observed explanatory variables, xit.

The estimation of the baseline model can be carried out in two ways. One can use

an iterative procedure that combines the estimation of the ft�s using the cross-sectional

dimension of the data with the maximum likelihood estimation of the remaining parame-

ters, conditional on the �rst-stage estimate of ft. Alternatively, one can use a standard

maximum likelihood procedure, where the ft�s are estimated simultaneously with the

other parameters. The two procedures lead to consistent estimates, provided N and T

are su¢ ciently large. It is worthwhile noting that if N is small, one would face the well-

known incidental parameters problem: the bias in estimating ft, due to the limited size of

the cross-sectional dimension, would contaminate the other parameter estimates. In the

alternative situation where T happens to be small, the problem of the initial observation

8



would become an important issue. Therefore, our estimation procedure is essentially valid

for relatively large N and T . Fortunately, in our context, prices of most of the products

we consider have been observed monthly over the period 1994:7 - 2003:2 (i.e. more than

100 months), and the number of outlets selling the various products we consider are also

relatively large, being, on average, only slightly less than 300, both in Belgium and in

France.

3.1 Estimation of ft using cross-sectional averages

As mentioned above, ft is in practice an unobserved time e¤ect that needs to be estimated

along with the other unknown parameters. It re�ects the common component in the

optimal prices for each particular product for which we estimate the model. Moreover,

because we are able to consider precisely de�ned types of products sold in a particular

outlet, it is reasonable to assume that any remaining cross-sectional heterogeneity in the

price level can be modelled through the observable outlet-speci�c characteristics, xit, and

through random speci�c e¤ects (accounting for outlets unobserved characteristics).

Accordingly, we assume that, conditional on hit = (ft;x
0
it; pi;t�1)

0; (sit; vi; "it)
0 are

distributed independently across i, and that sit and "it are serially uncorrelated. Due to

the non-linear nature of the pricing process and to make the analysis tractable, we shall

also assume that 0BB@
sit

vi

"it

1CCA jhit v i:i:d:N
0BB@
0BB@
s

0

0

1CCA ;
0BB@
�2s 0 0

0 �2v 0

0 0 �2"

1CCA
1CCA :

The assumption of zero covariances across the errors is made for convenience and can be

relaxed.

Before discussing the derivation of ft we state the following lemma, established in the

Appendix, which provides a few results needed below.

Lemma 3.1 Suppose that y v N(�; �2) then

E [yI(y + a)] = ��

�
a+ �

�

�
+ ��

�
a+ �

�

�
;

E

�
�

�
y + a

b

��
=

bp
b2 + �2

�

�
a+ �p
b2 + �2

�
;

Ey

�
�

�
y + a

b

��
= �

�
a+ �p
b2 + �2

�
;
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where � (�) and� (�) are, respectively, the density and the cumulative distribution function
of the standard normal variate, and I (A) is the indicator function de�ned above.

Let

dit = ft + x
0
it� � pi;t�1; �it = vi + "it v N(0; �2�);

and note that �2� = �
2
v + �

2
". Consider now the baseline model, (5), and using the above,

write it as

�pit = (dit + �it)I(dit + �it � sit) + (dit + �it)I(�dit � �it � sit);

or

�pit = (dit + �it) + (dit + �it) [I(dit + �it � sit)� I(dit + �it + sit)] :

Denote the unknown parameters of the model by � = (s;�0; �2s; �
2
v; �

2
")
0, and note that

E (�pit jhit;� ) = dit + git;

where git = g1;it + g2;it, with

g1;it = ditE [I(dit + �it � sit)� I(dit + �it + sit) jhit;� ] ;

and

g2;it = E [�itI(dit + �it � sit)� �itI(dit + �it + sit) jhit;� ] :

Also, under our assumptions 
sit

�it

!
jhit v i:i:d:N

  
s

0

!
;

 
�2s 0

0 �2v + �
2
"

!!
:

It is easily seen that

E [I(dit + �it � sit)� I(dit + �it + sit) jhit;� ]

= �

0@ dit � sq
�2s + �

2
�

1A� �
0@ dit + sq

�2s + �
2
�

1A :
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Using the results in Lemma 3.1 and noting that �it jhit;� v N(0; �2�), then

E [�itI(dit + �it � sit) jhit; sit;� ] = ���
�
dit � sit
��

�
:

Hence, taking expectations with respect to sit, we have

E [�itI(dit + �it � sit) jhit;� ] = ��E
�
�

�
dit � sit
��

�
jhit;�

�
:

Again using the results in Lemma 3.1 we have

E

�
�

�
dit � sit
��

�
jhit;�

�
=

��q
�2s + �

2
�

�

0@ dit � sq
�2s + �

2
�

1A ;
and therefore,

E [�itI(dit + �it � sit) jhit;� ] =
�2�q
�2s + �

2
�

�

0@ dit � sq
�2s + �

2
�

1A :
Similarly,

E [�itI(dit + �it + sit) jhit;� ] =
�2�q
�2s + �

2
�

�

0@ dit + sq
�2s + �

2
�

1A :
Collecting the various results we obtain

g1;it = dit

24�
0@ dit � sq

�2s + �
2
�

1A� �
0@ dit + sq

�2s + �
2
�

1A35 ;
and

g2;it =
�2�q
�2s + �

2
�

24�
0@ dit � sq

�2s + �
2
�

1A� �
0@ dit + sq

�2s + �
2
�

1A35 :
Note that g1;it and g2;it are non-linear functions of ft and depend on i only through the

observable, pi;t�1 and xit. It is therefore possible to compute ft for each t in terms of

pi;t�1; xit and �. Then, following Pesaran (2006), the cross-sectional average estimator of
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ft, denoted by ~ft; can be obtained as the solution to the following non-linear equation

�pt = ~ft + �x
0
t� + �gt(

~ft); (6)

where

�pt =
NX
i=1

wit pit, �xt =
NX
i=1

wit xit; and �gt(ft) =
NX
i=1

wit git,

and fwit; i = 1; 2; ::; Ng represent a predetermined set of weights such that

wit = O(N
�1); and

NX
i=1

w2it = O(N
�1):

For a given value of � and each t, (6) provides a non-linear function in ~ft. This

equation clearly shows that unlike the linear models considered in Pesaran (2006), here

the solution to the common component ft does not reduce to an average of (log) prices. In

particular, ~ft also accounts for the dynamic feature of the price-setting behavior through

the �gt component, which depends on pi;t�1. Equation (6) has a unique solution as long

as s > 0. A proof is provided in Appendix A. It is also easily seen that under the

cross-sectional independence of vi and "it, �gt (ft)! E (git) and ~ft � ft
p! 0, as N !1.6

3.2 Conditional likelihood estimation with no individual e¤ects

In this section, we derive the maximum likelihood estimation of the structural parameters,

�, conditional on ft and assuming there are no �rm-speci�c e¤ects, so that �2v = 0, and

hence in this case � = (s;�0; �2s; �
2
")
0. Given the distributional assumptions stated in

Section 3.1, and de�ning � it as sit � s, our baseline model can be rewritten as

�pit = dit + "it + (dit + "it) fI [dit + "it � � it � s]� I [dit + "it + � it + s]g ;

where  
� it

"it

!
v iid N

  
0

0

!
;

 
�2s 0

0 �2"

!!
; for i = 1; 2; :::; N ; t = 1; 2; :::; T:

6For the sake of simplicity, we assume here that the panel data sample is balanced. This is not the case
in practice. However, the result can be easily generalized to unbalanced panels assuming that Nt ! 1
for each t (see the Appendix A).
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Equivalently

�pit = dit + "it + (dit + "it) fI [dit � s+ "1it]� I [dit + s+ "2it]g ;

where

"1it = "it � � it; "2it = "it + � it;

with0BB@
"1it

"2it

"it

1CCA � iidN

0BB@
0BB@
0

0

0

1CCA ;
0BB@
�2" + �

2
s �2" � �2s �2"

: �2" + �
2
s �2"

: : �2"

1CCA
1CCA ; for i = 1; 2; :::; N ; t = 1; 2; :::; T :

