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Abstract

This paper proposes a novel approach for dealing with the �curse of dimensionality�in the

case of vector autoregressive (VAR) models with a large number of variables or units (N). It

is assumed that each unit is related to a small number of neighbors and a large number of

non-neighbors. The neighbors could be individual units or, more generally, linear combinations

of units. The neighborhood e¤ects are �xed and do not change with N , but the coe¢ cients

corresponding to the non-neighboring units are restricted to vanish in the limit as N tends to

in�nity. The conditions under which such an in�nite-dimensional VAR (or IVAR) can be arbi-

trarily well characterized by a large number of �nite-dimensional models are derived. Problems

of estimation and inference in a stationary IVAR model with an unknown number of unobserved

common factors are also investigated. A cross section augmented least squares (CALS) estima-

tor is proposed and its asymptotic distribution is derived. Satisfactory small sample properties

for the CALS estimator are documented by Monte Carlo experiments. An empirical illustration

shows the statistical signi�cance of dynamic spill-over e¤ects in modelling of U.S. real house

prices across the neighboring States.
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1 Introduction

Vector autoregressive models (VARs) provide a �exible framework for the analysis of complex

dynamics and interactions that exist between economic variables. The traditional VAR modelling

strategy postulates that the number of variables, N , is �xed and the time dimension, T , tends to

in�nity. But since the number of parameters to be estimated grows at a quadratic rate with N ,

the application of the approach in practice is often limited to a handful of variables. The objective

of this paper is to consider VAR models where both N and T are large. In this case, parameters of

the VAR model can no longer be consistently estimated unless suitable restrictions are imposed to

overcome the dimensionality problem.

Two di¤erent approaches have been suggested in the literature to deal with this �curse of di-

mensionality�: (i) shrinkage of the parameter space, and (ii) shrinkage of the data. Spatial and/or

spatiotemporal literature shrinks the parameter space by using a priori given spatial weights ma-

trices that restricts the nature of the links across the units. Alternatively, prior probability dis-

tributions are imposed on the parameters of the VAR such as the �Minnesota�priors proposed by

Doan, Litterman, and Sims (1984). This class of models is known as Bayesian VARs (BVAR).1

The second approach is to shrink the data, along the lines of index models. Geweke (1977)

and Sargent and Sims (1977) introduced dynamic factor models, which have more recently been

generalized to allow for weak cross sectional dependence by Forni and Lippi (2001), Forni et al.

(2000) and Forni et al. (2004). Empirical evidence suggests that few dynamic factors are needed

to explain the co-movements of macroeconomic variables.2 This has led to the development of

factor-augmented VAR (FAVAR) models by Bernanke, Bovian, and Eliasz (2005) and Stock and

Watson (2005), among others.

Applied researchers are often forced to impose arbitrary restrictions on the coe¢ cients that link

the variables of a given cross section unit to the current and lagged values of the remaining units,

mostly because they realize that without such restrictions the model is not estimable. This paper

1Other types of priors have also been considered in the literature. See, for example, Del Negro and Schorfheide
(2004) for a recent reference. In most applications, BVARs have been applied to relatively small systems (e.g. Leeper,
Sims, and Zha (1996) considered 13- and 18-variable BVAR; a few exceptions include Giacomini and White (2006)
and De Mol, Giannone, and Reichlin (2008)), with the focus being mainly on forecasting. Bayesian VARs are known
to produce better forecasts than unrestricted VARs or structural models. See Litterman (1986) and Canova (1995)
for further references.

2Stock and Watson (1999), Stock and Watson (2002), Giannone, Reichlin, and Sala (2005) conclude that only few,
perhaps two, factors explain much of the predictable variations, while Bai and Ng (2007) estimate four factors and
Stock and Watson (2005) estimate as much as seven factors.
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proposes a novel way to deal with the curse of dimensionality by shrinking part of the parameter

space in the limit as the number of variables (N) tends to in�nity. An important example would be

a VAR model where each unit is related to a small number of neighbors and a large number of non-

neighbors. The neighbors could be individual units or, more generally, linear combinations of units

(spatial averages). The neighborhood e¤ects are �xed and do not change withN , but the coe¢ cients

corresponding to the remaining non-neighbor units are small, of order O
�
N�1�. Such neighborhood

and non-neighborhood e¤ects could be motivated by theoretical economic considerations, or could

arise due to the mis-speci�cation of spatial weights.

Although under this set-up each of the non-neighboring coe¢ cients is small, sum of their ab-

solute values in general does not tend to zero and the aggregate spatiotemporal non-neighborhood

e¤ects could be large. This paper shows that under weak cross section dependence, the spillover

e¤ects from non-neighboring units are neither particularly important, nor estimable.3 But the co-

e¢ cients associated with the neighboring units can be consistently estimated by simply ignoring

the non-neighborhood e¤ects that are of second order importance in N . On the other hand, if the

units are cross sectionally strongly dependent, then the spillover e¤ects from non-neighbors are in

general important, and ignoring such e¤ects can lead to inconsistent estimates.

Another model of interest arises when in addition to the neighborhood e¤ects, there is also a

�xed number of dominant units that have non-negligible e¤ects on all other units. In this case the

limiting outcome is shown to be a dynamic factor model.4 Accordingly, the paper provides a link

between data and parameter shrinkage approaches to mitigating the curse of dimensionality. By

imposing limiting restrictions on some of the parameters of the VAR we e¤ectively end up with a

data shrinkage. To distinguish high dimensional VAR models from the standard speci�cations we

refer to the former as the in�nite dimensional VARs or IVARs for short.

The paper also establishes the conditions under which the Global VAR (GVAR) approach

proposed by Pesaran, Schuermann, and Weiner (2004) is applicable.5 In particular, the IVAR

featuring all macroeconomic variables could be arbitrarily well approximated by a set of �nite-
3Concepts of strong and weak cross section dependence, introduced in Chudik, Pesaran, and Tosetti (2009), will

be applied to VAR models.
4The case of IVAR models with a dominant unit is studied in Pesaran and Chudik (2010).
5GVAR model has been used to analyse credit risk in Pesaran, Schuermann, Treutler, and Weiner (2006) and

Pesaran, Schuermann, and Treutler (2007). Extended and updated version of the GVAR by Dées, di Mauro, Pesaran,
and Smith (2007), which treats Euro area as a single economic area, was used by Pesaran, Smith, and Smith (2007)
to evaluate UK entry into the Euro. Global dominance of the US economy in a GVAR model is considered in Chudik
(2008). Further developments of a global modelling approach are provided in Pesaran and Smith (2006). Garratt,
Lee, Pesaran, and Shin (2006) provide a textbook treatment of GVAR.
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dimensional small-scale models that can be consistently estimated separately in the spirit of the

GVAR.

A second contribution of the paper is the development of appropriate econometric techniques

for estimation and inference in stationary IVAR models with an unknown number of unobserved

common factors. This extends the analysis of Pesaran (2006) to dynamic models where all variables

are determined endogenously. A simple cross sectional augmented least-squares estimator (or CALS

for short) is proposed and its asymptotic distribution derived. Small sample properties of the

proposed estimator are investigated through Monte Carlo experiments. As an illustration of the

proposed approach we consider an extension of the empirical analysis of real house prices across the

49 U.S. States conducted recently by Holly, Pesaran, and Yamagata (2009), and show statistically

signi�cant dynamic spillover e¤ects of real house prices across the neighboring States.

The remainder of the paper is organized as follows. Section 2 introduces the IVAR model.

Section 3 investigates cross section dependence in IVAR models. Section 4 focusses on estimation

of a stationary IVAR model. Section 5 discusses the results of the Monte Carlo experiments, and

Section 6 presents the empirical results. The �nal section o¤ers some concluding remarks. Proofs

are provided in the Appendix.

A brief word on notations: j�1(A)j � j�2(A)j � ::: � j�n(A)j are the eigenvalues of A 2Mn�n,

where Mn�n is the space of real-valued n � n matrices. kAk1 � max
1�j�n

Pn
i=1 jaij j denotes the

maximum absolute column sum matrix norm of A, kAk1 � max
1�i�n

Pn
j=1 jaij j is the absolute row

sum matrix norm of A. kAk =
p
% (A0A) is the spectral norm of A; % (A) � max

1�i�n
fj�i (A)jg is

the spectral radius of A.6 All vectors are column vectors and the ith row of A is denoted by a0i.

an = O(bn) denotes the deterministic sequence fang is at most of order bn. xn = Op (yn) states

that the random variable xn is at most of order yn in probability. N is the set of natural numbers,

and Z is the set of integers. We use K and � to denote positive �xed constants that do not vary

with N or T . Convergence in distribution and convergence in probability is denoted by d! and
p!, respectively. Symbol q:m:! represents convergence in quadratic mean. (N;T )

j!1 denotes joint

asymptotic in N and T; with N and T !1, in no particular order.
6Note that if x is a vector, then kxk =

p
% (x0x) =

p
x0x corresponds to the Euclidean length of vector x.
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2 In�nite-Dimensional Vector Autoregressive Models

Suppose we have T time series observations on N cross section units indexed by i 2 S(N) �

f1; ::; Ng � N. Individual units could be households, �rms, regions, or countries. Both dimensions,

N and T , are assumed to be large. For each point in time, t, and for each N 2 N, the N cross section

observations are collected in the N � 1 vector x(N);t =
�
x(N);1t; :::; x(N);Nt

�0, and it is assumed that
x(N);t follows the VAR(1) model

x(N);t = �(N)x(N);t�1 + u(N);t, (1)

u(N);t = R(N)"(N);t. (2)

�(N) and R(N) are N � N coe¢ cient matrices that capture the dynamic and contemporaneous

dependencies across the N units, and "(N);t = ("1t; "2t; :::; "Nt)
0 is an N � 1 vector of white noise

errors with mean 0 and the covariance matrix, IN .

VAR models have been extensively studied when N is small and �xed, and T is large and un-

bounded. This framework, however, is not appropriate for many empirical applications of interest.

This paper aims to �ll this gap by analyzing VAR models where both N and T are large. The

sequence of models (1) and (2) with dim(x(N);t) = N ! 1 will be referred to as the in�nite-

dimensional VAR model, or IVAR for short. The extension of the IVAR(1) to IVAR(p) where p is

�xed, is relatively straightforward and will not be attempted in this paper.

The analysis of dependence over time is simpli�ed by the fact that ordering of observations along

the time dimension (t = 1; 2; :::; T ) is immutable and the arrival of new observations cannot change

past realizations, namely bygones are bygones. As a consequence for any given N , i, and j, the cross

time covariance function, cov
�
x(N);it; x(N);j;t�`

�
; does not change with T and will depend only on `

if the time series processes are covariance stationary. However, since it can not be assumed that an

immutable ordering necessarily exists with respect to the cross section dimension, addition of new

cross section units to an existing set can potentially alter the pair-wise cross section covariances

of all the units. For instance in models of oligopoly, where �rms strategically interact with each

other, new entries can change the relationship between the existing �rms. Similarly, introduction

of a new asset in the market can change the correlation of returns on the existing assets.

In what follows, to simplify the notations, the explicit dependence of xt and ut and the related

4



parameter matrices on N will be suppressed with (1)-(2) written as

xt = �xt�1 + ut; (3)

and

ut = R"t: (4)

Clearly, it is not possible to estimate all the N2 elements of the matrix � when both N and T

are large. Only a small (�xed) number of unknown coe¢ cients can be estimated per equation and

some restrictions on � must be imposed.

