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1 Introduction

The problem of error cross section dependence in panel regressions has attracted considerable attention
over the past decade. It is increasingly recognized that conditioning on variables specific to the cross
section units alone need not deliver cross section error independence, and neglecting such dependencies
can lead to biased estimates and spurious inference. How best to account for cross correlation of errors
in panels depends on the nature of the cross dependence, and the size of the time series dimension (7°)
of the panel relative to its cross section dimension (V). When N is small relative to 7', and the errors
are uncorrelated with the regressors cross section dependence can be modelled using the Seemingly
Unrelated Regression Equations (SURE) approach of Zellner (1962). But when N is large relative to
T, the SURE procedure is not feasible. In such cases there are two main approaches to modelling cross
section dependence in panels : (7) spatial processes pioneered by Whittle (1954) and developed further
by Anselin (1988), Kelejian and Prucha (1999), and Lee (2004); and (i7) factor models introduced
by Hotelling (1933), and first applied in economics by Stone (1947). Factor models have been used
extensively in finance (Chamberlain and Rothschild (1983), Connor and Korajzcyk (1993); Stock and
Watson (1998); Kapetanios and Pesaran (2007)), and in macroeconomics (Forni and Reichlin (1998);
Stock and Watson (2002)), as a data shrinkage procedure where correlations across many units or
variables are modelled by means of a small number of latent factors.

In this paper we show that factor models can be employed more generally to characterize other
forms of dependence such as dependence across space or social networks. Initially we introduce the
concepts of weak and strong cross section dependence defined at a point in time and with respect
to a given information set. These concepts generalize the notions of weak (or idiosyncratic) and
strong cross section dependence advanced in the literature. Forni and Lippi (2001), building on
Forni and Reichlin (1998), consider a double index process over both dimensions (time and space)
simultaneously, and define it as idiosyncratic (or weakly dependent) if the weighted average of the
process, computed over both dimensions, converges to zero in quadratic mean for all sets of weights
satisfying certain granularity conditions. The double index process is said to be strongly dependent

1 These concepts, that

(again over both dimensions) if the weighted averages do not tend to zero.
are applicable to dynamic factor models, provide a generalization of the notions of weak and strong
dependence developed by Chamberlain (1983) and Chamberlain and Rothschild (1983) for the analysis
of static factor models.

Our notions of weak and strong cross section dependence are more widely applicable and does not
require the double index process to be stationarity over time, and allow a finer distinction between
strong and semi-strong cross section dependence. Convergence properties of weighted averages is of
great importance for the asymptotic theory of various estimators and tests commonly used in panel
data econometrics, as well as for arbitrage pricing theory and portfolio optimization with a large
number of assets. It is clear that the underlying time series processes need not be stationary, and

concepts of weak and strong dependence that are more generally applicable are needed. We also

'For further developments and discussions see Anderson et al. (2009).



investigate how weak and strong cross section dependence are related to the notions of weak, strong
and semi-strong common factors, which may be used to represent very general forms of cross section
dependence.

We then turn our attention to the second main concern of this paper, namely the estimation of
slope coefficients in the context of panel data models with general cross section error dependence.
Building on the first part of the paper, we show that general linear error dependence in panels can
be modelled in terms of a factor model with a fixed number of strong factors and a large number
of non-strong factors. We allow the number of non-strong factors to rise with IV, and establish that
the Common Correlated Effects (CCE) estimator introduced by Pesaran (2006) remains consistent
and asymptotically normal under certain conditions on the loadings of the infinite factor structure,
including cases where methods relying on principal components fail.

A Monte Carlo study documents these theoretical findings by investigating the small sample per-
formance of estimators based on principal components (including the recent iterative Principle Compo-
nent (PC) procedure proposed by Bai (2009)) and the CCE estimators under alternative assumptions
on the nature of unobserved common effects. In particular, we examine and compare the performance
of these estimators when the errors are subject to a finite number of unobserved strong factors and an
infinite number of weak and/or semi-strong unobserved common factors. As predicted by the theory
the CCE estimator performs well and show very little size distortions, which is in contrast with the
iterated PC approach of Bai (2009) which exhibit significant size distortions. The latter is partly due
to the fact that in the presence of weak or semi-strong factors the PC estimates of factors need not
be consistent. This problem does not affect the CCE estimator since it does not aim at consistent
estimation of the factors but deals with error cross section dependence generally by using cross section
averages to mop up such effects. As shown in Pesaran (2006), the CCE estimator continues to be valid
even if the number of factors is larger than the number of cross section averages. The present paper
goes one step further and shows that this property holds even if the number of weak factors tend to
infinity with IV. Note that for variances of the observables to be bounded the number of strong factors
must be fixed and can not vary with N.

The plan of the remainder of the paper is as follows. Section 2 introduces the concepts of strong
and weak cross section dependence. Section 3 discusses the notions of weak, semi-strong and strong
common factors. Section 4 introduces the CCE estimators in the context of panels with an infinite
number of common factors. Section 5 describes the Monte Carlo design and discusses the results.
Finally, Section 6 provides some concluding remarks. The mathematical details are relegated to

appendices.

Notations: [\ (A)| > [A2(A)| > ... > |A\u(A)| are the eigenvalues of a matrix A € M"™*" where
M"™*" is the space of n x n complex valued matrices. AT denotes the Moore-Penrose generalized

inverse of A. The column norm of A € M™" is ||A]|; = max >oiq laijl. The row norm of A is
1<j<n <=

|Allo = max 577 |ai|. The spectral norm of A is [|A]l = [\ (AA")]""?, and |A]l, = [T (AA)]2.



K is used for a fixed positive constant that does not depend on N. Joint convergence of N and T will

be denoted by (N,T) < co. For any random variable z, |z, = (E |x]p)l/p, for p > 1, denotes L,
/p
norm of z. For any k x 1 vector of random variables x; = (21,2, ..., 71)’, kaHLp = (Zle E \xi]p> .

Ly .
We use — to denote convergence in L, norm.

2 Cross section dependence in large panels

Consider the double index process {z;,7 € N,t € Z}, where z;; is defined on a suitable probability
space, the index t refers to an ordered set such as time, and ¢ refers to units of an unordered population.
Our primary focus is on characterizing the correlation structure of the double index process {z;}
over the cross sectional dimension at a given point in time, ¢. To this end, we make the following

assumptions:

Assumption 1 Let 7, be the information set available at time t. For eacht € T, 2yt = (214, .-y th)/
has the conditional mean, E (zn¢|Zi—1) = 0, and the conditional variance, Var (zn¢|Zi—1) = XN,
where Xt is an N X N symmetric, nonnegative definite matriz. The (i, j)-th element of Xy, denoted
by oniji is bounded such that 0 < oy < K, for i = 1,2,...,N, where K is a finite constant
independent of N.

Assumption 2 Let wy; = (wN,lt,...,wMN,t)', fort € T CZ and N € N, be a vector of non-
stochastic weights. For any t € T, the sequence of weight vectors {wn¢} of growing dimension (N —

o0 ) satisfies the ‘granularity’ conditions:

Iwaill = O (N7%)), (1)

YNt _ (N_%> for any j € N. (2)
[[w el

Zero conditional mean in Assumption 1 can be relaxed to E (zn¢ [Z¢—1) = p 41, With py ;1 being
a pre-determined function of the elements of Z; 1. Assumption 2, known in finance as the granularity
condition, ensures that the weights {wn;} are not dominated by a few of the cross section units.
Although we have assumed the weights to be non-stochastic, this is done for expositional convenience
and can be relaxed by requiring that conditional on the information set, Z;_1, the weights, wy, are
distributed independently of zy;. To simplify the notations in the rest of the paper we suppress the
explicit dependence of zy:, Wy and other vectors and matrices and their elements on V.

In the following, we describe our notions of weak and strong cross sectionally dependent processes,

and then introduce the related concepts of weak, strong, and semi-strong factors.



2.1 Weak and strong cross section dependence

Consider the weighted averages, Zy,: = Zfi 1 Wit Zig = wyz,, for t € T, where z; and w; satisfy
Assumptions 1 and 2. We are interested in the limiting behavior of Z,: at a given point in time t € 7T,

as N — oo.

Definition 1 (Weak and strong cross section dependence) The process {zit} is said to be cross sec-
tionally weakly dependent (CWD) at a given point in time t € T conditional on the information set

Zi—1, if for any sequence of weight vectors {w} satisfying the granularity conditions (1)-(2) we have

lim Var(wjz¢|Z;—1) = 0. (3)

N—oo
{zit} is said to be cross sectionally strongly dependent (CSD) at a given point in time t € T conditional
on the information set I;_1, if there exists a sequence of weight vectors {w} satisfying (1)-(2) and a

constant K independent of N such that for any N sufficiently large (and as N — o0)
VCLT‘(WQZt |.'Z-t,1) 2 K > 0. (4)

The concepts of weak and strong cross section dependence proposed here are defined conditional
on a given information set, Z;_1, which allows us to consider cross section dependence properties of
{zit} without having to limit the time series features of the process. Various information sets could be
considered in practise, depending on the application under consideration. For dynamic (possibly non-
stationary) models the information set could contain all lagged realizations of the process {z;;}, that is
Zi—1 = {2z¢—1,2¢—2,....}, or only the starting values of the process. For stationary panels, unconditional
variances of cross section averages could be considered. Conditioning information set could also contain
contemporaneous realizations, which might be useful in applications where a particular unit has a

dominant influence on the rest of the units in the system.

Remark 1 Anderson et al. (2009) propose definitions of weak and strong cross section dependence
for covariance stationary processes, with spectral density F, (w) (see also Forni and Lippi (2001)).
According to their definition, {zy} is weakly dependent if the the largest eigenvalue of the spectral
density matriz, \j (w), is uniformly bounded in w and N. {zy} is strongly dependent if the first
m > 1 (m < K) eigenvalues (A; (w), ..., A%, (w)) diverge to infinity as N — oo, for all frequencies.
In contrast to the notions of weak and strong dependence advanced by Forni and Lippi (2001) and
Anderson et al. (2009), our concepts of CWD and CSD do no require the underlying processes to be

covariance stationary and have spectral density at all frequencies.

