
A Panel Unit Root Test in the Presence of a Multifactor Error
Structure�

M. Hashem Pesarana L. Vanessa Smithb

Takashi Yamagatac

aUniversity of Cambridge and USC
bCFAP, University of Cambridge

cDepartment of Economics and Related Studies, University of York

16 September 2009

Abstract

This paper extends the cross sectionally augmented panel unit root test proposed by
Pesaran (2007) to the case of a multifactor error structure. The basic idea is to exploit
information regarding the m unobserved factors that are shared by k other time series in
addition to the variable under consideration. Initially we develop a test assuming that m0,
the true number of factors is known, and show that the limit distribution of the test does not
depend on any nuisance parameters, so long as k � m0 � 1. Small sample properties of the
test are investigated by Monte Carlo experiments and shown to be satisfactory. Particularly,
in contrast to other existing panel unit root tests, our test has correct size and reasonable
power for the case with an intercept and a linear trend as well as with an intercept only, for
all combinations of cross section and time series dimensions. An illustrative application is
also provided where the proposed panel unit root test is applied to Fisher�s in�ation parity
and real equity prices.
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1 Introduction

There is now a sizeable literature on testing for unit roots in panels where both cross section
(N) and time (T ) dimensions are relatively large. Reviews of this literature are provided in
Banerjee (1999), Baltagi and Kao (2000), Choi (2004), and more recently in Breitung and
Pesaran (2008). The so called �rst generation panel unit root tests pioneered by Levin, Lin
and Chu (2002) and Im, Pesaran and Shin (2003) focussed on panels where the idiosyncratic
errors were cross sectionally uncorrelated. More recently, to deal with a number of applications
such as testing for purchasing power parity or output convergence, the interest has shifted to
the case where the errors are allowed to be cross sectionally correlated using a residual factor
structure. These second generation tests include the contributions of Moon and Perron (2004),
Bai and Ng (2004) and Pesaran (2007).1 The tests proposed by Moon and Perron (2004) and
Pesaran (2007) assume that under the null of unit roots the common factor components have
the same order of integration as the idiosyncratic components, whilst the test procedures of Bai
and Ng (2004) allow the order of integration of the factors to di¤er from that of the idiosyncratic
components, by assuming di¤erent processes generating the two. A small sample comparison
of some of these tests is provided in Gengenbach, Palm and Urbain (2009).

In the case of the panel unit root test proposed by Pesaran (2007), the cross section depen-
dence is accounted for by augmenting the individual ADF regressions of yit with cross section
averages of the dependent variable (current and lagged values, ��yt, �yt�1 = N�1�Nj=1yj;t�1).
These cross section averages are used as proxies for the assumed single unobserved common
factor. The panel test statistic is then based on the average of the individual t-statistics over
the cross section units and is shown to be free of nuisance parameters, although it has a non-
normal limit distribution as N and T !1. Monte Carlo experiments show that Pesaran�s test
has desirable small sample properties in the presence of a single unobserved common factor but
show serious size distortions if the number of common factors exceeds unity. Bai and Ng (2004)
consider whether the source of non-stationarity is due to the common factor and/or idiosyn-
cratic component. Their method involves applying unit root tests to the common factors and
the idiosyncratic component separately, where the unobserved factors are replaced with consis-
tent estimates obtained by use of principal components (PC). The pooled tests they propose
require an estimate of the true number of factors and the factors themselves. Moon and Perron
(2004) follow a similar approach in that they base their test on a principal components estimator
of common factors. In particular, their test is based on de-factored observations obtained by
projecting the panel data onto the space orthogonal to the (estimated) factor loadings.

This paper extends Pesaran�s test and proposes a simple panel unit root test that is valid
in the more general case of multiple common factors. In so doing we utilise the information
contained in a number of k additional variables, xit, that are assumed to share the same common
factors as the original series of interest, yit. The ADF regression for yit is then augmented
by the cross section averages of the dependent variable as well as the additional regressors.2

The test assumes that there exists a number of variables that are simultaneously a¤ected by

1Other panel unit root tests include that of Chang (2002) that employs a non-linear IV method to account
for cross-section correlation and Phillips and Sul (2003) who use an orthogonalisation procedure to deal with
dependence arising from a single common factor. The former is valid for a �xed N and large T .

2The idea of augmenting ADF regressions with other covariates has been investigated in the unit root literature
by Hansen (1995) and Elliott and Jansson (2003). These authors consider the additional covariates in order to
gain power when testing the unit root hypothesis in the case of a single time series. In this paper we augment
ADF regressions with cross section averages to eliminate the e¤ects of unobserved common factors in the case of
panel unit root tests.
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a given set of unobserved common factors. This requirement seems quite plausible in the
case of panel data sets from economics and �nance where economic agents often face common
economic environments. For example, in testing for unit roots in a panel of real outputs one
would expect the unobserved common shocks to output (that originate from technology) to
also manifest themselves in employment, consumption and investment. In the case of testing
for unit roots in in�ation across countries, one would expect the unobserved common factors
that cross correlate in�ation rates to also a¤ect short-term and long-term interest rates across
markets and economies. The fundamental issue is to ascertain the nature of dependence and
persistence that is observed across markets and over time. The present paper can, therefore, be
viewed as a �rst step in the process of developing a coherent framework for the analysis of unit
roots and multiple cointegration in large panels.

Initially we develop a test supposing that m0, the true number of factors, is known and that
all additional variables are I(1) and not cointegrated among themselves. We show that the limit
distribution of the test does not depend on the factor loadings or other nuisance parameters so
long as k � m0�1. But, in practicem0 is rarely known. Given an assumed maximum number of
factors, mmax, we suggest two strategies for dealing with uncertainty that surrounds the value of
m0. One is to choose the number of additional regressors as k = mmax�1. In this case, the true
number of factors are allowed to be any integer value between zero and mmax. However, when
mmax is assumed to be large, in some situations it can be di¢ cult to �nd a su¢ cient number of
suitable additional regressors. Another possibility is to estimate m0 consistently using suitable
selection criteria, as is followed in the literature, for example, by Bai and Ng (2004) and Moon
and Perron (2004), amongst others.

The small sample properties of the proposed test are investigated by Monte Carlo experi-
ments. The test is shown to have the correct size in a number of di¤erent experiments and for
relatively small samples. This contrasts the results obtained for some of the prominent existing
tests in the literature such as the pooled tests of Bai and Ng (2004) and Moon and Perron
(2004) that tend to be over-sized.3 In terms of power, when the model contains an intercept
term only, the pooled tests tend to display higher power in smaller samples as compared to
the proposed test, although this could partly re�ect the over-sized nature of the pooled tests in
small samples.4 In the case of models with linear trends, our experimental results show that the
proposed test can perform better than the pooled tests, both in terms of size and power. Em-
pirical applications to Fisher�s in�ation parity and real equity prices across di¤erent economies
illustrate how the proposed test performs in practice.

The plan of the paper is as follows. Section 2 presents the panel data model and the testing
procedure and derives the asymptotic distribution of the proposed cross sectionally augmented
panel unit root test. Section 3 describes the Monte Carlo experiments and reports the small
sample results. Section 4 presents the empirical applications, and Section 5 provides some
concluding remarks.

Notation: L denotes a lag operator such that L`xt = xt�`, K denotes a �nite positive
constant such that K < 1, jjAjj = [tr(AA0)]1=2, A� denotes the generalised inverse of A, Iq
is a q � q identity matrix, � q and 0q are q � 1 vectors of ones and zeros, respectively, 0q�r is a
q� r null matrix, N

=) (N!) denotes convergence in distribution (quadratic mean (q.m.) or mean
square errors) with T �xed as N !1, T

=) ( T!) denotes convergence in distribution (q.m.) with
3Westerlund and Larsson (2009) provide further theoretical results on the asymptotic validity of the pooled

versions of the PANIC procedure.
4We do not present size-corrected power comparisons, since such results are likely to have limited value in

empirical applications where such size corrections are not possible.
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N �xed (or when there is no N -dependence) as T ! 1, N;T=) denotes sequential convergence

in distribution with N ! 1 �rst followed by T ! 1, (N;T )j=) denotes joint convergence in
distribution with N ,T ! 1 jointly with certain restrictions on the expansion rates of T and
N to be speci�ed, if any.

2 Panel Data Model and Tests

Let yit be the observation on the ith cross section unit at time t generated as

�yit = �i(yi;t�1 ��0iydt�1) +�0iy�dt + uit, i = 1; 2; :::; N ; t = 1; 2; :::; T (1)

where �i = �(1 � �i); dt is 2 � 1 vector consisting of an intercept and a linear trend so that
dt = (1; t)0. Without loss of generality, it is assumed that d0 � 0. Consider the following
multifactor error structure

uit = 

0
iyft + "iyt (2)

where ft is an m0 � 1 vector of unobserved common e¤ects, 
iy is the associated vector of
factor loadings, and "iyt is the idiosyncratic component. This set up generalises Pesaran�s
(2007) one factor error speci�cation. We assume that these error processes satisfy the following
assumptions:

Assumption 1 (idiosyncratic errors): The idiosyncratic shocks, "iyt, i = 1; 2; :::; N ; t =
1; 2; :::; T , are independently distributed both across i and t, have zero means, variances 0 <
�2i � K and �nite fourth-order moments.

Remark 1 This assumption, which implies that the idiosyncratic shocks are serially uncorre-
lated, will be relaxed in Section 2.1. It is also possible to relax the assumption that the idiosyn-
cratic errors are cross sectionally independent, and replace it by assuming that "0iyts are cross
sectionally weakly dependent in the sense of Chudik, Pesaran, and Tosetti (2009). However,
such an extension will not be considered in this paper.

Assumption 2 (factors): The m0 � 1 vector ft follows a covariance stationary process, with
absolute summable autocovariances, distributed independently of "iyt0 for all i; t and t0. Specif-
ically, we assume that ft = 	(L)vt, where vt � IID(0; Im), which have �nite fourth-order
moments, 	(L) =

P1
`=0	`L

` with f`	`g1`=0 being absolute summable such that
P1
`=0 `j 

(`)
rs j

with  (`)rs being the (r; s)th element of 	`, and speci�cally the inverse of �f de�ned by

�f = 	(1) (3)

exists.

Remark 2 Since 	0 is not restricted it can always be chosen such that E(vtv0t) = Im, without
loss of generality. Assumption 2 is quite general but rules out the possibility of the factors
having unit roots. This seems reasonable since otherwise all series in the panel could be I(1)
irrespective of whether �i = 0 or not. Also if 


0
iyft is assumed to be I(1) and cointegarted with

yit, then yit will be I(1) even if �i = 0, and as noted by Hansen (1995, p. 1159) in a similar
context, a test of �i = 0 as a unit root test will not be meaningful.
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Combining (1) and (2) it follows that

�yit = �i(yi;t�1 ��0iydt�1) +�0iy�dt + 
 0iyft + "iyt: (4)

The hypothesis that all the series, yit, have a unit root and are not cross unit cointegrated can
be expressed as

H0 : �i = 0 for all i, (5)

against the alternative

H1 : �i < 0 for i = 1; 2; :::; N1; �i = 0 for i = N1 + 1; N1 + 2; ::; N

where N1=N ! � and 0 < � � 1 as N !1.
Note that under the null hypothesis, (4) can be solved for yit to yield

yit = yi0 +�
0
iydt + 


0
iysft + siyt, i = 1; 2; :::; N ; t = 1; 2; :::; T (6)

where

sft = f1 + f2 + ::::+ ft;

siyt = "1yt + "2yt + :::+ "iyt;

with yi0 being a given initial value. Therefore, under H0 and Assumptions 1 and 3, yit is com-
posed of the initial value, yi0, a common stochastic component, sft � I(1); and an idiosyncratic
component, siyt � I(1), so that while all units of the panel share the common stochastic trends,
sft, there is no cointegration among them. Under the alternative hypothesis, �i < 0, we have
yit � I(0), and it is essential that ft is at most an I(0) process.

In the case where m0 = 1, Pesaran (2007) proposes a test of �i = 0 jointly with ft � I(0);
based on DF (or ADF) regressions augmented by the current and lagged cross section averages
of yit as proxies for the unobserved ft. He shows that the resultant test is asymptotically
invariant to the factor loadings, 
iy. To deal with the case where m

0 > 1 we assume that
in addition to yit, there exists k additional observables, say xit, which depend on at least the
same set of common factors, sft, although with di¤erent factor loadings. For example, in the
analysis of output convergence it is reasonable to argue that output, investment, consumption,
real equity prices, and oil prices have the same set of factors in common. Similarly, short term
and long term interest rates and in�ation across countries are likely to have a number of factors
in common.

More speci�cally, suppose the k � 1 vector of additional regressors follow the general linear
process

�xit = Aix�dt + �ixft + "ixt, i = 1; 2; :::; N ; t = 1; 2; :::; T (7)

where xit = (xi1t; xi2t; :::; xikt)0, �ix = (
ix1;
ix2; :::;
ixk)
0, Aix = (aix1;aix2; :::;aixk)0, and "ixt

is the idiosyncratic component of xit which is I(0) and distributed independently of "iyt0 for all
i; t and t0. The level equation can be written as

xit = xi0 +Aixdt + �ixsft + sixt, i = 1; 2; :::; N ; t = 1; 2; :::; T (8)

where sixt =
Pt
s=1 "ixs.

Combining (6) and (8) we have

zit = zi0 + �isft +Aidt + sit; (9)
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where zit = (yit;x0it)
0, �i =

�

iy;�

0
ix

�0, Ai = (�iy;A0ix)0, and sit = (siyt; s0ixt)0. Without loss of
generality we set sf0 = 0m0 and si0 = 0k+1.

Assumption 3 (factor loadings): kAik � K and k�ik � K, for all i, and �i are set such
that E(ftf 0t) � Im.

Assumption 4 (initial conditions): Ejjsf1jj � K; and Ejjzi0jj � K; Ejjsi1jj � K, for all i.

Remark 3 Assumption 3 imposes minimal conditions on the factor loadings. For example, it
does not rule out possible dependence between the factor loadings and idiosyncratic errors. Also
the normalization of ft so that its variance covariance matrix is an identity matrix is innocuous
since otherwise �i and ft can be suitably transformed so that Assumption 3 holds. Assumption
4 is also routine in the literature on unit roots.

Averaging (9) across i we obtain

�zt = �z0 + ��sft + �Adt +�st, (10)

where �zt = N�1PN
i=1 zit, �A = N�1PN

i=1Ai; and �st = N�1PN
i=1 sit.

5 Writing (4), (9) and
(10) in matrix notation, under the null for each i we have

�yi = F
iy +�D�iy + "iy, (11)

�Zi = F�
0
i +�DA

0
i +Ei; (12)

��Z = F��
0
+�D�A

0
+ �E; (13)

where F =(f1; f2; :::; fT ) 0, �D =(�d1;�d2; :::;�dT )
0, "iy = ("iy1; "iy2; :::; "iyT )

0, �Zi =
(�zi1;�zi2; :::;�ziT )

0, Ei = ("i1; "i2; :::; "iT )
0 with "it = ("iyt; "0ixt)

0 ��Z = (��z1;��z2; :::;��zT )
0

and �E = N�1PN
i=1Ei. From (13), if �� has full column rank m0, it follows that

F =
�
��Z��D�A0 � �E

�
��
�
��0��
��1

: (14)

However, from Appendix A.2.1 we have that �E N! 0 for each t and hence we obtain that

F�
�
��Z��D�A0

�
��
�
��0��
��1 N! 0: (15)

This implies that the linear combinations of (��Z;�D) would be a valid approximation of F for
large N . This condition on the rank of the cross section average of factor loadings is stated as
an assumption below:

Assumption 5 (rank condition): The (k+1)�m0 matrix of factor loadings �i is such that

rank(��) = m0 � k + 1, for any N and as N !1; (16)

where �� = N�1PN
i=1 �i, and ��

N! �, where � is a �xed bounded matrix with rank m0.

5Weighted cross section averages could also be used with appropriate granularity restrictions on the weights.
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Remark 4 From the equations (9) and (14), it is clear that our approach approximates sft
of m0 � 1 dimension by linear combinations of the cross section average �zt= (�yt; �x0t)0 of k + 1
dimension for large N . Thus, the rank condition (16), rank(��) = m0 � k + 1, which implies
k � m0 � 1; is of importance.

Remark 5 It is not necessary that yit and (xi1t,xi2t,...,xikt) have the same cross section di-
mensions. This is illustrated in Section 4.

Remark 6 Note that it is not necessary for the rank condition to hold for all cross section
units individually, but that it must hold on average. For example, the rank condition holds so
long as a non-zero fraction of factor loadings, �i, are full rank as N ! 1. Also, so long as
Assumption 5 is satis�ed, we do not necessarily require that limN!1N�1PN

i=1 �
0
i�i exists and

is positive de�nite, which is typically assumed for the identi�cation of factors. See, for example,
Assumption A(ii) of Bai and Ng (2004) and Assumption 6 of Moon and Perron (2004).

In view of the above we shall base our test of the panel unit root hypothesis on the t-ratio of
the ordinary least square (OLS) estimate of bi (b̂i) in the following cross sectionally augmented
regression

�yit = biyit�1 + c
0
i�zt�1 + h

0
i��zt + g

0
i�dt + �it.

The t-ratio of b̂i in this regression is given by

ti(N;T ) =
�y0i

�Myi;�1

�̂i

�
y0i;�1

�Myi;�1

�1=2 =
p
T � (2k + 5)�y0i �Myi;�1�

�y0i
�Mi�yi

�1=2 �
y0i;�1

�Myi;�1

�1=2 ;
where �yi = (�yi1;�yi2; :::;�yiT )

0, yi;�1 = (yi0; yi1; :::; yi;T�1)
0, �M = IT � �W

�
�W0 �W

��1 �W0,
�W =(�w1; �w2; :::; �wT )

0, �wt =
�
��z0t;d

0
t;�z

0
t�1
�0,

�̂2i =
�y0i

�Mi�yi
T � (2k + 5) ,

and �Mi = IT � �Wi

�
�W0
i
�Wi

��1 �W0
i, with �Wi =

�
�W;yi;�1

�
.

Using (14) in (11)
�yi = ��Z�i +�D�i + �i�i, (17)

where
�i = ��

�
��0��
��1


iy, �i = �iy � �A0�i, �i =
�
"iy � �E�i

�
=�i.