In order to deal with the dimensionality problem, we assume that for a given i 2 N, it is

possible to classify cross section units a priori into �neighbors�and �non-neighbors�. No restrictions

are imposed on neighbors, but the non-neighbors are assumed to have only negligible e¤ects on xit

that vanish at a suitable rate with N . The number of neighbors of unit i, collected in the index set

Ni, is assumed to be small (�xed). Neighbors of unit i can have non-negligible e¤ects that do not

vanish even if N ! 1. A similar classi�cation is followed in the spatial econometrics literature,

where the non-neighborhood e¤ects are set to zero for all N and the non-zero neighborhood e¤ects

are often assumed to be homogenous across i. In this sense our analysis can also be seen as an

extension of spatial econometric models.

Subject to the above classi�cation, equation for the unit i can be written as

xit =
X
j2Ni

�ijxj;t�1| {z }
Neighbors

+
X
j2N c

i

�ijxj;t�1| {z }
Non�neighbors

+ uit. (5)

The coe¢ cients of the neighboring units,
�
�ij
	
j2Ni

, are the parameters of interest and do not

vary with N . The remaining coe¢ cients,
�
�ij
	
j2N c

i
, tend to zero for each i as N ! 1, where

N c
i � f1; ::; Ng n Ni is the index set of non-neighbors. Note that the non-neighbors are unordered.

More speci�cally, ���ij�� � K

N
for any N 2 N and any j 2 N c

i . (6)

Individually the coe¢ cients of non-neighbors are asymptotically negligible, but as we argue below

it is not clear if the same applies to their aggregate e¤ects on the ith unit, namely
P
j2N c

i
�ijxj;t�1.
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The bounds in (6) ensures that limN!1
PN
j=1

���ij�� < K. We refer to this as the �cross sec-

tion absolute summability condition�, which is distinct from the absolute summability condition

used in the time series literature where the same idea is applied to the coe¢ cients of current and

past innovations. A similar constraint is used in Lasso and Ridge regression shrinkage methods.

The Lasso estimation procedure applied to (3) involves minimizing
PT
t=1 u

2
it for each i subject toPN

j=1

���ij�� � K. Under the Ridge regression the minimization is carried out subject to the weaker

constraint,
PN
j=1 �

2
ij � K.7 In application of shrinkage methods it is necessary that K is speci�ed

a priori, but no knowledge of the ordering of the units along the cross section dimension is needed.

In our approach we do not need to specify the value of K.

Sum of the coe¢ cients of the non-neighboring units,
P
j2N c

i
�ij , does not necessarily tends to

zero as N ! 1, which implies that the non-neighbors can have a large aggregate spatiotempo-

ral impact on the unit i, as N ! 1. The question that we address is whether it is possible to

estimate neighborhood coe¢ cients
�
�ij
	
j2Ni

without imposing further restrictions. As it turns

out, the answer depends on the stochastic behavior of
P
j2N c

i
�ijxj;t�1, which in turn depends

on the strength of cross section dependence in fxitg. If fxitg is weakly cross sectionally depen-

dent then
P
j2N c

i
�ijxj;t�1

q:m:! 0, and the spillover e¤ects from non-neighboring units are neither

particularly important nor estimable. But the coe¢ cients associated with the neighboring units

can be consistently estimated by simply ignoring the non-neighborhood e¤ects that are of second

order importance in N . If on the other hand fxitg is strongly cross sectionally dependent, then

limN!1 V ar
�P

j2N c
i
�ijxj;t�1

�
is not necessarily zero, and the spillover e¤ects from non-neighbors

are in general Op (1) and important. Therefore, ignoring the non-neighborhood e¤ects can lead to

inconsistent estimates. The concepts of weak and strong cross section dependence have been intro-

duced in Chudik, Pesaran, and Tosetti (2009) and these concepts are applied to the IVAR model

in the next section.

Our approach to dealing with the curse of dimensionality can be motivated with several exam-

ples. In economic applications interactions across agents often depends on the number of agents,

with the degree of pair-wise interactions typically declining in the number of units. Consider, for

example, the output and pricing decisions of �rms in an industry with N �rms. When N is small

(cases of duopoly or oligopoly) pricing and output decisions are inter-related through the way �rms

7See Section 3.4.3 of Hastie, Tibshirani, and Friedman (2001) for detailed description of the Lasso and Ridge
regression shrinkage methods.
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form expectations about the reactions of other �rms, known as conjectural variations. But as N

becomes large such conjectural variations become relatively unimportant and in the competitive

case where N is su¢ ciently large conjectural variations are typically set to zero. Another important

example is provided by the Arbitrage Pricing Theory (APT) originally developed by Ross (1976).

Under approximate pricing the conditional mean returns of N risky assets, �t, is modelled in terms

of a �xed number (k) of factor risk premia, �t, and an N � 1 vector of pricing errors, vt, namely

�t = B�t + vt;

whereB is anN�k matrix of factor loadings. In the absence of arbitrage opportunities we must have

vt = 0 when N is �xed, or v0tvt = Op(1) as N !1. (see Hubermann (1982) and Ingersoll (1984)).

It is clear that any pair-wise dependence of pricing errors must vanish as N !1, otherwise there

will be unbounded pro�table opportunities. The third example relates to a multi-country DSGE

model discussed in Chudik (2008). The country interactions need not be symmetric. Nevertheless,

as long as foreign trade weights are granular, the equilibrium solution of such a multi-country

DSGE model has a similar structure to the basic IVAR model set out in the paper. Neighbors in

this setup could be identi�ed in terms of the trade shares, for example. For instance, US would

be Canada�s neighbor considering that 80% of Canada�s trade is with the US, although using the

same metric Canada might not qualify as a neighbor of the US.

In some cases the strict division of individual units into neighbors and non-neighbors might

be considered as too restrictive. In the assumption below we consider a slightly more general set

up where the neighborhood e¤ects are charachterized in terms of �local�averages de�ned by S0ixt,

where Si is a known spatial or neighborhood weight matrix.

ASSUMPTION 1 Let K � N be a non-empty index set. For any i 2 K, the row i of coe¢ cient

matrix �, denoted by �0i, can be divided as

�0i = �
0
ai + �

0
bi; (7)

where

k�bik1 = max
j2f1;::;Ng

���bij�� < K

N
, (8)
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�ai = Si�i, (9)

k�ik < K, �i is an hi � 1 dimensional vector containing the unknown coe¢ cients to be estimated

for unit i, which do not change with N , hi < K, hi is �xed and generally small, and Si is a known

N � hi�spatial�weight matrix such that kSik1 < K.

Assuming K � N and stacking (7)-(9) for i = 1; 2; :::; N , we have

� = �a+�b,

= D S+�b, (10)

where �a = ( �a1;�a2; :::;�aN )
0, �b = ( �b1;�b2; :::;�bN )

0,

D
N�h

=

0BBBBBBB@

�01 0 � � � 0

0 �02
...

. . . 0

0 0 �0N

1CCCCCCCA
, (11)

h =
PN
i=1 hi, and S is a known h � N matrix de�ned by S = (S1;S2; :::;SN )

0. Note also that by

assumption the individual elements of �b are uniformly O
�
N�1�.

Example 1 An example of �a is given by

�a =

0BBBBBBBBBBBBBB@

�11 �12 0 0 : : : 0 0 0

�21 �22 �23 0 : : : 0 0 0

0 �32 �33 �34 : : : 0 0 0

...
...

...
...

...
...

...

0 0 0 0 : : : �N�1;N�2 �N�1;N�1 �N�1;N

0 0 0 0 : : : 0 �N�1;N �NN

1CCCCCCCCCCCCCCA
, (12)

where the nonzero elements are �xed coe¢ cients that do not change with N . This represents a

bilateral spatial representation where each unit, except for the �rst and the last units, has one left

and one right neighbor. In contrast the individual elements of �b are of order O(N�1), in particular���bij�� < K
N for any N 2 N and any i; j 2 f1; ::; Ng. The equation for unit i 2 f2; ::; N � 1g can be
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written as

xit = �i;i�1xi�1;t�1 + �iixi;t�1 + �i;i+1xi+1;t�1 + �
0
bixt�1 + uit. (13)

Section 3 shows that under weak cross section dependence of errors fuitg, �0bixt�1
q:m:! 0, while

Section 4 considers problem of estimation of the individual-speci�c parameters
�
�i;i�1; �ii; �i;i+1

	
.

We refer to this model as a two-neighbor IVAR model which we use later for illustrative purposes

as well as in the Monte Carlo experiments.

Example 2 As a simple example consider the model

xt = �xSxxt�1 + ut, (14)

ut = �uSuut + "t, (15)

where �x and �u are scalar unknown coe¢ cients, and Sx and Su are N �N known spatial weights

matrices. This model can be obtained from (1)-(2) by setting

R = (I� �uSu)�1 , �i = �x for i 2 f1; ::; Ng , S = Sx, and �b = 0.

3 Cross Sectional Dependence in Stationary IVAR Models

This section investigates the correlation pattern of fxitg, over time, t, and along the cross section

units, i. We follow Chudik, Pesaran, and Tosetti (2009) and de�ne covariance stationary process

fxitg to be cross sectionally weakly dependent (CWD), if for all weight vectors, w = (w1; :::; wN )0,

satisfying the �granularity�conditions

kwk = O
�
N� 1

2

�
, (16)

wj
kwk = O

�
N� 1

2

�
for any j, (17)

we have

lim
N!1

V ar
�
w0xt

�
= 0, for all t:
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fxitg is said to be cross sectionally strongly dependent (CSD) if there exists a sequence of weight

vectors, w; satisfying (16)-(17) and a constant K such that

lim
N!1

V ar
�
w0xt

�
� K > 0. (18)

Necessary condition for covariance stationarity for �xed N is that all eigenvalues of � lie inside

of the unit circle. For a �xed N , and assuming that maxi j�i (�)j < 1, the Euclidean norm of

�` de�ned by
�
Tr
�
�`�`0

��1=2 ! 0 exponentially in `; and the process xt =
P1
`=0�

`ut�` will

be absolute summable, in the sense that the sum of absolute values of the elements of �`, for

` = 0; 1; :::, converges. Observe that as N ! 1, V ar (xit) need not necessarily be bounded in N

even if maxi j�i (�)j < 1 (and bounded away from 1). For example, consider the IVAR(1) model

with

� =

0BBBBBBBBBB@

' 0 0 � � � 0

 ' 0 � � � 0

0  ' 0

...
. . . . . . 0

0 0 � � �  '

1CCCCCCCCCCA
,

and assume that var (uit) is uniformly bounded away from zero as N ! 1. It is clear that all

the eigenvalues of � are inside the unit circle if and only if j'j < 1, regardless of the value of

the neighborhood coe¢ cient,  . Yet the variance of xNt increases in N without bounds at an

exponential rate for j j > 1� j'j.8 Therefore, a stronger condition than stationarity for each N is

required to prevent the variance of xit from exploding as N !1. This is set out in the following

assumptions.

ASSUMPTION 2 The elements of the double index process f"it; i 2 N; t 2 Zg are independently

distributed random variables with zero means and unit variances on the probability space (
;F ; P ).

ASSUMPTION 3 (CWD Errors) Matrix R has bounded row and column matrix norms.

8 It can be shown that

V ar fxNtg =
NX
j=1

 2(N�j)
1X
`=0

�2N�j+1;`'
2`,

where �k` = 1
(k�1)!

k�2Q
j=0

(`+ k � 1� j) for k > 1 and �1` = 1.
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ASSUMPTION 4 (Stationarity and bounded variances) There exists a real �, in the range 0 <

� < 1, such that9

k�k � 1� �. (19)

Remark 1 Assumptions 2 and 3 imply fuitg is CWD, since for any weight vector, w, satisfying

(16) we have V ar (w0ut) � kwk2 kRk1 kRk1 ! 0 as N ! 1. For future reference de�ne covari-

ance matrix � = V ar (ut) = RR0 and denote the ith diagonal element of � by �2ii = V ar (uit).

