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Abstract

This paper proposes a novel approach for dealing with the ‘curse of dimensionality’ in the
case of vector autoregressive (VAR) models with a large number of variables or units (N). It
is assumed that each unit is related to a small number of neighbors and a large number of
non-neighbors. The neighbors could be individual units or, more generally, linear combinations
of units. The neighborhood effects are fixed and do not change with IV, but the coefficients
corresponding to the non-neighboring units are restricted to vanish in the limit as N tends to
infinity. The conditions under which such an infinite-dimensional VAR (or IVAR) can be arbi-
trarily well characterized by a large number of finite-dimensional models are derived. Problems
of estimation and inference in a stationary IVAR model with an unknown number of unobserved
common factors are also investigated. A cross section augmented least squares (CALS) estima-
tor is proposed and its asymptotic distribution is derived. Satisfactory small sample properties
for the CALS estimator are documented by Monte Carlo experiments. An empirical illustration
shows the statistical significance of dynamic spill-over effects in modelling of U.S. real house
prices across the neighboring States.
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1 Introduction

Vector autoregressive models (VARs) provide a flexible framework for the analysis of complex
dynamics and interactions that exist between economic variables. The traditional VAR modelling
strategy postulates that the number of variables, N, is fixed and the time dimension, 7', tends to
infinity. But since the number of parameters to be estimated grows at a quadratic rate with N,
the application of the approach in practice is often limited to a handful of variables. The objective
of this paper is to consider VAR models where both N and T are large. In this case, parameters of
the VAR model can no longer be consistently estimated unless suitable restrictions are imposed to
overcome the dimensionality problem.

Two different approaches have been suggested in the literature to deal with this ‘curse of di-
mensionality’: (¢) shrinkage of the parameter space, and (i7) shrinkage of the data. Spatial and/or
spatiotemporal literature shrinks the parameter space by using a priori given spatial weights ma-
trices that restricts the nature of the links across the units. Alternatively, prior probability dis-
tributions are imposed on the parameters of the VAR such as the ‘Minnesota’ priors proposed by
Doan, Litterman, and Sims (1984). This class of models is known as Bayesian VARs (BVAR).!

The second approach is to shrink the data, along the lines of index models. Geweke (1977)
and Sargent and Sims (1977) introduced dynamic factor models, which have more recently been
generalized to allow for weak cross sectional dependence by Forni and Lippi (2001), Forni et al.
(2000) and Forni et al. (2004). Empirical evidence suggests that few dynamic factors are needed
to explain the co-movements of macroeconomic variables.? This has led to the development of
factor-augmented VAR (FAVAR) models by Bernanke, Bovian, and Eliasz (2005) and Stock and
Watson (2005), among others.

Applied researchers are often forced to impose arbitrary restrictions on the coefficients that link
the variables of a given cross section unit to the current and lagged values of the remaining units,

mostly because they realize that without such restrictions the model is not estimable. This paper

LOther types of priors have also been considered in the literature. See, for example, Del Negro and Schorfheide
(2004) for a recent reference. In most applications, BVARs have been applied to relatively small systems (e.g. Leeper,
Sims, and Zha (1996) considered 13- and 18-variable BVAR; a few exceptions include Giacomini and White (2006)
and De Mol, Giannone, and Reichlin (2008)), with the focus being mainly on forecasting. Bayesian VARs are known
to produce better forecasts than unrestricted VARs or structural models. See Litterman (1986) and Canova (1995)
for further references.

2Stock and Watson (1999), Stock and Watson (2002), Giannone, Reichlin, and Sala (2005) conclude that only few,
perhaps two, factors explain much of the predictable variations, while Bai and Ng (2007) estimate four factors and
Stock and Watson (2005) estimate as much as seven factors.



proposes a novel way to deal with the curse of dimensionality by shrinking part of the parameter
space in the limit as the number of variables (IV) tends to infinity. An important example would be
a VAR model where each unit is related to a small number of neighbors and a large number of non-
neighbors. The neighbors could be individual units or, more generally, linear combinations of units
(spatial averages). The neighborhood effects are fixed and do not change with N, but the coefficients
corresponding to the remaining non-neighbor units are small, of order O (N _1). Such neighborhood
and non-neighborhood effects could be motivated by theoretical economic considerations, or could
arise due to the mis-specification of spatial weights.

Although under this set-up each of the non-neighboring coefficients is small, sum of their ab-
solute values in general does not tend to zero and the aggregate spatiotemporal non-neighborhood
effects could be large. This paper shows that under weak cross section dependence, the spillover
effects from non-neighboring units are neither particularly important, nor estimable.? But the co-
efficients associated with the neighboring units can be consistently estimated by simply ignoring
the non-neighborhood effects that are of second order importance in N. On the other hand, if the
units are cross sectionally strongly dependent, then the spillover effects from non-neighbors are in
general important, and ignoring such effects can lead to inconsistent estimates.

Another model of interest arises when in addition to the neighborhood effects, there is also a
fixed number of dominant units that have non-negligible effects on all other units. In this case the
limiting outcome is shown to be a dynamic factor model.* Accordingly, the paper provides a link
between data and parameter shrinkage approaches to mitigating the curse of dimensionality. By
imposing limiting restrictions on some of the parameters of the VAR we effectively end up with a
data shrinkage. To distinguish high dimensional VAR models from the standard specifications we
refer to the former as the infinite dimensional VARs or IVARs for short.

The paper also establishes the conditions under which the Global VAR (GVAR) approach
proposed by Pesaran, Schuermann, and Weiner (2004) is applicable.” In particular, the IVAR

featuring all macroeconomic variables could be arbitrarily well approximated by a set of finite-

#Concepts of strong and weak cross section dependence, introduced in Chudik, Pesaran, and Tosetti (2009), will
be applied to VAR models.

1The case of IVAR models with a dominant unit is studied in Pesaran and Chudik (2010).

"GVAR model has been used to analyse credit risk in Pesaran, Schuermann, Treutler, and Weiner (2006) and
Pesaran, Schuermann, and Treutler (2007). Extended and updated version of the GVAR by Dées, di Mauro, Pesaran,
and Smith (2007), which treats Euro area as a single economic area, was used by Pesaran, Smith, and Smith (2007)
to evaluate UK entry into the Euro. Global dominance of the US economy in a GVAR model is considered in Chudik
(2008). Further developments of a global modelling approach are provided in Pesaran and Smith (2006). Garratt,
Lee, Pesaran, and Shin (2006) provide a textbook treatment of GVAR.



dimensional small-scale models that can be consistently estimated separately in the spirit of the
GVAR.

A second contribution of the paper is the development of appropriate econometric techniques
for estimation and inference in stationary IVAR models with an unknown number of unobserved
common factors. This extends the analysis of Pesaran (2006) to dynamic models where all variables
are determined endogenously. A simple cross sectional augmented least-squares estimator (or CALS
for short) is proposed and its asymptotic distribution derived. Small sample properties of the
proposed estimator are investigated through Monte Carlo experiments. As an illustration of the
proposed approach we consider an extension of the empirical analysis of real house prices across the
49 U.S. States conducted recently by Holly, Pesaran, and Yamagata (2009), and show statistically
significant dynamic spillover effects of real house prices across the neighboring States.

The remainder of the paper is organized as follows. Section 2 introduces the IVAR model.
Section 3 investigates cross section dependence in IVAR models. Section 4 focusses on estimation
of a stationary IVAR model. Section 5 discusses the results of the Monte Carlo experiments, and
Section 6 presents the empirical results. The final section offers some concluding remarks. Proofs
are provided in the Appendix.

A brief word on notations: |A;(A)| > [A2(A)| > ... > |A\n(A)| are the eigenvalues of A € M"™*™
where M™*™ is the space of real-valued n x n matrices. ||A|; = max >, |a;;| denotes the

1<j<n
maximum absolute column sum matrix norm of A, [|A[,, = max 377 |a;;| is the absolute row

1<i<n
sum matrix norm of A. [|A|| = /o (A’A) is the spectral norn; ;f A o(A) = lrgaéxnﬂ)\i (A)]} is
the spectral radius of A.% All vectors are column vectors and the i row of A i;Aenoted by aj.
a, = O(by) denotes the deterministic sequence {a,} is at most of order b,. x, = O, (y) states
that the random variable x,, is at most of order y, in probability. N is the set of natural numbers,
and Z is the set of integers. We use K and ¢ to denote positive fixed constants that do not vary
with N or T. Convergence in distribution and convergence in probability is denoted by 2 and

&, respectively. Symbol o represents convergence in quadratic mean. (N,T) 2, 50 denotes joint

asymptotic in N and 7', with N and T" — oo, in no particular order.