It is also easily seen that E(�i�0i) = IT +O(N
�1): Therefore, we have

�M�yi = �i �M�i. (18)

From (12) and (13) we obtain

Zi;�1 = �Tz
0
i0 + Sf;�1�

0
i +D�1A

0
i + Si;�1:

Also
�Z�1 = �T�z

0
0 + Sf;�1��

0 +D�1 �A
0 + �Si;�1 (19)

where Sf;�1 = (0m0 ; sf1; :::; sf;T�1)
0, D�1 = (0;d1; :::;dT�1)

0, Zi;�1 = (zi0; zi1; :::; ziT�1)
0;

Si;�1 = (0k+1; si1; :::; si;T�1)
0, �Z�1 = (�z0;�z1; :::;�zT�1)0 and �S�1 = N�1PN

i=1 Si;�1.
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Similarly from (17)

yi;�1 =�yi0�T + �Z�1�i +D�1�i + �i�si;�1; (20)

where
�si;�1 = (siy;�1 � �S�1�i)=�i, (21)

siy;�1 = (0; siy1; :::; siy;T�1)
0 and �yi0 = yi0 � �z00�i:

Therefore,
�Myi;�1 = �i �M�si;�1. (22)

Using (18) and (22), ti(N;T ) can be re-written as

ti(N;T ) =
�0i
�M�si;�1

(
�0i
�Mi�i

T�2k�5)
1=2
�
�s0i;�1

�M�si;�1
�1=2 . (23)

For �xed N and T; the distribution of ti(N;T ) will depend on the nuisance parameters through
their e¤ects on �Mi and �M. However, this dependence vanishes as N !1, for �xed T . In the
case of �xed T however, the e¤ect of the initial cross section mean, �z0, must be eliminated in
order to ensure that ti(N;T ) does not depend on nuisance parameters. This can be achieved
by working with the deviations, zit � �z0.

The main asymptotic results concerning the distribution of ti(N;T ) are summarised in
the theorems below. The proofs are given in the Appendix for the case where dt = (1; 0)0;
t = 0; 1; :::; T , which implies �D = 0: The asymptotic results for the case where dt = (1; t)0 can
be derived in a similar manner.

Theorem 2.1 Suppose the series zit, for i = 1; 2; :::; N , and t = 1; 2; :::; T , is generated under
(5) according to (9); dt = 1 with �z0 set to a zero vector. Then under Assumptions 1-5, the
distribution of ti(N;T ) given by (23), will be free of nuisance parameters as N ! 1 for any
�xed T > 2k + 4. In particular, we have (in quadratic mean)

ti(N;T )
N!

"0iysiy;�1
�2i T

� q0iT�
�1
fThiT�

"0iy"iy
�2i (T�2k�4)

� g0iTQ
�1
iT giT

(T�2k�4)

�1=2 � s0iy;�1siy;�1
�2i T

2 � h0iT�
�1
fThiT

�1=2 ,
where

qiT
(2m+1�1)

=

0BB@
F0"iy
�i
p
T

� 0T "iy
�i
p
T

S0f;�1"iy
�iT

1CCA , hiT
(2m+1�1)

=

0BB@
F0siy;�1
�iT 3=2
� 0T siy;�1
�iT 3=2

S0f;�1siy;�1
�iT 2

1CCA , giT =
 

qiT
s0iy;�1"i
�2i T

!

�fT =

0BB@
F0F
T

F0�T
T

F0Sf;�1
T 3=2

� 0TF
T 1

� 0TSf;�1
T 3=2

S0f;�1F

T 3=2
S0f;�1�T

T 3=2
S0f;�1Sf;�1

T 2

1CCA , QiT =
 
�fT hiT

h0iT
s0iy;�1siy;�1

�2i T
2

!
.

See Appendix A.3 for a proof.
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Remark 7 When the factors are serially uncorrelated, namely ft � vt � IID(0; Im), (see
Assumption 2), even for a �nite T the limit distribution of ti(N;T ) as N ! 1, does not
depend on the factor loadings and �i. In the case where the factors are serially correlated the
limit distribution of ti(N;T ) does depend on the serial correlation patterns of ft when T is �nite.
However, as stated in the next theorem, the dependence of ti(N;T ) on the autocovariances of ft
disappears in the limit when T !1 and N !1, jointly.

Theorem 2.2 Suppose the series zit, for i = 1; 2; :::; N , t = 1; 2; :::; T , is generated under (5)
according to (9) and dt = 1. Then under Assumptions 1-5 and as N and T ! 1; such thatp
T=N ! 0, ti(N;T ) given by (23) has the same sequential (N ! 1; T ! 1) and joint

[(N;T )j !1] limit distribution, is free of nuisance parameters, and is given by

CADFi =

Z 1

0
Wi(r)dWi(r)� !0ivG�1

v �iv�Z 1

0
W 2
i (r)dr � �0ivG

�1
v �iv

�1=2 , (24)

where

!iv =

0@ Wi(1)Z 1

0
[Wv(r)] dWi(r)

1A , �iv =
0BB@

Z 1

0
Wi(r)drZ 1

0
[Wv(r)]Wi(r)dr

1CCA ,

Gv =

0BB@ 1

Z 1

0
[Wv(r)]

0 drZ 1

0
[Wv(r)] dr

Z 1

0
[Wv(r)] [Wv(r)]

0 dr

1CCA ;

Wi(r) is a scaler standard Brownian motion andWv(r) is m0-dimensional standard Brownian
motion de�ned on [0,1], associated with "iyt and vt; respectively. Wi(r) andWv(r) are mutually
independent.

See Appendix A.4 for a proof.

Remark 8 Conditional on Wv(r), CADFi and CADFj are independently distributed, but
unconditionally they are correlated with the same degree of dependence for all i 6= j.

Having established that the limit distribution of the individual ti(N;T ) statistic is free of
nuisance parameters, we now focus on panel unit root tests based on the average of a suitably
truncated version of ti(N;T ) which we denote by t�i (N;T ). The truncation is carried out as in
Pesaran (2007) to avoid certain technical di¢ culties concerning the existence of the moments of
the non-truncated version of the individual statistics when T is �nite. The truncated statistics
are de�ned by

t�i (N;T ) =

8<:
ti(N;T ), if �K1 < ti(N;T ) < K2;
�K1, if ti(N;T ) � �K1;
K2, if ti(N;T ) � K2;

where K1 and K2 are positive constants that are su¢ ciently large so that Pr[�K1 < ti(N;T ) <
K2] is su¢ ciently large. Using the normal approximation of ti(N;T ), we would have K1 =
�E(CADFi) � ��1("=2)

p
V ar(CADFi), and K2 = E(CADFi) + �

�1("=2)
p
V ar(CADFi),

9



where ��1( . ) is the inverse of the cumulative standard normal distribution function, and " is
a su¢ ciently small positive constant. K1 and K2 can now be obtained using simulated values
of E(CADFi) and V ar(CADFi) with " = 1� 10�6 for N = 200; and T = 200. The truncation
does not a¤ect the limit distribution and Theorem 2.1 continues to apply to t�i (N;T ) so that

t�i (N;T )� CADF �i = op(1); (25)

where

CADF �i =

8<:
CADFi, if �K1 < CADFi < K2;
�K1, if CADFi � �K1;
K2, if CADFi � K2.

:

The panel unit root tests associated with the non-truncated and truncated versions of the
individual unit root tests are given by

CIPS(N;T ) = N�1
NX
i=1

ti(N;T ), (26)

and

CIPS�(N;T ) = N�1
NX
i=1

t�i (N;T ). (27)

Since by construction all moments of t�i (N;T ) exist, using (25) it now follows (under assumptions
of Theorem 2.2) that

CIPS�(N;T )� CADF � = op(1), almost surely,

where CADF � = N�1
NX
i=1

CADF �i . Hence, CIPS
�(N;T ) has the same limit distribution as

CADF �; almost surely. But following Pesaran (2007, Section 4), it can be seen that the limit
distribution of CADF � exits and is free from nuisance parameters, although it is not analytically

tractable. But the critical values of the distribution of CADF � (or CADF = N�1
NX
i=1

CADFi)

can be obtained by stochastic simulations.6

2.1 The Case of Serially Correlated Errors

In this section we relax Assumption 1, and allow for residual serial correlation. The residual
serial correlation can be modeled in a number of di¤erent ways, directly via the idiosyncratic
components, through the common e¤ects or a mixture of the two. We focus on the �rst speci-
�cation where cross section dependence is present under the multifactor error structure

uit = 

0
iyft + �iyt

and residual serial correlation is modeled as

�iyt = �i�iy;t�1+�iyt; j�ij < 1; for i = 1; 2; :::; N ; t = 1; 2; :::; T; (28)

6We only report results for the non-truncated version of the test statistics. The results for the truncated
version are very similar and are available upon request.
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where �iyt is independently distributed across time, with zero mean and �nite positive variance,
�2i�.

In what follows we con�ne our attention to �rst order stationary processes for expositional
convenience, though the analysis readily extends to higher order processes as well as to the
alternative speci�cations of serial correlation mentioned above.

Under the above speci�cation we have

�yit = �i(yi;t�1 ��0iydt�1) +�0iy�dt + 
 0iyft + �iyt(�i) (29)

where �iyt(�i) = (1 � �iL)
�1�iyt. We also assume the coe¢ cients of the autoregressive process

to be homogeneous across i; although this could be relaxed at the cost of more complex math-
ematical details. Under the null that �i = 0, with �i = � and dt = 1; (29) becomes

�yit = 

0
iyft + �iyt(�); (30)

or
�yit = ��yi;t�1 + 


0
iy(ft � �ft�1) + �iyt: (31)

Combining (7) with (30), similarly to (12) we obtain

�Zi = F�
0
i +Ei; (32)

whereEi = (�0iy(�);E
0
ix)

0 withEix = ("ix1; "ix2; :::; "ixT )0and �iy(�) =
�
�iy1(�); �iy2(�); :::; �iyT (�)

�0,
with the common factors F; and factor loadings �i de�ned as in the previous section. Taking
cross section averages of (32) we have that

��Z = F��
0
+ �E;

where as before �E = N�1PN
i=1Ei, from which it follows under rank condition (16) that

F =
�
��Z� �E

�
��
�
��0��
��1 . (33)

Thus in testing (5) we use the following cross sectionally augmented regression

�yi = biyi;�1 + �Wi1hi + �i, (34)

where �Wi1 = (�yi;�1;��Z;��Z�1; �T ; �Z�1), which is a T � (3k + 5) matrix.
The t-ratio of b̂i in regression (34) is given by

ti(N;T ) =
�y0i

�Mi1yi;�1

�̂i

�
y0i;�1

�Mi1yi;�1
�1=2 =

p
T � (3k + 6)�y0i �Mi1yi;�1�

�y0i
�Mi1;p�yi

�1=2 �
y0i;�1

�Mi1yi;�1
�1=2 ; (35)

where �Mi1 = IT � �Wi1( �W
0
i1
�Wi1)

�1 �W0
i1, �̂

2
i = [T � (3k + 6)]�1�y0i �Mi1;p�yi and �Mi1;p =

IT �Pi1(P0i1Pi1)�1P0i1; Pi1 = ( �Wi1;yi;�1).
Writing (31) in matrix notation and using (33) we have

�yi = ��yi;�1 + (��Z����Z�1)�i + �i��i; (36)

with
�i = [�iy � (�E� ���E�1)�i]=�i�,
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and E(�i�0i) = IT +O(N
�1): From (36) it follows that

yi;�1 = �iy�T +�yi0�T + �Z�1�i + �i��si�;�1

where
�si�;�1 =

�
si�;�1 � �S�1�i

�
=�i�,

si�;�1 = (0; si�1; :::; si�;T�1)
0 with si�t =

Pt
s=1 �iys(�), �S�1 = (�s�;�1; �Sx;�1) with�s�;�1 = N�1PN

i=1 si�;�1
and �yi0 = yi0 � �z00�i.

The test statistic (35) then becomes

ti(N;T ) =
�0i
�Mi1�si�;�1�

�0i
�Mi1;p�i

T�3k�6

�1=2 �
�s0i�;�1

�Mi1�si�;�1
�1=2 . (37)

Theorem 2.3 Suppose the series zit, for i = 1; 2; :::; N , t = 1; 2; :::; T , is generated under (5)
according to (32) and j�j < 1. Then under Assumptions 1-5 and as N and T ! 1, ti(N;T )
in (37) has the same sequential (N !1; T !1) and joint [(N;T )j !1] limit distribution
given by (24) obtained for � = 0.

Proof: See Appendix A.5.

For an AR(p) error speci�cation in (28), the relevant ti(N;T ) statistic will be given by the
OLS t-ratio of bi in the following pth order augmented regression:

�yi = biyi;�1 + �Wiphip + �i,

where �Wip = (�yi;�1;�yi;�2; :::;�yi;�p;��Z;��Z�1; :::;��Z�p; �T ; �Z�1), which is a T�[(k + 2)(p+ 2)� 1]
matrix.

However, it is easily seen that the limit distribution of ti(N;T ) with N ! 1 for a �xed
T depends on the augmentation order, p. Thus, we will obtain critical values of ti(N;T ) for
di¤erent choices of p.

2.2 Uncertainty about the Number of Factors

So far we have considered the case in which the true number of unobserved factors, m0, is
given. In practice m0 is not known, although it is reasonable to assume that it is bounded
by a su¢ ciently large integer value, mmax. In the case of the proposed test there are two
possible ways that one could proceed when m0 is not known. One possibility would be to set
k = mmax � 1, if there exists mmax � 1 I(1) and not cointegrated additional regressors for
augmenting the ADF regressions. In this case, the true number of factors are allowed to be any
integer value between zero and mmax. However, when mmax is assumed to be large, it can be
di¢ cult to �nd mmax�1 such regressors. Alternatively, m0 can be estimated consistently using
suitable selection criteria, as is followed in the literature, for example, by Bai and Ng (2004)
and Moon and Perron (2004), amongst others. Since typically m0 is estimated to be around
2 to 4 in most economic applications, it may not be particularly di¢ cult to identify suitable
additional variables for augmentation.7

7One could follow the bounds test approach proposed by Pesaran et al. (2001) when there is uncertainty in
integration and/or cointegration properties of k additional regressors. This route is not pursued in this paper.
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2.3 Critical Values

The critical values of CADFi and CADF = N�1PN
i=1CADFi for di¤erent values of k, N , T

and lag-augmentation p, are obtained by stochastic simulation. Based on the results in Section
2 the limit distribution of CADF does not depend on the factor loadings �i or �i. This implies
that the distribution of the test statistic is invariant to the choice of �i and �i so long as
m0 � k + 1. Thus, without loss of generality we set �i = � = 0, and �i = � = 1 in the
simulation exercise.

To be more precise, the yit process is generated as

yit = yit�1 + "iyt, i = 1; 2; :::; N ; t = 1; 2; :::; T ,

where "iyt � iidN(0; 1) with yi0 = 0. The jth element of the k � 1 vector of the additional
regressors xit, is generated as

xijt = xij;t�1 + "ixjt, i = 1; 2; :::; N ; j = 1; 2; :::; k; t = 1; 2; :::; T , (38)

with "ixjt � iidN(0; 1) and xij0 = 0.
The CADFi test statistic is calculated as the t-ratio of the coe¢ cient on yit�1 of the regres-

sion of �yit on yit�1, �z0t�1, (�z
0
i:t�1; :::;�z

0
i:t�p), (��z

0
t�1; :::;��z

0
t�p) where the following cases

for the deterministics are entertained

Case I: no deterministics,
Case II: intercept only,
Case III: an intercept and a linear trend,

and E(CADFi) and V ar(CADFi) are obtained as an average over all replications of CADF1 and
the square of the standard deviation of CADF1 respectively, for N;T = 200. The �% critical
values of the CADF1 and CADF statistics are computed for N;T = 20; 30; 50; 70; 100; 200,
k = 1; 2; 3 and p = 0; 1; :::; 4; as the � quantiles of CADF1 and CADF for � = 0:01; 0:05; 0:1.8

The critical values of the CADF statistic for case II and III are reported in Tables 1 and 2,
respectively. Critical values for the CADF statistic for case I as well as for the individual
statistics CADFi are available upon request. All stochastic simulations are based on 10,000
replications.9

3 Small Sample Performance: Monte Carlo Evidence

In what follows we investigate the small sample properties of the CIPS test de�ned by (26) and
compare its performance to the pooled tests by Bai and Ng (2004), and the t�b and t

# tests by
Moon and Perron (2004), by means of Monte Carlo experiments. The t�b test statistic is for
the case with an intercept only, and the t# test statistic is for the case with an intercept and a
linear trend.

The pooled test statistics proposed by Bai and Ng (2004), using our notation as set out in
Section 2, are computed as follows. Firstly we de�ne the transformed �yit,

�y
it
=

�
�yit; for the case with an intercept
�yit ��yi; for the case with an intercept and a linear trend

(39)

8The critical values for k = 0 are tabulated in Pesaran (2007).
9 It is also possible to simulate the critical values directly using (24) by replacing the integrals of the Brownian

motions with their simulated counterparts. Our analysis suggests that the critical values obtained from this
procedure closely matches the ones tabulated in the paper.
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with �yi = T�1
PT
t=1�yit. Apply principal components to the transformed series to esti-

mate F, denoted as F̂, which is
p
T times the m eigenvectors corresponding to the �rst m

largest eigenvalues of the T � T matrix �Y�Y0, where �Y = (�y
1
;�y

2
; :::;�y

N
) with

�y
i
= (�y

i1
;�y

i2
; :::;�y

iT
)0. Under the normalisation F̂0F̂=T = Im, the estimates of the fac-

tor loadings are given by 
̂iy = F̂0i�yi=T , which yield the residuals "̂iyt = �y
it
� 
̂ 0iy f̂t. Now

set eiyt =
Pt
s=1 "̂iys, and compute the ADF statistic for the ADF(p) regressions in eiyt without

deterministics for each cross section unit. Denoting this statistic by tcBN;i if yit has individual
e¤ects, and by t�BN;i if yit has a linear trend, the pooled test statistics are then de�ned as

P cû =

�
�2
PN
i=1 ln(pv

c
i )� 2N

�
p
4N

and P �û =

�
�2
PN
i=1 ln(pv

�
i )� 2N

�
p
4N

,

where pvci and pv
�
i are the p-values of the t

c
BN;i and t

�
BN;i statistics, respectively. These statistics

are asymptotically distributed as standard normal so that the null hypothesis is rejected if P cû
(or P �û ) is larger than 1.645 (at the 5% level).10

We also consider variants of P cû and P �û that make use of all the available variables, yit
and xit, to estimate the common factors. This version is more directly comparable to the
test proposed in this paper which makes use of the additional variables, xit. The procedure is
similar to that described above with the principal component estimator of F now computed using
�zit = (�yit;�x

0
it)
0, where�xit is constructed from �xit in a manner similar to that speci�ed

by (39) for�y
it
. These variants of P cû and P

�
û are denoted by P

c
û;z and P

�
û;z, respectively.

The t�b and t
# test statistics are as de�ned by Moon and Perron (2004). The t�b test is for

the case with an intercept only, and the t# test is for the intercept and a linear trend case.11

The tests are based on de-factored panel data obtained by projecting the panel data onto the
space orthogonal to the (estimated) factor loadings. The nuisance parameters are de�ned on the
residuals of the de-factored data where the long-run variance is estimated by employing Andrews
and Monahan�s (1992) estimator based on the quadratic spectral kernel and pre-whitening. The
null hypothesis is rejected if the test statistics are less than -1.645 (5% level test).