Note also that k�k � kRk1 kRk1 < K, which as shown in Pesaran and Tosetti (2009) includes

all commonly used processes in the spatial literature, such as spatial autoregressive and spatial er-

ror component models pioneered by Whittle (1954), and further developed by Cli¤ and Ord (1973),

Anselin (1988), and Kelejian and Robinson (1995).

Remark 2 It is not necessary that proximity is measured in terms of physical space. Other mea-

sures such as economic (Conley (1999), Pesaran, Schuermann, and Weiner (2004)), or social

distance (Conley and Topa (2002)) could also be employed. All these are examples of dependence

across nodes in a physical (real) or logical (virtual) networks. In the case of the IVAR model, de-

�ned by (3) and (4), such contemporaneous dependence can be modelled through the N�N network

topology matrix R.10 ,11

Remark 3 The IVAR model when combined with ut = R"t yields an in�nite-dimensional spa-

tiotemporal model. The model can also be viewed more generally as a �dynamic network�, with R

and � capturing the static and dynamic forms of inter-connections that might exist in the network.

Remark 4 (Eigenvalues of �) Assumption 4 implies polynomial � (L) is invertible (for any N 2

N) and

% (�) � 1� �, (20)

which is a su¢ cient condition for covariance stationarity. Assumption 4 also delivers a bounded

variance for xit, as N !1.
9Our assumptions concerning coe¢ cient matrix � can be relaxed so long as they hold for all N � N0 (where N0

is a �xed constant that does not depend on N). But in order to keep notations and exposition simple, we simply
state that Assumptions 1 and 4 hold for any value of N .
10A network topography is usually represented by graphs whose nodes are identi�ed with the cross section units,

with the pairwise relations captured by the arcs in the graph.
11 It is also possible to allow for time variations in the network matrix, R, to capture changes in the network

structure over time. However, this will not be pursued here.
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Proposition 1 Consider model (1) and suppose that Assumptions 2-4 hold. Then for any arbitrary

sequence of �xed weights w satisfying condition (16), and for any t 2 Z,

lim
N!1

V ar (xwt) = 0. (21)

Assumptions 2-4 are thus su¢ cient conditions for weak dependence. Proposition 1 has several

interesting implications. Suppose that we can impose limiting restrictions given by Assumption 1.

Corollary 1 Consider model (1) and suppose Assumptions 1-4 hold. Then, for any i 2 K,

lim
N!1

V ar
�
xit � �0aixt�1 � uit

�
= 0. (22)

Remark 5 It is also possible to establish (22) under the following conditions:

k�bik = O
�
N� 1

2

�
; (23)

k�k = O
�
N1��� ; (24)

which are less restrictive than condition (8) and the Assumption 3 on the boundedness of the column

and row norms of matrix R. These stronger conditions are needed for establishing the asymptotic

properties of the CALS estimator to be proposed below in Section 4.

3.1 IVAR Models with Strong Cross Sectional Dependence

The IVAR model can generate observations with strong cross section dependence if the boundedness

assumption on the column and row norms of R and � are relaxed. The analysis of this case is

beyond the scope of the present paper and is considered in Pesaran and Chudik (2010). But even if

the boundedness assumptions on R and � are maintained, it is still possible for xit to show strong

cross section dependence if the IVAR model is augmented with common factors. The basic IVAR

model, (3), can be augmented with exogenously speci�ed common factors in a number of di¤erent

ways. Here we consider two important possibilities. First, a �nite number of common factors can

be added to the vector of the error terms, de�ned by (4). This is equivalent to assuming that a

�nite number of the columns (or linear combinations of the columns) of R have unbounded norms.

This compounding of the spatial (weak) cross section dependence with the strong factor dependence

12



complicates the analysis unduly and will not be pursued here. A more attractive alternative would

be to assume that

� (L) (xt ��� �f t) = ut, for t = 1; 2; :::; T; (25)

where � (L) = I��L, � = (�1; :::; �N )0 is an N � 1 vector of �xed e¤ects, ft is an m� 1 vector of

unobserved common factors (m is �xed but otherwise unknown), � =(1;2; :::;N )
0 is the N �m

matrix of factor loadings, and as before ut = R"t. Under this speci�cation the strong cross section

dependence of xit due to the factors is explicitly separated from other sources of cross dependence

as embodied in � and R.

4 Estimation of a Factor Augmented Stationary IVAR Model

We now consider the problem of estimation and inference in the case of the factor augmented IVAR

model as set out in (25), as both N and T tend to in�nity. We focus on parameters of the ith

equation and assume that �0i (the i
th row of matrix �) can be decomposed as in Assumption 1. See

(7)-(9). As an important example we consider the two-neighbor IVAR model de�ned in Example

1, where the parameters of interest is given by the elements of the ith row of matrix �a given by

(12). In what follows we set �it = S0ixt; where Si is de�ned by (9), and note that it reduces to

(xi�1;t; xit; xi+1;t)0 in the case of the two-neighbor IVAR model.

We suppose that the following assumptions hold.

ASSUMPTION 5 (Available observations) Available observations are x0;x1; :::;xT with the start-

ing values x0 =
P1
`=0�

`R"�` +�+ �f0.

ASSUMPTION 6 (Common factors) The unobserved common factors, f1t; f2t; :::; fmt; are co-

variance stationary and follow the general linear processes:

fst =  s (L) "fst; for s = 1; 2; :::;m, (26)

where  s (L) =
P1
`=0  s`L

` with absolute summable coe¢ cients that do not vary with N , the factor

innovations, "fst, are independently distributed over time with zero means and a constant variance,

�2"fs ; that do not vary with N . "fst�s are also distributed independently of the idiosyncratic errors,

"it0, for any i 2 N, any t; t0 2 T , and any s 2 f1; ::;mg. E (ftf 0t) exists and is a positive de�nite

13



matrix.

ASSUMPTION 7 (Existence of fourth order moments) There exists a positive real constant K

such that E
�
"4fst

�
< K and E

�
"4it
�
< K for any s 2 f1; ::;mg, any t 2 T and any i 2 N.

ASSUMPTION 8 (Bounded factor loadings and �xed e¤ects) For any i 2 N, i and �i do not

change with N , kik < K; and j�ij < K.

We follow Pesaran (2006) and introduce the following vector of cross section averages xWt =

W0xt, where W = (w1;w2; :::;wN )
0 and fwjgNj=1 are mw � 1 dimensional vectors. Subscripts

denoting the number of groups are again omitted where not necessary, in order to keep the notations

simple. Matrix W does not correspond to any spatial weights matrix. It is any arbitrary matrix

of pre-determined weights satisfying the following granularity conditions

kWk = O
�
N� 1

2

�
, (27)

kwjk
kWk = O

�
N� 1

2

�
for any j. (28)

Multiplying (25) by the inverse of polynomial � (L) and then byW0 yields

xWt = �W + �W ft + �Wt, (29)

where �W =W0�, �W =W0�, �Wt =W
0�t, and

�t =

1X
`=0

�`ut�`. (30)

Under Assumptions 2-3, futg is weakly cross sectionally dependent and

kV ar (�Wt)k =


1X
`=0

W0�`��0`W

 ,
� kWk2 k�k

1X
`=0

�`2 ,
= O

�
N�1� , (31)

where kWk2 = O
�
N�1� by condition (27), k�k = O (1) by Assumption 3 (see Remark 1) andP1

`=0

�` � P1
`=0 k�k

` = O (1) under Assumption 4. This implies �Wt = Op

�
N� 1

2

�
and the

14



unobserved common factors can be approximated as

�
�
0
W�W

��1
�
0
W (xWt ��W ) = ft +Op

�
N� 1

2

�
, (32)

provided that the matrix �
0
W�W is non-singular. It can be inferred that the full column rank of

�W is important for the estimation of unit-speci�c coe¢ cients. Pesaran (2006) shows that the full

column rank condition is not, however, necessary if the object of the interest is the cross section

mean of the parameters, E(�i), as opposed to the unit-speci�c parameters, �i; which are the focus

of the current paper.

Using (25), the equation for unit i 2 K can be written as:

xit � �i �  0ift = �0iS0i (xt�1 ��� �f t�1) + �i;t�1 + uit, (33)

where

�it = �
0
ib�t = Op

�
N� 1

2

�
, (34)

since by Assumption 1 �ib satis�es condition (27). It follows from (29) that

 0ift � �0ia�f t�1 = b0i1xWt + b
0
i2xW;t�1 � (bi1 + bi2)

0�W � b0i1�Wt � b0i2�W;t�1, (35)

where bi1 =  0i

�
�
0
W�W

��1
�
0
W and bi2 = ��0iS0i�

�
�
0
W�W

��1
�
0
W . Substituting (35) into (33)

yields

xit = �
0
iS
0
ixt�1 + b

0
i1xWt + b

0
i2xW;t�1 + ci + uit + qit, (36)

where ci = �i � �0ia�� (bi1 + bi2)
0�W , and

qit = �i;t�1 � b0i1�Wt � b0i2�W;t�1 = Op

�
N� 1

2

�
. (37)

Consider now the following auxiliary regression based on (36):

xit = g
0
it�i + �it, (38)

where �it = uit + qit, �i =
�
�0i;b

0
i1;b

0
i2; ci

�0 is the ki � 1 vector of coe¢ cients associated with the
15



regressors git =
�
�0i;t�1;x

0
Wt;x

0
W;t�1; 1

�0
, and ki = hi + 2mw + 1. The parameters of interest, �i,

can now be estimated using the cross section augmented regression de�ned by (38). We refer to

such an estimator of �i as the cross section augmented least squares estimator (or CALS for short),

and denote it by b�i;CALS . We have

b�i =
0BBBBBBB@

b�i;CALS
b̂i1

b̂i2

ĉi

1CCCCCCCA
=

 
TX
t=1

gitg
0
it

!�1 TX
t=1

gitxit. (39)

Also using partitioned regression formula,

b�i;CALS = �Z0iMHZi
��1

Z0iMHxi�, (40)

where

MH = IT �H
�
H0H

�+
H0; H =

�
XW ;XW (�1) ; �

�
; (41)

Zi =
�
�i1 (�1) ; �i2 (�1) ; :::; �ihi (�1)

�
; (42)

�ir (�1) =
�
�ir0; :::; �i;r;T�1

�0 , for r 2 f1; ::; hig ;
� is a T � 1 vector of ones, XW = (xW1�; :::;xWmw�), XW (�1) = [xW1 (�1) ; :::;xWmw (�1)],

xWs� = (xWs1; :::; xWsT )
0, xWs (�1) = (xWs0; :::; xWs;T�1)

0 ; for s 2 f1; ::;mwg, and xi� = (xi1; :::; xiT )0,

For future reference also let vit = S0i�t = �it � S0i�f t � S0i�;

Q = [F;F (�1) ; � ] ; (43)

and

A
(2m+1)�(2mw+1)

=

0BBBB@
1 �0W �0W

0 �
0
W 0m�mw

0 0m�mw �
0
W

1CCCCA , (44)

where F =(f1�; :::; fm�), F (�1)= [f1 (�1) ; :::; fm (�1)], fr� = (fr1; :::; frT )0 and fr (�1) = (fr0; :::; fr;T�1)0

for r 2 f1; ::;mg.
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First we consider the asymptotic properties of b�i (and b�i;CALS) as (N;T ) j! 1; in the case

where the number of unobserved common factors equals to the dimension of xWt (m = mw), and

make the following additional assumption.

ASSUMPTION 9 (Identi�cation of �i) There exists T0 and N0 such that for all T � T0; N �

N0 and for any i 2 K,
�
T�1

PT
t=1 gitg

0
it

��1
exists, C(N);i = E (gitg

0
it) is positive de�nite, andC�1(N);i < K.

Remark 6 Assumption 9 implies �W is a square, full rank matrix and, therefore, the number of

unobserved common factors is equal the number of columns of the weight matrix, W (m = mw).

In cases where m < mw, full augmentation of individual models by (cross sectional) averages is not

necessary.