Remark 2 A particular form of a CWD process arises when pairwise correlations take non-zero values
only across finite subsets of units that do not spread widely as sample size increases. A similar case
occurs in spatial processes, where for example local dependency exists only among adjacent observations.
However, we note that the notion of weak dependence does not necessarily involve an ordering of the

observations or the specification of a distance metric across the observations.



The following proposition establishes the relationship between weak cross section dependence and

the asymptotic behaviour of the spectral radius of 3; (denoted by A; (X£;)).
Proposition 1 The following statements hold:

(i) The process {zit} is CWD at a point in time t € T, if A1 (2¢) is bounded in N.

(i) The process {zi} is CSD at a point in time t € T, if and only if for any N sufficiently large
(and as N — 00), N7\ () > K > 0.

Proof. First, suppose A1 (2;) is bounded in N. We have
Var(wizi |Zi—1) = wiZw; < (wiwy) A (2) (5)
and under the granularity conditions (1)-(2) it follows that

lim Var(wiz:|Z;—1) =0,
N—oo
namely that {z;;} is CWD, which proves (i). Now suppose that {z;;} is CSD at time ¢. Then, from (5),

it follows that A1 (X;) tends to infinity at least at the rate N. Hence, under CSD N~1)\; (X;) > K > 0
N

for any N sufficiently large. Note that A\; (2;) < Z 04t where, under Assumption 1, 0y;; are finite,
i=1
A1 (3;) cannot diverge to infinity at a rate faster than N. To prove the reverse relation, first note

that, from the Rayleigh-Ritz theorem?,

A () = vrlr‘lfaxlvgﬁtvt = vy} (6)
tVt=

et w; = ——=v; and notice that w; satisfies -(2). Hence, we can rewrite A1 (%) as
Let w; \/% # and notice that w} satisfies (1)-(2). H ite Ay (2
A (Z) =N -Var(wi'z | Zi—1). (7)

It follows that if N=1A; (2;) > K > 0, then Var(w}'z; |Z;_1) > K > 0, i.e. the process is CSD, which
proves (ii). m

Since A1 (£¢) < [|X¢]|;, ? it follows from (5) that both the spectral radius and the column norm of
the covariance matrix of a CSD process are unbounded in N. A similar condition also arises in the case
of time series processes with long memory or strong temporal dependence where the autocorrelation

coefficients are not absolutely summable. (Robinson (2003)).

Remark 3 The definition of idiosyncratic process by Forni and Lippi (2001) differs from our def-

inition of CWD in terms of the weights used to construct the weighted averages. While Forni and

?See Horn and Johnson (1985), p.176.
3See Horn and Johnson (1985), pp. 297-298.



Lippi assume limy_,o0 ||W] = 0, our granularity conditions (1)-(2) imply that, for any t € T,
limy 00 N3~ lwe|l = 0 for any € > 0. This difference in the definition of weights has important
implications for the cross sectional properties of the processes. In particular, under imy_. ||W¢|| = 0,
it is possible to show that the idiosyncratic process (and hence also the definition of weak dependence
a la Anderson et al. (2009)) imply bounded eigenvalues of the spectral density matriz. Conversely,
under (1)-(2), it is clear that if \1 (X¢) = O(N'=¢) for any e > 0, then, using (5),

lim (wiw) A (3) =0,

N—oo

and the underlying process will be CWD. Hence, the bounded eigenvalue condition is sufficient but
not necessary for CWD. According to our definition a process could be CWD even if its maximum

eigenvalue is rising with N, so long as its rate of increase is bounded appropriately.

One rationale for characterizing processes with increasing largest eigenvalues at the slower pace
than N as weakly dependent is that bounded eigenvalues is not a necessary condition for consistent
estimation in general, although in some cases, such as the method of principal components, this
condition is needed. In Section 4 we consider estimation of slope coefficients in panels with an infinite
factor structure, where eigenvalues of the error covariance matrix are allowed to increase at a rate

slower than N.

3 Common factor models

Consider the following N factor model for {z;}:

zit:7i1f1t+7i2f2t+"‘+inNth+€it7 i:1727"‘7N7 (8)

or in matrix notations

z; = I'fy + &4, 9)

where f; = (f1¢, for, .., fne)'s €0 = (€11, €2¢, -, €nt)’, and the common factors, fy, and the idiosyncratic

errors, €;, satisfy the following assumptions:

Assumption 3 The N x 1 wvector f; is a zero mean covariance stationary process, with absolute
summable autocovariances, distributed independently of e, for alli,t,t’, and such that E(fgt |Z;-1) =1
and E(fftfpt |thl) =0, fOT’ 14 7& p=12..,N.

Assumption 4 Var (eit|T—1) = 0? < K < 00, £+ and &j; are independently distributed for all i # j
and for all t. Specifically, max; (a?) =02, <K <oo.

max



The process z;; in (8) has conditional variance

N

Var(zi|Zi—1) = Var (Z Yiofet | Zi— 1) + Var (eit |Zi—1) Z%@ + a

(=1
For the conditional variance of z; to be bounded in N, as required by Assumption 1, we must have
N
Y <K <o, fori=1,2,..,N. (10)
(=1
In what follows we also consider the slightly stronger absolute summability condition

N
Y|l L K < o0, fori=1,2,...,N. 11
x4

/=1

Definition 2 (Strong and weak factors) The factor fyu is said to be strong if

N
Jim NSyl = K >0 (12)
The factor fo is said to be weak if
ngnooz il = K < o, (13)

The literature on large factor models has focussed on the case where the factors are strong. The
case of weak factors is recently considered by Onatski (2009). It is also possible to consider semi-strong
or semi-weak factors. In general, let o be a positive constant in the range 0 < a < 1 and consider the

condition
N

i V03 bl = K < oo (14)

The strong and weak factors correspond to the two values of @« = 1 and a = 0, respectively. For any

other values of a € (0, 1) the factor fy; can be said to be semi-strong or semi-weak. It will prove useful

to associate the semi-weak factors with values of 0 < o < 1/2, and the semi-strong factors with values

of 1/2 < a < 1. In Section 4 we provide some practical examples where such semi-strong factors may
exist.

The relationship between the notions of CSD and CWD and the definitions of weak and strong

factors are explored in the following theorem.

Theorem 1 Consider the factor model (9) and suppose that Assumptions 1-4, and the absolute sum-
mability condition (11) hold, and there exists a positive constant c in the range 0 < a < 1, such that
condition (14) hold for any ¢ = 1,2,..,N. Then the following statements hold:



(i) The process {zi} is cross sectionally weakly dependent at a given point in time t € T if a < 1,

which includes cases of weak, semi-weak or semi-strong factors fo, for £ =1,2,...,N.

(i) The process {zi} is cross sectionally strongly dependent at a given point in time t € T if and

only if there exists at least one strong factor.
Proof. Using (9), the covariance of z; is given by
=TT+ A..

where A. is a diagonal matrix with elements 2. Since condition (14) holds for ¢ = 1,2,..., N then

|IT||; = O (N%), and noting that ||I'||; = [|T'||., = O (1) by (11) then

M (Z) < T+ Acf], < T [[T]], + omax = O (N9). (15)
But using (5),
Var(w'z;|Zi—1) = w'Ew < (W'w) A (B) < (w'w) O (N?),

and when « < 1, we have,
lim Var(w'z; |Z;—1) = 0,

N—o0
for any weights w satisfying condition (1). It follows that {z;} is CWD, which establishes result (i).
Now suppose that {z;} is CSD. Then, noting that 02, < K < 0o,

max

0< lim N7 (2) < lim N7, T

N—oo

[+ Jim N7od, < m NU[T, |

Given that, by assumption, ||T’||; is bounded in N, it follows that limy_.o N1 |T||; = K > 0, and
there exists at least one strong factor in (9). To prove the reverse, assume that there exists at least
one strong factor in (9) (i.e., limy_oo N1 [|T||; = K > 0). Noting that*

Tl

A2 (D) > N2 (TT) > (16)

it follows that limy . N~*\; (£) = K > 0 and the process is CSD, which establishes result (ii). =
Under (12)-(13), z;; can be decomposed as

Zit = th + Z%), (17)
where
m N
2= Yefus 2= D Vielu+ i, (18)
(=1 {=m+1

4See Bernstein (2005), p.368, eq. xiv.



and -y, satisfy conditions (12) for £ = 1,...,m, and (13) for { =m + 1,..., N. In the light of Theorem
1, it follows that 27, is CSD and 2} is CWD. Also, notice that when m = 0, we have a model with no

strong factors and potentially an infinite number of weak factors.
Remark 4 Consider the following general spatial process
Z — RVt, (19)

where R is an N x N matriz and v¢ is an N x 1 vector of independently distributed random variables.
Pesaran and Tosetti (2010) have shown that spatial processes commonly used in the empirical literature,
such as the Spatial Autoregressive (SAR) process, or the Spatial Moving Average (SMA), can be written
as special cases of (19). Specifically, for a SMA process R = I + S, where § is a scalar parameter
(|0 < K) and S is N x N nonnegative matriz that expresses the ordering or network linkages across
the units, while in the case of an invertible SAR process, we have R = (In — 58)71. Standard spatial
literature assumes that R has bounded column and row norms. It is easy to see that under these
conditions the above process can be represented by a factor process with an infinite number of weak
factors (i.e., with m = 0), and no idiosyncratic error (i.e., €; = 0). For example by setting zy =
Zévzl Yiefer, where v;p = 1y, and fy = vy, for i,4 = 1,...., N. Under the bounded column and row
norms of R, the loadings in the above factor structure satisfy (13), and hence zy will be a CWD

process.

Remark 5 Consistent estimation of factor models with weak or semi-strong factors may be problem-

atic. To see this, consider the following single factor model with known factor loadings
zit =ift + e, €~ 1ID (0,07).