Note that if x is a vector, then ||x|| = 1/0 (X'x) = v/x'x corresponds to the Euclidean length of vector x.



2 Infinite-Dimensional Vector Autoregressive Models

Suppose we have T' time series observations on N cross section units indexed by i € Sy =
{1,.., N} C N. Individual units could be households, firms, regions, or countries. Both dimensions,
N and T, are assumed to be large. For each point in time, ¢, and for each N € N, the N cross section
observations are collected in the N X 1 vector x(ny; = (x(N),ltu e x(N),Nt)/, and it is assumed that

x(n), follows the VAR(1) model
X(N)t = Rv)X(Ny—1 + U s (1)

un)e = Rvyew).e- (2)

®(y) and R(y) are N x N coefficient matrices that capture the dynamic and contemporaneous
dependencies across the N units, and E(N)t = (€14, €21, ...,6Nt)l is an N x 1 vector of white noise
errors with mean 0 and the covariance matrix, Iy.

VAR models have been extensively studied when NN is small and fixed, and T is large and un-
bounded. This framework, however, is not appropriate for many empirical applications of interest.
This paper aims to fill this gap by analyzing VAR models where both N and T are large. The
sequence of models (1) and (2) with dim(x(y)¢) = N — oo will be referred to as the infinite-
dimensional VAR model, or IVAR for short. The extension of the IVAR(1) to IVAR(p) where p is
fixed, is relatively straightforward and will not be attempted in this paper.

The analysis of dependence over time is simplified by the fact that ordering of observations along
the time dimension (t = 1,2, ..., 7)) is immutable and the arrival of new observations cannot change
past realizations, namely bygones are bygones. As a consequence for any given IV, ¢, and j, the cross
time covariance function, cov (x( N),it> Z( N)’j’t,g) , does not change with 7" and will depend only on ¢
if the time series processes are covariance stationary. However, since it can not be assumed that an
immutable ordering necessarily exists with respect to the cross section dimension, addition of new
cross section units to an existing set can potentially alter the pair-wise cross section covariances
of all the units. For instance in models of oligopoly, where firms strategically interact with each
other, new entries can change the relationship between the existing firms. Similarly, introduction
of a new asset in the market can change the correlation of returns on the existing assets.

In what follows, to simplify the notations, the explicit dependence of x; and u; and the related



parameter matrices on N will be suppressed with (1)-(2) written as

x; = ®x; 1 + uy, (3)

and

u; = Rey. (4)

Clearly, it is not possible to estimate all the N2 elements of the matrix ® when both N and T
are large. Only a small (fixed) number of unknown coefficients can be estimated per equation and
some restrictions on ® must be imposed.

In order to deal with the dimensionality problem, we assume that for a given ¢ € N, it is
possible to classify cross section units a priori into ‘neighbors’ and ‘non-neighbors’. No restrictions
are imposed on neighbors, but the non-neighbors are assumed to have only negligible effects on x;
that vanish at a suitable rate with N. The number of neighbors of unit 7, collected in the index set
N, is assumed to be small (fixed). Neighbors of unit 7 can have non-negligible effects that do not
vanish even if N — oo. A similar classification is followed in the spatial econometrics literature,
where the non-neighborhood effects are set to zero for all N and the non-zero neighborhood effects
are often assumed to be homogenous across i. In this sense our analysis can also be seen as an
extension of spatial econometric models.

Subject to the above classification, equation for the unit ¢ can be written as

Tip = E ¢ij37j,t—1 + g ¢ijxj,t—1 + uit. (5)
JEN; JENF
Neighbors Non—neighbors

The coefficients of the neighboring units, {(;5@] }je N are the parameters of interest and do not

vary with V. The remaining coefficients, {¢ij} tend to zero for each ¢ as N — oo, where

jeMc I
NE={1,.., N} \ N is the index set of non-neighbors. Note that the non-neighbors are unordered.
More specifically,

K
|pi;] < N for any N € N and any j € Nf. (6)

Individually the coefficients of non-neighbors are asymptotically negligible, but as we argue below

it is not clear if the same applies to their aggregate effects on the " unit, namely 3 jeNe GijTjt—1-



The bounds in (6) ensures that limy_ Z;V:1 |¢;j| < K. We refer to this as the ‘cross sec-
tion absolute summability condition’, which is distinct from the absolute summability condition
used in the time series literature where the same idea is applied to the coefficients of current and
past innovations. A similar constraint is used in Lasso and Ridge regression shrinkage methods.
The Lasso estimation procedure applied to (3) involves minimizing Zthl u3, for each i subject to
Zjvzl }qbij’ < K. Under the Ridge regression the minimization is carried out subject to the weaker
constraint, Zjvzl ¢Z2j < K. In application of shrinkage methods it is necessary that K is specified
a priori, but no knowledge of the ordering of the units along the cross section dimension is needed.
In our approach we do not need to specify the value of K.

Sum of the coefficients of the non-neighboring units, > jeNe ¢;j, does not necessarily tends to
zero as N — oo, which implies that the non-neighbors can have a large aggregate spatiotempo-
ral impact on the unit ¢, as N — oo. The question that we address is whether it is possible to
estimate neighborhood coefficients {gbij }je N, without imposing further restrictions. As it turns
out, the answer depends on the stochastic behavior of Zje Ne ¢i;Tjt—1, which in turn depends
on the strength of cross section dependence in {x;}. If {z;} is weakly cross sectionally depen-
dent then > Ne ijTit-1 0, and the spillover effects from non-neighboring units are neither
particularly important nor estimable. But the coefficients associated with the neighboring units
can be consistently estimated by simply ignoring the non-neighborhood effects that are of second
order importance in N. If on the other hand {z;} is strongly cross sectionally dependent, then
limy 00 Var (Z jeNe QSijxj,t,l) is not necessarily zero, and the spillover effects from non-neighbors
are in general O, (1) and important. Therefore, ignoring the non-neighborhood effects can lead to
inconsistent estimates. The concepts of weak and strong cross section dependence have been intro-
duced in Chudik, Pesaran, and Tosetti (2009) and these concepts are applied to the IVAR model
in the next section.

Our approach to dealing with the curse of dimensionality can be motivated with several exam-
ples. In economic applications interactions across agents often depends on the number of agents,
with the degree of pair-wise interactions typically declining in the number of units. Consider, for
example, the output and pricing decisions of firms in an industry with N firms. When N is small

(cases of duopoly or oligopoly) pricing and output decisions are inter-related through the way firms

"See Section 3.4.3 of Hastie, Tibshirani, and Friedman (2001) for detailed description of the Lasso and Ridge
regression shrinkage methods.



form expectations about the reactions of other firms, known as conjectural variations. But as N
becomes large such conjectural variations become relatively unimportant and in the competitive
case where IV is sufficiently large conjectural variations are typically set to zero. Another important
example is provided by the Arbitrage Pricing Theory (APT) originally developed by Ross (1976).
Under approximate pricing the conditional mean returns of N risky assets, p,, is modelled in terms

of a fixed number (k) of factor risk premia, A¢, and an N x 1 vector of pricing errors, v;, namely

= B + vy,

where B is an N x k matrix of factor loadings. In the absence of arbitrage opportunities we must have
vy =0 when N is fixed, or vivy = Op(1) as N — oo. (see Hubermann (1982) and Ingersoll (1984)).
It is clear that any pair-wise dependence of pricing errors must vanish as N — oo, otherwise there
will be unbounded profitable opportunities. The third example relates to a multi-country DSGE
model discussed in Chudik (2008). The country interactions need not be symmetric. Nevertheless,
as long as foreign trade weights are granular, the equilibrium solution of such a multi-country
DSGE model has a similar structure to the basic IVAR model set out in the paper. Neighbors in
this setup could be identified in terms of the trade shares, for example. For instance, US would
be Canada’s neighbor considering that 80% of Canada’s trade is with the US, although using the
same metric Canada might not qualify as a neighbor of the US.

In some cases the strict division of individual units into neighbors and non-neighbors might
be considered as too restrictive. In the assumption below we consider a slightly more general set
up where the neighborhood effects are charachterized in terms of ‘local’ averages defined by S!x,

where S; is a known spatial or neighborhood weight matrix.