Theorem 1 Let xt be generated by model (25), Assumptions 1-9 hold, and W is any arbitrary

(pre-determined) matrix of weights satisfying conditions (27)-(28), and Assumption 9. Then for

any i 2 K and as (N;T )
j!1, b�i de�ned in equation (39) has the following properties.

a)

b�i � �i p! 0:

b) If in addition T=N ! {, with 0 � { <1,

p
T

�(N);ii
C

1
2

(N);i (b�i � �i) D! N (0; Iki) , (45)

where �2(N);ii = V ar (uit) = E (e0iRR
0ei), and C

1
2

(N);i is the square root of the positive de�nite

matrix C(N);i = E (gitg
0
it). Also

c)

C(N);i � bC(N);i p! 0, and �(N);ii � b�(N);ii p! 0;

where bC(N);i = 1

T

TX
t=1

gitg
0
it; b�2(N);ii = 1

T

TX
t=1

bu2it, (46)

and buit = xit � g0itb�i.
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Remark 7 Suppose that in addition to the assumptions of Theorem 1, the limits of C�1(N);i and

�2(N);ii, as N !1, exist and are given by C�1(1);i, and �
2
(1);ii, respectively.

12 Then (45) yields

p
T (b�i � �i) D! N

�
0; �2(1);iiC

�1
(1);i

�
. (47)

Consider now the case where the number of unobserved common factors is unknown, but it is

known that mw � m. Since the auxiliary regression (38) is augmented possibly by a larger number

of cross section averages than the number of unobserved common factors, we have potential problem

of multicollinearity (as N !1). But this does not a¤ect the estimation of �i so long as the space

spanned by the unobserved common factors including a constant and the space spanned by the

vector (1;x0Wt)
0 are the same as N !1. This is the case when �W has full column rank.

For this more general case we replace Assumption 9 with the following, and suppress the sub-

script N to simplify the notations.

ASSUMPTION 10 (Identi�cation of �i) There exists T0 and N0 such that for all T � T0; N �

N0 and for any i 2 K,
�
T�1Z0iMHZi

��1 exists, �W is a full column rank matrix, 
vi = E (vitv
0
it) =P1

`=0 S
0
i�

`RR0�0`Si is positive de�nite, and

�1vi  = O (1).

Theorem 2 Let xt be generated by model (25), Assumptions 1-8, and 10 hold, and W is any

arbitrary (pre-determined) matrix of weights satisfying conditions (27)-(28) and Assumption 10.

Then for any i 2 K, and if in addition (N;T ) j! 1 such that T=N ! {, with 0 � { < 1, the

asymptotic distribution of b�i;CALS de�ned by (40) is given by.
p
T

�ii



1
2
vi

�b�i;CALS � �i� D! N (0; Ihi) , (48)

where �2ii = V ar (uit), 
vi = E (vitv
0
it) and vit = S

0
i�t =

P1
`=0 S

0
i�

`ut�`.

Remark 8 As before, we also have

p
T
�b�i;CALS � �i� D! N

�
0; �2(1);ii


�1
v(1);i

�
;

where 
v(1);i = limN!1
vi, and �2(1);ii = limN!1 �2ii, assuming limits exist.

12Su¢ cient condition for limN!1C(N);i to exist is the existence of the following limits (together with Assumptions
1-8): limN!1 S

0
i�, limN!1 S

0
i�, limN!1W

0�, limN!1W
0�, and limN!1

P1
`=0 S

0
i�

`RR0�0`Si.

18



5 Monte Carlo Experiments: Small Sample Properties of CALS

Estimator

5.1 Monte Carlo Design

In this section we report some evidence on the small sample properties of the CALS estimator in the

presence of unobserved common factors and weak error cross section dependence and compare the

results with standard least squares estimators. Objectives of the experiments are twofold. First,

we would like to investigate how well the CALS estimator performs in the presence of unobserved

common factors. Second, we would like to �nd out the extent to which cross section augmentation

a¤ects the small sample properties of the estimator when the cross section dependence is weak, and

therefore cross section augmentation is asymptotically unnecessary. The focus of our analysis will

be on the estimation of the individual-speci�c parameters in an IVAR model that also allows for

other inter-dependencies that are of order O(N�1).

The data generating process (DGP) used is given by

xt � ft = � (xt�1 � ft�1) + ut, (49)

where ft is the only unobserved common factor considered (m = 1), and  = (1; :::; N )
0 is the

N � 1 vector of factor loadings.

We consider two sets of factor loadings to distinguish the case of weak and strong cross section

dependence. Under the former we set  = 0; and under the latter we generate the factor loadings i;

for i = 1; 2; :::; N , from a stationary spatial process in order to show that our estimators are invariant

to possible cross section dependence in the factor loadings. Accordingly, the factor loadings are

generated by the following bilateral Spatial Autoregressive Model (SAR) process

i � � =
a
2

�
i�1 + i+1

�
� a� + �i, 0 < a < 1; (50)

where �i � IIDN
�
0; �2�

�
. As established by Whittle (1954), the unilateral SAR(2) scheme

i =  1i�1 +  2i�2 + �i, (51)
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with  1 = �2b ;  2 = b2 and b =
�
1�

q
1� a2

�
=a , generates the same autocorrelations as

the bilateral SAR(1) scheme (50). The factor loadings are generated using the unilateral scheme

(51) with 50 burn-in data points (i = �49; :::; 0) and the initialization, �51 = �50 = 0. We set

a = 0:4, � = 1, and choose �2� such that V ar (i) = 1.13 The common factors are generated

according to the AR(1) process

ft = �fft�1 + �ft, �ft � IIDN
�
0; 1� �2f

�
,

with �f = 0:9.

In line with the theoretical analysis, the autoregressive parameters are decomposed as � = �a+

�b, where �a captures own and neighborhood e¤ects as in

�a =

0BBBBBBBBBBBBBB@

'1  1 0 0 0

 2 '2  2 0 0

0  3 '3  3 0

0 0  4 '4
. . .

. . . . . .  N�1

0 0 0  N 'N

1CCCCCCCCCCCCCCA
;

and the remaining elements of �, de�ned by �b, are generated as

�bij =

8><>: �i!ij for j =2 fi� 1; i; i+ 1g

0 for j 2 fi� 1; i; i+ 1g
, where

�i � IIDU (�0:1; 0:2) and !ij =
& ijPN
j=1 & ij

, (52)

with & ij � IIDU (0; 1). This ensures that �bij = Op(N
�1), and limN!1E

�
�bij

�
= 0, for all i and

j.

With �a as speci�ed above, each unit i, except the �rst and the last, has two neighbors: the

13The variance of factor loadings is given by

�2� =

�
1 +  2

� ��
1�  22

�
�  21

��
1�  2

� .
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�left�neighbor i� 1 and the �right�neighbor i+1. The DGP for the ith unit can now be written as

x1t = '1x1;t�1 +  1x2;t�1 + �
0
b1xt�1 + 1ft �

�
�01

�
ft�1 + u1t,

xit = 'ixi;t�1 +  i (xi�1;t�1 + xi+1;t�1) + �
0
bixt�1 + ift �

�
�0i

�
ft�1 + uit; i 2 f2; ::; N � 1g ,

xNt = 'NxN;t�1 +  NxN�1;t�1 + �
0
b;Nxt�1 + Nft �

�
�0N

�
ft�1 + uNt.

To ensure that the DGP is stationary we generate 'i � IIDU (0:4; 0:6), and  i � IIDU (�0:1; 0:1)

for i 6= 2. We choose to focus on the equation for unit i = 2 in all experiments and we set '2 = 0:5

and  2 = 0:1. This yields k�k1 � 0:9, and together with
���f �� < 1 it is ensured that the DGP is

stationary and the variance of xit is bounded in N . The cross section averages, xwt; are constructed

as simple averages, xt = N�1PN
j=1 xit.

The N -dimensional vector of error terms, ut; is generated using the following SAR model:

u1t = auu2t + "1t,

uit =
au
2
(ui�1;t + ui+1;t) + "it, i 2 f2; ::; N � 1g

uNt = auuN�1;t + "Nt,

for t = 1; 2; ::; T . We set au = 0:4 which ensures that the errors are cross sectionally weakly

dependent, and draw "it, the ith element of "t, as IIDN
�
0; �2"

�
. We set �2" = N=tr (RuR

0
u) so that

on average V ar(uit) = 1, where Ru = (I� auS)�1 ; and the spatial weights matrix S is

S =

0BBBBBBBBBBBBBB@

0 1 0 0 0

1
2 0 1

2 0 0

0 1
2 0 1

2 0

. . . . . . . . .

1
2 0 1

2

0 0 0 1 0

1CCCCCCCCCCCCCCA
. (53)

In order to minimize the e¤ects of the initial values, the �rst 50 observations are dropped.

N 2 f25; 50; 75; 100; 200g and T 2 f25; 50; 75; 100; 200g. For each N , all parameters were set at the

beginning of the experiments and 2000 replications were carried out by generating new innovations
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"it, �ft and �i.

The focus of the experiments is to evaluate the small sample properties of the CALS estimator

of the own coe¢ cient '2 = 0:5 and the neighboring coe¢ cient  2 = 0:1; in the case of the second

cross section unit.14 The cross-section augmented regression for estimating (�2;  2) is given by

x2t = c2 +  2 (x1;t�1 + x3;t�1) + '2x2;t�1 + �2;0xt + �2;1xt�1 + �2t. (54)

We also report results of the Least Squares (LS) estimator computed using the above regression

but without augmentation with cross-section averages. The corresponding CALS estimator and

non-augmented LS estimator are denoted by b'2;CALS and b'2;LS (own coe¢ cient), or b 2;CALS andb 2;LS (neighboring coe¢ cient), respectively.
To summarize, we carry out two di¤erent sets of experiments, one set without the unobserved

common factor ( = 0), and the other with the unobserved common factor ( 6= 0). There are

many sources of interdependence between individual units: spatial dependence of innovations fuitg,

spatiotemporal interactions due to coe¢ cient matrices �a and �b, and �nally in the case where

 6= 0 the cross section dependence also arises via the unobserved common factor, ft; and the

cross-sectionally dependent factor loadings, i. Additional intermediate cases are also considered,

the results of which are available in a Supplement from the authors, upon request.15

5.2 Monte Carlo Results

Tables 1 and 2 give the bias (�100) and RMSE (�100) of CALS and LS estimators as well as

size and power of tests based on them at the 5% nominal level. Results for the estimated own

coe¢ cient, b'2;CALS and b'2;LS , are reported in Table 1. The top panel of this table presents the
results for the experiments with an unobserved common factor ( 6= 0). In this case, fxitg is CSD

and the standard LS estimator without augmentation by cross section averages is not consistent.

The bias of b'2;LS is indeed quite substantial for all values of N and T and the tests based on b'2;LS
are grossly oversized. CALS, on the other hand, performs well for T � 100 and all values of N . For

smaller values of T , there is a negative bias, and the test based on b'2;CALS is slightly oversized.
14Similar results are also obtained for other cross section units.
15The supplement presents the results for the experiments with all combination of zero and/or non-zero coe¢ cient

matrix �b, zero or non-zero factor loadings , and low or high cross section dependence of errors (au = 0:4 or
au = 0:8).
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This is the familiar time series bias where even in the absence of any cross section dependence

the LS estimator of the autoregressive coe¢ cient is biased downward (when '2 > 0) in small T

samples.