Let

� 1it =

(
1 if �pit = 0 for i = 1; 2; :::; N and t = 1; 2; :::; T;

0 otherwise

� 2it =

(
1 if �pit > 0 for i = 1; 2; :::; N and t = 1; 2; :::; T;

0 otherwise

� 3it =

(
1 if �pit < 0 for i = 1; 2; :::; N and t = 1; 2; :::; T;

0 otherwise

Then conditional on ft; t = 1; 2; :::; T and the initial value pi0; the log-likelihood func-

tion of the model for each i can be written as

Li(� jf ) = Pr (�pi1 jpi0 ) Pr (�pi2 jpi0; pi1 )

�Pr (�pi;T jpi0; pi1; :::; pi;T�1 )� Pr (pi0)

where f = (f1; f2; :::; fT )0. In view of the �rst-order Markovian property of the model we

have

Li(� jf ) = Pr (�pi1 jpi0 ) Pr (�pi2 jpi1 )

�Pr (�pi;T jpi;T�1 )� Pr (pi0) :

When T is small, the contribution of Pr (pi0) could be important. In what follows we

assume that pi0 is given and T reasonably large so that the contribution of the initial

observations to the log-likelihood function can be ignored.
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To derive Pr (�pit jpi;t�1; ft ) we distinguish between cases where �pit = 0; �pit > 0
and �pit < 0, noting that

Pr (�pit = 0 j; pi;t�1; ft ) = Pr ("1it � s� dit ; "2it � �s� dit)

= Pr ("1it � s� dit)� Pr ("1it � s� dit ; "2it � �s� dit)

= �

 
s� ditp
�2" + �

2
s

!
� �2

 
s� ditp
�2" + �

2
s

;
�s� ditp
�2" + �

2
s

;
�2" � �2s
�2" + �

2
s

!
= �1it;

where �2 (x; y; �) is the cumulative distribution function of the standard bivariate normal.

Similarly

Pr (�pit > 0 j; pi;t�1; ft ) = Pr ("it = �pit � dit) Pr ("1it � s� dit ; "2it > �s� dit j"it )

=
1

�"
�

�
�pit � dit

�"

��
�

�
�s+�pit

�s

�
� �

�
�s��pit

�s

��
= �2it;

and

Pr (�pit < 0 j; pi;t�1; ft ) = Pr ("it = �pit � dit) Pr ("1it < s� dit ; "2it � �s� dit j"it )

=
1

�"
�

�
�pit � dit

�"

��
�

�
�s��pit

�s

�
� �

�
�s+�pit

�s

��
= �3it:

Hence

` (�; f) =
NX
i=1

lnLi(�; f) =
NX
i=1

TX
t=1

[� 1it ln(�1it) + � 2it ln(�2it) + � 3it ln(�3it)] : (7)

The ML estimator of � is given by

�̂ML(f) = argmax
�
` (�; f)

and for N and T su¢ ciently large we have:

p
NT

�
�̂ML(f)� �

�
av N(0;V�),

where V� is the asymptotic variance of the ML estimator and can be estimated consis-

tently using the second derivatives of the log likelihood function.

Remark 1 In the case where ft, t = 1; 2; :::; T; are estimated, the ML estimator will

continue to be consistent as both N and T tend to in�nity. However, the asymptotic

14



distribution of the ML estimator is likely to be subject to the generated regressor problem.

The importance of the generated regressor problem in the present application could be

investigated using a bootstrap procedure.

3.3 Conditional likelihood estimation with random e¤ects

Consider now the random e¤ects speci�cation where p�it = ft + x
0
it� + vi + "it, and note

that

Cov(p�it; p
�
it0 jhit;hit0 ) = �2v for all t and t0; t 6= t0:

Under this model, the probability of no price change in a given period, conditional on

the previous price, pi;t�1; will not be independent of episodes of no price changes in the

past. So we need to consider the joint probability distribution of successive unchanged

prices. For example, suppose that prices for outlet i have remained unchanged over the

period t and t+ 1, then the relevant joint events of interest are

Ait : f�s� � it � dit � "it + vi � s+ � it � ditg ;

and

Ai;t+1 :
�
�s� � i;t+1 � di;t+1 � "i;t+1 + vi � s+ � it � di;t+1

	
:

An explicit derivation of the joint distribution of Ait and Ait+1 would seem rather

di¢ cult. An alternative strategy is to use the conditional independence property of

successive price changes, and note that for each i, and conditional on v = (v1; v2; ::::; vN)0

and f , the likelihood function will be given by

L(�;v; f) =

NY
i=1

TY
t=1

[�1it(vi)]
�1it [�2it(vi)]

�2it [�3it(vi)]
�2it ;

where

�1it(vi; ft) = �

 
s� vi � ditp
�2" + �

2
s

!
� �2

 
s� vi � ditp
�2" + �

2
s

;
�s� vi � ditp

�2" + �
2
s

;
�2" � �2s
�2" + �

2
s

!
;

�2it(vi; ft) =
1

�"
�

�
�pit � vi � dit

�"

��
�

�
�s+�pit

�s

�
� �

�
�s��pit

�s

��
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and

�3it(vi; ft) =
1

�"
�

�
�pit � vi � dit

�"

��
�

�
�s��pit

�s

�
� �

�
�s+�pit

�s

��
:

The random e¤ects can now be integrated out with respect to the distribution of vi
[assuming vi � N (0; �2v) , for example] and then the integrated log-likelihood function,
Ev [`(�;v; f)], maximized with respect to �.7

3.4 Full maximum likelihood estimation

In the case where N and T are su¢ ciently large, the incidental parameters problem does

not arise and the e¤ects of the initial distributions, Pr (pi0), on the likelihood function

can be ignored. Then, the maximum likelihood estimators of � and f can be obtained as

the solution to the following maximization problem:

�̂
fML; b�ML

�
= argmax

f ;�

TX
t=1

NX
i=1

[� 1it ln(�1it) + � 2it ln(�2it) + � 3it ln(�3it)] : (8)

Note that for a given value of � the ML estimator of ft can be obtained as

f̂t(�) = argmax
ft

NX
i=1

[� 1it ln(�1it) + � 2it ln(�2it) + � 3it ln(�3it)] ;

and will be consistent as N ! 1, since conditional on � and ft, the elements in the
above sum are independently distributed. Also for a given estimate of f , the optimization

problem de�ned by (8) will yield a consistent estimate of � as N and T !1. Iterating
between the solutions of the two optimization problems will deliver consistent estimates

of � and f1; f2; :::; fT , even though the number of incidental parameters, ft; t = 1; 2; :::; T ,

is rising without bounds as T !1. This is analogous to the problem of estimating time
and individual �xed e¤ects in standard linear panel data models. Individual �xed e¤ects

can be consistently estimated from the time dimension and time e¤ects from the cross

section dimension.

In order to evaluate the performance of these estimation methods, a number of Monte

Carlo simulations are reported in Appendix B. We evaluate the ML estimation with and

without random e¤ects. These roughly leads to qualitatively similar results. We also

7A further extension of the model would consist of including also a �rm speci�c e¤ect into the menu
cost. However, the estimation of this model would then requires a double integration with respect to the
distribution of the two individual e¤ects.
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report a set of ML estimations for alternative values of the parameters and frequency

of price changes. We then perform a set of Monte Carlo simulations to evaluate the

robustness of the model under deviations from the underlying assumptions. We �rst

examine the small sample properties of our estimator. We then consider the case of

serially correlated idiosyncratic shocks. Lastly we investigate the impact of cross-sectional

dependence on the estimates of the model�s parameters.

The results of these simulations may be brie�y summarized as follows. The estimation

of the common component is adversely a¤ected only if the cross-section dimension is

relatively small. Ignoring serial correlation of the idiosyncratic component leads to a

positive bias in the estimates of s and �s. However, the bias becomes substantial only as

one approaches the unit root case. For the level of serial correlation estimated by Ratfai

(2006) for meat (0.34), our simulations suggest that the upward bias in the estimates of s

should be below 8 percent. Lastly, as is the case with linear factor models, estimates of the

common components are not adversely a¤ected by the presence of weak cross-sectional

dependence in the idiosyncratic shocks.8

4 Empirical Results

The model discussed in Section 2 has been estimated using individual consumer price

quotes compiled by the Belgian and French statistical institutes for the computation of

their respective consumer price indices. Each data set contains more than 10 millions

observations referring to monthly price quotes of individual products sold in a particular

outlet. For each product category price in a given outlet is computed as logarithm of

sales per unit of product so that promotions in quantities are captured in our analysis.