The least squares estimator of fi, which is the best linear unbiased estimator, is given by
2

¢ 21\11 YiRit 2 o
fo= TS5 V‘”“<ft>: N 2
Dic1 Vi > i1

If for example Ef\il 72 is bounded, as in the case of weak factors, then Var (ft> does not vanish as

N — oo, for each t. See also Onatski (2009).

4 CCE estimation of panel data models with an infinite number of

factors

In this section we focus on consistent estimation of slopes in panel regression models where the error

terms have an infinite order factor structure. Let y;; be the observation on the ith cross section unit



at time ¢, for i = 1,2,..., N, and t = 1,2, ..., T, and suppose that it is generated as
yit = oGdy + Bixi + eq, (20)

where d; = (dit, dat, ..., dmyt)' is a mg x 1 vector of observed common effects, and x;; is a k x 1 vector
of observed individual specific regressors. The parameters of interest are the means of individual slope

coefficients, B3 = E(3;).> The error term, e;, is given by the following general factor structure,

my Mn
e = Y _Yiefu+ Y Nienar + €t (21)
=1 =1

where we have distinguished between two types of unobserved common factors, f; = ( fits foty ooy fm ft)/
and n; = (N1, nat, ...,nmnt)'. The former are strong factors that are possibly correlated with the
regressors X;¢, while the latter are the weak, semi-weak or semi-strong factors that are assumed to
be uncorrelated with the regressors. The associated vectors of factor loadings will be denoted by
Yi = (Vits Vi2s s Yim f)’ and A; = (\i1, A\i2, ..., Aim,, )'» Tespectively. The cross section dependence of
errors are modelled using the unobserved common factors, f; and n;, and without loss of generality it
is assumed that the idiosyncratic errors, €;;, are cross sectionally uncorrelated (although they can be
serially correlated).

To model the correlation between the individual specific regressors, x;;, and the innovations e;,

we suppose that x;; can be correlated with any of the strong factors, f;,
xit = Aldy + Tif; + vy, (22)

where A’ and I'; are k x mg and k x my factor loading matrices, and vy is the individual component
of x;¢, assumed to be distributed independently of the innovations e;;.

Similar panel data models have been analyzed by Pesaran (2006), Kapetanios, Pesaran, and Yaga-
mata (2010), and Pesaran and Tosetti (2010). Pesaran (2006) introduced CCE estimators in a panel
model where my is fixed, m, = 0, and ~}f; represents a strong factor structure. Contrary to what
Bai (2009) (see page 1231) suggests, CCE estimators are valid even in the rank deficient case where
my could be larger than k + 1. Kapetanios, Pesaran, and Yagamata (2010) extended the results of
Pesaran (2006) by allowing unobserved common factors to follow unit root processes. In both papers,
innovations {e;;} are assumed to be cross sectionally independent although possibly serially corre-
lated. This assumption is relaxed by Pesaran and Tosetti (2010) who assume that {e;} is a weakly
dependent process with bounded row and column norms of its variance matrix, which includes spatial
MA or AR processes considered in the literature as special cases. In this paper, we focus explicitly
on cross-correlations modelled by general factor structures - weak, strong, or somewhere in between.

Our analysis is thus an extension of Pesaran (2006) to the case where there are an infinite number

®We assume that individual slope coefficients are drawn from a common distribution with mean 3.
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of factors, a fixed number of which are strong and the rest are either weak, semi-weak or semi-strong
factors.

The special case where both m; and m,, are fixed has already been analyzed in the above cited
papers. The case where fi, fot, ..., fm,+ are strong and my = my (N) — 0o as N — oo, is not that
meaningful as it will lead to unbounded variances as N — oo. However, it would be possible to let the
number of non-strong factors to rise with N, whilst keeping the number of strong factors fixed. We
show below that the CCE type estimators continue to be consistent and asymptotically normal under
these types of infinite-factor error structures. We use notations m,, (V) to emphasize the dependence
of the number of non-strong factors on N in the remainder of this paper.

Equations (20) and (22) can be written more compactly as

2= " ) = Bld, + Clf, + ug, (23)
Xt
where
Di _ 1 Op1xk uy = )\;nt + & + B;vit . (24)
Bi I Vit

Stacking the T observations for each i we also have

yi = Da;+X;8;+e,
X; = GIL +Vy, (25)
Z;, = DB, +FC,; + U;,

where y; = (i1, Y2, -, yir)', D = (dy,d2, ..., d7r)’, X = (%51, Xi2, ..., xi7)", G = (D,F), F = (f |, f5, ..., f7)’,
Vi = (Vila Vi2, ...,ViT),, Zi = (Zil,zig, ...,ZiT)/, UZ‘ = (uil, U;2, ..., uiT)’, and Hi = (A;,F;)/.

For the development of the CCE estimators we need the cross section averages of the individual
specific variables z;; = (yit,x;t)/, which we denote by Z,; = Zfil w;zit, where w = (w1, w1, ..., wy)'
is any vector of weights that satisfy the granularity conditions (1)-(2). Further, let M, = Iy —

— ) — \t— — — — — —
H, (H,H,) H,, H, = (D,Z,), Zy = (Zu1, 72, - Zur), My = Ir - Q(QQ)" @, Q = GP,,,

L, B,
P = max () (26)
(md—o—mf)xu(}md—l—k—i-l) 0 Cw ’
MEXMG (k1)
N N
Ew = ZwiBi, and éw = szCz (27)
=1 i=1

11



Also, define the matrices associated with M, and P,, as M, = Iy — G (G’ G)_l G/, and

I,, B
mygXmgq

where B = E (B;), and C = E (C;). As we shall see below the asymptotic theory of the CCE type
estimators depends on the rank of C,, both for a finite N, and as N — oc.

We make the following assumptions on the unobserved common factors f; and n; and their loadings.

Assumption 5 (Common factors) The (mgq+my) x 1 vector g = (d}, f})" is a covariance station-
ary process, with absolute summable autocovariances and finite second-order moments. In particu-
lar, |24]| < K for some constant K, where ¥, = E (g:g;) is a positive definite matriz. For each
¢ =1,2,...my (N), common factor ng follows a covariance stationary process with absolute sum-
mable autocovariances, zero mean, unit variance, and finite fourth-order moment uniformly bounded

in L. ng is independently distributed of g; and of ngy for all £ # ' and t.

Assumption 6 (Factor loadings)
(a) Factor loadings ~;, and T'; are independently and identically distributed across i, and of the
common factors gy, ng, for all i and t, with fixed mean ~v and T', and uniformly bounded second

moments. In particular,
Yi =+ Nyis Ny ~ 11D (0,2), fori=1,2,.., N,

and
vec (I;) = vec (') + np;, p; ~ 1ID (0,Qr), fori=1,2,....N,

where ., and Qr are my x ms and kmys x kmy symmetric nonnegative definite matrices, ||| < K,
1] < K, |T|| < K, and ||Qr|| < K for some constant K.

(b) Factor loadings Ny, for i =1,2,...,.N, and ¢ = 1,2,...,m,, (N), are non-stochastic. For each
1=1,2,..., N, the factor loadings, N\, satisfy the following absolute summability condition

My (N)

Z [Aie] < K. (29)

(=1

Remark 6 The absolute summability condition (29) is sufficient for ensuring bounded variances of
Yy = ANimy = ZT:”l(N) Xiengt for each i =1,2,..., N, as my (N) — oo. This condition alone does not,
however, rule out strong, semi strong, or semi weak factor structures. Additional requirements on the

sum of absolute values of the loadings Ay across i will be postulated in theorems below.

The following assumptions are similar to Pesaran (2006).
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Assumption 7 The individual-specific errors ;4 and vy are independently distributed across i, inde-
pendently distributed of the common factors g, ny and of the factor loadings ~;, T';, for each i,j and
each t. vy, fori=1,2,...,N, follow linear stationary processes with absolute summable autocovari-

ances, zero mean, and finite second-order moments uniformly bounded in i. For each i,
/
E(Vitvit) = 3y,

where 3,,; is a positive definite matriz, such that sup; || 2| < K, for some positive constant K. Errors
git, fori=1,2,..., N, follow a linear stationary process with absolute summable autocovariances, zero

mean, and finite second-order moments uniformly bounded in .

Assumption 8 Coefficient matrices B; are independently and identically distributed across i, inde-
pendently distributed of the common factors g and ny, of the factor loadings v; and I';, and of the

errors €5z and Vji, for all i,7 and t, with fived mean B, and uniformly bounded second moments.

Assumption 9 The slope coefficients follow the random coefficient model
B; =P +v;, v;~I1ID(0,Qp), fori=1,2,...,N,

where ||B]] < K, |Qp]] < K, Qp is a symmetric non-negative definite matriz, and the random devia-
tions v; are distributed independently of the common factors g and ny, of the factor loadings ~; and

I';, of the errors ej; and vji, and of the coefficients in o and A; for alli,j and t.
Assumption 10
(a) The matriz limy_, oo Zf\;l w;X;q = W* exists and is nonsingular, and sup;

3., = Sy + IS0, and I = (1- P (P'P)T P’] I,

2 (2

E;IH < K, where

(b) Denote the t-th row of matriz X; = M, X; by X, = (Tirt, Tiot oy Tikt)- Individual elements of
the vector X}, have uniformly bounded fourth moments, namely there exists a positive constant
K such that E (%fst) <K foranyt=1,2,...,7T, i =1,2,.... N and s = 1,2, ..., k. Furthermore,
fourth moments of fu, for £ =1,2,...,my, are bounded.

_ -1
(c) There exists Ty such that for all T > Ty, <ZZ]\L1 wngMin/T> exists.

(d) There exists Ty and Ny such that for allT > Ty and N > Ny, the kX k matrices (X;Min/T)_l
and (X;MgXi/T)_1 exist for all i.