Moving on to the experiments without a common factor (given at the bottom half of the table),

we observe that the LS estimator only slightly outperforms the CALS estimator. In the absence

of common factors, fxitg is weakly cross sectionally dependent and therefore the augmentation

with cross section averages is (asymptotically) innocuous. Distortions coming from cross section

augmentation are in this case very small. Note that the LS estimator is not e¢ cient because the

residuals are cross sectionally dependent. Augmentation by cross-section averages helps to reduce

part of this dependence. Nevertheless, the reported RMSE of b'2;CALS does not outperform the

RMSE of b'2;LS .
The estimation results for the neighboring coe¢ cient,  2; are presented in Table 2. These are

qualitatively similar to the ones reported in Table 1. Cross section augmentation is clearly needed

and very helpful when common factors are present. But in the absence of such common e¤ects, the

presence of weak cross section dependence, whether through the dynamics or error processes, does

not pose any di¢ culty for the least squares and the CALS estimators so long as N is su¢ ciently

large. Finally, not surprisingly, the estimates are subject to the small T bias irrespective of the size

of N or the degree of cross section dependence.

Figure 1 plots the power of the CALS estimator of the own coe¢ cient, b'2;CALS , (top chart)
and the neighboring coe¢ cient, b 2;CALS , (bottom chart) for N = 200 and two di¤erent values of

T 2 f100; 200g. These charts provide a graphical representation of the results reported in Tables

1-2, and also suggest signi�cant improvement in power as T increases for a number of di¤erent

alternatives.

6 An Empirical Illustration: a spatiotemporal model of house

prices in the U.S.

In a recent study Holly, Pesaran, and Yamagata (2009), hereafter HPY, consider the relation

between real house prices, pit; and real per capita personal disposable income yit (both in logs) in a

panel of 49 US States over 29 years (1975-2003), where i = 1; 2; :::; 49 and t = 1; 2; :::; T . Controlling

for heterogeneity and cross section dependence, they show that pit and yit are cointegrated with
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coe¢ cients (1;�1), and provide estimates of the following panel error correction model:

�pit = ci + !i(pi;t�1 � yi;t�1) + �1i�pi;t�1 + �2i�yit + �it. (55)

To take account of unobserved common factors, HPY augmented (55) with simple cross section

averages, ��pt = �49i=1�pit=49, ��yt = �
49
i=1�yit=49, and �pt�1 � �yt�1 = �49i=1(pi;t�1 � yi;t�1)=49, and

obtained common correlated e¤ects mean group and pooled estimates (denoted as CCEMG and

CCEP) of f!i; �1i; �2ig which we reproduce in the left panel of Table 3. HPY then showed that

the residuals from these regressions, �̂it, display a signi�cant degree of spatial dependence. Here

we exploit the theoretical results of the present paper and consider the possibility that dynamic

neighborhood e¤ects are partly responsible for the residual spatial dependence reported in HPY.

To this end we considered an extended version of (55) where the lagged spatial variable �psi;t�1 =PN
j=1 sij�pj;t�1 is also included amongst the regressors, with sij being the (i; j) element of a spatial

weight matrix, S, namely

�pit = ci + !i(pi;t�1 � yi;t�1) + �1i�pi;t�1 +  i�psi;t�1 + �2i�yit + �it. (56)

Here we consider a simple contiguity matrix sij = 1 when the States i and j share a border and

zero otherwise, with sii = 0. Possible strong cross section dependence is again controlled for by

augmentation of the extended regression equation with ��pt, ��yt, and �pt�1 � �yt�1. Estimation

results are reported in the right panel of Table 3. The dynamic spatial e¤ects are found to be

highly signi�cant, irrespective of the estimation method, increasing �R2 of the price equation by

6-9%. The dynamics of past price changes are now distributed between own and neighborhood

e¤ects giving rise to much richer dynamics and spill over e¤ects. It is also interesting that the

inclusion of the spatiotemporal variable �psi;t�1 in the model has had little impact on the estimates

of the coe¢ cient of the real income variable, �2i.

7 Concluding Remarks

This paper has proposed restrictions on the coe¢ cients of in�nite-dimensional VAR (IVAR) that

are binding only in the limit as the number of cross section units (or variables in the VAR) tends to

in�nity to circumvent the curse of dimensionality. The proposed framework relates to the various
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approaches considered in the literature. For example when modelling individual households or �rms,

aggregate variables, such as market returns or regional/national income, are treated as exogenous.

This is intuitive as the impact of a �rm or household on the aggregate economy is small, of the

order O
�
N�1�. This paper formalizes this idea in a spatiotemporal context.

The paper establishes that in the absence of common factors and when the degree of cross

section dependence is weak, then equations for individual units decouple as N ! 1; and can

be consistently estimated by running separate regressions. In the presence of observed and/or

unobserved common factors, individual-speci�c VAR models can still be estimated separately if

they are conditioned on the common factors. Unobserved common factors can be approximated by

cross sectional averages, following the idea originally introduced by Pesaran (2006).

The paper shows that the global VAR approach of Pesaran, Schuermann, and Weiner (2004) can

be motivated as an approximation to an IVAR model featuring all the macroeconomic variables.

Asymptotic distribution of the cross sectionally augmented least-squares (CALS) estimator of the

parameters of the unit-speci�c equations in the IVAR model is established both in the case when the

number of unobserved common factors is known, and when it is unknown but �xed. Small sample

properties of the proposed CALS estimator were investigated through Monte Carlo simulations, and

an empirical illustration shows the statistical signi�cance of dynamic spill-over e¤ects in modelling

of U.S. real house prices across the neighboring States.

Topics for future research include estimation and inference in the case of IVAR models with

dominant individual units, analysis of large dynamic networks with and without dominant nodes,

and an examination of the relationships between IVAR and dynamic factor models.
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Figure 1: Power Curves for the CALS t-tests of Own Coe¢ cient, '2 (the upper chart) and the Neighboring

Coe¢ cient,  2 (the lower chart), in the Case of Experiments with  6= 0.
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Table 3: Alternative Average Estimates of the Error Correction Models for House

Prices Across 49 U.S. States over the Period 1975-2003

Holly et al. (2009) regressions Regressions augmented with

without dynamic spatial e¤ects dynamic spatial e¤ects

�pit MG CCEMG CCEP MG CCEMG CCEP

pi;t�1 � yi;t�1 �0:105
(0:008)

�0:183
(0:016)

�0:171
(0:015)

�0:095
(0:009)

�0:154
(0:018)

�0:152
(0:018)

�pi;t�1 0:524
(0:030)

0:449
(0:038)

0:518
(0:065)

0:296
(0:060)

0:188
(0:049)

0:272
(0:082)

�yit 0:500
(0:040)

0:277
(0:059)

0:227
(0:063)

0:497
(0:040)

0:284
(0:059)

0:201
(0:088)

�psi;t�1 - - - 0:331
(0:066)

0:350
(0:085)

0:431
(0:105)

�R2 0:54 0:70 0:66 0:60 0:79 0:72

Average Cross Correlation

Coe¢ cients ( �̂ )
0:284 �0:005 �0:016 0:267 �0:012 �0:016

Notes: MG, CCEMG and CCEP, respectively, stand for the Mean Group, the Common Correlated E¤ects Mean Group, and

the Common Correlated E¤ects Pooled estimators de�ned in Pesaran (2006). Augmentation by simple cross section averages,

��pt = �49i=1�pit=49, ��yt = �49i=1�yit=49, and �pt�1 � �yt�1 = �49i=1(pi;t�1 � yi;t�1)=49 , is used to deal with the possible

e¤ects of strong cross section dependence. Standard errors are in parentheses. �̂ denotes the average pair-wise correlation of

the residuals from the cross-section augmented regressions across the 49 U.S. States.
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Appendix

A Lemmas and Proofs

Proof of Proposition 1. For any N 2 N, the variance of xt is


 =V ar (xt) =

1X
`=0

�`��0`, (57)

and under Assumptions 2-4

k
k � k�k
1X
`=0

k�k2` < K. (58)

Hence, it follows that for any arbitrary non-random vector of weights satisfying the granularity condition (16),

V ar �w0xt
� = w0
w

 � % (
) �w0w
� , (59)

where % (
) = k
k < K, and w0w = O
�
N�1� by condition (16). Therefore, limN!1 kV ar (w0xt)k = 0.

Proof of Corollary 1. Assumption 1 implies that for any i 2 K, vector �bi satis�es condition (16). It follows from

Proposition 1 that

lim
N!1

V ar
�
�0bixt

�
= 0 for i 2 K. (60)

Also (1) implies that

xit � �0aixt�1 � uit = �
0
bixt�1; for any i 2 K and any N � i: (61)

Taking variance of (61) and using (60) now yields (22).

Lemma 1 Suppose that Assumptions 2, 3 and 4 hold. Then for any p; q 2 f0; 1g and for any sequences of non-random

vectors � and ', such that k�k = O (1) and k'k1 = O (1), as (N;T )
j!1 we have

1

T

TX
t=1

�0�t�p
p! 0, (62)

and
1

T

TX
t=1

�0�t�p'
0�t�q � E

�
�0�t�p'

0�t�q
� p! 0, (63)

where the process �t is de�ned by (30). Furthermore, if k�k = O
�
N� 1

2

�
then

p
N

T

TX
t=1

�0�t
p! 0, (64)

and p
N

T

TX
t=1

�0�t�p'
0�t�q � E

�p
N�0�t�p'

0�t�q
�

p! 0. (65)

Proof. Let TN = T (N) be any non-decreasing integer-valued function of N such that limN!1 TN = 1. Consider
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the following two-dimensional array
�
f�Nt;FNtg1t=�1

	1
N=1

, de�ned by

�Nt =
1

TN
�0�t�p,

where the subscript N is used to emphasize the number of cross section units,16 and fFNtg denotes the array of

�-�elds that is increasing in t for each N and �Nt is measurable with respect to FNt. Let
�
fcNtg1t=�1

	1
N=1

be

two-dimensional array of constants and set cNt = 1
TN

for all t 2 Z and N 2 N. Note that

E

(�
E

�
�Nt
cNt

j FN;t�n
��2)

=

1X
`=mnp

�0�`�p��0`�p�,

� &n, (66)

where mnp = max fn; pg and17

&n = sup
N2N

(
k�k2 k�k k�k2(mnp�p)

1X
`=0

k�k2`
)
.

Under Assumptions 2, 3 and 4, &n has the following properties

&0 < K, and &n ! 0 as n!1. (67)

By Liapunov�s inequality, E jE (�Nt j FN;t�n)j �
q
E
�
[E (�Nt j FN;t�n)]2

	
(Theorem 9.23 of Davidson (1994)). It

follows that the two-dimensional array
�
f�Nt;FNtg1t=�1

	1
N=1

is L1-mixingale with respect to the constant array

fcNtg. Equations (66) and (67) establish array f�Nt=cNtg is uniformly bounded in L2 norm. This implies uniform

integrability.18 Note that

lim
N!1

TNX
t=1

cNt = lim
N!1

TNX
t=1

1

TN
= 1 <1, (68)

lim
N!1

TNX
t=1

c2Nt = lim
N!1

TNX
t=1

1

T 2N
= 0. (69)

Therefore array
�
f�Nt;FNtg1t=�1

	1
N=1

satis�es conditions of a mixingale weak law,19 which implies
PTN

t=1 �Nt
L1! 0,

i.e.:
1

T

TX
t=1

�0�t�p
L1! 0,

as (N;T )
j! 1 at any rate. Convergence in L1 norm implies convergence in probability. This completes the

proof of the result (62). Under the condition k�k = O
�
N� 1

2

�
, result (64) follows from result (62) by noting thatpN� = O (1).

