
Weak and Strong Cross Section Dependence and Estimation of

Large Panels�

Alexander Chudiky

European Central Bank and CIMF
M. Hashem Pesaranz

Cambridge University, CIMF and USC

Elisa Tosettix

Cambridge University and CIMF

April 19, 2010

Abstract

This paper introduces the concepts of time-speci�c weak and strong cross section dependence,

and investigates how these notions are related to the concepts of weak, strong and semi-strong

common factors, frequently used for modelling residual cross section correlations in panel data

models. It then focuses on the problems of estimating slope coe¢ cients in large panels, where

cross section units are subject to possibly a large number of unobserved common factors. It is

established that the Common Correlated E¤ects (CCE) estimator introduced by Pesaran (2006)

remains asymptotically normal under certain conditions on factors loadings of an in�nite factor

error structure, including cases where methods relying on principal components fail. The paper

concludes with a set of Monte Carlo experiments where the small sample properties of estimators
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1 Introduction

The problem of error cross section dependence in panel regressions has attracted considerable attention

over the past decade. It is increasingly recognized that conditioning on variables speci�c to the cross

section units alone need not deliver cross section error independence, and neglecting such dependencies

can lead to biased estimates and spurious inference. How best to account for cross correlation of errors

in panels depends on the nature of the cross dependence, and the size of the time series dimension (T )

of the panel relative to its cross section dimension (N). When N is small relative to T , and the errors

are uncorrelated with the regressors cross section dependence can be modelled using the Seemingly

Unrelated Regression Equations (SURE) approach of Zellner (1962). But when N is large relative to

T , the SURE procedure is not feasible. In such cases there are two main approaches to modelling cross

section dependence in panels : (i) spatial processes pioneered by Whittle (1954) and developed further

by Anselin (1988), Kelejian and Prucha (1999), and Lee (2004); and (ii) factor models introduced

by Hotelling (1933), and �rst applied in economics by Stone (1947). Factor models have been used

extensively in �nance (Chamberlain and Rothschild (1983), Connor and Korajzcyk (1993); Stock and

Watson (1998); Kapetanios and Pesaran (2007)), and in macroeconomics (Forni and Reichlin (1998);

Stock and Watson (2002)), as a data shrinkage procedure where correlations across many units or

variables are modelled by means of a small number of latent factors.

In this paper we show that factor models can be employed more generally to characterize other

forms of dependence such as dependence across space or social networks. Initially we introduce the

concepts of weak and strong cross section dependence de�ned at a point in time and with respect

to a given information set. These concepts generalize the notions of weak (or idiosyncratic) and

strong cross section dependence advanced in the literature. Forni and Lippi (2001), building on

Forni and Reichlin (1998), consider a double index process over both dimensions (time and space)

simultaneously, and de�ne it as idiosyncratic (or weakly dependent) if the weighted average of the

process, computed over both dimensions, converges to zero in quadratic mean for all sets of weights

satisfying certain granularity conditions. The double index process is said to be strongly dependent

(again over both dimensions) if the weighted averages do not tend to zero.1 These concepts, that

are applicable to dynamic factor models, provide a generalization of the notions of weak and strong

dependence developed by Chamberlain (1983) and Chamberlain and Rothschild (1983) for the analysis

of static factor models.

Our notions of weak and strong cross section dependence are more widely applicable and does not

require the double index process to be stationarity over time, and allow a �ner distinction between

strong and semi-strong cross section dependence. Convergence properties of weighted averages is of

great importance for the asymptotic theory of various estimators and tests commonly used in panel

data econometrics, as well as for arbitrage pricing theory and portfolio optimization with a large

number of assets. It is clear that the underlying time series processes need not be stationary, and

concepts of weak and strong dependence that are more generally applicable are needed. We also

1For further developments and discussions see Anderson et al. (2009).
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investigate how weak and strong cross section dependence are related to the notions of weak, strong

and semi-strong common factors, which may be used to represent very general forms of cross section

dependence.

We then turn our attention to the second main concern of this paper, namely the estimation of

slope coe¢ cients in the context of panel data models with general cross section error dependence.

Building on the �rst part of the paper, we show that general linear error dependence in panels can

be modelled in terms of a factor model with a �xed number of strong factors and a large number

of non-strong factors. We allow the number of non-strong factors to rise with N , and establish that

the Common Correlated E¤ects (CCE) estimator introduced by Pesaran (2006) remains consistent

and asymptotically normal under certain conditions on the loadings of the in�nite factor structure,

including cases where methods relying on principal components fail.

A Monte Carlo study documents these theoretical �ndings by investigating the small sample per-

formance of estimators based on principal components (including the recent iterative Principle Compo-

nent (PC) procedure proposed by Bai (2009)) and the CCE estimators under alternative assumptions

on the nature of unobserved common e¤ects. In particular, we examine and compare the performance

of these estimators when the errors are subject to a �nite number of unobserved strong factors and an

in�nite number of weak and/or semi-strong unobserved common factors. As predicted by the theory

the CCE estimator performs well and show very little size distortions, which is in contrast with the

iterated PC approach of Bai (2009) which exhibit signi�cant size distortions. The latter is partly due

to the fact that in the presence of weak or semi-strong factors the PC estimates of factors need not

be consistent. This problem does not a¤ect the CCE estimator since it does not aim at consistent

estimation of the factors but deals with error cross section dependence generally by using cross section

averages to mop up such e¤ects. As shown in Pesaran (2006), the CCE estimator continues to be valid

even if the number of factors is larger than the number of cross section averages. The present paper

goes one step further and shows that this property holds even if the number of weak factors tend to

in�nity with N . Note that for variances of the observables to be bounded the number of strong factors

must be �xed and can not vary with N .

The plan of the remainder of the paper is as follows. Section 2 introduces the concepts of strong

and weak cross section dependence. Section 3 discusses the notions of weak, semi-strong and strong

common factors. Section 4 introduces the CCE estimators in the context of panels with an in�nite

number of common factors. Section 5 describes the Monte Carlo design and discusses the results.

Finally, Section 6 provides some concluding remarks. The mathematical details are relegated to

appendices.

Notations: j�1(A)j � j�2(A)j � ::: � j�n(A)j are the eigenvalues of a matrix A 2 Mn�n, where

Mn�n is the space of n � n complex valued matrices. A+ denotes the Moore-Penrose generalized

inverse of A. The column norm of A 2 Mn�n is kAk1 = max
1�j�n

Pn
i=1 jaij j. The row norm of A is

kAk1 = max
1�i�n

Pn
j=1 jaij j. The spectral norm of A is kAk = [�1(AA0)]1=2, and kAk2 = [Tr (AA0)]

1=2.

2



K is used for a �xed positive constant that does not depend on N . Joint convergence of N and T will

be denoted by (N;T )
j! 1. For any random variable x, kxkLp = (E jxjp)1=p, for p > 1, denotes Lp

norm of x. For any k�1 vector of random variables xk = (x1; x2; :::; xk)0, kxkkLp =
�Pk

i=1E jxij
p
�1=p

.

We use
Lp! to denote convergence in Lp norm.

2 Cross section dependence in large panels

Consider the double index process fzit; i 2 N; t 2 Zg ; where zit is de�ned on a suitable probability
space, the index t refers to an ordered set such as time, and i refers to units of an unordered population.

Our primary focus is on characterizing the correlation structure of the double index process fzitg
over the cross sectional dimension at a given point in time, t. To this end, we make the following

assumptions:

Assumption 1 Let It be the information set available at time t. For each t 2 T , zNt = (z1t; :::; zNt)0

has the conditional mean, E (zNt jIt�1 ) = 0; and the conditional variance, V ar (zNt jIt�1 ) = �Nt;

where �Nt is an N�N symmetric, nonnegative de�nite matrix. The (i; j)-th element of �Nt, denoted

by �N;ijt is bounded such that 0 < �N;iit � K, for i = 1; 2; :::; N , where K is a �nite constant

independent of N .

Assumption 2 Let wNt = (wN;1t; :::; wN;N;t)
0, for t 2 T � Z and N 2 N, be a vector of non-

stochastic weights. For any t 2 T , the sequence of weight vectors fwNtg of growing dimension (N !
1) satis�es the �granularity�conditions:

kwNtk = O
�
N� 1

2

�
; (1)

wN;jt
kwNtk

= O
�
N� 1

2

�
for any j 2 N: (2)

Zero conditional mean in Assumption 1 can be relaxed to E (zNt jIt�1 ) = �N;t�1, with �N;t�1 being
a pre-determined function of the elements of It�1. Assumption 2, known in �nance as the granularity
condition, ensures that the weights fwN;itg are not dominated by a few of the cross section units.

Although we have assumed the weights to be non-stochastic, this is done for expositional convenience

and can be relaxed by requiring that conditional on the information set, It�1; the weights, wNt, are
distributed independently of zNt. To simplify the notations in the rest of the paper we suppress the

explicit dependence of zNt, wNt and other vectors and matrices and their elements on N .

In the following, we describe our notions of weak and strong cross sectionally dependent processes,

and then introduce the related concepts of weak, strong, and semi-strong factors.
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2.1 Weak and strong cross section dependence

Consider the weighted averages, �zwt =
PN
i=1witzit = w0tzt, for t 2 T , where zt and wt satisfy

Assumptions 1 and 2. We are interested in the limiting behavior of �zwt at a given point in time t 2 T ,
as N !1.

De�nition 1 (Weak and strong cross section dependence) The process fzitg is said to be cross sec-
tionally weakly dependent (CWD) at a given point in time t 2 T conditional on the information set

It�1, if for any sequence of weight vectors fwtg satisfying the granularity conditions (1)-(2) we have

lim
N!1

V ar(w0tzt jIt�1 ) = 0: (3)

fzitg is said to be cross sectionally strongly dependent (CSD) at a given point in time t 2 T conditional
on the information set It�1, if there exists a sequence of weight vectors fwtg satisfying (1)-(2) and a
constant K independent of N such that for any N su¢ ciently large (and as N !1)

V ar(w0tzt jIt�1 ) � K > 0: (4)

The concepts of weak and strong cross section dependence proposed here are de�ned conditional

on a given information set, It�1, which allows us to consider cross section dependence properties of
fzitg without having to limit the time series features of the process. Various information sets could be
considered in practise, depending on the application under consideration. For dynamic (possibly non-

stationary) models the information set could contain all lagged realizations of the process fzitg, that is
It�1 = fzt�1; zt�2; ::::g, or only the starting values of the process. For stationary panels, unconditional
variances of cross section averages could be considered. Conditioning information set could also contain

contemporaneous realizations, which might be useful in applications where a particular unit has a

dominant in�uence on the rest of the units in the system.

Remark 1 Anderson et al. (2009) propose de�nitions of weak and strong cross section dependence
for covariance stationary processes, with spectral density Fz (!) (see also Forni and Lippi (2001)).

According to their de�nition, fzitg is weakly dependent if the the largest eigenvalue of the spectral
density matrix, �z1 (!), is uniformly bounded in ! and N . fzitg is strongly dependent if the �rst
m � 1 (m < K) eigenvalues (�z1 (!) ; :::; �

z
m (!)) diverge to in�nity as N ! 1, for all frequencies.

In contrast to the notions of weak and strong dependence advanced by Forni and Lippi (2001) and

Anderson et al. (2009), our concepts of CWD and CSD do no require the underlying processes to be

covariance stationary and have spectral density at all frequencies.