For further details on the above statistics see Bai and Ng (2004) and Moon and Perron
(2004). We consider experiments where the number of factors is treated as known as well as
unknown.

3.1 Monte Carlo Design

Initially we consider dynamic panel models with �xed e¤ects and a two-factor (m0 = 2) error
structure. The data generating process (DGP) is given by

yit = (1� �i)�iy + �iyi;t�1 + 
iy1f1t + 
iy2f2t + "iyt; i = 1; 2; :::; N ; t = �49; :::; T (40)

with yi;�50 = 0, where �iy � iidN(1; 1), 
iy1 � iidU [0; 2], 
iy2 � iidU [0; 2],

f`t = �f`ff`;t�1 + v`t; v`t � iidN(0; 1� �2f`); f`;�50 = 0
10 In our experiments the Pû statistics are computed by a GAUSS code which is a translation of the Matlab

programme provided by Serena Ng. p-values of tcBN;i and t
�
BN;i are obtained using the tables �adfnc.asc� and

�lm1.asc�, respectively, also provided by Serena Ng.
11The t�a test, which is also proposed by Moon and Perron (2004), is not considered in our simulations since

the t�b test is preferred in their paper.
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for ` = 1; 2; and

"iyt = �iy""iyt�1 + �iyt; �iyt � iidN(0; (1� �2iy")�2i ); "iy;�50 = 0; (41)

�2i � iidU [0:5; 1:5].
We include at most two additional regressors, xi1t and xi2t in the experiments. The DGPs

are
xijt = xijt�1 + 
ixj1f1t + 
ixj2f2t + "ixjt for j = 1; 2; (42)

i = 1; 2; :::; N ; t = �49; :::; T with xij;�50 = 0,

"ixjt = �ixj"ixjt�1 +$ixjt; , $ixjt � iidN(0; 1� �2ixj), (43)

with "ixj;�50 = 0, and �ixj � iidU [0:2; 0:4] for j = 1; 2:
The �rst set of experiments assumes that m0 = 2 is given and, hence, k is equated to

m0�1 = 1. We use only one additional regressor, �x1t. The factor loadings in (42) are generated
as 
ix11 � iidU [0; 2] and 
ix12 = 0, so that

E(�i) =

�
1 1
1 0

�
; (44)

of which the rank condition (16) is satis�ed.12 Note that �x1t contains sf1t only under this
design. As discussed in section 2.2, this is enough for augmenting the CADF regression to
asymptotically eliminate two factors in the yit equation.13 We consider three combinations
of serial dependence in the errors: (A) serially uncorrelated "iyt and fjt (�iy" = �y" = 0 and
�f1 = �f2 = 0); (B) serially correlated "iyt (�iy" � iidU [0:2; 0:4] and �f1 = �f2 = 0); (C) serially
correlated f`t (�iy" = �y" = 0 and �f1 = �f2 = 0:3). Note that xixjt are serially correlated in all
experiments for j = 1; 2, as speci�ed above.

In addition, we consider spatially correlated factor loadings generated as


ir � cr = �
NX
j=1

sij
�

jr � cr

�
+ 'ir; 'ir � iidN(0; �2'i); r = y1; y2; x11; x12

where sij is the (i; j) element of an (N �N) spatial weighting matrix, S = fsijg, which is row
standardised with sij = 1 if units i and j are adjacent and sij = 0 otherwise. We set � = 0:8.
The parameter �2'i is chosen so that var(
ir) = 1=3, and we set cy1 = 1, cy2 = 1, cx11 = 1,
cx12 = 0, for the results to be comparable to our other experimental designs.14

12Another experiment relating to the speci�cation of the factor loadings is considered, where

�i = (
iy;
ix1) =

�
iidU [0; 2] iidU [0; 2]
iidU [0; 2] 0

�
for i = 1; 2; :::; N=2

but

�j = (
jy;
jx1) =

�
0 0
0 0

�
for j = N=2 + 1; :::; N

so that the rank condition is satis�ed. The results are very similar to those using (44).
13We have also implemented the experiments with 
ix12 replaced by non-zero values, generated as 
ix12 �

iidU [�0:5; 1:5]. The results are very similar to those with 
ix12 = 0, and are available upon request from the
authors.
14We further generated bounded factor loadings where 
iy1 = �iy1=

qPN
j=1 �

2
jy1 and 
ix2 = �ix2=

qPN
j=1 �

2
jx2

and �iy1 and �ix2 are draws from di¤erent uniform distributions, iidU(0; 1): The factor loadings 
iy2 and 
ix1 are
generated as in the spatially correlated case with zero expected values. Results were similar to the spatially
correlated case.
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In another set of experiments, we consider the case in which m0 = 2 is not known but
the maximum number of factors is assumed to be three, i.e., mmax = 3. Here the value of
m0 is estimated (denoted by m̂0) based on the information criterion IC1, proposed by Bai
and Ng (2002) and used in the simulation exercises of Bai and Ng (2004). Accordingly, m̂0

factors are extracted from yit for the Pû and t�b (t
#) statistics and from (yit; xi1t; xi2t) for the

Pû;z statistic. For the CADF regressions k = m̂0 � 1 additional regressors are included in the
augmentations. At most we need mmax � 1 = 2 additional regressors. In this experiment we
consider uncertainty about the integration properties of the two needed additional regressors.
The CIPS test is implemented assuming xi1t and xi2t are I(1) and not cointegrated, but in
the DGP xi1t and xi2t are generated as cointegaretd variables. The factor loadings in (42) are
generated as 
ix11 � iidU [0; 2], 
ix21 � iidU [0; 2], 
ix12 = 
ix22 = 0, with "ixjt replaced by its
�rst di¤erence �"ixjt so that the cumulative sum of the idiosyncratic errors in xijt becomes
"ixjt � I(0), and

E(�i) =

�
1 1 1
1 0 0

�
:

Under this design x1it � I(1) and x2it � I(1) but they are cointegrated. When m̂0 = 2, only
one regressor is required by CADF augmentation, thus, xi1t is included in the experiment. If
m̂0 = 1 or 0, no additional regressors are included. For this set of experiments we con�ne our
attention to case (A) with regard to serial dependence in the errors.15

Similar sets of experiments are carried out for the model with a linear time trend. The
DGPs corresponding to (40) and (42) are

yit = �iy + (1� �i)�it+ �iyi;t�1 + 
iy1f1t + 
iy2f2t + "iyt; i = 1; 2; :::; N ; t = �49; :::; T

xijt = xijt�1 + �ixj + 
ixj1f1t + 
ixj2f2t + "ixjt; for j = 1; 2 (45)

respectively, where �iy � iidU [0:0; 0:02], �i � iidU [0:0; 0:02], �ixj � iidU [0:0; 0:02] for j = 1; 2.
The rest of the variables are de�ned as above.

The parameters �i, �iy", 
iy`, �f`, �i, 
ixj`, �ixj , �iy, �i, and �ixj are drawn once and �xed
over the replications. For size the DGP is given by (40) with �i = � = 1, and for power with
�i � iidU [0:90; 0:99]. All tests are conducted at the 5% signi�cance level. All combinations of
N;T = 20; 30; 50; 70; 100; 200 are considered, and all experiments are based on 2,000 replications
each.

3.2 Results

Size and power of the tests are summarized in Tables 3 to 8. Recall that for all experiments, the
models contain two factors, m0 = 2, and the idiosyncratic errors of additional regressors, vixjt,
can be I(1) or I(0) and are generated as serially correlated variables. Also note that in the
case of serially correlated idiosyncratic errors, lag augmentation is required for the asymptotic
validity of the CIPS test and the pooled tests of Bai and Ng (2004), while the t�b and t

# tests of
Moon and Perron (2004) correct for the residual serial correlation in a non-parametric manner.

The results reported in Tables 3 to 7 are obtained assuming that m0 = 2 is known and that
the one additional regressor to augment the CIPS test statistic (k = 1) is known to be I(1).
Table 3 provides the results for the model where the factors, f1t and f2t, and the idiosyncratic
components, "iyt, are serially uncorrelated. Panel A of the table reports the results for the case

15Another experiment, in which xi1t and xi2t are generated as I(1) and non-cointegrated, is considered, but
the results are very similar and will not be included below to save space.
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of an intercept only. The P cû and P
c
û;z tests of Bai and Ng (2004) tend to over-reject the null

moderately, with the extent of over-rejection rising as N increases. The same applies to the
Moon-Perron test, t�b . These results are consistent to those reported in Gengenbach, Palm and
Urbain (2009). In contrast, the CIPS test has the correct size for all combinations of sample
sizes, even when T is small relative to N . In terms of power, the CIPS test seems less powerful
than the other tests for small values of T (which could partly be due to the over-sized nature
of the other tests), while in general it tends to be more powerful for larger N and T . In panel
B of Table 3 the results for the case with an intercept and a linear trend are reported. Now
the P �û and P

�
û;z tests severely over-reject the null hypothesis in all experiments. Even when

T = 200 and N = 200, the size of these tests is around 13%. The size distortion of the t# test
is even worse for all experiments. On the other hand, the CIPS test has the correct size for all
combinations of sample sizes. Not surprisingly, the power of the CIPS test in the linear trend
case is lower than the intercept only case. This is a feature common to all unit root tests in the
literature.

Table 4 (Table 5) presents the results for the case where "iyt are positively (negatively)
serially correlated but f1t and f2t are serially uncorrelated. With time series augmentation the
size and the power properties of the CIPS test are similar to those reported in Table 3. The
P cû, P

c
û;z, P

�
û and P

�
û;z tests display a higher tendency to over-reject the null relative to the case

where the idiosyncratic errors are serially uncorrelated. The t�b and t
# tests show slightly less

(more) size distortions as compared to the results given in Table 3 when "0iyts are positively
(negatively) serially correlated.

Table 6 provides the results for the experiments where f1t and f2t are serially correlated,
but "iyt is not. In this case all the tests exhibit size distortions unless T is su¢ ciently large
relative to N . However, the extent of over-rejection of the CIPS test is less than that of the
P cû and P

c
û;z tests. The performance of the t

�
b test is similar to that reported in the previous

experiments.
Table 7 displays the size results for the case of spatially correlated factor loadings when

the factors, f1t and f2t, and the idiosyncratic components, "iyt, are serially uncorrelated. The
results are similar to those in Table 3.

Table 8 gives the results for the case where m0(= 2) is unknown, and is estimated using
the selection criterion IC1 of Bai and Ng (2004), with mmax = 3. Recall also that in these
experiments xi2t and xi1t are I(1) and cointegrated.16 The results are similar to those in Table
3, in that the CIPS test has the correct size in all designs considered, maintaining reasonable
power. Thus, cointegration between the additional regressors might not be a problem if the there
is a su¢ cient number of I(1) regressors amongst the additional regressors under consideration.

4 Empirical Applications

As an illustration of the proposed test we consider two applications. One to the real interest
rates across N = 32 economies, and another to the real equity prices across N = 26 markets.
Under the Fisher parity hypothesis, the real interest rates, the di¤erence between the nominal
short-term interest rate and in�ation rate, are stationary. For both applications we employ
quarterly observations over the period 1979Q2�2003Q4 (i.e. 99 data points). Existing evidence
on the validity of the Fisher parity is rather mixed. The second application is chosen since it is

16We found that the results for m̂0 matched those of m0 in most cases except when T or N were small.
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generally believed that real equity prices are non-stationary, and it would be interesting to see
if the outcomes of the tests considered in this paper are in line with this belief.

As discussed in Section 2.2, we begin with a choice of the maximum number of factors, mmax,
as with other panel unit root tests that are based on principal components. We believe that
it is reasonable to suppose that both the real interest rates and the real equity prices contain
at most six unobserved common factors. As we set mmax = 6, our test requires at most �ve
additional regressors (k = mmax � 1 = 5); with their cross section averages being I(1) and not
cointegrated. The set of regressors that are likely to have common factors with real interest
rates, rSit � �it, and real equity prices, eqit, are as follows:

yit candidates of xit
Real Interest Rates (N = 32) rSit � �it (poilt; r

L
it; eqit; epit; gdpit)

Real Equity Prices (N = 26) eqit (poilt; r
L
it; �it; epit; gdpit)

(46)

where

rSit = 0:25 � ln(1 +RSit=100); �it = pit � pit�1 with pit = ln(CPIit); poilt = ln(POILt),
rLit = 0:25 � ln(1 +RLit=100); epit = eit � pit with eit = ln(Eit); eqit = ln(EQit=CPIit);
gdpit = ln(GDPit=CPIit)

with RSit the short rate of interest per annum in per cent (chosen to be a three month rate) in
country i at time t, CPIit the consumer price index, POILt the price of Brent Crude oil, RLit
the long rate of interest per annum in per cent (typically the yields on ten year government
bonds), Eit the nominal exchange rate of country i in terms of U:S: dollars, EQit the nominal
equity price index, and GDPit the nominal Gross Domestic Product of country i during period
t in domestic currency, so that rSit is the quarterly short-term interest rate, �it is the quarterly
in�ation rate, poilt is the logarithm of the nominal oil price, rLit is the quarterly long-term
interest rate, eqit is the logarithm of the real equity price index, epit is the logarithm of the real
exchange rate and gdpit is real log output.17

The 32 countries considered are: Argentina, Australia, Austria, Belgium, Brazil, Canada,
Chile, China, France, Finland, Germany, Indonesia, India, Italy, Japan, Korea, Malaysia, Mex-
ico, Netherlands, New Zealand, Norway, Peru, Philippines, Spain, Sweden, Switzerland, Sin-
gapore, South Africa, Thailand, Turkey, UK. Note that not all candidates of xit variables are
available for all countries due to data constraints. In particular, there are 26 series for eqit, 31
series for epit (excluding the US), and 18 series for rLit.

Formmax = 6, we estimated the true number of common factors in rSit��it and eqit, using the
Bai-Ng information criterion IC1, since it performs well in the Monte Carlo exercises reported
by Bai and Ng (2004). According to IC1, m̂0 = 2 for the real interest rates and m̂0 = 3 for the
real equity prices. Therefore, to apply the CIPS test we require only one additional regressor
for testing the unit root hypothesis in the real interests, and two additional regressors for the
real equity prices. To check the robustness of the test outcomes to the choice of the additional
regressors used in augmentation we present the CIPS test results for all possible combinations
of candidate regressors. We consider lag orders p = 1; 2; 3; 4.

The test results are reported in Table 9. Panel A of this table reports the results for the real
interest rates. As can be seen, the null hypothesis of a panel unit root is strongly rejected at the
5% level for all cases considered across di¤erent choices of �xt and the lag-augmentation orders, p.

17For a detailed description of the data and sources see Supplement A of Dees, di Mauro, Pesaran and Smith
(2007).

18



These results suggest that for a signi�cant number of countries the Fisher parity holds and are
in line with recent �ndings reported in Westerlund (2008) using panel cointegration tests. Panel
B of Table 9, summarises the test results for the real equity prices. For all the ten combinations
of additional regressors and all the values of p, the null hypothesis of panel unit root cannot be
rejected at the 5% level. This result is in line with the generally accepted view that real equity
prices approximately follow random walks with a drift.

We also applied the tests proposed by Bai and Ng (2004) and Moon and Perron (2004).
Speci�cally, the tests discussed in section 3, Pû; Pû;z and t�b or t

# are computed for the real
interest rates and the real equity prices, using the same estimates of m̂0 as above. In the case of
the Pû and Pû;z tests, up to four lags are considered for the underlying ADF regressions. The
test results are summarised in Table 10. The results for the real interest rates are summarised
in Panel A, and show that the P cû; P

c
û;z and t

�
b tests reject the null hypothesis of a panel unit

root at the 5% level for all autoregressive lag orders, p, considered, which accord with the results
of the CIPS test. Panel B in Table 10 reports the test results for the real equity prices. The
results of the P �û and P

�
û;z tests are sensitive to the choice of lag orders. When p = 1, they do

not reject the null of panel unit root. However, when p > 1, the null is rejected. This is in
contrast to the results of our CIPS test, which could not reject the null for all lag augmentation
orders and for all combinations of additional regressors considered. The t# test also does not
reject the null hypothesis. But since t# lacks power when the regressions include a linear trend,
the test outcome might not be reliable.18

As a way of dealing with the sampling uncertainty associated with the choice of m̂0, we
also consider the application of the CIPS test assuming mmax = 6, allowing m0 to take any
value between 0 and 6. Panel A of Table 11 reports the results for the real interest rates, and
shows that for all lag orders considered, all the panel unit root tests point to a clear rejection of
the null hypothesis. This is in line with the previous results obtained with an estimated value
of m0. The test results for the real equity prices are given in Panel B of the table. For all
lag-orders considered, the CIPS test does not reject the null, but as before the results of the
P �û and P �û;z tests are sensitive to the choice of lag orders. But now t# tests reject the null
hypothesis, indicating the sensitivity of this test to the choice of the number of factors.

5 Concluding Remarks

This paper considers a simple panel unit root test that is valid in the presence of cross section
dependence induced possibly by m common factors. The proposed test is based on the average
of t-ratios from ADF regressions of the variables of interest augmented by the cross section
averages of the dependent variable as well as k additional regressors with similar common factor
features. Initially we develop a test supposing that m0, the true number of factors is known,
and show that the limit distribution of the test does not depend on any nuisance parameters,
so long as k + 1 � m0. However, in practice m0 is not known. Given an assumed maximum
number of factors, mmax, we suggest two strategies for dealing with uncertainty that surrounds
the value of m0. One is to choose the number of additional regressors as k = mmax � 1, which
avoids having to estimate m0. In this case, the true number of factors are allowed to be any
integer value between zero and mmax. However, for large values of mmax , in some situations
it can be di¢ cult to �nd a su¢ cient number of additional regressors. Another strategy is to

18The t# test has the asymptotic power within a N�1=6T�1-neighbourhood of the null hypothesis of a unit
root. Moon, Perron and Phillips (2007) show that a full bias correction, rather than just a correction to the
numerator of t#, is required to achieve power in N�1=4T�1 neighbourhood of the null.
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estimate m0 consistently using suitable selection criteria, as followed by Bai and Ng (2004) and
Moon and Perron (2004), amongst others.

Small sample properties of the proposed test are investigated by Monte Carlo experiments,
which suggest the test has the correct size and reasonable power for larger values of T and N .
In comparing the performance of the proposed test with that of Moon and Perron (2004) and
Bai and Ng (2004) when a constant only is included in the data generating process, we �nd
that the CIPS test is somewhat less powerful than the pooled tests of Bai and Ng (2004), which
partly could be due to the over-sized nature of the latter. When both an intercept and trend
are included, the CIPS test has correct size for all combinations of sample sizes in contrast to
the pooled tests of Bai and Ng (2004) and Moon and Perron (2004) that tend to over-reject the
null hypothesis, in some cases substantially.

