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Abstract

This paper considers the problem of testing for cross section indepen-
dence in limited dependent variable panel data models. It derives a
Lagrangian multiplier (LM) test and shows that in terms of general-
ized residuals of Gourieroux, Monfort, Renault and Trognon (1987)
it reduces to the LM test of Breusch and Pagan (1980). Due to the
tendency of the LM test to over-reject in panels with large N (cross
section dimension), we also consider the application of the cross section
dependence test (CD) proposed by Pesaran (2004). In Monte Carlo ex-
periments it emerges that for most combinations of N and T the CD
test is correctly sized, whereas the validity of the LM test requires T
(time series dimension) to be quite large relative to N . We illustrate
the cross-sectional independence tests by an application to a probit
panel of roll-call votes in the U. S. Congress and find that the votes
display a significant degree of cross section dependence.
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1 Introduction

Many panel data models assume that observations across individuals are
independent. However, there could be common shocks that affect all in-
dividuals but with differing degrees. Often economic theories also predict
that agents take actions that lead to interdependence among themselves.
For example, the prediction that risk-averse agents will make insurance con-
tracts allowing them to smooth idiosyncratic shocks implies dependence in
consumption across individuals. If observations are dependent across in-
dividuals, estimators that are based on the assumption of cross sectional
independence may be inconsistent. Since contrary to time series data, there
is no natural ordering for cross sectional indices, i, appropriate modeling
and estimation of cross sectional dependence can be difficult, in particular
if the dimension of cross sectional observations, N , is large and the time
series dimension, T , is small. Therefore, it is prudent to first test for cross
sectional dependence before embarking on estimation and inference.1

A popular approach to test for cross sectional independence is to pre-
specify the strength of cross-sectional correlation through an N ×N spatial
weighting matrix W , and then test if the proportional factor, ρ, is equal to
zero, see Moran (1948) and Kelejian and Prucha (2001). Under the null of
cross-sectional independence, ρ is equal to zero for any choice of W . How-
ever, the power of the test will be sensitive to the specification of W . An
alternative approach that does not depend on a particular choice of the spa-
tial weighting matrix is the Lagrangian multiplier (LM) test proposed by
Breusch and Pagan (1980) to test the diagonality of the error covariance
matrix of a seemingly unrelated equation system. In the context of linear
panels, the LM statistic is N times the average of the squared pair-wise
correlation coefficients of the residuals. However, there is a fundamental
difference between limited dependent variable type models and linear mod-
els. There is a one-to-one correspondence between the residuals and the
observed variables in linear models, which is absent for limited dependent
variable models.

In this paper, we derive an LM test of cross section independence for
limited dependent variable panel data models and show that an asymptotic
version of the test can be written as the LM test of Breusch and Pagan, but in
terms of the generalized residuals defined by Gourieroux, Monfort, Renault
and Trognon (1987). However, as noted by Pesaran (2004) and further
elaborated by Pesaran, Ullah and Yamagata (2008), when N is large relative

1In a recent paper, Ng (2006) employs spacing variance ratio statistics to test the sever-
ity of cross section correlation in panels by partitioning the pair-wise cross-correlations
into groups from high to low. The proposed statistics are intended as agnostic tools for
identifying and characterizing correlations across groups. However, they cannot be used
as diagnostic tests of cross section independence that underlie the standard analysis of
panel data.
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to T the LM test is not correctly centered and can lead to serious over-
reject of the null of cross section independence. To deal with this problem
Pesaran, Ullah and Yamagata (2008) propose a bias-adjusted version of
the LM test for linear models that seem to work well when the errors are
normally distributed and the regressors are strictly exogenous. However,
if the model is nonlinear, it does not appear feasible to derive the exact
mean and variance of the squared pair-wise correlation coefficients of the
generalized residuals.

As an alternative to the test based on the square of the error correlation
coefficients, Pesaran (2004) proposes a cross-sectional dependence test that
uses the simple average of all pair-wise correlation coefficients (CD test),
which is closely related to the CAVE by Frees (1995). Pesaran shows that for
the linear model the CD test is correctly centered for fixed N and T under the
null of cross section independence assuming that the errors are symmetrically
distributed. We explore the use of the CD test in the limited dependent
variable model and derive asymptotic results for non-linear models with
additive error terms. Using Monte Carlo experiments we find that the CD
test performs well even in cases where N and T are relatively small. The
CD test shows some size distortion only in the cases where N = 500 and T
relatively small around 20 or less. In contrast, the size distortion of the LM
test is significant except for the case when T is much larger than N .

Since for some non-linear models it is rather complicated to derive the
generalized residual, in the Monte Carlo experiments we also consider us-
ing in-sample forecast errors, standardized to allow for the heteroskedastic
nature of such errors in limited dependent variable models. Following Mc-
Cullagh and Nelder (1989), we refer to the latter as the Pearson residual.
We investigate the small sample performance of the LM and CD tests using
both types of residuals and find that there is little to choose between the
generalized and the Pearson residuals.

Finally, we illustrate the CD test by an application to a probit panel
data model of the voting behavior of the members of the U. S. Congress
previously analyzed by Wawro (2001). The explanatory variables consid-
ered are campaign contributions of business and labor lobby groups and the
unemployment rate in the constituency of the voting member. We find clear
evidence against the null hypothesis of cross section independence. This
result is confirmed using bootstrap critical values for the CD test.

The rest of the paper is set out as follows. Section 2 introduces the lim-
ited dependent variable panel data model. Section 3 discusses the tests for
cross section independence. The small sample performance of the tests are
evaluated using Monte Carlo experiments in Section 4. Section 5 illustrates
the use of the tests in the empirical application. Section 6 provides some
concluding remarks. Technical details of some of the derivations are pro-
vided in Appendices A to C. Appendix D describes the bootstrap procedure
used to approximate the finite sample distribution of the CD test in the
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empirical application.

2 The limited dependent variable panel data model

Suppose that the latent variable, y∗it, is generated by the following panel
data model,

f(y∗it, xit, θi) = εit, for i = 1, 2, . . . , N, t = 1, 2, . . . , T, (1)

where xit is a k × 1 vector of exogenous variables, θi is a q × 1 vector of
unknown parameters that may or may not be identical across i, εit is a
scalar disturbance, N is the number of cross section observations, and T is
the number of time series observations. The variable yit is observed, which
is related to the latent variable, y∗it, via the link function g(·),

yit = g(y∗it). (2)

This specification encompasses many econometric models. Examples
include the probit model where

f(y∗it, xit, βi) = y∗it − β′ixit = εit, (3)

εit follows a standard normal distribution, and

g(y∗it) = I(y∗it), (4)

where I(A) is the indicator function which is unity if A > 0 and zero other-
wise.

The Tobit model is obtained if the latent model is that of equation (3),
errors are normal and the link function is

g(y∗it) = y∗itI(y
∗
it). (5)

In what follows we assume that εt, εt = (ε1t, ε2t, . . . , εNt)′, conditional
on xit is independently distributed over time with mean 0 and the covariance
matrix Σ, and focus on testing Σ = D against Σ 6= D, where D is a diagonal
matrix. A non-diagonal Σ could arise, for example, from the presence of
unobserved common factors

εit = γ ′if t + eit, (6)

where γi is the vector of factor loadings, f t ∼ iid (0,Σf ), and eit ∼ iid (0, σ2
ie).
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3 Testing for cross-sectional independence

Let yt = (y1t, y2t, . . . , yNt)′, and denote the probability of observing yt, by
Pt. We have

Pt =
∫

A(εt|yt)
f(εt)dεt, (7)

where
f(εt) = (2π)−

N
2 | Σ |− 1

2 exp{−1
2
(ε′tΣ

−1εt)},
and A(εt|yt) denotes the region of integration which is determined by the
realized yt and the form of the link function. For instance, in the case of
the iid probit model A(εt|yt) denotes the region {ait < εit < bit}. When
y∗it = β′ixit + εit and yit = 1 then ait = −β′ixit, bit = ∞, and when yit = 0
then ait = −∞, and bit = −β′ixit.