Remark 2 A particular form of a CWD process arises when pairwise correlations take non-zero values
only across �nite subsets of units that do not spread widely as sample size increases. A similar case

occurs in spatial processes, where for example local dependency exists only among adjacent observations.

However, we note that the notion of weak dependence does not necessarily involve an ordering of the

observations or the speci�cation of a distance metric across the observations.
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The following proposition establishes the relationship between weak cross section dependence and

the asymptotic behaviour of the spectral radius of �t (denoted by �1 (�t)).

Proposition 1 The following statements hold:

(i) The process fzitg is CWD at a point in time t 2 T , if �1 (�t) is bounded in N .

(ii) The process fzitg is CSD at a point in time t 2 T , if and only if for any N su¢ ciently large

(and as N !1), N�1�1 (�t) � K > 0.

Proof. First, suppose �1 (�t) is bounded in N . We have

V ar(w0tzt jIt�1 ) = w0t�twt �
�
w0twt

�
�1 (�t) ; (5)

and under the granularity conditions (1)-(2) it follows that

lim
N!1

V ar(w0tzt jIt�1 ) = 0;

namely that fzitg is CWD, which proves (i). Now suppose that fzitg is CSD at time t. Then, from (5),
it follows that �1 (�t) tends to in�nity at least at the rate N . Hence, under CSD N�1�1 (�t) � K > 0

for any N su¢ ciently large. Note that �1 (�t) �
NX
i=1

�ii;t where, under Assumption 1, �ii;t are �nite,

�1 (�t) cannot diverge to in�nity at a rate faster than N . To prove the reverse relation, �rst note

that, from the Rayleigh-Ritz theorem2,

�1 (�t) = max
v0tvt=1

v0t�tvt = v
�0
t �tv

�
t : (6)

Let w�t =
1p
N
v�t and notice that w

�
t satis�es (1)-(2). Hence, we can rewrite �1 (�t) as

�1 (�t) = N � V ar(w�0t zt jIt�1 ): (7)

It follows that if N�1�1 (�t) � K > 0, then V ar(w�0t zt jIt�1 ) � K > 0, i.e. the process is CSD, which

proves (ii).

Since �1 (�t) � k�tk1, 3 it follows from (5) that both the spectral radius and the column norm of

the covariance matrix of a CSD process are unbounded in N . A similar condition also arises in the case

of time series processes with long memory or strong temporal dependence where the autocorrelation

coe¢ cients are not absolutely summable. (Robinson (2003)).

Remark 3 The de�nition of idiosyncratic process by Forni and Lippi (2001) di¤ers from our def-

inition of CWD in terms of the weights used to construct the weighted averages. While Forni and

2See Horn and Johnson (1985), p.176.
3See Horn and Johnson (1985), pp. 297-298.
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Lippi assume limN!1 kwk = 0, our granularity conditions (1)-(2) imply that, for any t 2 T ,
limN!1N

1
2
�� kwtk = 0 for any � > 0. This di¤erence in the de�nition of weights has important

implications for the cross sectional properties of the processes. In particular, under limN!1 kwtk = 0,
it is possible to show that the idiosyncratic process (and hence also the de�nition of weak dependence

à la Anderson et al. (2009)) imply bounded eigenvalues of the spectral density matrix. Conversely,

under (1)-(2), it is clear that if �1 (�t) = O(N1��) for any � > 0, then, using (5),

lim
N!1

�
w0twt

�
�1 (�t) = 0;

and the underlying process will be CWD. Hence, the bounded eigenvalue condition is su¢ cient but

not necessary for CWD. According to our de�nition a process could be CWD even if its maximum

eigenvalue is rising with N , so long as its rate of increase is bounded appropriately.

One rationale for characterizing processes with increasing largest eigenvalues at the slower pace

than N as weakly dependent is that bounded eigenvalues is not a necessary condition for consistent

estimation in general, although in some cases, such as the method of principal components, this

condition is needed. In Section 4 we consider estimation of slope coe¢ cients in panels with an in�nite

factor structure, where eigenvalues of the error covariance matrix are allowed to increase at a rate

slower than N .

3 Common factor models

Consider the following N factor model for fzitg:

zit = 
i1f1t + 
i2f2t + :::+ 
iNfNt + "it; i = 1; 2; :::; N; (8)

or in matrix notations

zt = �f t + "t; (9)

where ft = (f1t; f2t; :::; fNt)0, "t = ("1t; "2t; :::; "Nt)0, and the common factors, f`t, and the idiosyncratic

errors, "it, satisfy the following assumptions:

Assumption 3 The N � 1 vector ft is a zero mean covariance stationary process, with absolute
summable autocovariances, distributed independently of "it0 for all i; t; t0, and such that E(f2`t jIt�1 ) = 1
and E(f`tfpt jIt�1 ) = 0; for ` 6= p = 1; 2; :::; N:

Assumption 4 V ar ("it jIt�1 ) = �2i < K <1, "it and "jt are independently distributed for all i 6= j
and for all t. Speci�cally, maxi

�
�2i
�
= �2max < K <1.
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The process zit in (8) has conditional variance

V ar(zit jIt�1 ) = V ar
 

NX
`=1


i`f`t jIt�1

!
+ V ar ("it jIt�1 ) =

NX
`=1


2i` + �
2
i :

For the conditional variance of zit to be bounded in N , as required by Assumption 1, we must have

NX
`=1


2i` � K <1; for i = 1; 2; :::; N: (10)

In what follows we also consider the slightly stronger absolute summability condition

NX
`=1

j
i`j � K <1; for i = 1; 2; :::; N: (11)

De�nition 2 (Strong and weak factors) The factor f`t is said to be strong if

lim
N!1

N�1
NX
i=1

j
i`j = K > 0: (12)

The factor f`t is said to be weak if

lim
N!1

NX
i=1

j
i`j = K <1: (13)

The literature on large factor models has focussed on the case where the factors are strong. The

case of weak factors is recently considered by Onatski (2009). It is also possible to consider semi-strong

or semi-weak factors. In general, let � be a positive constant in the range 0 � a � 1 and consider the
condition

lim
N!1

N��
NX
i=1

j
i`j = K <1: (14)

The strong and weak factors correspond to the two values of � = 1 and � = 0, respectively. For any

other values of � 2 (0; 1) the factor f`t can be said to be semi-strong or semi-weak. It will prove useful
to associate the semi-weak factors with values of 0 < � < 1=2; and the semi-strong factors with values

of 1=2 � � < 1. In Section 4 we provide some practical examples where such semi-strong factors may
exist.

The relationship between the notions of CSD and CWD and the de�nitions of weak and strong

factors are explored in the following theorem.

Theorem 1 Consider the factor model (9) and suppose that Assumptions 1-4, and the absolute sum-
mability condition (11) hold, and there exists a positive constant � in the range 0 � a � 1; such that
condition (14) hold for any ` = 1; 2; ::; N . Then the following statements hold:
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(i) The process fzitg is cross sectionally weakly dependent at a given point in time t 2 T if � < 1,

which includes cases of weak, semi-weak or semi-strong factors f`t; for ` = 1; 2; :::; N .

(ii) The process fzitg is cross sectionally strongly dependent at a given point in time t 2 T if and

only if there exists at least one strong factor.

Proof. Using (9), the covariance of zt is given by

� = ��0 +�":

where �" is a diagonal matrix with elements �2i . Since condition (14) holds for ` = 1; 2; :::; N then

k�k1 = O (N�), and noting that k�0k1 = k�k1 = O (1) by (11) then

�1 (�) �


��0 +�"

1 � k�k1 

�0

1 + �2max = O (N�) : (15)

But using (5),

V ar(w0zt jIt�1 ) = w0�w �
�
w0w

�
�1 (�) �

�
w0w

�
O (N�) ;

and when � < 1, we have,

lim
N!1

V ar(w0zt jIt�1 ) = 0,

for any weights w satisfying condition (1). It follows that fzitg is CWD, which establishes result (i).
Now suppose that fzitg is CSD. Then, noting that �2max < K <1,

0 < lim
N!1

N�1�1 (�) � lim
N!1

N�1 k�k1


�0



1
+ lim
N!1

N�1�2max � lim
N!1

N�1 k�k1


�0



1
:

Given that, by assumption, k�0k1 is bounded in N , it follows that limN!1N�1 k�k1 = K > 0, and

there exists at least one strong factor in (9). To prove the reverse, assume that there exists at least

one strong factor in (9) (i.e., limN!1N�1 k�k1 = K > 0). Noting that4

�
1=2
1 (�) � �1=21

�
��0

�
� k�k1p

N
: (16)

it follows that limN!1N�1�1 (�) = K > 0 and the process is CSD, which establishes result (ii).

Under (12)-(13), zit can be decomposed as

zit = z
s
it + z

w
it ; (17)

where

zsit =
mX
`=1


i`f`t; z
w
it =

NX
`=m+1


i`f`t + "it; (18)

4See Bernstein (2005), p.368, eq. xiv.
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and 
i` satisfy conditions (12) for ` = 1; :::;m, and (13) for ` = m+ 1; :::; N . In the light of Theorem

1, it follows that zsit is CSD and z
w
it is CWD. Also, notice that when m = 0, we have a model with no

strong factors and potentially an in�nite number of weak factors.

Remark 4 Consider the following general spatial process

zt = Rvt; (19)

where R is an N �N matrix and vt is an N � 1 vector of independently distributed random variables.

Pesaran and Tosetti (2010) have shown that spatial processes commonly used in the empirical literature,

such as the Spatial Autoregressive (SAR) process, or the Spatial Moving Average (SMA), can be written

as special cases of (19). Speci�cally, for a SMA process R = IN + �S, where � is a scalar parameter

(j�j < K) and S is N �N nonnegative matrix that expresses the ordering or network linkages across

the units, while in the case of an invertible SAR process, we have R = (IN � �S)�1. Standard spatial
literature assumes that R has bounded column and row norms. It is easy to see that under these

conditions the above process can be represented by a factor process with an in�nite number of weak

factors (i.e., with m = 0), and no idiosyncratic error (i.e., "it = 0). For example by setting zit =PN
`=1 
i`f`t; where 
i` = ri`, and f`t = v`t, for i; ` = 1; :::; N . Under the bounded column and row

norms of R, the loadings in the above factor structure satisfy (13), and hence zit will be a CWD

process.

Remark 5 Consistent estimation of factor models with weak or semi-strong factors may be problem-
atic. To see this, consider the following single factor model with known factor loadings

zit = 
ift + "it; "it � IID
�
0; �2

�
:

The least squares estimator of ft, which is the best linear unbiased estimator, is given by

f̂t =

PN
i=1 
izitPN
i=1 


2
i

; V ar
�
f̂t

�
=

�2PN
i=1 


2
i

:

If for example
PN
i=1 


2
i is bounded, as in the case of weak factors, then V ar

�
f̂t

�
does not vanish as

N !1; for each t. See also Onatski (2009).