The various panel unit root tests are applied to real interest rates (Fisher�s in�ation parity)
and real equity prices across countries. All tests reject a unit root in real interest rates which
is in line with panel cointegration tests of the Fisher equation. However, the pooled test of Bai
and Ng (2004) in real equity prices produces rather mixed results. The tests are in favour of the
rejection of the unit root hypothesis in real equity prices for moderate lag orders (p > 1) while
they do not reject the null for lag orders of one (p = 1). Also the Moon and Perron test results
tend to be sensitive to the choice of the number of factors. This is in contrast to the results
of our proposed test that does not reject the null of panel unit root in real equity prices for
all lag-orders considered, which accord with the generally accepted view that real equity prices
approximately follow random walks with a drift.

The better small sample results reported for the CIPS test as compared to the other tests
proposed in the literature comes at a cost, as the test requires the existence of additional I(1)
regressors that share the same common factors as in yit. We have argued that this might not be
a problem when m0, the true number of factors in yit, is not too large. For example, if m0 � 2,
only one additional regressor is needed at most to apply the test, and this is unlikely to be a
problem in practice. For larger values of m0 a more careful consideration of the testing problem
is required. In such cases it seems more appropriate if the problem of panel unit root testing
is considered as part of a more general problem, where robustness of the panel unit root test
outcomes to alternative assumptions regarding the integration and cointegration properties of
the additional regressors is considered and evaluated.
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Appendix A: Mathematical Proofs

A.2 Preliminary Order Results
The results shown below are for the serially uncorrelated case. For the serially correlated case, analogous order
results are obtained.

A.2.1 Order Results A
Under Assumptions 1-5,
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A.2.2 Order Results B
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A.2.3 Order Results C
Recall that �i = ("iy � �E�i)=�i and�si;�1 =
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=�i. Thus, from (13) and (19) we have
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Using (A.1), (A.2), Order Results A and B, under Assumptions 1- 5, we obtain the following expressions
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A.3 Proof of Theorem 2.1:

A.3.1 T �xed and N !1
Recall equation (23) that can be written as
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Next, note that �Mi�i are the residuals from the regression of �i on �Wi = ( �W;yi;�1), but from equation

(20) yi;�1 has components (�Z�1,�T ;�si;�1). As (�T ; �Z�1) � �W, but�si;�1 is not contained in �W, by regression
theory
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Under Assumptions 1-5, using the order results in Appendix A.2 and assuming �z0 = 0 or re-de�ning zit as
the deviation from �z0, as N !1 with T �xed,
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The (2k + 3) � (2k + 3) matrix ��fT�

0 has rank 2m + 1 � 2k + 3 due to rank condition (16), and thus
under Assumptions 1-5 we obtain
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where the last line follows using the results of generalised inverse (Magnus and Neudecker, 1999; Miscellaneous
Exercises 6, p.38) and similarly for g0iT�
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A.4 Proof of Theorem 2.2:

A.4.1 Sequential Asymptotics: N !1 then T !1
Using Proposition 17.1 and 18.1 of Hamilton (1994; p.486, p.547-8), under Assumptions 1-5 we have
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and
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where Wi(r) is a standard Brownian motion andWv(r) is an m0-dimensional standard Brownian motion de�ned
on [0,1], associated with "iyt and vt. These two groups of Brownian motions are independent of each other. From
the results in Appendix A.2 we have that
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Recall that ��

f de�ned by (A.3) is non-singular by Assumption 2.

A.4.2 Joint Asymptotics
From the results in Appendix A.2 it follows that
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as T and N go to in�nity so long as

p
T=N ! 0. This condition is satis�ed as T=N ! �, where � is a �xed �nite

non-zero positive constant.

A.5 Proof of Theorem 2.3
Recall equation (37) that can written as

ti(N;T ) =
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T�

�0i
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�1=2 ;
where �i = [�iy � (�E� ��E�1)�i]=�i� and�si�;�1 = (si�;�1 � �S�1�i)=�i�: Expanding �0i �Mi1�si�;�1=T gives
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where �Wi1 = (�yi;�1;��Z;��Z�1; �T ; �Z�1) and

B1 =

� 1p
T
I2k+4 0

0 1
T
Ik+1

�
:

Using the results set out above, together with the results in Propositions 17.3 and 18.1 of Hamilton (1994), for
example, as N and T !1 (sequentially and) jointly such that

p
T=N ! 0, we obtain
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where �f and ��
f are de�ned by (3) and (A.3), respectively,Wv;i(1) = p limT!1 T

�1=2PT
t=1 vt�iyt=�i�, Wi(r)

is a standard Brownian motion and Wv(r) is an m0-dimensional standard Brownian motion de�ned on [0,1],
associated with �iyt and vt, respectively, and !iv is as de�ned by (A.4). Also
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where �iv is de�ned by (A.4). Next,
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where Gv is de�ned by (A.5)
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with �f` = E(ftf

0
t�`), and
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For the term �0i �Mi1;p�i; following a similar reasoning as in the uncorrelated case we can write
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It is easily seen that �0i �Mi1;p�i=(T � 3k � 6)
(N;T )j
=) 1 using the above conditions and results, and
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Thus, under Assumptions 1-5, assuming �z0 = 0 or re-de�ning zit as the deviation from �z0, as N and T ! 1,
sequentially or jointly such that

p
T=N ! 0, we obtain (since ��

f is a non-singular matrix)

ti(N;T )
(N;T )j
=)

1
1��

Z 1

0

Wi(r)dWi(r)� !0iv��0
f

�
��
fGv�

�0
f

��1 1
1���

�
f�iv�

1
(1��)2

Z 1

0

W 2
i (r)dr � 1

1���
0
iv�

�0
f

�
��
fGv�

�0
f

��1
1

1���
�
f�iv

�1=2

=

Z 1

0

Wi(r)dWi(r)� !0ivG�1
v �iv�Z 1

0

W 2
i (r)dr � �0ivG�1

v �iv

�1=2
which is identical to the limit distribution obtained for � = 0.
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Table 1: Critical Values of Average of Individual Cross-Sectionally Augmented Dickey-Fuller
Distribution, Intercept Only

k = 1

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -2.64 -2.56 -2.51 -2.45 -2.42 -2.39 -2.44 -2.38 -2.34 -2.30 -2.29 -2.26 -2.33 -2.28 -2.25 -2.22 -2.21 -2.19
30 -2.64 -2.55 -2.48 -2.46 -2.44 -2.40 -2.45 -2.39 -2.35 -2.33 -2.31 -2.29 -2.34 -2.30 -2.27 -2.25 -2.24 -2.22

0 50 -2.62 -2.56 -2.49 -2.46 -2.44 -2.42 -2.45 -2.40 -2.36 -2.34 -2.32 -2.30 -2.35 -2.32 -2.28 -2.27 -2.26 -2.25
70 -2.64 -2.55 -2.49 -2.46 -2.45 -2.43 -2.46 -2.40 -2.37 -2.35 -2.33 -2.32 -2.36 -2.32 -2.30 -2.28 -2.27 -2.26
100 -2.63 -2.56 -2.51 -2.47 -2.45 -2.43 -2.47 -2.41 -2.38 -2.35 -2.34 -2.32 -2.37 -2.33 -2.31 -2.28 -2.28 -2.26
200 -2.63 -2.56 -2.50 -2.48 -2.46 -2.43 -2.46 -2.42 -2.38 -2.36 -2.35 -2.33 -2.37 -2.34 -2.31 -2.29 -2.29 -2.27
20 -2.63 -2.54 -2.45 -2.41 -2.40 -2.35 -2.38 -2.32 -2.27 -2.23 -2.22 -2.19 -2.26 -2.20 -2.17 -2.14 -2.12 -2.10
30 -2.61 -2.52 -2.46 -2.43 -2.41 -2.36 -2.41 -2.34 -2.30 -2.28 -2.26 -2.24 -2.29 -2.24 -2.22 -2.19 -2.18 -2.17

1 50 -2.62 -2.55 -2.48 -2.44 -2.43 -2.40 -2.43 -2.37 -2.33 -2.31 -2.30 -2.28 -2.33 -2.29 -2.25 -2.24 -2.23 -2.21
70 -2.62 -2.54 -2.47 -2.45 -2.43 -2.41 -2.45 -2.39 -2.35 -2.33 -2.32 -2.29 -2.35 -2.30 -2.27 -2.26 -2.24 -2.23
100 -2.62 -2.54 -2.50 -2.46 -2.44 -2.41 -2.45 -2.40 -2.37 -2.34 -2.32 -2.31 -2.36 -2.32 -2.30 -2.27 -2.26 -2.24
200 -2.62 -2.55 -2.50 -2.47 -2.46 -2.43 -2.46 -2.41 -2.37 -2.36 -2.34 -2.32 -2.37 -2.33 -2.30 -2.28 -2.28 -2.26
20 -2.44 -2.34 -2.25 -2.21 -2.17 -2.12 -2.18 -2.11 -2.05 -2.01 -1.99 -1.96 -2.03 -1.98 -1.94 -1.91 -1.89 -1.88
30 -2.50 -2.41 -2.33 -2.30 -2.28 -2.24 -2.27 -2.21 -2.17 -2.14 -2.12 -2.10 -2.15 -2.11 -2.07 -2.05 -2.04 -2.03

2 50 -2.55 -2.49 -2.40 -2.37 -2.35 -2.32 -2.35 -2.31 -2.25 -2.24 -2.22 -2.20 -2.25 -2.22 -2.17 -2.16 -2.15 -2.13
70 -2.57 -2.49 -2.43 -2.41 -2.39 -2.36 -2.39 -2.34 -2.29 -2.27 -2.26 -2.24 -2.30 -2.25 -2.22 -2.20 -2.19 -2.18
100 -2.59 -2.51 -2.46 -2.42 -2.40 -2.38 -2.41 -2.37 -2.33 -2.30 -2.29 -2.27 -2.32 -2.28 -2.26 -2.23 -2.22 -2.20
200 -2.61 -2.54 -2.48 -2.46 -2.43 -2.40 -2.43 -2.39 -2.35 -2.34 -2.33 -2.30 -2.35 -2.31 -2.28 -2.26 -2.27 -2.24
20 -2.45 -2.32 -2.21 -2.13 -2.09 -2.02 -2.12 -2.05 -1.97 -1.90 -1.89 -1.85 -1.96 -1.90 -1.83 -1.80 -1.77 -1.74
30 -2.43 -2.34 -2.28 -2.24 -2.21 -2.18 -2.21 -2.13 -2.09 -2.07 -2.05 -2.03 -2.09 -2.02 -1.99 -1.97 -1.96 -1.94

3 50 -2.53 -2.45 -2.38 -2.36 -2.33 -2.30 -2.32 -2.27 -2.22 -2.20 -2.19 -2.17 -2.21 -2.18 -2.13 -2.12 -2.11 -2.09
70 -2.56 -2.47 -2.42 -2.39 -2.37 -2.35 -2.37 -2.31 -2.27 -2.25 -2.24 -2.22 -2.27 -2.23 -2.19 -2.18 -2.16 -2.15
100 -2.59 -2.50 -2.46 -2.42 -2.39 -2.37 -2.39 -2.35 -2.32 -2.29 -2.27 -2.25 -2.30 -2.26 -2.24 -2.21 -2.20 -2.19
200 -2.61 -2.54 -2.47 -2.45 -2.43 -2.40 -2.43 -2.39 -2.34 -2.33 -2.32 -2.30 -2.34 -2.31 -2.27 -2.26 -2.26 -2.24
20 - - - - - - - - - - - - - - - - - -
30 -2.29 -2.20 -2.12 -2.06 -2.05 -2.03 -2.05 -1.99 -1.94 -1.91 -1.89 -1.86 -1.93 -1.87 -1.84 -1.81 -1.79 -1.78

4 50 -2.44 -2.37 -2.30 -2.28 -2.23 -2.21 -2.24 -2.19 -2.14 -2.12 -2.11 -2.08 -2.13 -2.09 -2.05 -2.04 -2.02 -2.01
70 -2.52 -2.43 -2.37 -2.34 -2.32 -2.30 -2.32 -2.26 -2.22 -2.20 -2.19 -2.17 -2.22 -2.17 -2.14 -2.12 -2.11 -2.10
100 -2.54 -2.48 -2.42 -2.38 -2.35 -2.33 -2.36 -2.31 -2.28 -2.25 -2.23 -2.22 -2.26 -2.23 -2.20 -2.17 -2.17 -2.15
200 -2.60 -2.52 -2.46 -2.44 -2.42 -2.39 -2.41 -2.37 -2.33 -2.30 -2.30 -2.28 -2.32 -2.29 -2.26 -2.24 -2.24 -2.22

k = 2

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -2.84 -2.78 -2.68 -2.65 -2.59 -2.57 -2.60 -2.56 -2.49 -2.48 -2.45 -2.43 -2.48 -2.45 -2.40 -2.39 -2.37 -2.35
30 -2.84 -2.76 -2.68 -2.65 -2.63 -2.59 -2.64 -2.58 -2.53 -2.51 -2.50 -2.47 -2.53 -2.49 -2.45 -2.43 -2.42 -2.40

0 50 -2.84 -2.77 -2.70 -2.67 -2.66 -2.62 -2.66 -2.61 -2.56 -2.55 -2.53 -2.51 -2.57 -2.52 -2.48 -2.48 -2.46 -2.45
70 -2.86 -2.78 -2.72 -2.68 -2.67 -2.64 -2.67 -2.62 -2.58 -2.56 -2.55 -2.53 -2.58 -2.54 -2.50 -2.49 -2.48 -2.47
100 -2.85 -2.79 -2.72 -2.69 -2.67 -2.64 -2.68 -2.64 -2.59 -2.57 -2.56 -2.54 -2.59 -2.56 -2.52 -2.50 -2.49 -2.48
200 -2.87 -2.80 -2.74 -2.70 -2.68 -2.66 -2.69 -2.65 -2.61 -2.58 -2.56 -2.55 -2.60 -2.57 -2.53 -2.52 -2.50 -2.49
20 -2.78 -2.68 -2.55 -2.53 -2.48 -2.46 -2.47 -2.40 -2.33 -2.32 -2.30 -2.27 -2.33 -2.27 -2.23 -2.21 -2.19 -2.17
30 -2.76 -2.69 -2.61 -2.57 -2.56 -2.51 -2.54 -2.49 -2.43 -2.41 -2.39 -2.36 -2.42 -2.38 -2.34 -2.32 -2.31 -2.29

1 50 -2.80 -2.74 -2.67 -2.64 -2.61 -2.58 -2.61 -2.56 -2.51 -2.50 -2.47 -2.45 -2.50 -2.47 -2.43 -2.42 -2.40 -2.38
70 -2.83 -2.75 -2.68 -2.65 -2.64 -2.60 -2.65 -2.59 -2.53 -2.52 -2.51 -2.49 -2.54 -2.49 -2.46 -2.44 -2.44 -2.42
100 -2.84 -2.78 -2.70 -2.67 -2.65 -2.62 -2.65 -2.61 -2.57 -2.54 -2.53 -2.51 -2.56 -2.52 -2.49 -2.47 -2.46 -2.45
200 -2.85 -2.80 -2.72 -2.69 -2.67 -2.65 -2.69 -2.64 -2.60 -2.57 -2.56 -2.54 -2.59 -2.56 -2.52 -2.50 -2.49 -2.48
20 -2.71 -2.51 -2.33 -2.27 -2.21 -2.16 -2.29 -2.17 -2.08 -2.03 -1.99 -1.95 -2.08 -2.01 -1.93 -1.90 -1.87 -1.84
30 -2.58 -2.50 -2.41 -2.36 -2.34 -2.30 -2.35 -2.30 -2.22 -2.20 -2.18 -2.15 -2.21 -2.17 -2.12 -2.10 -2.10 -2.07

2 50 -2.70 -2.63 -2.55 -2.53 -2.50 -2.47 -2.50 -2.45 -2.39 -2.39 -2.37 -2.34 -2.38 -2.35 -2.30 -2.30 -2.28 -2.26
70 -2.75 -2.68 -2.61 -2.58 -2.57 -2.53 -2.57 -2.51 -2.46 -2.44 -2.44 -2.41 -2.45 -2.42 -2.38 -2.37 -2.36 -2.34
100 -2.79 -2.72 -2.65 -2.62 -2.60 -2.57 -2.60 -2.56 -2.51 -2.49 -2.47 -2.46 -2.51 -2.46 -2.44 -2.42 -2.40 -2.39
200 -2.84 -2.77 -2.69 -2.66 -2.65 -2.62 -2.67 -2.62 -2.57 -2.54 -2.53 -2.51 -2.56 -2.53 -2.49 -2.48 -2.46 -2.45
20 - - - - - - - - - - - - - - - - - -
30 -2.47 -2.37 -2.27 -2.21 -2.19 -2.16 -2.20 -2.14 -2.07 -2.04 -2.02 -2.00 -2.07 -2.02 -1.96 -1.94 -1.93 -1.90

3 50 -2.64 -2.57 -2.49 -2.48 -2.44 -2.41 -2.43 -2.38 -2.32 -2.31 -2.29 -2.27 -2.31 -2.28 -2.23 -2.23 -2.21 -2.19
70 -2.72 -2.65 -2.56 -2.54 -2.53 -2.49 -2.51 -2.47 -2.42 -2.40 -2.39 -2.36 -2.41 -2.37 -2.33 -2.32 -2.31 -2.30
100 -2.77 -2.69 -2.63 -2.60 -2.58 -2.54 -2.58 -2.53 -2.49 -2.46 -2.45 -2.43 -2.48 -2.44 -2.41 -2.39 -2.37 -2.36
200 -2.82 -2.76 -2.68 -2.65 -2.63 -2.61 -2.65 -2.61 -2.55 -2.53 -2.52 -2.50 -2.55 -2.52 -2.48 -2.46 -2.44 -2.44
20 - - - - - - - - - - - - - - - - - -
30 -2.28 -2.15 -2.04 -2.01 -1.97 -1.89 -2.00 -1.90 -1.83 -1.81 -1.78 -1.72 -1.85 -1.77 -1.72 -1.70 -1.68 -1.64

4 50 -2.53 -2.45 -2.38 -2.35 -2.31 -2.28 -2.31 -2.25 -2.20 -2.19 -2.16 -2.14 -2.19 -2.15 -2.10 -2.10 -2.08 -2.06
70 -2.64 -2.59 -2.50 -2.48 -2.45 -2.41 -2.45 -2.38 -2.34 -2.32 -2.31 -2.29 -2.33 -2.29 -2.25 -2.24 -2.23 -2.21
100 -2.71 -2.65 -2.58 -2.55 -2.53 -2.49 -2.53 -2.47 -2.44 -2.41 -2.39 -2.37 -2.43 -2.38 -2.35 -2.33 -2.32 -2.30
200 -2.80 -2.74 -2.66 -2.63 -2.60 -2.58 -2.62 -2.58 -2.53 -2.51 -2.49 -2.47 -2.52 -2.49 -2.45 -2.43 -2.42 -2.41
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(Continued)
k = 3