ASSUMPTION 1 Let K C N be a non-empty index set. For any i € IC, the row i of coefficient

matriz ®, denoted by @), can be divided as

®; = Di + D (7)
where
K
@pill oo = je?ll?.),(N} |Puij| < N (8)



®ai = Sidi, 9)

|6:]] < K, 8; is an h; x 1 dimensional vector containing the unknown coefficients to be estimated
for unit i, which do not change with N, h; < K, h; is fized and generally small, and S; is a known

N X h;‘spatial” weight matriz such that ||S;||; < K.

Assuming K = N and stacking (7)-(9) for i = 1,2, ..., N, we have

P = q)a+q)ba

= DS+ Py, (10)

where @, = ( @u1, Do, "'7¢aN)I7 D, = ( Py, Pro, -'-7¢bN)/a

& 0 0
0
D= : (11)
0
0 0 &'y

h = Zf\il h;, and S is a known h x N matrix defined by S = (S1,Ss,...,Sy)’. Note also that by

assumption the individual elements of ®; are uniformly O (N *1).

Example 1 An example of ®, is given by

6y s O 0 ... 0 0 0
Pa1 P22 Pz O ... 0 0 0
0 o 0 0 0
5, — ' ¢§2 ¢>'33 P34 | | | 7 (12)
0 0 0 0 ... ¢nv_in—2 PN_iN-1 ON-1N
0 0 0 0 .. 0 by Onn

where the nonzero elements are fixed coefficients that do not change with N. This represents a
bilateral spatial representation where each unit, except for the first and the last units, has one left
and one right neighbor. In contrast the individual elements of ®;, are of order O(N~1), in particular

|dnij| < L for any N € N and any i,j € {1,..,N}. The equation for uniti € {2,..,N — 1} can be



written as

Tit = G 1%im1,0-1 + QyTit—1 + P i1 Tit1,4—1 + Py Xe—1 + Ui (13)

Section 8 shows that under weak cross section dependence of errors {uit}, @pXi—1 i 0, while
Section 4 considers problem of estimation of the individual-specific parameters {qu;l, i ¢i,z‘+1}-
We refer to this model as a two-neighbor IVAR model which we use later for illustrative purposes

as well as in the Monte Carlo experiments.

Example 2 As a simple example consider the model

Xt = PpS:Xi—1 +uy, (14)

w = p,S,us+ey, (15)

where p, and p,, are scalar unknown coefficients, and S; and S, are N x N known spatial weights

matrices. This model can be obtained from (1)-(2) by setting

R=(1-p,S.) ", 86 =p, foriec{l,.,N},S=S,, and ®, = 0.

3 Cross Sectional Dependence in Stationary IVAR Models

This section investigates the correlation pattern of {x; }, over time, ¢, and along the cross section
units, i. We follow Chudik, Pesaran, and Tosetti (2009) and define covariance stationary process
{x;t} to be cross sectionally weakly dependent (CWD), if for all weight vectors, w = (wr, ..., wx)’,

satisfying the ‘granularity’ conditions

Iw| = o(N"%), (16)
ﬁ _ 0<N—%) for any 7, (17)

we have

lim Var (w’xt) = 0, for all ¢.
N—oo



{zi+} is said to be cross sectionally strongly dependent (CSD) if there exists a sequence of weight
vectors, w, satisfying (16)-(17) and a constant K such that

lim Var (w'x;) > K > 0. (18)

N—oo

Necessary condition for covariance stationarity for fixed IV is that all eigenvalues of ® lie inside
of the unit circle. For a fixed N, and assuming that max; |\; ()| < 1, the Euclidean norm of
®‘ defined by [Tr (@e'l)é’ )]1/ 2 50 exponentially in ¢, and the process x; = > ;2 ®la,_, will
be absolute summable, in the sense that the sum of absolute values of the elements of ®¢, for
¢ =0,1,..., converges. Observe that as N — oo, Var (x;;) need not necessarily be bounded in N

even if max; |\; (®)| < 1 (and bounded away from 1). For example, consider the IVAR(1) model

with
e 0 0 0
v e 0 0
®=| o 0 0 |-
0
0 0 -~ ¥ o

and assume that var (u;) is uniformly bounded away from zero as N — oo. It is clear that all
the eigenvalues of ® are inside the unit circle if and only if |¢| < 1, regardless of the value of
the neighborhood coefficient, 1. Yet the variance of xpy; increases in N without bounds at an
exponential rate for |¢)| > 1 — |¢|.® Therefore, a stronger condition than stationarity for each N is
required to prevent the variance of x;; from exploding as N — oo. This is set out in the following

assumptions.

ASSUMPTION 2 The elements of the double index process {€it,i € N,t € Z} are independently

distributed random variables with zero means and unit variances on the probability space (2, F, P).

ASSUMPTION 3 (CWD Errors) Matrix R has bounded row and column matriz norms.

81t can be shown that

N o
Var{zn:} = Z PN Z AN i
=0

j=1

k—2
where akg:ﬁ IT1 +k—1—j) for k>1and aze = 1.
j=0

10



ASSUMPTION 4 (Stationarity and bounded variances) There exists a real €, in the range 0 <
e < 1, such that’

|| <1—e. (19)

Remark 1 Assumptions 2 and 3 imply {uy} is CWD, since for any weight vector, w, satisfying
(16) we have Var (w'u;) < ||w|?|R]|, |R|,, — 0 as N — oo. For future reference define covari-
ance matriz ¥ = Var (u;) = RR’ and denote the i'" diagonal element of ¥ by 0% = Var (u;).
Note also that ||Z|| < |R||; |R|lo < K, which as shown in Pesaran and Tosetti (2009) includes
all commonly used processes in the spatial literature, such as spatial autoregressive and spatial er-
ror component models pioneered by Whittle (1954), and further developed by Cliff and Ord (1973),
Anselin (1988), and Kelejian and Robinson (1995).

Remark 2 It is not necessary that proximity is measured in terms of physical space. Other mea-
sures such as economic (Conley (1999), Pesaran, Schuermann, and Weiner (2004)), or social
distance (Conley and Topa (2002)) could also be employed. All these are examples of dependence
across nodes in a physical (real) or logical (virtual) networks. In the case of the IVAR model, de-
fined by (3) and (4), such contemporaneous dependence can be modelled through the N x N network

topology matriz R.10-11

Remark 3 The IVAR model when combined with u; = Re; yields an infinite-dimensional spa-
tiotemporal model. The model can also be viewed more generally as a ‘dynamic network’, with R

and ® capturing the static and dynamic forms of inter-connections that might exist in the network.

Remark 4 (Eigenvalues of ®) Assumption 4 implies polynomial ® (L) is invertible (for any N €
N) and
0(®) <1—k¢, (20)

which is a sufficient condition for covariance stationarity. Assumption 4 also delivers a bounded

variance for x;, as N — oo.

?Our assumptions concerning coefficient matrix @ can be relaxed so long as they hold for all N > Ny (where N
is a fixed constant that does not depend on N). But in order to keep notations and exposition simple, we simply
state that Assumptions 1 and 4 hold for any value of N.

10A network topography is usually represented by graphs whose nodes are identified with the cross section units,
with the pairwise relations captured by the arcs in the graph.

1Tt is also possible to allow for time variations in the network matrix, R, to capture changes in the network
structure over time. However, this will not be pursued here.

11



Proposition 1 Consider model (1) and suppose that Assumptions 2-4 hold. Then for any arbitrary
sequence of fized weights w satisfying condition (16), and for any t € Z,

lim Var (ZTy:) = 0. (21)

N—oo

Assumptions 2-4 are thus sufficient conditions for weak dependence. Proposition 1 has several

interesting implications. Suppose that we can impose limiting restrictions given by Assumption 1.

Corollary 1 Consider model (1) and suppose Assumptions 1-4 hold. Then, for any i € IC,

lim Var (xit — Plixi—1 — Uz‘t) =0. (22)

N—o0

Remark 5 It is also possible to establish (22) under the following conditions:
_1
lull =0 (N), (23)

=] =0 (N7, (24)

which are less restrictive than condition (8) and the Assumption 3 on the boundedness of the column
and row norms of matriz R. These stronger conditions are needed for establishing the asymptotic

properties of the CALS estimator to be proposed below in Section 4.

3.1 IVAR Models with Strong Cross Sectional Dependence

The IVAR model can generate observations with strong cross section dependence if the boundedness
assumption on the column and row norms of R and ® are relaxed. The analysis of this case is
beyond the scope of the present paper and is considered in Pesaran and Chudik (2010). But even if
the boundedness assumptions on R and ® are maintained, it is still possible for z;; to show strong
cross section dependence if the IVAR model is augmented with common factors. The basic IVAR
model, (3), can be augmented with exogenously specified common factors in a number of different
ways. Here we consider two important possibilities. First, a finite number of common factors can
be added to the vector of the error terms, defined by (4). This is equivalent to assuming that a
finite number of the columns (or linear combinations of the columns) of R have unbounded norms.