The CCE approach is motivated by the fact that, to estimate 3, one does not necessarily need to
compute consistent estimates of the unobservable common factors. It is sufficient to account for their
effects by including cross section averages of the observables in the regressions, since such cross section

averages indirectly reflect the overall importance of the factors for the estimation of 3. Two types

13



of CCE estimators are considered. The common correlated effects mean group estimator (CCEMG)

which is given by
N
~ 1 ~
Buc = D_Bi (30)
i=1

where BZ = (X;MUJXZ-)_1 X!M,y;, and the common correlated effects pooled (CCEP) estimator
which is defined by
R N -1 N
Bp = <Z wiX;Msz) > wiXiMyy;. (31)
i=1 i=1
The following theorem establishes consistency of CCE estimators in case of panels with (possibly) an

infinite number of factors.

Theorem 2 (Consistency of CCE estimators) Consider the panel data model (20) and (22), and
suppose that Assumptions 5-10 hold, and there exist constants o and K such that 0 < a < 1,

N
Z|>\Z~g| < K N“ for each £ =1,2,...,m, (N), (32)
=1

and )
. My
Then common correlated effects mean group and pooled estimators, defined by (30) and (31), respec-

tively, are consistent, that is as (N, T) s 50 we have
Buc—B>0, (34)

and
Br—B-50. (35)

A proof is provided in the Appendix.

Assumptions of Theorem 2 rule out the case where ¥;; = Ain; = ZZZH(N) Aignge 18 a strong factor
structure, but allow for the possibility of semi-strong (1/2 < a < 1), semi-weak (0 < a < 1/2), or
weak factors (aw = 0) so long as the number of factors m,, (IV) is appropriately bounded. The sufficient
bound for my, (N) is given by condition (33). Note that conditions (32)-(33) and 0 < a < 1 ensure
that Var (gwt) — 0, as N — oo, and therefore 9¥;; is CWD.

The following theorem establishes asymptotic distribution of CCE estimator in case of weak (o = 0)

and semi weak (0 < o < 1/2) infinite factor structures.

Theorem 3 (Distribution of CCE estimators) Consider the panel data model (20) and (22), and

14



suppose that Assumptions 5-10 hold, and there exist constants o and K such that 0 < a < 1/2,

N
Z])\w\ < K N® for each ¢ =1,2,...,my (N), (36)
i=1
and
my, (N) < K N'722, (37)
Then, as (N,T) EN 00,
> d
\/N (51\/1@ - 5) — N (0, 2MG) ’ (38)

where ,@MG is given by (30), and Xpyrq is given by equation (B.25) in the Appendixz. Furthermore,

N ~1/2
<Z w?) (BP - 5) 4 N(0,2p), (39)

where BP is given by (31), and Xp is given by equation (B.19) in the Appendix.
A proof is provided in the Appendix.

Remark 7 Following Pesaran (2006), it is also possible to provide semi-parametric estimators of
variances of BMG and Bp. Consistent estimators of Xy and Xp are given by equations (58) and
(69) of Pesaran (2006), respectively.

Remark 8 As it was mentioned earlier, CCE estimators are valid irrespective whether C,, defined by
(27) has full column rank, or is rank deficient, and therefore my, the number of factors in f;, could
be larger than k + 1. If assumption of full column rank of Cy (for any N € N, as well as N — 00)
is satisfied, then Assumption 6.a on factor loadings and Assumption 8 on coefficient matrices could
be relaxzed. In particular, it would be sufficient to assume that factor loadings v, and T';, and the

coefficients a; and A; are non-stochastic and uniformly bounded.

Current factor literature assumes that eigenvalues of the spectral density matrix of the underlying
double indexed processes either rise with N at the rate N or are bounded in N, while they are not
allowed to rise at any rate slower than IN. As the sources of cross section dependence are generally
unknown (factors are latent and in general not identified), such assumptions seem to have been adopted
for technical convenience rather than on grounds of their empirical validity. However, in several
empirical applications it seems reasonable to consider cases where the eigenvalues of the spectral
density rise at a rate slower than N. Semi-strong factors may exist if there is a cross section unit
or an unobserved common factor that affects, rather then all units, only a subset of them expanding
at rate slower than N. One can think of an unobserved common shock that hits only a subset of
the population. For example a new law that affects only large firms. As the number of firms, N,

increases, one reasonable assumption is that the number of large firms increases at a rate slower than
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N. Similarly, the performance of medium-sized firms may have impact only on a subset of firms in the
market. If we assume that the range of influence of this firm is proportional to its dimension, then as
N increases, the subset of units that is affected by it expands at a rate slower than .

We observe that practical difficulties encountered when estimating the number of factors in large
data sets could be related to the presence of semi-strong factors, as existing techniques for determining
the number of factors assume that there are no semi-weak (or semi-strong) factors and that all factors

under consideration are either weak or strong.

5 Monte Carlo experiments

We consider the following data generating process
Yit = agdi + B Tite + BigTior + wit, (40)

fori=1,2,..,N and t = 1,2,...,T. We assume heterogeneous slopes, and set 3;; = ; + 71;;, with
ni; ~ IIDN (1,0.04), for s = 1,2,..., N and j = 1,2, varying across replications. The errors, u;;, are
generated as

Uit = 22:1 Yiefer + D g Niener + €it

where i ~ N(0,02), 0% ~ IIDU (0.5,1.5), for i = 1,2,..., N (the MC results will be robust to serial
correlation in €;), and unobserved common factors are generated as an independent AR(1) processes

with unit variance.

fo = 05fu_1+vy, £=1,2,3; t=-49,..,0,1,.,T,
v, ~ IIDN(0,1—0.5%), fo_5 =0,

ng = 05141 +vn,, {=1,..,my t=-49,..,0,1,.,T,
Un,, ~ ITIDN(0,1—0.5%), ny_s50 = 0.

The first three factors will be assumed to be strong, in the sense that the sum of the absolute values

of their loadings is unbounded in N, and are generated as

Yo ~ IIDU(0,1), fori=1,..,N,£=1,23.
The following two cases are considered for the remaining m,, factors ng:
Experiment A {ns,} are weak, with their loadings given by

Nt = — .y~ IIDU(0,1), for £ =1, ...;mp, and i = 1,2, ..., N.
2 i1 Mie

It is easily seen that for each ¢, 3N |A\y| = O(1) and for each i, 7" A3 = O(m,/N?).
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Therefore, asymptotically as N — oo, the R? is only affected by the strong factors, even if

m, — 0Q.

Experiment B As an intermediate case we shall also consider semi-strong factors where the loadings

are generated by

Ng= = for 0=1,...mn,andi=1,2,.., N.

[0 =N
32 i1 77@26

In this case, for each ¢, Zf\il |Aie| = O(N'/2), and for each i, > ;"% A2, = O(m,/N), and the
signal-to-noise ratio of the regressions deteriorate as m,, is increased for any given IN. In Section
5.1, we will investigate this issue further, to check if the effect of m,, on Ri2 for a given N impacts

on the performance of our estimators.
The remaining variables in the panel data model are set out as follows: regressors x;;; are assumed
to be correlated with strong unobserved common factors and generated as follows:

Tij¢ = aij1dig + agjaday + 22:1 ’)’ijgfet + e, J=1,2,

where

Yije ~ 1IDU(0,1), fori=1,..,N,£=1,2,3;j = 1,2.

Vijt = PoyVijt-1 + Q9ijt7 i=1,2,..,N;t=-49,..,0,1,.., T,
Dije ~ IDN(0,1—pj ), wvij—s0 =0, py,, ~ IIDU(0.05,0.95) for j = 1,2.

The observed common effects are generated as

dlt = ]-;d2t = O'5d2t—l +va, t= _497"'70717"7T7
var ~ IIDN(0,1—0.5%), da 50 =0,

When generating v;;; and the common factors fe,ne and do; the first 50 observations have been
discarded to reduce the effect on estimates of initial values. The factor loadings of the observed

common effects do not change across replications and are generated as

a; ~ IIDN(1,1), i=12,..,N,
(@i11, aio1, i1z, aiz2) ~ IIDN(0.5T4,0.514),

where 74 = (1,1,1,1)" and 14 is a 4 x 4 identity matrix.
Each experiment was replicated 2,000 times for all pairs of N and T' = 20, 30, 50, 100, 200. For each
N we shall consider m,, = 0, N/5,3N/5, N. For example, for N = 100, we consider m,, = 0, 20, 60, 100.

We report bias, RMSE, size and power for six estimators: the FE estimator with standard variance, the
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CCEMG and CCEP estimators given by (30) and (31), respectively, the MGPC and PPC estimators
proposed by Kapetanios and Pesaran (2007), and the PC estimator proposed by Bai (2009). The
MGPC and PPC estimators are similar to (30) and (31) except that the cross section averages are
replaced by estimated common factors using the Bai and Ng (2002) procedure to z;; = (yit,x};)’. In
the PC iterative estimator by Bai (2009), (f) PC, f‘) is the solution to the following set of non-linear

equations:

N -1 N
1=1

i=1

N
1 N N /AN A
=7 § ( Xibpc) (yi — Xibpc) =BV,

where Mz = Iy — P (f" f‘) F/, and V is a diagonal matrix with the 77 largest eigenvalues of the

~ ~ /
matrix ﬁ ZZ]L <yi — X;b PC) (yi —X;b _PC) arranged in decreasing order. The demeaning operator
is applied to all variables before entering in the iterative procedure, to get rid of the fixed effects. The

variance estimator of bp¢ is

Var (b ) —D 'D,D;
Var( PC NT z
Where DO = (NT)il Zz]\il Z;Z“ DZ = 121 10 (Til Zthl Zitz;t)? With 6—22 = IZt 1 zt7

~ A~ -1 ~
Z; =M X;,- NN [ﬁ; (L’L/N) %] M Xy, and L = (9, ..., )’ is the matrix of estimated

factor loadings. When T'/N — p > 0, bpc is biased and, following Bai (2009), we estimate the bias as

~\/ -
N (X, =V;) F /::6\ ¢
L (XY E g
bms—f—D ! E < ) 4,62
=1

N N T N e

- . -1
where V; = N1 Z LA (L’ L/N ) 4;X;. The selection of the number of strong common factors
(my) in the Kapetanlos and Pesaran (2007) and in the Bai (2009) estimators has been based on Bai
and Ng (2002) IC); criterium.