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -2.99 -2.91 -2.82 -2.76 -2.75 -2.71 -2.73 -2.68 -2.63 -2.58 -2.57 -2.54 -2.60 -2.56 -2.52 -2.49 -2.48 -2.45
30 -3.00 -2.89 -2.85 -2.81 -2.78 -2.73 -2.79 -2.73 -2.69 -2.66 -2.64 -2.61 -2.68 -2.63 -2.60 -2.57 -2.56 -2.54

0 50 -3.01 -2.95 -2.88 -2.86 -2.82 -2.80 -2.83 -2.79 -2.74 -2.72 -2.70 -2.69 -2.73 -2.70 -2.65 -2.64 -2.63 -2.62
70 -3.04 -2.97 -2.89 -2.86 -2.84 -2.82 -2.86 -2.81 -2.77 -2.74 -2.72 -2.71 -2.76 -2.73 -2.69 -2.67 -2.66 -2.65
100 -3.05 -2.97 -2.92 -2.88 -2.86 -2.83 -2.87 -2.82 -2.78 -2.76 -2.74 -2.73 -2.78 -2.74 -2.71 -2.69 -2.68 -2.66
200 -3.07 -2.99 -2.92 -2.90 -2.87 -2.85 -2.89 -2.84 -2.80 -2.79 -2.76 -2.75 -2.80 -2.76 -2.72 -2.71 -2.70 -2.68
20 -2.91 -2.77 -2.66 -2.58 -2.52 -2.47 -2.55 -2.47 -2.39 -2.34 -2.30 -2.26 -2.37 -2.30 -2.25 -2.20 -2.19 -2.15
30 -2.86 -2.77 -2.69 -2.67 -2.62 -2.59 -2.63 -2.56 -2.52 -2.49 -2.46 -2.42 -2.50 -2.45 -2.41 -2.39 -2.38 -2.35

1 50 -2.94 -2.88 -2.80 -2.78 -2.74 -2.72 -2.75 -2.69 -2.65 -2.62 -2.61 -2.59 -2.65 -2.60 -2.56 -2.54 -2.53 -2.52
70 -2.99 -2.90 -2.85 -2.82 -2.79 -2.77 -2.80 -2.75 -2.70 -2.67 -2.67 -2.65 -2.70 -2.66 -2.62 -2.60 -2.59 -2.58
100 -3.01 -2.93 -2.87 -2.84 -2.83 -2.80 -2.83 -2.78 -2.74 -2.72 -2.70 -2.68 -2.73 -2.70 -2.66 -2.64 -2.63 -2.61
200 -3.05 -2.96 -2.90 -2.89 -2.86 -2.82 -2.87 -2.82 -2.77 -2.76 -2.74 -2.72 -2.78 -2.74 -2.70 -2.69 -2.68 -2.66
20 - - - - - - - - - - - - - - - - - -
30 -2.59 -2.47 -2.39 -2.35 -2.31 -2.27 -2.34 -2.27 -2.20 -2.17 -2.15 -2.11 -2.20 -2.15 -2.10 -2.07 -2.05 -2.02

2 50 -2.81 -2.74 -2.65 -2.63 -2.58 -2.58 -2.60 -2.55 -2.50 -2.46 -2.45 -2.44 -2.48 -2.45 -2.40 -2.38 -2.37 -2.35
70 -2.90 -2.81 -2.76 -2.72 -2.69 -2.67 -2.70 -2.65 -2.60 -2.57 -2.57 -2.54 -2.59 -2.55 -2.52 -2.49 -2.49 -2.47
100 -2.96 -2.88 -2.81 -2.78 -2.75 -2.72 -2.76 -2.71 -2.67 -2.64 -2.63 -2.61 -2.67 -2.62 -2.59 -2.57 -2.55 -2.54
200 -3.01 -2.94 -2.87 -2.85 -2.83 -2.79 -2.84 -2.79 -2.74 -2.73 -2.71 -2.69 -2.75 -2.70 -2.66 -2.66 -2.65 -2.63
20 - - - - - - - - - - - - - - - - - -
30 -2.51 -2.35 -2.19 -2.14 -2.09 -2.02 -2.15 -2.04 -1.96 -1.92 -1.89 -1.84 -1.98 -1.91 -1.85 -1.81 -1.78 -1.75

3 50 -2.72 -2.62 -2.54 -2.52 -2.48 -2.46 -2.49 -2.43 -2.37 -2.34 -2.34 -2.31 -2.37 -2.33 -2.28 -2.26 -2.25 -2.23
70 -2.82 -2.77 -2.71 -2.66 -2.63 -2.60 -2.63 -2.57 -2.53 -2.50 -2.49 -2.47 -2.51 -2.48 -2.44 -2.41 -2.41 -2.39
100 -2.92 -2.83 -2.76 -2.73 -2.71 -2.68 -2.72 -2.67 -2.62 -2.59 -2.58 -2.56 -2.62 -2.58 -2.54 -2.52 -2.51 -2.49
200 -3.00 -2.94 -2.85 -2.84 -2.82 -2.78 -2.82 -2.77 -2.72 -2.71 -2.69 -2.67 -2.72 -2.68 -2.64 -2.64 -2.62 -2.61
20 - - - - - - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - - - - -

4 50 -2.52 -2.44 -2.36 -2.33 -2.30 -2.28 -2.32 -2.24 -2.19 -2.16 -2.14 -2.12 -2.19 -2.13 -2.09 -2.07 -2.06 -2.03
70 -2.73 -2.65 -2.58 -2.55 -2.52 -2.50 -2.53 -2.46 -2.41 -2.39 -2.37 -2.35 -2.40 -2.36 -2.32 -2.29 -2.29 -2.27
100 -2.84 -2.78 -2.71 -2.67 -2.65 -2.61 -2.65 -2.60 -2.54 -2.52 -2.51 -2.48 -2.54 -2.50 -2.46 -2.44 -2.43 -2.41
200 -2.98 -2.90 -2.82 -2.81 -2.78 -2.74 -2.78 -2.73 -2.68 -2.68 -2.66 -2.63 -2.69 -2.64 -2.61 -2.60 -2.59 -2.57

Notes: The critical values are obtained by stochastic simulation. The data generating process is yit = yit�1 + "iyt, where
"iyt � iidN(0; 1), with yi;�p = 0, and the jth element of the k � 1 vector of additional regressors, xit, is generated
as xijt = xijt�1 + "ixjt, where "ixjt � iidN(0; 1) and xij;�p = 0, i = 1; 2; :::; N ; j = 1; 2; :::; k; t = �p; :::; T . The
CADFi statistic is computed as the t-ratio of the coe¢ cient on yit�1 of the regression of �yit on yit�1, w0

it;p = (�z0t�1;

��z0t;��z
0
t�1; :::;��z

0
t�p; �yi;t�1; :::;�yi;t�p); including an intercept, with �zt = N�1PN

i=1(yit;x
0
it)

0; and the average of

the individual statistics is computed as CADF = N�1PN
i=1 CADFi. (100 � �)% critical values are obtained as the �

quantiles of CADF for � = 0:01; 0:05; 0:1. Computations are based on 10000 replications.
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Table 2: Critical Values of Average of Individual Cross-Sectionally Augmented Dickey-Fuller
Distribution, with an Intercept and a Linear Trend

k = 1

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -3.12 -3.02 -2.94 -2.91 -2.86 -2.82 -2.90 -2.85 -2.78 -2.75 -2.73 -2.70 -2.78 -2.74 -2.70 -2.67 -2.65 -2.63
30 -3.07 -2.99 -2.92 -2.89 -2.86 -2.82 -2.89 -2.84 -2.78 -2.76 -2.74 -2.72 -2.79 -2.75 -2.71 -2.69 -2.68 -2.66

0 50 -3.06 -2.99 -2.93 -2.88 -2.88 -2.83 -2.89 -2.85 -2.81 -2.77 -2.76 -2.73 -2.80 -2.77 -2.74 -2.71 -2.70 -2.68
70 -3.07 -3.00 -2.93 -2.89 -2.86 -2.83 -2.91 -2.85 -2.81 -2.79 -2.77 -2.74 -2.82 -2.77 -2.75 -2.72 -2.71 -2.69
100 -3.06 -3.00 -2.92 -2.90 -2.88 -2.83 -2.91 -2.86 -2.81 -2.79 -2.77 -2.75 -2.83 -2.79 -2.75 -2.73 -2.71 -2.70
200 -3.06 -2.99 -2.94 -2.91 -2.88 -2.84 -2.91 -2.86 -2.82 -2.79 -2.78 -2.75 -2.83 -2.79 -2.75 -2.74 -2.72 -2.70
20 -3.09 -2.99 -2.90 -2.88 -2.85 -2.81 -2.83 -2.76 -2.72 -2.67 -2.65 -2.63 -2.69 -2.64 -2.60 -2.57 -2.56 -2.53
30 -3.06 -2.96 -2.89 -2.88 -2.83 -2.80 -2.85 -2.79 -2.74 -2.71 -2.70 -2.67 -2.73 -2.69 -2.65 -2.63 -2.62 -2.60

1 50 -3.06 -2.96 -2.90 -2.87 -2.86 -2.82 -2.87 -2.82 -2.78 -2.74 -2.73 -2.71 -2.77 -2.73 -2.70 -2.67 -2.67 -2.65
70 -3.05 -2.99 -2.90 -2.88 -2.84 -2.82 -2.89 -2.83 -2.78 -2.76 -2.75 -2.73 -2.80 -2.75 -2.72 -2.70 -2.69 -2.67
100 -3.06 -2.99 -2.91 -2.89 -2.87 -2.82 -2.90 -2.85 -2.80 -2.77 -2.76 -2.73 -2.81 -2.77 -2.73 -2.71 -2.70 -2.68
200 -3.06 -2.99 -2.93 -2.90 -2.87 -2.83 -2.90 -2.86 -2.81 -2.78 -2.77 -2.75 -2.82 -2.78 -2.75 -2.73 -2.71 -2.70
20 -2.88 -2.74 -2.64 -2.60 -2.56 -2.52 -2.57 -2.49 -2.42 -2.38 -2.37 -2.34 -2.42 -2.36 -2.31 -2.27 -2.26 -2.24
30 -2.93 -2.81 -2.75 -2.72 -2.68 -2.64 -2.68 -2.62 -2.57 -2.55 -2.53 -2.50 -2.57 -2.51 -2.47 -2.46 -2.45 -2.43

2 50 -2.96 -2.89 -2.83 -2.79 -2.78 -2.74 -2.78 -2.73 -2.70 -2.66 -2.65 -2.62 -2.68 -2.64 -2.61 -2.58 -2.57 -2.55
70 -3.00 -2.94 -2.84 -2.83 -2.80 -2.77 -2.83 -2.77 -2.72 -2.71 -2.69 -2.67 -2.73 -2.69 -2.66 -2.64 -2.62 -2.61
100 -3.03 -2.96 -2.88 -2.85 -2.83 -2.79 -2.85 -2.81 -2.76 -2.74 -2.71 -2.70 -2.76 -2.72 -2.69 -2.67 -2.65 -2.64
200 -3.03 -2.97 -2.91 -2.88 -2.85 -2.81 -2.88 -2.83 -2.79 -2.77 -2.75 -2.72 -2.79 -2.76 -2.73 -2.71 -2.70 -2.68
20 -2.96 -2.80 -2.65 -2.58 -2.50 -2.42 -2.57 -2.45 -2.36 -2.31 -2.27 -2.22 -2.37 -2.29 -2.21 -2.18 -2.15 -2.11
30 -2.84 -2.76 -2.66 -2.63 -2.62 -2.56 -2.60 -2.52 -2.48 -2.46 -2.43 -2.41 -2.48 -2.41 -2.38 -2.37 -2.34 -2.33

3 50 -2.94 -2.86 -2.81 -2.75 -2.74 -2.71 -2.73 -2.70 -2.65 -2.61 -2.61 -2.58 -2.63 -2.60 -2.57 -2.54 -2.53 -2.51
70 -2.98 -2.94 -2.83 -2.81 -2.78 -2.76 -2.81 -2.74 -2.71 -2.68 -2.66 -2.64 -2.71 -2.66 -2.63 -2.61 -2.60 -2.58
100 -3.00 -2.94 -2.86 -2.84 -2.82 -2.78 -2.84 -2.79 -2.74 -2.72 -2.70 -2.68 -2.74 -2.71 -2.67 -2.65 -2.64 -2.62
200 -3.03 -2.96 -2.90 -2.87 -2.85 -2.81 -2.88 -2.82 -2.78 -2.76 -2.75 -2.72 -2.78 -2.75 -2.72 -2.70 -2.69 -2.67
20 - - - - - - - - - - - - - - - - - -
30 -2.68 -2.56 -2.47 -2.43 -2.40 -2.35 -2.41 -2.34 -2.29 -2.26 -2.24 -2.20 -2.28 -2.23 -2.18 -2.16 -2.14 -2.12

4 50 -2.83 -2.76 -2.70 -2.67 -2.65 -2.62 -2.66 -2.59 -2.56 -2.52 -2.51 -2.48 -2.54 -2.50 -2.46 -2.44 -2.43 -2.40
70 -2.93 -2.86 -2.77 -2.75 -2.72 -2.70 -2.75 -2.68 -2.64 -2.62 -2.60 -2.58 -2.65 -2.59 -2.56 -2.55 -2.53 -2.52
100 -2.96 -2.91 -2.83 -2.81 -2.78 -2.74 -2.79 -2.75 -2.70 -2.68 -2.66 -2.64 -2.70 -2.66 -2.62 -2.61 -2.59 -2.58
200 -3.02 -2.94 -2.88 -2.85 -2.83 -2.79 -2.86 -2.81 -2.76 -2.74 -2.73 -2.70 -2.77 -2.73 -2.70 -2.68 -2.67 -2.65

k = 2

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -3.26 -3.15 -3.09 -3.04 -3.00 -2.97 -3.01 -2.95 -2.89 -2.86 -2.84 -2.82 -2.89 -2.84 -2.79 -2.77 -2.75 -2.73
30 -3.25 -3.15 -3.07 -3.03 -3.02 -2.97 -3.04 -2.98 -2.93 -2.90 -2.88 -2.86 -2.93 -2.89 -2.84 -2.82 -2.81 -2.79

0 50 -3.23 -3.16 -3.09 -3.06 -3.03 -3.01 -3.05 -3.01 -2.96 -2.94 -2.92 -2.90 -2.97 -2.93 -2.89 -2.87 -2.86 -2.84
70 -3.25 -3.17 -3.10 -3.06 -3.04 -3.01 -3.08 -3.03 -2.98 -2.95 -2.93 -2.92 -2.99 -2.94 -2.91 -2.89 -2.88 -2.86
100 -3.25 -3.17 -3.11 -3.08 -3.06 -3.02 -3.09 -3.04 -2.99 -2.96 -2.95 -2.93 -3.00 -2.96 -2.92 -2.90 -2.89 -2.88
200 -3.25 -3.18 -3.12 -3.08 -3.06 -3.03 -3.09 -3.04 -3.00 -2.97 -2.96 -2.94 -3.01 -2.97 -2.94 -2.91 -2.91 -2.89
20 -3.18 -3.06 -2.97 -2.89 -2.87 -2.84 -2.88 -2.78 -2.71 -2.68 -2.66 -2.64 -2.71 -2.64 -2.58 -2.57 -2.55 -2.52
30 -3.16 -3.08 -3.00 -2.95 -2.93 -2.89 -2.92 -2.87 -2.82 -2.78 -2.77 -2.75 -2.81 -2.76 -2.72 -2.69 -2.68 -2.67

1 50 -3.21 -3.11 -3.04 -3.01 -2.99 -2.96 -3.00 -2.95 -2.90 -2.87 -2.86 -2.84 -2.90 -2.86 -2.82 -2.80 -2.79 -2.77
70 -3.21 -3.14 -3.07 -3.03 -3.01 -2.98 -3.06 -2.99 -2.94 -2.91 -2.89 -2.87 -2.95 -2.90 -2.86 -2.84 -2.83 -2.82
100 -3.24 -3.15 -3.09 -3.05 -3.03 -3.00 -3.06 -3.01 -2.96 -2.93 -2.92 -2.90 -2.96 -2.93 -2.89 -2.87 -2.86 -2.85
200 -3.25 -3.17 -3.12 -3.08 -3.05 -3.02 -3.09 -3.03 -2.99 -2.96 -2.95 -2.93 -3.00 -2.95 -2.92 -2.90 -2.89 -2.87
20 -3.43 -3.17 -2.92 -2.82 -2.75 -2.61 -2.77 -2.64 -2.51 -2.45 -2.41 -2.34 -2.52 -2.42 -2.33 -2.28 -2.25 -2.21
30 -2.92 -2.86 -2.76 -2.71 -2.69 -2.64 -2.68 -2.63 -2.55 -2.53 -2.51 -2.49 -2.56 -2.51 -2.46 -2.43 -2.42 -2.40

2 50 -3.09 -3.00 -2.93 -2.90 -2.87 -2.84 -2.88 -2.82 -2.77 -2.75 -2.73 -2.71 -2.77 -2.72 -2.68 -2.67 -2.65 -2.64
70 -3.14 -3.06 -3.00 -2.95 -2.93 -2.90 -2.96 -2.90 -2.85 -2.82 -2.81 -2.79 -2.85 -2.81 -2.77 -2.75 -2.74 -2.72
100 -3.18 -3.10 -3.04 -3.00 -2.98 -2.95 -3.01 -2.95 -2.90 -2.88 -2.86 -2.84 -2.91 -2.87 -2.83 -2.81 -2.80 -2.78
200 -3.23 -3.14 -3.08 -3.04 -3.02 -2.99 -3.05 -3.00 -2.96 -2.93 -2.92 -2.90 -2.96 -2.93 -2.89 -2.87 -2.86 -2.85
20 - - - - - - - - - - - - - - - - - -
30 -2.81 -2.70 -2.59 -2.54 -2.50 -2.48 -2.53 -2.45 -2.37 -2.34 -2.31 -2.30 -2.38 -2.32 -2.26 -2.24 -2.21 -2.20

3 50 -3.00 -2.92 -2.85 -2.83 -2.80 -2.76 -2.80 -2.74 -2.69 -2.66 -2.64 -2.63 -2.68 -2.64 -2.59 -2.57 -2.56 -2.55
70 -3.09 -3.03 -2.95 -2.91 -2.88 -2.86 -2.91 -2.85 -2.80 -2.77 -2.76 -2.74 -2.81 -2.75 -2.71 -2.70 -2.68 -2.67
100 -3.16 -3.07 -3.02 -2.97 -2.96 -2.93 -2.97 -2.92 -2.87 -2.84 -2.83 -2.81 -2.87 -2.83 -2.80 -2.78 -2.76 -2.75
200 -3.21 -3.14 -3.07 -3.03 -3.01 -2.99 -3.04 -2.99 -2.95 -2.92 -2.90 -2.89 -2.95 -2.91 -2.88 -2.85 -2.85 -2.83
20 - - - - - - - - - - - - - - - - - -
30 -2.63 -2.47 -2.34 -2.28 -2.21 -2.18 -2.31 -2.18 -2.10 -2.06 -2.02 -1.98 -2.13 -2.04 -1.98 -1.94 -1.92 -1.89