The period covered has been restricted to the intersection of the two databases, that is

July 1994 - February 2003.9 Since one of the aims of our approach is the identi�cation

of the common factors a¤ecting the price of a given product in di¤erent outlets, price

series have been grouped into narrowly de�ned product categories (368 for Belgium and

305 for France). However, as the estimation procedure is particularly time consuming,10

the estimation has been conducted on a subset of randomly selected product categories,

8Results not reported for the sake of brevity indicate that the same conclusions hold in the presence
of serial correlation or cross-sectional dependance of sit.

9Further details of the two data sets are given in Appendix C, with a more thorough description
provided in Aucremanne and Dhyne (2004) and Baudry et al. (2007).
10The estimation of our model for a typical product category, using S.A.S. 8.02 on a 1.6 Ghz P4

computer takes between 3 to 5 days.
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restricting ourselves to those price trajectories that are at least 20 months long.11 As a

result, we end up estimating our baseline model for 94 product categories in Belgium and

88 categories in France.

All estimates reported below are computed by the full maximum likelihood method

where for each product category the unobserved common components, ft, for t = 1; 2; :::; T;

as well as the other parameters, namely, the average level of the adjustment threshold,

s, and its variability, �s, the variability of the idiosyncratic component, �", and the vari-

ability of �rms speci�c random e¤ects, �v are estimated simultaneously. Also to allow for

possible di¤erences in the price setting behavior by supermarkets and by corner shops,

xit is chosen to be a dummy variable that takes the value of 1 whenever the outlet where

the product is sold is a supermarket and 0 otherwise.

The full set of estimation results for all the 182 product categories (94 for Belgium

and 88 for France) is given in Appendix D. The results for Belgium are given in Table

D.1 and for France in Table D.2. Each table provides ML estimates of the reduced form

parameters (ŝ, �̂s, �̂v, �̂"), the unobserved common factors, f̂t, as well as the estimates

of the structural parameters, b� =qb�2" + b�2!, and bc = bs2=(b�p6), where b�2! is the variance
of the shock to the estimated common factors, bft. To compute �̂2!, we assume that ft
follows a general autoregressive process possibly with a linear trend. Therefore, for each

product category, the estimates bf1; bf2; :::; bfT are used to �t an AR(K) model de�ned asbft = �0+�1t+ KP
k=1

�k bft�k+!t; !t v i:i:d: (0; �2!) :12 As shown in Section 2, the estimated
threshold parameter, ŝ; cannot be directly interpreted as re�ecting the only intrinsic

component of price rigidity, i.e. the nominal rigidity. This parameter also incorporates

an extrinsic rigidity component, corresponding to the volatility of the underlying costs

and mark-ups. As discussed earlier, ĉ and �̂ will be interpreted as measures of intrinsic

and extrinsic price rigidities, respectively.

In addition to the estimated parameters, Tables D.1 and D.2 also give a number of

summary statistics such as the average number of observations per month, the correlation

coe¢ cient of f̂t and the corresponding product category price index, the frequency and

the average size (in absolute terms) of price changes.13 The latter two statistics are

then compared with those obtained from simulation of the estimated models by product

11A price trajectory is a continuous sequence of price reports referring to one particular product sold
in store i.
12For each product category, K is selected using AIC applied to autoregressions with the maximum

value of K set to 12.
13We have also computed standard errors for the parameter estimates reported in Tables D.1 and

D.2. They all tend to be very small suggesting highly signi�cant estimates. To save space these are not
included in the result tables but are available on request.
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b. French CPI data
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a. Belgian CPI data
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Figure 1: Observed versus simulated frequencies of price changes

categories. The details of the simulation exercise are provided in Appendix E. The results

are generally supportive of the model. Estimates of s are all positive and tend to take

plausible values. The estimated error variances also seem plausible although di¢ cult to

evaluate individually. With a few exceptions the correlation between f̂t and the associated

(log) price index is positive and often quite high, falling in the range of 0.85-0.98 in the

case of the majority of product categories.

Most importantly, for each product category, the simulated frequency of price changes

matches quite well the observed one. Scatter plots of the realized and simulated frequen-

cies for the 94 product categories in the Belgian CPI and the 88 product categories in

the French CPI are presented in Figure 1.

This �gure shows that, except for a small number of products (8 out of the 94 product

categories of the Belgian CPI, 2 out of the 88 product categories of the French CPI), the

observed frequencies of price changes match the simulated ones quite well. The few cases

where the simulations do not match the realizations are con�ned to product categories

with relatively rigid prices.14 For these 10 products, our simulations over-estimate the

frequency and under-estimate the average size of price changes. In what follows we

14The 8 product categories with poor �t for Belgium were, "Dining room oak furniture", "Cup and
saucer", "Parking spot in a garage", "Fabric for dress", "Wallet", "Small anorak"; "Men T Shirt" and
"Hair spray 400 ml", and the two product category with poor �t for France, were "Classic lunch in a
restaurant" and "Pasta".
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exclude these products and focus on the remaining 172 products that seem to �t the

observed price changes reasonably well.

Table 1 provides a summary of the CPI weighted average estimates of the main para-

meters of interest for six broad product categories: energy, perishable food, non-perishable

food, non-durable manufactured goods, durable manufactured goods and services, for

Belgium and France separately. This table also includes the estimates of the structural

parameters c and �, that characterize the intrinsic and extrinsic components of price

rigidity.

Table 1: Parameter Estimates by Broad product categories - CPI

Weighted Averages

Energy
Perishable

food

Non perishable

food

Non durable

goods

Durable

goods
Services

Belgiumbs 0:013 0:219 0:304 0:367 0:522 0:378b�" 0:020 0:108 0:080 0:076 0:074 0:046b�! 0:032 0:036 0:016 0:018 0:016 0:009bc 0:002 0:401 0:479 0:947 1:540 1:245b� 0:038 0:115 0:082 0:079 0:095 0:048

Freq 0:723 0:315 0:127 0:145 0:056 0:041

j�pj 0:039 0:139 0:102 0:083 0:072 0:056

Francebs 0:004 0:215 0:203 0:396 0:304 0:308b�" 0:023 0:106 0:074 0:104 0:074 0:053b�! 0:017 0:015 0:063 0:037 0:028 0:015bc 0:000 0:181 0:226 0:601 0:486 0:780b� 0:029 0:107 0:076 0:112 0:081 0:057

Freq 0:799 0:247 0:204 0:124 0:134 0:077

j�pj 0:022 0:119 0:064 0:166 0:083 0:047

Notes: bs is the estimated size of the price inaction band. b�" is the estimated standard deviation of
the idiosyncratic component. b�! is the estimated standard deviation of the common shock. Freq is
the observed frequency of price changes. j�pj is the observed average absolute value of price changes.bc is estimated as bs2=(b�p6), and b� =qb�2" + b�2!.
The detailed results in Tables D.1 and D.2 and the average estimates in Table 1, allow

us to draw a number of important conclusions. First, the size of the inaction band, as
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measured by ŝ, clearly depends on the magnitude of both parameters of the intrinsic

and extrinsic price rigidities. The service sector provides a good example where both of

these two components contribute to the overall observed price stickiness in an important

way. For this sector we obtain relatively high values of ĉ and relatively low values of

�̂. For Belgium these estimates are 1.245 and 0.048, respectively, whilst for France we

obtain the estimates 0.780 and 0.057. In other words, service prices do not change very

frequently not only because of the existence of strong nominal rigidities (possibly due to

high menu costs and/or costs of consumers reaction to price changes) but also because

their production costs are not subject to frequent and/or large changes.