4 CCE estimation of panel data models with an in�nite number of

factors

In this section we focus on consistent estimation of slopes in panel regression models where the error

terms have an in�nite order factor structure. Let yit be the observation on the ith cross section unit
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at time t, for i = 1; 2; :::; N; and t = 1; 2; :::; T , and suppose that it is generated as

yit = �
0
idt + �

0
ixit + eit; (20)

where dt = (d1t; d2t; :::; dmdt)
0 is a md � 1 vector of observed common e¤ects, and xit is a k� 1 vector

of observed individual speci�c regressors. The parameters of interest are the means of individual slope

coe¢ cients, � = E(�i).
5 The error term, eit, is given by the following general factor structure,

eit =

mfX
`=1


i`f`t +

mnX
`=1

�i`n`t + "it, (21)

where we have distinguished between two types of unobserved common factors, ft =
�
f1t; f2t; :::; fmf t

�0
and nt = (n1t; n2t; :::; nmnt)

0. The former are strong factors that are possibly correlated with the

regressors xit, while the latter are the weak, semi-weak or semi-strong factors that are assumed to

be uncorrelated with the regressors. The associated vectors of factor loadings will be denoted by


i = (
i1; 
i2; :::; 
imf
)0 and �i = (�i1; �i2; :::; �imn)

0, respectively. The cross section dependence of

errors are modelled using the unobserved common factors, ft and nt, and without loss of generality it

is assumed that the idiosyncratic errors, "it, are cross sectionally uncorrelated (although they can be

serially correlated).

To model the correlation between the individual speci�c regressors, xit, and the innovations eit,

we suppose that xit can be correlated with any of the strong factors, ft,

xit = A
0
idt + �

0
ift + vit; (22)

where A0i and �
0
i are k�md and k�mf factor loading matrices, and vit is the individual component

of xit, assumed to be distributed independently of the innovations eit.

Similar panel data models have been analyzed by Pesaran (2006), Kapetanios, Pesaran, and Yaga-

mata (2010), and Pesaran and Tosetti (2010). Pesaran (2006) introduced CCE estimators in a panel

model where mf is �xed, mn = 0, and 
 0ift represents a strong factor structure. Contrary to what

Bai (2009) (see page 1231) suggests, CCE estimators are valid even in the rank de�cient case where

mf could be larger than k + 1. Kapetanios, Pesaran, and Yagamata (2010) extended the results of

Pesaran (2006) by allowing unobserved common factors to follow unit root processes. In both papers,

innovations f"itg are assumed to be cross sectionally independent although possibly serially corre-
lated. This assumption is relaxed by Pesaran and Tosetti (2010) who assume that f"itg is a weakly
dependent process with bounded row and column norms of its variance matrix, which includes spatial

MA or AR processes considered in the literature as special cases. In this paper, we focus explicitly

on cross-correlations modelled by general factor structures - weak, strong, or somewhere in between.

Our analysis is thus an extension of Pesaran (2006) to the case where there are an in�nite number

5We assume that individual slope coe¢ cients are drawn from a common distribution with mean �.
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of factors, a �xed number of which are strong and the rest are either weak, semi-weak or semi-strong

factors.

The special case where both mf and mn are �xed has already been analyzed in the above cited

papers. The case where f1t; f2t; :::; fmf t are strong and mf = mf (N) ! 1 as N ! 1, is not that
meaningful as it will lead to unbounded variances as N !1. However, it would be possible to let the
number of non-strong factors to rise with N , whilst keeping the number of strong factors �xed. We

show below that the CCE type estimators continue to be consistent and asymptotically normal under

these types of in�nite-factor error structures. We use notations mn (N) to emphasize the dependence

of the number of non-strong factors on N in the remainder of this paper.

Equations (20) and (22) can be written more compactly as

zit =

 
yit

xit

!
= B0idt +C

0
ift + uit; (23)

where

Bi =
�
�i Ai

�
Di, Ci =

�

i �i

�
Di,

Di =

 
1 01�k

�i Ik

!
, uit =

 
�0int + "it + �

0
ivit

vit

!
: (24)

Stacking the T observations for each i we also have

yi = D�i +Xi�i + ei;

Xi = G�i +Vi; (25)

Zi = DBi + FCi +Ui;

where yi = (yi1; yi2; :::; yiT )0,D = (d1;d2; :::;dT )
0,Xi = (xi1;xi2; :::;xiT )0;G = (D;F), F = (f1; f2; :::; fT )

0,

Vi = (vi1;vi2; :::;viT )
0, Zi = (zi1; zi2; :::; ziT )0, Ui = (ui1;ui2; :::;uiT )

0, and �i = (A
0
i;�

0
i)
0.

For the development of the CCE estimators we need the cross section averages of the individual

speci�c variables zit = (yit;x
0
it)
0, which we denote by zwt =

PN
i=1wizit; where w = (w1; w1; :::; wN )

0

is any vector of weights that satisfy the granularity conditions (1)-(2). Further, let Mw = IT �
Hw

�
H
0
wHw

�+
H
0
w, Hw =

�
D;Zw

�
, Zw = (zw1; zw2; :::; zwT )0, Mq = IT �Q (Q0Q)+Q0, Q = GPw,

Pw
(md+mf)�(md+k+1)

=

0B@ Imd
Bw

md�(k+1)

0
mf�md

Cw
mf�(k+1)

1CA , (26)

Bw =

NX
i=1

wiBi; and Cw =
NX
i=1

wiCi: (27)

11



Also, de�ne the matrices associated with Mq and Pw as Mg = IT �G (G0G)�1G0, and

P =

0@ Imd
B

0
mf�md

C

1A , (28)

where B = E (Bi), and C = E (Ci). As we shall see below the asymptotic theory of the CCE type

estimators depends on the rank of Cw both for a �nite N , and as N !1.
We make the following assumptions on the unobserved common factors ft and nt and their loadings.

Assumption 5 (Common factors) The (md +mf ) � 1 vector gt = (d0t; f
0
t)
0 is a covariance station-

ary process, with absolute summable autocovariances and �nite second-order moments. In particu-

lar, k�gk < K for some constant K, where �g = E (gtg
0
t) is a positive de�nite matrix. For each

` = 1; 2; :::;mn (N), common factor n`t follows a covariance stationary process with absolute sum-

mable autocovariances, zero mean, unit variance, and �nite fourth-order moment uniformly bounded

in `. n`t is independently distributed of gt and of n`0t for all ` 6= `0 and t.

Assumption 6 (Factor loadings)
(a) Factor loadings 
i, and �i are independently and identically distributed across i, and of the

common factors gt, nt, for all i and t, with �xed mean 
 and �, and uniformly bounded second

moments. In particular,


i = 
 + �
i, �
i � IID (0;

) , for i = 1; 2; :::; N ,

and

vec (�i) = vec (�) + ��i, ��i � IID (0;
�) , for i = 1; 2; :::; N ,

where 

 and 
� are mf �mf and kmf � kmf symmetric nonnegative de�nite matrices, k
k < K,
k

k < K, k�k < K, and k
�k < K for some constant K.

(b) Factor loadings �i`, for i = 1; 2; :::; N , and ` = 1; 2; :::;mn (N), are non-stochastic. For each

i = 1; 2; :::; N , the factor loadings, �i`; satisfy the following absolute summability condition

mn(N)X
`=1

j�i`j < K. (29)

Remark 6 The absolute summability condition (29) is su¢ cient for ensuring bounded variances of
#it = �

0
int =

Pmn(N)
`=1 �i`n`t for each i = 1; 2; :::; N , as mn (N) ! 1. This condition alone does not,

however, rule out strong, semi strong, or semi weak factor structures. Additional requirements on the

sum of absolute values of the loadings �i` across i will be postulated in theorems below.

The following assumptions are similar to Pesaran (2006).

12



Assumption 7 The individual-speci�c errors "it and vit are independently distributed across i, inde-
pendently distributed of the common factors gt, nt and of the factor loadings 
j, �j, for each i,j and

each t. vit, for i = 1; 2; :::; N , follow linear stationary processes with absolute summable autocovari-

ances, zero mean, and �nite second-order moments uniformly bounded in i. For each i,

E(vitv
0
it) = �vi ;

where �vi is a positive de�nite matrix, such that supi k�vik < K, for some positive constant K. Errors
"it; for i = 1; 2; :::; N , follow a linear stationary process with absolute summable autocovariances, zero

mean, and �nite second-order moments uniformly bounded in i.

Assumption 8 Coe¢ cient matrices Bi are independently and identically distributed across i, inde-
pendently distributed of the common factors gt and nt, of the factor loadings 
j and �j, and of the

errors "jt and vjt, for all i; j and t, with �xed mean B, and uniformly bounded second moments.

Assumption 9 The slope coe¢ cients follow the random coe¢ cient model

�i = � + �i, �i � IID (0;
�) , for i = 1; 2; :::; N ,

where k�k < K, k
�k < K, 
� is a symmetric non-negative de�nite matrix, and the random devia-

tions �i are distributed independently of the common factors gt and nt, of the factor loadings 
j and

�j, of the errors "jt and vjt, and of the coe¢ cients in �j and Aj for all i; j and t.

Assumption 10

(a) The matrix limN!1
PN
i=1wi�iq = 	� exists and is nonsingular, and supi




��1
iq




 < K, where

�iq = �vi +�
�0
i �g�

�
i , and �

�
i =

h
I�P (P0P)+P0

i
�i.

(b) Denote the t-th row of matrix eXi = MqXi by ex0it = (exi1t; exi2t; ::::; exikt). Individual elements of
the vector ex0it have uniformly bounded fourth moments, namely there exists a positive constant
K such that E

�ex4ist� < K for any t = 1; 2; :::; T; i = 1; 2; :::; N and s = 1; 2; :::; k. Furthermore,

fourth moments of f`t, for ` = 1; 2; :::;mf , are bounded.

(c) There exists T0 such that for all T � T0;
�PN

i=1wiX
0
iMwXi=T

��1
exists.

(d) There exists T0 and N0 such that for all T � T0 and N � N0, the k�k matrices
�
X0iMwXi=T

��1
and (X0iMgXi=T )

�1 exist for all i.

The CCE approach is motivated by the fact that, to estimate �, one does not necessarily need to

compute consistent estimates of the unobservable common factors. It is su¢ cient to account for their

e¤ects by including cross section averages of the observables in the regressions, since such cross section

averages indirectly re�ect the overall importance of the factors for the estimation of �. Two types
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of CCE estimators are considered. The common correlated e¤ects mean group estimator (CCEMG)

which is given by

b�MG =
1

N

NX
i=1

b�i, (30)

where b�i = �
X0iMwXi

��1
X0iMwyi, and the common correlated e¤ects pooled (CCEP) estimator

which is de�ned by

b�P =
 

NX
i=1

wiX
0
iMwXi

!�1 NX
i=1

wiX
0
iMwyi. (31)

The following theorem establishes consistency of CCE estimators in case of panels with (possibly) an

in�nite number of factors.

Theorem 2 (Consistency of CCE estimators) Consider the panel data model (20) and (22), and

suppose that Assumptions 5-10 hold, and there exist constants � and K such that 0 � � < 1,

NX
i=1

j�i`j < KN� for each ` = 1; 2; :::;mn (N) , (32)

and

lim
N!1

mn (N)

N2(1��) ! 0. (33)

Then common correlated e¤ects mean group and pooled estimators, de�ned by (30) and (31), respec-

tively, are consistent, that is as (N;T )
j!1 we have

b�MG � �
p! 0, (34)

and b�P � � p! 0. (35)

A proof is provided in the Appendix.

