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Abstract

The presence of cross-sectionally correlated error terms invalidates much inferential
theory of panel data models. Recently, work by Pesaran (2006) has suggested a method
which makes use of cross-sectional averages to provide valid inference in the case of sta-
tionary panel regressions with a multifactor error structure. This paper extends this work
and examines the important case where the unobservable common factors follow unit root
processes. The extension to the I(1) processes is remarkable on two counts. Firstly, it is
of great interest to note that while intermediate results needed for deriving the asymptotic
distribution of the panel estimators di¤er between the I(1) and I(0) cases, the �nal results
are surprisingly similar. This is in direct contrast to the standard distributional results
for I(1) processes that radically di¤er from those for I(0) processes. Secondly, it is worth
noting the signi�cant extra technical demands required to prove the new results. The
theoretical �ndings are further supported for small samples via an extensive Monte Carlo
study. In particular, the results of the Monte Carlo study suggest that the cross-sectional
average based method is robust to a wide variety of data generation processes and has
lower biases than the alternative estimation methods considered in the paper.
Keywords: Cross Section Dependence, Large Panels, Unit Roots, Principal Components, Com-

mon Correlated E¤ects.
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1 Introduction

Panel data sets have been increasingly used in economics to analyze complex economic phenom-

ena. One of their attractions is the ability to use an extended data set to obtain information

about parameters of interest which are assumed to have common values across panel units.

Most of the work carried out on panel data has usually assumed some form of cross sectional

independence to derive the theoretical properties of various inferential procedures. However,

such assumptions are often suspect and as a result recent advances in the literature have focused

on estimation of panel data models subject to error cross sectional dependence.

A number of di¤erent approaches have been advanced for this purpose. In the case of

spatial data sets where a natural immutable distance measure is available the dependence is

often captured through �spatial lags�using techniques familiar from the time series literature.

In economic applications, spatial techniques are often adapted using alternative measures of

�economic distance�. This approach is exempli�ed in work by Lee and Pesaran (1993), Conley

and Dupor (2003), Conley and Topa (2002) and Pesaran, Schuermann, and Weiner (2004), as

well as the literature on spatial econometrics recently surveyed by Anselin (2001). In the case

of panel data models where the cross section dimension (N) is small (typically N < 10) and

the time series dimension (T ) is large the standard approach is to treat the equations from the

di¤erent cross section units as a system of seemingly unrelated regression equations (SURE)

and then estimate the system by the Generalized Least Squares (GLS) techniques, assuming

that the regressors and the errors are independently distributed.

In the case of panels with a large cross section dimension, SURE approach is not practical

and has led a number of investigators to consider unobserved factor models, where the cross

section error correlations are de�ned in terms of the factor loadings. Use of factor models is

not new in economics and dates back to the pioneering work of Stone (1947) who applied the

principal components (PC) analysis of Hotelling to US macroeconomic time series over the

period 1922-1938 and was able to demonstrate that three factors (namely total income, its

rate of change and a time trend) explained over 97 per cent of the total variations of all the

17 macro variables that he had considered. Until recently, subsequent applications of the PC

approach to economic times series has been primarily in �nance. See, for example, Chamberlain

and Rothschild (1983), Connor and Korajzcyk (1986) and Connor and Korajzcyk (1988). But

more recently the unobserved factor models have gained popularity for forecasting with a large

number of variables as advocated by Stock and Watson (2002). The factor model is used very
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much in the spirit of the original work by Stone, in order to summarize the empirical content

of a large number of macroeconomics variables by a small set of factors which, when estimated

using principal components, is then used for further modelling and/or forecasting. A related

literature on dynamic factor models has also been put forward by Forni and Reichlin (1998)

and Forni, Hallin, Lippi, and Reichlin (2000).

Recent uses of factor models in forecasting focus on consistent estimation of unobserved

factors and their loadings. Related theoretical advances by Bai and Ng (2002) and Bai (2003)

are also concerned with estimation and selection of unobserved factors and do not consider the

estimation and inference problems in standard panel data models where the objects of interest

are slope coe¢ cients of the conditioning variables (regressors). In such panels the unobserved

factors are viewed as nuisance variables, introduced primarily to model the cross section de-

pendencies of the error terms in a parsimonious manner relative to the SURE formulation.

Despite these di¤erences knowledge of factor models could still be useful for the analysis of

panel data models if it is believed that the errors might be cross sectionally correlated. Disre-

garding the possible factor structure of the errors in panel data models can lead to inconsistent

parameter estimates and incorrect inference. Coakley, Fuertes, and Smith (2002) suggest a pos-

sible solution to the problem using the method of Stock and Watson (2002). But, as Pesaran

(2006) shows, the PC approach proposed by Coakley, Fuertes, and Smith (2002) can still yield

inconsistent estimates. Pesaran (2006) suggests a new approach by noting that linear combi-

nations of the unobserved factors can be well approximated by cross section averages of the

dependent variable and the observed regressors. This leads to a new set of estimators, referred

to as the Common Correlated E¤ects (CCE) estimators, that can be computed by running

standard panel regressions augmented with the cross section averages of the dependent and

independent variables. The CCE procedure is applicable to panels with a single or multiple

unobserved factors and does not necessarily require the number of unobserved factors to be

smaller than the number of observed cross section averages.

In this paper we extend the analysis of Pesaran (2006) to the case where the unobserved

common factors are integrated of order 1, or I(1). Our analysis does not require an a priori

knowledge of the number of unobserved factors. It is only required that the number of unob-

served factors remains �xed as the sample size is increased. The extension of the results of

Pesaran (2006) to the I(1) case is far from straightforward and involves the development of

new intermediate results that could be of relevance to the analysis of panels with unit roots.
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It is also remarkable in the sense that whilst the intermediate results needed for deriving the

asymptotic distribution of the panel estimators di¤er between the I(1) and I(0) cases, the �nal

results are surprisingly similar. This is in direct contrast to the usual phenomenon whereby

distributional results for I(1) processes are radically di¤erent to those for I(0) processes and

involve functionals of Brownian motion whose use requires separate tabulations of critical values.

It is very important to appreciate that our primary focus is on estimating the coe¢ cients

of the panel regression model. We do not wish to investigate the integration properties of the

unobserved factors or the cointegration properties of the relationship between the dependent

and explanatory variables. Rather, our focus is robustness, to the properties of the unobserved

factors, for the estimation of the coe¢ cients of the observed regressors that vary over time as

well as over the cross section units. In this sense the extension provided by our work is of

great importance in empirical applications where the integration properties of the unobserved

common factors are typically unknown. In the CCE approach the nature of the factors does

not matter for inferential analysis of the coe¢ cients of the observed variables. The theoretical

�ndings of the paper are further supported for small samples via an extensive Monte Carlo

study. In particular, the results of the Monte Carlo study clearly show that the CCE estimator

is robust to a wide variety of data generation processes and has lower biases than all of the

alternative estimation methods considered in the paper.

The structure of the paper is as follows: Section 2 provides an overview of the method

suggested by Pesaran (2006) in the case of stationary factor processes. Section 3 provides

the theoretical framework of the analysis of nonstationarity. In this section the theoretical

properties of the various estimators are presented. Section 4 presents an extensive Monte Carlo

study, and Section 5 concludes.

Notations: K stands for a �nite positive constant, kAk = [Tr(AA0)]
1=2 is the Frobenius

norm of the m� n matrix A, and A+ denotes the Moore-Penrose inverse of A. rk(A) denotes

the rank of A. supiWi is the supremum of Wi over i. an = O(bn) states the deterministic

sequence fang is at most of order bn, xn = Op(yn) states the vector of random variables, xn; is

at most of order yn in probability, and xn = op(yn) is of smaller order in probability than yn,
q:m:!

denotes convergence in quadratic mean (or mean square error),
p! convergence in probability,

d! convergence in distribution, and ds asymptotic equivalence of probability distributions. All
asymptotics are carried out under N !1, either with a �xed T , or jointly with T !1. Joint
convergence of N and T will be denoted by (N; T )

j!1. Restrictions (if any) on the relative
rates of convergence of N and T will be speci�ed separately.
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2 Panel Data Models with Observed and Unobserved
Common E¤ects

In this section we review the methodology introduced in Pesaran (2006). Let yit be the obser-

vation on the ith cross section unit at time t for i = 1; 2; :::; N ; t = 1; 2; :::; T; and suppose that

it is generated according to the following linear heterogeneous panel data model

yit = �
0
idt + �

0
ixit + 

0
if t + "it; (1)

where dt is a n � 1 vector of observed common e¤ects, which is partitioned as dt = (d01t;d02t)0

where d1t is a n1�1 vector of deterministic components such as intercepts or seasonal dummies
and d2t is a n2 � 1 vector of unit root stochastic observed common e¤ects, with n = n1 + n2,

xit is a k � 1 vector of observed individual-speci�c regressors on the ith cross section unit at
time t, f t is the m� 1 vector of unobserved common e¤ects, and "it are the individual-speci�c
(idiosyncratic) errors assumed to be independently distributed of (dt;xit). The unobserved

factors, f t, could be correlated with (dt;xit), and to allow for such a possibility the following

speci�cation for the individual speci�c regressors will be considered

xit = A
0
idt + �

0
if t + vit; (2)

where Ai and �i are n� k and m� k factor loading matrices with �xed and bounded compo-

nents, vit = (vi1t; :::; vikt)0 are the speci�c components of xit distributed independently of the

common e¤ects and across i; but assumed to follow general covariance stationary processes.

Combining (1) and (2) we now have

zit
(k+1)�1

=

�
yit
xit

�
= B0

i
(k+1)�n

dt
n�1

+ C 0
i

(k+1)�m
f t
m�1

+ uit
(k+1)�1

; (3)

where

uit =

�
"it + �

0
ivit

vit

�
=

�
1 �0i
0 Ik

��
"it
vit

�
; (4)

Bi =
�
�i Ai

�� 1 0
�i Ik

�
, Ci =

�
i �i

�� 1 0
�i Ik

�
; (5)

Ik is an identity matrix of order k, and the rank of Ci is determined by the rank of the

m� (k + 1) matrix of the unobserved factor loadings

~�i =
�
i �i

�
: (6)

As discussed in Pesaran (2006), the above set up is su¢ ciently general and renders a variety

of panel data models as special cases. In the panel literature with T small and N large, the
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primary parameters of interest are the means of the individual speci�c slope coe¢ cients, �i,

i = 1; 2; :::; N . The common factor loadings, �i and i, are generally treated as nuisance

parameters. In cases where both N and T are large, it is also possible to consider consistent

estimation of the factor loadings, but this topic will not be pursued here. The presence of

unobserved factors in (1) implies that estimation of �i and its cross sectional mean cannot be

undertaken using standard methods. Pesaran (2006) has suggested using cross section averages

of yit and xit to deal with the e¤ects of proxies for the unobserved factors in (1). To see why

such an approach could work, consider simple cross section averages of the equations in (3)1

�zt = �B
0
dt + �C

0
f t + �ut; (7)

where

�zt =
1

N

NX
i=1

zit, �ut =
1

N

NX
i=1

uit;

and

�B =
1

N

NX
i=1

Bi, �C =
1

N

NX
i=1

Ci. (8)

We distinguish between two important cases: when the rank condition

rk( �C) = m � k + 1, for all N; and as N !1; (9)

holds, and when it does not. Under the former, the analysis simpli�es considerably since it is

possible to proxy the unobserved factors by linear combinations of cross section averages, �zt
and the observed common components, dt. But if the rank condition is not satis�ed this is not

possible, although as we shall see it is still possible to consistently estimate the mean of the

regression coe¢ cients, �, by the CCE procedure. As the rank condition is very important for

the analysis of this paper we will usually refer to (9) as simply the rank condition, when no

confusion is likely to arise.

In the case where the rank condition is met we have

f t =
�
�C �C

0
��1

�C
�
�zt � �B

0
dt � �ut

�
: (10)

But since

�ut
q:m:! 0, as N !1, for each t; (11)

1Pesaran (2006) considers cross section weighted averages that are more general. But to simplify the expo-
sition we con�ne our discussion to simple averages throughout.
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and
�C

p! C = ~�

�
1 0
� Ik

�
; as N !1; (12)

where
~� = (E (i) ; E (�i)) = (;�), (13)

it follows, assuming that Rank(~�) = m, that

f t � (CC 0)
�1
C
�
�zt � �B

0
dt

�
p! 0, as N !1:

This suggests that for su¢ ciently large N , it is valid to use �ht = (d
0
t; �z

0
t)
0 as observable proxies

for f t. This result holds irrespective of whether the unobserved factor loadings, i and �i, are

�xed or random.

When the rank condition is not satis�ed it will not be possible to consistently estimate

the individual slope coe¢ cients, �i by the CCE procedure. But consistent estimates of the

mean of the slope coe¢ cients, �, and their asymptotic distribution can be obtained if it is

further assumed that the factor loadings are distributed independently of the factors and the

individual-speci�c error processes.

2.1 The CCE Estimators

We now discuss the two estimators for the means of the individual speci�c slope coe¢ cients

proposed by Pesaran (2006). One is the Mean Group (MG) estimator proposed in Pesaran and

Smith (1995) and the other is a generalization of the �xed e¤ects estimator that allows for the

possibility of cross section dependence. The former is referred to as the �Common Correlated

E¤ects Mean Group�(CCEMG) estimator, and the latter as the �Common Correlated E¤ects

Pooled�(CCEP) estimator.

The CCEMG estimator is a simple average of the individual CCE estimators, b̂i of �i,

b̂MG = N�1
NX
i=1

b̂i; (14)

where

b̂i = (X
0
i
�MX i)

�1X 0
i
�Myi; (15)

X i = (xi1;xi2; :::;xiT )
0, yi = (yi1; yi2; :::; yiT )

0, �M is de�ned by

�M = IT � �H
�
�H
0 �H
��1

�H
0
; (16)
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�H = (D; �Z), D and �Z being, respectively, the T �n and T � (k+1) matrices of observations
on dt and �zt. We also de�ne for later use

M g = IT �G (G0G)
�1
G0; (17)

and

M q = IT �Q (Q0Q)
+
Q0, with Q = G �P , (18)

where G = (D;F ), D = (d1;d2; :::;dT )
0, F = (f 1;f 2; :::;fT )

0 are T � n and T � m data

matrices on observed and unobserved common factors, respectively, (A)+ denotes the Moore-

Penrose inverse of A, and

�P
(n+m)�(n+k+1)

=

�
In �B
0 �C

�
; �U

�
= (0; �U ); (19)

where �U � has the same dimension as �H and �U = (�u1; �u2; :::; �uT )
0 is a T � (k + 1) matrix of

observations on �ut. E¢ ciency gains from pooling of observations over the cross section units can

be achieved when the individual slope coe¢ cients, �i, are the same. Such a pooled estimator

of �, denoted by CCEP, is given by

b̂P =

 
NX
i=1

X 0
i
�MX i

!�1 NX
i=1

X 0
i
�Myi; (20)

which can also be viewed as a generalized �xed e¤ects (GFE) estimator, and reduces to the

standard FE estimator if �H = � T with � T being a T � 1 vector of ones.

3 Theoretical Properties of CCE Estimators in Nonsta-
tionary Panel Data Models

The following assumptions will be used in the derivation of the asymptotic properties of the

CCE estimators.

Assumption 1 (non-stationary common e¤ects): The (n2+m)�1 vector of stochastic common
e¤ects, gt = (d

0
2t;f

0
t)
0, follows the multivariate unit root process

gt = gt�1 + �gt

where �gt is a (n2 + m) � 1 vector of L2+�, � > 0, stationary near epoque dependent (NED)

processes of size 1/2, on some �-mixing process of size �(2+ �)=�, distributed independently of
the individual-speci�c errors, "it0 and vit0 for all i, t and t0.
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Assumption 2 (individual-speci�c errors): (i) The individual speci�c errors "it and vjt are

distributed independently of each other, for all i; j and t. "it have uniformly bounded positive

variance, supi �
2
i < K; for some constant K, and uniformly bounded fourth-order cumulants.

vit have covariance matrices, �vi, which are nonsingular and satisfy supi k�vik < K < 1,
autocovariance matrices, �iv (s), such that supi

P1
s=�1 k�iv (s)k < K <1, and have uniformly

bounded fourth-order cumulants. (ii) For each i, ("it;v0it)
0 is an (k+1)�1 vector of L2+�, � > 0,

stationary near epoque dependent (NED) processes of size 2�
2��4 on some �-mixing process  it

of size �(2 + �)=� which is partitioned conformably to ("it;v0it)
0 as ( "it; 

0
vit)

0 where  "it and

 vjt are independent for all i and j.

Assumption 3 The coe¢ cient matrices, Bi and Ci are independently and identically distrib-

uted across i, and of the individual speci�c errors, "jt and vjt, the common factors, �gt, for

all i; j and t with �xed means B and C, and uniformly bounded second-order moments. In

particular,

vec(Bi) = vec(B) + �B;i, �B;i v IID (0;
B�); for i = 1; 2; :::; N; (21)

and

vec(Ci) = vec(C) + �C;i, �C;i v IID (0;
C�); for i = 1; 2; :::; N; (22)

where 
B� and 
C� are (k+ 1)n� (k+ 1)n and (k+ 1)m� (k+ 1)m symmetric non-negative

de�nite matrices, kBk < K, kCk < K, k
B�k < K and k
C�k < K; for some constant K.

Assumption 4 (random slope coe¢ cients): The slope coe¢ cients, �i, follow the random co-

e¢ cient model

�i = � + {i, {i v IID (0;
{); for i = 1; 2; :::; N; (23)

where k�k < K, k
{k < K, for some constant K, 
{ is a k � k symmetric non-negative

de�nite matrix, and the random deviations, {i, are distributed independently of j;�j,"jt, vjt,
and �gt for all i, j and t. {i has �nite fourth moments uniformly over i.

Assumption 5 (identi�cation of �i and �):
�
X0
i
�MXi

T

��1
exists for all i and T , and limN!1

1
N

PN
i=1�vi is nonsingular.

Assumption 6
�
X0
iMgXi

T

��1
exists for all i and T , and supiE

X0
i
�MXi

T

2 < K <1.

Assumption 7 When the rank condition (9) is not satis�ed, (i) 1
N

PN
i=1

X0
iMqXi

T 2
and � =

limN;T!1

�
1
N

PN
i=1�iT

�
, where �iT = E (T�2X 0

iM qX i), are nonsingular. (ii) If m � 2k+1,
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then
�
X0
iMqXi

T 2

��1
exists for all i and T and supiE

�X0
iMqXi

T 2

��1 �
X0
iMqF

T 2

�2 < 1. (iii) If

m < 2k + 1, then E
F 0F
T 2

2 <1 and E

�F 0FT 2 ��12 <1.
Remark 1 Assumption 1 departs from the standard practice in the analysis of large panels

with common factors and allows the factors to be non-stationary. Assumption 2 concerns the

individual speci�c errors and relaxes the assumption that "it are serially uncorrelated, often

adopted in the literature (see, e.g., Pesaran (2006)). Assumptions 2-6 are standard in large

panels with random coe¢ cients. But some comments on Assumption 7 seems to be in order.

This Assumption is only used when the rank condition (9) is not satis�ed. It is made up of

three regularity conditions.2 The last two are of greater signi�cance and only relate to the

Mean Group estimator presented in the next Section. In e¤ect, these assumptions ensure that

the individual slope coe¢ cient estimators possess second-order moments asymptotically, which

seems plausible in most economic applications.

Remark 2 Note that Assumption 3 implies that i are independently and identically distributed

across i, and

i =  + �i, �i v IID (0;
�); for i = 1; 2; :::; N; (24)

where 
� is a m�m symmetric non-negative de�nite matrix, and kk < K, and k
�k < K;

for some constant K.