Indeed, considering that wages are the most important cost component for the pro-

duction of services, the variations of this cost component are not very frequent and appear

to be of a rather small magnitude (e.g. see Heckel et al., 2008). This also explains why,

despite the existence of large menu costs, service prices change by rather limited amounts:

the magnitude of the variations in the underlying costs is indeed quite small. It is worth

mentioning here what might be considered as a rather puzzling result: for services, but

also for other products except oil products, the average size of price changes is smaller

than the average estimated inaction band parameters s. In fact, this result can be ra-

tionalized noting the stochastic nature of the bound, sit. Since the distribution of sit is

assumed to be symmetric around its mean, s, the likelihood of a price change is larger

when the menu cost, cmi; is temporarily small or when the parameter of the quadratic

cost of inaction, cei, is larger than usual. Such situations would correspond for instance

to multi-product retailers, for which the menu cost associated to a price change of a par-

ticular product may be smaller whenever prices of other products are also changed (e.g.

see Lach and Tsiddon, 2007, Midrigan, 2006), or in situations where competitors of an

outlet decrease their price, thus increasing the cost of price inaction for this particular

outlet. The randomness of the inaction band is a way to allow for small price changes

that are observed in the data. One of its consequences is that small price changes are

more likely than large ones, thus lowering the average size of price changes.

Let us now consider energy prices, which tend to exhibit opposite characteristics to

those of service prices. The estimated intrinsic rigidity appears to be negligible, pointing

to very small menu costs and/or very large costs of inaction. Moreover, the estimate

of � is quite low, showing that shocks a¤ecting energy prices are of a relatively small

magnitude, at least during our observation period and as compared to the other product

categories. On the whole, these results are consistent with the observation that energy

prices change often and do so by small amounts and imply that energy prices are �exible

21



and extrinsic price rigidities do not seem to play an important role in energy price changes.

However, an alternative explanation of the observed pattern of energy price changes (high

frequency, small magnitude) might be that the structure of adjustment costs di¤ers from

the one assumed here. Indeed, quadratic adjustment costs may also explain this pattern

of price changes. Such a pattern might be due to the highly homogenous nature of energy

products and the high degree of competition that exists in this sector. As a consequence,

one may tentatively make the conjecture that customers�anger stemming from large price

increases would be quite high so that energy retailers are more likely to adopt a strategy

of frequent small price changes. However, the frequent price changes of oil products at

the wholesale level leads us to believe the former explanation to be more likely.

The contribution of both the intrinsic and extrinsic price rigidities to the observed

price stickiness as measured by the magnitude of the inaction band (the s parameter)

can be observed for the other broad categories of products, both for Belgium and France.

For a given level of intrinsic rigidity (price adjustment costs), a larger magnitude of the

shocks is associated with a wider band of inaction: �rms/outlets react to shocks that are

important, relative to the "usual" costs variations as measured by b�. This explains why,
despite the higher level of intrinsic rigidity of service prices as compared to that associated

with non-durable goods, the inaction band for this last group of products is, in Belgium,

quite similar to that of services: the larger volatility of the shocks to non-durable goods

prices contributes to increasing the magnitude of the inaction band for these products.

Similar observations can be made as regards perishable food and non-perishable food

products in France as well as for durable goods and services.15

A second important feature of the results is that intrinsic/nominal rigidities (as mea-

sured by the size of bc) seem to be the main determining factor of the observed di¤erences
in the frequencies of price changes across products, whilst the size of shocks (b�) seems
to largely explain the di¤erences in the magnitude of price changes. This would explain

why despite the fact that energy products and services exhibit strongly di¤erent degrees

of nominal rigidities and frequencies of price changes, the sizes of observed price changes

are relatively small for both products. This conclusion seems to hold also for the other

products we consider. Indeed, the ranking of products we get from the frequency of price

changes and from the estimated bc measuring the intrinsic price rigidity are quite similar.
15Our evaluation of the relative importance of extrinsic and intrinsic rigidities for explaining the mag-

nitude of the inaction band may be a¤ected by our assumptions regarding the idiosyncratic component.
Indeed, assuming these to be uncorrelated if in fact they are serially correlated is likely to induce a bias
in our estimates. We have run some Monte Carlo simulations to check the possible magnitude of such
biases (see Appendix B). It appears that unless "it is highly serially correlated, the biases introduced by
neglecting such serial correlation do not seem to be not be too serious.
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Moreover, the ranking obtained from the magnitude of price changes on the one hand and

from the estimated variance of shocks on the other hand appear to be close to each other

too. In order to evaluate the strength of these correlations, we have run a number of cross

section regressions of the frequency and the size of price changes on ĉ and �̂ across the

172 product categories that pass our initial diagnostic test explained above. The results

are presented in Table 2. First, we have estimated a simple equation relating the observed

frequency of price changes to bc either alone or together with b�, plus the interaction term,
ĉ � �̂.16 Because the frequency of price changes lie between 0 and 1, this �rst equation
is estimated by the quasi maximum likelihood (QML) estimation procedure proposed by

Papke and Wooldridge (1996). Second, we have run a linear regression explaining the

observed magnitude of price changes by b� alone, and together with bc and the interaction
term. All the regressions include a country dummy which takes the value of unity for

France.

Table 2: Cross Section Regressions of the frequency and the magnitude

of price changes on measures of intrinsic (ĉ) and extrinsic rigidities (�̂)

Frequency Magnitude

Constant �0:080 �2:525 �0:307 �0:017 �0:024 0:102

(�0:23) (�4:59) (�1:06) (�1:68) (�3:94) (9:37)

D_France �0:393 �0:006 �0:388 0:002 0:005 0:015

(�3:09) (�0:02) (�2:88) (0:44) (0:98) (1:41)bc �3:471 � �2:229 �0:011 � �0:010
(�6:84) (�10:32) (�0:93) (�1:18)b� 7:677 9:136 � 1:391 1:437 �
(2:93) (1:99) (16:15) (23:08)bc� b� 1:792 � � 0:090 � �
(0:38) (0:72)

�R2 0:72 0:13 0:63 0:76 0:76 0:02

Note: The �gures in bracket are t-ratios. D_France is a dummy variable equal to one for France.bc is estimated as bs2=(b�p6), where bs is the estimated size of the price inaction band, b� =qb�2" + b�2!,b�" is the estimated standard deviation of the idiosyncratic component, and b�! is the estimated standard
deviation of the common shock.

The �rst set of regressions support the existence a strong negative link between the

frequency of price changes and the estimates of the degree of intrinsic price rigidities.
16The regression also includes a constant and a dummy variable for France.
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The coe¢ cient of ĉ in this regression has a t-ratio of -10.32 which is highly signi�cant

statistically. Comparing the regression where this component is included alone with the

one where the extrinsic rigidity and an interaction term are also included shows that,

though the in�uence of the extrinsic rigidity on the frequency of price changes cannot be

denied, most of the explanatory power comes from the intrinsic rigidity. The variations

in ĉ explains as much as 63% of the observed frequency of price changes. In contrast,

the regressions aimed at explaining the magnitude of price changes show that these are

essentially related to the size of the shocks, b�. The coe¢ cient of b� in these regressions
have t-ratios in excess of 16 and explain around 76% of the cross section variations of the

size of price changes. These results suggest that smaller observed price changes mainly

result from smaller variations of the underlying optimal price rather than from a low level

of intrinsic rigidity that would allow outlets to adjust their prices frequently and by small

magnitudes.

Returning to the results presented in Tables D.1 and D.2 and summarized in Table 1, it

is worth noting that b�" is larger than b�! in almost all cases, i.e. idiosyncratic shocks seem
to be of a larger magnitude than common shocks a¤ecting all the outlets selling a given

product. Indeed, one may observe from the results provided in appendix D that with very

few exceptions (mainly energy products), the volatility of the idiosyncratic component is

generally larger than the variability of the shocks a¤ecting common component bft. Over
our set of 172 products, the ratio of b�" to b�! takes values above one for 165 product

categories (84 in Belgium and 81 in France). This result is in line with the conclusion of

Golosov and Lucas (2007) who state that price trajectories at the micro level are largely

a¤ected by idiosyncratic shocks.