16Note that vectors �t and � change with N as well, but the subscript N is omitted here to keep the notation
simple.
17We use submultiplicative property of matrix norms (kABk � kAk kBk for any matrices A, B such that AB is

well de�ned) and the fact that the spectral matrix norm is self-adjoint (i.e. kA0k = kAk). Note also that Assumption
4 implies

P1
`=0

�`
2 = O (1) :

18Su¢ cient condition for uniform integrability is L1+� uniform boundedness for any � > 0.
19Davidson (1994, Theorem 19.11).
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Result (63) is established in a similar fashion. Consider the following two-dimensional array�
f�Nt;FN;tg1t=�1

	1
N=1

, de�ned by20

�Nt =
1

TN
�0�t�p'

0�t�q �
1

TN
E
�
�0�t�p'

0�t�q
�
,

where as before TN = T (N) is any non-decreasing integer-valued function of N such that limN!1 TN = 1. Set

cNt =
1
TN

for all t 2 Z and N 2 N. Note that

E

�
�Nt
cNt

j FN;t�n
�

= E

0@ 1X
s=p

�0�s�put�s

1X
`=q

'0�`�qut�` j FN;t�n

1A� E
�
�0�t�p'

0�t�q
�
,

=

1X
s=mnp

1X
`=mnq

h
�0�s�put�s'

0�`�qut�` � E
�
�0�s�put�s'

0�`�qut�`
�i
.

Let �0s = �
0�s and '0` = '

0�`, then

E

(�
E

�
�Nt
cNt

j FN;t�n
��2)

=

1X
s=mpn

1X
`=mqn

1X
j=mpn

1X
d=mqn

E
�
�0s�put�s'

0
`�qut�`�

0
j�put�j'

0
d�qut�d

�
�

�

0@ 1X
s=mpn

1X
`=mqn

E
�
�0s�put�s'

0
`�qut�`

�1A2

. (70)

Using the independence of ut and ut0 for any t 6= t0 (Assumption 2), we have

1X
s=mpn

1X
`=mqn

E
�
�0s�put�s'

0
`�qut�`

�
=

1X
`=maxfp;q;ng

�0�`�p��0`�q'

� &a;n,

where

&a;n = sup
N2N

(
k�k k'k k�k k�k�1(p;n;q)

1X
`=0

k�k2`
)
,

and �1 (p; n; q) = max f0; q � p; n� pg+max f0; p� q; n� qg. k�k = O (1) by Assumptions 2 and 3,
P1

`=0 k�k
2` =

O (1) by Assumption 4, and k�k = O (1), k'k � k'k1 = O (1). &a;n has the following properties

&a;0 < Ka, and &a;n ! 0 as n!1. (71)

Similarly, since by Assumption 2 ut and ut0 are independently distributed for any t 6= t0, the �rst term on the right

20As before, fFNtg denotes the array of �-�elds that is increasing in t for each N and �Nt is measurable with
respect to FNt.
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side of equation (70) is bounded by &b;n:
21

&b;n = sup
N2N

8<:kBk � k�k2 k'k2 X
`=maxfp;q;ng

k�k2(`�p)+2(`�q) + 2&2a;n+

+ k�k2 k�k2 k'k2 k�k2�2(p;n;q)
 1X
`=0

k�k2`
!2)

,

where �2 (p; n; q) = max f0; n� pg +max fn� q; 0g, B is an N � N matrix with the (i; j) element given by k	ijk,

and 	ij is an N � N matrix of fourth moments with its (n; s) element given by E (uitujtuntust). It follows from

Assumptions 2-4 that &b;n has following properties
22

&b;0 < Kb, and &b;n ! 0 as n!1. (72)

E

�h
E
�
�Nt
cNt

j FN;t�n
�i2�

is therefore bounded by &n = &a;n + &b;n. Equations (71) and (72) establish

&0 < K, &n ! 0 as n!1. (73)

By Liapunov�s inequality, E jE (�Nt j FN;t�n)j �
q
E
�
[E (�Nt j FN;t�n)]2

	
(Theorem 9.23 of Davidson (1994)). It

follows that the two-dimensional array
�
f�Nt;FN;tg1t=�1

	1
N=1

, is L1-mixingale with respect to a constant array

fcNtg. Furthermore, (73) establishes that array f�Nt=cNtg is uniformly bounded in L2 norm. This implies uni-

form integrability.23 Since also equations (68) and (69) hold, array
�
f�Nt;FN;tg1t=�1

	1
N=1

satis�es conditions of a

mixingale weak law (Theorem 19.11 of Davidson (1994)), which implies
PTN

t=1 �Nt
L1! 0, i.e.

1

T

TX
t=1

�0�t�p'
0�t�q � E

�
�0�t�p'

0�t�q
� L1! 0,

as (N;T )
j!1. Convergence in L1 norm implies convergence in probability. This completes the proof of result (63).

Under k�k = O
�
N� 1

2

�
, result (65) follows from result (63) by noting that

pN� = O (1).

21E
�
�0s�put�s#

0
`�qut�`�

0
j�put�j#

0
d�qut�d

�
is non-zero only if one of the following four cases hold: i) s = ` = j = d,

ii) s = `, ` 6= j, and j = d, iii) s = j, j 6= `, and ` = d, or iv) s = d, d 6= `, and ` = j.
22Matrix B is symmetric by construction. Therefore kBk �

p
kBk1 kBk1 = kBk1, where

kBk1 = max
n2f1;::;Ng

NX
s=1

k	nsk

= max
n2f1;::;Ng

NX
s=1

max
i2f1;::;Ng

NX
j=1

NX
`=0

jri`rj`rs`rn`j

� max
n2f1;::;Ng

NX
s=1

max
i2f1;::;Ng

NX
j=1

 
NX
`=0

jri`rj`j �
NX
`0=0

jrs`0rn`0 j
!

�
 

max
n2f1;::;Ng

NX
s=1

NX
`0=0

jrs`0rn`0 j
!
�
 

max
i2f1;::;Ng

NX
j=1

NX
`=0

jri`rj`j
!

�
RR02

1 � kRk21 kRk
2
1 < K

23Su¢ cient condition for uniform integrability is L1+" uniform boundedness for any " > 0.
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Lemma 2 Suppose that xt is generated by model (25), and that Assumptions 2 to 8 hold. Then as (N;T )
j! 1,

for any p; q 2 f0; 1g, and for any sequence of non-random vectors � and ' with growing dimension N � 1 such that

k�k1 = O (1) and k'k1 = O (1), we have

1

T

TX
t=1

�0xt�p � E
�
�0xt�p

� p! 0, (74)

and
1

T

TX
t=1

�0xt�p'
0xt�q � E

�
�0xt�p'

0xt�q
� p! 0. (75)

Furthermore, for k�k = O (1) and k'k1 = O (1) we have

1

T

TX
t=1

�0�t�p'
0�f t�q

p! 0, (76)

where �t is de�ned in equation (30).

Proof. Let TN = T (N) be any non-decreasing integer-valued function of N such that limN!1 TN = 1. Consider

the following two-dimensional array
�
f�Nt;FNtg1t=�1

	1
N=1

, de�ned by

�Nt =
1

TN
�0�t�p'

0�f t�q,

where fFNtg denotes the array of �-�elds that is increasing in t for each N and �Nt is measurable with respect to

FNt. Let
�
fcNtg1t=�1

	1
N=1

be two-dimensional array of constants and set cNt = 1
TN

for all t 2 Z and N 2 N. Using

submultiplicative property of matrix norm, and independence of ft and �t0 for any t; t
0 2 Z, we have

E

(�
E

�
�Nt
cNt

j FN;t�n
��2)

� &n,

where

&n = sup
N2N

(
k�k2 k�k k�k2maxf0;n�pg

1X
`=0

k�k2` E
n�
E
�
'0�f t�q j FN;t�n

��2o)
.

k�k2 = O (1), k�k � 1� � by Assumption 4, and k�k �
p
k�k1 k�k1 = O (1) by Assumption 3. Furthermore, since

ft�q is covariance stationary and k'0��0'k = O (1) (by condition k'k1 = O (1) and Assumption 8), we have

E
n�
E
�
'0�f t�q j FN;t�n

��2o
= O (1) .

It follows that &n has following properties

&0 < K and &n ! 0 as n!1.

Array f�Nt=cNtg is thus uniformly bounded in L2 norm. This proves uniform integrability of array f�Nt=cNtg.

Furthermore, using Liapunov�s inequality, two-dimensional array
�
f�Nt;FNtg1t=�1

	1
N=1

is L1-mixingale with respect

to constant array fcNtg. Noting that equations (68) and (69) hold, it follows that the array f�Nt;FNtg satis�es

conditions of a mixingale weak law, (cf Theorem 19.11 of Davidson (1994)), which implies
PTN

t=1 �Nt
L1! 0. Convergence
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in L1 norm implies convergence in probability. This completes the proof of result (76).

Assumption 8 implies that sequence �0� (as well as '0�) is deterministic and bounded. Vector of endogenous

variables xt can be written as

xt = �+ �f t + �t.

Process ft is independent of �t. Suppose (N;T )
j!1. Processes f�0�t�pg and f�0�t�p'0�t�qg are ergodic in mean

by Lemma 1 since k�k � k�k1 = O (1). Furthermore,

1

T

TX
t=1

�0�f t � �0�E (ft)
p! 0,

and
1

T

TX
t=1

�0�f t'
0�f t�q � �0�E

�
ftf

0
t�q
�
�0'

p! 0,

since ft is covariance stationary m� 1 dimensional process with absolute summable autocovariances (ft is ergodic in

mean as well as in variance), and

�0��0' = O (1) ,��0��0'�2 = O (1) ,

by Assumption 8, conditionk�k1 = O (1) and condition k'k1 = O (1). Sum of bounded deterministic process and

independent processes ergodic in mean is a process that is ergodic in mean as well. This completes the proof.

Lemma 3 Let xt be generated by model (25), Assumptions 1-8 hold and (N;T )
j! 1. Then for any p; q 2 f0; 1g,

for any sequence of non-random weight matrices, W; of growing dimension N �mw satisfying conditions (27)-(28),

and for any i 2 K,

p
N

T

TX
t=1

W0�t�p
p! 0, (77)

p
N

T

TX
t=1

W0�t�pxW;t�q
p! 0, (78)

p
N

T

TX
t=1

W0�t�pxi;t�q
p! 0, (79)

p
N

T

TX
t=1

gitqit
p! 0, (80)

where the process �t is de�ned in equation (30), vector git =
�
1; �0i;t�1;x

0
Wt;x

0
W;t�1

�0
and qit is de�ned in equation

(37).

Proof. Let �wr for r 2 f1; ::;mwg denote the rth column vector of matrix W. Noting that
pN�wr

 = O (1) by

granularity condition (27), result p
N

T

TX
t=1

�w0
r�t�p

p! 0 (81)

follows directly from Lemma 1, equation (64). This completes the proof of result (77).
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Let ' be any sequence of non-random N � 1 dimensional vectors of growing dimension such that k'k1 = O (1).

We have p
N

T

TX
t=1

�w0
r�t�p'

0xt�q =

p
N

T

TX
t=1

�w0
r�t�p'

0 (�+ �f t�q + �t�q) . (82)

Since
pN�wr

 = O (1) for any r 2 f1; ::;mwg by condition (27), we can use Lemma 1, result (65), which implies

p
N

T

TX
t=1

�w0
r�t�p'

0�t�q � E
�
�w0
r�t�p'

0�t�q
� p! 0. (83)

Sequence f'0�g is deterministic and bounded in N , and therefore it follows from Lemma 1, result (64), that

p
N

T

TX
t=1

�w0
r�t�p'

0�
p! 0. (84)

Similarly, Lemma 2 equation (76) implies

p
N

T

TX
t=1

�w0
r�t�p'

0�f t�q
p! 0. (85)

Results (83), (84) and (85) establish p
N

T

TX
t=1

�w0
r�t�p'

0xt�q
p! 0. (86)

Result (78) follows from equation (86) by setting '= �wl for any l 2 f1; ::;mwg. Result (79) follows from equation

(86) by setting ' = ei where ei is N � 1 dimensional selection vector for the ith element.

Finally, the result (80) directly follows from results (77)-(79). This completes the proof.