5.1 Results

Results on the estimation of the slope parameters for the Experiments A and B are summarized in
Tables 1-5. In what follows, we focus on the estimation of 3;; results for 3, are very similar and are
not reported. Notice that the power of the various tests is computed under the alternative Hy : 3,
= 0.95.

We do not report results for the FE estimator since they show that, as expected, this estimator
performs very poorly, is substantially biased, and is subject to large size distortions for all pairs of N
and T, and for all values of m,,. Tables 1-2 show the results for the CCE estimators. The bias and
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RMSE of CCEP and the CCEMG estimators fall steadily with the sample size and tests of the null
hypothesis based on them are correctly sized, regardless of whether the factors, {ng, £ =1,2,...,m,},
are weak or semi-strong, and the choice of m,,. Further, we notice that the power of the tests based
on CCE estimators is not affected by my,, the number of weak (or semi-strong) factors. This is also
confirmed by Figure 1, which shows that the power curves of tests based on the CCEP estimator do
not change much with m,.° The Monte Carlo results clearly show that augmenting the regression
with cross section averages seems to work well not only in the case of a few strong common factors,
but also in the presence of an arbitrary, possibly infinite, number of (semi-) weak factors.

Tables 3-4 report the findings for the MGPC and PPC. First notice that these estimators, since
they estimate the unobserved common factors by principal components, only work in the case where
the factors, {ns}, represent a set of weak factors, or when m,, = 0 (i.e., in Experiment A). In fact, in
the case of a semi-strong factor structure the covariance matrix of the idiosyncratic error would not
have bounded column norm, a condition required by the principal components analysis for consistent
estimation of the factors and their loadings. However, as shown in Table 1, even for Experiment A,
these estimators show some size distortions for small values of N (i.e., when N = 20, 30). One possible
reason for this result is that the principal components approach requires estimating the number of
(strong) factors via a selection criterion, which in turn introduces an additional source of uncertainty
into the analysis. Therefore, not surprisingly tests based on MGPC and PPC estimators are severely
oversized when a semi-strong factor structure is considered.

Finally, Table 5 gives the results for the Bai (2009) PC iterative estimator. The bias and RMSE
of the Bai estimators are comparable to CCE type estimators, but tests based on them are grossly
over-sized, even when m,, = 0. The problem seems to lie with the variance of the Bai estimator, an
issue that clearly needs further investigation. In his Monte Carlo experiments, Bai does not provide

size and power estimates of tests based on his proposed estimator.

6 Concluding remarks

Cross section dependence is a rapidly growing field of study in panel data analysis. In this paper we
have introduced the notions of weak and strong cross section dependence, and have shown that these
are more general and more widely applicable than other characterizations of cross section dependence
provided in the existing econometric literature. We have also investigated how our notions of CWD
and CSD relate to the properties of common factor models that are widely used for modelling of
contemporaneous correlation in regression models. Finally, we have provided further extensions of
the CCE procedure advanced in Pesaran (2006) that allow for a large number of weak or semi-strong
factors. Under this framework, we have shown that the CCE method still yields consistent estimates

of the mean of the slope coefficients and the asymptotic normal theory continues to be applicable.

®Similar curves were obtained for CCEMG estimatos, which are not reported due to space considerations.
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Figure 1: Power curves for the CCEP t-tests in experiments with N = 100, T' = 100, 3 strong factors, and a
varying number m,, of weak factors (left chart) and semi-strong factors (right chart).

Table 5: Results for Bai estimator. Experiment A and B: m; = 3 strong factors and m,, weak or

semi-strong factors.”
Bias (x100) | RMSE (x100) | Size (x100) | Power (x100)
m, N/T 20 100 20 100 20 100 20 100
Weak factor structure {\jn;}

0 20 | 0.47 -0.30 9.78 5.72 | 37.90 48.00 | 45.60 61.40

0 100 | -0.01 0.02 3.57 2.50 | 21.50 47.20 | 58.70 91.10

4 20 | 0.62 -0.15 9.80 5.83 | 40.10 50.50 | 48.30 63.20
20 100 | 0.07  -0.09 3.48 2.47 | 21.40 44.90 | 56.20 91.50
20 20 | 0.30 0.09 9.91 6.07 | 37.90 52.40 | 46.50 64.20

100 100 | 0.10 0.03 3.47 2.42 | 21.10 45.30 | 59.80 91.90
Semi-strong factor structure {Ajn;}

4 20 | 0.45 -0.23 9.40 6.08 | 35.50 52.10 | 42.70 65.10
20 100 | -0.09  -0.17 3.70 2.60 | 23.60 46.80 | 58.30 88.70
20 20 1.28  -0.28 | 10.47 6.27 | 41.70 52.40 | 49.40 60.50

100 100 | 0.02 0.03 3.50 2.46 | 20.90 44.50 | 56.20 90.20

"Based on R = 1000 replications.
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A Statements and proofs of lemmas

We state and prove a number of lemmas that we shall use in proofs of Theorems 2 and 3.

Lemma A.1 Suppose Assumptions 5-9 hold and (N, T) 7, . Then,

T T
1 L VN L
f ngﬂun‘ = 0, T ngswt — 0, (A 1)
t=1 t=1
T T
vIN 1 —
- Z iV, Lo, 7 Zvitﬁwt 550 wniformly in i, (A.2)
t=1 t=1
T T
N v N
\/T» Zviﬁwt =2 ) uniformly in 1, - Z Vit Vi =2\ uniformly in 1, (A.3)
t=1 t=1
T T
1 — vVIN
T tz:; DVt 2y uniformly in 1, a ; Wit Ewt =)\ uniformly in 1, (A4)
T T
VN 1 _
5 Z Dt Vot =2 uniformly in i, T Z €itWwt Ly 0, uniformly in i (A.5)
t=1 t=1
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T T
vVIN v N
T Z €itEwt 2y uniformly in i, and T Zaitth =2 uniformly in 1, (A.6)
P} t=1
= (N _ _ .
where gy = (dévft,)/7 Dt = Zf\; wilie, Vir = ;n 1( )Aiénlt; Ewt = sz\; Wiy, and Vo = Zévzl wivie. If in

addition there exist constants o and K such that 0 < a < 1 and conditions (32) and (33) hold, then

T
Z T (A7)

*ﬂ \

where Uy = Zszl wilge, and uy is defined by (24). If conditions (36) and (37) hold instead of conditions (32)
and (33), 0 < a < 1/2, and the remaining assumptions are unchanged, then

T T

N _

g z Vot 2 0, \g Zvitﬁwt =2 uniformly in 1, (A.8)
t=1 t=1

VN <« ‘ . VN <~ - . .
T z_: D51Vt ) uniformly in i, and 5 tz_:l citVwt =2 uniformly in i. (A.9)

Proof. We use L; mixingale weak law to establish results (A.1)-(A.9). Let T = T (N) such that Ty — oo as
N — oo and let ¢y = ﬁ for all N € N, and all ¢ € Z. To establish the first part of (A.1) define

my (N)
J _
KNt = Egtﬁwt = Egt ez:; AweTopt s
where Ayp = Zfil w;Nie. We have
mn(N)
E(’QN;K’Nt) _ E Z —2
CNt (=1

where ||| < K by Assumption 5. Consider the term Zm"(N) X we- Since absolute summablhty implies square

summability, a sufficient condition for the existence of an upper bound for Zm"(N) )\

upper bound for Zm"(N) |)\wg|. But

we 18 the existence of an

mp (N) B mp (N) mp (N)
Z P\wl‘ - Z sz il <Z|wz| Z |)\ZZ| <K7
=1 (=1 |i=1 (=1

where Z"L”(N) |Aie] < K by condition (29) of Assumption 6, and vazl |w;| is bounded by (1)-(2). It follows that
array {kny¢/cn¢} is uniformly bounded in Lp-norm and therefore uniformly integrable.® Furthermore, g; and
ng, for £ =1,2,...,m, (N), are covariance stationary processes with absolute summable autocovariances, and
therefore ||E (g¢ | Zt—s)||, — 0 and ||E (ne | Ze—s)||,, — 0, as s — oo, and array {sy} is uniformly integrable
L;-mixingale with respect to the constant array {cy¢}. Since limpy_, o Zt Lene = lmpy_ o0 ZTN Ty =1 < o0,

and limy_, oo Zt LA = limy oo ZTN Tx? =0, a mixingale weak law (Davidson (1994), Theorem 19.11) can

8Sufficient condition for uniform integrability is L1, . uniform boundedness for any & > 0.
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be applied, and we have

_ VN _
= —8Wwt = 75— Awenet,
KNt Tw StVwt Tw gt ; YALIZ3
where as before Ay = ZZ\; w; \i¢. Hence
KNtk mel
E( Ne Nt):NEg S N
Nt =1

and note that

mn(N)
3 Noe <K N*72m, (N)=0 (N7,
=1

under conditions (36) and (37). Thus, same as before {kn:} is uniformly integrable L;-mixingale with respect

to a constant array cy¢, and applying a mixingale weak law yields
T
VN~ — 1,
ZK/Nt = Ti thﬂ’u)t == 0.
t=1 N o=

Remaining results can also be established in a similarly way. For example, in order to establish the second part

of (A.1) define Kyt = T—‘/fgtéwt, and note that

) N
E (“N”N) =N S (2) = N 8 Y wlE (&) < K.
Nt =1

Similarly, in order to establish the first part of (A.2), define Kyt = %—fgtth, and note that

. N
E (”fom) = NByE (Vi) = N8y Y _wi [ 0] < K.