This compounding of the spatial (weak) cross section dependence with the strong factor dependence

12



complicates the analysis unduly and will not be pursued here. A more attractive alternative would
be to assume that

(1] (L) (Xt - — Fft) = Uy, for t = ]_, 2, ...,T, (25)

where ® (L) =1 - ®L, o = (a1, ...,an) is an N x 1 vector of fixed effects, f; is an m x 1 vector of
unobserved common factors (m is fixed but otherwise unknown), I' = (v, 73, ..., 7y) is the N x m
matrix of factor loadings, and as before u; = Rey. Under this specification the strong cross section

dependence of z;; due to the factors is explicitly separated from other sources of cross dependence

as embodied in ® and R.

4 Estimation of a Factor Augmented Stationary IVAR Model

We now consider the problem of estimation and inference in the case of the factor augmented IVAR
model as set out in (25), as both N and T tend to infinity. We focus on parameters of the i
equation and assume that ¢’ (the i*" row of matrix ®) can be decomposed as in Assumption 1. See
(7)-(9). As an important example we consider the two-neighbor IVAR model defined in Example
1, where the parameters of interest is given by the elements of the i*" row of matrix ®, given by
(12). In what follows we set &;;, = S!x;, where S; is defined by (9), and note that it reduces to
(@i—1t, Tit, Tit1,¢)" In the case of the two-neighbor IVAR model.

We suppose that the following assumptions hold.

ASSUMPTION 5 (Awailable observations) Available observations are Xo, X1, ..., X7 with the start-

ing values Xo =Y 0 ®'Re_; + a + I'fy.
ASSUMPTION 6 (Common factors) The unobserved common factors, fit, foty ..., fmt, are co-

variance stationary and follow the general linear processes:

fst =g (L)ege, for s=1,2,...,m, (26)

where Yy (L) = "2 ¥ L with absolute summable coefficients that do not vary with N, the factor
innovations, € s, are independently distributed over time with zero means and a constant variance,
agfs, that do not vary with N. €74 ’s are also distributed independently of the idiosyncratic errors,

g, for any i € N, any t,t' € T, and any s € {1,..,m}. E (ff]) exists and is a positive definite
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matrix.

ASSUMPTION 7 (Ezistence of fourth order moments) There exists a positive real constant K

such that £ <53¥5t> <K and F (Eglt) < K foranys€{l,..,m}, anyt € T and any i € N.

ASSUMPTION 8 (Bounded factor loadings and fized effects) For any i € N, ~; and «; do not

change with N, ||v;|| < K, and |a;| < K.

We follow Pesaran (2006) and introduce the following vector of cross section averages Xyyy =
W'x;, where W = (wq,ws,...,wy) and {Wj};.vzl are my, X 1 dimensional vectors. Subscripts
denoting the number of groups are again omitted where not necessary, in order to keep the notations
simple. Matrix W does not correspond to any spatial weights matrix. It is any arbitrary matrix

of pre-determined weights satisfying the following granularity conditions

N

Wl = o(Nn7H), (27)
Iw, | :
wi = o

Multiplying (25) by the inverse of polynomial ® (L) and then by W’ yields

) for any j. (28)

Xwi = aw + Dwf; +owr, (29)
where oty = Wa, Ty = W'T, Uy, = W'y, and

vi=Y du. (30)
=0

Under Assumptions 2-3, {u;} is weakly cross sectionally dependent and

[ee]
Z W e'se''w
=0

W= || @]
{=0

- o), G1)

Var (ow:)ll =

)

2

Y

IN

where |[W]|? = O (N71) by condition (27), ||| = O (1) by Assumption 3 (see Remark 1) and
Soco |2 < > |®[° = O (1) under Assumption 4. This implies Ty = O, (Nfé) and the

14



unobserved common factors can be approximated as
) — -1 _ 1
(TwTw) T Rwe —aw) =i+ 0, (N3), (32)

provided that the matrix f;vfw is non-singular. It can be inferred that the full column rank of
Ty is important for the estimation of unit-specific coefficients. Pesaran (2006) shows that the full
column rank condition is not, however, necessary if the object of the interest is the cross section
mean of the parameters, F(d;), as opposed to the unit-specific parameters, §;, which are the focus
of the current paper.

Using (25), the equation for unit ¢ € K can be written as:
Ty — a; — vify = 6;S] (x¢—1 —a — If;_q) + Cit—1 + Wi, (33)
where
_1
Cit = dyve = Op (N 2) ; (34)

since by Assumption 1 ¢;;, satisfies condition (27). It follows from (29) that

vify — @i Tfi_1 = bj1Xw + bjpXw—1 — (bir + bi2)' @w — b1 Tw: — biyTw,—1, (35)

. 1__ ., 1__
where b1 = v, (TyyTw ) Ty and by = —8,8/T (T Ty )  Tyy. Substituting (35) into (33)
7 w w i1 w w

yields

Tt = 85Sixi—1 + b1 Xt + bloXwii—1 + ¢ + wir + it (36)
where ¢; = a; — ¢}, — (b;1 + biz) @y, and
Git = Ciy—1 — P Owi — biTwy—1 = O <N7%> : (37)
Consider now the following auxiliary regression based on (36):
Tit = &y + €it, (38)

/

i1 Dl ci)/ is the k; x 1 vector of coefficients associated with the

!
where € = uy + qit, ™ = (5i’b
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!/
regressors gy = (52775_1,2{,‘,“?{4”71, 1) , and k; = h; + 2m,, + 1. The parameters of interest, §;,
can now be estimated using the cross section augmented regression defined by (38). We refer to
such an estimator of §; as the cross section augmented least squares estimator (or CALS for short),

~

and denote it by d; cars. We have

0iCcALS
N b1 T , o
= . = Z 8it8it Z gitTit- (39)
b2 =1 =
Ci

Also using partitioned regression formula,

dicars = (ZMpZ;) ' ZiMpyx;o, (40)
where
My =1y -H(HH) H, H= Xy, Xy (-1),7], (41)
Z, = [Szl (_1)a£z’2 (_1)a"-7£ih¢ (_1)] ) (42)
Eir (_1) = (gir[)v "'agi,r,Tfl)/7 for r € {1’ ] hl} )
T is a T x 1 vector of ones, Xy = (XiW1o, s XWmuyo), Xw (=1) = Xw1 (=1),.o; Xy, (—=1)],

XWso = (fwsl, ...,fWST)/, XWs (—1) = (fwso, -'-,EW&T—I)/ , for s € {1, . mw}, and x;o = (a:il, ey a:iT)’,

For future reference also let v;; = Slv, = §;, — S/T'f; — Sla,

Q=[F,F(-1),7], (43)
and
1 oy ayy,
A e = 44
(2m~+1)x (2my+1) 0 FW O xmy ) ( )

0 Omxm, T

where F = (fio, ..., fno), F (= 1) = [f1 (1), e, £n (= D)), £r0 = (fr1y o, frr) and £ (=1) = (fro, -y frr—1)'
for r € {1,..,m}.
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First we consider the asymptotic properties of 7; (and Sip aLs) as (N, T) 25 50, in the case
where the number of unobserved common factors equals to the dimension of Xy, (m = my,), and

make the following additional assumption.

ASSUMPTION 9 (Identification of ;) There exists Ty and No such that for all T > Ty, N >
—1
Ny and for any i € K, <T*1 Zle gitggt> exists, C(n),; = E (gug};) is positive definite, and
-1
|ean.] <

Remark 6 Assumption 9 implies Ty is a square, full rank matriz and, therefore, the number of
unobserved common factors is equal the number of columns of the weight matriz, W (m = my,).
In cases where m < my,, full augmentation of individual models by (cross sectional) averages is not

necessary.