Lemma 4 Let xt be generated by model (25), Assumptions 1-8 hold, and (N;T )
j! 1. Then for any sequence of

non-random matrices, W; of growing dimension N �mw satisfying conditions (27)-(28), and for any i 2 K,

1

T

TX
t=1

gitg
0
it �Ci

p! 0, (87)

where matrix Ci = E (gitg
0
it) and vector git =

�
�0i;t�1;x

0
Wt;x

0
W;t�1; 1

�0
.

Proof. Result (87) directly follows from Lemmas 1, 2 and 3.

Lemma 5 Let xt be generated by model (25), Assumptions 2-8 hold, and (N;T )
j! 1. Then for any sequence of

non-random weight matrices, W; of growing dimension N � mw satisfying conditions (27)-(28), and for any �xed

p � 0,
1

T

TX
t=1

W0�t�puit
p! 0, (88)

where the process �t is de�ned in equation (30). If in addition T=N ! {, with 0 � { <1,

1p
T

TX
t=1

W0�t�puit
p! 0. (89)
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Proof. Let TN = T (N) be any non-decreasing integer-valued function of N such that limN!1 TN = 1 and

limN!1 TN=N = { <1, where { � 0 is not necessarily nonzero. De�ne

�Nit =
1p
TN

�
W0�t�puit � E

�
W0�t�puit

�	
, (90)

where the subscript N is used to emphasize the number of cross section units.24 Let fFNtg denotes the array of

�-�elds that is increasing in t for each N and �Nt is measurable with respect to FNt. First it is established that

for any �xed i 2 N, the vector array
�
f�Nit=cNt;FNtg1t=�1

	1
N=i

is uniformly integrable, where cNt = 1p
NTN

. For

p > 0, we can write

E ��Nit�0Nitc2Nt

� = N �
E
" 1X

`=0

W0�`ut�`�puit

! 1X
`=0

W0�`ut�`�puit

!0# ,
= N

�2ii
1X
`=0

W0�`��0`W

 ,
� N�2ii kWk2 k�k

1X
`=0

�`
2 ,

= O (1) ,

where kWk2 = O
�
N�1� by condition (27), k�k = O (1) by Assumption 3, and

P1
`=0

�`
2 = O (1) by Assumption

4. For p = 0, we have

E ��Nit�0Nitc2Nt

� =

N � V ar
 
W0utuit +

1X
`=1

W0�`ut�`uit

! ,
� N

 
kWk2 k	iik+ �2ii kWk2 k�k

1X
`=1

�`
2 +O

�
N�1�! ,

= O (1) ,

where as before 	ii is N�N symmetric matrix with the element (n; s) equal to E (uituituntust). Therefore for p � 0,

the two-dimensional vector array f�Nit=cNtg is uniformly bounded in L2 norm. This proves uniform integrability of

f�Nit=cNtg.

E jE (�Nit j FN;t�n)j =

8<: 0 for any n > 0 and any �xed p � 0

�mwcNtO (1) for n = 0 and any �xed p � 0
, (91)

and
�
f�Nit;FNtg1t=�1

	1
N=i

is L1-mixingale with respect to constant array fcNtg.25 Note that

lim
N!1

TNX
t=1

cNt = lim
N!1

TNX
t=1

1p
NTN

= lim
N!1

r
TN
N

=
p
{ <1,

and

lim
N!1

TNX
t=1

c2Nt = lim
N!1

TNX
t=1

1

TNN
= lim

N!1

1

N
= 0.

24Note thatW and �t�p change with N , but as before we ommit subscript N here to keep the notation simple.
25The last equality in equation (91) takes advatage of Liapunov�s inequality. �mw is mw � 1 dimensional vector of

ones.
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Therefore for each �xed i 2 N, each of the mw two-dimensional arrays given by the elements of vector array�
f�Nit;FNtg1t=�1

	1
N=i

satis�es conditions of a mixingale weak law26 , which implies

1p
TN

TNX
t=1

W0�t�puit �
p
TNE

�
W0�t�puit

� L1! 0.

But pTNE �W0�t�puit
�
1
=
p
TN
E �W0utuit

�
1
=
p
TNO

�
1

N

�
! 0,

since limN!1 TN=N = { < 1. Convergence in L1 norm implies convergence in probability. This completes the

proof of result (89).

Result (88) is established in a very similar fashion. De�ne new vector array qNit = 1p
TN
�Nit where �Nit is array

de�ned in (90) and i 2 N is �xed. Let TN = T (N) be any non-decreasing integer-valued function of N such that such

that limN!1 TN =1. Notice that for any �xed i 2 N, vector array
n�p

TNqNit=cNt;FNt
	1
t=�1

o1
N=i

is uniformly

integrable because
�
f�Nit=cNt;FNtg1t=�1

	1
N=i

is uniformly integrable. Furthermore,
�
fqNit;FNtg1t=�1

	1
N=i

is L1-

mixingale with respect to the constant array
�

1p
TN
cNt

�
since

�
f�Nit;FNtg1t=�1

	1
N=i

is L1 mixingale with respect

to the constant array fcNtg. Note that

lim
N!1

TNX
t=1

1p
TN

cNt = lim
N!1

TNX
t=1

1

TN
p
N
= lim

N!1

1p
N
= 0,

and

lim
N!1

TNX
t=1

�
1p
TN

cNt

�2
= lim

N!1

TNX
t=1

�
1

TN
p
N

�2
= lim

N!1

1

TNN
= 0.

Therefore for any �xed i 2 N, a mixingale weak law27 implies

TNX
t=1

qNit
L1! 0 as N !1. (92)

Since also

E
�
W0�t�puit

�
= O

�
N�1� ,

it follows
1

T

TX
t=1

W0�t�puit
L1! 0,

as N;T
j! 1 at any rate. Convergence in L1 norm implies convergence in probability. This completes the proof of

result (88).

Lemma 6 Let xt be generated by model (25), Assumptions 1-8 hold and (N;T )
j! 1 such that T=N ! {, with

0 � { <1. Then for any sequence of non-random matrices of weights W of growing dimension N �mw satisfying

conditions (27)-(28), and for any i 2 K, we have,

26See Theorem 19.11 of Davidson (1994).
27See Theorem 19.11 of Davidson (1994).
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a) under Assumption 9,

1

�ii
C
� 1
2

i

1p
T

TX
t=1

egituit D! N (0; Iki) , (93)

where Ci = E (egiteg0it) and egit = ��0i;t�1; f 0t�0W ; f 0t�1�0W ; 1�0,
b) under Assumption 10,

1

�ii
p
T


� 1
2

vi

TX
t=1

vi;t�1uit
D! N (0; Ihi) , (94)

where matrix 
vi = E (vitv
0
it) and vector vit = S

0
i

P1
`=0�

`ut�`.

Proof. Let a be any ki � 1 dimensional vector such that kak = 1 and de�ne

�Nt =
1p
TN�ii

a0C
� 1
2

i egituit,
where TN = T (N) is any non-decreasing integer-valued function ofN such that limN!1 TN =1 and limN!1 TN=N =

{ < 1, where 0 � { < 1. Array f�Nt;FNtg is a stationary martingale di¤erence array.28 Lemmas 1 and 2 imply

a0C
� 1
2

i egit is ergodic in variance, in particular
1

TN

TNX
t=1

a0C
� 1
2

i egiteg0itC� 1
2

i a
p! 1.

egit and uit are independent and the fourth moments of uit are �nite. Therefore a0C� 1
2

i egituit is ergodic in variance
and

TNX
t=1

�2Nt
p! 1. (95)

Furthermore, E
�
��1ii a

0C
�1=2
i egituit�4 = O (1) and therefore

lim
N!1

TNX
t=1

E
�
�4Nt

�
= 0.

Using Liapunov�s theorem (Theorem 23.11 of Davidson (1994)), Lindeberg condition29 holds, which in turn implies

max
1�t�TN

j�Ntj
p! 0 as N !1. (96)

Results (95), (96) and the martingale di¤erence array central limit theorem (Theorem 24.3 of Davidson (1994))

establish
TNX
t=1

�Nt =
1p
TN�ii

a0C
� 1
2

i

TNX
t=1

egituit D! N (0; 1) (97)

Since equation (97) holds for any ki � 1 dimensional vector a such that kak = 1, result (93) directly follows from

equation (97) and Theorem 25.6 of Davidson (1994).

Result (94) can be established in the same way as the result (93), but this time we set �Nt = 1p
TN�ii

a0

� 1
2

vi vi;t�1uit,

28As before, fFNtg denotes the array of �-�elds that is increasing in t for each N and �Nt is measurable with
respect to FNt.
29See Condition 23.17 of Davidson (1994).

42



where a is any hi � 1 dimensional vector such that kak = 1.

Lemma 7 Let xt be generated by model (25), and suppose Assumptions 1-8 hold and (N;T )
j! 1. Then for any

arbitrary matrix of weights, W; satisfying conditions (27)-(28), for any p; q 2 f0; 1g, and for any i 2 K,

1

T

TX
t=1

�W;t�p = op

�
1p
N

�
, (98)

1

T

TX
t=1

�W;t�pf
0
t�q = op

�
1p
N

�
, (99)

1

T

TX
t=1

�i;t�p�
0
W;t�q = op

�
1p
N

�
, (100)

1

T

TX
t=1

�W;t�p�
0
W;t�q = op

�
1p
N

�
, (101)

�0
iQ

T
= op (1) . (102)

Furthermore,
H0Q

T
= A0Q

0Q

T
+ op

�
1p
N

�
, (103)

Z0iH

T
=
Z0iQ

T
A+ op

�
1p
N

�
, (104)

H0H

T
= A0Q

0Q

T
A+ op

�
1p
N

�
, (105)

H0ui�
T

= A0Q
0ui�
T

+ op

�
1p
N

�
, (106)

where

�i
T�hi

= (vi0;vi1; :::;vi;T�1)
0 , (107)

vit = S
0
i

P1
`=0�

`ut�`, H and Zi are de�ned by (41) and (42), respectively, and Q, F and A are de�ned in equations

(43)-(44).

Proof. Result (98) follows directly from equation (64) of Lemma 1 since the spectral norm of any column vector

of the matrix W is O
�
N� 1

2

�
. Result (99) follows from result (98) by noting that ft is independently distributed

of �W;t and all elements of the variance matrix of ft are �nite. Furthermore, since (by Lemma 1) 1
T

PT
t=1 vit

p! 0,

equation (102) follows. Results (100) and (101) follows directly from equation (65) of Lemma 1 by noting that

p
NE

�
�i;t�p�

0
W;t�q

�
= O

�
1p
N

�
(108)

as well as30

p
NE

�
�W;t�p�

0
W;t�q

�
= O

�
1p
N

�
. (109)

In order to prove equations (103)-(106), �rst note that the row t of the matrix H � QA is
�
0;�0Wt;�

0
W;t�1

�
.

30Results (108) and (109) are straightforward to establish by taking the row norm and by noting that the granularity
conditions (27)-(28) imply kWk1 = O

�
N�1�.
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Using results (98)-(101), we have

(H�QA)0Q
T

=
1

T

TX
t=1

26664
0BBB@

0

�Wt

�W;t�1

1CCCA� 1, f 0t , f 0t�1

�37775 = op

�
1p
N

�
, (110)

Z0i (H�QA)
T

=
1

T

TX
t=1

266664�i;t�1
0BBB@

0

�Wt

�W;t�1

1CCCA
0377775 = op

�
1p
N

�
, (111)

H0 (H�QA)
T

=
1

T

TX
t=1

266664
0@ xWt

xW;t�1

1A
0BBB@

0

�Wt

�W;t�1

1CCCA
0377775 = op

�
1p
N

�
, (112)

(H�QA)0 (H�QA)
T

=
1

T

TX
t=1

266664
0BBB@

0

�Wt

�W;t�1

1CCCA
0BBB@

0

�Wt

�W;t�1

1CCCA
0377775 = op

�
1p
N

�
, (113)

Equations (110)-(111) establish results (103) and (104). Note that

H0H

T
=

H0 (H�QA)
T

+
H0 (QA)

T
,

=
H0 (H�QA)

T
+
(H�QA)0Q

T
A+A0Q

0Q

T
A,

= A0Q
0Q

T
A+op

�
1p
N

�
,

where the last equality uses equations (110) and (112). This completes the proof of result (105).