Cross-sectional independence implies that all off-diagonal elements of
Σ are zero under joint normality assumption. Since the variance of each
cross-sectional unit is just a scale factor and does not affect the limiting
distribution of the LM statistic or its variant, for ease of notation we set
the variance of εit to 1, Var(εit) = σ2

i = 1, then Σ = R where the diagonal
elements of R are all equal to 1 and the off-diagonal elements, ρij , denote
the correlation coefficients between the two errors, εit and εjt. Then under
the null hypothesis of cross-sectional independence,

H0 : R = IN ,

where IN is an identity matrix of order N , and the alternative is

H1 : R 6= IN .

It will be assumed that A(εt|yt) does not depend on R.

3.1 The Lagrange-multiplier test

In the case where N is fixed and T → ∞, the test of H0 can be based on
the Lagrange multiplier (LM) statistic defined by,

LM =

(
T−1/2 ∂`NT (ρ)

∂ρ

∣∣∣∣
R=IN

)′(
−E

[
T−1 ∂2`NT (ρ)

∂ρ∂ρ′

∣∣∣∣
R=IN

])−1

(8)

(
T−1/2 ∂`NT (ρ)

∂ρ

∣∣∣∣
R=IN

)
,

where `NT is the log likelihood of yt, which is given by

`NT =
T∑

t=1

ln Pt. (9)
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Taking the first partial derivatives of the log likelihood in (9) with respect
to ρij yields

∂`NT

∂ρij
=

T∑

t=1

1
Pt
· ∂Pt

∂ρij
(10)

∂Pt

∂ρij
=

∫

A(εt|yt)

∂ ln f(εt)
∂ρij

f(εt)dεt,

where
∂ ln f(εt)

∂ρij
= −1

2
tr(R−1Aij) +

1
2
ε′tR

−1AijR
−1εt, (11)

and Aij is an N ×N matrix with all the elements equal to zero except for
the (i, j) and (j, i) elements which are equal to 1.

Under the null of R = IN , f(εt) =
∏N

i=1 φ(εit), where φ(·) denotes
the standard normal density, ∂ ln f(εt)/∂ρij |R=IN

= εitεjt, and (note that
tr(Aij) = 0)

1
Pt
· ∂Pt

∂ρij

∣∣∣∣
R=IN

= uitujt, (12)

where uit is the conditional expectation of εit given yit and xit, namely,

uit =

∫ bit

ait
εitφ(εit)dεit∫ bit

ait
φ(εit)dεit

. (13)

Hence
∂`NT

∂ρij

∣∣∣∣
R=IN

=
T∑

t=1

uitujt. (14)

In general, uit depends on the unknown parameters entering the expres-
sions for ait and bit. When these parameters are replaced by their estimators
(say ãit and b̃it) the estimate of uit which we denote by ũit is the so called
generalized residual, E(εit | yit, ãit, b̃it), originally introduced by Gourieroux,
Monfort, Renault and Trognon (1987, GMRT). To avoid confusion we refer
to uit as the generalized error.

The exact expression for uit clearly depends on the form of the link
function. For instance, in the case of the probit model

uit =
φ(ait)− φ(bit)
Φ(bit)− Φ(ait)

,

=
φ(β′ixit)

Φ(β′ixit)[1− Φ(β′ixit)]
[yit − Φ(β′ixit)] (15)

and Φ(·) denotes the integrated standard normal. See Appendix A for de-
tails. In the case of the Tobit model we have

uit = (yit − β′ixit)I(yit)− σi
φ(β′ixit/σiu)

Φ(−β′ixit/σiu)
[1− I(yit)], (16)
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where σiu is the standard deviation of the error term (Chesher and Irish,
1987).

Using the results in Appendix B we have that

∂2`NT

∂ρ2
ij

∣∣∣∣∣
R=IN

= −
T∑

t=1

u2
itu

2
jt +

T∑

t=1

(
1− η2

it

) (
1− η2

jt

)
,

where

η2
it =

∫ bit

ait
ε2
itφ(εit)dεit∫ bit

ait
φ(εit)dεit

= 1−
[
bitφ(bit)− aitφ(ait)

Φ(bit)− Φ(ait)

]
.

For example, in the case of the probit model (where ait = −β′ixit, bit =
∞, if yit = 1 and ait = −∞, and bit = −β′ixit, if yit = 0), we have 1− η2

it =
uitβ

′
ixit. Therefore, when N = 2 the correlation matrix R is a 2× 2 matrix

and testing the null hypothesis reduces to testing the off-diagonal element
ρ12 = 0, where

− 1
T

∂2`NT

∂ρ2
12

=
1
T

T∑

t=1

u2
1tu

2
2t −

1
T

T∑

t=1

(
β′1x1tx

′
2tβ2

)
u1tu2t. (17)

When N = 3 the test involves the vector of correlation coefficients,
ρ = (ρ12, ρ13, ρ23). The Hessian matrix is now a full 3 × 3 matrix with
diagonal elements

− 1
T

∂2`NT

∂ρ2
ij

=
1
T

T∑

t=1

u2
itu

2
jt −

1
T

T∑

t=1

uitujt

(
β′ixitx

′
jtβj

)
for i 6= j

and the off-diagonal elements

− 1
T

∂2`NT

∂ρ12∂ρ13
= − 1

T

T∑

t=1

u2tu3t, − 1
T

∂2`NT

∂ρ12∂ρ23
= − 1

T

T∑

t=1

u1tu3t,

− 1
T

∂2`NT

∂ρ13∂ρ23
= − 1

T

T∑

t=1

u1tu2t.

Similarly, using the above results the Hessian matrix can be set up for any
fixed N .

A number of different versions of the LM test can be constructed, depend-
ing on how the various terms in T−1 ∂2`NT (ρ)

∂ρ∂ρ′

∣∣∣
R=IN

are evaluated/estimated.

For example, in Section 3.7 of their paper GMRT consider the case of N = 2,
leave the term T−1

∑T
t=1 u2

1tu
2
2t as is but (implicitly) replace the second term

in (17) , namely −T−1
∑T

t=1

(
β′1x1tx

′
2tβ2

)
u1tu2t, by its asymptotic value of

zero under H0. Hence suggest the following score statistic

LMGMRT =

(
T−1/2

∑T
t=1 ũ1tũ2t

)2

T−1
∑T

t=1 ũ2
1tũ

2
2t

, (18)
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where ũit for i = 1 and 2 are the generalized residuals computed under the
null hypothesis, see also Chesher and Irish (1987).

However, for the general case it is more convenient to replace the Hessian
matrix by its expectations (or probability limit) under the null hypothesis.
Since for each i, uit is serially uncorrelated and under H0, E(uitujt) = 0 for
all i 6= j, it then follows that

plim
T→∞

(
T−1

T∑

t=1

uitujt

)
= 0, for i 6= j.

