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Abstract

This paper applies the modelling strategy of Garratt, Lee, Pesaran and

Shin (2003) to the estimation of a structural cointegrated VAR model that

relates the core macroeconomic variables of the Swiss economy to current and

lagged values of a number of key foreign variables. We identify and test a

long-run structure between the variables. Moreover, we analyse the dynamic

properties of the model using Generalised Impulse Response Functions. In its

current form the model can be used to produce forecasts for the endogenous

variables either under alternative specifications of the marginal model for

the exogenous variables, or conditional on some pre-specified path of those

variables (for scenario forecasting). In due course the Swiss VECX* model

can also be integrated within a Global VAR (GVAR) model where the foreign

variables of the model are determined endogenously.

JEL classification: C53, C32

Key words: Long-run structural vector autoregression

1 Introduction

At the end of 1999 the Swiss National Bank (SNB) abandoned monetary targeting in

favour of inflation targeting by announcing an explicit inflation objective in terms
∗The views expressed in this paper are solely our own and not necessarily shared by the Swiss

National Bank. We are grateful to an anonymous referee and the editors of the SNB Economic
Studies for helpful comments.
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of an annual increase in the consumer price index (CPI) of at most two percent.

Under the new monetary policy regime the inflation forecast plays a central role.

The SNB employs different types of models to form a consensus forecast for the

inflation rate. These include a large simultaneous equation model, a small structural

model, structural and non-structural vector autoregressive (VAR) models, and a

small structural cointegrating VAR model.

The structural cointegrating VAR approach is particularly attractive as it com-

bines long-run information from economic theory with a flexible modelling of the

short-run dynamics. The structural cointegrating VAR model previously used at

the SNB, however, had some shortcomings as it considered only domestic variables.

Inflation in Switzerland, being a small open economy, is strongly influenced by devel-

opments in the rest of the world. A forecasting model that takes account of foreign

influences on domestic variables is therefore desirable.

This paper develops a long-run structural cointegrating VAR model that relates

the core macroeconomic variables of the Swiss economy to current and lagged values

of a number of key foreign variables, following the approach of Garratt, Lee, Pesaran

and Shin (2003, 2006). We refer to this model as the Swiss VECX* model. In

a structural cointegrating VAR model the implications of economic theory for the

long-run relations among the variables in the model are combined with a data-driven

approach to modeling the short-run dynamics. The Swiss VECX*model is estimated

on quarterly data over the period 1976Q1 to 2006Q4. The endogenous variables are

real M2, real gross domestic product (GDP), the three-month LIBOR rate, the

quarterly rate of inflation, the nominal exchange rate, and the ratio of the domestic

to the foreign price level. The weakly exogenous variables are foreign real GDP,

the foreign three-month interest rate, and the oil price. In the Swiss VECX* model

five long-run relations are identified. These are purchasing power parity, money

demand, the uncovered interest parity linking the domestic to the foreign interest

rate, a relation between domestic and foreign output, and a modified Fisher equation

that relates the domestic interest rate to the domestic inflation rate. Though the

overidentifying restrictions implied by economic theory were marginally rejected,

the diagnostic tests confirm that the model seems to provide a good explanation of

the Swiss data.

We also provide a detailed analysis of the dynamic properties of the VECX*

model by means of impulse response functions. The impulse response function,

which considers the effects of a typical shock on the time path of the variables

in the model, is the standard tool for the analysis of interactions and dynamics.
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One can consider shocks to observable or unobservable variables. The effect of a

shock to an observable on the other variables is of considerable interest in itself

and should certainly be the first stage of any analysis. Shocks to observables are

calculated using Generalized Impulse Response Functions, GIRFs. The calculation

of GIRF’s does not require any identifying assumptions and uses the estimated error

covariances to allow for the contemporaneous linkages that have prevailed between

shocks historically.

However, for some purposes, we may wish to know the economic nature of the

shocks to observables. For interest rates we may wish to decompose the observable

shock to the interest rate into a domestic monetary policy shock, a foreign monetary

policy shock and a residual shock. To be able to produce conditional forecasts given

a specific path for the short-term interest rate, a monetary policy shock has to

be identified. Decomposing the observable shock into its unobserved components

requires more information, which is often supplied by the economic theory of the

short run. This topic, however, is not part of the current study.

The forecast performance of the VECX* model is investigated by Assenmacher-

Wesche and Pesaran (2008), who show that the model is capable of generating

reasonable out-of-sample forecasts for output, inflation and the interest rate over the

period 2000Q1 to 2006Q4, when compared to a number of benchmark forecasts. In

their forecasting exercise forecasts for the exogenous variables come from a marginal

model for the exogenous variables. Nevertheless, the model can also be used for

scenario forecasts, in which the evolution of the exogenous variables is based on the

scenarios developed in the “Weltwirtschaftliche Annahmen”, as it is the case for

the other SNB models that include foreign variables. A more consistent approach,

however, would be to obtain the forecasts for the exogenous variables from a Global

VAR recently proposed in Pesaran, Schuermann, and Weiner (2004) and further

developed in Dees, di Mauro, Pesaran and Smith (2007). The Swiss VECX* model

is designed such that it can be readily linked to a Global VAR model, but this is

not part of the current paper.

The outline of the rest of the paper is as follows. Section 2 introduces the data,

examines the time-series properties of the variables to be included in the model, and

presents a preliminary univariate analysis of the long-run relations. Section 3 sets

out the econometric methodology used. Section 4 presents the empirical results.

Section 5 ends with some concluding remarks.
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2 Modeling choices

The model considered in this study is a structural cointegrated VAR model that

relates the core macroeconomic variables of the Swiss economy (denoted by the

vector xt) to current and lagged values of a number of key foreign variables (denoted

by the vector x∗t ), which we call the Swiss VECX* model. The foreign variables are
constructed specifically to reflect the interlinkages of the Swiss economy with the

rest of the world, particularly the euro area. As shown in Pesaran and Smith (2006)

the VECX* model can be derived as the solution to an open macro economy New

Keynesian Dynamic Stochastic General Equilibrium (DSGE) model. Therefore, it

is possible in principle to impose the short-run and long-run DSGE-type parametric

restrictions on the VECX* model, although at this stage we shall focus on the

long-run relations and leave the short-run parameters unrestricted.

In the implementation of the long-run structural modelling a number of choices

have to be made, see Garratt, Lee, Pesaran and Shin (2006, p. 114). Among these

are the choice of the core endogenous and exogenous variables, their lag orders, the

deterministics (namely the choice of intercept and linear trends) and the sample

period. The choice of the variables is influenced by the purpose of the model,

namely forecasting the rate of inflation and modeling the monetary policy process.

Therefore, the model should incorporate those key relations from economic theory

that can be expected to have an impact on the inflation rate. One of these relations

is money demand, which postulates a long-run relation between the real money

stock, real output and the interest rate. Another is an interest rate rule which

establishes a long-run relation between the interest rate and inflation. Switzerland

as a small, open economy can be expected to be subject to influences from the

exchange rate. Therefore, purchasing power parity, which links the domestic price

level to the nominal exchange rate and the foreign price level, is also included.

In addition, we consider the price of oil as the most important commodity price,

which is expected to have direct and indirect impacts on world inflation. Finally,

international business cycles and interest rate cycles are allowed to have an influence

on the domestic economy by considering long-run relations between domestic and

foreign output and interest rates. The latter two variables, together with the oil

price, are regarded as exogenous variables.
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2.1 Data on the core variables

The data are quarterly and run from the first quarter of 1974 to the last quarter of

2006. The domestic variables are (log) real M2,mt, (log) real gross domestic product

(GDP), yt, the three-month LIBOR rate, rt, and the quarterly rate of inflation,

πt. These variables are treated as endogenous. Further endogenous variables are

the nominal exchange rate, et, and the ratio of the (log) domestic to the (log)

foreign price level, pt − p∗t . The exogenous variables are (log) foreign real GDP, y
∗
t ,

the foreign three-month interest rate, r∗t , and the (log) oil price, p
oil
t . Except for

the interest rates, all the series are in logarithms. Interest rates are expressed as

0.25 ln(1 +R/100) where R is the interest rate in percent per annum to make units

of measurement compatible with the rate of inflation, which is computed as the first

difference of the logarithm of the quarterly price level.