Equation (92) (see proof or Lemma 5) implies

1

T

TX
t=1

�W;t�puit � E (�W;t�puit)
p! 0,

as N;T
j! 1 at any rate. Result (106) follows by noting that

p
NE (�W;t�puit) = O

�
N� 1

2

�
. This completes the

proof.

Lemma 8 Let xt be generated by model (25), suppose Assumptions 1-8, 10 hold, and (N;T )
j! 1. Then for any

i 2 K, and for any arbitrary matrix of weights, W; satisfying conditions (27)-(28) and Assumption 10, we have

Q0Q

T

p! 
Q , (114)


Q is non-singular, and
�0
i�i

T
�
vi

p! 0, (115)
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where


Q =

0BBB@
1 0 0

0 �f (0) �f (1)

0 �f (1) �f (0)

1CCCA ,
�f (`) = E (ftf

0
t�`), 
vi = E (viv

0
i), matrix Q is de�ned in equation (43), and matrix �i = (vi0;vi1; :::;vi;T�1)

0.

Proof. Assumption 6 implies matrix 
Q is non-singular. Result (114) directly follows from the ergodicity properties

of the covariance stationary time-series process ft.

Consider now asymptotics N;T
j! 1 at any rate. Lemma 1 implies that hi � 1 dimensional vector vit = S0i�t

is ergodic in variance, in particular 1
T

PT
t=1 S

0
i�t�

0
tSi � E (S0i�t�

0
tSi)

p! 0.31 This completes the proof.

Lemma 9 Let xt be generated by model (25), suppose Assumptions 1-8 and 10 hold, and (N;T )
j! 1. Then for

any i 2 K, and for any arbitrary matrix of weights W satisfying conditions (27)-(28) and Assumption 10, we have

Z0iMHZi
T

=
Z0iMQZi

T
+ op

�
1p
N

�
, (116)

Z0iMQZi
T

�
vi
p! 0, (117)

Z0iMHQp
T

= op

 r
T

N

!
, (118)

Z0iMHui�p
T

=
�0
iMQui�p

T
+ op

 r
T

N

!
, (119)

where 
vi is de�ned in Assumption 10, MH and Zi are de�ned in (41) and (42), respectively, Q and F are de�ned

by (43), and �i = (vi0;vi1; :::;vi;T�1)
0.

Proof.
Z0iMHZi

T
=
Z0iZi
T

� Z0iH

T

�
H0H

T

�+
H0Zi
T

. (120)

Results (104)-(105) of Lemma 7 imply

Z0iH

T

�
H0H

T

�+
H0Zi
T

=
Z0iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0Zi
T

+ op
�

1p
N

�
. (121)

Using de�nition of the Moore-Penrose inverse, it follows

�
A0Q

0Q

T
A

��
A0Q

0Q

T
A

�+�
A0Q

0Q

T
A

�
=

�
A0Q

0Q

T
A

�
. (122)

Multiply equation (122) by
�
Q0Q
T

��1
(AA0)

�1
A from the left and byA0 (AA0)

�1
�
Q0Q
T

��1
from the right to obtain32

A

�
A0Q

0Q

T
A

�+
A0 =

�
Q0Q

T

��1
. (123)

31kSik1 = O (1) by Assumption 1.
32Note that plimT!1

1
T
Q0Q is nonsingular by Lemma 8, equation (114). AA0 is nonsingular, since matrix A has

full row-rank by Assumption 10.
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Equations (123) and (121) imply

Z0iH

T

�
H0H

T

�+
H0Zi
T

=
Z0iQ

T

�
Q0Q

T

��1
Q0Zi
T

+ op
�

1p
N

�
. (124)

Result (116) follows from equations (124) and (120).

Using (25) we have

Zi = ��
0
iSi + F (�1)�0iSi +�i. (125)

Since Q = [� ;F;F (�1)], it follows

Z0iMQZi
T

=
�0
iMQ�i

T
=
�0
i�i

T
+
�0
iQ

T

�
Q0Q

T

��1
Q0�i

T
. (126)

Using equations (102), (114) and (115), result (117) follows directly from (126).

Results (103)-(105) of Lemma 7 imply

Z0iH

T

�
H0H

T

�+
H0Q

T
=
Z0iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0Q

T
+ op

�
1p
N

�
. (127)

Substituting equation (123), it follows

Z0iH

T

�
H0H

T

�+
H0Q

T
=
Z0iQ

T

�
Q0Q

T

��1
Q0Q

T
+ op

�
1p
N

�
. (128)

Equation (128) implies

Z0iMHQp
T

=
Z0iMQQp

T
+ op

 r
T

N

!
= op

 r
T

N

!
.

This completes the proof of result (118).

Results (104)-(106) of Lemma 7 imply

Z0iH

T

�
H0H

T

�+
H0ui�
T

=
Z0iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0ui�
T

+ op
�

1p
N

�
.

Substituting equation (123), it follows

Z0iH

T

�
H0H

T

�+
H0Q

T
=
Z0iQ

T

�
Q0Q

T

��1
Q0ui�
T

+ op
�

1p
N

�
. (129)

Noting that MQ (��
0
iSi + F�

0
iSi) = 0 since Q = [� ;F;F (�1)], equations (129) and (125) imply

Z0iMHui�p
T

=
Z
0
iMQui�p

T
+ op

 r
T

N

!
,

=
�

0
iMQui�p

T
+ op

 r
T

N

!
.

This completes the proof.

Lemma 10 Let xt be generated by model (25), and suppose Assumptions 1-8 and 10 hold, and (N;T )
j! 1. Then

for any i 2 K, and for any arbitrary matrix of weights, W; satisfying conditions (27)-(28) and Assumption 10, we
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have

Z0iMH�i (�1)
T

= op

�
1p
N

�
, (130)

Z0iMHui�p
T

=
�0
iui�p
T

+ op

 r
T

N

!
+ op (1) , (131)

where matricesMH ,and Zi are de�ned in (41) and (42), respectively, �i = (vi0;vi1; :::;vi;T�1) and vector �i (�1) =�
�i;0; :::; �i;T�1

�0
.

Proof.

Z0i�i (�1)
T

=
1

T

TX
t=1

"
xi;t�1

 
�0ib

1X
`=0

�`ut�`�1

!0#
,

H0�i (�1)
T

=
1

T

TX
t=1

240@ xWt

xW;t�1

1A �0ib 1X
`=0

�`ut�`�1

!035 .
k�ibk1 = O

�
N�1� by Assumption 1, therefore result (130) directly follows from equations (111) and (112).

�0
iMQui�p

T
=

�0
iui�p
T

+
�0
iQ

T

�
Q0Q

T

��1
Q0ui�p

T
,

=
�0
iui�p
T

+ op (1) , (132)

where Q0ui�p
T

= Op (1), plimT!1
1
T
Q0Q is non-singular by Lemma 8, and �0

iQ

T
= op (1) by Lemma 7, equation (102).

Substituting (132) into equation (119) implies result (131). This completes the proof.

Proof of Theorem 1.

a) Substituting for xit in equation (39) yields

b�i � �i =  1
T

TX
t=1

gitg
0
it

!�1 
1

T

TX
t=1

gitqit +
1

T

TX
t=1

gituit

!
. (133)

With N;T
j!1 in any order, Lemma 5 yields33

1

T

TX
t=1

gituit
p! 0. (134)

Also using Lemmas 3 and 4 we have

1

T

TX
t=1

gitqit
p! 0, (135)

and
1

T

TX
t=1

gitg
0
it �C(N);i

p! 0, (136)

33 1
T

PT
t=1 xj;t�1uit

p! 0 since xjt is ergodic in mean by Lemma 2 and uit is independent of xj;t�1 for any N 2 N
and any j 2 f1; ::; Ng. Furthermore, using similar arguments, 1

T

PT
t=1 ftuit

p! 0.

47



respectively. Assumption 9 postulates that the matrix C(N);i is invertible and
C�1

(N);i

 is bounded in N . It
follows from equation (136) that  

1

T

TX
t=1

gitg
0
it

!�1
�C�1

(N);i

p! 0. (137)

Result b�i � �i p! 0 directly follows from equations (134), (135) and (137).

b) Multiplying equation (133) by
p
T yields

p
T (b�i � �i) =  1

T

TX
t=1

gitg
0
it

!�1 
1p
T

TX
t=1

gitqit +
1p
T

TX
t=1

gituit

!
. (138)

With (N;T )
j!1 such that T=N ! { <1, Lemma 3 can be used to show that

1p
T

TX
t=1

gitqit
p! 0. (139)

Since
C�1

(N);i

 = O (1), equations (137) and (139) now yield

 
1

T

TX
t=1

gitg
0
it

!�1
1p
T

TX
t=1

gitqit
p! 0. (140)

Lemma 5 establishes
1p
T

TX
t=1

�W;t�puit
p! 0 for p 2 f0; 1g . (141)

It follows from equation (141) that

1p
T

TX
t=1

(git � egit)uit p! 0, (142)

where egit = ��0i;t�1; f 0t�0W ; f 0t�1�0W ; 1�0. Lemma 6 establishes that
1

�(N);ii
C
� 1
2

(N);i

1p
T

TX
t=1

egituit D! N (0; Iki) , (143)

Equations (137), (140), (142) and (143) imply result (45).

c) Lemma 4 establishes 1
T

PT
t=1 gitg

0
it �C(N);i

p! 0. The estimated residuals from auxiliary regression (38) are

equal to buit = uit � g0it (b�i � �i), which implies
1

T

TX
t=1

bu2it = 1

T

TX
t=1

u2it � 2 (b�i � �i)0 1
T

TX
t=1

gituit + (b�i � �i)0 1
T

TX
t=1

gitg
0
it

!
(b�i � �i) , (144)

where 1
T

PT
t=1 u

2
it��2(N);ii

p! 0, b�i��i p! 0 is established in part (a) of this proof, 1
T

PT
t=1 gitg

0
it�C(N);i

p! 0

is established in Lemma 4, and 1
T

PT
t=1 gituit

p! 0 is established in equation (134). This completes the proof.

Proof of Theorem 2. Vector xi� can be written, using system (25), as

xi� = �
�
�i � �0iS0i�

�
+ Zi�i + Fi � F (�1)�

0Si�i + �i (�1) + ui�, (145)

48



where �i (�1) =
�
�i0; :::; �i;T�1

�0
. Substituting equation (145) into the partition least squares formula (40) and noting

that by Lemma 9,
Z0iMHQp

T
= op

 r
T

N

!
, (146)

it follows
p
T
�b�i � �i� = �Z0iMHZi

T

��1 "
Z0iMH (ui� + �i (�1))p

T
+ op

 r
T

N

!#
. (147)

Lemma 9 also establishes that

Z0iMHZi
T

�
vi
p! 0, as N;T

j!1 at any rate, (148)

where 
vi = E (vitv
0
it) is non-singular by Assumption 10.

Consider now asymptotics N;T
j!1 such that T=N ! { <1. Lemma 10 establishes

Z0iMH�i (�1)p
T

p! 0, (149)

and
Z0iMHui�p

T
=
�0
iui�p
T

+ op

 r
T

N

!
+ op (1) , (150)

where �i = (vi0; :::;vi;T�1)
0. Also from Lemma 6

1

�ii
p
T


� 1
2

vi

TX
t=1

vi;t�1uit
D! N (0; Ihi) . (151)

The desired result (48) now follows from (147)-(151).
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