Assumptions of Theorem 2 rule out the case where #it = �0int =
Pmn(N)
`=1 �i`n`t is a strong factor

structure, but allow for the possibility of semi-strong (1=2 � � < 1), semi-weak (0 < � < 1=2), or

weak factors (� = 0) so long as the number of factors mn (N) is appropriately bounded. The su¢ cient

bound for mn (N) is given by condition (33). Note that conditions (32)-(33) and 0 � � < 1 ensure

that V ar
�
#wt
�
! 0, as N !1, and therefore #it is CWD.

The following theorem establishes asymptotic distribution of CCE estimator in case of weak (� = 0)

and semi weak (0 < � < 1=2) in�nite factor structures.

Theorem 3 (Distribution of CCE estimators) Consider the panel data model (20) and (22), and
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suppose that Assumptions 5-10 hold, and there exist constants � and K such that 0 � � < 1=2,

NX
i=1

j�i`j < KN� for each ` = 1; 2; :::;mn (N) , (36)

and

mn (N) < KN
1�2�. (37)

Then, as (N;T )
j!1, p

N
�b�MG � �

�
d! N (0;�MG) , (38)

where b�MG is given by (30), and �MG is given by equation (B.25) in the Appendix. Furthermore, 
NX
i=1

w2i

!�1=2 �b�P � �� d! N (0;�P ) , (39)

where b�P is given by (31), and �P is given by equation (B.19) in the Appendix.
A proof is provided in the Appendix.

Remark 7 Following Pesaran (2006), it is also possible to provide semi-parametric estimators of
variances of b�MG and b�P . Consistent estimators of �MG and �P are given by equations (58) and

(69) of Pesaran (2006), respectively.

Remark 8 As it was mentioned earlier, CCE estimators are valid irrespective whether Cw de�ned by
(27) has full column rank, or is rank de�cient, and therefore mf , the number of factors in ft, could

be larger than k + 1. If assumption of full column rank of Cw (for any N 2 N, as well as N ! 1)
is satis�ed, then Assumption 6.a on factor loadings and Assumption 8 on coe¢ cient matrices could

be relaxed. In particular, it would be su¢ cient to assume that factor loadings 
i and �i, and the

coe¢ cients �i and Ai are non-stochastic and uniformly bounded.

Current factor literature assumes that eigenvalues of the spectral density matrix of the underlying

double indexed processes either rise with N at the rate N or are bounded in N , while they are not

allowed to rise at any rate slower than N . As the sources of cross section dependence are generally

unknown (factors are latent and in general not identi�ed), such assumptions seem to have been adopted

for technical convenience rather than on grounds of their empirical validity. However, in several

empirical applications it seems reasonable to consider cases where the eigenvalues of the spectral

density rise at a rate slower than N . Semi-strong factors may exist if there is a cross section unit

or an unobserved common factor that a¤ects, rather then all units, only a subset of them expanding

at rate slower than N . One can think of an unobserved common shock that hits only a subset of

the population. For example a new law that a¤ects only large �rms. As the number of �rms, N ,

increases, one reasonable assumption is that the number of large �rms increases at a rate slower than
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N . Similarly, the performance of medium-sized �rms may have impact only on a subset of �rms in the

market. If we assume that the range of in�uence of this �rm is proportional to its dimension, then as

N increases, the subset of units that is a¤ected by it expands at a rate slower than N .

We observe that practical di¢ culties encountered when estimating the number of factors in large

data sets could be related to the presence of semi-strong factors, as existing techniques for determining

the number of factors assume that there are no semi-weak (or semi-strong) factors and that all factors

under consideration are either weak or strong.

5 Monte Carlo experiments

We consider the following data generating process

yit = �id1t + �i1xi1t + �i2xi2t + uit; (40)

for i = 1; 2; :::; N and t = 1; 2; :::; T . We assume heterogeneous slopes, and set �ij = �j + �ij , with

�ij � IIDN (1; 0:04) ; for i = 1; 2; :::; N and j = 1; 2, varying across replications. The errors, uit, are

generated as

uit =
P3
`=1 
i`f`t +

Pmn
`=1 �i`n`t + "it;

where "it � N(0; �2i ); �2i � IIDU (0:5; 1:5) ; for i = 1; 2; :::; N (the MC results will be robust to serial

correlation in "it), and unobserved common factors are generated as an independent AR(1) processes

with unit variance.

f`t = 0:5f`t�1 + vf`t , ` = 1; 2; 3; t = �49; :::; 0; 1; ::; T;

vf`t � IIDN(0; 1� 0:52); f`;�50 = 0;

n`t = 0:5n`t�1 + vn`t , ` = 1; ::;mn; t = �49; :::; 0; 1; ::; T;

vn`t � IIDN(0; 1� 0:52); n`;�50 = 0:

The �rst three factors will be assumed to be strong, in the sense that the sum of the absolute values

of their loadings is unbounded in N , and are generated as


i` � IIDU(0; 1); for i = 1; :::; N; ` = 1; 2; 3:

The following two cases are considered for the remaining mn factors n`t:

Experiment A fn`tg are weak, with their loadings given by

�i` =
�i`

2
PN
i=1 �i`

; �i` � IIDU(0; 1), for ` = 1; :::;mn, and i = 1; 2; :::; N:

It is easily seen that for each `;
PN
i=1 j�i`j = O(1) and for each i,

Pmn
`=1 �

2
i` = O(mn=N

2).
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Therefore, asymptotically as N ! 1, the R2i is only a¤ected by the strong factors, even if
mn !1.

Experiment B As an intermediate case we shall also consider semi-strong factors where the loadings

are generated by

�i` =
�i`q

3
PN
i=1 �

2
i`

; for ` = 1; :::;mn, and i = 1; 2; :::; N:

In this case, for each `,
PN
i=1 j�i`j = O(N1=2), and for each i,

Pmn
`=1 �

2
i` = O(mn=N); and the

signal-to-noise ratio of the regressions deteriorate as mn is increased for any given N . In Section

5.1, we will investigate this issue further, to check if the e¤ect of mn on R2i for a given N impacts

on the performance of our estimators.

The remaining variables in the panel data model are set out as follows: regressors xijt are assumed

to be correlated with strong unobserved common factors and generated as follows:

xijt = aij1d1t + aij2d2t +
P3
`=1 
ij`f`t + vijt; j = 1; 2;

where


ij` � IIDU(0; 1); for i = 1; :::; N; ` = 1; 2; 3; j = 1; 2:

vijt = ��ijvijt�1 + #ijt, i = 1; 2; :::; N ; t = �49; :::; 0; 1; ::; T;

#ijt � IDN(0; 1� �2#ij ); vij;�50 = 0; �#ij � IIDU(0:05; 0:95) for j = 1; 2.

The observed common e¤ects are generated as

d1t = 1; d2t = 0:5d2t�1 + vdt, t = �49; :::; 0; 1; ::; T;

vdt � IIDN(0; 1� 0:52); d2;�50 = 0;

When generating vijt and the common factors f`t; n`t and d2t the �rst 50 observations have been

discarded to reduce the e¤ect on estimates of initial values. The factor loadings of the observed

common e¤ects do not change across replications and are generated as

�i � IIDN(1; 1); i = 1; 2; :::; N;

(ai11; ai21; ai12; ai22) � IIDN(0:5� 4; 0:5I4);

where � 4 = (1; 1; 1; 1)0 and I4 is a 4� 4 identity matrix.
Each experiment was replicated 2; 000 times for all pairs of N and T = 20; 30; 50; 100; 200. For each

N we shall consider mn = 0; N=5; 3N=5; N . For example, for N = 100, we consider mn = 0; 20; 60; 100.

We report bias, RMSE, size and power for six estimators: the FE estimator with standard variance, the
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CCEMG and CCEP estimators given by (30) and (31), respectively, the MGPC and PPC estimators

proposed by Kapetanios and Pesaran (2007), and the PC estimator proposed by Bai (2009). The

MGPC and PPC estimators are similar to (30) and (31) except that the cross section averages are

replaced by estimated common factors using the Bai and Ng (2002) procedure to zit = (yit;x0it)
0. In

the PC iterative estimator by Bai (2009),
�
b̂PC ; F̂

�
is the solution to the following set of non-linear

equations:

b̂PC =

 
NX
i=1

X0iMF̂Xi

!�1 NX
i=1

X0iMF̂yi;

1

NT

NX
i=1

�
yi �Xib̂PC

��
yi �Xib̂PC

�0
F̂ = F̂V̂;

where MF̂ = IT � F̂
�
F̂0F̂

��1
F̂0, and V̂ is a diagonal matrix with the m̂f largest eigenvalues of the

matrix 1
NT

PN
i=1

�
yi �Xib̂PC

��
yi �Xib̂PC

�0
arranged in decreasing order. The demeaning operator

is applied to all variables before entering in the iterative procedure, to get rid of the �xed e¤ects. The

variance estimator of b̂PC is dV ar �b̂PC� = 1

NT
D�1
0 DZD

�1
0 ;

where D0 = (NT )�1
PN
i=1 Z

0
iZi; DZ = N�1PN

i=1 �̂
2
i

�
T�1

PT
t=1 zitz

0
it

�
; with �̂2i = T�1

PT
t=1 "̂

2
it,

Zi =MF̂Xi�N
�1PN

k=1

�

̂ 0i

�
L̂0L̂=N

��1

̂k

�
MF̂Xk, and L̂ = (
̂1; :::; 
̂N )

0 is the matrix of estimated

factor loadings. When T=N ! � > 0, b̂PC is biased and, following Bai (2009), we estimate the bias as

bias = � 1
N
D�1
0

1

N

NX
i=1

�
Xi � V̂i

�0
F̂

T

 
L̂0L̂

N

!�1

̂i�̂

2
i ;

where V̂i = N�1PN
j=1 
̂

0
i

�
L̂0L̂=N

��1

̂jXj . The selection of the number of strong common factors

(mf ) in the Kapetanios and Pesaran (2007) and in the Bai (2009) estimators has been based on Bai

and Ng (2002) ICp1 criterium.

5.1 Results

Results on the estimation of the slope parameters for the Experiments A and B are summarized in

Tables 1-5. In what follows, we focus on the estimation of �1; results for �2 are very similar and are

not reported. Notice that the power of the various tests is computed under the alternative H1 : �1
= 0:95.

We do not report results for the FE estimator since they show that, as expected, this estimator

performs very poorly, is substantially biased, and is subject to large size distortions for all pairs of N

and T , and for all values of mn. Tables 1-2 show the results for the CCE estimators. The bias and
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RMSE of CCEP and the CCEMG estimators fall steadily with the sample size and tests of the null

hypothesis based on them are correctly sized, regardless of whether the factors, fn`t, ` = 1; 2; :::;mng,
are weak or semi-strong, and the choice of mn. Further, we notice that the power of the tests based

on CCE estimators is not a¤ected by mn, the number of weak (or semi-strong) factors: This is also

con�rmed by Figure 1, which shows that the power curves of tests based on the CCEP estimator do

not change much with mn.6 The Monte Carlo results clearly show that augmenting the regression

with cross section averages seems to work well not only in the case of a few strong common factors,

but also in the presence of an arbitrary, possibly in�nite, number of (semi-) weak factors.