Also,

plim
T→∞

(
T−1 ∂2`NT

∂ρ2
ij

)
= σ2

iuσ2
ju, for i 6= j,

where σ2
iu = p limT→∞T−1

∑T
t=1 u2

it = limT→∞T−1
∑T

t=1 E(u2
it). Hence,

plim
T→∞

[
−T−1 ∂2`NT (ρ)

∂ρ∂ρ′

∣∣∣
R=IN

]
reduces to an N(N − 1)/2 by N(N − 1)/2

diagonal matrix with the elements

σ2
1uσ2

2u, σ2
1uσ2

3u, . . . , σ2
1uσ2

Nu; σ2
2uσ2

3u, σ2
2uσ2

4u, . . . , σ2
2uσ2

Nu; . . . ; σ2
N−1,uσ2

Nu.

In the construction of the LM test, σ2
iu, can be consistently estimated by

T−1
∑T

t=1 ũ2
it.

Proposition 1 Consider models of the form (1) and (2). When the N × 1
vector εt is independently distributed with mean 0 and covariance matrix IN ,√

T ρ̃ij → N(0, 1), where ρ̃ij is the Pearson correlation coefficient computed
using the generalized residuals estimated under the null hypothesis, namely

ρ̃ij =
T−1

∑T
t=1 ũitũjt√

T−1
∑T

t=1 ũ2
it

√
T−1

∑T
t=1 ũ2

jt

, (19)

In the case where N is fixed and T →∞, the LM statistic

LM = T
N−1∑

i=1

N∑

j=i+1

ρ̃2
ij (20)

converges to a χ2-distribution with N(N − 1)/2 degrees of freedom.

The LM test, being based on the likelihood function, has a number
of attractive features and is consistent against a wide class of alternatives.
However, a typical panel data set has N much larger than T . While for large
N the scaled LM statistic,

√
2

N(N−1)LM, continues to be asymptotically
normally distributed as long as ũit is independently distributed across i,
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E(T ρ̃2
ij) 6= 0 for all T . As a result, the scaled LM statistic will not be

properly centered when N is large relative to T . Results from our Monte
Carlo experiments reported in Section 4 confirm this. As a result, in panels
where N > T , the LM test tends to over-reject, often substantially.

To correct for the bias in large N and finite T panels in the case of
linear models, Pesaran, Ullah and Yamagata (2008) propose the following
bias-adjusted version of the LM test

NLMadj =

√
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

(T − k)ρ̃2
ij − µTij

υT ij
, (21)

where µT ij = E
[
(T − k) ρ̃2

ij

]
and υ2

Tij = Var
[
(T − k) ρ̃2

ij

]
. It is shown that

this statistic is asymptotically distributed as N(0, 1) for all T > k+8 and as
N → ∞, where k is the number of regressors in the model. These authors
are able to derive exact expressions for µTij and υ2

Tij when the regressors are
strictly exogenous and the errors are normally distributed. In principal, the
same procedure can be applied to nonlinear panels but an exact analytical
derivation of µTij and υ2

T ij does not seem possible. Numerical techniques
can be used, but could be quite time consuming and will not be pursued in
this paper.

3.2 CD test

Given the over-rejection of the LM test when N is large and the compli-
cations of the bias-adjusted LM test, we consider the CD test proposed by
Pesaran (2004) which is shown to have desirable small sample properties in
the context of linear models.

Proposition 2 Consider models of the form (1) and (2). When the N × 1
vector εt is independently distributed with mean 0 and covariance matrix
IN ,

√
T ρ̃ij → N(0, 1), where ρ̃ij is the Pearson correlation coefficient com-

puted using the generalized residuals estimated under the null hypothesis
given in (19). When N,T →∞, the CD statistic

CD =

√
2T

N(N − 1)




N−1∑

i=1

N∑

j=i+1

ρ̃ij


 , (22)

converges to a standard normal distribution, N(0, 1).

We provide a proof for a general nonlinear model in Appendix C. The
power of the CD test approaches unity if the average of the pair-wise cor-
relation coefficients is different from zero. LM tests, on the other hand,
will have power approaching one without requiring the average of the cross-
correlations to be non-zero. Thus there is a trade-off between LM and CD
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tests. The LM test tends to over-reject if N is large but has power against a
wider class of alternatives than the CD test. On the other hand, we expect
the CD test to have little size distortions even for large N , but it is likely
to lack power if

lim
N→∞


 2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

ρij


 = 0.

3.3 Pearson residuals

The above statistics are defined in terms of the generalized residuals, that is,
conditional expectations of εit given yit. For some nonlinear models E(εit|yit)
may be tedious to derive. An alternative will be simply to define the residual
as the deviation between yit and its conditional expectation (evaluated at
θit = θ̃it)

ṽit = yit − E
(
yit|xit, θ̃it

)
.

Given that for many models the residuals of this form will not be ho-
moskedastic, one should consider standardizing these residuals. For the
probit model, for example, the standardized version of ṽit is

ṽ∗it =
yit − Φ(β̃

′
ixit)√

Φ(β̃
′
ixit)(1− Φ(β̃

′
ixit))

, (23)

where β̃i is the ML estimator of βi under the null hypothesis. Following
McCullagh and Nelder (1989, p.37), we shall refer to v∗it, generically defined

by ṽ∗it =
[
yit − E

(
yit|xit, θ̃it

)]
/

√
Var

(
yit|xit, θ̃it

)
, as the Pearson residual.

We will investigate the performance of the LM and CD tests in (20) and (22)
when the correlation coefficient is constructed from the Pearson residual and
compare the results to the case when the generalized residuals are used.

For the Tobit model we have

ṽit = yit −
(
β̃
′
ixit + σ̃iuλit

)
Φ

(
β̃
′
ixit/σ̃iu

)
. (24)

with the associated Pearson residual is given by

ṽ∗it =
yit −

(
β̃
′
ixit + σ̃iuλit

)
Φ(wit)

√
σ̃2

iu

{[
w2

it + witλit + 1
]
Φ(wit)− [(wit + λit)Φ (wit)]

2
} (25)

where wit = β̃
′
ixit/σiu, σ̃iu is the estimator of the standard error of the

disturbance term in the Tobit model and λit = φ(wit)/Φ(wit) is the inverse
Mills ratio with argument −wit. See Appendix A for details.
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4 Small sample properties: Monte Carlo evidence

4.1 Data generating process

The Monte Carlo experiments are based on the following data generating
process (DGP) for the latent variable,

y∗it = αi + βixit + εit, (26)

where i = 1, 2, . . . , N, and t = 1, 2, . . . , T, with βi = 1. The regressors are
generated as

xit = δfxt + ηit

ηit = ληi,t−1 + ζit, ζit ∼ iid N(0, 1), and fxt ∼ iidN(0, 1). We set δ = 1 and
λ = 0.5. Finally, the fixed effects are generated as

αi = x̄i + Ŝxiνi,

where x̄i =
∑T

t=1 xit/T , Ŝxi =
[
(N − 1)−1

∑N
i=1(x̄i − ¯̄x)2

]1/2
, ¯̄x =

∑N
i=1 x̄i/N ,

and νi ∼ iidN(0, 1). Hence, the setup covers the case, where the individual
specific effects are allowed to be correlated with the explanatory variables.
This is an important consideration in the analysis of micro panels, as noted,
for example, by Chamberlain (1980). The results are based on 2000 replica-
tions per experiment.

The estimation of β under a probit specification only makes use of yit =
I (y∗it), and under the Tobit specification yit = y∗itI (y∗it). Hence, without loss
of generality the variance of the error term, εit, may be set equal to unity. To
investigate the power of the proposed tests we allow for correlation across the
errors of different cross section units by adopting the following standardized
one-factor structure

εit =
γifεt + eit√

1 + γ2
i

where γi is a scalar, fεt ∼ iidN(0, 1), and eit ∼ iid N(0, 1). Under these
assumptions we have E(εit) = 0 and Var(εit) = 1. The pair-wise correlation
coefficient of the errors is given by

Corr (εit, εjt) =
γiγj√(

1 + γ2
i

)
(1 + γ2

j )
.