For each i and t = 1; 2; :::; T , writing the model in matrix notation we have

yi =D�i +X i�i + Fi + "i; (25)

where "i = ("i1; "i2; :::; "iT )0. Using (25) in (15) we have

b̂i � �i =
�
X 0

i
�MX i

T

��1�
X 0

i
�MF

T

�
i +

�
X 0

i
�MX i

T

��1�
X 0

i
�M"i
T

�
; (26)

which shows the direct dependence of b̂i on the unobserved factors through T�1X 0
i
�MF . To

examine the properties of this component, we �rst note that (2) and (7) can be written in

matrix notations as

X i = G�i + V i; (27)

and
�H = (D;�Z) = (D;D�B+ F�C+ �U) = G �P + �U

�
; (28)

2E
T�2F 0F

2 <1, which is part of Assumption 7(iii), can be established under mild regularity conditions
(see Lemma 4 of Phillips and Moon (1999)).
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where �i = (A
0
i;�

0
i)
0, V i = (vi1;vi2; :::;viT )

0, G = (D;F), and �P and �U � are de�ned by (19).

Using Lemmas 3 and 4 in Appendix A and assuming that the rank condition (9) is satis�ed,

it follows that
X 0

i
�MF

T
= Op

�
1p
NT

�
+Op

�
1

N

�
; uniformly over i; (29)

X 0
i
�MX i

T
� X

0
iM gX i

T
= Op

�
1p
N

�
; uniformly over i; (30)

and
X 0

i
�M"i
T

� X
0
iM g"i
T

= Op

�
1p
NT

�
+Op

�
1

N

�
; uniformly over i: (31)

If the rank condition does not hold then by Lemma 6 in Appendix A it follows that

X 0
i
�MF

T
� X

0
iM qF

T
= Op

�
1p
N

�
; uniformly over i; (32)

X 0
i
�MX i

T
� X

0
iM qX i

T
= Op

�
1p
N

�
; uniformly over i; (33)

and
X 0

i
�M"i
T

� X
0
iM q"i
T

= Op

�
1p
NT

�
+Op

�
1

N

�
; uniformly over i: (34)

In the next subsections we discuss our main theoretical results.

3.1 Results for Pooled Estimators

We now examine the asymptotic properties of the pooled estimators. Focusing �rst on the MG

estimator, and using (26) we have

p
N
�
b̂MG � �

�
=

1p
N

NX
i=1

{i +
1

N

NX
i=1

	̂
�1
iT

 p
NX 0

i
�MF

T

!
i+

1

N

NX
i=1

	̂
�1
iT

 p
NX 0

i
�M"i

T

!
; (35)

where 	̂iT = T�1X 0
i
�MX i. In the case where the rank condition (9) is satis�ed, by (29) we

have p
N
�
X 0

i
�MF

�
T

= Op

�
1p
T

�
+Op

�
1p
N

�
: (36)

Using this, we can formally show that

p
N
�
b̂MG � �

�
=

1p
N

NX
i=1

{i +Op

�
1p
T

�
+Op

�
1p
N

�
:
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Hence p
N
�
b̂MG � �

�
d! N(0;�MG); as (N; T )

j!1: (37)

The variance estimator for �MG suggested by Pesaran (2006) is given by

�̂MG =
1

N � 1

NX
i=1

�
b̂i � b̂MG

��
b̂i � b̂MG

�0
, (38)

which can be used here as well. The following theorem summarises the results for the mean

group estimator. The result for the case where the rank condition holds is proven in Appendix

B, whereas the proofs for the case where the rank condition does not hold is given in Appendix

C.

Theorem 1 Consider the panel data model (1) and (2). Distinguish between the case where

the rank condition, (9), holds and when it does not. If the rank condition is met suppose that

Assumptions 1-6 hold. If the rank condition does not hold suppose that Assumptions 7(ii) and

7(iii) hold as well. Then, for the Common Correlated E¤ects Mean Group estimator, b̂MG,

de�ned by (14), we have, as (N; T )
j!1, that

p
N
�
b̂MG � �

�
d! N(0;�MG);

where �MG is given by 
{ when the rank condition holds and by (A98) when it does not. In

both cases, the variance matrix can be consistently estimated by (38).

This theorem does not require that the rank condition, (9), holds for any number, m, of

unobserved factors so long as m is �xed. Also, it does not impose any restrictions on the

relative rates of expansion of N and T . But in the case where the rank condition is satis�ed

the technical Assumption 7 will not be needed, and Assumption 3 can be relaxed. Namely the

factor loadings, i, need not follow the random coe¢ cient model. It would be su¢ cient that

they are bounded.

The following Theorem summarizes the results for the second pooled estimator, b̂P . The

proofs are provided in Appendix B when the rank condition is met, and in Appendix C when

it is not.

Theorem 2 Consider the panel data model (1) and (2), and suppose that Assumptions 1-6 hold.

If the rank condition, (9), does not hold further suppose that Assumption 7(i) holds. Then, for

the Common Correlated E¤ects Pooled estimator, b̂P , de�ned by (20), as (N; T )
j!1, we have

that p
N
�
b̂P � �

�
d! N(0;��

P );
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where ��
P is given by (A83), if the rank condition holds and by (A110) otherwise. In either

case the variance matrix can be estimated consistently by

�̂
�
P = 	̂

��1
R̂
�
	̂
��1

; (39)

where

	̂
�
= N�1

NX
i=1

X 0
i
�MX i

T
; (40)

R̂
�
=

1

(N � 1)

NX
i=1

�
X 0

i
�MX i

T

��
b̂i � b̂MG

��
b̂i � b̂MG

�0�X 0
i
�MX i

T

�
: (41)

Overall we see that despite a number of di¤erences in the above analysis, especially in terms

of the results given in (29)-(34), compared to the results in Pesaran (2006), the conclusions are

remarkably similar when the factors are assumed to follow unit root processes.

Remark 3 The formal analysis in the Appendices focuses on the case where the factor is an

I(1) process and no cointegration is present. But, as shown by Johansen (1995, pp. 40), when

the factor process is cointegrated and there are l < m cointegrating vectors, we have that Fi =

F 1�1i+F 2�2i where F 1 is an m� l-dimensional I(1) process with no cointegration whereas F 2

is an l-dimensional I(0) process. This implies that the cointegration case is equivalent to a case

where the model contains a mix of non-cointegrated I(1) and I(0) factor processes. Since we

know that the results of the paper hold for both non-cointegrated I(1) and, by Pesaran (2006),

I(0) factor processes, we conjecture that they hold for the cointegrated case, as well. However,

we feel that a formal proof of this statement is beyond the scope of the present paper.

3.2 Estimation of Individual Slope Coe¢ cients

In panel data models where N is large the estimation of the individual slope coe¢ cients is likely

to be of secondary importance as compared to establishing the properties of pooled estimators.

However, it might still be of interest to consider conditions under which they can be consistently

estimated. In the case of our set up the following further assumption is needed.

Assumption 8 For each i, "it is a martingale di¤erence sequence. For each i, vit is an k � 1
vector of L2+�, � > 0, stationary near epoque dependent (NED) process of size 1/2, on some

�-mixing process of size �(2 + �)=�.

Then, we have the following result.
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Theorem 3 Consider the panel data model (1) and (2) and suppose that Assumptions 1, 2(i)

and 3-8 hold. Let
p
T=N ! 0, as (N; T )

j! 1, and assume that the rank condition (9) be
satis�ed. As (N; T )

j!1 (in no particular order), b̂i, de�ned by (15), is a consistent estimator

of �i. Further p
T
�
b̂i � �i

�
d! N(0;�bi): (42)

A consistent estimator of �bi is given by

�̂bi =��
2
i

�
X 0

i
�MX i

T

��1
; (43)

where

��2i =

�
yi �X ib̂i

�0
�M
�
yi �X ib̂i

�
T � (n+ 2k + 1) : (44)

Remark 4 Parts of the above result hold under weaker versions of Assumption 8. In particular

we note that the central limit theorem in (A115) holds if Assumption 2(ii) holds. However, in

this case the asymptotic variance has a di¤erent form as autocovariances of "itvit enter the

asymptotic variance expression. If, then, a consistent estimate of the asymptotic variance is

required a Newey and West (1987) type correction needs to be used. Consistency of this variance

estimator requires more stringent assumptions than the NED assumption 2(ii). It is su¢ cient

to assume that ("it;v0it)
0 is a strongly mixing process for this consistency to hold.

Remark 5 It is worth noting that despite the fact that under our Assumptions f t, yit and xit
are I(1) and cointegrated, in the results of Theorem 1 the rate of convergence of b̂i to �i as

(N; T )
j!1 is

p
T and not T . It is helpful to develop some intuition behind this result. Since

for N su¢ ciently large f t can be well approximated by the cross section averages, for pedagogic

purposes we might as well consider the case where f t is observed. Without loss of generality we

also abstract from dt, and substitute (2) in (1) to obtain

yit = �
0
i (�

0
if t + vit) + 

0
if t + "it = #

0
if t + �it; (45)

where #i = �i�i+i and �it = "it+�
0
ivit. First, it is clear that under our assumptions and for

all values of �i, �it is I(0) irrespective of whether f t is I(0) or I(1). But if f t is I(1), since

�it v I(0), then yit will also be I(1) and cointegrated with f t. Hence, it follows that #i can be

estimated superconsistently. However, the OLS estimator of �i need not be superconsistent. To

see this note that �i can be estimated equivalently by regressing the residuals from the regressions

of yit on f t on the residuals from the regressions of xit on f t. Both these sets of residuals are

stationary processes and the resulting estimator of �i will be at most
p
T -consistent.
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Remark 6 An issue related to the above remark concerns the probability limit of the OLS

estimator of the coe¢ cients of xit in a regression of yit on xit alone. In general, such a

regression will be subject to the omitted variable problem and hence misspeci�ed. Also the

asymptotic properties of such OLS estimators can not be derived without further assumptions.

However, there is a special case which illustrates the utility of our method. Abstracting from dt,

assuming that k = m and that �i is invertible, and similarly to (45) write the model for yit as

yit = �
0
ixit + 

0
i�
0�1
i (xit � vit) + "it = %

0
ixit + &it (46)

where %0i = �
0
i + 

0
i�
0�1
i and &it = "it �  0i�0�1i vit. Note that &it is, by construction, correlated

with vit. The question is whether estimating a regression of the form (46) provides a consistent

estimate of %i. For stationary processes this would not be case due to the correlation between

&it and vit. However, in the case of nonstationary data this is not clear and consistency would

depend on the exact speci�cation of the model. Under the assumptions we have made in this

remark, the estimator of %i would be consistent. However, even in this case it is clear that the

application of the least squares method to (46) can only lead to a consistent estimator of %i and

not of �i. To consistently estimate the latter we need to augment the regressions of yit on xit
with their cross-section averages.

Remark 7 When the rank condition, (9), is not satis�ed consistent estimation of the individual

slope coe¢ cients by the CCE procedure is not possible.

4 Monte Carlo Design and Evidence

In this section we provide Monte Carlo evidence on the small sample properties of the CCEMG

and the CCEP estimators. We also consider the two alternative principal component augmen-

tation approaches discussed in Kapetanios and Pesaran (2007). The �rst PC approach applies

the Bai and Ng (2002) procedure to zit = (yit;x
0
it)
0 to obtain consistent estimates of the un-

observed factors, and then uses the estimated factors to augment the regression (1), and thus

produces consistent estimates of �. We consider both pooled and mean group versions of this

estimator which we refer to as PC1POOL and PC1MG. The second PC approach begins

with extracting the principal component estimates of the unobserved factors from yit and xit
separately. In the second step yit and xit are regressed on their respective factor estimates, and

in the third step the residuals from these regressions are used to compute the standard pooled

and mean group estimators, with no cross-sectional dependence adjustments. We refer to the

estimators based on this approach as PC2POOL and PC2MG, respectively.
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The experimental design of the Monte Carlo study closely follows the one used in Pesaran

(2006). Consider the data generating process (DGP):

yit = �i1d1t + �i1x1it + �i2x2it + i1f1t + i2f2t + "it, (47)

and

xijt = aij1d1t + aij2d2t + ij1f1t + ij3f3t + vijt, j = 1; 2; (48)

for i = 1; 2; :::; N , and t = 1; 2; :::; T . This DGP is a restricted version of the general linear

model considered in Pesaran (2006), and sets n = k = 2, and m = 3, with �0i = (�i1; 0);

�0i = (�i1; �i2), and 
0
i = (i1; i2; 0); and

A0
i =

�
ai11 ai12
ai21 ai22

�
; �0i =

�
i11 0 i13
i21 0 i23

�
:

The observed common factors and the individual-speci�c errors of xit are generated as inde-

pendent stationary AR(1) processes with zero means and unit variances:

d1t = 1; d2t = �dd2;t�1 + vdt; t = �49; :::1; :::; T ,

vdt � IIDN(0; 1� �2d), �d = 0:5; d2;�50 = 0;

vijt = �vijvijt�1 + {ijt; t = �49; :::1; :::; T;

{ijt � IIDN
�
0; 1� �2vij

�
, vji;�50 = 0;

and

�vij � IIDU [0:05; 0:95] ; for j = 1; 2:

But the unobserved common factors are generated as non-stationary processes:

fjt = fjt�1 + vfj;t, for j = 1; 2; 3, t = �49; ::; 0; ::; T; (49)

vfj;t � IIDN(0; 1); fj;�50 = 0, for j = 1; 2; 3:

The �rst 50 observations are discarded.

To illustrate the robustness of the CCE and PC estimators to the dynamics of the individual-

speci�c errors of yit, these are generated as the (cross sectional) mixture of stationary hetero-

geneous AR(1) and MA(1) errors. Namely,

"it = �i""i;t�1 + �i

q
1� �2i"!it, i = 1; 2; :::; N1, t = �49; ::; 0; ::; T;

and

"it =
�ip
1 + �2i"

(!it + �i"!i;t�1) , i = N1 + 1; :::; N , t = �49; ::; 0; ::; T;
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where N1 is the nearest integer of N=2,

!it � IIDN (0; 1) , �2i � IIDU [0:5; 1:5] , �i" � IIDU [0:05; 0:95] , �i" � IIDU [0; 1] .

�vij, �i", �i" and �i are not changed across replications. The �rst 49 observations are discarded.

The factor loadings of the observed common e¤ects, �i1, and vec(Ai) = (ai11; ai21; ai12; ai22)
0

are generated as IIDN(1; 1), and IIDN(0:5� 4; 0:5 I4), where � 4 = (1; 1; 1; 1)0, and are not

changed across replications. They are treated as �xed e¤ects. The parameters of the unobserved

common e¤ects in the xit equation are generated independently across replications as

�0i =

�
i11 0 i13
i21 0 i23

�
� IID

�
N (0:5; 0:50) 0 N (0; 0:50)
N (0; 0:50) 0 N (0:5; 0:50)

�
.

For the parameters of the unobserved common e¤ects in the yit equation, i, we considered

two di¤erent sets that we denote by A and B. Under set A, i are drawn such that the rank
condition is satis�ed, namely

i1 � IIDN (1; 0:2) ; i2A � IIDN (1; 0:2) ; i3 = 0;

and

E
�
~�iA

�
= (E (iA) ; E (�i)) =

0@ 1 0:5 0
1 0 0
0 0 0:5

1A :

Under set B
i1 � IIDN (1; 0:2) ; i2B � IIDN (0; 1) ; i3 = 0;

so that

E
�
~�iB

�
= (E (iB) ; E (�i)) =

0@ 1 0:5 0
0 0 0
0 0 0:5

1A ;

and the rank condition is not satis�ed. For each set we conducted two di¤erent experiments:

� Experiment 1 examines the case of heterogeneous slopes with �ij = 1 + �ij; j = 1; 2,

and �ij � IIDN(0; 0:04), across replications.

� Experiment 2 considers the case of homogeneous slopes with �i = � = (1; 1)0.

The two versions of experiment 1 will be denoted by 1A and 1B, and those of experiment
2 by 2A and 2B. For this Monte Carlo study we also computed the CCEMG and the CCEP

estimators as well as the associated �infeasible�estimators (MG and Pooled) that include f1t
and f2t in the regressions of yit on (d1t;xit), and the �naive� estimators that exclude these
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factors. The naive estimators illustrate the extent of bias and size distortions that can occur if

the error cross section dependence that induced by the factor structure is ignored.

Concerning the infeasible pooled estimator, it is important to note that although this esti-

mator is unbiased under all the four sets of experiments, it need not be e¢ cient since in these

experiments the slope coe¢ cients, �i, and/or error variances, �
2
i , di¤er across i. As a result

the CCE or PC augmented estimators may in fact dominate the infeasible estimator in terms

of RMSE, particularly in the case of experiments 1A and 1B where the slopes as well as the
error variances are allowed to vary across i.

Another important consideration worth bearing in mind when comparing the CCE and the

PC type estimators is the fact that the computation of the PC augmented estimators assumes

thatm = 3; namely that the number of unobserved factors is known. In practice, m might

be di¢ cult to estimate accurately particularly when N or T happen to be smaller than 50.

By contrast the CCE type estimators are valid for any �xed m and do not require an a prior

estimate for m.

Each experiment was replicated 2000 times for the (N; T ) pairs withN; T = 20; 30; 50; 100; 200.

In what follows we shall focus on �1 (the cross section mean of �i1). Results for �2 are very

similar and will not be reported. Finally, for completeness we state below the exact formu-

lae for the variance estimators used for the di¤erent estimators. The non-parametric variance

estimators of the mean group estimators, ~bMG = N�1PN
i=1
~bi, are computed as

dV ar(~bMG) =
1

N (N � 1)

NX
i=1

�
~bi � ~bMG

��
~bi � ~bMG

�0
, (50)

where
~bi =

�
X 0

i
~MxX i

��1
X 0

i
~Mx

~M yyi,

~Mx = IT � ~Hx

�
~H
0
x
~Hx

��1
~H
0
x, ~M y = IT � ~Hy

�
~H
0
y
~Hy

��1
~H
0
y.

For the CCEMG estimator, ~Hx = ~Hy= �H = (D; �Z), so that ~bi = b̂i, which is de�ned by

(15); for the PC1MG estimator, ~Hx = ~Hy= F̂ z, where F̂ z is a T �(n+m) matrix of extracted
factors from Zi = (yi;X i) for all i, together with observed common factors; for the PC2MG

estimator ~Hx = F̂ x and ~Hy = F̂ y, where F̂ x and F̂ y are T � (nx +mx) and T � (ny +my)

matrices of extracted factors from X i and yi respectively for all i, together with the observed

common factors with nx and ny being the number of observed common factors in X i and

yi respectively, and mx and my de�ned similarly; for the infeasible mean group estimator,
~Hx = ~Hy= F y, which is a T � my matrix of unobserved factors in yi; for the naive mean

group estimator, ~Hx = ~Hy= D. Next, the non-parametric variance of the pooled estimator,
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~bP , is computed as dV ar(~bP ) = N�1 ~	
�1 ~R~	

�1
, (51)

where

~bP =

 
NX
i=1

X 0
i
~MxX i

!�1 NX
i=1

X 0
i
~Mx

~M yyi,

~	 = N�1
NX
i=1

 
X 0

i
~MxX i

T

!
,

~R =
1

(N � 1)

NX
i=1

 
X 0

i
~MxX i

T

!�
~bi � ~bMG

��
~bi � ~bMG

�0 X 0
i
~MxX i

T

!
.

In order to show the e¤ect of another type of violation of the rank condition, consider the

following data generating process (DGP):

yit = �i1d1t + �i1x1it + �i2x2it + i1f1t + i2f2t + i4f4t + "it, (52)

and

xijt = aij1d1t + aij2d2t + ij1f1t + ij3f3t + vijt, (53)

j = 1; 2; for i = 1; 2; :::; N , and t = 1; 2; :::; T . Sets n = k = 2 with �0i = (�i1; 0); �
0
i = (�i1; �i2),

and  0i = (i1; i2; 0; i4) with i` � IIDN(1; 0:2) for ` = 1; 2 and i4 � IIDN(0:5; 0:2),

A0
i =

�
ai11 ai12
ai21 ai22

�
; �0i =

�
i11 0 i13 0
i21 0 i23 0

�
;

�0i � IID

�
N(0:5; 0:5) 0 N(0; 0:5) 0
N(0; 0:5) 0 N(0:5; 0:5) 0

�
.