Finally, this set of results, and in particular the strong correlation obtained between

the intrinsic price rigidity and the frequency of price changes on the one hand, and that

between the extrinsic price rigidity and the magnitude of price changes on the other

hand, has interesting implications for the modelling of price rigidities in macroeconomic

models. First, these results can be considered to validate to a certain extent the use of

the frequency of price changes as an indicator of nominal rigidity in these models. Indeed,

the correlation between the (log of) ĉ and the (log) of the frequency of price changes is

quite high but not perfect. Second, nominal rigidity is indeed not su¢ cient for explaining

the observed price stickiness: the extrinsic rigidity also plays an important role. A large

part of the rigidity of service prices stem from this extrinsic component of price rigidity.

Given that, in models with (often implicitly) heterogenous sectors, the stickiness of the

aggregate basically comes from its more rigid component, this shows the importance of
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the extrinsic rigidity in explaining price rigidity at the macroeconomic level. Finally, the

results in Table 2 also indicate that magnitude of price changes could be a good proxy

for the extent of "extrinsic" price rigidity.

5 Conclusion

Modern macroeconomics has emphasized the role of price rigidity in the impact of mone-

tary policy on economic activity and in�ation dynamics. The slope of the New Keynesian

Phillips curve typically depends on nominal (intrinsic) price rigidity. Most previous em-

pirical literature approximated these intrinsic rigidities by the frequency of price changes.

However, in the case of state dependent rules, the frequency of price changes does not

only depend on the size of the adjustment costs (intrinsic rigidity), but it is also a¤ected

by the distribution of shocks that a¤ect outlets (extrinsic rigidity).

Following this new strand in theoretical models (see Dotsey, King and Wolman, 1999,

and Gertler and Leahy, 2006), we specify a state-dependent (S,s) type model. Since the

optimal price targeted by outlets is unobserved, we decompose it into three components:

a common factor, an idiosyncratic component, and a random outlet-speci�c e¤ect. This

setup involves modeling of the price changes as a non-linear dynamic panel model with

unobserved common e¤ects and allows us to decompose price stickiness into intrinsic

and extrinsic rigidities. Assuming �xed cost of price adjustment and quadratic costs of

inaction, intrinsic rigidity is derived from our estimates of the average range of price

inaction, bs, using Dixit (1991) characterization of the (S; s) model. Extrinsic rigidity is
associated with the variability of the various components of the (unobserved) optimal

price.

Making use of two large data sets composed of consumer price records used to compute

the CPI in Belgium and France, the (S; s) model is estimated for more than 180 narrowly

de�ned product categories where we have a relatively large number of outlets supplying

relatively homogeneous products. Our results show that the now well-documented dif-

ferences across products in the frequency of price changes do not strictly correspond to

di¤erences in terms of intrinsic rigidities. Intrinsic price rigidity alone is not enough to

explain the sectoral heterogeneity in the frequency of price changes. These frequencies

also depend in a signi�cant way on the magnitude of the shocks, common and/or idio-

syncratic, to the unobserved optimal prices. For instance, a large part of the rigidity of

service prices stem from the extrinsic component of price rigidity.

Our results also strongly favor the introduction of heterogenous price behaviors in
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macroeconomic models. Two recent papers examine the implications of heterogeneity

of (Calvo) pricing for the New Keynesian Phillips Curve. Using sectoral data on prices

and marginal costs, Imbs et al. (2007) show that estimates of the NKPC that do not

account for industry-level heterogeneity substantially overestimate the backward look-

ing component, and slightly underestimate the role of marginal costs on in�ation. In a

multi-sector general equilibrium model, Carvalho (2006) shows that under heterogeneous

pricing, monetary policy has larger and more persistent real e¤ects than those predicted

by single-�rm models. Our results indicate that to take account of the observed het-

erogeneity across �rms (or product categories) would require paying attention to both

sources of price rigidities. Di¤erences in extrinsic rigidities are important not only in

capturing part of the heterogeneity in the overall degree of price stickiness measured

by the frequency of price changes, but also to capture the sectoral heterogeneity in the

magnitude of price changes.

References

[1] Altissimo, Fillipo, Michael Ehrmann, and Frank Smets. 2006. "In�ation

persistence and price-setting behaviour in the euro area �a summary of the IPN

evidence." ECB Occasional Paper 46.

[2] Aucremanne, Luc, and Emmanuel Dhyne. 2004. "How Frequently Do Prices

Change? Evidence Based on the Micro Data Underlying the Belgian CPI." ECB

Working Paper 331.

[3] Aucremanne, Luc, and Emmanuel Dhyne. 2005. "Time-dependent versus

state-dependent pricing: a panel data approach to the determinants of Belgian con-

sumer price changes", ECB Working Paper 462

[4] Bai, Jushan. and Serena Ng. 2002. ""Determining the Number of Factors in

Approximate Factor Models", Econometrica, 70:1, 191-221.

[5] Bai, Jushan. and Serena Ng. 2006. "Evaluating latent and observed factors in

macroeconomics and �nance", Journal of Econometrics, 131, 507-537.

[6] Baudry, Laurent, Hervé Le Bihan, Patrick Sevestre, and Sylvie Tarrieu.

2007. "What Do Thirteen Million Price Records Have to Say About Consumer Price

Rigidity?", Oxford Bulletin of Economics and Statistics, 69(2): 139-183.

26



[7] Bils, Mark, and Peter Klenow. 2004. "Some Evidence on the Importance of

Sticky Prices." Journal of Political Economy, 112(5): 947-985.

[8] Blinder, Alan.S., Elie R. D. Canetti, David E. Lebow, and Jeremy B.

Rudd. 1998. Asking About Prices: a New Approach to Undertsanding Price Sticki-

ness. New York: Russel Sage Foundation.

[9] Caballero, Ricardo, and Eduardo Engel. 2007. "Price Stickiness in Ss Models:

New Interpretations of old results." Journal of Monetary Economics, 54(supplement

1), 100-121.

[10] Campbell, Je¤rey R., and Benjamin Eden. 2007. "Rigid prices: evidence from

U.S. scanner data." Federal Reserve Bank of Chicago Working Paper 05-08.

[11] Carvalho, Carlos. 2006. "Heterogeneity in Price Stickiness and the Real

E¤ects of Monetary Shocks." The B.E. Journal of Macroeconomics, 2(1),

http://www.bepress.com/bejm/frontiers/vol2/iss1/art1

[12] Cecchetti, Stephen G. 1986. "The Frequency of Price Adjustments: A Study of

the Newsstand Price of Magazines.", Journal of Econometrics, 31(3): 255-274.

[13] Connor, Gregory and Robert A. Korajczyk. 1986. "Performance Measurement

with the Arbitrage Pricing Theory", Journal of Financial Economics, 15: 373-394.

[14] Connor, Gregory and Robert A. Korajczyk. 1988. "Risk and return in an

equilibrium APT: Application of a new test methodology", Journal of Financial

Economics, 21: 255-289.

[15] Cornille, David, and Maarten Dossche. 2008. "Some Evidence on the Adjust-

ment of Producer Prices", forthcoming in The Scandinavian Journal of Economics

[16] Dhyne, Emmanuel, Luis J. Álvarez, Hervé Le Bihan, Giovanni Veronese,

Daniel Dias, Johannes Ho¤mann, Nicole Jonker, Patrick Lünnemann,

Fabio Rumler, and Jouko Vilmunen. 2006. "Price Changes in the Euro Area

and the United States: Some Facts from Individual Consumer Price Data." Journal

of Economic Perspective, 20(2): 171-192.

[17] Dixit, Avinash. 1991 "Analytical Approximations in Models of Hysteresis", The

Review of Economic Studies, 58(1), 141-151.

27



[18] Dotsey, Michael, Robert G. King, and Alexander L. Wolman. 1999. "State-

Dependent Pricing and the General Equilibrium Dynamics of Money and Output."

Quarterly Journal of Economics, 114(2): 655-690.

[19] Forni, Mario, Marc. Hallin, Marco Lippi and Lucrezia Reichlin. 2000. "The

generalised dynamic factor model: identi�cation and estimation", The Review of

Economics and Statistics, 82(4): 540-554.