The foreign (star) variables are computed as weighted averages, using three-year

moving averages of the trade shares with Switzerland. For example, the foreign

output is computed as

y∗t =
NX
j=1

w̄jtyjt,

where yjt is the logarithm of real output of country j, and w̄jt is its associated

weight. Foreign output and the foreign price level are aggregates of the GDP and

the consumer price indices (CPI) of Switzerland’s 15 largest trade partners. The

quarterly trade weights are computed as averages of the Swiss economy’s imports

from and exports to the country in question divided by the total trade of all the

15 countries. Trade to these 15 countries on average covers about 82 percent of

total Swiss foreign trade. Figure A.3 in the appendix shows the evolution of the

trade weights. Germany is the most important trading partner of Switzerland–

accounting for a trade share of about 30 percent–followed by France, Italy and the

United States. Out of the 15 major trading partners, eleven are European economies

that account for as much as 83 percent of the Swiss trade. The trade with the US

amounts to around 9 percent of Swiss trade, with Asian countries picking up the

rest. The exchange rate and the foreign interest rate variables are computed as

averages of the US and the euro area time series only, given the dominance of these

two regions in Swiss financial markets. A detailed description of the variables, their

sources, and the construction of the foreign variables is given in the appendix.

Economic theory predicts a number of long-run relations such as purchasing

power parity (pt − p∗t − et, PPP), the Fisher parity (rt − πt), and the uncovered
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interest parity (rt− r∗t , UIP); see Garratt, Lee, Pesaran and Shin (2006) for further
details. We shall also consider a modified version of the Fisher Parity where we

relax the unit coefficient restriction on the inflation rate. We refer to this version as

the long-run interest rate rule (rt − βπt, LIR).

The extent to which these long-run relations have held historically are depicted

graphically in Figures 1 to 7 where levels and first differences of the various variables

that are expected to enter the long-run relations are displayed. Figure 1 shows

the variables in the PPP relationship, namely the weighted average of the nominal

exchange rate of the Swiss franc against the euro area and the US, together with

the ratio of the domestic to the foreign price level. Apparently both variables share

the same trend in the long run, suggesting that PPP could be one of the long-run

relations. Nevertheless, there seems to be some trend real appreciation over the

sample period since the relative price level falls by more than the exchange rate,

which we will take into account later. Figure 2 shows the evolution of real M2 and

real GDP. The fact that both series have similar trend properties suggests an income

elasticity of close to unity. Figure 3 plots the velocity of M2 against the short-term

interest rate. Movements in velocity coincide well with swings in the interest rate,

especially since the 1980s. Figure 4 shows that the domestic and foreign real output

series also seem to share similar trend properties. From the mid-1980s on, however,

Swiss output growth has not been keeping up with the foreign output growth, and

this needs to be taken into account. Figure 5 shows the domestic and foreign three-

month interest rates. Both move closely together, though the gap between foreign

and domestic interest rates that has been present in the late 1970s and early 1980s

narrows slightly during the 1990s. One possible explanation is that the foreign

countries have reduced their inflation rate more strongly than Switzerland, which

traditionally has experienced a relatively low rate of inflation. Figure 6 shows the

relation between the domestic three-month interest rate and the rate of inflation.

In the 1970s there have been times of negative (ex post) real interest rates while

throughout the 1990s the real interest rate has been positive. Finally, Figure 7 shows

the evolution of oil prices.

2.2 Single equation ARDLmodels: a preliminary data analy-
sis

Before embarking on a system estimation of all the long-run relations it is instruc-

tive to consider single-equation estimation of each of the long-run relations using the
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autoregressive distributed lag (ARDL) modeling approach detailed in Pesaran and

Shin (1999) and Pesaran, Shin and Smith (2001). Since the Swiss VECX* model

will contain nine variables and thus is rather large it is advisable to first investigate

possible cointegrating relations in smaller sub-systems. The ARDL approach allows

for such a preliminary analysis of the long-run relationships between groups of vari-

ables separately before combining them in a full system estimation. Ho and Sørensen

(1996) show that under or over-estimation of the cointegrating rank becomes more

serious the larger the number of endogenous variables being considered. The ARDL

models thus will give evidence on which of the long-run relations from theory may

hold in the data and help in determination of the number of cointegrating relations

when we come to full system estimation. In addition, we obtain coefficient estimates

of the long-run parameters from the ARDL models. Since it is often difficult to iden-

tify the cointegrating space of a high-dimensional system by choosing restrictions

that are economically meaningful and not rejected by the data, the estimates from

the ARDL long-run relations will indicate which parameter restrictions are likely to

be accepted and thus can provide a cross check for the estimated β vector. To pre-

view the results, we find that no unexplainable differences between the sub-system

ARDL and the full system estimates arise.

Finally, the ARDL approach is robust to the unit-root properties of the underly-

ing series and knowledge of the order of integration of the variables is not necessary.

This allows one to test for the existence of a long-run relation without having to

pretest variables for a unit root, which will be particularly helpful in the case of

inflation that may be either I(1) or I(0), depending on the sample period.

To investigate the existence of a long-run relation, an ARDL regression in error-

correction form is estimated and it is tested whether lagged levels of the variables

enter the regression in a statistically significant manner. Alternatively, the signifi-

cance of the coefficient on the error-correction term can be tested. The test statistics

follow a non-standard distribution, irrespective of whether the variables included in

the model are I(1) or I(0). Pesaran, Shin and Smith (2001) provide critical values

for a F -test of the exclusion of the lagged levels and for a t-test of the significance

of the error-correction term. Depending on whether the variables are I(1) or I(0),

the critical values tabulated in Pesaran, Shin and Smith (2001) provide a lower and

an upper bound for the null hypothesis of no cointegration. When the test statistic

lies below the lower bound, the null hypothesis cannot be rejected. When it lies

above the upper bound, the null is rejected, whereas when it lies between the lower

and the upper bound, the result depends on whether the variables are I(0) or I(1).
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The critical values also depend on the characteristics of the deterministic variables,

i.e., whether a trend or a constant are included in the model and–in case of the

F -test–whether the intercepts or the trend coefficients are restricted or not.

The sub-models we investigate correspond to the five long-run relations we expect

to find among the variables in the model: purchasing power parity, money demand,

the relation between domestic and foreign output, the relation between domestic

and foreign interest rates and the relation between the interest rate and inflation.

The number of lags in each of the sub-models is selected by the Akaike Information

Criterion (AIC), considering a maximum lag length of four. The estimation period

runs from 1976Q1 to 2006Q4. We include linear trends in the case of the regressions

for PPP and the output gap since inspection of Figure 1 and Figure 4 indicated that

a trend may be present. The results of the ARDL regressions are shown in Table 1.

The columns two to four of Table 1 show the error-correction term, its t-ratio and

the lower and upper bound critical values. The next two columns give the F -statistic

for exclusion of the levels of the variables and the respective upper and lower critical

values. The last two columns show the adjusted R2 and the specification of the

ARDL model. All estimated models show a significantly negative error-correction

coefficient. The t-statistic exceeds the upper bound in absolute value for all ARDL

models except for the uncovered interest parity, where it falls between the upper

and the lower bound. The F -statistic always exceeds the upper bound and thus

rejects the hypothesis of no level effects in the ARDL specifications. The evidence

thus indicates the existence of five stable long-run relations in the ARDL models.

The estimated long-run relations from the ARDL models are given below:

Purchasing power parity (PPP):
et =−0.009

(0.090)

+0.82pt
(0.22)

−0.60p∗t
(0.12)

−0.0009t
(0.0007)

+ε1t ,

Money demand (MD):
mt = 4.16

(1.26)

+0.78yt
(0.11)

−25.71rt
(3.55)

+ε2t ,

Output gap (GAP):
yt = 11.62

(0.09)

+0.75y∗t
(0.13)

−0.0005t
(0.0008)

+ε3t ,

Interest rate parity (UIP):
rt =−0.005

(0.003)

+1.02r∗t
(0.18)

+ε4t ,

Long-run interest rate rule (LIR):
rt = 0.003

(0.001)

+1.05πt
(0.20)

+ε5t .

Except for the trends in the PPP and the GAP equation all coefficient estimates

are significant and have the expected signs. With the exception of the coefficient on
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the foreign price level in the PPP equation their magnitudes are not significantly

different from the values expected from long-run theory. Finally, it turns out that

the income elasticity of money demand is close to unity.