Tables 3-4 report the �ndings for the MGPC and PPC. First notice that these estimators, since

they estimate the unobserved common factors by principal components, only work in the case where

the factors, fn`tg ; represent a set of weak factors, or when mn = 0 (i.e., in Experiment A). In fact, in

the case of a semi-strong factor structure the covariance matrix of the idiosyncratic error would not

have bounded column norm, a condition required by the principal components analysis for consistent

estimation of the factors and their loadings. However, as shown in Table 1, even for Experiment A,

these estimators show some size distortions for small values of N (i.e., when N = 20; 30). One possible

reason for this result is that the principal components approach requires estimating the number of

(strong) factors via a selection criterion, which in turn introduces an additional source of uncertainty

into the analysis. Therefore, not surprisingly tests based on MGPC and PPC estimators are severely

oversized when a semi-strong factor structure is considered.

Finally, Table 5 gives the results for the Bai (2009) PC iterative estimator. The bias and RMSE

of the Bai estimators are comparable to CCE type estimators, but tests based on them are grossly

over-sized, even when mn = 0. The problem seems to lie with the variance of the Bai estimator, an

issue that clearly needs further investigation. In his Monte Carlo experiments, Bai does not provide

size and power estimates of tests based on his proposed estimator.

6 Concluding remarks

Cross section dependence is a rapidly growing �eld of study in panel data analysis. In this paper we

have introduced the notions of weak and strong cross section dependence, and have shown that these

are more general and more widely applicable than other characterizations of cross section dependence

provided in the existing econometric literature. We have also investigated how our notions of CWD

and CSD relate to the properties of common factor models that are widely used for modelling of

contemporaneous correlation in regression models. Finally, we have provided further extensions of

the CCE procedure advanced in Pesaran (2006) that allow for a large number of weak or semi-strong

factors. Under this framework, we have shown that the CCE method still yields consistent estimates

of the mean of the slope coe¢ cients and the asymptotic normal theory continues to be applicable.

6Similar curves were obtained for CCEMG estimatos, which are not reported due to space considerations.
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Figure 1: Power curves for the CCEP t-tests in experiments with N = 100; T = 100; 3 strong factors, and a
varying number mn of weak factors (left chart) and semi-strong factors (right chart).

Table 5: Results for Bai estimator. Experiment A and B: mf = 3 strong factors and mn weak or
semi-strong factors.7

Bias (x100) RMSE (x100) Size (x100) Power (x100)
mn N/T 20 100 20 100 20 100 20 100

Weak factor structure f�0intg
0 20 0.47 -0.30 9.78 5.72 37.90 48.00 45.60 61.40
0 100 -0.01 0.02 3.57 2.50 21.50 47.20 58.70 91.10
4 20 0.62 -0.15 9.80 5.83 40.10 50.50 48.30 63.20
20 100 0.07 -0.09 3.48 2.47 21.40 44.90 56.20 91.50
20 20 0.30 0.09 9.91 6.07 37.90 52.40 46.50 64.20
100 100 0.10 0.03 3.47 2.42 21.10 45.30 59.80 91.90

Semi-strong factor structure f�0intg
4 20 0.45 -0.23 9.40 6.08 35.50 52.10 42.70 65.10
20 100 -0.09 -0.17 3.70 2.60 23.60 46.80 58.30 88.70
20 20 1.28 -0.28 10.47 6.27 41.70 52.40 49.40 60.50
100 100 0.02 0.03 3.50 2.46 20.90 44.50 56.20 90.20

7Based on R = 1000 replications.
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A Statements and proofs of lemmas

We state and prove a number of lemmas that we shall use in proofs of Theorems 2 and 3.

Lemma A.1 Suppose Assumptions 5-9 hold and (N;T )
j!1. Then,
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p
N

T

TX
t=1

vitv
0
wt

L1! 0 uniformly in i, (A.3)

1

T

TX
t=1

#it#wt
L1! 0 uniformly in i,

p
N

T

TX
t=1

#it"wt
L1! 0 uniformly in i, (A.4)

p
N

T

TX
t=1

#itvwt
L1! 0 uniformly in i,

1

T

TX
t=1

"it#wt
L1! 0, uniformly in i (A.5)
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p
N

T

TX
t=1

"it"wt
L1! 0 uniformly in i, and

p
N

T

TX
t=1

"itvwt
L1! 0 uniformly in i, (A.6)

where gt = (d0t; f
0
t)
0, #wt =

PN
i=1 wi#it, #it =

Pmn(N)
`=1 �i`n`t, "wt =

PN
i=1 wi"it, and vwt =

PN
`=1 wivit. If in

addition there exist constants � and K such that 0 � � < 1 and conditions (32) and (33) hold, then

1

T

TX
t=1

uwtu
0
wt

L1! 0, (A.7)

where uwt =
PN

i=1 wiuit, and uit is de�ned by (24). If conditions (36) and (37) hold instead of conditions (32)

and (33), 0 � � < 1=2, and the remaining assumptions are unchanged, then

p
N

T

TX
t=1

gt#wt
L1! 0,

p
N

T

TX
t=1

vit#wt
L1! 0 uniformly in i, (A.8)

p
N

T

TX
t=1

#it#wt
L1! 0 uniformly in i, and

p
N

T

TX
t=1

"it#wt
L1! 0 uniformly in i. (A.9)

Proof. We use L1 mixingale weak law to establish results (A.1)-(A.9). Let TN = T (N) such that TN !1 as

N !1 and let cNt = 1
TN

for all N 2 N, and all t 2 Z. To establish the �rst part of (A.1) de�ne

�Nt =
1

TN
gt#wt =

1

TN
gt

mn(N)X
`=1

�w`n`t,

where �w` =
PN

i=1 wi�i`. We have

E

�
�Nt�

0
Nt

c2Nt

�
= �g

mn(N)X
`=1

�
2

w`,

where k�gk < K by Assumption 5. Consider the term
Pmn(N)

`=1 �
2

w`. Since absolute summability implies square

summability, a su¢ cient condition for the existence of an upper bound for
Pmn(N)

`=1 �
2

w` is the existence of an

upper bound for
Pmn(N)

`=1

���w`��. But
mn(N)X
`=1

���w`�� = mn(N)X
`=1

�����
NX
i=1

wi�i`

����� �
NX
i=1

jwij

0@mn(N)X
`=1

j�i`j

1A < K,

where
Pmn(N)

`=1 j�i`j < K by condition (29) of Assumption 6, and
PN

i=1 jwij is bounded by (1)-(2). It follows that
array f�Nt=cNtg is uniformly bounded in L2-norm and therefore uniformly integrable.8 Furthermore, gt and

n`t, for ` = 1; 2; :::;mn (N), are covariance stationary processes with absolute summable autocovariances, and

therefore kE (gt j It�s)kL1 ! 0 and kE (n`t j It�s)kL1 ! 0, as s!1, and array f�Ntg is uniformly integrable
L1-mixingale with respect to the constant array fcNtg. Since limN!1

PTN
t=1 cNt = limN!1

PTN
t=1 T

�1
N = 1 <1,

and limN!1
PTN

t=1 c
2
Nt = limN!1

PTN
t=1 T

�2
N = 0, a mixingale weak law (Davidson (1994), Theorem 19.11) can

8Su¢ cient condition for uniform integrability is L1+" uniform boundedness for any " > 0.
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be applied, and we have
TX
t=1

�Nt =
1

TN

TX
t=1

gt#wt
L1! 0,

as required. Similarly, to establish the �rst part of (A.8) de�ne

�Nt =

p
N

TN
gt#wt =

p
N

TN
gt

mn(N)X
`=1

�w`n`t,

where as before �w` =
PN

i=1 wi�i`. Hence

E

�
�Nt�

0
Nt

c2Nt

�
= N �g

mn(N)X
`=1

�
2

w`,

and note that
mn(N)X
`=1

�
2

w` < K N2��2 mn (N) = O
�
N�1� ,

under conditions (36) and (37). Thus, same as before f�Ntg is uniformly integrable L1-mixingale with respect
to a constant array cNt, and applying a mixingale weak law yields

TX
t=1

�Nt =

p
N

TN

TX
t=1

gt#wt
L1! 0.

Remaining results can also be established in a similarly way. For example, in order to establish the second part

of (A.1) de�ne �Nt =
p
N

TN
gt"wt, and note that

E

�
�Nt�

0
Nt

c2Nt

�
= N �gE

�
"2wt
�
= N �g

NX
i=1

w2iE
�
"2it
�
< K.

Similarly, in order to establish the �rst part of (A.2), de�ne �Nt =
p
N

TN
gtvwt, and note that

E

�
�Nt�

0
Nt

c2Nt

�
= N�gE

�
v2wt
�
= N�g

NX
i=1

w2i k�vik < K.

The following four results, the second part of (A.3), the �rst part of (A.6), (A.7), and the �rst part of (A.9),

deserve more attention. In the case of the second part of (A.3), we have

p
N

TN

TNX
t=1

vitv
0
wt =

p
N

TN

TNX
t=1

wivitv
0
it +

p
N

TN

TNX
t=1

vit
X
j 6=i

wjvjt. (A.10)

Note that since vit is ergodic in variance then T
�1
N

PTN
t=1 vitv

0
it
L1! �vi, and since

p
Nwi ! 0 as N ! 1 and

supi k�vik < K, it follows that
p
N

TN

PTN
t=1 wivitv

0
it
L1! 0. To establish convergence of the second term on the
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right side of (A.10), de�ne �Nt =
p
N

TN
vit
P

j 6=i wjvjt, and note that



E ��Nt�0Ntc2Nt

�



 < N k�vikX
j 6=i

w2j k�vjk < K.

Using now the same arguments as in the proof of the �rst part of (A.1) we have
PTN

t=1 �Nt
L1! 0, which completes

the proof of the second part of (A.3). The �rst part of (A.6) can be established along the same lines followed

to prove the second part of (A.3). To establish the �rst part of (A.9), consider

�Nt =

p
N

TN
#it#wt =

p
N

TN
#it

NX
j=1

wj#jt.

We have 



E ��2Ntc2Nt

�



 = N NX
j=1

NX
k=1

wjwkE
�
#2it#jt#kt

�
, (A.11)

where

E
�
#2it#jt#kt

�
=

mn(N)X
`1=1

mn(N)X
`2=1

mn(N)X
`3=1

mn(N)X
`4=1

�i`1�i`2�j`3�k`4E (n`1tn`2tn`3tn`4t) ,

in which E (n`1tn`2tn`3tn`4t) is nonzero only in the following three cases: (i) `1 = `2 = `3 = `4, (ii) `1 = `2 and

`3 = `4, and (iii) `1 = `3 and `2 = `4. It follows that

E
�
#2it#jt#kt

�
=

mn(N)X
`=1

�2i`�j`�k`E
�
n4`t
�
+

mn(N)X
`1=1

X
`3 6=`1

�2i`1�j`3�k`3 +

mn(N)X
`1=1

X
`2 6=`1

�i`1�i`2�j`1�k`2 , (A.12)

where E
�
n2`t
�
= 1, and E

�
n4`t
�
< K by Assumption 5. Using conditions (36) and (37), and the absolute

summability condition (29) of Assumption 6, we obtain

N
NX
j=1

NX
k=1

wjwk

0@mn(N)X
`=1

�2i`�j`�k`E
�
n4`t
�1A = N

mn(N)X
`=1

�2i`�
2

w` < K, (A.13)

N
NX
j=1

NX
k=1

wjwk

0@mn(N)X
`1=1

X
`3 6=`1

�2i`1�j`3�k`3

1A = N

mn(N)X
`1=1

�2i`1

X
`3 6=`1

�
2

w`3 < K

N
NX
j=1

NX
k=1

wjwk

0@mn(N)X
`1=1

X
`2 6=`1

�i`1�i`2�j`1�k`2

1A = N

mn(N)X
`1=1

�i`1�w`1

mn(N)X
`2 6=`1

�i`2�w`2 < K (A.14)

Now substitute (A.12) in (A.11) for E
�
#2it#jt#kt

�
, and use (A.13)-(A.14) to obtain



E ��2Ntc2Nt

�



 < K. (A.15)

Using the same arguments as in the proof of the �rst part of (A.1), �Nt is uniformly integrable L1-mixingale

with respect to the constant array cNt, and applying a mixingale weak law yields
PTN

t=1 �Nt
L1! 0, as required.
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In order to establish (A.7) note that

uwt =

 
#wt + "wt +

PN
i=1 wi�

0
ivit

vwt

!
.