[20] Fougère, Denis, Hervé Le Bihan, and Patrick Sevestre.2007. "Heterogeneity

in Price Stickiness: a Microeconometric Investigation." Journal of Economic and

Business Statistics, 25 (3): pp. 247-264..

[21] Gertler, Mark, and John Leahy. 2006. "A Phillips Curve with an Ss Founda-

tion." NBER Working Paper 11971.

[22] Golosov, Mikhail, and Robert E. Lucas. 2007. "Menu Costs and Phillips

Curves." Journal of Political Economy, 115(2): 171-199.

[23] Hansen, Per Svejstrup. 1999. "Frequent Price Changes Under Menu Costs", Jour-

nal of Economic Dynamics and Control, 23, 1065-1076.

[24] Heckel, Thomas, Hervé Le Bihan and Jérémi Montornès. 2008. "Sticky

wages: evidence from quarterly microeconomic data", ECB Working äêr Series, 893

[25] Imbs, Jean, Eric Jondeau, and Florian Pelgrin. 2007. "Aggregating Phillips

Curve." CEPR Discussion Paper 6184..

[26] Jonker, Nicole, Harry Blijenberg, and Carsten Folkertsma. 2004. "Empirical

Analysis of Price Setting Behaviour in the Netherlands in the Period 1998-2003 Using

Micro Data." ECB Working Paper 413.

[27] Kashyap, Anil K. 1995. "Sticky Prices: New Evidence from Retail Catalogs."

Quarterly Journal of Economics, 110(1): 245-274.

[28] Klenow, Peter, and Oleksiy Kryvtsov. 2008. "State-Dependent or Time-

Dependent Pricing: Does it Matter for Recent U.S. In�ation?", Quarterly Journal

of Economics, 123(3): 863-904

[29] Lach Saul, and Daniel Tsiddon. 1992. "The Behaviour of Prices and In�ation:

An Empirical Analysis of Disaggregated Price Data." Journal of Political Economy,

100(2): 349-389.

28



[30] Lach, Saul, and Daniel Tsiddon. 2007. �Small Price Changes and Menu Costs.�

Managerial and Decision Economics, 28:649-656

[31] Levy, Daniel, Mark Bergen, Shantanu Dutta, and Robert Venables. 1997.

"The magnitude of menu costs: direct evidence from large U.S. supermarket chains."

Quarterly Journal of Economics, 112(3): 791-825.

[32] Loupias, Claire, and Patrick Sevestre. 2008. "Costs, demand and producer price

changes", http://www.ecb.int/events/conferences/html/wage_dynamics_network.

en.html

[33] Midrigan, Virgiliu. 2006. "Menu Costs, Multi-Product Firms, and Aggregate Fluc-

tuations", http://web.econ.ohio-state.edu/~midrigan/research.html

[34] Nakamura, Emi, and Jón Steinsson. 2008. "Five Facts About Prices: A Reeval-

uation of Menu Cost Models" , forthcoming in the Quarterly Journal of Economics.

[35] Papke, Leslie E., and Je¤rey M. Wooldridge. 1996. "Econometric Methods

for Fractional Response with an Application to 401(K) Plan Participation Rates."

Journal of Applied Econometrics, 11(6): 619-632.

[36] Pesaran, M. Hashem. 2006. "Estimation and Inference in Large Heterogeneous

Panels with a Multifactor Error Structure." Econometrica, 74(4): 967-1012.

[37] Pesaran, M. Hashem and Elisa Tosetti. 2007. "Large panels with common

factors and spatial correlations" CESifo Working Paper n� 2103.

[38] Pinkse, Joris, Margaret E. Slade and Craig Brett. 2002. "Spatial price com-

petition: a semiparametric approach" Econometrica, 70(3): 111-1153.

[39] Ratfai, Attila. 2006. "Linking Individual and Aggregate Price Changes." Journal

of Money, Credit and Banking, 38(8), 2199-2224.

[40] Rosett, Richard N. 1959. "A Statistical Model of Frictions in Economics." Econo-

metrica, 27(2): 263-267.

[41] Sheshinski, Eytan, and YoramWeiss. 1977. "In�ation and costs of adjustment."

Review of Economic Studies, 44(2): 281-303.

[42] Sheshinski Eytan, and Yoram Weiss. 1983. "Optimal pricing policy under sto-

chastic in�ation." Review of Economic Studies, 51(3): 513-529.

29



[43] Stock, James H. and Mark W. Watson. 1998. "Di¤usion indexes" NBERWork-

ing Paper n� 6702.

[44] Stock, James H. andMarkW.Watson. 2002. "Macroeconomic forecasting using

di¤usion indexes" Journal of Business and Economic Statistics, 20(2): 147-162.

[45] Tsiddon, Daniel. 1993. "The (Mis)behaviour of the Price Level" Review of Eco-

nomic Studies, 60(4): 889-902.

[46] Vermeulen, Philip, Daniel Dias, Maarten Dossche, Erwan Gautier, Igna-

cio Hernando, Roberto Sabbatini, and Harald Stahl. 2007. "Price Setting in

the Euro Area: Some Stylised Facts From Individual Producer Price Data", ECB

Working Paper Series, 727

[47] Veronese, Giovanni, Silvia Fabiani, Angela. Gattulli, and Roberto Sabba-

tini. 2005. "Consumer Price Behaviour In Italy: Evidence From Micro CPI Data."

ECB Working Paper 449.

[48] Zbaracki, Mark, Mark Ritson, Daniel Levy, Shantanu Dutta, and Mark

Bergen. 2004. "Managerial and Customer Costs of Price Adjustment: Direct Evi-

dence from Industrial Markets.�Review of Economics and Statistics, 86(2): 514�533.

30



Appendix A: Mathematical Proofs

Proof of the �rst part of Lemma 3.1.
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Stating that z+y+a
b

= w, the expression above becomes
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Proof of the uniqueness of ~ft (the non-linear cross section average estimator
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and note that we have

f�pit = zit(ft) + zit(ft) [� (zit(ft)� es)� � (zit(ft) + es)] (9)

+�2 [� (zit(ft)� es)� � (zit(ft) + es)] + ~�it: (10)

The cross-sectional average estimate of ft is now given by the solution of the non-linear

equation

	( ~ft) =
NX
i=1

witfzit( ~ft) + zit( ~ft)
h
�
�
zit( ~ft)� es�� ��zit( ~ft) + es�i (11)

+ �2
h
�
�
zit( ~ft)� es�� ��zit( ~ft) + es�ig � aNt (12)

= 0; (13)

where aNt =
PN

i=1wit
f�pit.

First it is clear that 	( ~ft) is a continuous and di¤erentiable function of ft, and it is

now easily seen that

lim
ft!+1

	( ~ft)! +1 and lim
ft!�1

	( ~ft)! �1:

Also the �rst derivative of 	(ft) is given by17

	0( ~ft) =
1q

�2s + �
2
�

NX
i=1

witqit;

where

qit = 1 + �
�
zit( ~ft)� es�� ��zit( ~ft) + es�+ (1� �2)h(zit( ~ft));

and

h(zit( ~ft)) = zit( ~ft)
h
�
�
zit( ~ft)� es�� ��zit( ~ft) + es�i :

But since 1� �
�
zit( ~ft) + es� = ���zit( ~ft)� es�, then

1 + �
�
zit( ~ft)� es�� ��zit( ~ft) + es� = ��zit( ~ft)� es�+ ���zit( ~ft)� es� > 0;

and it is easily seen that h(zit( ~ft)) is symmetric, namely h(zit( ~ft)) = h(�zit( ~ft)). Focusing
17Recall that the weights, wit; are non-zero pre-determined constants, and in particular do not depend

on ft.
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on the non-negative values of zit( ~ft) it is easily seen that

h(zit)) =
zitp
2�

h
e�0:5(zit�es)2 � e�0:5(zit+es)2i > 0 for es > 0,

and by symmetry h(zit)) � 0, for all es � 0. Hence, qit > 0 for all i and t, and es � 0:

Therefore, it also follows that 	0(ft) > 0, for all value of wit � 0 and s � 0. Thus, by the
�xed point theorem, 	(ft) must cut the horizontal axis but only once.