In the experiments reported below we use γi = 0, ∀i, γi ∼ U(0.1, 0.3),
and γi ∼ U(−0.2, 0.6), where U(a, b) denotes the uniform distribution with
lower bound a and upper bound b.

Using the artificial data, αi, βi, (and σi in the case of the Tobit model)
are estimated under the assumption of cross section independence by max-
imum likelihood for each i separately. Then, ρ̃ij is computed using the two
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alternative residuals, namely the generalized and the Pearson residuals (ũit

and ṽ∗it, respectively) as set out in Appendix A, and the LM and CD test
statistics are then calculated using (20) and (22), respectively.

4.2 Monte Carlo results

Table 1 presents the size and power of CD and LM tests for the probit
models, and Table 2 presents the size and power of CD and LM tests for the
Tobit model. The results in these tables suggest the following.

(i) There are substantial size distortions for the LM test unless T is much
larger than N .

(ii) The empirical size is close to the nominal size for the CD test even for
N and T as small as 10. For N = 500 the size of the LM test is 1 for
all T , whereas the CD test is slightly oversized only when T is much
smaller than N . This result holds generally and does not require the
fixed effects to be uncorrelated with the regressors. When N is much
larger than T we recommend using bootstrap method to approximate
critical values. See the empirical illustration and Appendix D.

(iii) The power of CD test improves as either N or T increases. However,
the power improves much faster when N increases than when T in-
creases. When T = 20 and N = 100, the power is about 0.7 for the
probit model and greater than 0.9 for the Tobit model. On the other
hand, when N = 20 and T = 100, the power of CD test is about 0.5
for the probit model and less than 0.9 for the Tobit model.

(iv) The test results are reasonably robust to the way residuals from the
nonlinear models are computed. There is little to choose between the
two CD tests based on the generalized or the Pearson residuals.

(v) Even when the LM test has the correct size, as in the case where
T = 100 and N = 10, the CD test continues to exhibit a higher power.

5 Application to an analysis of campaign contri-
butions and roll-call votes

Here we provide an empirical application of the CD test to the probit model
of voting behavior investigated by Wawro (2001). Using data on the voting
behavior of members of the US Congress, Wawro analyzes the influence
of campaign contributions of a business lobby group (the US Chamber of
Commerce, USCC) and a labor lobby group (the American Federation of
Labor-Congress of Industrial Organizations, AFL-CIO) on voting outcomes
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Table 1: Size and power of CD and LM tests: The probit model
Generalized residuals, ũit Pearson residuals, ṽ∗it

T\N 10 20 30 50 100 500 10 20 30 50 100 500
Size: γi = 0, ∀i

CD test
10 0.065 0.063 0.071 0.061 0.063 0.129 0.062 0.061 0.070 0.059 0.064 0.155
20 0.057 0.059 0.062 0.061 0.061 0.072 0.059 0.061 0.068 0.058 0.062 0.101
30 0.053 0.054 0.062 0.045 0.053 0.054 0.051 0.055 0.062 0.045 0.053 0.078
50 0.050 0.050 0.056 0.050 0.059 0.063 0.053 0.054 0.059 0.051 0.059 0.069

100 0.052 0.059 0.051 0.063 0.052 0.045 0.049 0.053 0.050 0.060 0.056 0.048
LM test

10 0.200 0.447 0.722 0.969 1.000 1.000 0.205 0.456 0.724 0.972 1.000 1.000
20 0.094 0.216 0.390 0.688 0.988 1.000 0.090 0.218 0.381 0.690 0.987 1.000
30 0.078 0.139 0.254 0.459 0.903 1.000 0.082 0.135 0.252 0.459 0.906 1.000
50 0.067 0.097 0.130 0.272 0.637 1.000 0.062 0.098 0.118 0.260 0.632 1.000

100 0.060 0.082 0.085 0.137 0.351 1.000 0.064 0.082 0.086 0.135 0.368 0.996
Power: γi ∼ U(0.1, 0.3)

CD test
10 0.087 0.117 0.171 0.256 0.466 0.983 0.086 0.120 0.172 0.265 0.469 0.986
20 0.113 0.180 0.268 0.423 0.707 1.000 0.108 0.174 0.265 0.422 0.705 1.000
30 0.119 0.227 0.356 0.574 0.843 1.000 0.117 0.222 0.349 0.576 0.837 1.000
50 0.157 0.356 0.536 0.765 0.941 1.000 0.163 0.350 0.530 0.771 0.943 1.000

100 0.233 0.552 0.791 0.947 0.997 1.000 0.231 0.544 0.797 0.951 0.999 1.000
LM test

10 0.187 0.476 0.737 0.973 1.000 1.000 0.189 0.478 0.740 0.972 1.000 1.000
20 0.124 0.251 0.399 0.772 0.991 1.000 0.122 0.252 0.402 0.776 0.992 1.000
30 0.095 0.177 0.279 0.583 0.948 1.000 0.096 0.176 0.290 0.596 0.955 1.000
50 0.100 0.130 0.236 0.439 0.850 1.000 0.101 0.138 0.242 0.437 0.882 1.000

100 0.099 0.149 0.234 0.437 0.814 1.000 0.095 0.149 0.227 0.431 0.879 1.000
Power: γi ∼ U(−0.2, 0.6)

CD test
10 0.083 0.109 0.156 0.224 0.426 0.971 0.085 0.106 0.157 0.230 0.434 0.976
20 0.108 0.153 0.218 0.378 0.642 1.000 0.107 0.153 0.220 0.383 0.634 1.000
30 0.109 0.220 0.304 0.493 0.784 1.000 0.105 0.217 0.305 0.494 0.778 1.000
50 0.152 0.305 0.450 0.670 0.928 1.000 0.147 0.302 0.452 0.671 0.929 1.000

100 0.213 0.431 0.643 0.856 0.994 1.000 0.215 0.440 0.645 0.859 0.993 1.000
LM test

10 0.210 0.456 0.729 0.970 1.000 1.000 0.209 0.454 0.732 0.971 1.000 1.000
20 0.136 0.275 0.448 0.793 0.995 1.000 0.140 0.277 0.453 0.801 0.996 1.000
30 0.105 0.213 0.358 0.645 0.967 1.000 0.107 0.199 0.360 0.650 0.983 1.000
50 0.130 0.214 0.363 0.615 0.916 1.000 0.124 0.212 0.359 0.632 0.960 1.000

100 0.160 0.327 0.513 0.746 0.942 1.000 0.148 0.319 0.522 0.769 0.984 1.000
The table reports the percentage of rejections of the null of cross section independence for the LM and the

CD test statistics defined by (20) and (22), using generalized and Pearson residuals as set out in Section 3.