4 50 -2.86 -2.79 -2.71 -2.69 -2.66 -2.61 -2.65 -2.59 -2.54 -2.52 -2.49 -2.47 -2.54 -2.49 -2.45 -2.42 -2.41 -2.39
70 -2.99 -2.93 -2.87 -2.83 -2.79 -2.77 -2.81 -2.75 -2.70 -2.67 -2.66 -2.64 -2.71 -2.66 -2.62 -2.60 -2.58 -2.57
100 -3.10 -3.02 -2.95 -2.92 -2.91 -2.87 -2.91 -2.85 -2.81 -2.79 -2.77 -2.75 -2.80 -2.76 -2.73 -2.71 -2.70 -2.68
200 -3.19 -3.11 -3.05 -3.01 -2.98 -2.96 -3.01 -2.96 -2.92 -2.89 -2.88 -2.86 -2.92 -2.88 -2.85 -2.83 -2.81 -2.80
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(Continued)
k = 3

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -3.39 -3.29 -3.19 -3.13 -3.09 -3.08 -3.10 -3.03 -2.97 -2.94 -2.92 -2.90 -2.96 -2.90 -2.87 -2.84 -2.82 -2.80
30 -3.38 -3.26 -3.20 -3.16 -3.14 -3.10 -3.16 -3.09 -3.04 -3.01 -3.00 -2.96 -3.05 -2.99 -2.95 -2.93 -2.91 -2.89

0 50 -3.39 -3.31 -3.25 -3.20 -3.18 -3.15 -3.20 -3.15 -3.11 -3.07 -3.06 -3.04 -3.11 -3.07 -3.03 -3.01 -2.99 -2.98
70 -3.41 -3.32 -3.25 -3.24 -3.19 -3.17 -3.23 -3.17 -3.13 -3.10 -3.09 -3.07 -3.13 -3.09 -3.06 -3.04 -3.02 -3.01
100 -3.41 -3.33 -3.28 -3.24 -3.22 -3.18 -3.25 -3.20 -3.15 -3.12 -3.10 -3.09 -3.16 -3.12 -3.08 -3.06 -3.04 -3.03
200 -3.43 -3.34 -3.30 -3.26 -3.23 -3.20 -3.27 -3.21 -3.17 -3.14 -3.13 -3.11 -3.18 -3.13 -3.10 -3.09 -3.07 -3.05
20 -3.43 -3.26 -3.05 -2.99 -2.93 -2.86 -2.97 -2.85 -2.74 -2.68 -2.65 -2.61 -2.74 -2.66 -2.59 -2.53 -2.51 -2.48
30 -3.23 -3.13 -3.03 -3.00 -2.97 -2.93 -2.97 -2.90 -2.84 -2.81 -2.79 -2.77 -2.83 -2.79 -2.74 -2.72 -2.70 -2.68

1 50 -3.31 -3.22 -3.17 -3.12 -3.09 -3.07 -3.11 -3.05 -3.00 -2.98 -2.96 -2.94 -3.00 -2.96 -2.92 -2.90 -2.89 -2.87
70 -3.34 -3.26 -3.21 -3.18 -3.14 -3.11 -3.16 -3.11 -3.06 -3.03 -3.02 -3.00 -3.06 -3.02 -2.99 -2.96 -2.95 -2.94
100 -3.37 -3.29 -3.23 -3.20 -3.18 -3.15 -3.20 -3.15 -3.10 -3.08 -3.05 -3.04 -3.11 -3.07 -3.03 -3.01 -2.99 -2.98
200 -3.42 -3.34 -3.27 -3.24 -3.22 -3.19 -3.25 -3.19 -3.15 -3.13 -3.10 -3.08 -3.16 -3.11 -3.08 -3.06 -3.05 -3.03
20 - - - - - - - - - - - - - - - - - -
30 -2.92 -2.77 -2.67 -2.62 -2.60 -2.55 -2.62 -2.54 -2.45 -2.43 -2.41 -2.38 -2.47 -2.41 -2.34 -2.32 -2.31 -2.29

2 50 -3.17 -3.06 -2.99 -2.96 -2.92 -2.90 -2.94 -2.87 -2.83 -2.80 -2.78 -2.76 -2.82 -2.78 -2.73 -2.71 -2.70 -2.68
70 -3.24 -3.16 -3.09 -3.07 -3.03 -3.00 -3.04 -2.99 -2.94 -2.91 -2.90 -2.88 -2.95 -2.90 -2.86 -2.84 -2.83 -2.81
100 -3.30 -3.23 -3.16 -3.13 -3.10 -3.07 -3.12 -3.07 -3.02 -3.00 -2.97 -2.96 -3.02 -2.99 -2.95 -2.93 -2.91 -2.90
200 -3.37 -3.29 -3.24 -3.20 -3.18 -3.15 -3.21 -3.15 -3.11 -3.09 -3.07 -3.05 -3.12 -3.07 -3.04 -3.03 -3.01 -2.99
20 - - - - - - - - - - - - - - - - - -
30 -2.85 -2.75 -2.53 -2.45 -2.36 -2.31 -2.46 -2.36 -2.22 -2.18 -2.14 -2.10 -2.27 -2.17 -2.09 -2.05 -2.02 -1.99

3 50 -3.04 -2.94 -2.86 -2.83 -2.79 -2.76 -2.81 -2.74 -2.68 -2.66 -2.64 -2.61 -2.69 -2.63 -2.59 -2.57 -2.55 -2.53
70 -3.16 -3.11 -3.02 -2.99 -2.95 -2.93 -2.96 -2.91 -2.86 -2.84 -2.81 -2.79 -2.85 -2.81 -2.78 -2.75 -2.74 -2.72
100 -3.26 -3.19 -3.12 -3.09 -3.06 -3.03 -3.08 -3.02 -2.97 -2.95 -2.93 -2.91 -2.97 -2.93 -2.89 -2.87 -2.86 -2.85
200 -3.34 -3.28 -3.22 -3.19 -3.16 -3.13 -3.18 -3.13 -3.09 -3.06 -3.05 -3.03 -3.09 -3.05 -3.02 -3.00 -2.98 -2.97
20 - - - - - - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - - - - -

4 50 -2.83 -2.72 -2.66 -2.62 -2.58 -2.54 -2.59 -2.53 -2.47 -2.44 -2.42 -2.38 -2.47 -2.42 -2.37 -2.35 -2.33 -2.30
70 -3.06 -2.97 -2.89 -2.85 -2.82 -2.80 -2.84 -2.78 -2.73 -2.70 -2.68 -2.66 -2.73 -2.67 -2.64 -2.61 -2.60 -2.58
100 -3.18 -3.11 -3.05 -3.00 -2.99 -2.95 -2.98 -2.94 -2.89 -2.86 -2.84 -2.83 -2.88 -2.85 -2.81 -2.78 -2.77 -2.76
200 -3.32 -3.24 -3.18 -3.15 -3.12 -3.10 -3.15 -3.09 -3.05 -3.03 -3.01 -2.99 -3.05 -3.01 -2.98 -2.96 -2.94 -2.93

Notes: The critical values are obtained by stochastic simulation. The data generating process is yit = yit�1 + "iyt, where
"iyt � iidN(0; 1), with yi;�p = 0, and the jth element of the k � 1 vector of additional regressors, xit, is generated
as xijt = xijt�1 + "ixjt, where "ixjt � iidN(0; 1) and xij;�p = 0, i = 1; 2; :::; N ; j = 1; 2; :::; k; t = �p; :::; T . The
CADFi statistic is computed as the t-ratio of the coe¢ cient on yit�1 of the regression of �yit on yit�1, w0

it;p = (�z0t�1;

��z0t;��z
0
t�1; :::;��z

0
t�p; �yi;t�1; :::;�yi;t�p); including an intercept and a linear trend, with �zt = N�1PN

i=1(yit;x
0
it)

0;

and the average of the individual statistics is computed as CADF = N�1PN
i=1 CADFi. (100 � �)% critical values are

obtained as the � quantiles of CADF for � = 0:01; 0:05; 0:1. Computations are based on 10000 replications.
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Table 3: Size and Power of Panel Unit Root Tests with Two Factors (m0 = 2 and k = 1)

PANEL A: With an Intercept Only
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 0)

20 5.10 5.15 4.20 5.15 5.10 5.75 7.35 6.20 5.50 7.30 6.20 6.85
30 5.00 4.60 4.95 3.80 4.25 4.30 9.10 9.05 8.15 8.40 7.70 8.90
50 4.30 4.35 4.60 4.35 5.00 4.65 16.85 17.55 19.45 21.05 23.15 26.95
70 4.80 4.40 4.65 4.05 5.80 5.05 27.10 34.00 42.40 48.05 54.85 63.65
100 4.60 5.05 3.55 4.25 5.00 4.25 52.90 68.70 83.00 89.35 94.85 97.80
200 4.90 4.10 4.15 4.80 4.35 4.05 99.35 100.00 100.00 100.00 100.00 100.00

P cû(p = 0)
20 9.50 9.35 10.90 10.35 12.85 16.50 18.75 23.80 35.40 36.55 45.90 66.10
30 7.95 8.05 8.55 8.00 11.20 10.95 28.80 36.90 54.30 59.90 71.55 89.75
50 8.20 8.05 7.70 8.95 7.90 8.05 51.90 68.30 89.75 91.30 95.35 98.00
70 6.60 8.45 7.40 7.05 7.40 7.20 75.35 89.00 98.70 98.15 99.25 99.55
100 8.20 8.15 6.20 6.90 5.95 7.10 93.50 98.90 100.00 100.00 99.85 100.00
200 6.75 5.40 6.65 6.10 5.25 6.75 100.00 100.00 100.00 100.00 100.00 100.00

P cû;z(p = 0)
20 8.95 9.60 11.60 10.65 12.60 18.45 14.35 18.20 27.10 29.80 33.85 51.20
30 7.35 6.95 8.45 7.45 10.90 11.45 20.40 23.95 37.10 40.95 48.45 67.85
50 7.55 7.05 7.25 9.20 7.50 8.80 30.90 40.40 63.60 67.95 69.05 80.45
70 5.90 7.95 7.10 6.65 7.40 6.60 44.65 56.15 76.00 77.80 76.65 87.85
100 6.35 7.15 6.10 6.75 6.55 7.50 63.90 72.10 85.35 90.05 85.95 91.25
200 6.05 5.40 5.65 5.60 4.85 6.30 88.20 88.95 94.10 95.75 94.00 97.25
t�b
20 8.90 9.05 9.95 13.80 13.80 20.85 82.70 88.25 95.70 95.35 97.60 97.45
30 10.10 7.15 7.75 11.55 12.35 15.80 93.55 94.50 99.35 98.35 98.95 98.95
50 7.60 7.45 6.80 9.60 8.75 11.65 98.95 98.05 99.70 99.45 99.80 99.65
70 6.95 5.65 6.30 7.85 7.70 9.90 100.00 99.05 99.95 99.80 100.00 99.80
100 7.60 7.50 7.10 8.20 6.85 8.35 100.00 99.95 100.00 100.00 100.00 100.00
200 7.45 7.00 6.20 5.55 5.70 6.85 100.00 100.00 100.00 100.00 100.00 100.00

Notes: yit is generated as yit = (1 � �i)�iy + �iyi;t�1 + 
iy1f1t + 
iy2f2t + "iyt; i = 1; 2; :::; N ; t = �49; :::; T with
yi;�50 = 0, where �iy � iidN(1; 1), 
iy` � iidU [0; 2], f`t = �f`ff`;t�1 + v`t; v`t � iidN(0; 1 � �2f`); f`;�50 = 0 for

` = 1; 2; and "iyt = �iy""iyt�1 + �iyt; �iyt � iidN(0; (1� �2iy")�2i ); "iy;�50 = 0; �2i � iidU [0:5; 1:5]. We set �iy" = �"y = 0
and �f1 = �f2 = 0. One of two additional regressors is used for augmentation of the CIPS test, which are generated as
xijt = xijt�1 + 
ixj1f1t + 
ixj2f2t + "ixjt, i = 1; 2; :::; N ; t = �49; :::; T with xij;�50 = 0, "ixjt = �ixj"ixjt�1 + $ixjt,
$ixjt � iidN(0; 1��2ixj), with xij;�50 = 0, and �ixj � iidU [0:2; 0:4] for j = 1; 2. We include only xi1t with 
ix1 � iidU [0; 2]
and 
ix2 = 0, so that the rank condition (16) is satis�ed. The parameters �iy , �iy", 
iy`, �f`, �i, 
ixj`, and �ixj are
drawn once and �xed over the replications. The CIPS(p) test is the proposed panel unit root test, de�ned by (26), based
on cross section augmentation using yit and xit with lag-augmentation of order p. The P cû(p) and P

c
û;z(p) tests are the

Bai and Ng (2004) pooled panel unit root tests for the idiosyncratic errors with lag-augmentation of order p based on two
extracted factors, where the former uses yit; whilst the latter uses yit and xit for the factor extraction. The t�b test is the
Moon and Perron (2004) panel unit root test for the idiosyncratic errors based on two extracted factors from yit. This test
adopts automatic lag-order selection for the estimation of long-run variances following Andrews and Monahan (1992). All
tests are conducted at the 5% signi�cance level, and the CIPS(p) test is based on the critical values for di¤erent p and the
number of additional regressors, k. All experiments are based on 2000 replications.
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(Table 3 continued)
PANEL B: With an Intercept and a Linear Trend
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 0)

20 4.80 3.65 4.40 5.10 5.30 4.95 4.25 4.50 5.35 5.35 5.55 4.35
30 4.90 4.65 4.80 4.45 4.40 5.35 5.90 5.85 5.95 5.35 4.85 5.15
50 4.70 4.30 3.45 4.15 3.90 4.65 7.10 8.35 7.20 8.00 7.75 8.35
70 4.80 5.00 3.75 4.20 4.80 4.30 11.05 15.00 15.55 17.80 18.25 20.55
100 4.50 4.35 4.45 4.60 4.55 4.80 21.85 29.65 43.10 48.65 54.10 68.90
200 4.75 4.10 3.60 5.45 3.40 5.50 89.65 98.30 100.00 100.00 100.00 100.00

P �û (p = 0)
20 18.85 22.30 28.10 31.70 38.10 51.30 19.40 25.25 30.80 35.45 43.45 59.55
30 16.35 16.60 20.05 22.90 25.55 37.60 19.20 22.10 29.05 31.95 39.05 58.50
50 12.25 12.10 13.60 16.40 16.20 23.15 21.95 28.75 39.75 42.30 55.25 76.75
70 10.25 11.35 11.55 14.00 15.40 17.90 30.10 42.75 59.40 65.15 75.75 92.65
100 10.30 10.15 11.30 11.80 12.40 17.00 46.80 69.45 87.90 86.45 95.00 98.25
200 10.55 8.55 9.30 9.70 9.45 12.65 96.15 99.80 99.95 99.90 100.00 100.00

P �û;z(p = 0)
20 18.30 23.05 28.50 33.80 39.90 53.85 19.70 24.30 29.45 36.80 43.45 58.65
30 14.65 17.00 19.95 22.70 25.45 38.55 16.45 20.40 25.30 29.00 32.40 53.55
50 12.00 11.40 13.65 16.15 16.55 22.90 15.70 23.45 32.00 32.65 42.25 61.80
70 9.50 10.80 10.35 13.55 15.10 18.15 20.70 33.15 43.90 48.35 55.10 76.65
100 8.90 9.05 10.90 11.10 11.55 16.10 33.40 52.70 65.10 68.30 74.80 86.65
200 8.80 7.35 8.30 9.00 9.35 12.70 77.15 92.70 95.55 92.30 95.25 97.30
t#

20 95.35 96.35 97.90 98.95 99.25 99.55 95.65 97.30 97.90 99.20 99.00 99.90
30 81.85 87.10 93.00 97.15 96.95 99.40 82.00 88.20 94.60 96.50 97.90 99.65
50 43.70 54.60 69.70 78.40 85.75 96.20 49.30 60.95 75.80 80.50 89.10 96.65
70 29.70 37.55 49.30 57.85 68.55 87.45 31.90 43.10 57.65 65.40 74.95 89.65
100 18.95 23.55 31.35 39.00 46.70 69.45 20.85 27.90 41.30 49.40 59.50 77.85
200 9.15 12.75 14.85 16.35 19.55 31.75 9.10 14.00 22.05 27.55 38.70 58.00

Notes: yit is generated as yit = �iy + (1 � �i)�it + �iyi;t�1 + 
iy1f1t + 
iy2f2t + "iyt; i = 1; 2; :::; N ; t = �49; :::; T with
yi;�50 = 0, where �iy � iidU [0:0; 0:02], �i � iidU [0:0; 0:02], 
iy` � iidU [0; 2], f`t = �f`ff`;t�1+v`t; v`t � iidN(0; 1��2f`);
f`;�50 = 0 for ` = 1; 2; and "iyt = �iy""iyt�1 + �iyt; �iyt � iidN(0; (1 � �2iy")�2i ); "iy;�50 = 0; �2i � iidU [0:5; 1:5]. We
set �iy" = �"y = 0 and �f1 = �f2 = 0. One of two additional regressors is used for augmentation of the CIPS test,
which are generated as xijt = xijt�1 + �ixj + 
ixj1f1t + 
ixj2f2t + "ixjt, i = 1; 2; :::; N ; t = �49; :::; T with xij;�50 = 0,
�ixj � iidU [0:0; 0:02], "ixjt = �ixj"ixjt�1 +$ixjt, $ixjt � iidN(0; 1 � �2ixj), with xij;�50 = 0, and �ixj � iidU [0:2; 0:4]

for j = 1; 2. We include only xi1t with 
ix1 � iidU [0; 2] and 
ix2 = 0, so that the rank condition (16) is satis�ed. The
parameters �iy , �i, �iy", 
iy`, �f`, �i, �ixj , 
ixj`, and �ixj are drawn once and �xed over the replications. The CIPS(p)
test is the proposed panel unit root tests, de�ned by (26), based on cross section augmentation using yit and xit with
lag-augmentation of order p. The P �û (p) and P

�
û;z(p) tests are the Bai and Ng (2004) pooled panel unit root tests for

the idiosyncratic errors with lag-augmentation of order p based on two extracted factors, where the former uses yit whilst
the latter uses yit and xit for the factor extraction. The t# test is the Moon and Perron (2004) panel unit root test for
the idiosyncratic errors based on two extracted factors from yit. This test adopts automatic lag-order selection for the
estimation of long-run variances following Andrews and Monahan (1992). All tests are conducted at the 5% signi�cance
level, and the CIPS(p) test is based on the critical values for di¤erent p and the number of additional regressors, k. All
experiments are based on 2000 replications.
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Table 4: Size and Power of Panel Unit Root Tests with Two Factors (m0 = 2 and k = 1),
Positively Serially Correlated "iyt