2.3 Unit root test results

The above results are promising and provide good initial estimates for a system

estimation that is our primary objective. To this end we first need to consider the

unit root properties of the core variables in the VECX* model, which is needed if

we are to make a meaningful distinction between long-run and short-run properties

of the VECX* model. Since there is considerable evidence that price levels might

be I(2), in order to avoid working with mixtures of I(1) and I(2) variables, instead

of pt and p∗t we shall consider πt = pt − pt−1 and pt − p∗t , and test if the latter are
all I(1). In this way, at least in principle, we could have both the long-run interest

rate and the PPP relation holding simultaneously.

Since the power of unit root tests is often low, in addition to the standard Aug-

mented Dickey-Fuller (ADF) test, we shall also apply the generalized least squares

version of the Dickey-Fuller test (ADF-GLS) proposed by Elliot, Rothenberg, and

Stock (1996) and the weighted symmetric ADF test (ADF-WS) of Park and Fuller

(1995), which have been shown to have better power properties than the ADF test.

It is also clear from Figures 1 to 7 that the variables et, pt − p∗t , mt, yt, y∗t and poilt

are trended whereas rt, πt, and r∗t show no visible trends. Therefore, we include a
linear trend in the ADF regressions for the former group of variables and include an

intercept only for the latter group of the variables. All ADF regressions applied to

the first differences include an intercept. Finally, all the tests are conducted with a

maximum order of augmentation set equal to four.

The results for the regressions in first differences are reported in Table 2 and for

the levels they are given in Table 3. Entries in italics show the lag length which

was selected by the Akaike criterion (AIC). The sample period runs from 1976Q1

to 2006Q4, so that the AIC relates to a common sample for all tests.

In establishing the unit root properties of the core variables we shall first check

if their first differences are in fact stationary. The unit root tests applied to the

levels, to be discussed subsequently, will be valid if their first differences are in fact

stationary. The ADF and the ADF-WS test results for the first differences, which

are provided in the first panel of Table 2, reject the presence of unit roots in all the

first-difference series, with the possible exception of the first-difference of the relative
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price variable, ∆(pt − p∗t ), when the order of augmentation is set to 3 and 4.
1 The

ADF-GLS tests yield less clear-cut results, but generally support the rejection of a

unit root in first differences of the core variables when the lag length is selected by

the AIC. The remaining ambiguities, particularly in relation to domestic and foreign

output seem to be due to the unusual fluctuations caused by the first oil-price shock

at the beginning of the sample period, as can be seen from Figure 4. Leaving out

the first two years of the sample, the ADF-GLS test considers both series to be

stationary. We believe it is safe to proceed with the assumption that all the first

differences are stationary.

Turning to the level of the variables, the ADF-test results in the first panel of

Table 3 show that all three tests are unable to reject the unit root hypothesis for

y, r, y∗, r∗, and poil. For inflation a unit root cannot be rejected when the order of

augmentation is selected by the AIC. Similarly, a unit root can not be rejected in

real money balances when the augmentation order of the underlying ADF regression

is selected by the AIC, but the opposite result is obtained when ADF-GLS and the

ADF-WS tests are used. The exchange rate, et, and relative price variable, pt− p∗t ,
are also regarded as trend stationary by the ADF test but not by the ADF-GLS and

the ADF-WS tests. Overall, however, it seems reasonable to regard all the series

under consideration approximately as I(1) variables.

3 System approach: econometric methodology

The structural cointegrating VAR strategy starts with an explicit formulation of

the long-run relationships between the variables in the model, derived from macro-

economic theory. These long-run relations are then incorporated in an otherwise

unrestricted VAR. The cointegrating VAR embeds the structural long-run relations

as the steady-state solutions while the short-run dynamics, about which economic

theory in general is silent, is estimated from the data without restrictions. This

seems a sensible strategy for the analysis of the long-run relations, but for forecast-

ing it might also be desirable to restrict the short-run coefficients.

In error-correction form the model can be written as

∆zt = −Πzt−1 +
p−1X
i=1

Γi∆zt−i + a0 + a1t+ ut, (1)

1If the relative price level were I(2) PPP would not hold and I(2) trends may be left in the
system, see Kongsted (2005). The stability tests presented in Section 4, however, indicate that
this seems not to be a problem.
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where zt = (x0t,x
∗0
t )
0 consists of a mx × 1 vector of endogenous variables, xt, and

a mx∗ × 1 vector of exogenous variables, x∗t , with mx + mx∗ = m. The matrix Π

is a m×m matrix of long-run multipliers and the matrices {Γi}p−1i=1 summarise the

short-run responses. The error term, ut, is distributed i.i.d.(0,Σ); a0 denotes a

vector of constants and a1 a vector of trend coefficients. To partition the system

into a conditional model for the endogenous variables, ∆xt, and a marginal model

for the exogenous variables, ∆x∗t , the parameter matrices and vectors Π, Γi, a0,

a1 and the error term ut are partitioned conformably with zt = (x0t,x
∗0
t )
0 as Π =

(Π0
x,Π

0
x∗)

0, Γi = (Γ
0
xi,Γ

0
x∗i)

0, i = 1, ..., p− 1, a0 = (a0x0, a0x∗0)0, a1 = (a0x1, a0x∗1)0, and
ut = (u

0
xt,u

0
x∗t)

0. The variance matrix of ut can be written as

Σ =

Ã
Σxx Σxx∗

Σx∗x Σx∗x∗

!
,

so that

uxt = Σxx∗Σ
−1
x∗x∗ux∗t + υt,

where υt ∼ iid(0,Σxx −Σxx∗Σ
−1
x∗x∗Σx∗x) is uncorrelated with ux∗t by construction.

For the Swiss economy it is reasonable to assume that x∗t variables are weakly exoge-
nous so thatΠx∗ = 0. This means that the information available from the model for

∆x∗t is redundant for efficient estimation of the parameters of the conditional model
for ∆xt. The restrictions Πx∗ = 0 also imply that the variables x∗t are I(1) and not
cointegrated. If the x∗t variables are cointegrated the cointegration test applied to
the conditional model needs to be modified. Although, to our knowledge a formal

statistical analysis of this case is not yet available, our preliminary analysis suggests

that the effective number of weakly exogenous variables used in testing for cointe-

gartion based on the conditional model should be equal to the number of weakly

exogenous varaibles, mx∗ minus the number of cointegration relations amongst the

exogenous variables, say r∗. In the applications to follow we found that there exists
one cointegration relation amongst the three weakly exogenous variables in the Swiss

model.2 Therefore, to account for this we also report simulated critical values for

the cointegration test in Table 5 that assume the existence of two (instead of three)

exogenous I(1) variables.

2To test for cointegration among the exogenous variables we estimated a system including two
lags of foreign output, the foreign interest rate and the oil price as well as an unrestricted constant
and a restricted trend. Neither the λ-max nor the trace test could reject the existence of a single
cointegrating vector at the 10 percent level of significance.
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The system then can be written as a conditional model for the endogenous vari-

ables,

∆xt = −Πxzt−1 +Λ∆x∗t +
p−1X
i=1

Ψi∆zt−i + c0 + c1t+ υt, (2)

and the marginal model for the exogenous variables (assuming that x∗t variables are
not cointegrated)

∆x∗t =
p−1X
i=1

Γx∗i∆zt−i + ax∗0 + ux∗t, (3)

where Λ ≡ Σxx∗Σ
−1
x∗x∗, Ψi ≡ Γxi − Σxx∗Σ

−1
x∗x∗Γx∗i, i = 1, ..., p − 1, c0 ≡ ax0 −

Σxx∗Σ
−1
x∗x∗ax0 and c1 ≡ ax1 − Σxx∗Σ

−1
x∗x∗ax∗1, see Garratt, Lee, Pesaran and Shin

(2006, p. 138).

If the model includes an unrestricted linear trend, in general there will be

quadratic trends in the level of the variables when the model contains unit roots.

To avoid this, the trend coefficients are restricted such that

c1 = Πxγ,

where γ is an m× 1 vector of free coefficients, see Pesaran, Shin and Smith (2000)
and Garratt et al. (2006). The nature of the restrictions on c1 depends on the rank

of Πx. In the case where Πx is full rank, c1 is unrestricted, whilst it is restricted to

be equal to 0 when the rank of Πx is zero. Under the restricted trend coefficients

the above VECM can be written as

∆xt = −Πx [zt−1 − γ(t− 1)] +Λ∆x∗t +
p−1X
i=1

Ψi∆zt−i + c̃0 + υt,

where

c̃0 = c0 +Πxγ.