Observe that

E(i;�i)
0 =

0@ 1 1 0 0:5
0:5 0 0 0
0 0 0:5 0

1A
whose rank is k + 1 = 3, which is less than the number of unobserved factors, m = 4. The rest

of variables are generated similarly to the �rst DGP. We considered both cases of homogeneous

and heterogeneous slopes.

Using this DGP, we implement two di¤erent set of experiments. In the �rst set, the number

of factors are treated as known, and factors are extracted as before. In the second set, the

number of factors are treated as unknown, and the number of factors are estimated, using the

information criterion PCp2 which is proposed by Bai and Ng (2002, p.201).3 The information

3PCp2 is one of the information criteria which performed well in the �nite sample investigations reported in
Bai and Ng (2002).
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criterion is applied to the �rst di¤erenced variables, and the maximum number of factors is set

to six.

Finally, the results of recent research by Stock and Watson (2008) suggest that the possible

structural breaks in the means of the unobserved factors will not a¤ect the asymptotic con-

sistency of the CCE type estimators, as well as the principal component type estimators. In

view of this, we considered another set of experiments, corresponding to the DGPs speci�ed

above, 1A, 1B, 2A and 2B, but now the unobserved factors are generated subject to mean

shifts. Speci�cally, under these experiments the unobserved factors are generated as fjt = 'jt

for t < b2T=3c and fjt = 1 + 'jt for t � b2T=3c with bAc being the greatest integer less than
or equal to A, where 'jt = 'j;t�1 + �jt, and �jt � IIDN(0; 1), for j = 1; 2; 3:

4.1 Results

Results of experiments 1A, 2A, 1B, 2B are summarized in Tables 1 to 4, respectively. We also
provide results for the naive estimator (that excludes the unobserved factors or their estimates)

and the infeasible estimator (that includes the unobserved factors as additional regressors) for

comparison purposes. But for the sake of brevity we include the simulation results for these

estimators only for experiment 1A.
As can be seen from Table 1 the naive estimator is substantially biased, performs very poorly

and is subject to large size distortions; an outcome that continues to apply in the case of other

experiments (not reported here). In contrast, the feasible CCE estimators perform well, have

bias that are close to the bias of the infeasible estimators, show little size distortions even for

relatively small values of N and T , and their RMSE falls steadily with increases in N and/or

T . These results are quite similar to the results presented in Pesaran (2006), and illustrate

the robustness of the CCE estimators to the presence of unit roots in the unobserved common

factors. This is important since it obviates the need for pre-testing of unobserved common

factors for the possibility of non-stationary components.

The CCE estimators perform well, in both heterogeneous and homogeneous slope cases,

and irrespective of whether the rank condition is satis�ed, although the CCE estimators with

rank de�ciency have sightly higher RMSEs than those with full rank. The RMSEs of the CCE

estimators of Tables 1 and 3 (heterogeneous case) are higher than those reported in Tables

2 and 4 for the homogeneous case. The sizes of the t-test based on the CCE estimators are

very close to the nominal 5% level. In the case of full rank, the power of the tests for the

CCE estimators are much higher than in the rank de�cient case. Finally, not surprisingly the

power of the tests for the CCE estimators in the homogeneous case is higher than that in the

heterogeneous case.
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It is also important to note that the small sample properties of the CCE estimator does not

seem to be much a¤ected by the residual serial correlation of the idiosyncratic errors, "it. The

robustness of the CCE estimator to the short run dynamics is particularly helpful in practice

where typically little is known about such dynamics. In fact a comparison of the results for

the CCEP estimator with the infeasible counterpart given in Table 1 shows that the former

can even be more e¢ cient (in the RMSE sense). For example the RMSE of the CCEP for

N = T = 50 is 3.97 whilst the RMSE of the infeasible pooled estimator is 4.31. This might

seem counter intuitive at �rst, but as indicated above the infeasible estimator does not take

account of the residual serial correlation of the idiosyncratic errors, but the CCE estimator does

allow for such possibilities indirectly through the use of the cross section averages that partly

embody the serial correlation properties of f t and "it�s.

Consider now the PC augmented estimators and recall that they are computed assuming

the true number of common factors is known. The results summarized in Tables 1-4 bear some

resemblance to those presented in Kapetanios and Pesaran (2007). The bias and RMSEs of

the PC1POOL and PC1MG estimators improve as both N and T increase, but the t-tests

based on these estimators substantially over-reject the null hypothesis. The PC2POOL and

PC2MG estimators perform even worse. The biases of the PC estimators are always larger in

absolute value than the respective biases of the CCE estimators. The size distortion of the PC

augmented estimators is particularly pronounced in the case of the experiments 1A and 2A
(in Tables 1 and 2) where the full rank conditions are met. It is also interesting that in the

case of some of the experiments the bias distortions of the tests based on the PC augmented

estimators do not improve even for relatively large N and T . An interesting distinction arises

when comparing results for experiments 1A and 1B. For 1A (heterogeneous slopes and full

rank) results are very poor for small values of N and T but improve considerably as N rises

and less perceptibly as T rises. For experiment 1B (heterogeneous slopes and rank de�cient)
results are much better for small values of N and T . Finally, it is worth noting that in both

cases the performance of the PC estimators actually get worse when N is small and kept small

but T rises. This may be related to the fact that the accuracy of the factor estimates depends

on the minimum of N and T .

Table 5 reports the results of the experiments where the number of unobserved factors is four

(m = 4) which exceeds k + 1 = 3, in the case of heterogeneous slopes. For the sake of brevity

we include the results of the CCE type estimators and the principal component estimators with

augmentation (PC1 estimators) only, since the other PC estimator performed rather poorly by

comparison. In this experiment, PC1 estimates are obtained after extracting factors in two

cases: i) m is known, and; ii) m is unknown but the number of factors is estimated. Firstly,
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in spite of the number of unobserved factors, m = 4; exceeding the number of regressors and

regressand (k + 1 = 3), the root mean square errors (RMSEs) of CCE estimators decrease as

N and T get larger, which con�rms the consistency of the estimators. Furthermore, when PC1

estimators are obtained assuming m known, the RMSEs of CCE estimators dominates those of

PC1 estimators, except N and/or T are large. However, in practice the number of factors is

usually not known and need to be estimated �rst before the PC1 estimator can be computed.

In order to take this extra uncertainty into account, we also computed the PC1 estimator

with the number of factors estimated using the information criterion PCP2, which is proposed

by Bai and Ng (2002), applied to the �rst-di¤erences of (yit; x1it; x2it). We set the maximum

number of factors to six.4 In this more realistic circumstances, CCE estimators outperform

the PC1 estimators in all experiments, in terms of RMSEs. In addition, the size of the CCE

estimators is very close to the nominal 5% level, whilst the size distortion of the PC1 estimators

are serious unless both N and T is large (this is not reported for brevity). Table 6 reports the

results of experiments based on the same DGP as in Table 5, except that slope coe¢ cients are

homogeneous. As to be expected the slope homogeneous results in Table 6 show smaller bias

and RMSEs, but otherwise are very similar to those reported in Table 5.

Tables 7-10 provide the results of experiments where the unobserved factors are subject to

mean shifts. These results are very similar to those reported in Tables 1-4, which con�rm the

robustness of the CCE type estimators to such structural breaks. This is consistent with the

�ndings of Stock and Watson (2008).

5 Conclusions

Recently, there has been increased interest in analysis of panel data models where the standard

assumption that the errors of the panel regressions are cross-sectionally uncorrelated is violated.

When the errors of a panel regression are cross-sectionally correlated then standard estimation

methods do not necessarily produce consistent estimates of the parameters of interest. An

in�uential strand of the relevant literature provides a convenient parametrisation of the problem

in terms of a factor model for the error terms.

Pesaran (2006) adopts an error multifactor structure and suggests new estimators that

take into account cross-sectional dependence, making use of cross-sectional averages of the

dependent and explanatory variables. However, he focusses on the case of weakly stationary

factors that could be restrictive in some applications. This paper provides a formal extension

of the results of Pesaran (2006) to the case where the unobserved factors are allowed to follow

4For small N and T the information criterion tends to over-estimate the number of the factors in the �rst-
di¤erenced (yit; x1it; x2it), and the estimate tend to four as N and T get larger.
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unit root processes. It is shown that the main results of Pesaran continue to hold in this

more general case. This is certainly of interest given the fact that usually there are major

di¤erences between results obtained for unit root and stationary processes. When we consider

the small sample properties of the new estimators, we observe that again the results accord

with the conclusions reached in the stationary case, lending further support to the use of the

CCE estimators irrespective of the order of integration of the data observed.
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6 Appendix A

Lemmas
Lemma 1 Under Assumptions 1-4,

�U
0 �U

T
= Op

�
1

N

�
(A1)

V 0
i
�U

T
= Op

�
1

N

�
+Op

�
1p
NT

�
,
"0i
�U

T
= Op

�
1

N

�
+Op

�
1p
NT

�
; uniformly over i (A2)

F 0 �U

T
= Op

�
1p
N

�
,
D0 �U

T
= Op

�
1p
N

�
(A3)

X 0
i
�U

T
= Op

�
1p
N

�
; uniformly over i (A4)

Q0 �U

T
= Op

�
1p
N

�
(A5)

Q0Q

T 2
= Op (1) (A6)

Q0Xi

T 2
= Op (1) , uniformly over i (A7)

Q0G

T 2
= Op (1) (A8)

�H
0 �H

T 2
= Op(1) (A9)

�H
0
G

T 2
= Op(1) (A10)

�H
0
"i
T

= Op(1), uniformly over i (A11)

�H
0
V i

T
= Op(1), uniformly over i (A12)

�H
0
Xi

T 2
= Op(1), uniformly over i (A13)

�H
0 �U

T
= Op

�
1p
N

�
: (A14)

Proof. To prove (A1) we �rst show that

E k�utk2 = O
�
1

N

�
; and E k�utk = O

�
1p
N

�
; (A15)

We recall that

�ut =

�
�"t +

1
N

PN
i=1 �

0
ivit

�vt

�
; (A16)

where �vt = 1
N

PN
i=1 �

0
ivit. Then, by the cross-sectional independence of vit and �

0
i speci�ed in Assumptions 2

and 4, E k�vtk2 = 1
N2

PN
i=1E

�0ivit2, and again by Assumptions 2 and 4, we have
E k�vtk2 �

K

N
= O

�
1

N

�
: (A17)
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Similarly,

E
�
�"2t
�
= O

�
1

N

�
: (A18)

Next, note that T�1 �U0 �U = T�1
�PT

t=1 �ut�u
0
t

�
, where the cross-product terms in �ut�u0t, being functions of covari-

ance stationary processes with �nite fourth-order cumulants, are themselves stationary with �nite means and
variances. Also, E

T�1 �U0 �U
 � T�1PT

t=1E k�utk
2, and by (A15) E

T�1 �U0 �U
 = O �N�1�, which establishes

(A1).
The result for V 0

i
�U=T in (A2) is established in Lemma 2 below. The result for "0i �U=T in (A2) is established

similarly to that for V 0
i
�U=T .

To establish (A3), �rstly we examine T�1
�
F 0 �U

�
. Consider the `th row of T�1

�
F 0 �U

�
and note that it can

be written as T�1
�PT

t=1 f`t�u
0
t

�
. Since by assumption f`t and �ut are independently distributed processes then

V ar

 PT
t=1 f`t�ut
T

!
=

PT
t=1

PT
t0=1E (f`tf`t0)E (�ut�u

0
t0)

T 2
;

where E (�ut�u0t0) = O
�
N�1�. Hence,

V ar

 PT
t=1 f`t�ut
T

!
= O

�
1

N

�(PT
t=1

PT
t0=1E (f`tf`t0)

T 2

)
:

But, by standard unit root asymptotic analysis we know that
PT

t=1

PT
t0=1E (f`tf`t0) = O

�
T 2
�
and therefore

V ar

 PT
t=1 f`t�ut
T

!
= O

�
1

N

�
; (A19)

which establishes that T�1
PT

t=1 f`t�uwt converges to its limit at the desired rate of Op
�
1=
p
N
�
. The result for

T�1
�
D0 �U

�
is obtained using the same line of arguments.

To establish (A4), �rst note that

X 0
i
�U

T
= �0

i

(D;F )
0 �U

T
+
V 0
i
�U

T
= Op

�
1p
N

�
, uniformly over i

using (A2) and (A3), since the elements of �i are assumed to be bounded uniformly over i.
To establish (A5), recalling that Q = G �P ; and using (A3)

Q0 �U

T
= �P

0 (D;F )
0 �U

T
= Op

�
1p
N

�
since the elements of �P are assumed to be bounded.

(A6) is established by
Q0Q

T 2
= �P

0G
0G

T 2
�P = Op(1),

since G0G=T 2 = Op(1).
To establish (A7), �rst note that

Q0Xi

T 2
= �P

0
�
G0G

T 2

�
�i + �P

0G
0V i

T 2
: (A20)

The �rst term is Op(1) uniformly over i, since the elements of �P and�i are assumed to be bounded in probability
uniformly over i. For the second term, under Assumptions 1-2, we have that

sup
i
V ar

 PT
t=1 g`tv

0
it

T

!
= sup

i

PT
t=1

PT
t0=1E (g`tg`t0)E (vitv

0
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T 2
;
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where g`t is the `th element of gt and supiE (vtv
0
t0) = O (1). Hence,

sup
i
V ar

 PT
t=1 g`tv

0
it

T

!
= O (1)

(PT
t=1

PT
t0=1E (g`tg`t0)

T 2

)
;

But, by standard unit root asymptotic analysis we know that
PT

t=1
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t0=1E (g`tg`t0) = O

�
T 2
�
and therefore

sup
i
V ar

 PT
t=1 g`tv

0
it

T

!
= O (1) : (A21)

Hence, G0V i=T = Op(1) uniformly over i for su¢ ciently large T . Therefore, as the elements of �P are assumed
to be bounded in probability, the second term is Op(1) uniformly over i, which establishes (A7). (A8) is
straightforwardly proven, using (A6).

To prove (A9), recalling �H = Q+ �U
�
; where �U

�
=
�
0; �U

�
,
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T 2
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by (A1), (A5) and (A6).
To establish (A10),
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since G0F=T 2 is Op(1).
(A11) is established because
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"i
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= Op(1) uniformly over i (A24)

since G0"i=T = Op(1) uniformly over i, using the same line of the argument as in the proof of (A7). (A12) can
be proven similarly to (A11).

Next,
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T 2
=
Q0Xi

T 2
+
�U
�0
Xi

T 2
= Op(1) uniformly over i

by (A4) and (A7), which establishes (A13). Finally, (A14) follows by the boundedness in probability of �P and
(A3).

Lemma 2 Under assumptions 1-4,

V 0
i
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T
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�
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�
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�
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N

�
uniformly over i: (A25)

Proof. In order to prove (A25) we need to examine more closely Lemma A.2. of Pesaran (2006). So, we
have
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where �" = N�1PN
j=1 "j and �V = N�1PN

j=1 V j . Denote the tth element of �" by �"t = N�1PN
j=1 "jt, consider

the �rst term on the RHS of (A26). Since by assumption, vit and �"t are independently distributed covariance
stationary processes with zero means, then
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where E (�"t�"t0) = O
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where �iv` (jt� t0j) is the autocovariance function of the stationary process, vi`t. But, by Assumption 2,
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Therefore,
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which establishes that
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To see how (A28) follows from (A27),we note that by the Markov inequality
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proving that (A28) follows from (A27).
Consider the second term in (A26) and note that
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Also, since the elements of V i and �V
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�i are independently distributed and covariance stationary, following the

same line of analysis leading to (A28), we have
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Finally, since the last term of (A26) can be written as
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which completes the proof of Lemma 2.

Lemma 3 Under Assumptions 1-4 and assuming that the rank condition (9) holds, then
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We examine each of the above terms. So, noting that �H = Q+ �U
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by (A4), (A9) and (A13). Next, we have 1TX 0
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by (A7), (A6), and (A4). Noting thatMg =M q when the rank condition is satis�ed, substituting (A37), (A38)
and (A39) into (A36), we haveX 0
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as required.
Next, we consider (A35). In particular, by a similar analysis to that for (A34), we have
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by (A1), (A5), (A7), (A9), (A6) and (A11). Finally, 1TX 0
iQ
�
Q0Q

��1 � �H 0
"i �Q0"i

�
�
X 0

iQ

T 2

�
Q0Q

T 2

��1
 �U

�0
"i
T


= Op

�
1p
NT

�
+Op

�
1

N

�
, uniformly over i; (A43)

by (A7), (A6), and (A2). Noting thatMg =M q when the rank condition is satis�ed, substituting (A41)-(A43)
into (A40) yields ��������X 0

i
�M"i
T

� X
0
iMg"i
T

�������� = Op� 1p
NT

�
+Op

�
1

N

�
uniformly over i

which establishes (A35).

Lemma 4 Assume that the rank condition (9) holds. Then, under Assumptions 1-4

X 0
i
�MF

T
= Op

�
1

N

�
+Op

�
1p
NT

�
, uniformly over i: (A44)

Proof. We start by noting that
�M �H = �M

�
G �P + �U

�
�
.

But, �M �H = 0 and �MD = 0 since �H =
�
D; �Z

�
. Then

0 =
�
0; �MF

�� In �B
0 �C

�
+
�
0; �M �U

�
,

or
�MF �C = � �M �U . (A45)

Hence �
�U
0 �MF

�
�C = � �U 0 �M �U . (A46)

Also, from (A45) �
X 0
i
�MF

�
�C = �X 0

i
�M �U . (A47)
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Note, however, that Xi = G�i + V i, and hence

X 0
i
�M �U =

�
�0
iG

0 + V 0
i

�
�M �U

= �0
i

�
G0 �M �U

�
+ V 0

i
�M �U

=
�
A0
i;�

0
i

�� D0

F 0

�
�M �U + V 0

i
�M �U

=
�
A0
i;�

0
i

�� 0
F 0 �M �U

�
+ V 0

i
�M �U

= �0iF
0 �M �U + V 0

i
�M �U . (A48)

Substituting (A48) in (A47) yields �
X 0
i
�MF

�
�C = ��0iF 0 �M �U � V 0

i
�M �U (A49)

or, by the full rank assumption for �C,�
X 0
i
�MF

�
= ��0i F 0 �M �U �C

0
�
�C �C

0
��1

� V 0
i
�M �U �C

0
�
�C �C

0
��1

: (A50)

Also, from (A46)
�C
0 �
F 0 �M �U

�
= � �U 0 �M �U (A51)

or �
F 0 �M �U

�
= �

�
�C �C

0
��1

�C �U
0 �M �U . (A52)

Then, using this result in (A50) we have�
X 0
i
�MF

�
= �0i

�
�C �C

0
��1

�C
�
�U
0 �M �U

�
�C
0
�
�C �C

0
��1

�
�
V 0
i
�M �U

�
�C
0
�
�C �C

0
��1

; (A53)

and hence X 0
i
�MF

T

 � �0i� �C �C
0
��1

�C

2
 �U

0 �M �U

T

+
V 0

i
�M �U

T

 �C 0
�
�C �C

0
��1 : (A54)

Since the norms of
�
�C �C

0
��1

�C and �0i are bounded, we need to establish the probability orders of
 �U 0 �M �U=T


and

V 0
i
�M �U=T

. For �U 0 �M �U=T , we have:

�U
0 �M �U

T
=
�U
0 �U

T
�
 
�U
0 �H

T 3=2

! 
�H
0 �H

T 2

!�1 
�H
0 �U

T 3=2

!
. (A55)

From (A1), (A9) and (A14), we have that

�U
0 �U

T
= Op

�
1

N

�
,
�U
0 �H

T 3=2
= Op

�
1p
NT

�
;
�H
0 �H

T 2
= Op(1):

Hence,
�U
0 �M �U

T
= Op

�
1

N

�
. (A56)

Similarly

V 0
i
�M �U

T
=
V 0
i
�U

T
�
�
V 0
i
�H

T 3=2

� �H
0 �H

T 2

!�1 
�H
0 �U

T 3=2

!
: (A57)

By (A2) and (A12)

V 0
i
�U

T
= Op

�
1

N

�
+Op

�
1p
NT

�
and

V 0
i
�H

T 3=2
= Op

�
1p
T

�
, uniformly over i.