ENt i=1

The following four results, the second part of (A.3), the first part of (A.6), (A.7), and the first part of (A.9),

deserve more attention. In the case of the second part of (A.3), we have

VN & VN & VN &
ﬁ Z VitVL}t = ﬁ Z wivitvit + ﬁ Z Vit Z wjvjt- (AIO)
t=1

t=1 t=1  j#i

. . . . —1 T, L .
Note that since v;; is ergodic in variance then T Novivh, 5 3., and since vV Nw; — 0 as N — oo and
N t=1 it ’

sup, || X < K, it follows that ‘%—f ngl WiVt Vi 54 0. To establish convergence of the second term on the
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right side of (A.10), define Kyt = T—‘/fvit > j4i WjVijt, and note that

i
HE ("Ng"Nt) H < NSl Y w? 1B < K.
N i#i

Using now the same arguments as in the proof of the first part of (A.1) we have ngl KNt Ly 0, which completes
the proof of the second part of (A.3). The first part of (A.6) can be established along the same lines followed
to prove the second part of (A.3). To establish the first part of (A.9), consider

N VN X
KNt = ﬂ'&it'ﬂwt = ﬂﬁit ;wjﬂjr

We have
H (HNt> H NZ ijwkE (ﬁnﬁjtﬁkt) (A.11)
j=1k=1

where
mn(N) mn(N) mn(N) mn(N)

E000m) = > > > Y NninXjn ke, B (nene,ime,ime)

l1=1 la=1 l3=1 la=1

in which E (ng,¢n,4Me,¢M0,¢) is nonzero only in the following three cases: (i) {1 = €2 = {3 = 44, (ii) {1 = {2 and
U3 =y, and (iii) ¢, = ¢3 and £ = ¢4. Tt follows that

my (N) mp (
E(050;000) = > AAjedreE (nf,) + Z D> N Ajes Akt + Z > iAo e, (A12)
=1 O=1 €340, f=1 Cy£0,

where E (n},) = 1, and E (nj,) < K by Assumption 5. Using conditions (36) and (37), and the absolute

summability condition (29) of Assumption 6, we obtain

N N mu (N) mn (N) )

NZ Z’ijk Z )\?@)\j()\kgE (n?t) = N Z )\fﬂw@ <K, (A.13)
j=1 k=1 (=1 (=1
N N my (N) my, (N) .

NY D wjwe | Y D> ANk, | = N DY N, D Ay <K
ji=1k=1 l1=1 L3+, l1=1 L3#Ly

N N mn(N) my, (N) mp (N)

szijk Z Z Xiey Niea Njey ke, | = N Z ity Awt, Z At dwt, <K (A14)

j=1k=1 =1 o0, =1 L0,

Now substitute (A.12) in (A.11) for E (97,9;95:), and use (A.13)-(A.14) to obtain

HQ
HE (;Vt> H <K. (A.15)
CNt

Using the same arguments as in the proof of the first part of (A.1), ky¢ is uniformly integrable L;-mixingale

with respect to the constant array cy¢, and applying a mixingale weak law yields ZtT;\’l KNt Iy 0, as required.
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In order to establish (A.7) note that

Uyt =
Vuwt

_ ( Dot + Bt + Zf\; w; Byvit )

2

wt» and note

Convergence of T~! Zthl @it can also be established using a mixingale weak law. Let kn; = T&lg
that

2

L N N N
E (ﬁwt> = F Z wjﬁjt = Z Zwiij (ﬁitﬁjt)
j=1 i=1 j=1
N N mn (N)
= ZZwin Z )\Zg)\]g
i=1 j=1 (=1
my (N)

™

N N
E wi)\ig . E wj')\jg
i=1 j=1

K -m, (N)N?*=2 -0,

IN

where |w;| < K/N under the granularity conditions (1)-(2), va:l |\ie] < KN® by (32), and m,, (N) N?*=2 — 0
by (33). Similarly as in the proof of the first part of (A.9), it can be shown that E (k%,/ci,) is bounded
and that ngl Kyt 5 0. The convergence of the remaining elements of (A.7) can be established using similar

arguments as in Lemma 2 of Pesaran (2006), or by applying a mixingale weak law. ®

Lemma A.2 Suppose Assumptions 5-9 hold and (N, T) ENISS Then,

VIV, V!G

—7 L3 uniformly in i, jz, 20 uniformly in i, (A.16)
V! G'G
vViQ L0 uniformly in i, — 5 pIP (A.17)
T T
QG Q'Q
S 0,0, 20,0 (A18)
H,H
0, — 117 2 0 uniformly in i, —=-2 = 0, (1), (A.19)
—
H, 9; X!
ljﬂ = o, (1) uniformly in i, %Q = Oy (1) uniformly in i, (A.20)
H,e 0, X,
; L =0, (1) uniformly in 1, l% L =0, (1) uniformly in i (A.21)
and _,
H'U)F
wt = 0,0, (A.22)

. SRV _
where TIF = [I—P(P'P)+ P, T = {I—Pw (P’ Pw> P;,] IL;, P, is defined by (26), P =E(P,),



G= (D,F), Q = Gﬁw, ﬁw = (D,Zw), and 191 = (191'17791'17 ...,191"1")/ with 19# = Z;n:?Ll(N) )\igngt.

Proof. The first part of (A.16) follows directly by observing that the covariance stationary process v;; is ergodic
in variance. Since g; = (dj}, f]) is also a covariance stationary process with absolute summable autocovariances,

it follows that
T

1
T Zvitgfg 5 E(vigy) =0,
=1
where the convergence is uniform in ¢ since the second moments of v;; are uniformly bounded in . This
establishes the second part of (A.16). The first part of (A.17) can be established using the same arguments.
The second part of (A.17) can be established similarly to the first part of (A.16) by noting that 3, = E (g:g;).
In the same spirit,
1 o 1 o
— —
Z%g; =7 Zngtgé 5 E (ngtgn/5> )
t=1

t=1

el

as (N,T) % co. But E (?;,gtg;) = P'S,, and |P'S,| < |P||||Z,]| < K, where |S,] < K by Assumption 5
and ||P|| < K by Assumptions 6, 8, and 9, which completes the proof of the first part of (A.18). Noting that
Q = GP,,. and that P,, 2 P, the second part of (A.17) implies
QQ
T

-P'E,P Lo,

as (N,T) 2, 0. But, same as before, |[P'E,P| < IP||*||=,]| < K and it follows that Q' Q/T = O, (1), as
required. To establish the first part of (A.19) note that P, — P % 0 as (N,T) % oo, and

lim Pr {Tank (f;?w) =rank (P'P)| = 1.

N—oo
It follows, using also Theorem 2 of Andrews (1987), that ﬁ: —1II7 %, 0. The remaining results can be established

in a similar way, as results (A.16)-(A.18), using ergodicity in mean and variance of covariance stationary series

with absolute summable autocovariances and Lemma A.1. m

Lemma A.3 Suppose Assumptions 5-9 hold, (N,T) L o0, and there exist constants o and K such that
0 < a < 1, and conditions (32) and (33) hold. Then,

==
X! ﬁw_ 2 Q/_Hw 7‘91 ,
M L, 0 uniformly in i, ( T ) L0 uniformly in i, (A.23)
=\t
H,H, QQ\"| »
(T) — ( T ) — 0, (A.24)
(@-1,)e (@-m,)F ,
—— 2.0 uniformly in i, and — 2 o. (A.25)

If conditions (36) and (37) hold instead of conditions (32) and (33), 0 < a < 1/2, and the remaining assumptions
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are unchanged, then

VN (Q' - ﬁ;) Lo
T

VX, (H, - Q)

T 2.0 uniformly in i, (A.26)

P , o
= 0 uniformly in i,

|5 -5y ) =

VN (Q/ - ﬁ;) €

L0 uniformly in i, and (A.28)

Proof. Using the notations in Section (4) we note that H, = Q—i—ﬁz}, where U™ = (Qﬁw)7 U, = vazl w; U;.
Also recall that X; = GII; +V;. Hence both parts of (A.23) and (A.25) directly follow from results (A.1)-(A.3)

of Lemma A.1. However, because Moore-Penrose inverse is not a continuous function it is not sufficient that

(=) ()0

for (A.24) to hold. We establish (A.24) in a similarly way as Kapetanios, Pesaran, and Yagamata (2010). By
Theorem 2 of Andrews (1987), (A.29) is sufficient for (A.24), if additionally, as (N, T) % oo,

rank (H“%Hw> = rank (Q}Q)

lim Pr
(N, T)L 00

=1, (A.30)

where rank (A) denotes rank of A. But

HH, _QQ, QU, U,Q, K T,T,
T T T T

where

/U* ﬁ*/ ﬁ*/ﬁ*
lim Pr Q AR wQJr Y _Yil>e]l=0
(N,T) %0 T T T

for all e > 0. Also

rank (Q;Q> =mgq +rank (Cy),

for all N and T, with rank (Q'Q/T) — mq + rank (C) < mq+ my, as (N, T) 2 . Using these results, it is
now easily seen that condition (A.30) in fact holds. Hence, the desired result (A.24) follows.
Results (A.26)-(A.28) can be established in a similar way as results (A.23)-(A.25). m

Lemma A.4 Suppose Assumptions 5-10 hold, and (N,T) ENINS Then,

X!M,e;

quE L0 uniformly in i, (A.31)
and -

XM, 9;

% 20 uniformly in i, (A.32)
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where ﬂi = (791‘17 191'2, N 19iT)l, and 'lgit = Zzn:"l(N) /\i[l’Lgt.

Proof. Consider

XIM,9; X0 1o~
T =—75 =7 Z XitWit,
where X; = M,X;. Let Ty = T (N) be any non-decreasing integer-valued functions of N such that limy o Ty =

oo and define
mp (N)

1 . 1
XitUit = th Z gt (A.33)

Knp = —
Nt = e
Let {{CNt}?ifoo}?zl be two-dimensional array of constants and set cy; = ﬁ forallt € Z and N € N. We

have

!
KNtR ~ o~ ~ ~
E < Ctz Nt) =F (Xitx;tﬁzzt) =E (Xux;) E (19121‘,) )
Nt
where the second equality follow from independence of X;; and ¥;;. By Assumption 10 there exists a constant
>. </

K < oo such that sup, || E (X4X},)|| < K. Further, using independence of factors ng; and ng for any ¢ # ¢ and

noting that F (n,%t) =1, we have

E(v93) = ZA <K < .