The tests are carried out at the 5 per cent significance level, with 2000 replications per experiment.
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Table 2: Size and power of CD and LM tests: The Tobit model
Generalized residuals, ũit Pearson residuals, ṽ∗it

T\N 10 20 30 50 100 500 10 20 30 50 100 500
Size: γi = 0, ∀i

CD test
10 0.062 0.055 0.065 0.060 0.063 0.103 0.057 0.071 0.057 0.063 0.067 0.176
20 0.057 0.054 0.062 0.057 0.059 0.060 0.063 0.056 0.050 0.056 0.061 0.123
30 0.050 0.060 0.058 0.059 0.056 0.062 0.064 0.060 0.060 0.064 0.066 0.085
50 0.047 0.057 0.049 0.061 0.065 0.057 0.049 0.060 0.056 0.056 0.063 0.076

100 0.047 0.062 0.055 0.044 0.046 0.060 0.046 0.054 0.063 0.051 0.051 0.061
LM test

10 0.193 0.492 0.769 0.983 1.000 1.000 0.187 0.482 0.765 0.985 1.000 1.000
20 0.134 0.267 0.464 0.771 0.993 1.000 0.129 0.274 0.449 0.779 0.991 1.000
30 0.111 0.192 0.316 0.572 0.932 1.000 0.108 0.189 0.312 0.579 0.938 1.000
50 0.075 0.118 0.199 0.401 0.764 1.000 0.072 0.140 0.195 0.390 0.757 1.000

100 0.083 0.079 0.141 0.247 0.572 1.000 0.074 0.097 0.138 0.259 0.562 0.996
Power: γi ∼ U(0.1, 0.3)

CD test
10 0.135 0.265 0.388 0.598 0.877 1.000 0.141 0.267 0.391 0.601 0.880 1.000
20 0.190 0.379 0.570 0.796 0.973 1.000 0.183 0.399 0.574 0.798 0.971 1.000
30 0.208 0.466 0.688 0.908 0.995 1.000 0.199 0.476 0.690 0.903 0.998 1.000
50 0.290 0.647 0.870 0.985 1.000 1.000 0.301 0.658 0.871 0.988 1.000 1.000

100 0.458 0.884 0.987 1.000 1.000 1.000 0.450 0.877 0.991 1.000 1.000 1.000
LM test

10 0.228 0.544 0.806 0.991 1.000 1.000 0.208 0.546 0.803 0.990 1.000 1.000
20 0.180 0.397 0.582 0.887 1.000 1.000 0.187 0.383 0.607 0.892 1.000 1.000
30 0.146 0.309 0.513 0.809 0.997 1.000 0.137 0.300 0.513 0.811 0.996 1.000
50 0.149 0.297 0.487 0.810 0.988 1.000 0.153 0.283 0.509 0.818 0.990 1.000

100 0.191 0.371 0.595 0.876 0.999 1.000 0.186 0.379 0.602 0.893 1.000 1.000
Power: γi ∼ U(−0.2, 0.6)

CD test
10 0.142 0.257 0.361 0.559 0.851 1.000 0.142 0.247 0.369 0.569 0.838 1.000
20 0.165 0.343 0.499 0.734 0.958 1.000 0.161 0.344 0.477 0.739 0.953 1.000
30 0.213 0.415 0.609 0.841 0.989 1.000 0.202 0.410 0.602 0.827 0.988 1.000
50 0.279 0.529 0.758 0.934 0.999 1.000 0.282 0.529 0.746 0.961 0.999 1.000

100 0.405 0.703 0.891 0.989 1.000 1.000 0.382 0.712 0.889 0.989 1.000 1.000
LM test

10 0.245 0.566 0.831 0.993 1.000 1.000 0.237 0.577 0.836 0.992 1.000 1.000
20 0.201 0.454 0.691 0.933 1.000 1.000 0.191 0.452 0.688 0.940 1.000 1.000
30 0.216 0.449 0.700 0.928 1.000 1.000 0.220 0.445 0.693 0.937 1.000 1.000
50 0.278 0.521 0.758 0.944 1.000 1.000 0.287 0.536 0.761 0.944 1.000 1.000

100 0.411 0.749 0.916 0.992 1.000 1.000 0.401 0.744 0.918 0.992 1.000 1.000
The generalized and Pearson residuals for the Tobit model are derived in Appendix A and set out in Section 3.

Also see the notes to Table 1.
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with the unemployment rate in the constituency of the voting member as
an additional explanatory variable.

The data set, which is available from Prof. Wawro’s web page2, contains
data for a selection of the roll-call votes for the 102th, 103rd and 104th
Congress, where the selected roll-call votes are those that the lobby groups
themselves deemed important. Hence, we have six data sets, two for each
Congress where one contains the votes selected by the USCC and the other
the votes selected by the AFL-CIO. We test for cross section independence
in each of the six data sets.

The data sets have between T = 13 and 15 motions, where T is the
number of motions that are put before Congress and are recorded in Wawro’s
data set. Given that the number of roll-call votes, viewed as the cross section
dimension, N , is much larger than the number of motions, taken as the time
series dimension, T , the LM test will suffer from serious size distortions. The
Monte Carlo results above demonstrate that the CD test has the correct size
in such cases. We will therefore restrict our attention to the CD test.

Wawro (2001, p.570) includes motion-specific dummies to account for
the particular political context around each roll-call vote. Clearly, if we
cannot reject cross section independence a motion specific intercept would
not be necessary. We test for cross section independence using a probit
model under slope homogeneity and when the slope coefficients are allowed
to vary across individual members of Congress. In this way the sensitivity
of the test outcomes to slope heterogeneity can be assessed.

We proceed as follows. We estimate the parameters of the probit model
by maximizing the likelihood

Li =
T∏

t=1

Φ(zit)yit [1− Φ(zit)](1−yit), for i = 1, 2, . . . , N, (27)

where zit = β′xit under slope homogeneity (pooled specification), and
zit = β′ixit in the specification with individual specific parameters, yit is
a binary indicator for the votes of the ith member of Congress (“aye” or
“nay”) in the tth motion, xit contains an intercept, the contributions of the
USCC, the contributions of the AFL-CIO, and the unemployment rate in
the constituency of the voting member.

Using the ML estimator of β or βi we calculate the generalized residual
as given in (15) and the Pearson residual defined by (23). From these we
obtain the pair-wise correlation coefficients, ρ̃ij . Due to the unbalanced
nature of the panel under consideration, the CD statistic is computed as

CD =

√
2

N(N − 1)




N−1∑

i=1

N∑

j=i+1

√
Tij ρ̃ij


 , (28)

2http://www.columbia.edu/∼gjw10/panelprobit.html
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where Tij is the number of motions where observations on votes are available
for both i and j individuals.

The Monte Carlo results in the pervious section suggest that the CD test
could have a slightly larger than nominal size for some of the combinations
of N and T in this application. We therefore calculated bootstrap critical
values for the CD test. Details of the bootstrap procedure are given in
Appendix D.

Table 3 reports the results for the pooled probit model with the votes
deemed important by the AFL-CIO in the upper half and those deemed im-
portant by the USCC in the lower half of the table. The average pair-wise
correlation coefficients for the generalized residuals computed for different
roll-call votes are between 0.126 and 0.198. Their significance can be eval-
uated using the CD test statistics, which are all substantially larger than
the 99% critical value of the standard normal distribution. The values in
brackets are the bootstrap 5% critical values. The bootstrap test results
are in line with asymptotic test results, and reject the null of cross section
independence. The difference between the results using the generalized and
the Pearson residuals is very small and the tests lead to the same conclusion.

The results for the probit model with individual specific parameters are
reported in Table 4. The average pair-wise correlation coefficients of the
residuals is slightly smaller yet still considerable, ranging from 0.106 to 0.146.
The CD test statistics are also slightly smaller. This is likely to be due to
the greater efficiency of the pooled estimation. Additionally, for the 103rd
congress a number of members of congress had to be excluded to achieve
convergence of the individual specific estimations. That said the results
point unanimously in the same direction as those from the pooled estimation.
This suggests that the influence of potential parameter heterogeneity and
efficiency due to pooling do not change the result, namely that the null of
cross section independence is clearly rejected.