33



Hence,
V 0
i
�M �U

T
= Op

�
1

N

�
+Op

�
1p
NT

�
, uniformly over i; (A58)

and substituting (A56) and (A58) into (A54) establishes the result.

Lemma 5 Under Assumptions 1-4,

X 0
iMgXi

T
��vi = Op

�
1p
T

�
:

Proof. Recall that
Xi = G�i + V i (A59)

where G = (D;F ) is the T �m + n matrix of I(1) factors, and V i is a stationary error matrix. Denote the
OLS residuals of the multiple regression (A59) as V̂ i =Xi �G�̂i, where �̂i =

�
G0G

��1
G0Xi. Observe that

V̂ i =MgXi. Then, we can write

V̂
0
iV̂ i=T � V 0

iV i=T = V̂
0
iV̂ i=T � V̂

0
iV i=T + V̂

0
iV i=T � V 0

iV i=T

= V̂
0
i

�
V̂ i � V i

�
=T +

�
V̂ i � V i

�0
V i=T

= �X 0
iMgG

�
�̂i ��i

�
=T �

�
�̂i ��i

�0 �
G0V i=T

�
= �

�
�̂i ��i

�0 �
G0V i=T

�
,

becauseMgG = 0. But, since
�
G0V i=T

�
= Op(1) and

�
�̂i ��i

�
= Op(T

�1); it follows that

V̂
0
iV̂ i=T � V 0

iV i=T = Op(T
�1):

The required result now follows since under Assumption 2, V 0
iV i=T � �vi = Op(T

�1=2), where �vi is non-
singular matrix.

Lemma 6 Under Assumptions 1-4 and assuming that the rank condition (9) does not hold, then

X 0
i
�MXi

T
� X

0
iM qXi

T
= Op

�
1p
N

�
; uniformly over i; (A60)

X 0
i
�MF

T
� X

0
iM qF

T
= Op

�
1p
N

�
; uniformly over i; (A61)

X 0
i
�M"i
T

� X
0
iM q"i
T

= Op

�
1p
NT

�
+Op

�
1

N

�
; uniformly over i: (A62)

Proof. The procedure in Lemma 3 can be used to prove (A60) and (A62), but replacing all inverses with
generalised inverses. This is required since Q0Q has reduced rank when the rank condition does not hold. We
need to show that  1TX 0

iQ

��
�H
0 �H
�+
�
�
Q0Q

�+� �H 0
Xi

 = Op� 1p
N

�
uniformly over i; (A63)

where + denotes the Moore-Penrose inverse. To establish (A63) we need to show that

�
Q0Q

T 2

�+
�
 
�H
0 �H

T 2

!+
= Op

�
1

T
p
N

�
: (A64)
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However, because the Moore-Penrose inverse is not a continuous function it is not su¢ cient that�
Q0Q

T 2

�
�
 
�H
0 �H

T 2

!
= Op

�
1

T
p
N

�
; (A65)

for (A64) to hold. But, by Theorem 2 of Andrews (1987), (A65) is su¢ cient for (A64), if additionally, as

(N;T )
j!1

lim
N;T

j!1
Pr

 
rk

 
�H
0 �H

T 2

!
= rk

�
Q0Q

T 2

�!
= 1 (A66)

where rk(A) denotes the rank of A. But,

�H
0 �H

T 2
=
Q0Q

T 2
+
�U
�0 �U

�

T 2
+
Q0 �U

�

T 2
+
�U
�0
Q

T 2
;

with

lim
N;T

j!1
Pr

  �U
�0 �U

�

T 2
+
Q0 �U

�

T 2
+
�U
�0
Q

T 2

 > �
!
= 0

for all � > 0. Also
rk(T�2Q0Q) = n+ rk( �C);

for all N and T , with rk(T�2Q0Q)! n+ rk(C) < n+m as (N;T )
j!1. Using these results it is now easily

seen that condition (A66) in fact holds. Hence, the desired result follows.
Consider now (A61). Following a similar line of analysis used to establish (A60), we have

��������X 0
i
�MF

T
� X

0
iM qF

T

�������� =

X 0
i
�H
�
�H
0 �H
�+

�H
0
F

T
�
X 0
iQ
�
Q0Q

�+
Q0F

T


�
 1T �X 0

i
�H �X

0
iQ
��

�H
0 �H
�+

�H
0
F

+  1TX 0
iQ

��
�H
0 �H
�+
�
�
Q0Q

�+� �H
0
F

+ 1TX 0
iQ
�
Q0Q

�+ � �H 0
F �Q0F

� : (A67)

Consider each of the above terms in turn. First, 1T �X 0
i
�H �X

0
iQ
��

�H
0 �H
�+

�H
0
F

 � X 0
i
�H

T
� X 0

iQ

T



 
�H
0 �H

T 2

!+
�H
0
F

T 2


=

X 0
i
�U
�

T



 
�H
0 �H

T 2

!+
�H
0
F

T 2


= Op

�
1p
N

�
; uniformly over i; (A68)

by (A4), (A9) and (A10). Second, by (A64) and (A65), 1TX 0
iQ

��
�H
0 �H
�+
�
�
Q0Q

�+� �H 0
F

 = Op� 1p
N

�
; uniformly over i;

if Q0Q

T
�
�H
0 �H

T

 = Op
�
1p
N

�
:
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We have Q0Q

T
�
�H
0 �H

T

 =
 �U

�0 �U
�

T
+
Q0 �U

�

T
+
�U
�0
Q

T


= Op

�
1p
N

�
uniformly over i (A69)

by (A1), (A5), (A7), (A9), (A6) and (A10). Finally 1TX 0
iQ
�
Q0Q

�+ � �H 0
F �Q0F

� �
X 0

iQ

T 2

�
Q0Q

T 2

�+
 �U

�0
F

T


= Op

�
1p
N

�
; uniformly over i; (A70)

by (A7), (A6), and (A3). Substituting (A68)-(A70) into (A67) yields��������X 0
i
�MF

T
� X

0
iM qF

T

�������� = Op� 1p
N

�
uniformly over i;

as required.

Appendix B: Proofs of theorems for pooled estimators
when the rank condition holds

Proof of Theorem 1
Using (A111) we have

p
N
�
b̂MG � �

�
=

1p
N

NX
i=1

{i +
1

N

NX
i=1

	̂
�1
iT

 p
NX 0

i
�MF

T

!
i+

1

N

NX
i=1

	̂
�1
iT

 p
NX 0

i
�M"i

T

!
(A71)

where 	̂iT = T
�1X 0

i
�MXi. As we assume that the rank condition (9) is satis�ed, we have, by Lemma 4, that
p
N
�
X 0
i
�MF

�
T

= Op

�
1p
T

�
+Op

�
1p
N

�
; uniformly over i; (A72)

and so, by the uniform boundedness assumption on i, and by (A34), we have that

	̂
�1
iT

 p
NX 0

i
�MF

T

!
i = Op

�
1p
T

�
+Op

�
1p
N

�
; uniformly over i;

and so
1

N

NX
i=1

	̂
�1
iT

 p
NX 0

i
�MF

T

!
i = Op

�
1p
T

�
+Op

�
1p
N

�
:

By Lemma 3, we have that

	̂
�1
iT

 p
NX 0

i
�M"i

T

!
= Op

�
1p
T

�
+Op

�
1p
N

�
; uniformly over i;
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which implies that

1

N

NX
i=1

	̂
�1
iT

 p
NX 0

i
�M"i

T

!
= Op

�
1p
T

�
+Op

�
1p
N

�
: (A73)

Thus
p
N
�
b̂MG � �

�
=

1p
N

NX
i=1

{i +Op
�
1p
T

�
+Op

�
1p
N

�
:

Hence p
N
�
b̂MG � �

�
d! N(0;
{); as (N;T )

j!1: (A74)


{ can be consistently estimated by

�̂MG =
1

N � 1

NX
i=1

�
b̂i � b̂MG

��
b̂i � b̂MG

�0
. (A75)

To show this, from the proof of Theorem 3, we �rst note that�
b̂i � b̂MG

�
= (�i � �) +Op

�
1p
T

�
+Op

�
1p
N

�
; uniformly over i;

which yields (noting that �i� � = {i)

1

N � 1

NX
i=1

�
b̂i � b̂MG

��
b̂i � b̂MG

�0
=

1

N � 1

NX
i=1

{i{0i +Op
�
1p
T

�
+Op

�
1p
N

�
:

But by the assumption that {i has �nite fourth moments, and using the law of large numbers for i.i.d. processes,
it readily follows that �̂MG ! 
{, as (N;T )

j!1:

Proof of Theorem 2
Assuming that the rank condition is satis�ed, b̂P , de�ned by (20), can be written as

p
N
�
b̂P � �

�
=

 
1

N

NX
i=1

X 0
i
�MXi

T

!�1 "
1p
N

NX
i=1

X 0
i
�M(Xi{i + "i)

T
+ qNT

#
; (A76)

where

qNT =
1

N

NX
i=1

p
N
�
X 0
i
�MF

�
i

T
: (A77)

By (A72), qNT = Op
�

1p
T

�
+Op

�
1p
N

�
. Thus

p
N
�
b̂P � �

�
=

 
1

N

NX
i=1

X 0
i
�MXi

T

!�1 "
1p
N

NX
i=1

X 0
i
�M(Xi{i + "i)

T

#
+Op

�
1p
T

�
+Op

�
1p
N

�
: (A78)

Further, by (A35)

p
N
�
b̂P � �

�
=

 
1

N

NX
i=1

X 0
i
�MXi

T

!�1 "
1p
N

NX
i=1

X 0
i
�MXi{i +X 0

iMg"i
T

#
+Op

�
1p
T

�
+Op

�
1p
N

�
: (A79)

By (A34) and since by Assumption 6, N�1PN
i=1 T

�1X 0
i
�MXi is nonsingular, we have 

1

N

NX
i=1

X 0
i
�MXi

T

!�1
p! 	��1;
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where

	� = lim
N!1

 
N�1

NX
i=1

�vi

!
: (A80)

Next, we examine the second component of the �rst term of the RHS on (A78). We �rst consider 1p
N

PN
i=1

X0
i
�MXi

T {i.

We de�ne �M�i as �M�i = IT � �H�i

�
�H
0
�i �H�i

��1
�H
0
�i where �H�i = (D; �Z�i), �Z�i is T � (k + 1) matrix

of observations on dt and �zt;�i and �zt;�i = 1
N

PN
j=1;j 6=i zjt. Then, it is straightforward to see that

X 0
i
�MXi

T
� X

0
i
�M�iXi

T
= Op

�
1

N

�
, uniformly over i;

and so
1p
N

NX
i=1

X 0
i
�MXi

T
{i �

1p
N

NX
i=1

X 0
i
�M�iXi

T
{i = Op

�
1

N1=2

�
(A81)

where the uniformity follows by the assumption that {i has uniformly �nite fourth moments. Since {i is i.i.d.
and independent of all other stochastic quantities in the model, it follows that ~{Ti = T�1X 0

i
�M�iXi{i is a

martingale di¤erence triangular array, since, for any ordering of the cross-sectional units,

E
�
T�1X 0

i
�M�iXi{iji� 1; :::; 1

�
= 0:

Then, as long as E
T�1X 0

i
�M�iXi

2 < 1, which is satis�ed by Assumption 6, a central limit theorem holds
for ~{Ti, by Theorem 24.3 of Davidson (1994). Also, by Assymption 2(ii) of this paper, Theorem 1 of De Jong
(1997) and Example 17.17 of Davidson (1994), it follows that

1

T

TX
t=1

vit"it = Op

�
1p
T

�
; uniformly over i, (A82)

which implies that

1p
N

NX
i=1

X 0
iMg"i
T

= Op

�
1p
T

�
:

Hence, as (N;T )
j!1 p

N
�
b̂� �

�
d! N(0;��P );

where
��P = 	

��1R�	��1; (A83)

R� = lim
N;T!1

"
N�1

NX
i=1

�v
iT

#
; (A84)

where �v
iT denotes the variance of
X0

iMgXi

T {i. The variance estimator for ��P suggested by Pesaran (2006)
is given by

�̂
�
P = 	̂

��1
R̂
�
	̂
��1
; (A85)

where

	̂
�
= N�1

NX
i=1

�
X 0
i
�MXi

T

�
; (A86)

R̂
�
=

1

(N � 1)

NX
i=1

�
X 0
i
�MXi

T

��
b̂i � b̂MG

��
b̂i � b̂MG

�0�X 0
i
�MXi

T

�
: (A87)

By a similar argument to that used to show the consistency of the variance estimator in the MG estimator case,
it is easy to show that this variance estimator is consistent.

38



Appendix C: Proofs of theorems for pooled estimator
when the rank condition does not hold

Proof of Theorem 1 when the rank condition does not hold
In the case where the rank condition does not hold, it is easy to infer from (A49), (A51), (A56) and (A58) that�

X 0
i
�MF

T

�
�C = Op

�
1

N

�
+Op

�
1p
NT

�
, uniformly over i: (A88)

But, we know that

�C =

 
� + ���+

1

N

NX
i=1

�i{i; ��

!
;

where �� = 1
N

PN
i=1 �i and � =

1
N

PN
i=1 i. Substituting this result in (A88) now yields�

X 0
i
�MF

T

� 
� + ���+

1

N

NX
i=1

�i{i

!
= Op

�
1

N

�
+Op

�
1p
NT

�
, uniformly over i;�

X 0
i
�MF

T

�
�� = Op

�
1

N

�
+Op

�
1p
NT

�
, uniformly over i;

which in turn yields

p
NX 0

i
�MF

T

 
� +

1

N

NX
i=1

�i{i

!
= Op

�
1p
N

�
+Op

�
1p
T

�
, uniformly over i:

But under Assumption 4, 1
N

PN
i=1 �i{i = Op

�
N�1=2�, and therefore

p
N
�
X 0
i
�MF

�
�

T
= Op

�
1p
N

�
+Op

�
1p
T

�
, uniformly over i: (A89)

We next reconsider the second term on the RHS of (A71), which is the only term a¤ected by the fact that rank
condition does not hold. The second term on the RHS in (A71) can be written as

�NT �
1

N

NX
i=1

�
X 0
i
�MXi

T 2

�+ p
NX 0

i
�MF

T 2

!
(� + �i � ��) ; (A90)

where �� = 1
N

PN
i=1 �i. By (A60) and (A61) it follows that

�NT �
1

N

NX
i=1

�
X 0
iM qXi

T 2

�+ p
NX 0

iM qF

T 2

!
(� + �i � ��) +Op

�
1p
N

�
: (A91)

Note that for the above two expressions, we have changed the normalisation from T to T 2. This is because in
the case where the rank condition does not hold, the use of cross-sectional averages is not su¢ cient to remove
the e¤ect of the I(1) unobserved factors and so X 0

i
�MXi, X

0
i
�MF , X 0

iM qXi and X
0
iM qF would involve

nonstationary components. Then, since by (A89),
p
N(X0

i
�MF )�

T 2 = Op

�
1

T
p
N

�
+ Op

�
1

T 3=2

�
, uniformly over i; it

is the case that for N and T large

p
N
�
b̂MG � �

�
d� 1p

N

NX
i=1

{i +
1p
N

NX
i=1

�
X 0
iM qXi

T 2

�+�
X 0
iM qF

T 2

�
(�i � ��) : (A92)
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The �rst term on the right hand side of (A92) tends to a Normal density with mean zero and �nite variance.
The second term needs further analysis. Letting

Q1iT =

�
X 0
iM qXi

T 2

�+�
X 0
iM qF

T 2

�
and �Q1T =

1
N

PN
i=1Q1iT , we have that

1p
N

NX
i=1

Q1iT (�i � ��) =
1p
N

NX
i=1

�
Q1iT � �Q1T

�
�i: (A93)

We note that �i is i.i.d. with zero mean and �nite variance and independent of all other stochastic quantities
in the second term of the RHS on (A93). Next, we carry out a similar analysis to that around (A81). We de�ne

Q1iT;�i =

�
X 0
iM q;�iXi

T 2

�+�
X 0
iM q;�iF

T 2

�

and �Q1T;�i =
1
N

PN
i=1Q1iT;�i, whereM q;�i = IT�Q�i

�
Q0
�iQ�i

�+
Q0
�i,Q�i = G �P�i, �P�i =

�
In �B�i
0 �C�i

�
�B�i =

1
N

PN
j=1;j 6=iBj and �C�i =

1
N

PN
j=1;j 6=iCj . Then, it is straightforward that

�
Q1iT � �Q1T

�
�
�
Q1iT;�i � �Q1T;�i

�
= Op

�
1

N

�
, uniformly over i;

and
1p
N

NX
i=1

�
Q1iT � �Q1T

�
�i �

1p
N

NX
i=1

�
Q1iT;�i � �Q1T;�i

�
�i = Op

�
1

N1=2

�
:

Then, it is easy to show that if zTi = xiyTi, xi is an i.i.d. sequence with zero mean and �nite variance and
yTi is a triangular array of random variables with �nite variance then zTi is a martingale di¤erence triangular
array for which a central limit theorem holds (see, e.g., Theorem 24.3 of Davidson (1994)). But this is the case
here, for any ordering over i, setting yTi =

�
Q1iT;�i � �Q1T;�i

�
and xi = �i. Using this result, it follows that

the second term on the RHS of (A71) tends to a Normal density if
�
Q1iT � �Q1T

�
�i has variance with �nite

norm, uniformly over i, denoted by �iqT : In order to establish the existence of second moments, it is su¢ cient
to prove that

�Q1iT � �Q1T

�, or equivalently �Q1iT;�i � �Q1T;�i
�, has �nite second moments. We carry out

the analysis for
�Q1iT � �Q1T

�. For this, we need to provide further analysis of X0
iMqXi

T 2 and X0
iMqF
T 2 . First,

note that Xi can be written as
Xi = QBi1 + SBi2 + V i; (A94)

where S is the T �m� k � 1 dimensional complement of Q, i.e. Q and S are orthogonal and

F = QK1 + SK2: (A95)

where K1 and K2 are full row rank matrices of constants with bounded norm. Note that if m < 2k + 1, we
assume, without loss of generality, that Bi2 has full row rank whereas if m � 2k+1, Bi2 has full column rank.
Then,

X 0
iM qXi =X

0
iM q (QBi1 + SBi2 + V i) =X

0
iM qSBi2 +X

0
iM qV i =

B0
i2S

0M qSBi2 + V
0
iM qV i +B

0
i2S

0M qV i + V
0
iM qSBi2:

But, it easily follows that
V 0
iM qV i

T 2
= Op

�
1

T

�
, uniformly over i;

and
B0
i2S

0M qV i

T 2
= Op

�
1

T

�
, uniformly over i:
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Then,
X 0
iM qXi

T 2
= B0

i2

S0S

T 2
Bi2 +Op

�
1

T

�
, uniformly over i: (A96)

Similarly, using (A95),
X 0
iM qF

T 2
= B0

i2

S0S

T 2
K2 +Op

�
1

T

�
, uniformly over i:

Thus �
X 0
iM qXi

T 2

�+�
X 0
iM qF

T 2

�
=

�
B0
i2

S0S

T 2
Bi2

�+�
B0
i2

S0S

T 2
K2

�
+Op

�
1

T

�
, uniformly over i:

We need to distinguish between two cases. In the �rst case, m � 2k + 1. Then, it is easy to see that X0
iMqXi

T 2

and B0
i2
S0S
T 2 Bi2 have an inverse. Then, by Assumption 7(ii)

�Q1iT � �Q1T

� has �nite second moments. The
case where m < 2k + 1 is more complicated. Denoting � = T�2S0S and ~Bi2 = �

1=2Bi2, we have

B0
i2

S0S

T 2
Bi2 = ~B

0
i2
~Bi2:

Then, noting that
�
~B
0
i2
~Bi2

�+
= ~B

+

i2
~B
0+

i2 and since in this case Bi2 has full row rank then

~B
+

i2 = B
0
i2

�
Bi2B

0
i2

��1
��1=2;

and we obtain �
B0
i2

S0S

T 2
Bi2

�+
= B0

i2

�
Bi2B

0
i2

��1�S0S
T 2

��1 �
Bi2B

0
i2

��1
Bi2: (A97)

Hence �
X 0
iM qXi

T 2

�+�
X 0
iM qF

T 2

�
= B0

i2

�
Bi2B

0
i2

��1
K2 +Op

�
1

T

�
, uniformly over i;

and the required result now follows by the boundedness assumption for Bi2 and K2. The assumption that Bi2

has full row rank if m < 2k+1 implies that the whole of S enters the equations for Xi. If that is not the case
then the argument above has to be modi�ed as follows: We have that

Xi = QBi1 + S1Bi2 + V i;

where S1 is a subset of S. Then,

X 0
iM qXi

T 2
= B0

i2

S01S1
T 2

Bi2 +Op

�
1

T

�
, uniformly over i:

and the analysis proceeds as above until�
X 0
iM qXi

T 2

�+�
X 0
iM qF

T 2

�
= B0

i2

�
Bi2B

0
i2

��1�S01S1
T 2

��1�
S01S

T 2

�
K2 +Op

�
1

T

�
, uniformly over i:

Then, the required result follows by Assumption 7(iii) which implies that E

�S01S1T 2

��1 <1 and E
S01ST 2  <

1, and the boundedness assumption for Bi2 and K2.
Thus, in general we have that

p
N
�
b̂MG � �

�
d! N(0;�MG); as (N;T )

j!1;

where
�MG = 
{ +�; (A98)
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and

� = lim
N;T!1

"
1

N

NX
i=1

�iqT

#
: (A99)

To complete the proof we need to show that the variance estimator given by (A75) is still consistent. To see
this �rst note that

b̂i � � = {i + hiT +Op
�
1p
N

�
+Op

�
1p
T

�
, uniformly over i; (A100)

where

hiT =

�
X 0
i
�MXi

T 2

�+
X 0
i
�M [F (�i � ��) + "i]

T 2
; (A101)

and so

b̂i � b̂MG = ({i � �{) +
�
hiT � �hT

�
+Op

�
1p
N

�
+Op

�
1p
T

�
, uniformly over i; (A102)

where �hT = 1
N

PN
i=1 hiT . Since by assumption {i and hiT are independently distributed across i, then

1

N � 1

NX
i=1

�
b̂i � b̂MG

��
b̂i � b̂MG

�0
= �MG +Op

�
1p
N

�
+Op

�
1p
T

�
;

and the desired result follows.

Proof of Theorem 2 when the rank condition does not hold
As before the pooled estimator, b̂P , de�ned by (20), can be written as

p
N
�
b̂P � �

�
=

 
1

N

NX
i=1

X 0
i
�MXi

T 2

!�1 "
1p
N

NX
i=1

X 0
i
�M(Xi{i + "i)

T 2
+ qNT

#
; (A103)

where

qNT =
1p
N

NX
i=1

�
X 0
i
�MF

�
i

T 2
: (A104)

Assuming random coe¢ cients we note that i = � + �i � ��, where �� = 1
N

PN
i=1 �i. Hence

qNT =
1

N

NX
i=1

 p
NX 0

i
�MF

T 2

!
� +

1p
N

NX
i=1

�
X 0
i
�MF

T 2

�
(�i � ��) :

But by (A89), the �rst component of qNT is Op
�

1
T
p
N

�
+ Op

�
1

T 3=2

�
. Substituting this result in (A103), and

making use of (33) and (34) we have

p
N
�
b̂P � �

�
=

 
1

N

NX
i=1

X 0
iM qXi

T 2

!�1 "
1p
N

NX
i=1

X 0
iM q(Xi{i + "i + F (�i � ��))

T 2

#
+ (A105)

Op

�
1

T
p
N

�
+Op

�
1

T 3=2

�
:

Also by Assumption 7, when the rank condition is not satis�ed, 1
N

PN
i=1

X0
iMqXi

T 2 is nonsingular. Further, by
(A96),

1

N

NX
i=1

X 0
iM qXi

T 2
=
1

N

NX
i=1

B0
i2

S0S

T 2
Bi2 +Op

�
1

T

�
:
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We note that, by assumption 3, Bi2 is an i.i.d. sequence with �nite second moments. Further, by Assumption 7,

it follows that E
S0ST 2 2 <1. Hence, T�2B0

i2S
0SBi2 forms asymptotically a martingale di¤erence triangular

array with �nite mean and variance and, as a result, T�2B0
i2S

0SBi2 obeys the martingale di¤erence triangular
array law of large numbers across i, (see, e.g., Theorem 19.7 of Davidson (1994)) and, therefore, its mean tends
to a nonstochastic limit which we denote by �, i.e.

� = lim
N;T!1

 
1

N

NX
i=1

�iT

!
; (A106)

where �iT = E
�
T�2B0

i2S
0SBi2

�
. But, by similar arguments to those used for the mean group estimator in

the case when the rank condition does not hold, we can show that

1p
N

NX
i=1

X 0
iM qXi

T 2
{i

d! N (0;�) ;

where

� = lim
N;T!1

 
1

N

NX
i=1

�Ti

!
; (A107)

and �Ti denotes the variance of T�2X
0
iM qXi{i. Further, by independence of "i across i,

1p
N

NX
i=1

X 0
iM q"i
T 2

= Op

�
1

T

�
:

Further, letting Q2iT = T
�2X 0

iM qF and �Q2T =
1
N

PN
i=1Q2iT , we have

1p
N

NX
i=1

�
X 0
iM qF

T 2

�
(�i � ��) =

1p
N

NX
i=1

�
Q2iT � �Q2T

�
�i:

Then, similarly to the analysis used above for T�2X 0
iM qXi, we have

1p
N

NX
i=1

�
Q2iT � �Q2T

�
�i

d! N (0;�)

where

� = lim
N;T!1

 
1

N

NX
i=1

�Ti

!
(A108)

and �Ti denotes the variance of
�
Q2iT � �Q2T

�
�i. Thus, overall by the independence of {i and �i, it follows

that p
N
�
b̂P � �

�
d! N(0;��P ); as (N;T )

j!1; (A109)

where, now
��P = �

�1 (�+�)��1 (A110)

proving the result for the pooled estimator. The result for the consistency of the variance estimator follows
along similar lines to that for the mean group estimator.

Appendix D: Proof of Theorem 3
Using (25) in (15) we have

b̂i � �i =
�
X 0
i
�MXi

T

��1�
X 0
i
�MF

T

�
i +

�
X 0
i
�MXi

T

��1�
X 0
i
�M"i
T

�
: (A111)
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Using (A35) and (A44), and assuming that the rank condition (9) is satis�ed we have

b̂i � �i =
�
X 0
i
�MXi

T

��1�
X 0
iMg"i
T

�
+Op

�
1p
NT

�
+Op

�
1

N

�
: (A112)

For N and T su¢ ciently large, the distribution of
p
T
�
b̂i � �i

�
will be asymptotically normal if the rank

condition (9) is satis�ed and if
p
T=N ! 0 as N and T !1. To see why this additional condition is needed,

using (A112) note that

p
T
�
b̂i � �i

�
=

�
X 0
i
�MXi

T

��1
X 0
iMg"ip
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�
1p
N

�
; (A113)

and the asymptotic distribution of
p
T
�
b̂i � �i

�
will be free of nuisance parameters only if

p
T=N ! 0, as

(N;T )
j! 1. We now give the necessary arguments for showing that the �rst term on the RHS of (A113) is

asymptotically normally distributed. We note that

X 0
iMg"ip
T

=
1p
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TX
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�
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�
�̂i ��i
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�
"it

= �
�
�̂i ��i

�0 1p
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TX
t=1

gt"it +
1p
T

TX
t=1

vit"it. (A114)

But, it is straightforward to show that the �rst term of (A114) is Op(T�1=2) when gt is I(1). Then, we need to
obtain a central limit theorem for the second term of (A114). But, by the martingale di¤erence assumption on
"it, it follows that vit"it is also a martingale di¤erence sequence with �nite variance given by �2i�vi . Then, by
Theorem 24.3 of Davidson (1994), it follows that

1p
T

TX
t=1

vit"it
d! N(0; �2i�vi): (A115)

Further, by (A34) and noting that by Assumptions 5 and 6, X 0
i
�MXi=T and X

0
iMgXi=T are nonsingular, we

also have �
X 0
i
�MXi

T

��1
�
�
X 0
iMgXi
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��1
= Op

�
1p
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�
;

and, by Lemma 5, it follows that �
X 0
iMgXi

T

��1
���1vi = Op

�
1p
T

�
;

�nally implying that p
T
�
b̂i � �i

�
d! N(0; �2i�

�1
vi ); (A116)

and that a consistent estimator of the asymptotic variance can be obtained by

��2i

�
X 0
i
�MXi

T

��1
; (A117)

where

��2i =

�
yi �Xib̂i

�0
�M
�
yi �Xib̂i

�
T � (n+ 2k + 1) : (A118)
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Table 1: Small Sample Properties of Common Correlated Effects Type Estimators
in the Case of Experiment 1A (Heterogeneous Slopes + Full Rank)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.05 -0.10 -0.03 0.06 -0.07 9.67 7.89 6.74 5.87 5.54 7.20 6.90 7.15 7.90 7.55 11.65 13.00 16.10 17.50 20.10
30 0.09 -0.01 -0.01 -0.13 0.10 7.69 6.09 5.11 4.54 4.22 6.95 5.30 5.90 6.25 6.35 11.40 14.25 18.05 22.05 26.85
50 -0.19 0.22 -0.11 0.14 -0.04 5.88 4.61 4.01 3.44 3.13 5.70 5.05 6.65 6.20 5.95 15.10 20.40 25.60 34.10 36.65
100 0.00 0.04 0.04 0.03 0.04 4.25 3.46 2.89 2.33 2.27 5.75 5.85 5.25 4.90 6.20 23.35 34.30 44.40 56.00 63.25
200 -0.05 -0.02 -0.03 0.05 0.00 3.07 2.49 2.01 1.72 1.51 4.40 5.15 4.90 5.60 5.10 35.55 52.65 68.70 83.65 90.50

CCEP
20 0.18 0.00 -0.05 -0.01 -0.13 8.75 7.67 6.85 6.32 6.21 7.70 8.10 7.30 8.05 7.15 12.75 13.50 16.05 16.80 18.30
30 -0.17 -0.12 0.09 -0.15 0.13 7.10 5.99 5.32 4.78 4.46 7.55 6.25 6.75 6.65 6.45 12.40 15.00 19.30 20.65 26.90
50 0.00 0.18 -0.07 0.12 -0.01 5.33 4.51 3.97 3.47 3.22 6.80 6.20 5.90 6.35 6.45 17.45 22.15 26.40 32.90 36.25
100 0.00 0.09 0.03 0.00 0.02 3.78 3.25 2.85 2.34 2.28 5.70 5.65 5.60 5.15 6.25 28.15 37.40 44.80 55.20 61.75
200 -0.07 -0.04 -0.05 0.05 0.00 2.71 2.29 1.95 1.70 1.53 5.10 4.35 5.05 4.70 4.75 44.75 56.80 70.30 83.55 89.75

Principal Component Estimators, Augmented
PC1MG

20 -12.27 -11.15 -10.30 -8.87 -8.90 17.09 14.81 13.24 11.51 11.55 22.55 25.35 30.05 33.40 37.40 12.15 12.95 13.30 12.70 13.75
30 -9.25 -7.86 -6.46 -5.72 -5.25 13.55 10.84 8.98 7.80 7.15 20.60 20.90 21.65 24.75 24.70 10.75 8.25 7.35 7.40 6.75
50 -6.84 -5.05 -3.89 -3.01 -3.12 10.10 7.79 5.86 4.67 4.47 19.95 17.65 16.25 14.95 17.90 8.70 8.20 7.65 11.40 9.75
100 -4.78 -3.21 -2.03 -1.57 -1.45 7.44 5.34 3.68 2.87 2.72 20.10 16.80 11.45 9.75 11.10 9.55 12.15 20.25 28.85 36.75
200 -4.31 -2.54 -1.39 -0.81 -0.78 6.39 4.19 2.60 1.93 1.71 25.20 17.95 10.95 8.15 7.65 13.85 21.95 42.85 67.65 77.15

PC1POOL
20 -11.97 -11.04 -10.35 -9.09 -9.23 15.88 14.38 13.07 11.59 12.07 25.50 28.35 32.05 34.45 38.95 12.05 14.10 14.90 14.55 14.90
30 -8.86 -7.66 -6.34 -5.73 -5.37 12.48 10.45 8.89 7.80 7.34 21.45 23.75 22.05 24.70 25.50 11.00 8.80 7.55 7.95 6.35
50 -6.20 -4.86 -3.81 -3.07 -3.19 9.06 7.52 5.72 4.73 4.54 21.40 18.75 16.00 16.05 18.90 8.55 9.55 8.10 10.90 9.65
100 -4.36 -3.00 -2.01 -1.60 -1.49 6.61 5.01 3.61 2.88 2.74 21.05 16.85 11.25 9.35 10.80 11.25 14.55 20.85 27.90 36.30
200 -3.62 -2.32 -1.36 -0.81 -0.79 5.39 3.81 2.51 1.91 1.73 25.15 17.60 10.50 7.80 7.80 16.35 26.75 45.45 68.00 76.15

Principal Component Estimators, Orthogonalised
PC2MG

20 -31.26 -27.06 -24.01 -22.67 -23.11 32.83 28.34 25.00 23.44 23.83 86.50 88.45 91.25 95.20 97.40 74.10 73.95 75.80 82.05 88.20
30 -25.50 -21.21 -18.27 -16.69 -16.33 26.82 22.25 19.13 17.35 16.92 86.85 87.10 89.10 93.35 95.95 70.15 67.80 66.10 69.25 74.70
50 -20.65 -16.23 -13.32 -11.41 -10.89 21.68 17.06 13.98 11.95 11.37 90.15 88.35 88.80 89.05 91.70 70.80 60.25 52.20 45.80 46.10
100 -16.17 -12.44 -9.69 -7.61 -6.60 16.87 12.97 10.18 7.99 7.02 93.65 93.30 89.75 87.50 83.30 72.35 56.20 37.60 19.30 13.60
200 -14.61 -10.78 -8.12 -5.79 -4.59 15.11 11.19 8.45 6.08 4.85 98.95 97.85 95.45 90.75 83.75 79.65 60.20 33.30 10.00 6.75

PC2POOL
20 -31.97 -27.47 -24.27 -23.18 -24.19 33.39 28.69 25.23 23.99 24.99 91.00 90.70 93.20 95.55 98.50 80.65 78.60 78.80 83.35 90.45
30 -26.32 -21.51 -18.24 -16.83 -16.75 27.53 22.48 19.13 17.51 17.37 91.35 90.40 89.70 93.35 96.15 78.50 71.80 66.65 70.65 76.90
50 -21.22 -16.35 -13.17 -11.35 -10.99 22.10 17.15 13.82 11.91 11.48 95.05 90.90 88.95 88.20 91.70 79.65 63.80 52.95 46.20 48.25
100 -16.77 -12.52 -9.62 -7.55 -6.60 17.43 13.06 10.11 7.95 7.03 97.95 95.05 90.50 86.45 82.30 80.90 60.80 38.10 18.30 14.25
200 -15.16 -10.91 -8.00 -5.66 -4.53 15.67 11.33 8.34 5.96 4.79 99.75 98.45 95.95 89.35 82.50 88.65 65.85 33.35 8.40 6.30



(Table 1 Continued)
Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)

CCE Type Estimators
Infeasible Estimators (including f1t and f2t)
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

Infeasible MG
20 0.01 -0.19 -0.08 0.15 -0.08 7.21 6.33 5.62 4.98 4.76 6.40 6.20 6.80 5.95 6.50 12.75 15.35 16.85 19.70 20.40
30 0.02 -0.14 0.01 -0.02 0.12 5.91 4.95 4.43 3.97 3.87 6.50 5.80 6.05 5.30 5.90 16.15 18.05 23.35 25.20 28.80
50 -0.10 0.07 -0.06 0.14 -0.04 4.48 3.75 3.39 3.09 2.94 6.45 5.25 5.90 5.25 5.20 21.70 27.35 31.45 38.45 40.25
100 0.01 0.07 0.02 0.00 0.04 3.16 2.78 2.49 2.15 2.14 5.50 5.15 5.45 4.70 5.45 36.85 46.15 55.10 62.50 66.65
200 -0.07 0.04 -0.07 0.06 0.01 2.22 1.93 1.69 1.57 1.44 4.85 5.00 5.00 5.60 4.70 59.15 72.85 82.25 90.40 92.75

Infeasible Pooled
20 0.15 -0.13 -0.15 -0.26 -0.21 7.30 6.96 6.92 7.11 7.40 6.40 6.80 6.60 7.00 5.10 13.70 13.75 14.55 14.10 12.65
30 -0.20 -0.15 0.22 -0.07 0.27 6.23 5.78 5.79 5.89 6.61 7.05 5.90 7.00 5.25 5.70 15.70 15.35 18.95 16.70 16.60
50 0.12 0.07 -0.08 0.21 0.02 4.61 4.40 4.31 4.71 5.02 5.70 5.80 5.50 6.25 5.00 22.20 22.55 23.65 25.50 21.00
100 -0.05 0.07 0.09 0.06 0.00 3.30 3.26 3.12 3.30 3.52 5.25 5.60 5.20 5.20 5.30 33.45 38.20 38.85 36.75 32.30
200 -0.08 0.06 -0.12 0.07 -0.02 2.35 2.22 2.20 2.45 2.49 4.95 4.70 4.50 5.85 4.70 56.15 62.10 59.50 59.05 52.20

Naïve Estimators (excluding f1t and f2t)
Naïve MG

20 22.18 23.13 26.82 29.96 32.62 31.76 32.97 37.37 41.49 47.04 32.05 32.95 34.85 35.45 31.50 41.00 42.65 43.50 41.95 38.05
30 22.23 25.06 28.36 31.33 34.01 30.51 33.31 37.87 41.46 45.32 40.45 44.10 46.65 43.85 39.45 51.00 53.95 57.45 52.20 47.15
50 22.21 23.91 25.65 29.61 33.64 29.75 31.12 32.75 37.73 42.66 55.80 59.30 58.00 59.25 54.75 68.30 70.85 70.30 69.20 65.05
100 21.97 23.92 26.76 30.04 32.88 28.40 30.02 32.97 36.39 40.06 71.20 75.25 77.90 78.60 75.25 81.05 84.35 85.95 85.85 83.20
200 22.15 24.09 27.49 30.09 33.23 27.87 29.44 32.80 35.71 39.34 81.85 86.00 87.85 88.05 87.95 88.75 91.95 92.30 92.90 92.05

Naïve Pooled
20 25.25 26.60 31.27 33.59 34.84 35.30 37.01 42.66 45.42 47.67 42.15 43.65 47.75 45.20 44.50 52.50 52.65 55.95 53.40 51.95
30 25.76 29.39 32.45 35.37 35.46 35.48 39.13 42.70 45.97 46.81 51.55 56.70 57.65 59.55 56.20 61.05 66.60 66.55 67.75 64.55
50 26.54 28.75 30.39 34.01 35.88 35.61 37.39 39.05 44.04 45.93 64.75 67.15 69.25 70.35 69.35 73.55 76.25 78.25 78.65 77.45
100 25.81 28.47 31.30 33.15 34.91 34.39 36.76 39.90 41.79 44.27 75.85 78.90 81.35 79.30 80.15 85.10 86.55 88.05 86.65 86.40
200 25.95 28.32 31.89 33.65 34.11 34.20 36.21 39.63 42.39 42.68 83.45 86.25 87.70 87.40 87.20 89.95 91.90 93.55 92.20 92.20

Notes: The DGP is yit = αi1d1t + βi1x1it + βi2x2it + γi1f1t + γi2f2t + εit with εit = ρiεεi,t−1 + σi(1 − ρ2iε)
1/2ωit, i = 1, 2, ..., [N/2], and εit = σi(1 +

θ2iε)
−1/2 (ωit + θiεωi,t−1), i = [N/2] + 1, ...,N , ωit ∼ IIDN (0, 1), σ2i ∼ IIDU [0.5, 1.5], ρiε ∼ IIDU [0.05, 0.95], θiε ∼ IIDU [0, 1]. Regressors are generated

by xijt = aij1d1t + aij2d2t + γij1f1t + γij3f3t+vijt, j = 1, 2, for i = 1, 2, ..., N . d1t = 1, d2t = 0.5d2,t−1 + vdt, vdt ∼ IIDN(0, 1 − 0.52), d2,−50 = 0;
fjt = fjt−1 + vfj,t, vfj,t ∼ IIDN(0, 1), fj,−50 = 0, for j = 1, 2, 3; vijt = ρvijvijt−1 + υijt, υijt ∼ IIDN(0, 1− ρ2vij), vij,−50 = 0 and ρvij ∼ IIDU [0.05, 0.95]

for j = 1, 2, for t = −49, ..., T with the first 50 observations discarded; αi1 ∼ IIDN (1, 1); aij ∼ IIDN (0.5, 0.5) for j = 1, 2, = 1, 2; γi11 and γi23
∼ IIDN (0.5, 0.50), γi13 and γi21 ∼ IIDN (0, 0.50); γi1 and γi2 ∼ IIDN (1, 0.2); βij = 1 + ηij with ηij ∼ IIDN(0, 0.04) for j = 1, 2. ρvij , ρiε, θiε, σ

2
i , αi1,

aij for j = 1, 2, = 1, 2 are fixed across replications. CCEMG and CCEP are defined by (14) and (20). The variance estimators of all mean group and pooled
estimators are defined by (48) and (49), respectively. The PC type estimators are computed assuming the number of unobserved factors, m = 3, is known. All
experiments are based on 2000 replications.