PANEL A: With an Intercept Only
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 1)

20 3.90 3.20 3.90 2.80 3.05 2.75 5.60 4.75 4.85 3.65 4.50 4.10
30 3.10 3.80 3.75 3.05 2.85 3.45 5.65 7.10 6.80 6.40 6.15 6.85
50 4.00 4.20 4.55 3.75 3.35 4.30 13.10 12.65 15.25 17.10 16.70 19.65
70 4.90 4.60 4.65 4.55 4.55 4.00 20.90 24.80 31.40 35.45 36.95 45.45
100 3.95 4.40 4.15 4.65 4.00 3.75 41.35 56.65 68.90 76.30 81.50 89.70
200 5.65 5.15 5.90 5.05 3.90 5.20 98.45 99.80 100.00 100.00 100.00 100.00

P cû(p = 1)
20 14.55 13.65 17.05 18.00 19.90 25.25 24.10 30.85 43.45 48.50 58.85 80.25
30 9.70 10.75 10.50 12.20 12.85 15.60 30.05 40.55 60.65 69.50 81.15 95.35
50 7.50 8.30 8.40 8.05 9.05 10.45 55.20 72.25 92.85 95.65 98.30 99.85
70 8.20 7.00 7.40 9.35 7.35 7.70 77.55 91.15 99.65 99.65 99.95 100.00
100 6.55 6.00 6.85 6.40 7.60 7.55 95.55 99.35 100.00 100.00 100.00 100.00
200 7.80 6.35 6.20 7.00 5.80 5.25 100.00 100.00 100.00 100.00 100.00 100.00

P cû;z(p = 1)
20 13.55 12.70 17.50 17.80 19.20 24.00 21.00 28.00 36.70 42.00 50.40 71.90
30 10.20 10.00 10.10 11.65 12.85 15.15 26.40 32.65 49.55 58.35 66.80 85.85
50 6.90 8.25 7.50 8.40 10.05 11.05 39.70 54.65 76.50 80.55 84.95 95.30
70 7.85 6.70 8.05 8.50 7.35 7.60 55.65 70.75 87.10 92.75 92.70 97.35
100 7.00 6.65 6.95 6.60 7.60 7.30 76.80 85.25 93.65 96.80 95.50 98.80
200 7.80 6.00 5.85 6.55 5.65 5.30 95.35 95.50 98.00 99.35 98.30 99.65
t�b
20 6.75 6.45 5.80 9.75 9.40 12.95 81.60 91.50 97.85 98.10 99.25 99.65
30 7.15 5.20 5.85 7.15 6.85 8.50 94.15 97.55 99.55 99.65 100.00 99.85
50 5.30 5.20 6.10 6.30 6.10 9.05 99.35 99.70 100.00 100.00 100.00 100.00
70 7.60 6.15 4.80 5.60 5.10 6.35 100.00 100.00 100.00 100.00 100.00 100.00
100 7.25 6.65 5.25 6.15 5.40 6.75 100.00 99.95 100.00 100.00 100.00 100.00
200 7.25 5.25 6.15 6.30 5.20 5.25 100.00 100.00 100.00 100.00 100.00 100.00

PANEL B: With an Intercept and a Linear Trend
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 1)

20 3.45 3.10 3.00 2.40 2.40 2.60 3.80 3.35 3.05 2.50 2.20 2.70
30 3.70 3.55 2.80 3.50 3.40 3.40 4.40 4.90 3.60 3.75 4.20 4.15
50 4.95 3.70 4.05 3.60 4.10 3.10 6.75 6.30 6.35 6.50 7.05 6.00
70 4.70 4.90 3.95 4.25 3.70 3.55 8.35 10.95 12.40 12.00 11.25 15.10
100 4.30 3.90 3.70 4.10 3.55 4.45 16.40 20.60 30.60 34.95 39.30 45.95
200 5.20 4.20 5.55 5.40 3.75 4.85 81.90 94.05 99.60 100.00 100.00 100.00

P �û (p = 1)
20 28.25 32.90 41.65 48.20 57.45 70.75 29.10 35.10 45.10 53.55 63.50 78.15
30 18.70 20.55 25.40 30.55 35.45 52.15 21.85 26.10 36.05 42.90 52.40 74.60
50 12.75 14.90 18.65 16.90 22.00 30.05 25.05 32.65 44.65 50.80 63.65 87.90
70 13.00 11.60 12.95 15.20 16.45 23.30 31.35 45.35 65.80 71.85 86.20 97.65
100 10.05 10.40 11.75 12.85 11.90 19.05 53.45 73.65 91.50 92.95 98.10 99.80
200 9.20 9.70 8.60 10.50 11.00 12.65 97.80 99.70 100.00 100.00 100.00 100.00

P �û;z(p = 1)
20 28.50 31.95 41.35 46.85 57.15 71.05 28.80 34.55 44.90 52.95 63.10 77.40
30 17.30 21.00 25.20 31.20 36.30 52.45 21.95 24.95 35.10 41.75 49.70 72.85
50 12.75 15.60 18.35 17.05 21.35 29.75 22.05 30.55 39.50 45.95 55.05 81.65
70 12.45 12.25 12.50 15.10 16.55 23.35 26.45 39.90 57.95 62.65 74.95 91.80
100 9.80 10.45 10.70 12.95 12.85 19.05 45.05 63.20 80.20 84.65 91.20 97.50
200 9.25 9.95 9.15 10.65 10.90 12.60 90.60 97.65 98.90 99.00 99.55 99.80
t#

20 75.60 74.40 78.80 88.60 84.00 89.45 75.70 74.20 78.35 88.30 83.85 90.35
30 44.40 43.30 51.95 64.60 62.40 75.05 43.00 41.35 50.30 63.10 63.45 75.45
50 16.85 18.70 23.20 31.40 33.30 46.50 13.25 15.65 19.95 26.25 30.35 44.85
70 11.65 12.85 14.40 16.05 19.85 31.15 8.50 9.45 11.40 14.35 16.25 27.10
100 7.80 8.85 9.80 12.35 13.65 21.65 4.15 4.80 5.85 8.05 10.20 16.70
200 6.15 6.65 7.75 6.40 8.25 9.50 1.85 2.15 2.45 4.25 3.65 8.15

Notes: See notes to Table 3. The data generating process is the same as the one for Table 3, except �iy" � iidU [0:2; 0:4].

35



Table 5: Size and Power of Panel Unit Root Tests with Two Factors (m0 = 2 and k = 1),
Negatively Serially Correlated "iyt

PANEL A: With an Intercept Only
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 1)

20 4.30 5.00 6.50 5.50 5.80 6.70 6.00 5.60 5.10 5.65 5.05 5.95
30 4.35 5.75 6.05 5.15 4.75 6.40 6.10 7.50 7.10 6.00 5.65 6.00
50 5.30 5.00 5.65 5.35 5.00 6.40 14.10 12.75 15.20 16.75 15.85 18.10
70 5.60 4.35 5.25 4.80 5.25 5.00 23.90 30.45 36.40 39.15 43.70 54.70
100 4.00 3.80 4.75 4.85 4.70 4.60 47.95 63.75 79.50 86.25 92.35 97.85
200 5.35 4.85 5.85 4.95 3.85 5.65 99.45 100.00 100.00 100.00 100.00 100.00

P cû(p = 1)
20 12.50 12.60 15.30 14.50 17.35 22.60 24.70 29.20 39.40 39.70 50.55 67.80
30 9.40 10.20 10.70 11.85 12.25 13.75 29.10 34.90 53.45 57.85 65.55 79.15
50 7.95 8.05 8.80 7.95 8.05 9.55 50.00 60.85 83.70 82.00 85.90 91.60
70 8.10 7.45 8.05 8.40 7.80 7.55 71.15 80.55 96.65 92.00 95.70 97.40
100 6.20 6.20 7.30 6.45 7.60 8.20 90.45 96.45 99.60 98.60 99.25 99.10
200 7.65 6.55 6.55 6.40 5.85 5.85 100.00 100.00 100.00 100.00 100.00 100.00

P cû;z(p = 1)
20 11.30 12.60 14.40 14.30 18.10 21.50 15.50 17.30 24.35 26.25 31.80 45.55
30 8.00 9.60 9.55 11.35 11.85 13.60 17.40 19.05 30.70 34.10 37.30 51.05
50 6.50 7.35 7.95 7.40 9.10 9.75 24.55 29.70 43.90 47.55 50.05 62.20
70 7.40 6.25 7.20 7.75 7.10 7.30 34.50 38.45 57.85 58.20 61.35 69.75
100 6.85 5.80 7.15 5.85 7.25 8.20 48.20 51.55 65.15 70.55 67.90 74.60
200 7.05 5.55 6.25 6.50 5.70 5.55 73.80 73.05 79.90 85.65 80.40 86.05
t�b
20 11.40 13.10 15.20 19.70 20.20 28.15 80.70 84.30 92.00 90.75 93.55 94.50
30 11.65 9.65 11.85 15.25 16.10 22.85 90.95 90.40 96.15 93.40 95.45 95.80
50 8.05 8.35 9.60 11.20 11.25 18.30 98.10 95.05 98.75 97.20 99.00 98.70
70 9.40 8.00 6.80 9.30 8.45 14.35 99.60 97.50 99.50 98.95 99.70 99.40
100 8.80 8.35 6.70 9.25 8.15 12.80 99.95 99.05 99.85 99.60 99.90 99.80
200 7.80 6.10 6.75 7.45 6.80 7.50 100.00 99.85 100.00 100.00 100.00 100.00

PANEL B: With an Intercept and a Linear Trend
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 1)

20 5.25 6.70 5.75 5.25 5.75 6.75 5.50 6.15 5.20 4.50 4.85 6.00
30 3.95 5.60 5.15 6.55 6.05 6.60 4.80 5.90 5.00 4.55 5.35 5.65
50 5.50 4.45 5.10 5.00 6.05 5.35 6.25 6.10 6.20 5.85 5.70 4.80
70 4.70 5.00 4.55 4.90 4.75 5.55 8.00 11.55 12.55 9.90 9.55 12.40
100 3.80 4.50 3.80 5.25 4.05 5.25 16.40 23.25 32.65 38.00 46.60 57.45
200 4.70 3.90 5.45 5.60 4.00 5.85 88.25 97.00 99.85 100.00 100.00 100.00

P cû(p = 1)
20 18.90 22.25 23.45 26.00 33.30 42.40 19.85 23.10 27.25 29.30 34.25 45.10
30 13.80 14.70 15.10 17.15 18.70 25.35 14.85 17.20 20.00 20.15 26.05 36.75
50 10.30 10.25 11.90 11.45 12.30 14.20 17.35 21.05 26.35 26.20 32.90 48.95
70 10.95 9.35 10.35 9.10 10.95 12.20 21.80 29.65 42.75 41.30 52.90 69.10
100 9.20 9.20 9.25 9.55 7.75 11.65 36.95 53.40 69.80 64.65 78.95 87.75
200 8.10 9.25 7.75 8.60 8.90 10.85 89.40 97.50 99.20 96.60 99.70 99.75

P �û;z(p = 1)
20 16.75 19.55 22.35 25.10 33.45 41.75 17.15 19.85 24.15 25.25 30.50 39.35
30 12.45 13.05 15.00 16.25 19.35 24.15 12.05 13.20 16.40 16.60 21.35 26.10
50 9.05 10.70 10.25 10.70 11.05 13.20 12.20 15.15 17.50 17.00 19.55 30.40
70 9.85 9.20 9.70 9.05 10.55 11.95 14.15 18.55 23.50 24.00 28.90 41.50
100 7.80 8.05 8.40 9.35 8.00 11.00 21.45 32.45 38.65 38.70 44.45 57.25
200 7.15 7.85 7.00 8.45 8.25 10.60 55.30 73.50 74.90 65.50 74.75 81.55
t#

20 99.60 99.85 99.95 100.00 99.85 99.95 99.75 99.85 100.00 99.95 99.90 99.95
30 98.50 99.75 100.00 99.95 100.00 100.00 98.70 99.55 99.95 99.90 100.00 100.00
50 88.70 95.70 99.15 99.60 99.70 99.90 91.40 97.30 98.15 98.35 98.95 99.25
70 75.95 88.15 95.75 98.30 99.50 99.90 84.80 92.05 95.75 95.10 97.45 98.05
100 57.90 70.75 85.60 92.15 96.15 99.35 74.00 85.80 91.05 90.20 94.50 95.30
200 26.45 35.25 49.75 54.30 66.15 89.00 55.15 72.90 80.80 79.60 88.50 90.40

Notes: See notes to Table 3. The data generating process is the same as the one for Table 3, except �iy" � iidU [�0:2;�0:4].
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Table 6: Size and Power of Panel Unit Root Tests with Two Factors (m0 = 2 and k = 1),
Serially Correlated f1t and f2t

PANEL A: With an Intercept Only
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 0)

20 11.40 13.30 13.90 17.20 17.65 22.05 12.05 13.55 13.35 17.45 15.20 19.60
30 8.65 9.40 11.25 10.00 13.65 13.90 13.40 13.70 13.10 14.10 14.25 16.25
50 7.15 8.05 8.30 9.30 9.90 10.95 18.45 20.45 23.00 25.35 27.90 35.05
70 6.35 6.95 7.85 8.25 9.20 8.45 29.90 37.40 46.65 53.70 61.80 73.05
100 5.55 6.55 5.75 6.45 7.55 6.05 55.40 73.85 86.90 93.60 96.80 99.10
200 5.15 4.70 5.10 5.60 5.25 5.10 99.50 100.00 100.00 100.00 100.00 100.00

P cû(p = 0)
20 13.90 17.80 21.10 22.90 28.05 40.60 21.95 27.00 41.95 43.20 51.60 70.25
30 11.35 12.70 14.30 15.50 20.30 26.10 28.70 37.05 54.25 56.95 64.95 81.50
50 9.50 11.35 10.45 13.55 14.05 16.85 48.30 61.70 84.75 82.20 86.85 92.20
70 8.25 10.10 9.35 9.45 10.85 12.80 69.30 82.35 96.70 93.45 95.35 97.00
100 8.30 8.80 7.95 9.25 7.95 10.45 90.75 96.50 99.75 99.25 99.10 99.75
200 6.75 5.80 7.35 6.60 5.90 8.20 100.00 100.00 100.00 100.00 100.00 100.00

P cû;z(p = 0)
20 15.65 18.40 22.15 24.35 29.05 43.50 17.55 21.55 31.15 34.40 37.00 53.40
30 11.60 12.70 15.25 14.85 21.40 27.25 18.75 21.00 30.95 34.65 39.55 54.85
50 9.80 10.20 10.35 13.70 13.75 17.75 24.35 28.05 49.00 50.25 50.65 63.25
70 7.30 9.10 9.50 9.55 10.35 12.25 33.35 38.05 58.40 60.20 57.35 69.65
100 7.05 8.35 7.45 8.55 8.65 10.80 47.65 52.70 70.15 73.05 68.40 76.40
200 6.15 6.20 6.20 6.40 5.80 7.35 77.30 74.20 82.45 87.45 80.75 87.50
t�b
20 11.20 10.85 13.15 16.60 16.90 23.75 75.20 77.95 88.45 87.50 89.55 91.20
30 10.50 8.70 9.00 14.25 14.60 18.30 88.75 86.70 95.30 92.95 94.35 94.95
50 7.75 7.60 7.10 10.30 9.60 12.25 96.80 93.85 98.70 96.70 98.45 97.75
70 7.10 5.60 6.00 7.65 7.25 10.00 99.70 96.90 99.40 98.30 99.40 98.85
100 7.45 7.05 6.05 7.10 6.35 7.75 100.00 99.05 99.80 99.60 99.75 99.80
200 7.30 6.35 5.65 5.15 5.00 5.70 100.00 100.00 100.00 100.00 100.00 100.00

PANEL B: With an Intercept and a Linear Trend
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 0)

20 12.30 13.05 17.50 18.70 21.30 21.70 11.75 12.60 15.95 18.50 18.60 20.45
30 11.25 12.40 15.15 16.00 15.85 21.30 10.40 12.65 13.80 14.25 13.05 18.45
50 7.80 9.15 8.95 12.45 11.45 14.25 9.35 12.30 10.80 13.65 13.20 14.40
70 7.55 8.15 8.10 9.30 9.80 10.25 12.35 17.25 18.80 21.85 21.20 26.85
100 6.35 6.85 6.85 8.25 7.40 9.20 22.50 30.15 44.40 52.05 60.85 75.65
200 5.55 5.00 5.45 7.05 5.15 7.15 91.10 98.30 100.00 100.00 100.00 100.00

P �û (p = 0)
20 27.75 36.10 45.55 52.55 62.50 78.85 27.40 36.50 46.25 51.95 64.50 79.25
30 21.95 26.05 31.45 39.50 44.45 63.55 23.45 29.55 37.15 41.60 48.85 69.15
50 15.75 16.90 21.50 23.55 29.30 42.95 21.90 29.95 39.75 39.30 52.05 69.35
70 12.65 14.75 15.60 19.40 22.30 29.85 26.85 37.70 52.40 52.15 65.00 80.85
100 11.45 12.55 14.35 15.35 16.85 24.05 39.55 58.85 76.10 71.60 84.30 90.50
200 11.00 9.30 10.70 11.20 12.25 17.00 90.20 98.40 99.40 97.85 99.95 99.90

P �û;z(p = 0)
20 29.15 37.35 47.55 55.75 65.35 81.35 29.80 37.95 47.20 54.55 63.50 78.70
30 21.80 26.70 33.45 39.50 45.70 64.85 21.45 27.10 33.40 37.40 42.45 61.80
50 15.20 16.35 21.05 24.25 29.30 41.75 15.75 23.45 26.70 27.60 35.15 49.50
70 12.25 13.85 14.30 20.05 21.90 29.65 16.35 26.45 31.65 32.40 37.20 54.75
100 10.55 11.35 14.05 15.15 16.20 24.00 23.55 38.00 44.70 44.65 49.60 63.65
200 9.35 8.40 9.15 10.55 11.50 16.45 57.60 78.40 78.75 71.05 79.65 84.80
t#

20 94.80 97.00 98.90 99.30 99.70 99.85 95.05 97.40 98.60 99.60 99.55 100.00
30 77.45 86.95 94.80 97.25 98.85 99.90 78.40 87.90 95.15 96.25 98.15 99.35
50 42.70 55.65 68.70 79.25 87.30 97.35 48.85 61.05 74.75 78.40 86.00 92.60
70 29.15 38.50 50.60 59.40 70.00 89.15 34.00 43.30 57.35 64.60 72.70 84.60
100 18.85 24.50 31.50 40.45 47.65 71.15 23.30 30.70 42.10 49.95 58.80 72.45
200 9.50 12.65 14.65 16.75 20.60 32.35 12.35 17.15 26.40 32.40 42.70 55.35