6 Conclusion

In this paper, we have derived a Lagrangian multiplier test of cross section
independence for nonlinear panel data models, and have proposed a gener-
alized version of Pesaran’s CD test. Our Monte Carlo studies show that the
LM test is subject to serious size distortions when the cross section dimen-
sion is large. On the other hand, the CD test performs well even in small N
and T cases. The empirical size of the CD test is close to the nominal size
for most combinations of N and T , except for cases where N is much larger
than T , for example when N = 500, and T is 20 or less. In cases where N
is much larger than T , we suggest using bootstrap method to approximate
critical values, as we did in the empirical illustration. The test also has good
power, in particular when N is large, even when T is relatively small so long
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Table 3: CD test for roll-call votes in the U. S. Congress, pooled estimation
Congr. N/T Generalized residuals Pearson residuals

CD Bootstrap ρ̄ CD Bootstrap ρ̄
5% crit. val. 5% crit. val.

AFL-CIO
102nd 82/13 26.153 [−1.643 2.458] 0.127 26.106 [−1.638 2.450] 0.126
103rd 203/14 74.955 [−1.575 2.106] 0.141 74.787 [−1.582 2.132] 0.140
104th 65/14 31.632 [−1.623 2.330] 0.185 31.753 [−1.632 2.280] 0.186

USCC
102nd 130/15 69.685 [−1.673 2.385] 0.198 69.380 [−1.669 2.363] 0.198
103rd 276/14 120.300 [−1.593 2.220] 0.166 120.286 [−1.602 2.212] 0.166
104th 193/15 106.675 [−1.719 2.282] 0.181 106.620 [−1.730 2.304] 0.181
The column with heading CD gives the values of the CD test statistic. The bootstrap critical values

were computed using 1000 iterations. The first number in square brackets gives the 2.5% lower critical

value and the second number the 2.5% upper critical value. Details of the bootstrap procedure are

given in Appendix D. The columns with heading ρ̄ gives the average pair-wise correlation coefficients.

N is the number of voting members of Congress, and T is the number of motions.

Table 4: CD test for roll-call votes in the U. S. Congress, individual specific
estimation

Congr. N/T Generalized residuals Pearson residuals
CD Bootstrap ρ̄ CD Bootstrap ρ̄

5% crit. val. 5% crit. val.
AFL-CIO
102nd 82/13 21.922 [−1.653 2.232] 0.106 21.930 [−1.659 2.122] 0.106
103rd 183/14 60.379 [−1.473 2.961] 0.138 60.350 [−1.463 3.156] 0.138
104th 65/14 24.499 [−1.564 2.654] 0.144 22.174 [−1.555 2.686] 0.146

USCC
102nd 130/15 50.455 [−1.589 2.826] 0.143 50.924 [−1.603 2.954] 0.145
103rd 258/14 86.760 [−1.608 2.348] 0.141 88.700 [−1.572 2.509] 0.143
104th 193/15 85.497 [−1.643 2.420] 0.145 86.300 [−1.671 2.428] 0.146
See notes to Table 3. When estimating individual specific parameters observations on a few members

of the 103rd Congress had to be removed from the sample for convergence reason.
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as the average pair-wise correlation of the residuals does not converge to
zero, which corresponds to the case of weak cross section dependence in the
sense defined by Chudik, Pesaran and Tosetti (2010).

The CD test is simple to implement and can be readily adapted to unbal-
anced panels. As is well known in panel data literature when T is small and
N is large, the presence of individual-specific effects introduces the classical
incidental parameter problems (Neyman and Scott 1948). The estimation
of structural parameters are often entangled with the estimation of inciden-
tal parameters. To obtain a consistent estimator of structural parameters,
one often has to impose stringent conditions on the data and the estimation
becomes complicated (see e.g. Hsiao 2003). The problem can only become
more unwieldy if there exists cross section dependence. A nice feature of
Pesaran CD test is that one can estimate model parameters under cross sec-
tion independence, and the presence of individual-specific effects (possibly
correlated with the regressors) does not affect the performance of the test
because each cross sectional unit parameter is estimated using that unit’s
time series observation alone.

In this paper, we assume that all the explanatory variables in a nonlinear
model are exogenous. In the case where one or more explanatory variables
are endogenous, as long as estimated parameters of the model are

√
T con-

sistent under cross section independence, say by N2SLS (Amemiya 1974),
the estimated generalized or Pearson residuals can still be obtained and the
asymptotics of the CD test remain valid.

In cases, such as the application in this paper, where cross section error
independence is rejected, one may wish to investigate the nature of the
dependence, possibly along the lines of Ng (2006). Also the estimation of
the structural parameters in the model will need to take the cross section
dependence into account. While these two topics are beyond the scope of
the current paper and are left for future research, this paper proposes a
simple yet reasonably powerful test for the detection of cross section error
dependence, which is the starting point for any such endeavor.
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Appendix A: Derivations of the residuals

The generalized residual for the probit model

uit = E(εit|yit,xit)
= E(εit|yit = 1,xit)yit + E(εit|yit = 0,xit)(1− yit)

=
φ(β′ixit)

Φ(β′ixit)
[
1− Φ(β′ixit)

] [
yit − Φ(β′ixit)

]
.

The variance of the generalized residual is

Var(uit) =
φ(β′ixit)2

Φ(β′ixit)2
[
1− Φ(β′ixit)

]2 E
[
(yit − Φ(β′ixit)

]2

=
φ(β′ixit)2

Φ(β′ixit)
[
1− Φ(β′ixit)

] .

The Pearson residual for the probit model

vit = yit − E(yit |xit )
= yit − Φ(β′ixit).

The variance is

Var(vit) = Φ(β′ixit)
[
1− Φ(β′ixit)

]
.

The generalized residual for the Tobit model

uit = E(εit|yit > 0,xit)I(yit) + E(εit|yit = 0,xit) [1− I(yit)]

= (yit − β′ixit)I(yit)− σi
φ(β′ixit/σiu)

Φ(−β′ixit/σiu)
[1− I(yit)] .

For the variance we have,

Var(uit) = E(ε2
it|εit > −β′ixit)Φ(β′ixit/σiu)

+σ2
iu

φ(β′ixit/σiu)2

Φ(−β′ixit/σiu)2
[1− Φ(β′ixit/σiu)]

= σ2
iu

[
(1− λitβ

′
ixit/σiu)Φ(β′ixit/σiu) +

φ(β′ixit/σiu)2

Φ(−β′ixit/σiu)

]
,

where λit = φ(β′ixit/σiu)/Φ(β′ixit/σiu) is the inverse Mills ratio with argu-
ment −β′ixit/σiu.

19



The Pearson residual for the Tobit model The in-sample forecast
error for the Tobit model is defined by

vit = yit − E(yit|xit)
= yit −

(
β′ixit + σiuλit

)
Φ

(
β′ixit/σiu

)
.

The variance is

Var(vit) = E
(
y2

it|xit

)− [(
β′ixit + σiuλit

)
Φ

(
β′ixit/σiu

)]2

= σ2
iu

{[
(α′ixit)2 + α′ixitλit + 1

]
Φ

(
α′ixit

)
(29)

− [(
α′ixit + λit

)
Φ

(
α′ixit

)]2
}

,

where αit = βit/σiu, ξit = εit/σiu ∼ N(0, 1), and we used the fact that

E(ξ2
it|ξit > −α′ixit) = Var(ξit|ξit > −α′ixit) + E(ξit|ξit > −α′ixit)2

= [1− λit(λit + α′ixit)] + λ2
it

= 1− λitα
′
ixit.

Substituting αit into (29) gives the variance used in (25) to obtain the
Pearson residual of the Tobit model.