Theorem 1 Let x; be generated by model (25), Assumptions 1-9 hold, and W is any arbitrary
(pre-determined) matriz of weights satisfying conditions (27)-(28), and Assumption 9. Then for

any i € K and as (N, T) EN 0o, ; defined in equation (39) has the following properties.

a)

~

p
Tl'z'—ﬂ'i—>0.

b) If in addition T/N — », with 0 < 3 < o0,

i (Fi—m) 2N (0,1), (45)

TN
&

O(N),ii

N=

where J%N)ﬂ.i =Var (uy) = E (e/RR'e;), and C Ny,i 08 the square oot of the positive definite

—

matriz C(yy; = E (gig;;). Also

¢)

Cinyi — Civya 20, and ()i — F(vyai 2 0,

where

T T

~ 1 R 1 B

Cni=rm > it O(nyii = T > g, (46)
t=1

~ )~
and Uiy = Tip — Gy Ty
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Remark 7 Suppose that in addition to the assumptions of Theorem 1, the limits of C(_Al,)i and

O'%N) i a8 N — oo, exist and are given by C(_l) and o? respectively.'> Then (45) yields

00),i’ (00),4’

VT (7 —m) 2N (0,02, .00 ) (47)

(00),i

Consider now the case where the number of unobserved common factors is unknown, but it is
known that m,, > m. Since the auxiliary regression (38) is augmented possibly by a larger number
of cross section averages than the number of unobserved common factors, we have potential problem
of multicollinearity (as N — oo). But this does not affect the estimation of §; so long as the space
spanned by the unobserved common factors including a constant and the space spanned by the
vector (1,%};,)" are the same as N — oo. This is the case when Ty has full column rank.

For this more general case we replace Assumption 9 with the following, and suppress the sub-

script N to simplify the notations.

ASSUMPTION 10 (Identification of §;) There exists Ty and Ny such that for all T > Ty, N >
Ny and for any i € K, (T*1Z§MHZ¢)71 exists, Ty is a full column rank matriz, Q,; = F (virvl,) =

20 SIB'RR'®S; is positive definite, and ||Q,|| = O (1).

Theorem 2 Let x; be generated by model (25), Assumptions 1-8, and 10 hold, and W is any
arbitrary (pre-determined) matriz of weights satisfying conditions (27)-(28) and Assumption 10.
Then for any i € K, and if in addition (N,T) 9, oo such that T/N — 3, with 0 < 3 < oo, the
asymptotic distribution Ofgi,CALS defined by (40) is given by.

VT

Oij

3 (& D
Q2 (dicars —8:) 2 N (0,1,,), (48)
where 02, = Var (uit), Qi = E (virvl,) and viy = Slvy = > 72, S;@Zut,g.

Remark 8 As before, we also have

\/T (gi,CALS — 5@') g N (0,0’% Q! ) ,

00),11" "0 (00),i

where Qv(oom = limy_ 00 Oy, and O‘%Oo) i = Impy oo Uzzi, assuming limits exist.

128 ufficient condition for limy_, oo C<NM to exist is the existence of the following limits (together with Assumptions
1-8): imy—co Sier, imy—oo SiT, limy oo W'T, limy—oc W', and limy—oo o0, Si®‘RR/'®'*S;.
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5 Monte Carlo Experiments: Small Sample Properties of CALS

Estimator

5.1 Monte Carlo Design

In this section we report some evidence on the small sample properties of the CALS estimator in the
presence of unobserved common factors and weak error cross section dependence and compare the
results with standard least squares estimators. Objectives of the experiments are twofold. First,
we would like to investigate how well the CALS estimator performs in the presence of unobserved
common factors. Second, we would like to find out the extent to which cross section augmentation
affects the small sample properties of the estimator when the cross section dependence is weak, and
therefore cross section augmentation is asymptotically unnecessary. The focus of our analysis will
be on the estimation of the individual-specific parameters in an IVAR model that also allows for
other inter-dependencies that are of order O(N~1).

The data generating process (DGP) used is given by
Xt —vft = ® (X1 —7fic1) + g, (49)

where f; is the only unobserved common factor considered (m = 1), and v = (74, ...,7y) is the
N x 1 vector of factor loadings.

We consider two sets of factor loadings to distinguish the case of weak and strong cross section
dependence. Under the former we set v = 0, and under the latter we generate the factor loadings ,,
fori =1,2,..., N, from a stationary spatial process in order to show that our estimators are invariant
to possible cross section dependence in the factor loadings. Accordingly, the factor loadings are
generated by the following bilateral Spatial Autoregressive Model (SAR) process

a
= (infl + 7i+l) — Qylly + MNryis 0< Ay <1, (50)

’Yi_/*’éfy: 92

where n,; ~ I[IDN (0, 07277). As established by Whittle (1954), the unilateral SAR(2) scheme

Vi = Yy1Vie1 T Vy2Yie2 + Ny (51)
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with ¥, = —2by, ¥9 = b% and b, = (1 —4/1- a?Y) /a~, generates the same autocorrelations as
the bilateral SAR(1) scheme (50). The factor loadings are generated using the unilateral scheme

(51) with 50 burn-in data points (i = —49,...,0) and the initialization, v_5; = v_59 = 0. We set

2

iy such that Var (v;) = 1.13 The common factors are generated

ay =04, p, =1, and choose o

according to the AR(1) process

fe=ppfie1 + s g~ IIDN (0,1 = p})

with py = 0.9.
In line with the theoretical analysis, the autoregressive parameters are decomposed as ® = &, +

®;,, where ®, captures own and neighborhood effects as in

¢ 1 00 0
Yy @3 Yy O 0
o, — 0 vz @3 ¥U3 0 7
0 0 vy ¢4
YN-1
0 0 0 YN PN

and the remaining elements of ®, defined by ®;, are generated as

)\iwij fOI‘j %{i—l,i,i-ﬁ-l}
®pij = , Where
0 forje{i—1,ii+1}

i ~ IIDU (=0.1,0.2) and wy; = —2—, (52)
j=15ij
with ¢;j ~ ITDU (0,1). This ensures that ¢y;; = Op(N™'), and limy oo E (¢y;;) = 0, for all i and
J.

With @, as specified above, each unit i, except the first and the last, has two neighbors: the

13The variance of factor loadings is given by

s _ (149 [(1-v2) - ]

o (1= ¢52)
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‘left’ neighbor i — 1 and the ‘right’ neighbor i + 1. The DGP for the i*" unit can now be written as

T = @11+ U1 + QypXe—1 + 1S — (A1) fio1 + ua,
Tit = ©i%ig—1 + U (Tic1-1 + Tig1,4-1) + Gyxe—1 + vift — (DY) fro1 +uir, i € {2,.., N — 1},
TNt = PNTNt—1+UVNTN-1t—1+ ¢§,7Nth1 +yn St — (¢IN‘>’) fr—1 + unt.

To ensure that the DGP is stationary we generate ¢; ~ I1DU (0.4,0.6), and ¢; ~ [IDU (—0.1,0.1)
for ¢ # 2. We choose to focus on the equation for unit ¢ = 2 in all experiments and we set ¢y = 0.5
and 15 = 0.1. This yields ||®| . < 0.9, and together with }pf| < 1 it is ensured that the DGP is
stationary and the variance of x;; is bounded in N. The cross section averages, T, are constructed
as simple averages, Ty = N1 Zf;l Tit.

The N-dimensional vector of error terms, uy, is generated using the following SAR model:

Ul =  QuU2t + €1t

ay )
Uit = 5 (uiq,t + UiJrl,t) +eiu, i €{2,..,N -1}
UNt = GuUN-1t+ ENt,

for t = 1,2,..,7. We set a, = 0.4 which ensures that the errors are cross sectionally weakly
dependent, and draw €, the i*" element of &;, as [IDN (O, ag). We set 02 = N/tr (R,R!) so that

on average Var(uy) = 1, where R, = (I — a,S) !, and the spatial weights matrix S is

01 0 0 0
1
3 0 3 0 0
o £ o 1 0
S — 2 2 (53)
1 1
3 0 3
0 0 0 1 0

In order to minimize the effects of the initial values, the first 50 observations are dropped.
N € {25,50, 75,100,200} and T' € {25, 50,75,100,200}. For each N, all parameters were set at the

beginning of the experiments and 2000 replications were carried out by generating new innovations
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€it, Ny and 1,;.
The focus of the experiments is to evaluate the small sample properties of the CALS estimator
of the own coefficient ¢y = 0.5 and the neighboring coefficient ¢, = 0.1, in the case of the second

cross section unit.'* The cross-section augmented regression for estimating (¢5,15) is given by
Top = o+ Vo (T14—1 + X34—1) + PoT2—1 + 02,0T¢ + 621T4—1 + €24. (54)

We also report results of the Least Squares (LS) estimator computed using the above regression
but without augmentation with cross-section averages. The corresponding CALS estimator and
non-augmented LS estimator are denoted by ©5 c4r,5 and P g (own coefficient), or @270 ars and
1//;27 s (neighboring coefficient), respectively.