Note that c̃0 remains unrestricted since c0 is not restricted.

4 Empirical results

4.1 Lag lengths and deterministic components

The first stage in the empirical analysis is to determine the lag order of the under-

lying unrestricted VAR. Table 4 shows the results from the application of different
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lag order selection criteria: the Akaike information criterion (AIC), the final pre-

diction error (FPE) (see Lütkepohl 2006), the Hannan-Quinn (HQ) criterion and

the Schwarz information criterion (SIC). All computations are carried out over the

period 1976Q1 to 2006Q4. The maximum lag length considered is four since we use

quarterly data. Considering a higher number of lags did not seem appropriate as

with the number of lags the number of coefficients to be estimated in a VAR rises

quickly. The AIC and the FPE criterion point to a lag order of two, whereas the

HQ and the SIC favor a lag of order one. We proceed with a lag length of p = 2,

because overestimation of the order of the VAR is much less serious than underesti-

mating it; see, for example, Kilian (2002). As deterministic variables a constant and

a linear trend are included, since trends might be present in the long-run output

relationship and possibly also in the PPP relation. The trend is restricted to lie

in the cointegration space, which ensures that there are no quadratic trends under

cointegration in the model.

4.2 The long-run structural model

Starting point for the estimation is the conditional vector error correction model in

equation (2). The data vector zt = {xt,x∗t} contains the endogenous and exogenous
variables. The endogenous variables are ordered xt = {et,mt, yt, rt, πt, pt − p∗t} and
the exogenous variables are x∗t = {y∗t , r∗t , poilt }. Note, however, that the ordering of
these variables do not affect the cointegration test results of the generalized impulse

functions.

After having decided on the lag order of the VAR, the number of cointegrating

relations between the variables has to be determined. When there are r cointegrating

relations amongst the variables zt, the matrixΠx has rank r < m and can be written

as

Πx = αxβ
0, (4)

whereαx (mx×r) is a matrix of error-correction coefficients and β (m×r) is a matrix
of long-run coefficients. The null hypothesis of no cointegration is investigated by

testing the rank of Πx. Table 5 shows the eigenvalues as well as the λ-max and the

trace statistic together with their simulated critical values.

When using the simulated critical values that assume the presence of two exoge-

nous I(1) variables, both the trace test and the maximum eigenvalue (λ-max) test

indicate the presence of five cointegrating vectors at the 10% level of significance.

For completeness, we also report the critical values assuming three exogenous I(1)
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variables, which point to the same conclusion though the test statistics stay slightly

below their critical values for r = 5. Overall, r = 5 seems a sensible choice, partic-

ularly considering that the long-run economic theory also predicts the existence of

five long-run relations.

To exactly identify the long-run relations, r restrictions (including a normali-

sation restriction) must be imposed on each of the r cointegrating relations. The

cointegrating vectors obtained by exact identification are not presented here, since

they do not have an economic interpretation. We proceed to imposing economi-

cally meaningful overidentifying restrictions that are in accordance with theoretical

priors. Falling back on the results from the sub-system ARDL models, we impose

overidentifying restrictions on β such that PPP, money demand, the output gap

between domestic and foreign output, uncovered interest rate parity between the

domestic and foreign interest rate, and a modified Fisher equation that we interpret

as the monetary authority’s long run interest-rate rule are imposed:

PPP: et − (pt − p∗t ) = b10 + b11t+ ξ1t,

MD: mt − yt = b20 + β24rt + ξ2t,

GAP: yt = b30 + β37y
∗
t + ξ3t,

UIP: rt − r∗t = b40 + ξ4t,

LIR: rt = b50 + β55πt + ξ5t.

These five long-run relations can be written compactly as

ξt = β0zt − b0 − b1t,

where b0 = (b10, b20, b30, b40, b50) and b1 = (b11, 0, 0, 0, 0).

We impose a unitary income elasticity of money demand since the estimated

coefficient was close to unity. By contrast, we do not impose a coefficient of unity

on the inflation rate in the modified Fisher equation since the empirical evidence

indicated that this restriction is strongly rejected.3 In addition, it turned out that the

lower trend output growth in Switzerland compared to its trading partners is better

modelled by allowing for a non-unit coefficient on the foreign output variable than

by including a trend in the output relation (the likelihood ratio test statistic is 78.65

3With a unitary coefficient on the inflation rate in the last equation, β55 = −1, the interest
elasticity of money demand declines from−22.29 to−8.96 and the likelihood ratio statistic increases
substantially from 75.65 to 88.71.
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in the former case versus 84.45 in the latter). The total number of overidentifying

restrictions is 21, with the overidentified β-matrix given by

β =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 −1 0 0 0

0 1 −1 β24 0 0 0 0 0

0 0 1 0 0 0 β37 0 0

0 0 0 1 0 0 0 −1 0

0 0 0 1 β55 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The estimated coefficients, together with their bootstrapped 95 percent confidence

bounds, are shown in Table 6. The estimate of β24 is 22.29, which means that

money demand has a negative interest elasticity as to be expected. Since analytical

standard errors are valid only asymptotically and may give a wrong impression of the

coefficients’ significance, we bootstrap confidence bounds for all the estimated long

run coefficients. The reported confidence bounds are obtained by a non-parametric

bootstrap with 1000 replications.4 The upper 95 percent confidence bound for β24 is

30.28 and the lower 95 percent bound is 15.55, implying that the interest elasticity of

money demand is significantly negative. The coefficient on foreign output, β37, has

a 95 percent confidence band of −0.72 to −0.65 and thus is significantly different
from minus unity. The estimate of the inflation coefficient, β55, is −1.58, with a
bootstrapped 95 percent confidence band of −2.11 to −1.26. This means that the
coefficient is significantly smaller than the theoretically expected value of minus

unity. One possible interpretation of this coefficient is that the monetary authority

tends to over-react to inflation in a systematic manner, so that the interest rate is

raised more than inflation in the long run. The estimate of the trend coefficient in

the PPP relation is significantly negative with a point estimate of -0.0004 and a 95

percent confidence bound in the range of −0.0001 to −0.0008.
A likelihood ratio (LR) test of the 21 overidentifying restrictions gives a test

statistic of 78.65, which is asymptotically distributed as a χ2 variate with 21 degrees

of freedom. But due to the tendency of the asymptotic distribution to over-reject,

once again we obtain the critical values from a non-parametric bootstrap with 1000

replications. This gives a critical value for the LR test statistic of 57.90 for the

5 percent level of significance and of 69.07 for the 1 percent significance level, as

compared to the LR test statistic of 78.65.5 The test therefore rejects the restrictions

4Using a parametric bootstrap gives almost identical results.
5Critical values from a parametric bootstrap with 1000 replications are quite similar with 60.49

for the 5 percent level and 70.36 for the 1 percent level of significance.
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at conventional significance levels (the p-value is 0.2 percent). One has to keep in

mind, however, that only four coefficients are estimated freely whereas the others

are fixed at their theoretical values. The relatively short sample period could also be

another consideration to bear in mind. Since we could not find a single restriction

that was responsible for the rejection, we decided to proceed with the restricted

estimates as they are in line with the long-run theory, and meet a number of other

statistical requirements. For example, as we shall see below, the persistence profiles

of all the five coinetgrating relations tend to zero reasonably fast, and the effects of

shocks on the cointegrating relations eventually vanish. None of these results would

have followed if there were important departures from cointergation in the five long

run relations being considered.6

To examine stability properties of the cointegrating relations we first present

time plots of these relations in Figure 8, corrected for the short-run dynamics. These

suggest that the PPP relation is strongly error-correcting, indicating that PPP forms

one of the long-run relations in the system. Some more pronounced deviations from

equilibrium occur in the output-gap relation during the late 1990s when Switzerland

experienced a decade of unusually low growth. Since 2002, however, this deviation

seems to have been corrected.

Finally, we check the recursive stability of β by means of a Nyblom (1989) test.7

Since the introduction of the SNB’s new monetary policy framework could have led

to a structural break, we choose 2000Q1 as the start date of recursive stability tests.

The Nyblom test statistic is 14.28 against a bootstrapped critical value of 29.56.

Stability of the cointegrating vectors thus cannot be rejected.