Appendix B: Mathematical details for the LM test

Taking the second partial derivative of the log likelihood function using (10)
we have

∂2`NT

∂ρij∂ρrs
= −

T∑

t=1

∂ ln Pt

∂ρij

∂ ln Pt

∂ρrs
+

T∑

t=1

1
Pt

∂2Pt

∂ρij∂ρrs
, (30)

where

∂2Pt

∂ρij∂ρrs
=

∫

A(εt|yt)

∂ ln f(εt)
∂ρij

∂ ln f(εt)
∂ρrs

f(εt)dεt+
∫

A(εt|yt)

∂2 ln f(εt)
∂ρij∂ρrs

f(εt)dεt.

Furthermore,

∂2 ln f(εt)
∂ρij∂ρrs

=
1
2
tr(R−1ArsR

−1Aij)− 1
2
ε′tR

−1ArsR
−1AijR

−1εt

−1
2
ε′tR

−1AijR
−1ArsR

−1εt,

and under the null hypothesis

∂2 ln f(εt)
∂ρij∂ρrs

∣∣∣∣
R=IN

=
1
2
tr(ArsAij)− 1

2
ε′t (ArsAij + AijArs) εt. (31)
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Note that AijArs = 0 if i 6= r, s and j 6= r, s, AijArs = Dlk if either i = r,
i = s, j = r or j = s and l is the subscript i or j that is not equal to
either r or s and k is the subscript r or s that is not equal to either i or
j, so as an example, A5,8A3,8 = D5,3, and Dlk is a matrix of zeros except
for the (l, k)th element, which is equal to 1. Also, A2

ij = Cij , where Cij

is an N × N matrix with all elements equal to zero except for the ith and
jth diagonal elements that are equal to 1, which yields tr(Cij) = 2, and
ε′tCijεt = ε2

it + ε2
jt

Hence, for (i, j) = (r, s),

∂2 ln f(εt)
∂ρ2

ij

∣∣∣∣∣
R=IN

= 1− ε2
it − ε2

jt,

and (recalling that ∂ ln f(εt)/∂ρij |R=IN
= εitεjt)

1
Pt

∂2Pt

∂ρ2
ij

∣∣∣∣∣
R=IN

=

∫
A(εt|yt)

ε2
itε

2
jt

∏N
k=1 φ(εkt)dεt∫

A(εt|yt)

∏N
k=1 φ(εkt)dεt

+

∫
A(εt|yt)

(
1− ε2

it − ε2
jt

)∏N
k=1 φ(εkt)dεt

∫
A(εt|yt)

∏N
k=1 φ(εkt)dεt

.

Therefore, using the above result and (12) in (30) for (i, j) = (r, s) we
have

∂2`NT

∂ρ2
ij

∣∣∣∣∣
R=IN

= −
T∑

t=1

u2
itu

2
jt +

T∑

t=1

(
1− η2

it

) (
1− η2

jt

)
, (32)

where uit is defined by (13) and

η2
it =

∫ bit

ait
ε2
itφ(εit)dεit∫ bit

ait
φ(εit)dεit

= 1−
[
bitφ(bit)− aitφ(ait)

Φ(bit)− Φ(ait)

]
.

For (i, j) 6= (r, s) we can rewrite (30) using the results in (11) and (31) as

∂2`NT

∂ρij∂ρrs
= −

T∑

t=1

1
P 2

t

∂Pt

∂ρij

∂Pt

∂ρrs
+

T∑

t=1

1
Pt

∫

A(εt|yt)
f(εt) {εrtεstεitεjt

−1
2
tr(ArsAij)− 1

2
ε′tArsAijεt − 1

2
ε′tAijArsεt

}
dεt.

From (12) we have that

T∑

t=1

1
P 2

t

∂Pt

∂ρij

∂Pt

∂ρrs
=

T∑

t=1

uitujturtust.
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Furthermore,

T∑

t=1

1
Pt

∫

A(εt|yt)
f(εt) {εrtεstεitεjt} dεt

=
T∑

t=1

∫ bit

ait
εitφ(εit)dεit∫ bit

ait
φ(εit)dεit

∫ bjt

ajt
εjtφ(εjt)dεjt

∫ bjt

ajt
φ(εjt)dεjt

∫ brt

art
εrtφ(εrt)dεrt∫ brt

art
φ(εrt)dεrt

∫ bst

ast
εstφ(εst)dεst∫ bst

ast
φ(εst)dεst

=
T∑

t=1

uitujturtust.

Note that tr(ArsAij) = 0 if (i, j) 6= (r, s), and that if either i = r, i = s,
j = r or j = s

1
2
ε′tArsAijεt +

1
2
ε′tAijArsεt = εjtεst

and therefore

∂2`NT

∂ρij∂ρrs
=

T∑

t=1

∫ bit

ait
εitφ(εit)dεit ·

∫ bst

ast
εstφ(εst)dεst∫ bit

ait
φ(εit)dεit ·

∫ bst

ast
φ(εst)dεst

=
T∑

t=1

uitust

Finally, if i 6= r, s and j 6= r, s, ArsAij = AijArs = 0, and therefore

∂2`NT

∂ρij∂ρrs
= 0.

Appendix C: Limiting distribution of CD test for
nonlinear models

In most cases of interest the generalized and Pearson residuals can be written
as a scaled version of an error from a nonlinear regression equation. For
example, the generalized residuals for probit models can be written as

ũit = H(xit, θ̃i)
[
yit −G(xit, θ̃i)

]
, (33)

where H(xit, θ̃i) = φ(θ̃
′
ixit)/

{
Φ(θ̃

′
ixit)[1− Φ(θ̃

′
ixit)]

}
, and G(xit, θ̃i) =

Φ(θ̃
′
ixit). In testing for cross section independence, assuming that H(xit, θ̃i)

and its first derivatives, hit(θi) = ∂H(xit, θi)/∂θi, are uniformly bounded
in xit and θi, the scalar function, H(xit, θ̃i), does not play a significant
role and will be omitted for expositional simplicity. Here we show that the
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CD test is asymptotically normally distributed in the case of the following
nonlinear model

yit = G(xit,θi0) + vit, (34)

where G(xit, θi0) = E(yit|xit), θi0 is a p × 1 vector of true parameters,
which may or may not be identical across i. Let Git = G(xit, θi0) and
G̃it = G(xit; θ̃i), where

θ̃i = argmin
θi

T∑

t=1

[yit −G(xit; θi)]2 (35)

be the extremum estimator. As it becomes clear from the proof any other√
T -consistent estimator of θi0, such as the ML estimator that allows for

the scaler function H(xit,θi0) in (33), might also be used.
Denote convergence in probability and in distribution by

p→ and d→,
respectively, and assume that

A1 vit = σivεit, εit ∼ iid(0, 1), for all i and t, and 0 < σ2
iv < ∞.

A2 Under the null hypothesis defined by H0 : εit is distributed indepen-
dently of εjt for all i 6= j.

A3 The k × 1 explanatory variables, xit are strictly exogenous such that
E(εit | xi) = 0 for all i and t, where xi = (x′i1, . . . ,x

′
iT )′.

A4 Git is continuous in θi ∈ Θi uniformly in t, where Θi is an open
neighborhood of θi0.

A5 git(θi) = ∂Git
∂θi

exists and is continuous and bounded on Θi, and

1
T

T∑

t=1

git(θi)g′jt(θj)
p→ Ωij ,

where Ωij are finite, non-stochastic matrices, Ωii is non-singular, and
convergence is uniform for all θi ∈ Θi.

A6 ∂2Git

∂θi∂θ′i
is continuous in θi ∈ Θi uniformly in t, with suitably bounded

elements such that 1
T

∑T
t=1

(
∂2Git

∂θi∂θ′i

)
vit

p→ 0.

A7 1√
T

∑T
t=1 git(θi0)vit

d→ N(0,σ2
i Ωii).