To summarize, we carry out two different sets of experiments, one set without the unobserved
common factor (7 = 0), and the other with the unobserved common factor (v # 0). There are
many sources of interdependence between individual units: spatial dependence of innovations {u; },
spatiotemporal interactions due to coefficient matrices ®, and ®;, and finally in the case where
v # 0 the cross section dependence also arises via the unobserved common factor, f;, and the
cross-sectionally dependent factor loadings, 7,. Additional intermediate cases are also considered,

the results of which are available in a Supplement from the authors, upon request.'®

5.2 Monte Carlo Results

Tables 1 and 2 give the bias (x100) and RMSE (x100) of CALS and LS estimators as well as
size and power of tests based on them at the 5% nominal level. Results for the estimated own
coefficient, Py cars and Py 1g, are reported in Table 1. The top panel of this table presents the
results for the experiments with an unobserved common factor (v # 0). In this case, {z;} is CSD
and the standard LS estimator without augmentation by cross section averages is not consistent.
The bias of $, ;¢ is indeed quite substantial for all values of N and 7" and the tests based on @y 1 ¢
are grossly oversized. CALS, on the other hand, performs well for T > 100 and all values of N. For

smaller values of T, there is a negative bias, and the test based on $y -4 is slightly oversized.

" Similar results are also obtained for other cross section units.

"The supplement presents the results for the experiments with all combination of zero and/or non-zero coefficient
matrix ®;, zero or non-zero factor loadings -y, and low or high cross section dependence of errors (a, = 0.4 or
a, =0.8).
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This is the familiar time series bias where even in the absence of any cross section dependence
the LS estimator of the autoregressive coefficient is biased downward (when ¢y > 0) in small T
samples.

Moving on to the experiments without a common factor (given at the bottom half of the table),
we observe that the LS estimator only slightly outperforms the CALS estimator. In the absence
of common factors, {x;} is weakly cross sectionally dependent and therefore the augmentation
with cross section averages is (asymptotically) innocuous. Distortions coming from cross section
augmentation are in this case very small. Note that the LS estimator is not efficient because the
residuals are cross sectionally dependent. Augmentation by cross-section averages helps to reduce
part of this dependence. Nevertheless, the reported RMSE of 5 41, does not outperform the
RMSE of 5 15

The estimation results for the neighboring coefficient, v,, are presented in Table 2. These are
qualitatively similar to the ones reported in Table 1. Cross section augmentation is clearly needed
and very helpful when common factors are present. But in the absence of such common effects, the
presence of weak cross section dependence, whether through the dynamics or error processes, does
not pose any difficulty for the least squares and the CALS estimators so long as IV is sufficiently
large. Finally, not surprisingly, the estimates are subject to the small T bias irrespective of the size
of N or the degree of cross section dependence.

Figure 1 plots the power of the CALS estimator of the own coefficient, $9 -4y, (top chart)
and the neighboring coefficient, 17)270 ALs, (bottom chart) for N = 200 and two different values of
T € {100,200}. These charts provide a graphical representation of the results reported in Tables
1-2, and also suggest significant improvement in power as 7' increases for a number of different

alternatives.

6 An Empirical Illustration: a spatiotemporal model of house

prices in the U.S.

In a recent study Holly, Pesaran, and Yamagata (2009), hereafter HPY, consider the relation
between real house prices, p;, and real per capita personal disposable income y;; (both in logs) in a
panel of 49 US States over 29 years (1975-2003), where i = 1,2,...,49 and ¢t = 1,2, ..., T. Controlling

for heterogeneity and cross section dependence, they show that p;; and y;; are cointegrated with
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coefficients (1, —1), and provide estimates of the following panel error correction model:
Apit = ¢; +wi(pit—1 — Yit—1) + 01:Api 1 + 02i Ayt + Vit (55)

To take account of unobserved common factors, HPY augmented (55) with simple cross section
averages, APy = 529, Apit /49, Ay = X2 Ay /49, and pr1 — Je—1 = 312, (pig—1 — Yir—1)/49, and
obtained common correlated effects mean group and pooled estimates (denoted as CCEMG and
CCEP) of {w;, d1i,d2;} which we reproduce in the left panel of Table 3. HPY then showed that
the residuals from these regressions, v;, display a significant degree of spatial dependence. Here
we exploit the theoretical results of the present paper and consider the possibility that dynamic
neighborhood effects are partly responsible for the residual spatial dependence reported in HPY.
To this end we considered an extended version of (55) where the lagged spatial variable Apitfl =
Z;V: 1 $ijApj—1 is also included amongst the regressors, with s;; being the (4, j) element of a spatial

weight matrix, S, namely
Apit = ¢ + wi(pit—1 — Yit—1) + 01 Apit—1 + V; AP 1 + 02i Ayt + Vit (56)

Here we consider a simple contiguity matrix s;; = 1 when the States ¢ and j share a border and
zero otherwise, with s; = 0. Possible strong cross section dependence is again controlled for by
augmentation of the extended regression equation with Ap;, Ag:, and p;—1 — 7¢—1. Estimation
results are reported in the right panel of Table 3. The dynamic spatial effects are found to be
highly significant, irrespective of the estimation method, increasing R? of the price equation by
6-9%. The dynamics of past price changes are now distributed between own and neighborhood
effects giving rise to much richer dynamics and spill over effects. It is also interesting that the
inclusion of the spatiotemporal variable Apit_l in the model has had little impact on the estimates

of the coefficient of the real income variable, do;.

7 Concluding Remarks

This paper has proposed restrictions on the coefficients of infinite-dimensional VAR (IVAR) that
are binding only in the limit as the number of cross section units (or variables in the VAR) tends to

infinity to circumvent the curse of dimensionality. The proposed framework relates to the various

24



approaches considered in the literature. For example when modelling individual households or firms,
aggregate variables, such as market returns or regional /national income, are treated as exogenous.
This is intuitive as the impact of a firm or household on the aggregate economy is small, of the
order O (N *1). This paper formalizes this idea in a spatiotemporal context.

The paper establishes that in the absence of common factors and when the degree of cross
section dependence is weak, then equations for individual units decouple as N — oo, and can
be consistently estimated by running separate regressions. In the presence of observed and/or
unobserved common factors, individual-specific VAR models can still be estimated separately if
they are conditioned on the common factors. Unobserved common factors can be approximated by
cross sectional averages, following the idea originally introduced by Pesaran (2006).

The paper shows that the global VAR approach of Pesaran, Schuermann, and Weiner (2004) can
be motivated as an approximation to an IVAR model featuring all the macroeconomic variables.
Asymptotic distribution of the cross sectionally augmented least-squares (CALS) estimator of the
parameters of the unit-specific equations in the IVAR model is established both in the case when the
number of unobserved common factors is known, and when it is unknown but fixed. Small sample
properties of the proposed CALS estimator were investigated through Monte Carlo simulations, and
an empirical illustration shows the statistical significance of dynamic spill-over effects in modelling
of U.S. real house prices across the neighboring States.

Topics for future research include estimation and inference in the case of IVAR models with
dominant individual units, analysis of large dynamic networks with and without dominant nodes,

and an examination of the relationships between IVAR and dynamic factor models.
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Figure 1: Power Curves for the CALS t-tests of Own Coefficient, (5 (the upper chart) and the Neighboring

Coefficient, 15 (the lower chart), in the Case of Experiments with v # 0.
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Table 3: Alternative Average Estimates of the Error Correction Models for House
Prices Across 49 U.S. States over the Period 1975-2003

Holly et al. (2009) regressions | Regressions augmented with
without dynamic spatial effects dynamic spatial effects
Apiy MG CCEMG CCEP MG CCEMG | CCEP
Dit—1 — Yi,t—1 —0.105 —0.183 —-0.171 —0.095 —0.154 | —0.152
(0.008) (0.016) (0.015) (0.009) (0.018) (0.018)
Api 1 0.524 0.449 0.518 0.296 0.188 0.272
(0.030) (0.038) (0.065) (0.060) (0.049) (0.082)
Ayis 0.500 0.277 0.227 0.497 0.284 0.201
(0.040) (0.059) (0.063) (0.040) (0.059) (0.088)
Ap; 4 - - - 0.331 0.350 0.431
’ (0.066) (0.085) (0.105)
R? 0.54 0.70 0.66 0.60 0.79 0.72
Average Cross Correlation
B 0.284 —0.005 —0.016 0.267 —0.012 | —0.016
Coefficients ( p )