Convergence of T�1
PT

t=1 #
2

wt can also be established using a mixingale weak law. Let �Nt = T
�1
N #

2

wt, and note

that

E
�
#
2

wt

�
= E

0@ NX
j=1

wj#jt

1A2

=
NX
i=1

NX
j=1

wiwjE (#it#jt)

=
NX
i=1

NX
j=1

wiwj

mn(N)X
`=1

�i`�j`

�
mn(N)X
`=1

0@ NX
i=1

wi�i` �
NX
j=1

wj�j`

1A
� K �mn (N)N

2��2 ! 0,

where jwij < K=N under the granularity conditions (1)-(2),
PN

i=1 j�i`j < KN� by (32), and mn (N)N
2��2 ! 0

by (33). Similarly as in the proof of the �rst part of (A.9), it can be shown that E
�
�2Nt=c

2
Nt

�
is bounded

and that
PTN

t=1 �Nt
L1! 0. The convergence of the remaining elements of (A.7) can be established using similar

arguments as in Lemma 2 of Pesaran (2006), or by applying a mixingale weak law.

Lemma A.2 Suppose Assumptions 5-9 hold and (N;T )
j!1. Then,

V0
iVi

T

p! �vi uniformly in i,
V0
iG

T

p! 0 uniformly in i, (A.16)

V0
iQ

T

p! 0 uniformly in i,
G0G

T

p! �g, (A.17)

Q0G

T
= Op (1) ,

Q0Q

T
= Op (1) (A.18)

�
�
i ���

i
p! 0 uniformly in i,

H
0
wHw

T
= Op (1) , (A.19)

H
0
w#i
T

= op (1) uniformly in i,
X0
iQ

T
= Op (1) uniformly in i, (A.20)

H
0
w"i
T

= op (1) uniformly in i,
H
0
wXi

T
= Op (1) uniformly in i (A.21)

and
H
0
wF

T
= Op (1) , (A.22)

where ��
i =

h
I�P (P0P)+P0

i
�i, �

�
i =

�
I�Pw

�
P
0
wPw

�+
P
0
w

�
�i, Pw is de�ned by (26), P =E(Pw),
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G =(D;F), Q = GPw, Hw =
�
D;Zw

�
, and #i = (#i1; #i1; :::; #iT )

0 with #it =
Pmn(N)

`=1 �i`n`t.

Proof. The �rst part of (A.16) follows directly by observing that the covariance stationary process vit is ergodic
in variance. Since gt = (d0t; f

0
t) is also a covariance stationary process with absolute summable autocovariances,

it follows that
1

T

TX
t=1

vitg
0
t
p! E (vitg

0
t) = 0,

where the convergence is uniform in i since the second moments of vit are uniformly bounded in i. This

establishes the second part of (A.16). The �rst part of (A.17) can be established using the same arguments.

The second part of (A.17) can be established similarly to the �rst part of (A.16) by noting that �g = E (gtg0t).

In the same spirit,

1

T

TX
t=1

qtg
0
t =

1

T

TX
t=1

P
0
wgtg

0
t
p! E

�
P
0
wgtg

0
t

�
,

as (N;T )
j! 1. But E

�
P
0
wgtg

0
t

�
= P0�g, and kP0�gk � kPk k�gk < K, where k�gk < K by Assumption 5

and kPk < K by Assumptions 6, 8, and 9, which completes the proof of the �rst part of (A.18). Noting that

Q = GPw, and that Pw
p! P, the second part of (A.17) implies

Q0Q

T
�P0�gP

p! 0,

as (N;T )
j! 1. But, same as before, kP0�gPk � kPk2 k�gk < K and it follows that Q0Q=T = Op (1), as

required. To establish the �rst part of (A.19) note that Pw �P
p! 0 as (N;T )

j!1, and

lim
N!1

Pr
h
rank

�
P
0
wPw

�
= rank (P0P)

i
= 1.

It follows, using also Theorem 2 of Andrews (1987), that�
�
i ���

i
p! 0. The remaining results can be established

in a similar way, as results (A.16)-(A.18), using ergodicity in mean and variance of covariance stationary series

with absolute summable autocovariances and Lemma A.1.

Lemma A.3 Suppose Assumptions 5-9 hold, (N;T )
j! 1, and there exist constants � and K such that

0 � � < 1, and conditions (32) and (33) hold. Then,

X0
i

�
Hw �Q

�
T

p! 0 uniformly in i,

�
Q0 �H0

w

�
#i

T

p! 0 uniformly in i, (A.23)

24 H0
wHw

T

!+
�
�
Q0Q

T

�+35 p! 0, (A.24)

�
Q0 �H0

w

�
"i

T

p! 0 uniformly in i, and

�
Q0 �H0

w

�
F

T

p! 0. (A.25)

If conditions (36) and (37) hold instead of conditions (32) and (33), 0 � � < 1=2, and the remaining assumptions
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are unchanged, then

p
NX0

i

�
Hw �Q

�
T

p! 0 uniformly in i,

p
N
�
Q0 �H0

w

�
#i

T

p! 0 uniformly in i, (A.26)

p
N

24 H0
wHw

T

!+
�
�
Q0Q

T

�+35 p! 0, (A.27)

p
N
�
Q0 �H0

w

�
"i

T

p! 0 uniformly in i, and

p
N
�
Q0 �H0

w

�
F

T

p! 0. (A.28)

Proof. Using the notations in Section (4) we note that Hw = Q+U
�
w, where U

�
=
�
0;Uw

�
, Uw =

PN
i=1 wiUi.

Also recall that Xi = G�i+Vi. Hence both parts of (A.23) and (A.25) directly follow from results (A.1)-(A.3)

of Lemma A.1. However, because Moore-Penrose inverse is not a continuous function it is not su¢ cient that 
H
0
wHw

T

!
�
�
Q0Q

T

�
= op (1) , (A.29)

for (A.24) to hold. We establish (A.24) in a similarly way as Kapetanios, Pesaran, and Yagamata (2010). By

Theorem 2 of Andrews (1987), (A.29) is su¢ cient for (A.24), if additionally, as (N;T )
j!1,

lim
(N;T )

j!1
Pr

"
rank

 
H
0
wHw

T

!
= rank

�
Q0Q

T

�#
= 1, (A.30)

where rank (A) denotes rank of A. But

H
0
wHw

T
=
Q0Q

T
+
Q0U

�
w

T
+
U
�0
wQ

T
+
U
�0
wU

�
w

T
,

where

lim
(N;T )

j!1
Pr

 




Q0U
�
w

T
+
U
�0
wQ

T
+
U
�0
wU

�
w

T






 > �
!
= 0

for all � > 0. Also

rank

�
Q0Q

T

�
= md + rank

�
Cw
�
,

for all N and T , with rank (Q0Q=T ) ! md + rank (C) � md +mf , as (N;T )
j! 1. Using these results, it is

now easily seen that condition (A.30) in fact holds. Hence, the desired result (A.24) follows.

Results (A.26)-(A.28) can be established in a similar way as results (A.23)-(A.25).

Lemma A.4 Suppose Assumptions 5-10 hold, and (N;T )
j!1. Then,

X0
iMq"i
T

p! 0 uniformly in i, (A.31)

and
X0
iMq#i
T

p! 0 uniformly in i, (A.32)
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where #i = (#i1; #i2; :::; #iT )
0, and #it =

Pmn(N)
`=1 �i`n`t.

Proof. Consider
X0
iMq#i
T

=
eX0
i#i
T

=
1

T

TX
t=1

exit#it;
where eXi =MqXi. Let TN = T (N) be any non-decreasing integer-valued functions ofN such that limN!1 TN =

1 and de�ne

�Nt =
1

TN
exit#it = 1

TN
exit mn(N)X

`=1

�i`n`t. (A.33)

Let
�
fcNtg1t=�1

	1
N=1

be two-dimensional array of constants and set cNt = 1
TN

for all t 2 Z and N 2 N. We
have

E

�
�Nt�

0
Nt

c2Nt

�
= E

�exitex0it#2it� = E (exitex0it)E �#2it� ,
where the second equality follow from independence of exit and #it. By Assumption 10 there exists a constant
K <1 such that supi kE (exitex0it)k < K. Further, using independence of factors n`t and n`0t for any ` 6= `0 and
noting that E

�
n2`t
�
= 1, we have

E
�
#2it
�
=

mn(N)X
`=1

�2i` < K <1.

It follows that 



E ��Nt�0Ntc2Nt

�



 < K <1. (A.34)

(A.34) established that f�Nt=cNtg is uniformly bounded in L2 norm, which implies uniform integrability. Using
similar arguments as in proof of Lemma A.1, f�Ntg is L1-mixingale with respect to the constant array fcNtg,
and applying a mixingale weak law (Davidson (1994), Theorem 19.11) establishes

PTN
t=1 �Nt

L1! 0, that is

T�1
PT

t=1 exit#it L1! 0, as (N;T )
j!1. This completes the proof of (A.32).

Result (A.31) can be established in a similar way, but this time we need to de�ne �Nt = T�1N exit"it and
noting that supiE

�
"2it
�
< K by Assumption 7.

Lemma A.5 Suppose Assumptions 5-9 hold and (N;T )
j!1. Then

X0
iMqXi

T

p! �iq uniformly in i, (A.35)

and
X0
iMqF

T

p! Qif uniformly in i, (A.36)

where �iq is positive de�nite and given by

�iq = �vi +�
�0
i �g�

�
i , (A.37)

and

Qif = �
�0
i �gS

�
f , (A.38)

in which

��
i =

h
I�P (P0P)+P0

i
�i, S�f =

h
I�P (P0P)+P0

i
Sf , (A.39)
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�i = (A
0
i;�

0
i)
0, Sf =

�
0mf�md

; Imf

�0
, and �g = E (gtg0t).

Proof. Since Xi = G�i +Vi then

X0
iMqXi

T
=

V0
iMqVi

T
+
V0
iMqG�i

T

+
�0
iG

0MqVi

T
+
�0
iG

0MqG�i

T
. (A.40)

Consider the �rst term and note that,

V0
iMqVi

T
=
V0
iVi

T
� V

0
iQ

T

�
Q0Q

T

�+
Q0Vi

T

p! �vi uniformly in i, (A.41)

where the convergence directly follows from Lemma A.2 (the �rst part of (A.16), the �rst part of (A.17), and

the second part of (A.18)) . Next we examine the second and the third elements (the latter is transpose of the

former). We have

V0
iMqG�i

T
=
V0
iG

T
�i �

V0
iQ

T

�
Q0Q

T

�+
Q0G

T
�i

p! 0 uniformly in i, (A.42)

where we have used Lemma A.2, in particular the second part of (A.16), the �rst part of (A.17), and both parts

of (A.18). Finally, we examine the last summand on the right side of (A.40). Let Col
�
Pw
�
denote a linear

space spanned by the column vectors of Pw and consider the following decomposition of matrix �i ,

�i = �
�
i +

e�i, (A.43)

where e�i 2 Col
�
Pw
�
, and �

�
i belongs to the orthogonal complement of the space spanned by the column

vectors in Pw. The decomposition (A.43) is unique. Note that matrix Mq has the property MqG�
�
i = G�

�
i

and MqG e�i = 0. It follows that

�0
i

G0MqG

T
�i = �

0
i

G0M
0
qMqG

T
�i = �

�0
i

G0G

T
�
�
i .