4.3 Error-correction equations

Table 7 shows the estimates of the reduced-form error correction equations and some

diagnostic statistics. The deviations from the long-run relations (the equilibrium

errors) enter in most equations with high levels of significance. Deviations from PPP

help explain the exchange rate, domestic output and the interest rate. Deviations

from money demand enter significantly the money demand equation, the inflation

equation and the price differential equation. The deviation of domestic from foreign

6We also investigated systems with four cointegrating vectors that leave out one of the more
contentious cointegrating relations, i.e., PPP or the output gap, at the time. The results remained
basically unchanged, namely we find a coefficient on the inflation rate in the long-run interest rule
that is significantly smaller than minus unity and the restrictions are rejected.

7See Hansen and Johansen (1999).
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output is significant in the money, output and interest rate equation, while the

deviation of the domestic from the foreign interest rate contains information for the

change in the domestic interest rate and inflation. The error correction term from

the interest rate rule has an influence on the change in the exchange rate, inflation

and the price differential.

The R2 values of the different equations range from 0.21 for the output equation

to 0.77 for the price differential equation. The inflation equation also fits quite

well with a R2 of 0.61 for the change in the inflation rate. The diagnostic statistics

indicate that some serial correlation is present in the output and the price differential

equation. For these two equations also the test for functional form rejects. While

this could be improved by including further lags, the size of the system makes this

solution unattractive because the number of cofficients would increase considerably.

The hypothesis of homoskedasticity of errors cannot be rejected for the exchange

rate, the money, the output and the inflation equation. The test for normality,

however, strongly rejects in the case of the equations for et and yt. Looking at

the residuals which are displayed, together with the actual and fitted values for

each equation, in Figures 9 to 14, one sees that these equations show some large

outliers, especially at the beginning of the sample for domestic output and in the

early 1980s for the exchange rate. These departures from normality are unlikely

to have significant impacts on our main findings, but they do provide warnings of

poor forecasting performance for these variables in certain periods of high market

volatility.

Overall, the system seems to perform well. In particular, none of the tests

indicates misspecification in the inflation equation, which will be central in the

forecasting excercises. Assenmacher-Wesche and Pesaran (2008) document that the

root mean squared forecast errors for output and inflation from this model compare

well to a broad range of similar models when estimated over an observation window

starting in 1974 or later.

4.4 Generalized impulse responses and persistence profiles

The standard tool for the analysis of interactions and dynamics is the impulse re-

sponse function, which considers the effects of a typical shock, usually one standard

error, on the time path of the variables of the model. These shocks can be to ob-

servables, e.g., the oil price or interest rate, or to unobservables such technology or

monetary policy variables. Shocks to observables can be calculated directly using
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Generalized Impulse Response Functions, GIRFs, introduced in Koop, Pesaran and

Potter (1996) and discussed in more detail in Pesaran and Shin (1998). See also

Garratt, Lee, Pesaran and Shin (2006, Chapter 6). The use of GIRF’s does not re-

quire any identifying assumptions and use the estimated error covariances to allow

for the contemporaneous linkages that have prevailed between shocks historically.

The effect of the shock to the observable on the other variables is of considerable

interest in itself and should certainly be the first stage of any analysis. It can be

interpreted as the effect on the variables in the model of an intercept adjustment

to the particular equation, e.g., the oil price or interest rate equation. However, for

some purposes, we may wish to know where the shocks to observables come from.

For interest rates we may wish to decompose the observable shock to the interest

rate into a domestic monetary policy shock, a foreign monetary policy shock and

a residual shock. However, to decompose the observable shock into its unobserved

components requires more information which are often supplied by the economic

theory of the short run. In what follows we focus on the response of the system to

observable shocks and for this purpose use GIRF’s that are invariant to the ordering

of the variables in the VAR.

The analysis of the dynamic properties of a system including exogenous I(1)

variables requires the conditional model for ∆xt in equation (2) together with the

marginal model for ∆x∗t in equation (3). Specification of the marginal model for
∆x∗t is necessary since the dynamic properties of the system have to accommodate

the influence of the processes driving the exogenous variables. In other words, one

needs to take into account the possibility that changes in one variable may have an

impact on the exogenous variables and that these effects will continue and interact

over time. For the marginal model, we chose a lag length of one. The full system is

written as

∆zt = −αβ0zt−1 +
p−1X
i=1

Γi∆zt−i + a0 + a1t+Hζt, (5)

where

α =

Ã
αx

0

!
, Γi =

Ã
Ψi +ΛΨx∗i

Ψx∗i

!
, a0 =

Ã
c0 +Λax∗0

ax∗0

!
, a1 =

Ã
c1

0

!
,

ζt =

Ã
νt

ux∗t

!
, H =

Ã
Imx Λ

0 Imx∗

!
, Cov(ζt) = Σζζ =

Ã
Σνν 0

0 Σx∗x∗

!
,

c1 is restricted as before, and β is defined as in equation (4).
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Equation (5) can be rewritten as

zt =

pX
i=1

Φizt−i + a0 + a1t+Hζt, (6)

where Φ1 = Im − αβ0 + Γi, Φi = Γi − Γi−1, i = 2, ..., p − 1, Φp = −Γp−1. The
generalized impulse responses are derived from the moving-average representation

of equation (6),

∆zt = C(L)(a0 + a1t+Hζt),

where

C(L) =
∞X
j=0

CjL
j = C(1) + (1− L)C∗(L),

C∗(L) =
∞X
j=0

C∗jL
j, and C∗j = −

∞X
i=j+1

Ci,

Ci = Φ1Ci−1 +Φ2Ci−2 + ...+ΦpCi−p, for i = 2, 3, ..., (7)

and C0 = Im, C1 = Φ1− Im and Ci = 0, for i < 0. Cumulating forward one obtains

the level moving average representation,

zt = z0 + b0t+C(1)
tX

j=1

Hζj +C
∗(L)H(ζt − ζ0),

where b0 = C(1)a0 + C∗(1)a1 and C(1)Πγ = 0 with γ being an arbitrary m × 1
vector of fixed constants. The latter relation applies because the trend coefficients

are restricted to lie in the cointegrating space.

We denote the generalized impulse response function (GIRF) of zt+n = (x0t+n,x
∗0
t+n)

0

at horizon n to a unit change in the error, ζ it, measured by one standard deviation,√
σζ,ii, by

g(n, z : εi) = E(zt+n | ζit = √σζ,ii,It−1)− E(zt+n | It−1).
The GIRF is defined by the point forecast of zt+n conditional on the information

set It−1 = (xt−1,xt−2, ...;x∗t−1,x
∗
t−2, ...) and the shock ζit, relative to the baseline

conditional forecast.

While the ζit are serially uncorrelated, they are contemporaneously correlated.

Thus a shock to the ith error, ζit, in general will affect the other errors. Therefore,

at the horizon n = 0 the effect of a unit shock to the ith element of ζt, is given by

g(n, ζ : ζi) = E(ζt | ζit = √σζ,ii) =
µ

1√
σζ,ii

¶
HΣζζei,
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where ζt is iid(0,Σζζ) and ei is an mx × 1 selection vector of zeros except for its
i-th element, which is set to unity. This yields the predicted effects of the ith shock

on the other errors based on the observed historical error correlations. The GIRF

is then given by

g(n, z : ζi) =
1√
σζ,ii

eCnHΣζζei, n = 0, 1, ..., i = 1, ...,m,

where eCn =
nX

j=0

Cj,

which can be computed from the estimated coefficients in equation (5).

While the impulse responses show the effect of a shock to a particular variable,

the persistence profile, as developed by Lee and Pesaran (1993) and Pesaran and

Shin (1996), show the effects of system-wide shocks on the cointegrating relations.

In the case of the cointegrating relations the effects of the shocks (irrespective of

their sources) will eventually disappear. Therefore, the shape of the persistence pro-

files provide valuable information on the speed of convergence of the cointegrating

relations towards equilibrium. The persistence profile for a given cointegrating rela-

tion defined by the cointegrating vector βj in the case of a VECX* model is given

by

h(β0jz, n) =
β0j eCnHΣζζH

0 eC0nβj

β0jHΣζζH0βj

, n = 0, 1, ..., j = 1, ...r,

where β, eCn, H and Σζζ are as defined above.

The impulse response of the cointegrating relations to a shock in variable i is

also defined as

g(β0jz, n, : ζi) =
1√
σζ,ii

β0j eCnHΣζζei, n = 0, 1, ..., i = 1, ...,m.