It follows that
HE ('wct“m) H <K <. (A.34)

(A.34) established that {Kkyt/cne} is uniformly bounded in Ly norm, which implies uniform integrability. Using
similar arguments as in proof of Lemma A.1, {ky:} is Li-mixingale with respect to the constant array {cy:},
and applying a mlxmgale weak law (Davidson (1994), Theorem 19.11) establishes ZtT;Vl ke 5 0, that is
-1 Zt 1 XitWis I 0, as (N, T) % oco. This completes the proof of (A.32).
Result (A.31) can be established in a similar way, but this time we need to define ky; = T&liitait and
noting that sup, £ (E%t) < K by Assumption 7. m

Lemma A.5 Suppose Assumptions 5-9 hold and (N, T) 2, 00, Then

X' M,X;
% Ly 3, uniformly in i, (A.35)
and -
X'M,F
=9 B Qo uniformly in i, (A.36)
where ;4 is positive definite and given by
Y =3 + IS OO0, (A.37)
and
Qiy = II;'%,S7, (A.38)
in which
I = [I —p@P)?’ P’} I, S* = [I —pPP’ P’} S, (A.39)
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IL = (A}, T0), St = (0, xmgs Im,) s and By = E (gg)).

Proof. Since X; = GII; + V; then

XM, X; _ VM, V; . V/M,GII,;
T T T
n’'Gc'M,v; II'G'M,GII;
+— 7 4-° 4 Tq - (A.40)
Consider the first term and note that,
/_M . . / / + INT.
Vi Tqu = V%Vz — V%Q (QTQ> QCZYI 2. 3, uniformly in i, (A.41)

where the convergence directly follows from Lemma A.2 (the first part of (A.16), the first part of (A.17), and
the second part of (A.18)) . Next we examine the second and the third elements (the latter is transpose of the

former). We have

V/M,GII;, VG v/Q <Q’Q>+ QG

= a [ P + - a I1; % 0 uniformly in 4, (A.42)

where we have used Lemma A.2, in particular the second part of (A.16), the first part of (A.17), and both parts
of (A.18). Finally, we examine the last summand on the right side of (A.40). Let Col (P,,) denote a linear

space spanned by the column vectors of P,, and consider the following decomposition of matrix IT;
II; =10, +1I1;, (A.43)

where I?Iz e Col (Fw), and ﬁ: belongs to the orthogonal complement of the space spanned by the column
vectors in P,,. The decomposition (A.43) is unique. Note that matrix M, has the property MqGﬁ: = Gﬁ:
and MqGﬁi = 0. It follows that

GMM,G_ . GG_.

S
GMQGH’L:H/ HZ:H H

T’ X Vg Vg™
K3 T K T K T (2

Using now the second part of (A.17) yields

G'M,G

T IL; - ﬁ:/Egﬁ: 2, 0 uniformly in .

m,
But according to Lemma A.2, the first part of (A.19), ﬁ: —II 2,0, uniformly in 4, and therefore

G'M,G

1T’
T

II; — 13,11 % 0 uniformly in 4. (A.44)
Using (A.41), (A.42), and (A.44) in (A.40) establishes (A.35), as desired. X,; is positive definite by Assumption
7 and matrix 3, = F (g:g;) is nonnegative definite. It follows IT}"3/II is nonnegative definite. Sum of positive
definite and positive semi-definite matrices is a positive definite matrix and therefore 3;, = 33,; + II}'3 I} is

positive definite.
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Similarly to the proof of result (A.35), consider

X'M,F  V/M,F II'G'M,F
= +
T T T ’
V/M,GS II'G'M,GS
i jli f 4 - q f (A.45)

where F = GSy, and Sy = (Oande,Imf)/ is the corresponding selection matrix. Using similar arguments as
in (A.42), and (A.44), we obtain

—
% %, 0 uniformly in 4, (A.46)
and p—
II'G'M,GS
L#qf —II;'%,S% = 0 uniformly in 4, (A.47)

where IT} and S} is defined by (A.39). Using (A.46), and (A.47) in (A.45) completes the proof of (A.36). m

Lemma A.6 Suppose Assumptions 5-9 hold, (N,T) L o0, and there exist constants o and K such that 0 <
a < 1/2 and conditions (36) and (37) hold. Then,

"M, X XM, X,
mw - \/N% L0 uniformly in i, (A.48)
X{Mw i X/'M 7
\/ﬁ% _ \/NZT‘ZE 2.0 uniformly in i, (A.49)
X'M,F X'M,F
\/N% _ \/NZT‘I 2.0 uniformly in i, (A.50)
and X/ M, 9; XM9; »
\/NZT — \/N% = 0 uniformly in i, (A.51)
where ¥; = (9;1, V42, --~,191'T)/; and ¥ = ZL:nl(N) Aienoet-
Proof. We have
_ — — + —
VN o VN X/H, (H,H,\ H,X X;Q (QQ\" QX
YUXML X — YA XM X, = YNoiw [ Tww wi /N -
T VL A T Vg4 \/7 T T T \/7 T < T > T

VNX! (H, - Q) <H;,Hw ) THL X,

+ T T T
—t — + —
L XiQ x| (HLH, QQ\"| H,X; (A52)
T T T T '
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We focus on the individual elements on the right side of (A.52). The second part of (A.19), the second part of
(A.21) and the first part of (A.26) imply

2. 0 uniformly in i.

VNX! (H, - Q) <H;Hw ) TH., X,

T T
op(1) O,(1)
Op(1)

The second part of (A.20), the second part of (A.18), and the first part of (A.26) imply

X/Q (Q’Q)+ VN (@ -H,)X;

2, 0 uniformly in .

T T T
R i
Op(1) O, (1) op(1)

Finally, the second part of (A.20), the second part of (A.21) and result (A.27) imply

o\ + —
X/ H, H Q\*"|H,X,
#Q\/N ( Z w) — <Q Q) —w= 2 0 uniformly in i,

T T T
~—— ~—
0,(1) Op(1)
op(1)
which completes the proof of (A.48).
To establish result (A.49), consider
__ o, +
N, — N NX! (H, — H H,\ H,e,
YN e — —\ﬁngqei _ YNXi(H,-Q) (H, i
T T T T T

.XiQ (Q’Q>+ VN (Q-H,)e

T \'T T
X'Q 7\ /QQ\T| He,
+#\/N (“’T> —( i ) 0 (A.53)

p . .
= 0 uniformly in 3,

where, similarly to the proof of (A.48), Lemmas A.2 and A.3 can be used repeatedly to establish the convergence
of the elements on the right side of (A.53).
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Results (A.50) and (A.51) can also be established in a similar way. In particular, Lemmas A.2 and A.3

imply
_ Nt
M NX, Hu)f ! w
@X;MwF_@X;MqF = \/7 1( Q) HwH HwF
T T T T 7
xiQ (QQ\* VN (@ -H,)F
T ( T > T
—— \*t
X'Q H/ H, Q'Q +
. N Trwtw o
+=5 VN ( - ( .
2o uniformly in 4,
and
_ e Nt
M NX/ Hw_ ! .
@X;’Mwﬁi*@X;Mqﬂi = \/> 1( Q) HwHw Hw’ﬂl
T ° T T T z
xiQ (QQ\* VN (¥ -T,) v
T ( T ) T
) — N\t
XiQ H;Hw QQ\"
+==VN <T> _( A
2o uniformly in 1.
]

Lemma A.7 Suppose Assumptions 5-10 hold, (N,T) EX 0o, and there exist constants a and K such that

0 < a < 1/2 and conditions (36) and (37) hold. Then,

and

’LU]’LGTG 191 = (’191‘1,191'2, --~719iT)/; and ﬁit = Z;”:nl(N) )\Z‘[ngt.

(A.54)

(A.55)

Proof. Proof of Lemma A.7 is similar to the proof of Lemma A.4. Let Ty = T (N) be any non-decreasing

integer-valued function of IV such that limy_,., Ty = 0o. Consider the following two-dimensional vector array

{knt} defined by

1 N
KNt = XitEit -
Nt TN\/N; itCit

37



Let {{cNt}jifoo}]OVO:l be two-dimensional array of constants and set cy: = ﬁ for all t € Z and N € N. Using

independence of X;;, and €; for any ¢,j € N, and independence of ¢;; and ¢, for any ¢ # j, we have

KNiK) N
Ntlvyt 2
E ( > = E xztx” slt) ,

CNt

and

/
HE <RN§I{N’5> H < sup | E (XX, ZE ey) < K, (A.56)
Nt

where sup; E (¢%) < K by Assumption 7, and sup,cy || F (XX},)|| < K by Assumption 10. (A.56) implies
uniform integrability of {ky¢/cnt}. Since ;4 is covariance stationary process with absolute summable auto-
covariances, it follows that array sy is uniformly integrable L;-mixingale array with respect to the constant

array cy¢, and using a mixingale weak law yields

Tn
K Xit€i 0.
; Nt = \/»ZZ t t—’

t=1 =1

This completes the proof of result (A.54). Result (A.55) is established in a similar way. This time, we define

2

KNt = it-

We have

CNt

Using conditions (36) and (37), and noting that 0 < o < 1/2 imply

2

!
HE <"°Nt“Nt> H < K N* 1y (N) < K.
CNt

Hence HE (nNtnﬁw/c?w) H is bounded in N € N. Using now the same arguments as in derivation of (A.54), we

have

which completes the proof of result (A.55). m

Lemma A.8 Suppose Assumptions 5-10 hold, (N,T) EX oo, and there exist constants o and K such that
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0 < a <1 and conditions (32) and (33) hold. Then,

XIM,X; XIM,X;

T T 2.0 uniformly in i, (A.57)
XM,F X'M,F
: — 249”2 uniformly in i, (A.58)
T T
X'M,¥; X M,9;
t — 20 P undformly in i, (A.59)
T T
and — —
XMye; XiMgg;
1wl RiValiop g uniformly in i, (A.60)

T T
where ﬂi = (?91‘17791'27 ~--719iT)/; and ’lgit = Ezn:”l(N) /\igngt.
Proof. Results (A.57)-(A.60) can be established in a similar way as results (A.48)-(A.51) of Lemma A.6,

i.e. Lemmas A.2 and A.3 can be used repeatedly to work out orders of magnitude in probability of individual
elements in (A.57)-(A.60). m