Using now the second part of (A.17) yields

�0
i

G0MqG

T
�i ��

�0
i �g�

�
i
p! 0 uniformly in i.

But according to Lemma A.2, the �rst part of (A.19), �
�
i ���

i
p! 0, uniformly in i, and therefore

�0
i

G0MqG

T
�i ���0

i �g�
�
i
p! 0 uniformly in i. (A.44)

Using (A.41), (A.42), and (A.44) in (A.40) establishes (A.35), as desired. �vi is positive de�nite by Assumption

7 and matrix �g = E (gtg0t) is nonnegative de�nite. It follows�
�0
i �g�

�
i is nonnegative de�nite. Sum of positive

de�nite and positive semi-de�nite matrices is a positive de�nite matrix and therefore �iq = �vi +��0
i �g�

�
i is

positive de�nite.
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Similarly to the proof of result (A.35), consider

X0
iMqF

T
=

V0
iMqF

T
+
�0
iG

0MqF

T
,

=
V0
iMqGSf
T

+
�0
iG

0MqGSf
T

(A.45)

where F = GSf , and Sf =
�
0mf�md

; Imf

�0
is the corresponding selection matrix. Using similar arguments as

in (A.42), and (A.44), we obtain
V0
iMqGSf
T

p! 0 uniformly in i, (A.46)

and
�0
iG

0MqGSf
T

���0
i �gS

�
f

p! 0 uniformly in i, (A.47)

where ��
i and S

�
f is de�ned by (A.39). Using (A.46), and (A.47) in (A.45) completes the proof of (A.36).

Lemma A.6 Suppose Assumptions 5-9 hold, (N;T )
j! 1, and there exist constants � and K such that 0 �

� < 1=2 and conditions (36) and (37) hold. Then,

p
N
X0
iMwXi

T
�
p
N
X0
iMqXi

T

p! 0 uniformly in i, (A.48)

p
N
X0
iMw"i
T

�
p
N
X0
iMq"i
T

p! 0 uniformly in i, (A.49)

p
N
X0
iMwF

T
�
p
N
X0
iMqF

T

p! 0 uniformly in i, (A.50)

and
p
N
X0
iMw#i
T

�
p
N
X0
iMq#i
T

p! 0 uniformly in i, (A.51)

where #i = (#i1; #i2; :::; #iT )
0, and #it =

Pmn(N)
`=1 �i`n`t.

Proof. We have

p
N

T
X0
iMwXi �

p
N

T
X0
iMqXi =

p
N
X0
iHw

T

 
H
0
wHw

T

!+
H
0
wXi

T
�
p
N
X0
iQ

T

�
Q0Q

T

�+
Q0Xi

T

=

p
NX0

i

�
Hw �Q

�
T

 
H
0
wHw

T

!+
H
0
wXi

T
+

+
X0
iQ

T

�
Q0Q

T

�+ pN �Q0 �H0
w

�
Xi

T
+

+
X0
iQ

T

p
N

24 H0
wHw

T

!+
�
�
Q0Q

T

�+35 H0
wXi

T
. (A.52)
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We focus on the individual elements on the right side of (A.52). The second part of (A.19), the second part of

(A.21) and the �rst part of (A.26) imply

p
NX0

i

�
Hw �Q

�
T| {z }

op(1)

 
H
0
wHw

T

!+
| {z }

Op(1)

H
0
wXi

T| {z }
Op(1)

p! 0 uniformly in i.

The second part of (A.20), the second part of (A.18), and the �rst part of (A.26) imply

X0
iQ

T| {z }
Op(1)

�
Q0Q

T

�+
| {z }

Op(1)

p
N
�
Q0 �H0

w

�
Xi

T| {z }
op(1)

p! 0 uniformly in i.

Finally, the second part of (A.20), the second part of (A.21) and result (A.27) imply

X0
iQ

T| {z }
Op(1)

p
N

24 H0
wHw

T

!+
�
�
Q0Q

T

�+35
| {z }

op(1)

H
0
wXi

T| {z }
Op(1)

p! 0 uniformly in i,

which completes the proof of (A.48).

To establish result (A.49), consider

p
N

T
X0
iMw"i �

p
N

T
X0
iMq"i =

p
NX0

i

�
Hw �Q

�
T

 
H
0
wHw

T

!+
H
0
w"i
T

+
X0
iQ

T

�
Q0Q

T

�+ pN �Q0 �H0
w

�
"i

T

+
X0
iQ

T

p
N

24 H0
wHw

T

!+
�
�
Q0Q

T

�+35 H0
w"i
T

(A.53)

p! 0 uniformly in i,

where, similarly to the proof of (A.48), Lemmas A.2 and A.3 can be used repeatedly to establish the convergence

of the elements on the right side of (A.53).
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Results (A.50) and (A.51) can also be established in a similar way. In particular, Lemmas A.2 and A.3

imply

p
N

T
X0
iMwF�

p
N

T
X0
iMqF =

p
NX0

i

�
Hw �Q

�
T

 
H
0
wHw

T

!+
H
0
wF

T

+
X0
iQ

T

�
Q0Q

T

�+ pN �Q0 �H0
w

�
F

T

+
X0
iQ

T

p
N

24 H0
wHw

T

!+
�
�
Q0Q

T

�+35 H0
wF

T

p! 0 uniformly in i,

and

p
N

T
X0
iMw#i �

p
N

T
X0
iMq#i =

p
NX0

i

�
Hw �Q

�
T

 
H
0
wHw

T

!+
H
0
w#i
T

+
X0
iQ

T

�
Q0Q

T

�+ pN �Q0 �H0
w

�
#i

T

+
X0
iQ

T

p
N

24 H0
wHw

T

!+
�
�
Q0Q

T

�+35 H0
w#i
T

p! 0 uniformly in i.

Lemma A.7 Suppose Assumptions 5-10 hold, (N;T )
j! 1, and there exist constants � and K such that

0 � � < 1=2 and conditions (36) and (37) hold. Then,

1p
N

NX
i=1

X0
iMq"i
T

L1! 0, (A.54)

and
1p
N

NX
i=1

X0
iMq#i
T

p! 0, (A.55)

where #i = (#i1; #i2; :::; #iT )
0, and #it =

Pmn(N)
`=1 �i`n`t.

Proof. Proof of Lemma A.7 is similar to the proof of Lemma A.4. Let TN = T (N) be any non-decreasing

integer-valued function of N such that limN!1 TN =1. Consider the following two-dimensional vector array
f�Ntg de�ned by

�Nt =
1

TN
p
N

NX
i=1

exit"it.
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Let
�
fcNtg1t=�1

	1
N=1

be two-dimensional array of constants and set cNt = 1
TN

for all t 2 Z and N 2 N. Using
independence of exit, and "jt for any i; j 2 N, and independence of "it and "jt for any i 6= j, we have

E

�
�Nt�

0
Nt

c2Nt

�
=
1

N

NX
i=1

E (exitex0it)E �"2it� ,
and 



E ��Nt�0Ntc2Nt

�



 � sup
i2N

kE (exitex0it)k 1N
NX
i=1

E
�
"2it
�
< K, (A.56)

where supiE
�
"2it
�
< K by Assumption 7, and supi2N kE (exitex0it)k < K by Assumption 10. (A.56) implies

uniform integrability of f�Nt=cNtg. Since "it is covariance stationary process with absolute summable auto-
covariances, it follows that array �Nt is uniformly integrable L1-mixingale array with respect to the constant

array cNt, and using a mixingale weak law yields

TNX
t=1

�Nt =
1

TN
p
N

TNX
t=1

NX
i=1

exit"it L1! 0.

This completes the proof of result (A.54). Result (A.55) is established in a similar way. This time, we de�ne

�Nt =
1

TN
p
N

NX
i=1

exit#it.
We have

E

�
�Nt�

0
Nt

c2Nt

�
=
1

N

NX
i=1

NX
j=1

E
�exitex0jt�E (#it#jt) .

Noting that supi;j2N


E �exitex0jt�

 < K (by Assumption 10), and that #it =

Pmn(N)
`=1 �i`n`t, we obtain





E ��Nt�0Ntc2Nt

�



 <
K

N

NX
i=1

NX
j=1

mn(N)X
`=1

�i`�j`

<
K

N

mn(N)X
`=1

 
NX
i=1

�i`

!2

Using conditions (36) and (37), and noting that 0 � � < 1=2 imply



E ��Nt�0Ntc2Nt

�



 < K N2��1 mn (N) < K.

Hence


E ��Nt�0Nt=c2Nt�

 is bounded in N 2 N. Using now the same arguments as in derivation of (A.54), we

have
TNX
t=1

�Nt =
1

TN
p
N

TNX
t=1

NX
i=1

exit#it L1! 0,

which completes the proof of result (A.55).

Lemma A.8 Suppose Assumptions 5-10 hold, (N;T )
j! 1, and there exist constants � and K such that
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0 � � < 1 and conditions (32) and (33) hold. Then,

X0
iMwXi

T
� X

0
iMqXi

T

p! 0 uniformly in i, (A.57)

X0
iMwF

T
� X

0
iMqF

T

p! 0 uniformly in i, (A.58)

X0
iMw#i
T

� X
0
iMq#i
T

p! 0 uniformly in i, (A.59)

and
X0
iMw"i
T

� X
0
iMq"i
T

p! 0 uniformly in i, (A.60)

where #i = (#i1; #i2; :::; #iT )
0, and #it =

Pmn(N)
`=1 �i`n`t.

Proof. Results (A.57)-(A.60) can be established in a similar way as results (A.48)-(A.51) of Lemma A.6,

i.e. Lemmas A.2 and A.3 can be used repeatedly to work out orders of magnitude in probability of individual

elements in (A.57)-(A.60).

Lemma A.9 Suppose Assumptions 5-10 hold, (N;T )
j! 1, and there exist constants � and K such that

0 � � < 1 and conditions (32) and (33) hold. Then,

NX
i=1

wi
X0
iMwXi

T
�i

p! 0, (A.61)

NX
i=1

wi
X0
iMwF

T
�i

p! 0, (A.62)

and
1

N

NX
i=1

��1iq
X0
iMqF

T
�i

p! 0. (A.63)

Proof. Granularity conditions (1) and (2) imply

jwij <
K

N
, (A.64)

where constant K does not depend on N 2 N nor on i = 1; 2; :::; N . Using (A.64) and result (A.57) of Lemma
A.8 yields

NX
i=1

wi
X0
iMwXi

T
�i �

NX
i=1

wi
X0
iMqXi

T
�i

p! 0.