Proof of the consistency of ~ft as an estimator of ft as N !1.
Let

	(ft) =

NX
i=1

wit fzit(ft) + zit(ft) [� (zit(ft)� es)� � (zit(ft) + es)]
+�2 [� (zit(ft)� es)� � (zit(ft) + es)]	� aNt;

and note that

	(ft) = �
NX
i=1

wit�it.

Consider now the mean-value expansion of 	(ft) around ~ft

	(ft)�	( ~ft) = 	0( �ft)(ft � ~ft);

where �ft lies on the line segment between ft and ~ft. Since 	( ~ft) = 0 and 	0( �ft) > 0 for

all �ft (as established above) we have
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hence E (~�it) = 0. Further, conditional on ft and xit; price changes, �pit, being functions

of independent shocks vi and "it over i, will be cross sectionally independent. There-

fore, �it will also be cross sectionally independent; although they need not be identically

distributed even if the underlying shocks, vi and "it, are identically distributed over i.

Given the above results we now have (for each t and as N !1)
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where

#2~f = lim
N!1

8><>:
�PN

i=1w
2
it

��1PN
i=1w

2
itV ar(~�it)

[	0(ft)]
2

9>=>; :
Note that as N ! 1,

PN
i=1wit~�it

p! 0, and hence ~ft
p! ft, since 	0(ft) > 0 for all ft.It

must also be that �ft
p! ft.

In the case where wit = 1=N , we have

#2~f = lim
N!1

(
N�1PN

i=1 V ar(~�it)

[	0(ft)]
2

)
:

It also follows that ~ft � ft = Op
�
N�1=2�.
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Appendix B: Monte Carlo Simulations

We generated the log price series according to the baseline model, (5), and simulating

the common factors as [a] �rst order autoregressive process. In our reference case, the

sample size is set at N = 50, T = 50. In Table B.1, we report the average (across

1000 replications) of the point estimates of s, �", �s and �v and their average standard

errors in di¤erent setups. Concerning the estimation of ft, we compute the RMSE with

respect to the true ft and compare the standard deviation of the true ft with that of the

estimated ft. Initial values for the estimation of ft are set to pt. The standard errors of the

parameter estimates are computed from the second derivatives of the full log-likelihood

function. This table also reports the value of c computed from the point estimates of s,

�" and �! = �f
p
1� �2 , where �f is the standard deviation of the estimated ft and �

is the true autoregressive coe¢ cient of the AR(1) process assumed for ft.

Results reported in Table B.1 allow a comparison of the following cases: (i) with and

without random e¤ects, (ii) panels with N small, N = 25 versus N = 50, (iii) cases

where the average frequency of price changes is 0.27 versus 0.12, (iv) the case of a small

idiosyncratic component and a large common factor versus the case of a large idiosyncratic

component and a relatively small common component, which corresponds to parameter

values close to the estimates based on observed data. In general, estimated parameters

are close to their true values. Our simulations show that the range of inaction is estimated

with high precision. The estimate of the variance of the idiosyncratic component is closer

to its theoretical value in the model with random e¤ects. This drives the c above its

true value, as it is related to the ratio of s to the size of the idiosyncratic and common

shocks. Not surprisingly, the estimation of the common factor improves as the cross-

section dimension increases. The results in Table B.1 also suggest that the estimation

of ft deteriorates as the frequency of price changes and the size of the common shock

diminishes.
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Table B.1 - Monte Carlo Simulations

Average frequency of price changes � 0.27 with random e¤ects

s �" �s �v c

True values 0:15 0:05 0:01 0:025 0:082bs b�" b�s b�� RMSE(bft) RMSE(bft)
RMSE(ft)

bc
N = 50, T = 50 0:151

(0:0014)
0:049
(0:0011)

0:011
(0:0013)

0:027
(0:0030)

0:00019 1:0018 0:096

Average frequency of price changes � 0.27 without random e¤ect

s �" �s �v c

True values 0:15 0:05 0:01 0 0:082bs b�" b�s RMSE(bft) RMSE(bft)
RMSE(ft)

bc
N = 50, T = 50 0:150

(0:0013)
0:049
(0:0011)

0:007
(0:0013)

0:00014 1:0018 0:099

N = 25, T = 50 0:150
(0:0019)

0:048
(0:0015)

0:006
(0:0018)

0:00029 1:0052 0:099

Average frequency of price changes � 0.12 with random e¤ect - large common component

s �" �s �v c

True values 0:300 0:050 0:100 0:025 0:329bs b�" b�s b�� RMSE(bft) RMSE(bft)
RMSE(ft)

bc
N = 50, T = 50 0:302

(0:0071)
0:047
(0:0017)

0:103
(0:0055)

0:029
(0:0036)

0:00049 1:0052 0:430

Average frequency of price changes � 0.12 with random e¤ect - large common component

s �" �s �v c

True values 0:300 0:100 0:125 0:250 0:260bs b�" b�s b�� RMSE(bft) RMSE(bft)
RMSE(ft)

bc
N = 100, T = 100 0:307

(0:0108)
0:099
(0:0027)

0:131
(0:0080)

0:247
(0:0246)

0:00593 1:1841 0:380

Notes: 1000 replications, estimation by full ML. The �gures in brackets are standard errors. ft is

simulated as a �rst order autoregressive process with intercept equal to 0.05 and slope equal to 0.90.

�f = 1; except in the last simulation exercise (large idiosyncratic component) where �f = 0:00625:

s is the size of the price inaction band, �2" is the variance of the idiosyncratic component, �
2
s is the

variance of sit the threshold parameter for price changes. bc is estimated as bs2=(b�p6), where bs is the
estimated size of the price inaction band, b� = qb�2" + b�2!, b�" is the estimated standard deviation
of the idiosyncratic component, and b�! is the estimated standard deviation of the common shock.

RMSE(bft)=RMSE(f t) stands for the ratio of the standard deviation of the estimated ft over the
standard deviation of the true ft:
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Our second set of Monte Carlo simulations consider the case of serial correlation of

the idiosyncratic component. We model it as an AR(1) process where the variance of

"it is identical to that of the base case. The results indicate that serial correlation in

the idiosyncratic component introduces an upward bias in the estimated bs and b�s.and
a small downward bias in the estimates of b�". The results are summarized in table

B.2. The bias is negligible for low values of the serial correlation coe¢ cient. It remains

limited for small values of � (for � = 0:50, the estimate of s is only 0.03 higher than

the true value). The bias becomes important only as serial correlation approaches the

unit root case. However, because our measure of intrinsic price rigidity c is a function of

s=
p
�"2 + �!2, its computed value involves an upward bias that increases with the degree

of serial correlation of "it. For � = 0:50, the bias amounts to 0.08.

Table B.2 - Monte Carlo Simulations with serially correlated

idiosyncratic component
s �2" �2s c

True values 0:35 0:005625 0:010 0:54bs b�2" b�2s RMSE(bft) RMSE(bft)
RMSE(ft)

bc
�=0 0:357

(0:020)
0:0038
(0:005)

0:0011
(0:002)

0:0021 1:343 0:55

�=0.10 0:359
(0:021)

0:007
(0:0004)

0:011
(0:002)

0:0021 1:356 0:56

�=0.50 0:379
(0:024)

0:0033
(0:0004)

0:013
(0:003)

0:0024 1:400 0:63

�=0.90 0:464
(0:042)

0:0022
(0:0004)

0:023
(0:006)

0:0030 1:425 1:00

�=0.95 0:510
(0:054)

0:0017
(0:0003)

0:029
(0:009)

0:0031 1:376 1:28

�=0.99 0:574
(0:087)

0:0012
(0:0003)

0:038
(0:015)

0:0029 1:162 2:00

Notes: 1000 replications, N = 50, T = 50, estimation by full ML. The �gures in bracket are

standard errors. ft is simulated as a �rst order autoregressive process with intercept equal to 0.05 and

slope equal to 0.75. "it is simulated as a �rst order autoregressive process with zero intercept and the

serial correlation coe¢ cient given by �. �f = 0:057 and �" = 0:075. See also the notes to Table B.1.