Notes: See notes to Table 3. The data generating process is the same as the one for Table 3, except �f1 = �f2 = 0:3.
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Table 7: Size and Power of Panel Unit Root Tests with Two Factors (m0 = 2 and k = 1) with
Spatially Correlated Factor Loadings

PANEL A: With an Intercept Only
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 0)

20 5.35 4.00 4.40 5.45 4.60 5.65 7.85 5.60 4.65 7.30 5.85 7.20
30 5.00 4.25 4.50 4.80 4.45 4.90 9.25 7.90 7.65 6.60 7.40 9.90
50 4.45 4.00 5.20 4.55 4.35 5.50 15.85 16.35 19.85 19.80 20.60 27.30
70 5.90 4.85 5.25 4.85 4.20 4.00 28.15 36.05 46.00 44.55 50.75 62.40
100 4.25 4.30 3.00 6.20 4.70 4.30 50.45 69.95 85.10 88.95 93.85 98.05
200 4.90 4.35 4.25 4.80 4.60 4.35 99.60 100.00 100.00 100.00 100.00 100.00

P cû(p = 0)
20 11.15 12.05 9.45 10.80 11.45 15.80 17.30 23.00 29.85 35.80 43.25 66.55
30 7.70 7.60 8.40 8.50 9.80 10.50 24.05 35.10 50.65 56.00 70.55 87.40
50 6.85 7.00 7.35 7.00 8.40 7.30 46.80 72.55 82.95 87.40 94.75 97.30
70 6.65 6.10 7.60 7.45 7.30 7.30 68.00 89.85 95.65 96.70 98.80 99.10
100 7.10 8.10 7.25 6.35 6.80 6.45 89.60 98.70 99.55 99.60 99.90 99.90
200 7.20 6.75 6.15 6.75 5.85 5.85 99.80 100.00 100.00 100.00 100.00 100.00

P cû;z(p = 0)
20 9.75 10.00 9.75 11.35 13.05 16.90 14.25 17.10 18.55 27.75 33.05 51.55
30 7.90 7.15 8.25 8.30 9.55 11.25 18.50 21.40 26.05 38.20 47.90 65.65
50 7.00 6.65 7.70 6.75 7.65 7.85 30.35 40.70 43.75 63.10 68.95 79.65
70 6.05 6.05 6.90 7.05 6.75 6.90 45.10 51.25 54.15 74.45 80.15 88.20
100 6.10 6.95 6.75 5.65 7.00 6.25 59.60 67.10 66.55 85.35 86.40 91.90
200 6.20 6.05 5.35 6.45 5.65 5.25 85.25 80.40 80.65 93.10 95.55 98.60
t�b
20 14.30 8.80 10.45 14.65 16.50 23.05 76.50 88.95 93.65 94.65 96.65 97.90
30 12.85 7.90 8.75 12.00 12.35 17.00 87.00 96.90 98.25 97.55 98.25 99.40
50 8.90 6.80 7.60 9.65 8.85 12.80 95.20 99.30 99.60 99.70 99.70 99.70
70 8.65 5.75 7.05 9.25 7.90 9.95 97.15 99.95 99.95 99.80 99.95 99.85
100 10.40 7.45 7.60 8.15 7.50 8.45 99.15 100.00 100.00 99.95 100.00 100.00
200 8.90 6.55 6.85 6.45 5.80 6.45 100.00 100.00 100.00 100.00 100.00 100.00

PANEL B: With an Intercept and a Linear Trend
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 0)

20 4.65 3.60 4.70 4.60 5.05 5.80 4.75 3.50 4.90 4.80 5.30 3.95
30 5.10 4.85 4.20 4.40 4.50 4.30 5.30 5.60 5.30 5.05 5.35 4.75
50 4.90 4.50 3.80 4.85 5.00 4.70 7.50 9.55 7.00 8.40 9.35 8.65
70 4.70 4.80 4.65 4.50 4.10 4.70 8.90 14.45 16.85 14.35 18.35 22.60
100 5.15 4.15 4.45 4.95 4.30 4.55 19.75 31.60 44.15 45.40 54.60 72.55
200 4.55 4.25 3.60 4.35 4.50 4.85 90.70 98.85 100.00 100.00 100.00 100.00

P �û (p = 0)
20 20.40 22.50 28.30 33.50 38.45 52.45 21.55 24.70 31.40 36.40 43.75 58.35
30 14.10 18.10 17.60 19.90 26.65 37.20 17.20 23.15 27.60 30.75 40.00 54.65
50 10.80 12.50 15.50 14.65 15.95 24.15 20.05 28.50 36.80 41.60 53.45 70.25
70 9.90 11.45 12.75 13.95 13.55 17.85 26.05 42.40 57.80 63.05 76.25 87.65
100 9.75 10.05 11.85 11.30 11.85 16.20 43.80 67.10 83.70 89.40 94.35 96.15
200 8.40 9.90 9.45 8.60 9.30 12.45 94.10 99.50 99.85 99.85 100.00 99.85

P �û;z(p = 0)
20 20.35 22.30 28.05 34.45 39.05 55.05 20.10 22.75 30.25 35.75 42.40 57.35
30 12.65 17.85 17.40 21.20 26.30 37.65 14.95 19.05 24.30 26.50 34.50 46.60
50 9.95 12.50 14.15 14.35 16.15 23.65 16.00 22.25 28.05 29.95 38.00 52.40
70 9.35 10.60 12.10 12.85 13.00 17.70 20.05 28.50 41.70 42.30 50.70 63.70
100 9.20 9.20 10.65 11.15 10.65 15.20 32.10 43.25 60.85 59.90 68.35 74.20
200 7.55 8.40 7.80 8.65 9.30 11.70 77.55 80.95 91.65 84.60 89.40 91.30
t#

20 93.20 97.95 98.05 98.60 99.55 99.40 93.95 97.85 97.85 98.90 99.80 99.30
30 75.70 89.45 93.85 94.35 98.60 99.10 76.55 90.95 93.60 95.70 98.45 98.80
50 44.10 58.30 68.95 78.75 85.70 95.50 45.80 61.75 74.85 80.25 88.65 94.00
70 28.35 39.45 49.55 58.95 68.10 86.45 32.15 42.75 57.05 66.00 74.90 86.05
100 19.60 23.60 32.80 37.60 50.20 68.75 19.50 29.05 39.40 48.60 60.40 74.30
200 10.35 11.95 13.30 17.95 19.85 30.55 9.65 13.30 21.50 28.80 39.65 54.55

Notes: See notes to Table 3. The data generating process is the same as the one for Table 3, except 
ir � cr =

0:8
PN
j=1 sij

�

jr � cr

�
+ 'ir; 'ir � iidN(0; �2'i); r = y1; y2; x11; x12, where sij is the (i; j) element of an (N � N)

row standardised spatial weighting matrix, S = fsijg, with sij = 1 if units i and j are adjacent and sij = 0 otherwise. �2'i
is chosen so that var(
ir) = 1=3, and we set cy1 = 1, cy2 = 1, cx11 = 1, cx12 = 0.
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Table 8: Size and Power of Panel Unit Root Tests, m0 = 2 Unknown and Estimated Assuming
mmax = 3: xi1t and xi2t are Cointegrated

PANEL A: With an Intercept Only
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 0)

20 3.00 5.05 4.70 6.15 5.25 5.70 4.05 4.75 5.95 7.20 6.35 7.10
30 2.90 4.50 5.70 4.25 5.05 4.65 5.80 7.50 7.75 7.85 7.30 8.85
50 4.20 5.70 5.40 5.80 5.55 4.75 12.35 15.60 18.25 20.50 22.10 25.85
70 4.40 6.10 6.00 6.05 6.35 5.25 20.75 33.45 40.10 46.70 54.85 63.30
100 6.15 6.60 6.05 5.60 5.80 4.40 48.80 69.00 84.45 90.00 95.05 98.15
200 6.80 6.60 6.40 6.25 5.30 4.25 99.65 100.00 100.00 100.00 100.00 100.00

P cû(p = 0)
20 9.00 9.15 10.80 10.35 12.80 16.30 15.45 22.35 33.80 36.40 45.85 65.85
30 7.80 8.15 8.55 8.10 11.20 10.95 26.45 36.25 54.10 59.90 71.55 89.75
50 8.65 8.10 7.70 8.95 7.90 8.05 50.90 68.05 89.75 91.30 95.35 98.00
70 6.80 8.45 7.40 7.05 7.40 7.20 73.75 89.00 98.70 98.15 99.25 99.55
100 8.55 8.15 6.20 6.90 5.95 7.10 93.25 98.90 100.00 100.00 99.85 100.00
200 6.90 5.40 6.65 6.10 5.25 6.75 100.00 100.00 100.00 100.00 100.00 100.00

P cû;z(p = 0)
20 5.70 7.15 8.00 8.35 9.25 9.25 9.45 14.95 22.20 23.80 27.50 42.00
30 6.95 6.45 8.00 6.85 8.75 8.75 17.20 22.15 33.50 38.55 44.05 63.80
50 8.30 8.75 7.45 9.20 7.70 7.20 29.70 37.90 57.55 64.45 63.40 76.85
70 6.25 8.15 7.10 6.70 6.95 6.75 44.00 51.75 69.45 73.05 69.85 83.35
100 7.80 8.30 6.35 7.50 6.85 7.45 61.05 67.25 79.20 85.05 79.45 87.90
200 7.60 5.65 6.80 5.95 5.45 6.60 87.25 83.65 88.20 92.45 88.05 94.60
t�b
20 17.90 13.25 12.05 14.10 13.75 20.80 85.40 89.20 95.80 95.35 97.60 97.45
30 14.65 8.35 8.30 11.55 12.35 15.80 94.40 94.65 99.35 98.35 98.95 98.95
50 11.50 7.80 6.85 9.60 8.75 11.65 99.15 98.05 99.70 99.45 99.80 99.65
70 8.95 5.90 6.35 7.85 7.70 9.90 100.00 99.10 99.95 99.80 100.00 99.80
100 8.45 7.50 7.10 8.20 6.85 8.35 100.00 99.95 100.00 100.00 100.00 100.00
200 7.60 7.00 6.20 5.55 5.70 6.85 100.00 100.00 100.00 100.00 100.00 100.00

PANEL B: With an Intercept and a Linear Trend
Size: �i = � = 1 Power: �i � iidU [0:90; 0:99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p = 0)

20 2.60 3.25 5.05 5.20 5.95 5.10 2.15 4.00 5.40 5.10 5.35 4.40
30 3.30 4.85 5.25 5.00 5.10 5.55 3.30 5.50 6.15 5.35 5.05 5.55
50 4.40 5.20 5.30 5.70 5.05 5.15 5.35 8.20 8.55 8.10 8.15 8.45
70 4.30 6.15 6.00 5.00 5.95 4.75 7.85 14.65 16.10 18.00 17.00 21.05
100 5.95 6.65 7.15 5.75 5.50 5.25 18.00 28.90 44.00 48.65 55.30 69.40
200 7.50 6.50 7.15 6.35 4.75 6.10 89.30 98.65 100.00 100.00 100.00 100.00

P �û (p = 0)
20 19.80 21.65 27.85 31.50 38.20 51.50 19.40 24.75 30.65 35.15 43.50 59.65
30 15.30 16.25 20.40 23.00 25.55 37.60 17.70 22.20 29.00 31.95 39.05 58.50
50 12.45 12.20 13.65 16.40 16.20 23.15 21.25 28.40 39.55 42.30 55.25 76.75
70 10.55 11.05 11.50 14.00 15.40 17.90 28.70 42.60 59.35 65.15 75.75 92.65
100 10.30 10.15 11.30 11.80 12.40 17.00 46.15 69.50 87.90 86.45 95.00 98.25
200 10.50 8.55 9.30 9.70 9.45 12.65 95.95 99.80 99.95 99.90 100.00 100.00

P �û;z(p = 0)
20 11.80 15.60 20.75 27.15 32.65 41.40 12.55 18.00 22.50 29.35 34.80 47.45
30 13.10 15.30 18.85 20.10 23.50 32.70 14.15 19.40 21.95 27.00 29.45 46.30
50 11.10 11.70 13.55 15.05 16.65 21.00 15.65 23.60 29.45 32.45 39.25 57.75
70 10.40 11.55 11.30 13.70 15.30 17.40 21.25 33.90 40.50 46.90 50.95 71.95
100 10.35 10.75 11.50 11.65 11.90 16.10 32.60 52.15 59.45 67.15 69.85 82.65
200 10.70 8.65 9.50 9.95 10.45 13.35 74.85 89.90 90.80 90.15 92.70 95.25
t#

20 97.40 97.40 97.75 98.40 99.15 99.55 97.55 97.70 97.85 98.85 98.90 99.90
30 88.80 89.30 93.30 97.15 96.95 99.40 89.90 90.60 94.95 96.50 97.90 99.65
50 57.60 59.50 69.85 78.40 85.75 96.20 61.30 64.35 76.00 80.50 89.10 96.65
70 39.45 40.20 49.45 57.85 68.55 87.45 42.00 44.85 57.90 65.40 74.95 89.65
100 22.40 24.05 31.35 39.00 46.70 69.45 23.70 28.55 41.35 49.40 59.50 77.85
200 9.60 12.75 14.85 16.35 19.55 31.75 9.30 14.05 22.05 27.55 38.70 58.00

Notes: See notes to Table 3. The data generating process is the same as the one for Table 3, except 
ixj1 � iidU [0; 2]
and 
ixj2 = 0 for j = 1; 2, with "ixjt replaced by �"ixjt so that the cumulative sums become "ixjt � I(0). Under this
design x1it � I(1) and x2it � I(1), and they are cointegrated. The number of factors m0 is estimated with mmax = 3
by IC1 proposed by Bai and Ng (2002), then, m̂0 factors are extracted from yit for Pû and t�b (t

#) statistics and from
(yit; xi1t; xi2t) for Pû;z statistic. For CADF regressions, when m̂0 = 3 and 2; (xi1t; xi2t) and xi1t are used for augmentation
respectively, otherwise no additional regressors are used.
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Table 9. Results of CIPS Panel Unit Root Test for Real Interest Rates and Real Equity Prices,
for All Combinations of m̂0 � 1 Additional Regressors out of the Five Candidates (1979Q2 �
2003Q4)

Panel A Panel B
Real Interest Rates (N = 32; T = 94) Real Equity Prices (N = 26; T = 94)

With an Intercept With an Intercept and a Trend
m̂0 = 2 CIPS(p) m̂0 = 3 CIPS(p)

Included �xt p = 1 p = 2 p = 3 p = 4 Included �x0t p = 1 p = 2 p = 3 p = 4
poilt -4.94� -4.04� -3.06� -2.95� poilt; �r

L
t -2.56 -2.68 -2.78 -2.72

�rLt -5.31� -4.38� -3.40� -3.21� poilt; ��t -2.34 -2.42 -2.52 -2.48
eqt -5.05� -4.16� -3.14� -3.03� poilt; ept -2.42 -2.54 -2.59 -2.55
ept -5.17� -4.19� -3.23� -3.07� poilt; gdpt -2.01 -2.14 -2.32 -2.30
gdpt -5.27� -4.33� -3.22� -3.05� �rLt ; ��t -2.19 -2.36 -2.44 -2.25

�rLt ; ept -2.37 -2.56 -2.68 -2.69
�rLt ; gdpt -2.14 -2.26 -2.33 -2.15
��t; ept -2.38 -2.55 -2.67 -2.48
��t; gdpt -1.99 -1.98 -2.05 -2.02
ept; gdpt -2.73 -2.76 -2.80 -2.70

5% Critical Values 5% Critical Values
-2.39 -2.35 -2.34 -2.30 -3.02 -2.95 -2.92 -2.85

Note: All additional regressors, �xt, are assumed to be I(1) and not cointegrated among themselves. � denotes

the rejection of the null of the panel unit root hypothesis at the 5% signi�cance level. Critical values are obtained

by stochastic simulation as described in section 2.3

Table 10. Bai and Ng and Moon and Perron Panel Unit Root Test Results for Real Interest
Rates and Real Equity Prices over the Period 1979Q2� 2003Q4

PANEL A PANEL B
Real Interest Rates (N = 32) Real Equity Prices (N = 26)

With an Intercept With an Intercept and a Linear Trend
m̂0 = 2 m̂0 = 3

P cû(p) P cû;z(p) t�b P �û;z(p) P �û;z(p) t#

p = 1 15.29� 9.93� -17.48� p = 1 -0.04 0.12 -1.36
p = 2 19.03� 11.73� p = 2 1.71� 1.92�

p = 3 6.33� 2.72� p = 3 3.61� 4.16�

p = 4 7.81� 6.04� p = 4 4.42� 4.71�

Note: � denotes rejection at the 5% signi�cance level. Pû (Pû;z) is the Bai and Ng (2004) test based on factors

extracted from yit (yit and all other �ve candidate regressors), and t�b (t
#) is the test of Moon and Perron (2004)

with an intercept (and a linear trend). m̂0 is the estimated value of m0, the assumed true number of common

factors and p is the lag order of the ADF regressions. The Pû and Pû;z tests reject the null hypothesis of a

unit root if they are greater than 1.645, and t�b and t
# if they are less than -1.645. The Moon-Perron tests

adopt automatic lag-order selection for the estimation of long-run variances, which explains why only one value

is reported for each choice of m̂0.
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Table 11. Results of Panel Unit Root Test for the Real Interest Rates and the Real Equity
Prices with mmax = 6

Panel A: Real Interest rates (N = 32; T = 94)
With an Intercept

CIPS(p) (5% C.V.) P cû(p) P cû;z(p) t�b
p = 1 -5.64� (-3.06) 16.49� 6.70� -24.86�

p = 2 -4.63� (-2.93) 19.69� 7.72�

p = 3 -3.42� (-2.84) 6.10� 1.92�

p = 4 -3.04� (-2.70) 8.15� 2.74�

Panel B: Real Equity Prices (N = 26; T = 94)
With an Intercept and a Trend

CIPS(p) (5% C.V.) P �û (p) P �û;z(p) t#

p = 1 -2.81 (-3.39) -0.77 1.07 -1.81�

p = 2 -2.62 (-3.26) 0.91 2.57�

p = 3 -2.58 (-3.15) 2.45� 4.92�

p = 4 -2.21 (-2.99) 3.21� 4.63�

Note: � denotes rejection of the null of panel unit root hypothesis at the 5% signi�cance level. For the CIPS

test, the set of additional regressors �xt included for the real interest rates and for the real equity prices are

(poilt; �r
L
t ; eqt; ept; gdpt) and (poilt; �r

L
t ; ��t; ept; gdpt), respectively. The Pû(p) and t

�
b (t

#) tests are based on six

factors extracted from yit and for Pû;z(p) from (yit,x0it). The Pû and Pû;z tests reject the null hypothesis of a

unit root if they are greater than 1.645, and the t�b and t
# if they are less than -1.645. Critical values for the

CIPS statistic are obtained by stochastic simulation as described in section 2.3.
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