Since β0j eC∞ = β0jC(1) = 0, for j = 1, 2, ..., r, ultimately the effects of shocks on the
cointegrating relations will vanish.

Figure 15 shows the persistence profile of a system-wide shock to the cointegrat-

ing relations together with their bootstrapped 95 percent confidence bands. For all

relations we can see a quick return to equilibrium. The persistence profiles of the

PPP relation and the money demand relation overshoot after the initial shock, but

like the other cointegrating vectors, they return to equilibrium reasonably quickly.

The half life of the shocks ranges from only about one quarter for the long-run

interest rate rule to one and half year for the output gap relation.
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Figures 16 to 20 show the persistence profile of the five cointegrating relations

to shocks to individual variables. These shocks can have only temporary effects.

The cointegrating relations can be divided into relations combining macro variables,

like PPP, money demand and the output relation, and relations linking financial

variables to each other, like the interest rate parity and the modified Fisher equation.

While shocks have a relatively large and long-lasting impact on ‘real’ cointegrating

relations, they die out quickly for the ‘financial’ cointegrating relations. Exceptions

are the effect of a shock to the domestic interest rate, which has only a short impact

on the money demand relation, whereas shocks to the exchange rate, output and

the foreign interest rate have a relatively long-lasting influence on the uncovered

interest parity.

Finally, Figures 21 to 26 show the generalized impulse responses of the endoge-

nous variables in the system to a one standard error shock to the various observables

in the model. In a cointegrating VAR, shocks can have permanent effects on individ-

ual variables. The exchange rate and the relative price level are affected significantly

and permanently by shocks in these variables. The significant responses of output,

real money, the interest rate and inflation to shocks in the exogenous variables

demonstrate the importance of including these variables in a model for Switzerland

as a small open economy. Figures 27 to 29 show the GIRFs of the exogenous vari-

ables. All the exogenous variables show a strong and persistent response to their

own shocks.

5 Conclusions

This paper documents the development of a cointegrating VECX* model for the

Swiss economy. In a cointegrating VAR model the implications of economic theory

for the long-run relations between the variables in the model are combined with a

data-driven approach to modeling the short-run dynamics. In the Swiss VECX*

model we identify five long-run relations. These are purchasing power parity, money

demand, the uncovered interest parity relating domestic and foreign interest rates, a

relation between domestic and foreign output, and a modified Fisher equation that

relates the domestic interest rate to the domestic inflation rate.

The estimated model seems to have reasonable long-run properties and despite

the fact that the overidentifying restrictions implied by the economic theory are

rejected (at conventional levels of significance), the economic importance of the

rejections is unclear. A more satisfactory way to evaluate the model is to use it
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in forecasting and policy analysis. The former is addressed in Assenmacher-Wesche

and Pesaran (2008). The latter will be addressed in future work.

Specifically, the current model could be extended into two directions. First,

the short-run parameters could be estimated subject to restrictions using Bayesian

priors. Since the VECX* model contains six endogenous and three exogenous vari-

ables, many coefficients in the model are imprecisely estimated. One can expect

that Bayesian estimation of the short-run coefficients will improve the forecasting

performance of the model. Though there is a large literature on Bayesian estima-

tion of unrestricted VAR models, Bayesian estimation of the short-run parameters

in a cointegrating VAR has to deal with the restrictions implied by the long-run

relations.

The second issue is the identification of a short-run structure for the model. To

be able to produce conditional forecasts given a specific path for the short-term

interest rate, a monetary policy shock has to be identified. To address this issue

results in Pagan and Pesaran (2008) and in Pesaran and Smith (2006) that relate

the VECX* model to New Keynesian DSGE models can be used.
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A Appendix: sources and construction of the data

A.1 Swiss data

All Swiss data are from the data base of the Swiss National Bank (SNB). The

short-term interest rate is the end-of-month three-month London Interbank Offered

Rate (3M LIBOR) for Swiss francs, denoted by R. The interest rate is expressed as

0.25 ln(1 + R/100), so that it matches the quarterly measure of the inflation rate.

The price level is the consumer price index (CPI) with the base of December 2005

= 100. Money is M2 in the definition of 1995, excluding Liechtenstein. Real money

is M2 deflated by the CPI. Output is the seasonally adjusted quarterly real gross

domestic product (GDP) computed by the SECO (Secrétariat d’Etat à l’économie)

from 1981 onward. Quarterly output estimates before 1981 were interpolated from

the official annual data by the SNB.

For the CPI an adjustment was made to overcome breaks due to new data col-

lection procedures at the Swiss Federal Statistical Office. From 2000 on the CPI

includes end-of-season sales. This introduces substantial seasonality into the sub-

index for clothing and footwear, as can be seen in Figure A.1. In addition, the data

Figure A.1: Price index clothing and footwear

1983 1986 1989 1992 1995 1998 2001 2004
70

75

80

85

90

95

100

105

collection had been shifted from the end of the month to the beginning of the month

in January 2002, which introduces another break into the series. We adjust for these

changes by shifting the series by one month backward between January 2000 and

January 2002, the period indicated by the vertical lines in Figure A.1. The resulting

missing value is filled by inserting the December 2001 value of the sub-index. The
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Figure A.2: Monthly inflation rate without (solid line) and with adjustment (dashed

line) of the CPI
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series is smoothed by computing a twelve-month backward moving average. The

smoothed sub-index is added to the CPI without clothing and footwear, using the

weight of this sub-index in the CPI. Figure A.2 shows the original and the adjusted

CPI series. Though the weight of the clothing-and-footwear sub-index is less than

5 percent since 2000, it is clearly visible that the adjustment considerably reduces

the seasonal variability of the inflation rate since 2002.

Monthly data for real M2, the CPI and the 3M LIBOR are aggregated into

quarterly averages of monthly figures. Inflation is the quarterly percent difference

of the CPI.

A.2 Foreign data

The foreign price level, the exchange rate and foreign GDP are constructed using

trade-weighted data from Switzerland’s 15 most important trading partners. These

are (in the order of their importance) Germany, France, Italy, the United States,

the United Kingdom, Austria, the Netherlands, Japan, Belgium, Spain, Sweden,

Hongkong, China, Ireland and Denmark. Monthly trade data are from the Eid-

genössische Zollverwaltung. Trade is defined as the sum of imports and exports

from and to a specific country. The countries considered have an average share of

at least 1 percent in total Swiss foreign trade during 1974 to 2006. Together, the 15

countries considered account for about 82 percent of total Swiss foreign trade. For

Ireland, Hongkong and China, trade data were not available before 1988. For these
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Figure A.3: Trade weights: levels (solid line) and percentage change (dashed line)
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Denmark
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Hong Kong
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Ireland
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countries, the trade shares were set to the January 1988 value for the period before

1987. This avoids level effects that would otherwise appear if the trade weights for

these countries were set to zero over the time where data are not available. The

trade weights used in the aggregation are three-year moving averages of the trade

share of the respective country in Switzerland’s total trade with these 15 countries.

Since trade data are available shortly after the end of the month we do not need

to lag them when constructing the foreign aggregates. Figure A.3 shows the trade

weights used in the aggregation.

Germany receives the largest weight in Swiss trade, rising from the beginning of

the sample period until German Reunification and falling slightly thereafter. For

most countries, trade shares have remained fairly constant over the sample period.

In general, trade shares for the European countries have tended to fall, e.g., for
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France, the UK, Austria, Belgium, Sweden and Denmark. By contrast, trade with

Spain, Ireland and China has increased rapidly, though from very low levels. The

fluctuations in the exchange rate, particularly in the US dollar, are mirrored in the

fluctuation of the US trade share.

The foreign price level is the trade-weighted aggregate of the consumer price

indices, and foreign GDP is the trade-weighted aggregate of the real GDP indices

of the 15 main trading partners. The CPI and real GDP data are from the Main

Economic Indicators data base of the OECD. Missing data have been supplemented

with IFS and BIS data. For countries where the GDP data were not seasonally

adjusted at the source, the X12 procedure was used to seasonally adjust the original

series. When quarterly data were not available, annual data were interpolated.8 All

GDP series were converted to an index with the base year 2000 and then aggregated

using the three-year moving averages of the trade weights. This avoids the use of

exchange rates to convert GDP into a common currency.9

In contrast to the foreign CPI and GDP, the foreign interest rate and the ex-

change rate are weighted averages of the three-month interest rate and the exchange

rate in the euro area and the US only. This seems justified considering the dom-

inant role played by these two economies in the evolution of the financial market

interconnections of the Swiss economy and the rest of the world. The weights are

shown in Figure A.4. While the EMU countries receive a share of about 82 percent,

the US financial variables account for about 10 percent of the total.