Notes: MG, CCEMG and CCEP, respectively, stand for the Mean Group, the Common Correlated Effects Mean Group, and
the Common Correlated Effects Pooled estimators defined in Pesaran (2006). Augmentation by simple cross section averages,
Apr = E?glApit/49, Age = Z?ilAyit/élg, and pr—1 — Ge—1 = Z?il(pi,tfl — ¥i,t—1)/49 , is used to deal with the possible
effects of strong cross section dependence. Standard errors are in parentheses. 5 denotes the average pair-wise correlation of

the residuals from the cross-section augmented regressions across the 49 U.S. States.
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Appendix

A Lemmas and Proofs

Proof of Proposition 1. For any N € N, the variance of x; is

Q=Var (x;) = Y_2T®", (57)
£=0
and under Assumptions 2-4
] <I=1)" 12 < K. (58)
£=0

Hence, it follows that for any arbitrary non-random vector of weights satisfying the granularity condition (16),
[Var (w'x)|| = [w'@w] < [[o (@) (w'w)|, (59)

where 0 () = ||| < K, and w'w = O (N~') by condition (16). Therefore, limy oo [|[Var (w'x:)[| =0. =
Proof of Corollary 1. Assumption 1 implies that for any i € K, vector ¢, satisfies condition (16). It follows from
Proposition 1 that

]\}im Var (¢,;x:) = 0 for i € K. (60)
Also (1) implies that

Tit — qﬁgyixt_l — Ui = ¢;,in—1, for any ¢ € K and any N > i. (61)

Taking variance of (61) and using (60) now yields (22). =

Lemma 1 Suppose that Assumptions 2, 3 and 4 hold. Then for any p,q € {0,1} and for any sequences of non-random
vectors 0 and ¢, such that ||0|| = O (1) and |||, = O (1), as (N, T) 2, 50 we have

T
1 /
72 0vip 50, (62)
t=1
and
1 I
T E 0'vi_pp'vi_g — B (0'vi_pp'vi_q) = 0, (63)

t=1

where the process vy is defined by (80). Furthermore, if 0] = O (N_%) then

T
g > 6'v. %0, (64)
t=1
and
T
\/TN Z O'vi_pp'vi_yg— E (\/N@'vt,pcp'vt,q) Zo. (65)
t=1

Proof. Let Tn = T (N) be any non-decreasing integer-valued function of N such that limy_ec Tn = oo. Consider
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the following two-dimensional array {{K;N’tht}:ifoo}?:l'/ defined by
1
KNt = Eelvt_p,

where the subscript N is used to emphasize the number of cross section units,'% and {Fn:¢} denotes the array of
o-fields that is increasing in ¢ for each N and kn: is measurable with respect to Fn¢. Let {{CNt}:ifoo}j\/o:l be
two-dimensional array of constants and set ey = ﬁ for all t € Z and N € N. Note that

o[ ()] )

i 0D PP PY
£=mpyp

Sny (66)

IN

where m,,, = max {n,p} and'’

Sp = Su 0|2 ||| ||®|2(mmr—r) B|* ).
Ne%{| I [1%2]] [ >l

£=0

Under Assumptions 2, 3 and 4, ¢,, has the following properties

o < K, and ¢, — 0 as n — oo. (67)

By Liapunov’s inequality, E|E (kn¢ | Fnt—n)| < \/E {IE (knt | fN,t_n)}Q} (Theorem 9.23 of Davidson (1994)). It
follows that the two-dimensional array {{”Ntvat}:Z—oo}]ovozl is Li-mixingale with respect to the constant array
{cnt}. Equations (66) and (67) establish array {kn¢/cn¢} is uniformly bounded in Lo norm. This implies uniform

integrability.!® Note that

i S v — fm 3oL —1< (68)
Ngnoo CNt = NE;noo E o 05
t=1 t=1
lim TZNC2 lim TZN L o (69)
Nt = 7o — U
N—oo Py N—oo =1 TN

o . oL .. . . . T Ly
Therefore array {{rnt, th},fifoo}N:I satisfies conditions of a mixingale weak law,'? which implies Y, rn¢ — 0,

ie.:
1 T L
72 0'vi- 0,
t=1

as (N, T) L oo at any rate. Convergence in L; norm implies convergence in probability. This completes the
proof of the result (62). Under the condition ||@| = O (Nfé), result (64) follows from result (62) by noting that

|vie| =o ).

Note that vectors v, and @ change with N as well, but the subscript N is omitted here to keep the notation
simple.

"We use submultiplicative property of matrix norms (||AB|| < ||A|/||B|| for any matrices A, B such that AB is
well defined) and the fact that the spectral matrix norm is self-adjoint (i.e. ||A'|| = ||A]]). Note also that Assumption
4 implies Y, H‘I>£H2 =0(1).

18 Sufficient condition for uniform integrability is L4 uniform boundedness for any e > 0.

YDavidson (1994, Theorem 19.11).
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Result (63) is established in a similar fashion. Consider the following two-dimensional array
{{rne, P} o} oy defined by
iE (Olut, go'vt, )
TN P q)»

]- 0/ !
KNt = 7T Vt—pP Ut—q —
N

where as before Ty = T (N) is any non-decreasing integer-valued function of N such that limy .o In = 00. Set

CNt = ﬁ for all t € Z and N € N. Note that

CN

oo} (oo}
ZG’@S_put_S Z @ Ny ¢ | Fnyn | — E (0'vi_pp'vi_yg),

s=p l=q

Z Z [OIQS_put_scp"PZ_qut,g —F (0/<I>S_put_stpl<1>€_qut,g)] .

S=Mpp b=mpqg

Let 0, = 8'®° and ¢, = ' ®*, then

K 2 o] o] o] (o)
E{[E (CT]\\: |FN’t_n>} } - Z Z Z Z O pUi—spy_ qUt— 08yt py_ qUt— a) =
E =Mgp j=mp
2

= >. > B0 u e gu) | (70)

S=Mpn b=mgn

Using the independence of u; and uy for any t # t' (Assumption 2), we have

Z Z E(O;_putfscp;_;,qut,g) = Z 0'*‘1’87’72@'[7‘7@
s=Mpp b=mgn {=max{p,q,n}

Sa,n»

where

m ¢
San = SUP {I|9|| el I=] @] @) }
NeN

=0
and x; (p,n,q) = max {0,¢ — p,n — p} + max{0,p — ¢,n — q}. || £]| = O (1) by Assumptions 2 and 3, 332, | ®|*" =
O (1) by Assumption 4, and 0] = O (1), ||¢]l < |lell; = O (1). Sa,n has the following properties

Sa,0 < Ka, and ¢4, — 0 as n — oo. (71)

Similarly, since by Assumption 2 u; and uy are independently distributed for any ¢ # #', the first term on the right

20Ag before, {Fn:} denotes the array of o-fields that is increasing in ¢ for each N and kn¢ is measurable with
respect to Fn¢.
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side of equation (70) is bounded by ¢p ,:*!

Son = sup IBI- 017 lell® > @20 ok 4

£=max{p,q,n}

0o 2
+11017 I ] [ x> (Z |‘I>||2’Z) } ,

£=0

where x5 (p,n,q) = max {0,n — p} + max {n — ¢,0}, B is an N x N matrix with the (¢, j) element given by ||®;]|,
and W;; is an N X N matrix of fourth moments with its (n,s) element given by E (uitujtuntust). It follows from

Assumptions 2-4 that <, has following properties??

Spo < Ky, and ¢, — 0 as n — oo. (72)

CNt

2
E { [E (”N’f | fN,t,n)] } is therefore bounded by ¢, = Sa,n + Sp,n- Equations (71) and (72) establish

o< K, s, —0asn— oo. (73)

By Liapunov’s inequality, E |E (kn¢ | Fnt—n)| < \/E {[E (knt | fN,t,n)}z} (Theorem 9.23 of Davidson (1994)). It

oo

follows that the two-dimensional array {{HNt,]:N,t}?iioo}Nzl

, is Li-mixingale with respect to a constant array
{cnt}. Furthermore, (73) establishes that array {kn¢/cn¢} is uniformly bounded in Ly norm. This implies uni-
satisfies conditions of a

form integrability.?® Since also equations (68) and (69) hold, array {{/{Nt,fN,t}:ifoo}jvozl

mixingale weak law (Theorem 19.11 of Davidson (1994)), which implies ngl N 0, i.e.

T
1 L
T Y 0'v v — E (v pp'vi-g) S0,

t=1

as (N,T) ENISS Convergence in L; norm implies convergence in probability. This completes the proof of result (63).