The third set of Monte Carlo simulations examines the case of cross-sectional de-

pendence. Cross-sectional dependence may be motivated on two grounds. First, local

competition may lead outlets to be in�uenced by their neighbor pricing policies. Evidence

on this can be found in Pinske et al. (2002) for US wholesale gasoline markets. Second,

outlets of the same chain may have a common pricing policy, when pricing decision are

centralized. In order to investigate this, two alternative speci�cations are chosen. The

�rst is a Spatial Moving Average Model. The second is factor error structure where the
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cross-section dependence is generated according to a �nite number of unobserved common

factors. We include 10 factors for the 50 outlets considered in the experiments. The

results are summarized in Table B.3.

As is well known in the literature on the linear factor model, "weak" cross sectional

dependence (in the sense de�ned in Pesaran and Tosetti, 2007) does not a¤ect the con-

sistency of the estimates of the common factors using cross section averages or principle

component approaches.18 The Monte Carlo experiments suggest that this property also

holds in the case of our non linear factor model. Whether this result holds more generally

clearly require further investigation.

Table B.3 - Monte Carlo Simulations with cross sectionally dependent

idiosyncratic component
s �2" �2s c

True values 0:35 0:005625 0:010 0:54bs b�2" b�2s RMSE(bft) RMSE(bft)
RMSE(ft)

bc
no cross-sectional dependence 0:357

(0:020)
0:0038
(0:0005)

0:011
(0:011)

0:0021 1:343 0:55

SMA(1) 0:357
(0:020)

0:0035
(0:0004)

0:011
(0:002)

0:0024 1:369 0:55

10 factors(2) 0:357
(0:020)

0:0036
(0:0004)

0:011
(0:002)

0:0024 1:375 0:55

Notes: Simulations are based on 1000 replications with N = 50 and T = 50. Estimation is by full

ML. The �gures in bracket are standard errors. ft is simulated as ft = 0:05+ 0:75ft�1+!t, !t~iid

N(0; �2!), with �
2
! = 0:0002734. See also the notes to Table B.1

(1) stands for the Spatial Moving Average model "it = xit+xi�1;t+xi+1;t with xit~iid N(0; �
2
x).

The value of �x is set so that �" = 0:075, the same value used in the experiments summarized in Table

B.2.

(2) stands for the multifactor error structure "it =
10P
j=1

ijzjt + xit , where zjt~iid N(0; �
2
j) and

xit~iid N(0; �
2
x) are drawn independently, with �

2
j = �

2
x =0.0028125. i1 = 1 for i=1, ...,5,

and 0 otherwise, i2 = 1 for i=6, ...,10, and 0 otherwise, i3=1; for i = 11; :::; 15; and so on.

18Stock and Watson (1998) show that their estimator is robust with limited serial and cross-sectionnally
correlated idiosyncratic component and time varying factor loadings. Consistency if obtains as N and T
go to in�nity with T/N going to zero (for large N small T panels). Pesaran and Tosetti (2007) derive
the conditions under which the Pesaran (2006) Common Correlated E¤ect estimator is robust to cross-
sectionally weakly dependant processes such as SMA and multifactor structures. Consistency is obtained
in N alone.
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Appendix C: Data Sources

The Belgian CPI data set :

The Belgian CPI data set contains monthly individual price reports collected by the

Federal Public Service "Economy, SMEs, Self-Employed and Energy" for the computation

of the Belgian National and Harmonized Index of Consumer Prices. In its complete

version, it covers the 1989:01 - 2005:12 period. Considering the whole sample, would have

involved analyzing more than 20,000,000 price records. For this project, we restricted the

analysis to the product categories included in the Belgian CPI basket for the base year

1996, and restricted our period of observation to the 1994:07 - 2003:02 period. Our data

set covers only the product categories for which the prices are recorded throughout the

entire year in a decentralized way, i.e. 65.5%. of the Belgian CPI basket for the base year

1996. The remaining 34.5% relate to product categories that are monitored centrally by

the Federal Public Services, such as housing rents, electricity, gas, telecommunications,

health care, newspapers and insurance services and to product categories that are not

available for sale during the entire year (some fruits and vegetables, winter and summer

fees in tennis club). Price reports take into account all types of rebates and promotions,

except those relating to the winter and summer sales period, which typically take place

in January and July. In addition to the price records, the Belgian CPI data sets provides

information on the location of the seller, a seller identi�er, the packaging of the product (in

order to identify promotions in quantity) and the brand of the product. For all products,

the price concept used in this paper correspond to the log of price per unit.

The French CPI data set :

The French CPI data set contains more than 13,000,000 monthly individual price

records collected by the INSEE for the computation of the French National and Harmo-

nized Index of Consumer Prices. It covers the period July 1994:07 - February 2003. This

data set covers 65.5%. of the French CPI basket. Indeed, the prices of some categories of

goods and services are not available in our sample: centrally collected prices - of which

major items are car prices and administered or public utility prices (e.g. electricity)- as

well as other types of products such as fresh food and rents. At the COICOP 5-digit

level, we have access to 128 product categories out of 160 in the CPI. As a result, the

coverage rate is above 70% for food and non-energy industrial goods, but closer to 50% in

the services, since a large part of services prices are centrally collected, e.g. for transport

or administrative or �nancial services.

Each individual price quote consists of the exact price level of a precisely de�ned
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product. What is meant by �product� is a particular product, of a particular brand

and quality, sold in a particular outlet. The individual product identi�cation number

allows us to follow the price of a product through time, and to recover information

on the type of outlet (hypermarket, supermarket, department store, specialized store,

corner shop, service shop, etc.), the category of product and the regional area where the

outlet is located (for con�dentiality reasons, a more precise location of outlets was not

made available to us). The sequences of records corresponding to such de�ned individual

products are referred to as price trajectories. Importantly, if in a given outlet a given

product is de�nitively replaced by a similar product of another brand or of a di¤erent

quality, a new identi�cation number is created, and a new price trajectory is started. On

top of the above mentioned information, the following additional information is recorded

: the year and month of the record, a qualitative �type of record� code and (when

relevant) the quantity sold. When relevant, division by the indicator of the quantity is

used in order to recover a consistent price per unit.

Con�dentiality data restrictions

Due to strong con�dentiality restrictions, we are not allowed to provide anyone with

the micro price reports underlying this work. However, a data set containing simulated

data and the MatLab code of the estimation procedures are available on request. A SAS

code is also available.
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Appendix D - Detailed Estimates by Product Categories

The results for Belgium are given in Table D.1, and for France in Table D.2. The

estimated values of the di¤erent parameters are presented in columns (2) to (9). Col-

umn (10) provides the correlation between the estimated component bft and the product
category price index. Columns (11) to (13) provide descriptive statistics of the data

set (the average number of observations per month, N , the frequency of price changes,

Freq, and the average size of price changes in absolute term, j�pj. Columns (14) to (15)
provide averages of the frequency of price changes, [Freq, and the average size of price
changes in absolute term, dj�pj, obtained on the basis of simulated data generated using
the estimated structural parameters and the estimated ft of each product categories. The

simulation exercise is replicated 1000 times. The name of product categories for which

the model �ts the data poorly is right-aligned.
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Appendix E - Simulation of Price Changes

In order to assess how well the model �ts the data, we compare the realized frequency

and average size of price changes with those obtained by simulating the model. More

speci�cally, for each product category we simulate an unbalanced panel of price trajec-

tories starting with pi0, the observed initial value of each price trajectory i, using the

estimate bs, bft and randomly generated "it�s and si�s with respective standard-errors b�",b�s as well as estimated bvi. Indeed, as the true initial value pi0 is used as starting value
of the ith price trajectory, the true vi should be used to simulate the subsequent price

observations of that trajectory. Since vi is unknown, the simulation exercise is based on

an estimated bvi which is computed by re-estimating our baseline model with trajectory
speci�c �xed e¤ects, keeping the other parameters of the model (bs, b�", b�s, bft) as given.
The time dimension of the simulated trajectory for outlet i is set to coincide with the

length of the associated realized price trajectory and the number of price trajectories in

the simulated panels is given by the number of trajectories in the observed panels. The

experiment is repeated 1000 times for each trajectory.
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