Before the existence of European Monetary Union, the euro area interest rate

and exchange rate are proxied by a weighted average of the short-term interest

rates and exchange rates of those countries among Switzerland’s 15 main trading

partners that entered the EMU. After the transition to European monetary union,

the exchange rate for the members of the European Monetary Union are replaced by

the Euro exchange rate, converted with the official conversion rates of the national

currencies to the Euro at the start of the European Monetary Union in 1999. The

foreign interest rates are from the BIS data base. Like the domestic interest rate,

the foreign interest rate is expressed as 0.25 ln(1 +R∗/100), where R∗ is the foreign
interest rate per annum in percent.

8This was the case for the Netherlands and Denmark until 1976, for Belgium until 1979, for
Ireland and Hong Kong until 1985, and for China until 1999.

9Though it might seem that using GDP indexes neglects the different size of Switzerland’s
trading partners, it only matters up to a constant if the aggregation weights do not change over
time.
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Figure A.4: Weights for the aggregation of interest rates
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The monthly series for the CPI, the interest rate and the exchange rate were ag-

gregated with monthly trade weights and then transformed into quarterly averages.
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Tables and Figures

Table 1: Autoregressive distributed lag models

EC t-stat. CV Bounds F-stat. CV Bounds R2 ARDL(p,q,s)

PPP -0.26 -4.55 -3.41, -3.95 7.28 3.88, 4.61 0.26 ARDL(2,2,0), T

MD -0.07 -3.71 -2.86, -3.53 3.90 3.10, 3.87 0.79 ARDL(2,2,1), C

GAP -0.21 -4.45 -3.41, -3.69 7.78 4.68, 5.15 0.25 ARDL(4,1), T

UIP -0.13 -2.98 -2.86, -3.22 4.72 3.62, 4.16 0.33 ARDL(2,1), C

LIR -0.15 -4.80 -2.86, -3.22 8.49 3.62, 4.16 0.26 ARDL(2,0), C

Note: PPP denotes purchasing power parity (e, p, p∗), MD money demand (m, y, r),

GAP the output gap (y, y∗), UIR the interest rate parity (r, r∗) and LIR the interest rate
rule (r, π). Estimates of the long-run coefficients are shown in the text. The columns 2 to

4 show the error-correction term (EC), its t-ratio and the lower and upper bound of the

associated critical values. The next two columns give the F -statistic for exclusion of the

levels variables and the respective upper and lower critical value bounds. The R2 refers

to the dependent variable in first differences. The sample period is 1976Q1 to 2006Q4.

The specification gives the number of lags and the deterministic variables included in the

model for each variable, with C denoting an intercept and T denoting intercept and trend.

The lag length was chosen according to the AIC criterion with a maximum lag length of

four.
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Table 2: Unit root tests for the first differences

ADF

e p-p∗ m y r π y∗ r∗ poil C

0 -9.14 -4.27 -4.24 -10.13 -7.65 -15.30 -8.92 -6.14 -8.78 -2.88

1 -7.90 -3.07 -4.16 -6.73 -6.30 -11.56 -5.97 -5.25 -8.27 -2.86

2 -6.41 -2.87 -3.78 -5.10 -5.67 -8.66 -4.80 -5.01 -5.46 -2.92

3 -6.49 -2.53 -4.51 -4.54 -5.36 -8.25 -4.10 -4.23 -5.60 -2.85

4 -6.14 -1.88 -3.97 -4.46 -4.96 -6.84 -4.48 -4.47 -6.07 -2.91

ADF-GLS

e p-p∗ m y r π y∗ r∗ poil C

0 -4.31 -3.81 -3.88 -1.55 -3.09 -12.22 -2.85 -5.09 -8.81 -2.09

1 -3.11 -2.66 -3.77 -0.82 -2.22 -7.90 -1.75 -4.18 -8.30 -2.06

2 -2.19 -2.46 -3.40 -0.44 -1.76 -5.15 -1.31 -3.085 -5.48 -2.05

3 -1.91 -2.12 -3.93 -0.27 -1.48 -4.32 -1.01 -3.12 -5.62 -2.14

4 -1.55 -1.45 -3.41 -0.20 -1.20 -3.22 -1.05 -3.23 -6.09 -2.12

ADF-WS

e p-p∗ m y r π y∗ r∗ poil C

0 -9.06 -4.16 -4.36 -7.97 -7.13 -15.03 -8.17 -6.15 -9.05 -2.67

1 -7.84 -9.92 -4.32 -4.74 -5.57 -10.67 -5.46 -5.35 -8.53 -2.59

2 -6.28 -2.74 -3.98 -2.94 -5.03 -7.63 -4.60 -4.98 -5.68 -2.66

3 -6.32 -2.39 -4.73 -2.85 -4.66 -7.09 -4.07 -3.97 -5.83 -2.66

4 -5.96 -1.66 -4.19 -2.75 -4.21 -5.54 -4.47 -4.23 -6.30 -2.63

Note: ADF denotes the Augmented Dickey-Fuller Test, ADF-GLS the generalized least

squares version of the ADF test, and ADF-WS the weighted least squares ADF test. The

first column shows the number of lags included in the test. All regressions include an

intercept. The sample period runs from 1976Q1 to 2006Q4. The column C shows the 95

percent simulated critical values. Entries in italics denote the lag length selected by the

AIC criterion.
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Table 3: Unit root tests for the levels

ADF

e p-p∗ m y r π y∗ r∗ poil T C

0 -3.44 -9.21 -1.33 -1.94 -1.63 -4.63 -2.30 -1.11 -1.59 -3.50 -2.88

1 -4.04 -5.19 -3.45 -2.17 -2.45 -3.45 -2.36 -2.16 -2.23 -3.47 -2.86

2 -3.78 -4.51 -3.41 -2.45 -2.50 -2.77 -2.47 -2.24 -1.75 -3.51 -2.92

3 -3.85 -4.55 -3.66 -2.87 -2.45 -2.64 -3.58 -2.16 -2.32 -3.51 -2.85

4 -3.54 -4.44 -2.98 -3.04 -2.39 -2.30 -2.72 -2.45 -1.98 -3.41 -2.91

ADF-GLS

e p-p∗ m y r π y∗ r∗ poil T C

0 -1.50 0.39 -1.20 -1.76 -0.84 -1.59 -0.90 -0.69 -1.57 -3.02 -2.09

1 -1.92 -0.51 -3.29 -1.93 -1.37 -1.07 -1.19 -1.52 -2.11 -2.91 -2.06

2 -1.70 -0.84 -3.24 -2.16 -1.37 -0.72 -1.42 -1.57 -1.70 -2.94 -2.05

3 -1.72 -0.89 -3.45 -2.54 -1.31 -0.63 -1.59 -1.48 -2.16 -2.93 -2.14

4 -1.43 -1.04 -2.81 -2.68 -1.24 -0.42 -1.74 -1.85 -1.87 -2.97 -2.12

ADF-WS

e p-p∗ m y r π y∗ r∗ poil T C

0 -1.81 3.77 -1.33 -1.98 -1.56 -4.13 -0.94 -1.24 -1.62 -3.26 -2.67

1 -2.55 0.42 -3.67 -2.30 -2.32 -3.01 -1.46 -2.24 -2.27 -3.23 -2.59

2 -2.24 -0.40 -3.62 -2.55 -2.40 -2.43 -1.83 -2.25 -1.80 -3.27 -2.66

3 -2.38 -0.49 -3.84 -2.91 -2.34 -2.43 -2.01 -2.15 -2.36 -3.23 -2.66

4 -1.90 -0.71 -3.20 -3.09 -2.28 -2.05 -2.23 -2.46 2.03 -3.29 -2.63

Note: ADF denotes the Augmented Dickey-Fuller Test, ADF-GLS the generalized least

squares version of the ADF test, and ADF-WS the weighted least squares ADF test. The

first column shows the number of lags included in the test. The regressions include a

trend and an intercept for e, p− p∗, m, y, y∗and poil, and an intercept only for r, π,

and r∗. The sample period runs from 1976Q1 to 2006Q4. The column T gives the 95

percent simulated critical values for the test with intercept and trend, the column C the

95 percent simulated critical values for the test including an intercept only. Entries in

italics denote the lag length selected by the AIC criterion.
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Table 4: Lag order selection criteria

Lag Length AIC Log(FPE) HQ SC

1 -65.11 -65.11 -64.31 -63.14

2 -65.42 -65.39 -64.10 -62.18

3 -65.26 -65.18 -63.42 -60.75

4 -64.96 -64.77 -62.61 -59.17

Note: AIC is the Akaike information criterion, FPE is the final prediction error, HQ the

Hannan-Quinn criterion and SC the Schwarz criterion. The sample period is 1976Q1 to

2006Q4.