Table 2: Small Sample Properties of Common Correlated Effects Type Estimators
in the Case of Experiment 2A (Homogeneous Slopes + Full Rank)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.05 -0.15 0.02 -0.15 0.09 8.45 6.29 5.10 3.78 3.14 7.15 6.40 6.80 6.75 6.85 11.70 13.80 21.75 31.25 47.90
30 -0.14 0.12 0.04 0.03 0.00 6.44 5.11 3.80 2.67 2.07 6.05 6.75 7.25 6.40 6.45 12.70 20.45 30.70 50.90 71.60
50 0.08 -0.06 0.02 0.05 0.03 5.08 3.79 2.80 1.94 1.39 6.10 5.90 4.85 5.40 5.35 18.00 26.90 44.45 75.65 95.00
100 -0.04 -0.08 0.06 -0.04 -0.01 3.59 2.76 2.02 1.35 0.98 4.55 5.50 6.05 5.10 6.10 28.30 43.00 72.35 95.20 99.90
200 0.06 -0.02 0.03 0.01 0.00 2.83 2.05 1.52 1.00 0.68 5.60 4.45 6.35 5.20 5.70 44.20 67.95 91.90 99.90 100.00

CCEP
20 0.18 0.00 0.03 -0.14 0.08 6.95 5.56 4.94 3.98 3.74 6.60 6.75 7.30 6.75 6.80 14.25 16.25 25.25 33.70 46.25
30 -0.14 0.14 0.07 0.01 0.01 5.20 4.50 3.55 2.67 2.26 5.10 5.90 7.25 6.25 6.40 15.25 24.55 34.90 52.95 70.70
50 0.05 0.07 -0.02 0.04 0.03 4.08 3.29 2.56 1.84 1.39 5.40 5.40 5.45 6.20 5.30 24.60 34.35 51.70 78.65 95.00
100 -0.02 -0.04 0.06 -0.04 -0.01 2.87 2.37 1.78 1.24 0.93 5.60 6.20 6.40 5.25 5.95 41.65 58.35 81.85 97.80 100.00
200 0.07 -0.03 0.01 0.02 0.00 2.17 1.63 1.32 0.92 0.65 5.60 3.95 5.70 5.60 5.35 65.25 84.40 96.95 100.00 100.00

Principal Component Estimators, Augmented
PC1MG

20 -12.34 -11.39 -10.06 -9.44 -8.84 16.76 14.48 12.18 11.24 10.92 24.55 32.55 39.50 58.50 71.95 13.05 15.30 13.80 19.00 21.20
30 -9.35 -7.83 -6.39 -5.66 -5.34 12.96 10.55 8.18 6.93 6.15 22.10 26.10 32.55 46.60 68.25 9.55 10.60 8.40 10.25 10.10
50 -7.05 -5.28 -3.81 -3.08 -3.17 10.12 7.38 5.11 3.86 3.73 23.55 24.05 25.30 35.65 56.85 10.40 9.10 9.45 20.80 30.00
100 -5.00 -3.45 -2.04 -1.64 -1.57 7.19 5.16 3.14 2.20 1.90 22.60 22.00 16.50 22.45 35.70 9.90 14.45 31.05 64.90 91.50
200 -4.23 -2.65 -1.27 -0.87 -0.79 6.27 4.11 2.13 1.37 1.06 28.05 22.90 14.90 16.85 21.95 16.15 30.55 67.35 97.55 100.00

PC1POOL
20 -11.78 -11.12 -9.89 -9.43 -8.93 15.09 13.70 11.86 11.20 10.77 28.20 37.15 46.35 64.10 76.75 14.80 17.20 17.65 21.80 24.55
30 -8.55 -7.35 -6.10 -5.58 -5.35 11.37 9.59 7.66 6.79 6.18 25.60 29.35 35.60 49.60 71.00 10.65 9.95 8.95 10.10 10.30
50 -6.39 -4.86 -3.74 -3.05 -3.19 8.82 6.71 4.87 3.77 3.81 26.60 26.60 28.30 36.55 59.50 10.95 10.25 10.05 22.35 31.90
100 -4.42 -3.23 -1.98 -1.61 -1.56 6.14 4.68 2.89 2.10 1.87 26.80 25.60 19.70 24.80 38.70 12.65 19.40 40.40 73.05 93.65
200 -3.57 -2.37 -1.21 -0.84 -0.78 5.19 3.57 1.93 1.30 1.03 32.05 25.30 16.60 17.35 24.10 24.55 42.80 79.25 98.80 100.00

Principal Component Estimators, Orthogonalised
PC2MG

20 -31.24 -27.21 -23.95 -22.96 -22.95 32.64 28.30 24.70 23.46 23.37 89.70 92.75 96.35 99.60 100.00 78.30 82.20 85.40 95.90 98.25
30 -25.74 -21.23 -18.28 -16.52 -16.52 26.93 22.12 18.86 16.89 16.81 90.55 93.60 97.60 99.60 100.00 78.20 76.50 82.60 90.75 97.65
50 -20.76 -16.51 -13.40 -11.39 -10.92 21.63 17.17 13.81 11.69 11.12 94.65 95.85 98.35 99.85 100.00 78.65 73.60 70.95 73.80 86.75
100 -16.31 -12.50 -9.58 -7.70 -6.67 16.92 12.94 9.90 7.88 6.81 96.60 97.65 98.25 99.80 99.95 79.25 68.50 52.60 40.60 32.25
200 -14.51 -10.80 -8.05 -5.85 -4.57 14.98 11.13 8.28 5.98 4.66 99.50 99.65 99.30 99.85 99.95 83.90 69.50 47.75 14.70 13.00

PC2POOL
20 -31.95 -27.52 -24.18 -23.50 -24.05 33.04 28.47 24.87 24.02 24.56 95.80 96.50 98.25 99.80 100.00 87.95 87.00 89.80 96.95 99.30
30 -26.27 -21.47 -18.38 -16.67 -16.96 27.25 22.29 18.91 17.06 17.28 96.35 96.25 98.95 99.75 100.00 86.75 83.60 86.75 92.40 98.35
50 -21.31 -16.46 -13.29 -11.34 -11.05 22.05 17.04 13.68 11.63 11.26 98.80 98.00 99.00 99.90 100.00 89.35 81.05 76.05 74.65 88.35
100 -16.95 -12.65 -9.52 -7.62 -6.67 17.50 13.05 9.81 7.80 6.81 99.40 99.40 99.50 99.95 100.00 90.45 78.30 58.35 41.55 32.65
200 -15.07 -10.92 -7.93 -5.72 -4.52 15.52 11.24 8.15 5.85 4.60 99.90 99.95 99.90 99.90 99.95 94.80 80.20 51.05 14.00 15.30

Notes: The DGP is the same as that of Table 1, except βij = 1 for all i and j, i = 1, 2, ..., N , j = 1, 2. See notes to Table 1.



Table 3: Small Sample Properties of Common Correlated Effects Type Estimators
in the Case of Experiment 1B (Heterogeneous Slopes + Rank Deficient)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.33 -0.19 0.20 0.14 0.23 15.02 13.90 12.61 13.35 13.78 6.80 6.90 6.75 6.60 7.20 9.40 8.95 10.15 10.15 10.15
30 0.30 0.14 0.09 -0.17 0.35 12.91 12.03 10.70 10.07 10.59 5.50 6.80 5.25 6.15 4.80 8.40 10.05 9.45 10.35 11.65
50 -0.15 0.63 -0.20 -0.17 0.02 9.82 8.46 7.87 7.42 7.34 5.80 5.10 6.10 5.75 5.90 9.75 12.90 13.40 14.00 15.20
100 0.25 0.13 0.27 0.00 0.06 7.01 6.55 5.85 5.25 5.01 5.75 5.95 5.45 5.45 6.10 14.50 17.75 21.65 22.65 27.30
200 0.05 -0.11 -0.17 -0.07 -0.05 5.35 4.65 4.15 3.61 3.31 4.80 5.05 4.75 5.15 4.55 19.45 23.70 29.75 37.25 43.45

CCEP
20 0.48 0.06 -0.04 0.16 0.10 13.13 12.81 12.21 13.57 15.30 6.75 7.40 7.00 6.65 6.75 9.90 10.20 10.40 10.35 10.25
30 -0.23 -0.06 0.18 -0.25 0.43 11.48 10.70 10.39 9.95 11.04 6.10 6.90 5.70 6.00 5.50 9.05 9.95 10.55 10.25 10.60
50 0.00 0.48 -0.18 -0.17 -0.02 8.42 7.57 7.23 7.22 7.22 5.25 5.90 6.25 5.30 5.50 11.40 14.05 14.15 14.35 15.20
100 0.11 0.18 0.24 -0.06 0.05 5.87 5.72 5.27 4.87 4.98 5.10 6.00 5.40 4.95 6.00 17.25 19.60 23.50 23.55 27.00
200 0.04 -0.10 -0.16 -0.04 -0.03 4.35 3.99 3.75 3.30 3.15 5.40 4.70 5.25 4.10 3.95 25.75 28.50 34.50 41.10 46.05

Principal Component Estimators, Augmented
PC1MG

20 -8.33 -8.02 -7.93 -7.27 -7.44 14.50 12.28 10.98 9.59 9.25 13.35 16.10 21.45 24.50 28.80 7.20 7.35 7.20 7.90 8.00
30 -5.36 -4.97 -4.70 -4.58 -4.27 10.67 8.66 7.30 6.53 5.96 10.00 11.45 13.80 17.60 18.75 5.85 5.40 5.35 5.40 5.60
50 -3.15 -2.86 -2.99 -2.59 -2.63 7.44 5.94 5.15 4.33 4.07 7.95 8.25 12.35 11.65 14.30 6.40 6.50 8.70 12.45 11.50
100 -1.35 -1.27 -1.33 -1.26 -1.17 5.04 4.01 3.24 2.68 2.55 6.80 8.00 7.85 7.40 8.40 13.50 18.90 24.85 31.90 42.30
200 -0.85 -0.77 -0.72 -0.58 -0.62 3.56 2.83 2.18 1.83 1.64 4.95 6.35 6.05 6.75 6.30 23.40 36.25 53.50 72.15 80.20

PC1POOL
20 -7.93 -7.85 -7.87 -7.23 -7.32 12.94 11.59 10.53 9.43 9.14 13.45 16.70 22.35 25.30 28.35 7.50 7.30 7.60 7.65 7.35
30 -5.33 -4.94 -4.61 -4.54 -4.21 9.81 8.23 7.13 6.50 5.92 11.10 12.55 13.25 17.70 18.40 6.55 5.90 5.60 5.70 5.35
50 -2.98 -2.78 -2.92 -2.63 -2.65 6.62 5.67 5.01 4.37 4.12 8.00 9.85 11.35 12.15 14.20 7.40 7.90 8.40 11.70 11.50
100 -1.41 -1.23 -1.36 -1.31 -1.21 4.37 3.66 3.19 2.71 2.57 6.80 7.25 7.50 7.70 9.15 15.85 21.20 26.30 31.30 40.80
200 -0.82 -0.77 -0.75 -0.60 -0.64 3.02 2.57 2.12 1.82 1.67 6.05 6.35 6.65 5.90 6.75 29.20 42.25 56.25 71.40 78.95

Principal Component Estimators, Orthogonalised
PC2MG

20 -30.74 -26.62 -23.99 -22.56 -23.18 32.50 27.94 25.06 23.36 23.92 82.50 87.55 90.45 95.10 97.55 70.50 72.50 74.75 81.15 87.80
30 -24.89 -20.85 -18.19 -16.68 -16.43 26.28 21.96 19.03 17.35 17.03 84.15 86.05 90.35 93.60 96.05 67.80 65.45 66.75 69.85 75.65
50 -19.61 -15.65 -13.13 -11.38 -10.85 20.69 16.50 13.80 11.93 11.34 87.30 86.20 87.95 89.65 91.70 65.10 57.00 51.20 45.00 46.35
100 -15.19 -11.94 -9.58 -7.57 -6.60 15.96 12.53 10.09 7.96 7.03 91.80 90.95 88.90 87.35 82.65 65.05 50.60 37.45 18.45 14.20
200 -13.64 -10.37 -7.98 -5.75 -4.58 14.16 10.80 8.33 6.05 4.85 98.50 96.95 95.00 90.60 83.65 72.00 55.40 31.15 9.30 6.80

PC2POOL
20 -31.30 -27.08 -24.30 -23.16 -24.26 32.81 28.29 25.32 23.99 25.10 88.95 89.95 93.15 96.00 98.75 79.05 77.70 79.10 83.00 90.25
30 -25.55 -21.11 -18.14 -16.84 -16.86 26.80 22.15 18.99 17.53 17.49 90.25 88.25 90.40 94.00 96.30 75.35 68.95 66.20 70.00 77.15
50 -19.99 -15.74 -13.00 -11.35 -10.96 20.92 16.56 13.65 11.91 11.46 93.30 89.05 88.30 88.65 91.70 74.15 60.30 51.40 45.55 47.50
100 -15.72 -11.98 -9.51 -7.52 -6.60 16.43 12.56 10.01 7.91 7.03 96.00 92.55 89.40 86.50 81.95 74.30 54.45 36.55 17.60 14.00
200 -14.09 -10.47 -7.86 -5.63 -4.52 14.61 10.90 8.21 5.93 4.79 99.30 97.95 95.20 88.75 81.90 82.55 60.20 32.10 8.25 6.15

Notes: The DGP is the same as that of Table 1, except γi2 ∼ IIDN (0, 1), so that the rank condition is not satisfied. See notes to Table 1



Table 4: Small Sample Properties of Common Correlated Effects Type Estimators
in the Case of Experiment 2B (Homogeneous Slopes + Rank Deficient)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 -0.28 -0.26 0.41 -0.31 0.73 14.45 12.85 12.02 12.07 13.47 7.35 5.45 6.40 6.70 6.00 9.35 9.15 10.95 11.55 10.90
30 -0.11 0.07 0.09 0.45 -0.05 11.99 10.78 9.82 9.52 10.33 5.20 5.90 5.95 6.50 6.55 7.85 10.50 12.40 14.35 14.90
50 0.00 0.23 -0.07 -0.02 0.00 9.01 7.97 7.62 6.79 6.72 5.05 4.80 5.00 5.45 4.95 9.40 12.20 15.75 17.60 21.15
100 0.14 -0.08 -0.12 -0.03 0.06 6.66 5.92 5.16 4.78 4.56 4.65 5.40 5.60 4.60 6.35 15.10 18.15 23.95 28.50 34.85
200 0.14 0.11 0.01 -0.17 -0.07 5.13 4.45 3.88 3.27 3.34 5.45 5.10 5.45 4.65 5.15 22.35 28.80 36.60 44.75 56.70

CCEP
20 -0.12 -0.19 0.35 -0.26 0.66 12.66 11.53 11.56 12.12 15.07 7.45 7.00 7.55 6.35 6.50 9.85 10.00 12.60 12.65 11.50
30 -0.09 0.05 0.06 0.39 0.03 10.00 9.57 9.26 9.36 11.05 5.55 5.75 6.80 6.70 6.75 9.90 11.70 13.30 15.20 14.50
50 -0.14 0.39 -0.08 0.01 0.03 7.29 6.92 6.84 6.58 6.79 4.95 5.25 5.45 5.60 4.85 11.25 15.60 16.65 19.95 20.40
100 0.20 -0.13 -0.11 -0.05 0.04 5.44 4.97 4.55 4.45 4.39 4.80 5.35 5.40 4.95 6.05 20.60 22.65 28.35 31.40 36.80
200 0.19 0.11 -0.08 -0.13 -0.07 3.97 3.71 3.35 2.96 3.09 5.25 5.15 5.05 5.00 5.60 31.95 38.45 44.30 50.70 60.40

Principal Component Estimators, Augmented
PC1MG

20 -8.22 -8.36 -7.93 -7.89 -7.48 13.75 11.78 10.07 9.07 8.40 13.30 18.95 27.70 46.00 58.60 7.25 7.80 8.20 9.55 9.40
30 -5.40 -5.01 -4.70 -4.59 -4.52 10.11 8.07 6.49 5.54 5.03 10.35 13.45 19.70 33.45 52.05 5.95 5.45 6.45 5.80 4.95
50 -3.24 -3.09 -2.81 -2.66 -2.66 6.96 5.35 4.22 3.39 3.04 9.40 11.05 15.90 25.40 44.85 6.85 7.80 11.60 22.45 35.50
100 -1.53 -1.45 -1.28 -1.33 -1.28 4.54 3.40 2.57 1.96 1.64 6.10 7.75 10.25 15.80 26.30 13.10 20.95 41.60 71.75 95.70
200 -0.80 -0.76 -0.67 -0.64 -0.63 3.40 2.39 1.74 1.22 0.94 6.00 5.45 7.75 10.75 15.70 27.15 46.80 79.60 98.65 100.00