But,
NX
i=1

wi
X0
iMqXi

T
�i =

1

N

NX
i=1

�NTi�i,

where

�NTi = w
�
i

�
X0
iMqXi

T

�
,
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w�i = Nwi, and (A.64) imply jw�i j < K. Also
�
X0
iMqXi=T

�
has bounded second moments by Assumption

10, and therefore E
�
�2
NTi

�
< K. Furthermore, �i is independently distributed across i and independently

distributed of X0
iMqXi=T . It follows that

1

N

NX
i=1

�NTi�i
p! 0,

and
NX
i=1

wi
X0
iMwXi

T
�i

p! 0,

as required. Result (A.62) and (A.63) can be established in a similar way as (A.64).

Lemma A.10 Suppose Assumptions 5-10 hold, (N;T )
j! 1, and there exist constants � and K such that

0 � � < 1 and conditions (32) and (33) hold. Then,

 
NX
i=1

wi
X0
iMwXi

T

!�1
= Op (1) . (A.65)

Proof. Results (A.57) of Lemma A.8 and result (A.35) of Lemma A.5 imply

X0
iMwXi

T

p! �iq uniformly in i,

and therefore for any weights fwig satisfying granularity conditions (1)-(2) we have

NX
i=1

wi
X0
iMwXi

T
�

NX
i=1

wi�iq
p! 0,

as (N;T )
j! 1. The limit limN!1

PN
i=1 wi�iq = 	

� exists by Assumption 10 and furthermore, by the same

assumption, 	� is nonsingular. This implies (A.65).

B Mathematical proofs

Proof of Theorem 2. We prove the theorem in two parts. First, we establish consistency of the CCEP

estimator and in the second part we establish consistency of the CCEMG estimator. Consider

b�P � � =
 

NX
i=1

wi
X0
iMwXi

T

!�1 NX
i=1

wi
X0
iMw (Xi�i + F
i + #i + "i)

T
. (B.1)

We focus on the individual elements on the right side of (B.1) below. Lemma A.10 established

 
NX
i=1

wi
X0
iMwXi

T

!�1
= Op (1) . (B.2)

40



According to result (A.61) of Lemma A.9, we have

NX
i=1

wi
X0
iMwXi

T
�i

p! 0. (B.3)

Noting that 
i can be written as 
i = 
w + �i � �w, and that
PN

i=1 wiX
0
iMw = X

0
wMw = 0, and using result

(A.62) of Lemma A.9, we obtain

NX
i=1

wi
X0
iMwF

T

i =

NX
i=1

wi
X0
iMwF

T
�i

p! 0. (B.4)

Result (A.59) of Lemma A.8 and result (A.32) of Lemma A.4 imply

NX
i=1

wi
X0
iMw#i
T

p! 0. (B.5)

Similarly, result (A.60) of Lemma A.8 and result (A.31) of Lemma A.4 yields

NX
i=1

wi
X0
iMw"i
T

p! 0. (B.6)

Using (B.2)-(B.6) in (B.1) establishes (35).

Next we establish consistency of CCEMG estimator. Consider

b�MG � � =
1

N

NX
i=1

�i +
1

N

NX
i=1

b	�1
iT

X0
iMwF

T

i +

1

N

NX
i=1

b	�1
iT

X0
iMw#i
T

+
1

N

NX
i=1

b	�1
iT

X0
iMw"i
T

, (B.7)

where b	iT = T�1X0
iMwXi. �i is identically and independently distributed across i with zero mean and

bounded second moments, and therefore

1

N

NX
i=1

�i
p! 0. (B.8)

Results (A.57) and (A.58) of Lemma A.8 imply

1

N

NX
i=1

b	�1
iT

X0
iMwF

T

i �

1

N

NX
i=1

��1iq
X0
iMqF

T

i

p! 0.

But F
w belongs to the space spanned by column vectors of Q, and thereforeMqF
i =MqF (
w + �i � �w) =
MqF (�i � �w), where �w = Op

�
N�1=2�. Now using (A.63) of Lemma A.9 it follows that

1

N

NX
i=1

b	�1
iT

�
X0
iMwF

T

�

i

p! 0. (B.9)
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Results (A.57) and (A.59) of Lemma A.8, and result (A.32) of Lemma A.4 imply

1

N

NX
i=1

b	�1
iT

�
X0
iMw#i
T

�
p! 0. (B.10)

Similarly, results (A.57) and (A.60) of Lemma A.8, and result (A.31) of Lemma A.4 imply

1

N

NX
i=1

b	�1
iT

�
X0
iMw"i
T

�
p! 0. (B.11)

Using (B.8)-(B.11) in (B.7) establish (34).

Proof of Theorem 3. We prove the theorem in two parts. First, we establish asymptotic distribution of

the CCEP estimator and in the second part we establish asymptotic distribution of the CCEMG estimator.

Consider 
NX
i=1

w2i

!�1=2 �b�P � �� =
 

NX
i=1

wi
X0
iMwXi

T

!�1
1p
N

NX
i=1

ewiX0
iMw (Xivi + F
i + #i + "i)

T
, (B.12)

where ewi = pNwi �PN
i=1 w

2
i

��1=2
, and, by granularity conditions (1)-(2) there exists a real constant K < 1

(independent of i and N), such that

j ewij =
������pNwi

 
NX
i=1

w2i

!�1=2������ < K. (B.13)

We focus on the individual terms on the right side of (B.12) below. Results (A.48) of Lemma A.6 and result

(A.35) of Lemma A.5 imply
X0
iMwXi

T

p! �iq uniformly in i,

and therefore for any weights fwig satisfying granularity conditions (1)-(2) we have

NX
i=1

wi
X0
iMwXi

T
�

NX
i=1

wi�iq
p! 0,

as (N;T )
j! 1. The limit limN!1

PN
i=1 wi�iq = 	

� exists by Assumption 10 and furthermore, by the same

assumption, 	� is nonsingular. It follows that 
NX
i=1

wi
X0
iMwXi

T

!�1
p! 	��1, (B.14)

as (N;T )
j!1. Next we focus on the individual elements in the second summation on the right side of equation

(B.12). Noting that 
i can be written as 
i = 
w + �i � �w, and that
PN

i=1 wiX
0
iMw = X

0
wMw = 0, we have

1p
N

NX
i=1

ewiX0
iMwF
i =

1p
N

NX
i=1

ewiX0
iMwF�i. (B.15)
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(B.13), (B.15) and result (A.50) of Lemma A.6 imply

1p
N

NX
i=1

ewiX0
iMwF

T

i �

1p
N

NX
i=1

ewiX0
iMqF

T
�i

p! 0. (B.16)

(B.13) and result (A.51) of Lemma A.6 imply

1

N

NX
i=1

ewi�pNX0
iMw#i
T

�
� 1

N

NX
i=1

ewi�pNX0
iMq#i
T

�
p! 0,

and, using result (A.55) of Lemma A.7, we have

1p
N

NX
i=1

ewiX0
iMw#i
T

p! 0; (B.17)

as (N;T )
j!1. Similarly, result (A.49) of Lemma A.6 and result (A.54) of Lemma A.7 establish

p
N
X0
iMw"i
T

p! 0 uniformly in i,

and therefore (noting that ewi is uniformly bounded in i, see (B.13)),
1p
N

NX
i=1

ewiX0
iMw"i
T

=
1

N

NX
i=1

ewi�pNX0
iMw"i
T

�
p! 0. (B.18)

Using (B.14), (B.16), (B.17), (B.18) and result (A.48) of Lemma A.6 in (B.12), we obtain

 
NX
i=1

w2i

!�1=2 �b�P � �� d� 	��1 1p
N

NX
i=1

ewiX0
iMq (Xivi + F�i)

T
.

Assumption 10 is su¢ cient for the bounded second moments of X0
iMqXi=T and X0

iMqF=T . In particular,

condition E
�ex4ist� < K, for s = 1; 2; ::; k, is su¢ cient for the bounded second moment of X0

iMqXi=T . To see

this note that
X0
iMqXi

T
=
1

T

TX
t=1

exitex0it,
and, by Minkowski�s inequality, 




 1T

TX
t=1

existex0ipt






L2

� 1

T

TX
t=1



existex0ipt

L2 ,
for any s; p = 1; 2; ::; k. But by Cauchy-Schwarz inequality, we have E

�ex2istex2ipt� � �E �ex4ist�E �ex4ipt��1=2, and
therefore bounded fourth moments of the elements of exit are su¢ cient for the existence of an upper bound for
the second moments of X0

iMqXi=T . Similar arguments can be used to establish that X0
iMqF=T has bounded
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second moments. It therefore follows from Lemma 4 of Pesaran (2006) and Lemma A.5 that

 
NX
i=1

w2i

!�1=2 �b�P � �� d! N (0;�P ) ,

as (N;T )
j!1, where

�P = 	
��1R�	��1, (B.19)

in which

	� = lim
N!1

NX
i=1

wi�iq, R� = lim
N!1

1

N

NX
i=1

ew2i ��iq
��iq +Qif

Q
0
if

�
,


� = V ar (�i), 

 = V ar (
i), �iq is de�ned in Assumption 10 and Qif is de�ned by (A.38). Next, we

consider asymptotic distribution of CCEMG estimator. Consider

p
N
�b�MG � �

�
=

1p
N

NX
i=1

�i +
1p
N

NX
i=1

b	�1
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X0
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T

i +
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X0
iMw#i
T

+

+
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NX
i=1

b	�1
iT

X0
iMw"i
T

, (B.20)

where b	iT = T
�1X0

iMwXi. It follows from result (A.48) of Lemma A.6 and result (A.35) of Lemma A.5 that

b	iT ��iq = op
�
N�1=2

�
uniformly in i. (B.21)

Using (B.21), result (A.51) of Lemma A.6, and result (A.55) of Lemma A.7, we have

1p
N

NX
i=1

b	�1
iT

X0
iMw#i
T

p! 0. (B.22)

Similarly, (B.21), result (A.49) of Lemma A.6, and result (A.54) of Lemma A.7 imply

1p
N

NX
i=1

b	�1
iT

X0
iMw"i
T

p! 0. (B.23)

Noting that F
wbelongs to the linear space spanned by the column vectors of Q = GPw, we haveMqF
w = 0,

and X0
iMqF
i = X

0
iMqF (�i � �w). Using results (A.48) and (A.50) of Lemma A.6 and noting that

1p
N

NX
i=1

�
X0
iMqXi

T

��1
X0
iMqF

T
�w

p! 0,

yields

1p
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NX
i=1
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iT
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iMwF

T

i �

1p
N

NX
i=1

�
X0
iMqXi

T

��1
X0
iMqF

T
�i

p! 0. (B.24)
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Using (B.22)-(B.24) in (B.20) yields

p
N
�b�MG � �

�
d� 1p

N

NX
i=1

�i +
1p
N

NX
i=1

�
X0
iMqXi

T

��1
X0
iMqF

T
�i.

It now follows that
p
N
�b�MG � �

�
! N (0;�MG), where

�MG = 
� + lim
N!1

"
1

N

NX
i=1

��1iq Qif

Q
0
if�

�1
iq

#
, (B.25)

in which 
� = V ar (�i), 

 = V ar (
i), �iq is de�ned in Assumption 10 and Qif is de�ned by (A.38).

45


	Introduction
	Cross section dependence in large panels
	Weak and strong cross section dependence

	Common factor models
	CCE estimation of panel data models with an infinite number of factors
	Monte Carlo experiments
	Results

	Concluding remarks
	Statements and proofs of lemmas
	Mathematical proofs