Table 5: Cointegration tests

Rank Eigen- Trace CV3 CV2 λ-max CV2 CV2

value 90% 90% 90% 90%

0 0.534 286.11 174.50 156.44 94.76 58.77 53.77

1 0.432 191.35 132.27 117.57 70.16 50.50 46.13

2 0.319 121.19 95.96 84.49 47.56 43.27 38.96

3 0.235 73.68 66.55 57.49 33.27 35.90 32.11

4 0.202 40.36 41.61 34.38 28.01 28.38 24.50

5 0.095 12.35 19.71 16.57 12.35 19.71 16.57

Note: The sample period is 1976Q1 to 2006Q4. CV3 (CV2 ) denotes the 90 percent

simulated critical value that assume the presence of three (two) exogenous I(1) variables.

Critical values are simulated with 1000 replications.

Table 6: Estimates of overidentified cointegration vectors

Coefficient Point estimate Lower 95% bound Upper 95% bound

β24 22.29 15.55 30.28

β37 -0.69 -0.72 -0.65

β55 -1.58 -2.11 -1.26

b11 -0.0004 -0.0001 -0.0008

Note: The confidence bounds are obtained by a non-parametric bootstrap with 1000

replications.
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Table 7: Reduced-form error correction equations

Equation ∆et ∆mt ∆yt ∆rt ∆πt ∆(pt − p∗t )

ξ̂1,t−1
−0.190∗
(0.070)

−0.064
(0.040)

0.054∗
(0.022)

0.018∗
(0.004)

−0.008
(0.009)

0.013
(0.010)

ξ̂2,t−1
0.035
(0.035)

−0.063∗
(0.020)

0.016
(0.011)

0.001
(0.002)

0.016∗
(0.005)

0.013∗
(0.005)

ξ̂3,t−1
−0.040
(0.167)

−0.194∗
(0.094)

−0.160∗
(0.053)

0.032∗
(0.010)

0.030
(0.022)

−0.014
(0.023)

ξ̂4,t−1
−2.803
(1.472)

1.369
(0.831)

0.007
(0.469)

−0.342∗
(0.090)

−0.404∗
(0.193)

0.269
(0.205)

ξ̂5,t−1
1.974∗
(0.679)

−0.566
(0.383)

−0.169
(0.216)

0.009
(0.042)

0.564∗
(0.089)

0.222∗
(0.094)

∆et−1
0.387∗
(0.106)

−0.132∗
(0.060)

0.006
(0.034)

0.006
(0.006)

0.043∗
(0.014)

0.033∗
(0.015)

∆mt−1
−0.106
(0.132)

0.485∗
(0.074)

−0.008
(0.042)

0.018∗
(0.008)

0.004
(0.017)

0.015
(0.018)

∆yt−1
0.234
(0.306)

−0.0.95
(0.171)

−0.153
(0.097)

0.036
(0.019)

−0.003
(0.040)

0.053
(0.043)

∆rt−1
−4.454∗
(1.597)

−0.560
(0.902)

−0.037
(0.509)

0.110
(0.098)

−1.051∗
(0.209)

−1.328∗
(0.222)

∆πt−1
−0.674
(0.581)

0.126
(0.328)

−0.018
(0.185)

−0.009
(0.036)

−0.099
(0.076)

−0.147
(0.081)

∆(pt−1 − p∗t−1)
2.396∗
(0.809)

−0.290
(0.457)

−0.414
(0.258)

0.027
(0.049)

0.073
(0.106)

0.575∗
(0.113)

∆y∗t
−0.263
(0.404)

−0.195
(0.228)

0.514∗
(0.129)

0.018
(0.025)

−0.037
(0.053)

−0.030
(0.056)

∆y∗t−1
−0.490
(0.408)

−0.127
(0.230)

0.134
(0.130)

0.024
(0.025)

−0.019
(0.053)

−0.114∗
(0.0.57)

∆r∗t
5.835∗
(1.898)

−5.198∗
(1.072)

1.603∗
(0.605)

0.837∗
(0.116)

1.057∗
(0.248)

0.744∗
(0.264)

∆r∗t−1
1.060
(2.546)

−0.222
(1.437)

0.279
(0.811)

0.225
(0.156)

0.444
(0.333)

0.389
(0.354)

∆poilt
−0.007
(0.015)

−0.020∗
(0.008)

−0.001
(0.005)

0.001
(0.001)

0.010∗
(0.002)

−0.003
(0.002)

∆poilt−1
0.026
(0.017)

−0.005
(0.010)

−0.001
(0.005)

0.001
(0.001)

0.003
(0.002)

0.004
(0.002)

R̄2 0.210 0.756 0.307 0.577 0.614 0.768

SC: χ2(4) 2.718 4.706 10.60 3.067 7.164 13.14

FF : χ2(1) 1.434 1.068 4.071 1.151 0.001 7.332

N : χ2(2) 94.57 1.197 61.86 3.600 3.747 0.315

HS : χ2(1) 0.292 0.529 0.619 4.247 1.825 5.764

Note: The error correction terms, ξi, are defined on page 14. An asterisk denotes signif-

icance at the 5 percent level. SC is a test for serial correlation, FF a test for functional

form, N a test for normality and HS a test for heteroscedasticity. Critical values are 3.84

for χ2(1), 5.99 for χ2(2) and 9.49 for χ2(4). Constant not shown. The sample period is

1976Q1 to 2006Q4.
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Figure 1: Exchange rate and ratio of domestic to foreign prices
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Figure 2: Real M2 and GDP
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Figure 3: M2 velocity and three-month interest rate
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Figure 4: Domestic and foreign GDP
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Figure 5: Domestic and foreign three-month interest rate

Level

1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004
0.000

0.005

0.010

0.015

0.020

0.025

0.030

First Difference

1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004
-0.0100

-0.0075

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

37



Figure 6: Three-month interest rate and inflation
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Figure 7: Oil price
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Figure 8: Corrected cointegrating relations
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Figure 9: Exchange rate equation
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Figure 10: Real money equation
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Figure 11: Real output equation
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Figure 12: Interest rate equation
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Figure 13: Inflation equation
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Figure 14: Relative price level equation
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Figure 15: The persistence profiles of the effect of a system-wide shock to the coin-

tegrating relations with 95 % bootstrapped confidence bounds
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Figure 16: Persistence profile for PPP relation with 95 % bootstrapped confidence

bounds
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Figure 17: Persistence profile for MD relation with 95 % bootstrapped confidence

bounds
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Figure 18: Persistence profile for GAP relation with 95 % bootstrapped confidence

bounds
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Figure 19: Persistence profile for UIP relation with 95 % bootstrapped confidence

bounds
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Figure 20: Persistence profile for LIR relation with 95 % bootstrapped confidence

bounds
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Figure 21: Generalized impulse responses for exchange rate with 95 % bootstrapped

confidence bounds
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Figure 22: Generalized impulse responses for real M2 with 95 % bootstrapped con-

fidence bounds
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Figure 23: Generalized impulse responses for output with 95 % bootstrapped con-

fidence bounds
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Figure 24: Generalized impulse responses for interest rate with 95 % bootstrapped

confidence bounds
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Figure 25: Generalized impulse responses for inflation with 95 % bootstrapped

confidence bounds
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Figure 26: Generalized impulse responses for relative price level with 95 % boot-

strapped confidence bounds
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Figure 27: Generalized impulse responses for foreign output with 95 % bootstrapped

confidence bounds
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Figure 28: Generalized impulse responses for foreign interest rate with 95 % boot-

strapped confidence bounds
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Figure 29: Generalized impulse responses for oil price with 95 % bootstrapped

confidence bounds
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