PC1POOL
20 -7.56 -7.83 -7.57 -7.61 -7.12 11.45 10.60 9.32 8.59 7.81 14.05 21.70 31.20 48.25 57.85 6.40 8.35 7.55 8.90 8.35
30 -5.00 -4.76 -4.50 -4.43 -4.35 8.47 7.20 6.04 5.25 4.82 11.70 15.75 21.45 35.10 51.40 6.00 5.70 6.50 5.65 5.40
50 -2.89 -2.77 -2.75 -2.60 -2.61 5.66 4.63 3.92 3.26 2.97 8.90 11.55 17.50 27.45 44.70 7.85 9.60 12.95 24.65 38.05
100 -1.38 -1.39 -1.26 -1.31 -1.27 3.67 2.95 2.29 1.87 1.60 7.80 8.70 10.50 17.90 28.50 19.90 28.70 51.45 79.70 97.35
200 -0.72 -0.74 -0.67 -0.63 -0.63 2.54 1.93 1.55 1.14 0.91 6.25 5.90 9.00 11.80 17.10 43.25 64.40 89.05 99.45 100.00

Principal Component Estimators, Orthogonalised
PC2MG

20 -30.58 -26.66 -23.75 -22.85 -23.07 32.14 27.74 24.51 23.36 23.51 87.40 91.15 95.95 99.60 99.95 75.80 79.65 85.50 94.95 98.85
30 -25.10 -20.76 -18.15 -16.58 -16.60 26.40 21.70 18.75 16.97 16.90 89.25 92.45 97.20 99.75 100.00 74.35 74.15 80.85 90.90 98.10
50 -19.66 -15.83 -13.16 -11.36 -10.91 20.58 16.50 13.60 11.67 11.12 92.45 94.35 97.90 99.75 100.00 72.90 69.30 69.35 72.45 86.90
100 -15.37 -11.97 -9.44 -7.65 -6.66 16.01 12.43 9.75 7.84 6.80 95.30 96.70 98.00 99.70 99.95 74.25 63.40 50.10 40.00 32.15
200 -13.52 -10.36 -7.93 -5.82 -4.57 14.01 10.70 8.17 5.96 4.66 98.80 99.15 99.40 99.90 99.95 76.85 63.50 45.30 14.80 13.35

PC2POOL
20 -31.34 -27.06 -24.05 -23.47 -24.10 32.52 28.01 24.76 24.00 24.63 95.25 95.90 97.85 99.95 100.00 86.20 86.30 89.00 97.50 99.40
30 -25.58 -20.90 -18.28 -16.76 -17.05 26.61 21.72 18.83 17.15 17.38 95.30 95.80 98.85 99.85 100.00 84.80 81.60 85.35 93.05 98.50
50 -20.12 -15.76 -13.06 -11.33 -11.05 20.90 16.33 13.46 11.63 11.26 97.65 97.50 98.90 99.75 100.00 85.10 77.55 73.60 75.00 88.75
100 -15.88 -12.09 -9.36 -7.58 -6.66 16.46 12.51 9.65 7.76 6.80 99.10 99.00 99.45 99.85 99.95 86.15 72.45 55.15 39.85 32.95
200 -13.95 -10.45 -7.81 -5.69 -4.52 14.41 10.78 8.03 5.82 4.60 99.70 99.85 99.75 99.85 100.00 90.10 74.75 49.05 13.20 15.30

Notes: The DGP is the same as that of Table 1, except γi2 ∼ IIDN (0, 1), so that the rank condition is not satisfied, and βij = 1 for all i
and j, i = 1, 2, ..., N , j = 1, 2. See notes to Table 1.



Table 5: Small Sample Properties of Common Correlated E¤ects Type Estima-
tors, The Number of Factors m = 4 Exceeds k + 1 = 3, In the case of Heterogeneous
Slopes

BIAS (x100) RMSEs (x100)
CCE Type Estimator
(N,T) 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.23 0.29 0.06 -0.23 -0.16 10.97 9.59 8.29 7.61 7.70
30 0.20 0.08 -0.07 0.14 -0.03 8.98 7.65 6.84 6.42 6.29
50 -0.04 0.00 -0.16 -0.19 0.14 6.81 6.03 5.12 4.71 4.67
100 0.12 -0.06 0.01 -0.01 0.12 4.81 4.25 3.69 3.53 3.46
200 0.01 -0.04 0.03 -0.04 -0.10 3.78 3.08 2.84 2.61 2.53

CCEP
20 0.09 0.50 -0.02 -0.22 -0.11 9.57 8.94 8.07 7.70 7.83
30 0.03 -0.05 -0.08 0.04 -0.09 7.96 7.21 6.60 6.36 6.25
50 -0.04 -0.05 -0.13 -0.14 0.13 6.06 5.59 4.85 4.54 4.49
100 0.06 -0.07 -0.01 0.01 0.11 4.21 3.85 3.51 3.37 3.38
200 -0.04 -0.05 0.00 -0.03 -0.10 3.13 2.74 2.62 2.42 2.37
Principal Component Estimators, Augmented, m known

PC1MG
20 -7.63 -6.75 -6.32 -6.32 -6.78 16.31 12.89 11.44 11.02 14.71
30 -5.29 -4.72 -4.20 -4.04 -4.59 12.50 9.78 8.29 7.96 9.42
50 -3.36 -2.57 -2.62 -2.58 -2.68 8.53 6.77 5.76 5.26 5.47
100 -2.13 -1.94 -1.45 -1.38 -1.45 6.21 4.84 3.75 3.40 3.36
200 -1.77 -1.25 -0.85 -0.77 -0.92 4.98 3.70 2.76 2.25 2.09

PC1POOL
20 -7.50 -6.45 -6.34 -6.38 -6.87 14.36 11.73 10.85 10.04 10.07
30 -5.38 -4.88 -4.27 -4.08 -4.63 10.97 9.20 7.82 7.58 7.51
50 -3.20 -2.63 -2.59 -2.61 -2.73 7.35 6.25 5.43 5.08 5.09
100 -1.97 -1.78 -1.42 -1.39 -1.48 5.27 4.34 3.56 3.27 3.27
200 -1.49 -1.13 -0.84 -0.75 -0.92 3.91 3.21 2.56 2.17 2.05
Principal Component Estimators, Augmented, m unknown and Estimated

PC1MG
20 -7.56 -6.70 -6.16 -6.20 -6.89 16.40 13.08 11.60 10.86 11.93
30 -5.33 -4.70 -4.20 -3.68 -4.38 12.53 10.10 8.85 8.01 7.94
50 -3.33 -2.60 -2.59 -2.43 -2.50 8.56 7.07 6.21 5.48 5.48
100 -2.32 -1.95 -1.32 -1.22 -1.23 6.49 5.38 4.03 3.82 3.80
200 -2.02 -1.31 -0.81 -0.70 -0.83 5.86 3.94 3.09 2.73 2.70

PC1POOL
20 -7.61 -6.41 -6.37 -6.49 -7.24 14.14 11.81 11.21 10.68 11.18
30 -5.43 -4.96 -4.30 -3.90 -4.66 10.90 9.68 8.54 8.46 7.98
50 -3.24 -2.63 -2.56 -2.45 -2.61 7.35 6.58 5.93 5.33 5.43
100 -2.13 -1.91 -1.33 -1.20 -1.27 5.62 4.92 3.85 3.64 3.76
200 -1.83 -1.21 -0.83 -0.69 -0.85 5.05 3.50 2.88 2.54 2.57

Notes: The DGP is the same as that of Table 1, except an extra term i4f4t is added to the y equation,
where i4 � IIDN(0:5; 0:2), f4t = f4t�1 + vf4;t, vf4;t � IIDN(0; 1), f4;�50 = 0. See notes to Table 1. CCEMG
and CCEP are de�ned by (14) and (20). The PC1 type estimators are computed in two cases: i) the number
of unobserved factors, m = 4, is known, and; ii) m is unknown but the number of factors in (yit; x1it; x2it) are
estimated, by the information criterion PCP2, which is proposed by Bai and NG (2002). We set the maximum
number of factors to six. All experiments are based on 2000 replications.



Table 6: Small Sample Properties of Common Correlated E¤ects Type Estima-
tors, The Number of Factors m = 4 Exceeds k + 1 = 3, In the case of Homogeneous
Slopes

BIAS (x100) RMSEs (x100)
CCE Type Estimator
(N,T) CCEMG
20 -0.12 0.20 0.31 -0.06 0.14 9.76 8.23 7.17 6.54 6.10
30 0.19 0.09 -0.10 0.08 -0.20 8.07 6.79 5.82 5.27 4.85
50 -0.06 -0.10 0.10 0.04 -0.02 6.19 5.22 4.57 3.93 3.67
100 -0.01 0.05 -0.06 -0.11 0.12 4.54 3.61 3.22 2.90 2.68
200 0.00 -0.03 -0.06 0.05 0.01 3.55 2.70 2.43 2.13 2.02

CCEP
20 0.01 0.14 0.16 0.01 0.04 8.18 7.06 6.61 6.21 5.99
30 0.11 0.04 -0.13 0.04 -0.20 6.71 5.78 5.28 4.91 4.59
50 0.00 -0.04 0.16 0.05 -0.03 5.22 4.52 3.98 3.64 3.50
100 -0.01 0.02 -0.02 -0.08 0.11 3.61 3.12 2.83 2.65 2.54
200 -0.02 -0.03 -0.04 0.03 0.01 2.73 2.30 2.11 1.94 1.91
Principal Component Estimators, Augmented, m known

PC1MG
20 -7.79 -6.44 -5.68 -6.18 -6.95 15.24 12.16 10.25 10.21 14.58
30 -5.34 -4.73 -4.30 -3.92 -4.60 11.72 9.49 8.07 6.86 9.15
50 -3.91 -2.93 -2.52 -2.42 -2.79 8.44 6.31 5.14 4.33 4.73
100 -2.16 -1.76 -1.51 -1.43 -1.36 5.77 4.32 3.31 2.77 2.58
200 -1.78 -1.24 -0.90 -0.73 -0.79 4.70 3.27 2.44 1.78 1.48

PC1POOL
20 -7.61 -6.50 -5.87 -6.16 -6.77 13.28 10.78 9.36 8.86 8.98
30 -5.15 -4.59 -4.29 -3.90 -4.57 9.87 8.46 7.35 6.29 6.58
50 -3.54 -2.78 -2.45 -2.43 -2.86 7.03 5.50 4.61 4.03 4.28
100 -1.97 -1.61 -1.41 -1.40 -1.38 4.63 3.59 2.85 2.55 2.43
200 -1.46 -1.09 -0.82 -0.74 -0.80 3.56 2.63 2.04 1.61 1.39
Principal Component Estimators, Augmented, m Unknown and Estimated

PC1MG
20 -8.00 -6.52 -5.58 -6.13 -6.84 15.34 12.37 10.35 10.13 11.56
30 -5.27 -4.80 -4.27 -3.79 -4.42 11.79 9.62 8.46 7.11 7.10
50 -3.85 -3.05 -2.39 -2.32 -2.73 8.59 6.82 5.57 4.82 4.84
100 -2.28 -1.63 -1.46 -1.34 -1.24 6.22 4.50 3.77 3.29 3.10
200 -2.04 -1.24 -0.92 -0.63 -0.74 5.25 3.52 2.78 2.28 2.27

PC1POOL
20 -7.59 -6.59 -5.84 -6.22 -6.95 12.89 10.92 9.71 9.58 9.69
30 -5.14 -4.70 -4.30 -3.86 -4.59 9.83 8.73 7.97 6.90 7.08
50 -3.51 -2.88 -2.31 -2.33 -2.81 7.06 6.18 4.99 4.55 4.77
100 -2.08 -1.60 -1.35 -1.32 -1.28 5.16 3.92 3.34 3.04 3.02
200 -1.79 -1.15 -0.87 -0.64 -0.74 4.33 3.01 2.46 2.09 2.18

Notes: The DGP is the same as that of Table 5, except �ij = 1 for all i and j, i = 1; 2; :::; N , j = 1; 2. See
also notes to Table 1.



Table 7: Small Sample Properties of Common Correlated Effects Type Estimators, One Break in the Means of
Unobserved Factors, in the Case of Experiment 1A (Heterogeneous Slopes + Full Rank)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.01 -0.10 -0.02 0.06 -0.07 9.66 7.82 6.74 5.87 5.54 7.20 7.75 7.15 7.70 7.65 11.65 12.45 15.85 17.90 20.25
30 0.14 -0.03 -0.02 -0.13 0.10 7.68 6.08 5.11 4.54 4.22 6.85 5.75 5.80 6.55 6.45 12.35 13.75 18.00 22.00 26.65
50 -0.21 0.20 -0.11 0.14 -0.04 5.91 4.64 4.01 3.43 3.13 6.10 5.40 6.35 6.05 5.85 15.55 19.85 25.50 34.10 36.55
100 0.02 0.03 0.05 0.03 0.04 4.26 3.48 2.88 2.33 2.26 5.50 5.70 5.10 4.95 6.20 23.35 34.20 44.35 55.85 63.20
200 -0.08 -0.02 -0.02 0.06 0.00 3.08 2.49 2.01 1.72 1.51 4.40 5.25 5.10 5.60 4.95 35.95 52.10 68.90 83.55 90.30

CCEP
20 0.17 0.00 -0.05 0.00 -0.13 8.73 7.61 6.86 6.30 6.21 7.30 8.05 7.50 7.80 7.25 12.55 13.65 16.10 17.15 18.15
30 -0.15 -0.13 0.07 -0.14 0.14 7.10 5.98 5.31 4.78 4.46 7.15 6.10 6.80 6.70 6.50 12.60 14.90 18.95 20.80 26.85
50 -0.03 0.18 -0.06 0.11 -0.01 5.30 4.53 3.97 3.47 3.21 7.00 6.50 6.05 6.40 6.45 17.25 21.75 26.80 32.75 36.30
100 0.05 0.09 0.04 0.01 0.02 3.80 3.26 2.85 2.34 2.28 6.25 5.70 5.40 5.10 6.35 28.45 37.10 44.90 54.55 61.70
200 -0.06 -0.04 -0.05 0.05 0.00 2.72 2.29 1.95 1.71 1.53 5.30 4.60 4.95 4.50 4.70 44.10 57.55 70.55 83.20 89.65

Principal Component Estimators, Augmented
PC1MG

20 -12.37 -11.25 -10.31 -8.93 -8.92 17.11 14.92 13.23 11.60 11.53 22.55 25.40 30.35 33.70 37.65 12.00 12.45 13.55 12.90 13.20
30 -9.34 -7.94 -6.49 -5.76 -5.26 13.59 10.97 8.93 7.84 7.19 20.50 21.60 21.30 24.60 24.60 10.45 7.80 7.45 7.35 6.55
50 -6.79 -5.08 -3.93 -3.01 -3.12 10.11 7.87 5.93 4.66 4.47 20.30 17.50 16.65 14.95 17.65 8.40 8.15 8.20 11.75 9.75
100 -4.72 -3.24 -2.04 -1.57 -1.45 7.42 5.34 3.70 2.87 2.72 19.75 17.05 11.75 9.65 11.20 9.80 11.75 20.15 28.50 36.75
200 -4.44 -2.58 -1.40 -0.82 -0.78 6.56 4.24 2.68 1.93 1.71 26.65 17.85 11.00 8.30 7.70 13.85 22.35 42.40 67.45 77.25

PC1POOL
20 -12.17 -11.09 -10.39 -9.17 -9.25 16.07 14.41 13.11 11.77 12.08 25.20 28.95 32.00 34.70 39.45 12.80 14.50 14.50 14.55 15.15
30 -8.86 -7.75 -6.35 -5.77 -5.38 12.45 10.56 8.84 7.84 7.38 21.70 23.90 22.10 24.45 25.80 10.65 8.90 7.55 8.10 6.45
50 -6.22 -4.90 -3.86 -3.08 -3.19 9.09 7.59 5.81 4.73 4.55 20.95 19.15 16.20 16.20 18.25 9.10 9.75 8.15 10.65 9.50
100 -4.32 -3.02 -2.02 -1.60 -1.50 6.59 5.02 3.63 2.88 2.74 20.75 17.00 11.50 9.35 11.00 11.40 14.95 20.85 27.95 35.80
200 -3.72 -2.36 -1.37 -0.81 -0.79 5.54 3.86 2.58 1.91 1.73 25.80 17.80 10.55 7.90 7.95 16.25 26.25 45.40 67.55 76.15

Principal Component Estimators, Orthogonalised
PC2MG

20 -31.25 -27.08 -24.11 -22.70 -23.13 32.84 28.33 25.09 23.46 23.84 85.45 89.05 91.35 95.10 97.70 73.35 74.20 76.40 81.65 88.05
30 -25.51 -21.27 -18.33 -16.73 -16.34 26.87 22.30 19.18 17.39 16.93 85.25 87.85 89.85 93.60 95.70 69.90 68.80 66.80 68.85 74.75
50 -20.59 -16.26 -13.35 -11.42 -10.90 21.61 17.09 14.01 11.96 11.39 89.95 88.60 88.55 89.25 91.80 70.40 60.05 52.85 45.80 46.50
100 -16.23 -12.46 -9.71 -7.62 -6.60 16.94 13.00 10.20 8.00 7.02 93.85 93.40 89.95 87.60 83.65 72.25 56.60 38.05 19.15 14.00
200 -14.56 -10.78 -8.11 -5.79 -4.59 15.07 11.20 8.45 6.09 4.85 98.85 97.45 95.50 90.65 83.75 79.55 59.25 33.30 10.15 6.65

PC2POOL
20 -32.00 -27.50 -24.38 -23.21 -24.20 33.40 28.69 25.34 24.01 25.00 90.60 91.20 93.35 95.90 98.35 80.75 78.80 78.30 83.00 90.40
30 -26.32 -21.59 -18.29 -16.88 -16.76 27.55 22.55 19.16 17.56 17.38 91.10 90.55 90.00 93.35 96.20 77.80 72.55 66.15 70.45 77.00
50 -21.17 -16.37 -13.21 -11.36 -11.00 22.05 17.16 13.86 11.91 11.50 94.90 90.40 88.90 88.65 91.90 79.45 63.80 53.55 46.10 48.75
100 -16.80 -12.54 -9.64 -7.56 -6.61 17.46 13.07 10.13 7.96 7.04 97.75 95.10 90.25 86.55 82.40 80.35 61.50 38.05 18.50 14.35
200 -15.07 -10.93 -8.00 -5.66 -4.53 15.58 11.35 8.33 5.96 4.80 99.75 98.35 96.05 89.25 82.40 88.05 63.90 33.00 8.40 6.40

Notes: The DGP is the same as that of Table 1, except that fjt = ϕjt for t < b2T/3c and fjt = 1+ ϕjt for t ≥ b2T/3c with bAc being the greatest integer less
than or equal to A, where ϕjt = ϕj,t−1 + ζjt, ζjt ∼ IIDN(0, 1), j = 1, 2, 3. See also the notes to Table 1.