Proposition 3 Under A1-A7, the statistic

CD =

√
2T

N(N − 1)




N−1∑

i=1

N∑

j=i+1

ρ̃ij


 d→ N(0, 1), as T →∞, (36)

where ρ̃ij = T−1
∑T

t=1 (ṽit/σ̃iv) (ṽjt/σ̃jv) , ṽit = yit−G̃it, and σ̃2
iv = T−1

∑T
t=1 ṽ2

it.
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Proof. Let Si =
∑T

t=1[yit −G(xit,θi)]2. Then θ̃i is the solution of

∂Si

∂θi

∣∣∣∣
θ̃i

= −2
t∑

t=1

vit
∂Git

∂θi

∣∣∣∣∣
θ̃i

= 0. (37)

The estimated residual, ṽit, is3

ṽit = yit − G̃it

= vit − g′it(θi0)(θ̃i − θi0) + Op

(
1
T

)
. (38)

The second equality follows from taking a Taylor series expansion of Ĝit

around θi0. Taking a Taylor series expansion of (37) we have

θ̃i − θi0 =

(
T−1

T∑

t=1

git(θi0)g′it(θi0)− T−1
T∑

t=1

∂2Git

∂θi0∂θ′i0
vit

)−1

(39)

[
1
T

T∑

t=1

git(θi0)vit

]
+ Op

(
1
T

)
. (40)

Under Assumptions A5-A7

θ̃i − θi0 = Ω−1
ii

(
1
T

T∑

t=1

git(θi0)vit

)
+ Op

(
1
T

)
, (41)

and hence √
T

(
θ̃i − θi0

)
d→ N(0,σ2

ivΩii).

Using (41) in (38) and after some algebra

σ̃2
iv = σ2

iv + Op

(
1
T

)
.

3In the case of the more general nonlinear specification, (33), the estimated generalized
residual becomes

ṽit = vit −H(xit, θi0)g
′
it(θi0)(θ̃i − θi0)

−(θ̃i − θi0)
′hit(θi0)g

′
it(θi0)(θ̃i − θi0) + Op

(
1

T

)
,

where hit(θi) = ∂Hit
∂θi

, and if θ̃i is a
√

T -consistent estimator of θi0 it then readily follows
that √

T (ṽit − vit) = −H(xit, θi0)g
′
it(θi0)

√
T (θ̃i − θi0) + Op

(
1√
T

)
.

Hence, the rest of the results set out below equally applies to this more general case so
long as H(xit, θi0) is uniformly bounded in xit and θi0.
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Similarly, using the above results we have

√
T ρ̃ij =

1√
T

T∑

t=1

ṽitṽjt

σ̃ivσ̃jv
=

1√
T

T∑

t=1

ṽitṽjt

σivσjv
+ Op

(
1
T

)
=

− 1√
T

(
1√
T

T∑

t=1

g′it(θi0)εjt

)
Ω−1

ii

(
1√
T

T∑

t=1

git(θi0)εit

)

− 1√
T

(
1√
T

T∑

t=1

g′jt(θj0)εit

)
Ω−1

jj

(
1√
T

T∑

t=1

gjt(θj0)εjt

)

+
1√
T

(
1√
T

T∑

t=1

g′jt(θj0)εjt

)
Ω−1

jj ΩjiΩ−1
ii

(
1√
T

T∑

t=1

git(θi0)εit

)

+Op

(
1
T

)

Consider the second term and note that under Assumptions A7 , 1√
T

∑T
t=1 g′it(θi0)εjt =

Op (1), and by Assumption A5, all elements of Ω−1
ii and Ωji for all i and j,

are finite and non-stochastic. Hence
(

1√
T

T∑

t=1

g′it(θi0)εjt

)
Ω−1

ii

(
1√
T

T∑

t=1

git(θi0)εit

)
= Op(1).

Furthermore,
(

1√
T

T∑

t=1

g′it(θi0)εjt

)
Ω−1

ii

(
1√
T

T∑

t=1

git(θi0)εit

)

=
1
T

T∑

t=1

T∑

t′=1

[
g′it(θi0)Ω−1

ii git′(θi0)
]
εjtεit′ .

where g′it(θi0)Ω−1
ii git′(θi0) are bounded in θi0 and for all i, t and t′, and vjt

and vit′ are independently distributed for all i, j, t and t′. Hence,

E

{
1
T

T∑

t=1

T∑

t′=1

[
g′it(θi0)Ω−1

ii git′(θi0)
]
εjtεit′

}
= 0.

Similar arguments also applies to the other two terms in the expression for
T−1/2

∑T
t=1 ṽitṽjt/(σ̃ivσ̃jv).

Therefore, E
(√

T ρ̃ij

)
= O(T−1) and

√
T ρ̃ij =

1√
T

T∑

t=1

εitεjt + Op

(
1√
T

)
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and √
T ρ̃ij

d→ N(0, 1). (42)

Hence, for a fixed N and as T →∞

CD =

√
2

N(N − 1)




N−1∑

i=1

N∑

j=i+1

√
T ρ̃ij


 d→ N(0, 1),

Using similar lines of reasoning as in Pesaran (2004) it is also easily estab-
lished that CD d→N(0, 1), for N and T large.

Proposition 4 Under A1 - A7,

(i) If N is fixed and T →∞,

N−1∑

i=1

N∑

j=i+1

T ρ̃2
ij

d→ χ2
N(N−1)/2. (43)

(ii) If T →∞, followed by N →∞
√

1
N(N − 1)

N−1∑

i=1

N∑

j=i+1

(T ρ̃2
ij − 1) d→ N(0, 1). (44)

Proof. Under A1-A7 and as T → ∞ we have
√

T ρ̃ij
d→N(0, 1), and the

arguments in Pesaran (2004) apply.

Appendix D: Bootstrap procedure

A bootstrap approximation might be used to improve the finite sample ap-
proximation of the distribution of the CD test. The bootstrap procedure we
suggest has previously been employed in different contexts in the literature.
Härdle, Mammen and Proença (2001) use the bootstrap approximation to
improve the size of the Horowitz-Härdle test for the specification of the link
function, g(·) in equation (4). Dikta, Kvesic and Schmidt (2006) call the
procedure a “model based resampling scheme” and use it to test for the
functional form of the underlying regression model.

For the test at hand the bootstrap procedure works as follows.

1. Using the observed data yit and xit estimate the parameters for the
model and obtain θ̃i for each i = 1, 2, . . . , N .

2. Sample ε̂it ∼ iid F(0, σ̃2
i ) for i = 1, 2, . . . N and t = 1, 2, . . . T , where

F(·) is the distribution of the error term implied by the maintained
model.
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3. Construct ŷit using the model f
(
ŷ∗it,xit, θ̃i

)
= ε̂it and ŷit = g(ŷ∗it) .

4. Using ŷit and xit estimate the parameters of the model and obtain ˆ̃
θi

for each i = 1, 2, . . . , N . Construct the CD test statistic using xit and
ˆ̃
θi.

5. Repeat step 2–4 B times.

6. The B samples of the test statistic are then used to calculate the
critical values against which the test statistic obtained from the data
is evaluated. The critical values are, say, the 2.5% lowest and the 2.5%
highest values in the sample of the B bootstrap test statistics.

Given that nonlinear models are typically estimated via maximum like-
lihood, this bootstrap procedure entails considerable computational costs.
Härdle, Mammen and Proença (2001) suggest to set the starting values in

the estimation of ˆ̃
θi to θ̃i and use only one iteration to obtain the estimates.

In the application in Section 5, however, we let the maximization algorithm
run to convergence.
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