Lemma A.9 Suppose Assumptions 5-10 hold, (N,T) EX 0o, and there exist constants a and K such that
0 < a <1 and conditions (32) and (83) hold. Then,

N

XM,X;
> w5 o, (A.61)
T
i=1
N —
X/M,,F
Sy wi =, 5o, (A.62)
. T
i=1
and N
1 G XIMF
N > Eiqqum 2 o. (A.63)
i=1
Proof. Granularity conditions (1) and (2) imply

Nv
where constant K does not depend on N € N nor on ¢ = 1,2,..., N. Using (A.64) and result (A.57) of Lemma

A.8 yields

N N

X!M,,X; XM, X;
Zwii‘ T vi—Zwii‘ Tq v; 0.
i=1 i=1
But,
N = N
XM, X; 1
Z wi— Vi = Z ANTiVi,
=1 i=1
where -
XMy X;

39



w; = Nw;, and (A.64) imply |w}| < K. Also (X]M,X;/T) has bounded second moments by Assumption
10, and therefore F (A%v:m) < K. Furthermore, v; is independently distributed across i and independently
distributed of X/M,X;/T. It follows that

| X
N > Anrvi 50,
i=1

and
N

w ; v iv 20
E himweR o P
3 T 1 )

i=1

as required. Result (A.62) and (A.63) can be established in a similar way as (A.64). =

Lemma A.10 Suppose Assumptions 5-10 hold, (N,T) EX 00, and there exist constants o and K such that
0 < a <1 and conditions (32) and (33) hold. Then,

(ZN: Wi Xéwai) =0,(1). (A.65)

‘ T
i=1
Proof. Results (A.57) of Lemma A.8 and result (A.35) of Lemma A.5 imply

XM, X,
T

— X uniformly in ¢,

and therefore for any weights {w;} satisfying granularity conditions (1)-(2) we have

N —
XiM,X; P
Zwii' T — ZwiEiq — 0,
i=1 i=1
as (N, T) 7, 00. The limit limpy oo Zi\; w;3;q = ¥* exists by Assumption 10 and furthermore, by the same

assumption, ¥* is nonsingular. This implies (A.65). m

B Mathematical proofs

Proof of Theorem 2. We prove the theorem in two parts. First, we establish consistency of the CCEP

estimator and in the second part we establish consistency of the CCEMG estimator. Consider

N

-1

5 XIMLXi | s~ XM, (Xjv; + Fy; +9; + &)

Bp—B= <sz T ) Zwi T . (B.1)
=1 =1

We focus on the individual elements on the right side of (B.1) below. Lemma A.10 established

N v\ L
(LnXX) o, (3.2

i=1
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According to result (A.61) of Lemma A.9, we have
N

X(wai
i=1

Noting that «, can be written as v, =%, +1; — 7,,, and that ZZ\LI w; XM, = X;Mw = 0, and using result
(A.62) of Lemma A.9, we obtain
N = N =
X:M,F XM, F
E w;—————y, = E w; ——""qn. % o. (B.4)

; T ; T !
i=1 i=1

Result (A.59) of Lemma A.8 and result (A.32) of Lemma A.4 imply

N

X/M,,9;
ZwilT“” 0. (B.5)
=1

Similarly, result (A.60) of Lemma A.8 and result (A.31) of Lemma A .4 yields

N

li .
; wXMT“’E 2 0. (B.6)

Using (B.2)-(B.6) in (B.1) establishes (35).
Next we establish consistency of CCEMG estimator. Consider

N N — N — N —
-~ 1 1 =~ XM,F I e  XIM,9; 1 == X/ Mye;
Bue—B= N ;:1 v; + N /§=1 Wi ———7+ E Vip———+ N E v, - 7T (B.7)

where 'iliT = T_lxgmin. v; is identically and independently distributed across ¢ with zero mean and

bounded second moments, and therefore
N
1
Ly v 2o (B.8)
i=1

Results (A.57) and (A.58) of Lemma A.8 imply

N P
1. XML 1 LXIMF
=1 3

But F7,, belongs to the space spanned by column vectors of Q, and therefore M,F~, = M/F (7, +n, — 7,,) =
M,F (n; —7,,), where i, = O, (N~1/2). Now using (A.63) of Lemma A.9 it follows that

N JR—
1 XN . /XIM,F
P (B ) e (B.9)
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Results (A.57) and (A.59) of Lemma A.8, and result (A.32) of Lemma A.4 imply

N E—
1 =, (X/M,9;
> v <T> 0. (B.10)

N —
1 ~ 1 (XIMye;\ p
Using (B.8)-(B.11) in (B.7) establish (34). m

Proof of Theorem 3. We prove the theorem in two parts. First, we establish asymptotic distribution of
the CCEP estimator and in the second part we establish asymptotic distribution of the CCEMG estimator.

Consider

N —-1/2 R N N ‘ -1 N N . 4 . '
(Z w> (Br-15) = (Z wixil‘fpw&) ey a T RN IR LA (g
i=1 i=1

i=1

—1/2
where @; = vV Nw; (Zfil wf) , and, by granularity conditions (1)-(2) there exists a real constant K < oo
(independent of ¢ and N), such that

N —1/2
|@i| = |V Nw; (Z w?) <K. (B.13)
1=1

We focus on the individual terms on the right side of (B.12) below. Results (A.48) of Lemma A.6 and result
(A.35) of Lemma A.5 imply

X' M, X;
% RN ¥ uniformly in 1,

and therefore for any weights {w;} satisfying granularity conditions (1)-(2) we have
N

— N
Zwi XQI\;IJUXL B Zwiziq 20,
i=1 =1

as (N, T) 7, 0. The limit limy o0 Zf\il w; X = ¥* exists by Assumption 10 and furthermore, by the same

assumption, ¥* is nonsingular. It follows that

N —1
X/ M, X; ~
(§ wLT> R (B.14)

i=1

as (N, T) 2, 0. Next we focus on the individual elements in the second summation on the right side of equation
(B.12). Noting that «, can be written as v, =7,, + 1; — 7,,, and that Zf\; w; X! M, = X;}Mw = 0, we have

N N
1 — 1 —
i=1 =1
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(B.13), (B.15) and result (A.50) of Lemma A.6 imply

jNiﬁmgﬂv—ZNXMFiga (B.16)
(B.13) and result (A.51) of Lemma A.6 imply
1 XMﬁ KM,
() L (r208) o
i=1
and, using result (A.55) of Lemma A.7, we have
J%gy}%#mﬂm (B.17)
as (N,T) ERSS Similarly, result (A.49) of Lemma A.6 and result (A.54) of Lemma A.7 establish
W% 2, 0 uniformly in i,
and therefore (noting that w; is uniformly bounded in i, see (B.13)),
\/% é@xgﬁwei = % iw (MNX%”Q) 2 0. (B.18)

Using (B.14), (B.16), (B.17), (B.18) and result (A.48) of Lemma A.6 in (B.12), we obtain

N -1/2 N —
. d g 1 _ X!M, (X;v; + Fn,)
S I R D e

Assumption 10 is sufficient for the bounded second moments of X/M,X,;/T and X;M,F/T. In particular,
condition F ( wt) < K, for s = 1,2,..,k, is sufficient for the bounded second moment of X;M,X;/T. To see
this note that

X/ M, X; *Xf~'

Xitxit7

and, by Minkowski’s inequality,

§ TistT. zpt

1 T
< TZ ‘xlstxlptHL )
t=1

Lo

for any s,p = 1,2,..,k. But by Cauchy-Schwarz inequality, we have E( mxfpt) < [E (E?St) E (Eglpt)] 1/2, and
therefore bounded fourth moments of the elements of x;; are sufficient for the existence of an upper bound for

the second moments of X;M,X,;/T. Similar arguments can be used to establish that X;M,F/T" has bounded
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second moments. It therefore follows from Lemma 4 of Pesaran (2006) and Lemma A.5 that

N —1/2
(2 w) (Br—8) =N (©0.30),
i=1

as (N, T) 25 00, where
Sp=0 RO (B.19)
in which

T* — lim Zwl iq; R" = lim —Z (B3 QpZiq + Qir2,Qj)

N—oo

Qp = Var(B;), @y = Var(v;), g is defined in Assumption 10 and Q;; is defined by (A.38). Next, we
consider asymptotic distribution of CCEMG estimator. Consider

— N 1 & X/M,F N X/ M, 9;
N(ﬁMG ) Wg fz:: T Wz:: T
1 NA? XM,

where W, = T-1X!M,,X;. It follows from result (A.48) of Lemma A.6 and result (A.35) of Lemma A.5 that

\fliT -3 =0p (N_l/Q) uniformly in 4. (B.21)
Using (B.21), result (A.51) of Lemma A.6, and result (A.55) of Lemma A.7, we have

N XM .

Z 1\; wdi v g (B.22)
Similarly, (B.21), result (A.49) of Lemma A.6, and result (A.54) of Lemma A.7 imply

N —
1 ~_ X!M,e;
— >y g B (B.23)
VN&= T

Noting that F4, belongs to the linear space spanned by the column vectors of Q = GP,,, we have MQFﬁw =0,
and XM, Fv, = X'M,F (n, —7,,). Using results (A.48) and (A.50) of Lemma A.6 and noting that

N — . R—
\/1N 3 (Xél\;qxi) Xél\T/IqFﬁw 20,
i=1

yields

N /7 N N1 - IN{T
-~  X'M,F 1 X'M,X;\  XM,F
;\p = - NZ( ) n, 5 0. (B.24)
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Using (B.22)-(B.24) in (B.20) yields

_ N N XML X\ XM F
\/N<6MG ) Z: \FZ< qu > qu n;.

ﬂ\

It now follows that v N ([AiMG - ﬁ) — N (0,3)¢), where

N
. 1 _ _
Tme=Qp+ lim lN > 3,'Qis 2, Q2 (B.25)
i=1

in which Qg = Var (8;), 2, = Var (v;), g is defined in Assumption 10 and Q;y is defined by (A.38). m
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