Table 8: Small Sample Properties of Common Correlated Effects Type Estimators, One Break in the Means of
Unobserved Factors, in the Case of Experiment 2A (Homogeneous Slopes + Full Rank)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.08 -0.14 0.01 -0.14 0.09 8.42 6.29 5.10 3.78 3.14 7.15 6.30 6.95 6.65 6.75 12.05 13.75 21.50 31.45 48.15
30 -0.12 0.11 0.04 0.04 0.00 6.48 5.11 3.80 2.67 2.07 6.10 6.90 7.45 6.65 6.85 12.90 20.85 30.95 50.85 72.15
50 0.06 -0.04 0.03 0.05 0.03 5.07 3.80 2.81 1.94 1.39 5.55 5.65 5.25 5.55 5.50 17.95 27.05 45.10 75.50 94.95
100 -0.06 -0.06 0.05 -0.04 -0.02 3.59 2.76 2.03 1.35 0.98 4.65 5.65 5.95 5.40 6.05 27.70 44.40 72.35 95.30 99.90
200 0.07 -0.02 0.02 0.01 0.00 2.84 2.06 1.52 1.00 0.68 5.60 4.45 6.25 5.15 5.75 44.40 67.40 91.75 99.90 100.00

CCEP
20 0.18 -0.01 0.02 -0.14 0.08 6.92 5.60 4.93 3.98 3.75 6.55 6.75 7.15 6.75 6.60 13.55 16.75 25.05 33.40 46.25
30 -0.14 0.10 0.07 0.01 0.01 5.23 4.50 3.56 2.67 2.26 5.10 6.00 7.15 6.60 6.20 16.45 24.55 34.95 53.45 70.65
50 0.05 0.09 -0.01 0.04 0.03 4.07 3.29 2.57 1.84 1.39 5.00 5.45 5.30 6.25 5.35 24.05 34.75 51.85 78.20 94.70
100 -0.03 -0.03 0.05 -0.04 -0.01 2.88 2.37 1.78 1.24 0.93 5.45 6.50 6.15 5.25 5.80 41.15 58.20 82.10 97.90 100.00
200 0.08 -0.04 0.01 0.02 0.00 2.17 1.63 1.32 0.93 0.65 5.00 3.70 5.90 5.85 5.75 65.45 83.95 96.70 100.00 100.00
Principal Component Estimators, Augmented

PC1MG
20 -12.29 -11.54 -10.01 -9.48 -8.88 16.80 14.70 12.15 11.42 11.14 24.35 32.05 38.75 58.85 72.00 13.40 14.95 14.40 18.80 21.30
30 -9.62 -7.89 -6.39 -5.69 -5.35 13.23 10.67 8.08 7.00 6.12 23.70 26.15 32.65 46.20 68.55 10.10 9.80 8.05 10.50 9.95
50 -7.10 -5.29 -3.82 -3.09 -3.17 10.15 7.45 5.09 3.87 3.71 23.60 23.95 24.75 35.20 56.75 10.55 9.10 9.15 20.15 29.75
100 -5.06 -3.45 -2.04 -1.65 -1.57 7.22 5.15 3.13 2.20 1.91 23.20 22.10 16.40 22.35 36.00 9.30 14.00 30.50 65.90 91.80
200 -4.28 -2.66 -1.29 -0.87 -0.79 6.34 4.11 2.16 1.37 1.06 28.25 23.25 14.80 16.80 21.95 16.20 29.65 66.80 97.40 100.00

PC1POOL
20 -11.80 -11.32 -9.85 -9.49 -8.97 15.15 13.95 11.82 11.36 10.90 28.45 37.70 45.80 63.90 76.55 14.65 17.30 16.45 21.55 25.05
30 -8.77 -7.48 -6.14 -5.61 -5.35 11.54 9.77 7.73 6.84 6.15 26.05 29.80 35.30 49.55 70.85 10.85 10.40 9.75 10.25 10.35
50 -6.47 -4.88 -3.74 -3.06 -3.19 8.92 6.74 4.84 3.78 3.78 26.45 26.30 27.40 37.10 59.40 10.60 10.45 10.30 21.70 31.90
100 -4.49 -3.24 -1.98 -1.61 -1.56 6.22 4.68 2.88 2.10 1.87 27.95 25.55 19.60 24.85 38.35 12.45 18.85 41.10 72.75 93.75
200 -3.60 -2.37 -1.23 -0.84 -0.79 5.21 3.54 1.97 1.30 1.03 31.85 24.90 17.80 17.55 23.85 23.95 42.30 78.20 98.50 100.00
Principal Component Estimators, Orthogonalised

PC2MG
20 -31.27 -27.18 -23.96 -22.97 -22.96 32.67 28.28 24.71 23.47 23.38 88.75 92.30 95.95 99.55 100.00 78.10 82.15 85.40 95.45 98.10
30 -25.82 -21.24 -18.28 -16.54 -16.54 27.00 22.13 18.88 16.92 16.83 90.80 93.50 97.45 99.60 100.00 77.55 76.45 81.35 90.55 97.65
50 -20.83 -16.52 -13.42 -11.40 -10.93 21.66 17.17 13.85 11.71 11.13 94.80 96.00 98.35 99.75 100.00 79.05 74.05 71.35 73.20 86.75
100 -16.35 -12.50 -9.60 -7.71 -6.67 16.95 12.95 9.92 7.90 6.81 96.60 97.55 98.20 99.75 100.00 79.80 68.85 51.75 40.55 32.10
200 -14.48 -10.82 -8.07 -5.86 -4.58 14.94 11.16 8.30 6.00 4.66 99.35 99.55 99.45 99.85 100.00 84.05 71.00 49.10 15.60 13.15

PC2POOL
20 -32.07 -27.49 -24.22 -23.51 -24.07 33.19 28.45 24.90 24.03 24.57 95.50 96.55 98.20 99.90 100.00 87.45 86.25 90.80 97.10 99.40
30 -26.34 -21.49 -18.40 -16.70 -16.98 27.34 22.30 18.95 17.10 17.30 96.00 96.55 98.90 99.75 100.00 86.00 83.10 86.35 92.40 98.35
50 -21.35 -16.49 -13.34 -11.35 -11.06 22.06 17.06 13.73 11.64 11.27 98.90 98.15 98.95 99.85 100.00 89.40 81.45 75.90 74.25 88.40
100 -16.96 -12.67 -9.53 -7.63 -6.67 17.50 13.08 9.82 7.81 6.81 99.50 99.05 99.50 99.90 100.00 91.05 78.45 57.85 42.20 33.50
200 -15.02 -10.94 -7.94 -5.73 -4.52 15.46 11.26 8.16 5.86 4.60 100.00 99.90 99.75 99.90 99.95 94.55 80.50 51.70 13.95 15.30

Notes: The DGP is the same as that of Table 2, except that fjt = ϕjt for t < b2T/3c and fjt = 1+ ϕjt for t ≥ b2T/3c with bAc being the greatest integer less
than or equal to A, where ϕjt = ϕj,t−1 + ζjt, ζjt ∼ IIDN(0, 1), j = 1, 2, 3.See also the notes to Table 1.



Table 9: Small Sample Properties of Common Correlated Effects Type Estimators, One Break in the Means of
Unobserved Factors, in the Case of Experiment 1B (Heterogeneous Slopes + Rank Deficient)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.35 -0.05 0.19 0.18 0.25 15.14 14.14 12.79 13.40 13.80 7.15 6.50 6.85 6.75 7.20 9.30 9.70 9.95 9.95 10.25
30 0.27 0.12 0.06 -0.16 0.35 12.99 12.12 10.83 10.17 10.55 5.85 6.95 5.55 6.00 4.75 8.00 10.15 9.85 10.60 11.55
50 -0.22 0.64 -0.15 -0.17 0.03 9.96 8.64 7.93 7.39 7.33 6.45 5.40 6.45 5.55 6.00 9.90 12.30 13.15 14.10 15.30
100 0.18 0.10 0.27 -0.01 0.06 7.11 6.55 5.81 5.25 4.97 5.50 5.45 5.50 5.20 6.15 13.50 16.80 21.50 22.50 27.35
200 0.05 -0.11 -0.12 -0.05 -0.05 5.42 4.64 4.20 3.61 3.31 5.15 4.45 4.85 5.05 4.55 19.45 24.50 30.25 37.90 43.80

CCEP
20 0.47 0.17 -0.05 0.24 0.13 13.22 12.98 12.42 13.61 15.37 6.80 7.10 6.55 6.80 6.80 9.60 10.30 10.55 10.05 10.15
30 -0.22 -0.05 0.11 -0.25 0.43 11.57 10.72 10.37 10.00 10.99 5.90 6.95 6.00 6.15 5.55 8.85 10.75 10.60 10.85 10.70
50 -0.05 0.50 -0.14 -0.18 0.00 8.45 7.67 7.33 7.19 7.23 4.95 5.90 6.40 5.30 5.90 11.85 13.75 14.05 14.10 15.05
100 0.11 0.18 0.23 -0.06 0.04 5.92 5.77 5.25 4.86 4.95 5.50 6.10 5.50 5.20 6.05 16.80 20.20 23.45 23.95 27.50
200 0.06 -0.08 -0.12 -0.02 -0.04 4.38 4.01 3.78 3.30 3.16 5.50 5.15 5.05 4.35 4.10 25.40 28.50 35.25 41.20 46.15

Principal Component Estimators, Augmented
PC1MG

20 -8.20 -8.08 -7.91 -7.28 -7.44 14.37 12.34 10.98 9.58 9.27 12.75 16.30 21.60 24.45 28.60 6.55 6.60 7.40 7.60 8.10
30 -5.34 -4.92 -4.71 -4.56 -4.26 10.68 8.56 7.31 6.51 5.96 9.95 10.90 14.25 17.65 18.60 5.95 4.50 5.00 5.20 5.65
50 -3.16 -2.86 -2.99 -2.59 -2.63 7.48 5.95 5.14 4.33 4.07 8.05 8.65 11.50 11.70 14.30 7.15 6.75 8.65 12.40 11.80
100 -1.32 -1.29 -1.32 -1.26 -1.16 5.07 4.00 3.24 2.68 2.55 7.25 7.30 7.40 7.30 8.45 14.25 18.65 25.45 31.80 42.20
200 -0.89 -0.76 -0.72 -0.58 -0.62 3.59 2.82 2.19 1.83 1.64 4.85 6.60 6.10 6.80 6.10 21.95 35.90 53.35 72.35 80.20

PC1POOL
20 -7.87 -7.83 -7.87 -7.23 -7.31 12.88 11.58 10.56 9.45 9.13 13.55 15.85 21.60 25.15 27.85 6.60 7.15 8.15 7.50 7.35
30 -5.24 -4.91 -4.60 -4.52 -4.21 9.77 8.15 7.11 6.48 5.91 11.30 11.70 13.10 17.70 18.20 6.45 5.55 5.55 5.70 5.35
50 -3.01 -2.78 -2.92 -2.64 -2.64 6.58 5.68 5.01 4.38 4.11 7.90 9.75 11.40 12.05 14.00 6.65 7.90 8.90 11.60 11.50
100 -1.35 -1.24 -1.35 -1.30 -1.20 4.38 3.68 3.19 2.70 2.57 6.50 6.85 7.40 7.45 9.10 16.55 21.55 26.10 31.10 40.85
200 -0.84 -0.77 -0.75 -0.60 -0.63 3.04 2.55 2.12 1.82 1.67 5.90 6.10 6.10 6.00 6.70 29.20 41.80 55.90 71.45 78.75

Principal Component Estimators, Orthogonalised
PC2MG

20 -30.63 -26.65 -24.03 -22.57 -23.19 32.40 27.97 25.09 23.37 23.93 83.05 88.10 90.70 95.30 97.80 69.40 72.75 74.65 81.05 88.00
30 -24.78 -20.95 -18.23 -16.72 -16.43 26.22 22.05 19.06 17.39 17.03 83.00 86.20 90.55 93.55 95.70 66.00 66.00 66.75 69.65 75.40
50 -19.56 -15.63 -13.17 -11.40 -10.86 20.63 16.47 13.84 11.95 11.35 87.60 86.45 88.55 89.70 91.90 64.60 55.45 51.70 45.10 45.95
100 -15.18 -11.97 -9.59 -7.58 -6.60 15.96 12.56 10.09 7.97 7.03 90.40 91.00 89.30 87.55 82.90 64.05 50.55 37.65 18.60 13.85
200 -13.57 -10.38 -7.98 -5.75 -4.58 14.09 10.82 8.33 6.05 4.85 98.10 96.35 95.05 90.40 83.45 72.40 54.30 32.00 9.70 6.75

PC2POOL
20 -31.25 -27.09 -24.37 -23.17 -24.28 32.74 28.29 25.37 24.00 25.12 89.25 90.25 93.20 95.95 98.70 79.45 77.85 78.15 82.80 90.45
30 -25.45 -21.17 -18.17 -16.88 -16.86 26.74 22.20 19.02 17.57 17.50 88.45 88.85 90.65 94.00 96.25 75.30 70.20 66.65 70.10 77.00
50 -19.94 -15.70 -13.04 -11.37 -10.97 20.85 16.52 13.70 11.93 11.48 93.05 88.35 88.65 88.95 91.75 75.20 58.95 51.60 45.85 47.40
100 -15.67 -12.01 -9.52 -7.53 -6.61 16.38 12.58 10.02 7.92 7.04 95.80 93.45 89.30 86.40 81.85 73.70 55.25 36.15 17.60 14.00
200 -13.96 -10.49 -7.86 -5.63 -4.52 14.48 10.93 8.20 5.93 4.79 99.15 97.95 95.25 89.00 81.80 82.00 59.65 31.75 8.25 6.15

Notes: The DGP is the same as that of Table 3, except that fjt = ϕjt for t < b2T/3c and fjt = 1+ ϕjt for t ≥ b2T/3c with bAc being the greatest integer less
than or equal to A, where ϕjt = ϕj,t−1 + ζjt, ζjt ∼ IIDN(0, 1), j = 1, 2, 3.See also the notes to Table 1.



Table 10: Small Sample Properties of Common Correlated Effects Type Estimators, One Break in the Means of
Unobserved Factors, in the Case of Experiment 2B (Homogeneous Slopes + Rank Deficient)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 -0.06 -0.26 0.40 -0.38 0.74 14.66 13.03 12.08 12.11 13.45 6.90 6.30 6.60 6.50 5.90 8.70 9.10 11.40 11.60 10.85
30 -0.11 0.05 0.05 0.43 -0.04 12.31 10.98 10.08 9.51 10.30 5.30 5.95 6.20 6.20 6.60 8.05 10.65 12.15 14.15 14.75
50 -0.05 0.17 -0.05 -0.01 0.00 9.22 8.13 7.79 6.80 6.73 4.85 4.95 5.45 4.55 5.05 10.00 11.90 16.30 18.30 21.05
100 0.15 -0.10 -0.13 0.00 0.08 6.86 6.05 5.24 4.79 4.54 5.00 6.10 5.75 4.95 5.90 14.20 17.80 23.55 28.50 34.90
200 0.18 0.11 0.06 -0.15 -0.08 5.24 4.51 3.86 3.30 3.33 5.30 5.10 4.80 4.55 5.55 22.10 28.30 36.50 45.00 56.50

CCEP
20 0.00 -0.22 0.40 -0.33 0.67 13.00 11.64 11.63 12.20 15.03 6.95 7.30 7.15 6.00 6.40 9.90 10.15 12.10 12.60 11.40
30 -0.06 -0.01 -0.03 0.36 0.03 10.25 9.84 9.54 9.37 11.00 5.60 5.45 6.90 6.55 6.75 9.55 12.05 12.85 14.95 14.50
50 -0.10 0.37 -0.07 0.02 0.04 7.46 7.04 7.01 6.61 6.82 5.20 5.05 5.55 5.20 4.90 10.85 15.85 16.95 20.10 20.60
100 0.21 -0.16 -0.11 -0.03 0.06 5.56 5.10 4.63 4.46 4.38 4.70 5.95 5.55 4.95 5.90 20.80 22.60 28.25 31.85 36.90
200 0.17 0.10 -0.05 -0.12 -0.07 4.05 3.71 3.35 2.98 3.08 5.55 5.15 5.30 5.10 5.15 31.50 38.70 43.90 50.45 59.80

Principal Component Estimators, Augmented
PC1MG

20 -8.18 -8.35 -7.89 -7.89 -7.46 13.66 11.80 10.05 9.16 8.36 13.70 18.70 26.40 44.60 58.60 6.65 8.10 8.30 9.55 9.25
30 -5.52 -5.03 -4.69 -4.58 -4.51 10.17 8.07 6.49 5.53 5.02 10.35 13.50 20.20 33.85 51.65 5.80 5.25 6.55 5.80 4.95
50 -3.25 -3.06 -2.80 -2.66 -2.66 6.98 5.35 4.21 3.39 3.04 9.00 10.45 15.75 25.00 44.45 7.25 7.55 12.20 22.20 35.75
100 -1.55 -1.43 -1.29 -1.32 -1.29 4.52 3.39 2.56 1.96 1.64 6.40 7.65 10.05 15.85 26.55 12.35 21.00 41.40 71.95 95.75
200 -0.77 -0.77 -0.68 -0.64 -0.63 3.36 2.40 1.75 1.22 0.94 6.40 6.15 7.75 10.85 15.55 26.95 46.65 79.05 98.75 100.00

PC1POOL
20 -7.55 -7.80 -7.55 -7.60 -7.12 11.45 10.61 9.33 8.59 7.80 13.65 20.95 30.70 47.75 57.70 5.40 8.00 8.30 8.85 8.45
30 -5.06 -4.76 -4.48 -4.42 -4.35 8.53 7.22 6.03 5.24 4.82 11.95 15.30 21.60 35.20 51.85 5.80 5.70 6.70 5.70 5.25
50 -2.91 -2.76 -2.73 -2.60 -2.61 5.72 4.64 3.90 3.26 2.97 9.20 11.55 17.10 27.45 44.60 7.95 10.50 13.05 24.80 37.90
100 -1.40 -1.38 -1.26 -1.31 -1.27 3.66 2.94 2.29 1.87 1.60 7.85 8.55 10.80 17.10 28.60 19.30 29.55 51.75 79.65 97.30
200 -0.70 -0.75 -0.68 -0.63 -0.63 2.50 1.92 1.56 1.14 0.91 6.00 5.40 9.20 11.60 16.75 42.90 63.10 88.85 99.40 100.00

Principal Component Estimators, Orthogonalised
PC2MG

20 -30.64 -26.60 -23.76 -22.89 -23.07 32.17 27.69 24.52 23.40 23.52 87.15 91.75 95.50 99.70 99.95 75.95 79.30 85.15 95.25 98.85
30 -25.12 -20.80 -18.18 -16.61 -16.62 26.39 21.72 18.80 16.99 16.92 88.45 92.50 97.15 99.70 100.00 74.95 74.10 81.15 91.20 98.20
50 -19.71 -15.79 -13.19 -11.38 -10.92 20.63 16.45 13.63 11.68 11.13 91.70 94.55 97.80 99.75 100.00 72.10 69.55 69.50 73.25 87.15
100 -15.31 -11.98 -9.45 -7.66 -6.66 15.94 12.44 9.77 7.86 6.81 95.25 96.55 98.35 99.70 99.95 73.75 63.65 50.95 39.95 32.80
200 -13.49 -10.39 -7.94 -5.83 -4.58 13.97 10.75 8.19 5.97 4.66 98.75 98.85 99.45 99.80 100.00 78.10 64.65 46.85 15.00 13.55

PC2POOL
20 -31.38 -27.02 -24.07 -23.52 -24.11 32.55 27.98 24.77 24.05 24.65 94.80 95.75 98.10 99.90 100.00 85.80 85.45 89.05 97.55 99.30
30 -25.53 -20.93 -18.31 -16.79 -17.07 26.56 21.73 18.88 17.18 17.40 95.65 96.15 98.80 99.80 100.00 84.30 81.95 86.30 92.95 98.60
50 -20.17 -15.73 -13.09 -11.34 -11.06 20.94 16.31 13.50 11.64 11.27 97.50 97.55 98.90 99.75 100.00 84.35 77.65 72.95 75.30 88.70
100 -15.78 -12.10 -9.37 -7.59 -6.66 16.34 12.53 9.66 7.77 6.80 98.90 98.85 99.45 99.85 99.95 86.15 72.80 56.30 40.55 34.10
200 -13.89 -10.48 -7.82 -5.70 -4.52 14.34 10.81 8.05 5.84 4.60 99.70 99.80 99.65 99.85 100.00 90.15 74.55 48.60 13.55 15.70

Notes: The DGP is the same as that of Table 4, except that fjt = ϕjt for t < b2T/3c and fjt = 1+ ϕjt for t ≥ b2T/3c with bAc being the greatest integer less
than or equal to A, where ϕjt = ϕj,t−1 + ζjt, ζjt ∼ IIDN(0, 1), j = 1, 2, 3.See also the notes to Table 1.