Under ||8]| = O (N_%), result (65) follows from result (63) by noting that H\/NGH =0(1). m

p (Gg_put,ﬂ%_qut,geg_put,jﬂﬁl_qut,d) is non-zero only if one of the following four cases hold: i) s = ¢ = j = d,
W) s=40LFAj, and j=d, i) s=j,5j £, and L =d, or w) s =d, d# ¢, and £ = j.

*?Matrix B is symmetric by construction. Therefore |B|| < /[B]_, B[, = || B|l.., where
N
B = v
Bl ne?%??fm; 1%
N N N
= max Z e max Z Z |rierjersernel
s=1 j=14=0
N N /N N
< nG?ll,a..),(N}Ziegl?i(N} Z (Z Irieriel -y Irsmnw>
s=1 j=1 \¢=0 2'=0
N N N N
< max |TserTmer] | - | max |rier el
2 2 2
< [RRY, <R[S IR|Y < K

23Qufficient condition for uniform integrability is Li4. uniform boundedness for any ¢ > 0.
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Lemma 2 Suppose that x; is generated by model (25), and that Assumptions 2 to 8 hold. Then as (N, T) ER 00,
for any p,q € {0,1}, and for any sequence of non-random vectors @ and ¢ with growing dimension N x 1 such that

16]l, = 0 (1) and [lgll, = O (1), we have

T
% > 0%y~ E(0'x,) >0, (74)
t=1
and
1
T ZO'xt,pcp'xt,q — E(6'x¢—pp'x1—q) = 0. (75)

t=1

Furthermore, for ||| = O (1) and ||¢]||; = O (1) we have

T
1
T D 0v ' Tf 50, (76)

t=1

where vy is defined in equation (30).

Proof. Let Tn = T (N) be any non-decreasing integer-valued function of N such that limy_oc Tn = oo. Consider

oo

N1’ defined by

the following two-dimensional array {{ﬁNt,th}z_oo}

1
kNt = ——0'vi_pp' T,
Tn

where {Fn+} denotes the array of o-fields that is increasing in ¢ for each N and kn+ is measurable with respect to
Fne. Let {{cNt}fi_oo}]ovozl be two-dimensional array of constants and set ¢yt = ﬁ for all t € Z and N € N. Using

submultiplicative property of matrix norm, and independence of f; and v, for any ¢,t’ € Z, we have
. 2
E { [E (7]\” | ]:N,t—n):| } < Sns
CNt

n= O 3] |2 2m O S @) B [ (9 Ty | Frven)]2} Y.
S ;?N{II ==l 1] ;H 1 E{[E (¢'Tig | Fvion)]’}

where

[6]> = O (1), ||®| < 1—eby Assumption 4, and || < /=[], [Z[[, = O (1) by Assumption 3. Furthermore, since

f;_q is covariance stationary and ||¢p'TT"¢|| = O (1) (by condition ||¢]|; = O (1) and Assumption 8), we have
E { [E (¢'Tfiy | fN,t,n)F} =0(1).
It follows that ¢,, has following properties
o < K and ¢,, — 0 as n — oco.

Array {kn¢/cn¢} is thus uniformly bounded in L norm. This proves uniform integrability of array {kn:/cne}-
Furthermore, using Liapunov’s inequality, two-dimensional array {{nm, Fnttoo o }§=1 is L1-mixingale with respect
to constant array {cn:}. Noting that equations (68) and (69) hold, it follows that the array {xn:, Fn¢} satisfies

conditions of a mixingale weak law, (cf Theorem 19.11 of Davidson (1994)), which implies Z?gl = Convergence
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in L; norm implies convergence in probability. This completes the proof of result (76).
Assumption 8 implies that sequence 8’ (as well as ¢’a) is deterministic and bounded. Vector of endogenous
variables x; can be written as

x: = o +If + vy

Process f; is independent of v;. Suppose (N, T) 2, 00. Processes {0'vi_p} and {0'vi—pp'vi—_q} are ergodic in mean

by Lemma 1 since ||0]| < [|0]|, = O (1). Furthermore,

T
% S 0TE, — 0TE () 50,
t=1

and

T
% > 0Tf T, —0TE (fif._,) T'p >0,

t=1
since f; is covariance stationary m x 1 dimensional process with absolute summable autocovariances (f; is ergodic in

mean as well as in variance), and

orre|

Il
Q
—~
=
=

leTre)| = o,

by Assumption 8, condition||@]], = O (1) and condition |¢||; = O (1). Sum of bounded deterministic process and

independent processes ergodic in mean is a process that is ergodic in mean as well. This completes the proof. m

Lemma 3 Let x; be generated by model (25), Assumptions 1-8 hold and (N,T) s 0. Then for any p,q € {0,1},
for any sequence of non-random weight matrices, W, of growing dimension N X m., satisfying conditions (27)-(28),

and for any i € IC,

Wou,p 20, (77)

M=

~
Il
-

W,’Utfpivv,tfq KN 0, (78)

-
Il
-

NE

W'vt,pmi,t,q i 0, (79)

o~
Il
<

gitqit — 0, (80)

EIRCIREINE
1~ 11~ 114>

o~
Il
—

where the process v¢ is defined in equation (30), vector g = (1,£g,t_1,§§,Vt,i§,V7t_l)/ and qi is defined in equation

(37).

Proof. Let W, for r € {1,..,my} denote the r*" column vector of matrix W. Noting that H\/NV"W =0 (1) by

granularity condition (27), result

T
N
g > W, 50 (81)
t=1
follows directly from Lemma 1, equation (64). This completes the proof of result (77).
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Let ¢ be any sequence of non-random N x 1 dimensional vectors of growing dimension such that |¢|, = O (1).

We have

T T
VN vN .
5 g WUt pp X g = 7 E WU pp (e +TF_ +viyg). (82)

t=1

Since H VNW,

=0O(1) for any r € {1,..,mw} by condition (27), we can use Lemma 1, result (65), which implies

ﬂ\ﬂ

i Vi p' Vg — B (Wivi—pp'vi—g) 2 0. (83)
Sequence {¢'a} is deterministic and bounded in N, and therefore it follows from Lemma 1, result (64), that

g i vi—pp'a B 0. (84)
Similarly, Lemma 2 equation (76) implies
g Zi: v’ Tfi_q 5 0. (85)

Results (83), (84) and (85) establish

T
N
g WiVt p Xt g 2 0. (86)

t=1
Result (78) follows from equation (86) by setting ¢= w; for any I € {1,..,mw}. Result (79) follows from equation

(86) by setting ¢ = e; where e; is N x 1 dimensional selection vector for the i*" element.

Finally, the result (80) directly follows from results (77)-(79). This completes the proof. m

Lemma 4 Let x; be generated by model (25), Assumptions 1-8 hold, and (N,T) 2y 0. Then for any sequence of

non-random matrices, W, of growing dimension N X m,, satisfying conditions (27)-(28), and for any i € K,

3

1
T > gugii —Ci 50, (87)

where matriz C; = E (gugl;) and vector giw = (&; 1, Xwe, Xyv,e—1, 1)/.
Proof. Result (87) directly follows from Lemmas 1, 2 and 3. m

Lemma 5 Let x; be generated by model (25), Assumptions 2-8 hold, and (N,T) 2y 5. Then for any sequence of
non-random weight matrices, W, of growing dimension N X m, satisfying conditions (27)-(28), and for any fized

p >0,

T
1
T Z W/vt_puit ﬁ> 0, (88)

t=1

where the process vy is defined in equation (30). If in addition T/N — 3, with 0 < 3 < 0o,

1 T
—=> W'v pui 5 0. (89)
T t=1
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Proof. Let Ty = T (N) be any non-decreasing integer-valued function of N such that limy_.cc Tn = oo and

limy— oo Tn/N = 5 < 0o, where s > 0 is not necessarily nonzero. Define

KNit = \/ﬁ {W VUt—pUit — E (W’vt,puit)} 5 (90)

where the subscript N is used to emphasize the number of cross section units.** Let {Fn:} denotes the array of

o-fields that is increasing in t for each N and kn: is measurable with respect to Fn;. First it is established that

for any fixed 7 € N, the vector array {{HNit/CNtath}fi,w}(;:i is uniformly integrable, where cy: = For

1
/NTN '

p > 0, we can write

li
K 7;K/, ) oo oo
o (R | = e (S wau ) (S W) ||
Nt £=0 =0
= N|oi) Wao'se
£=0

> 2
< NeLIwIPEIY el
£=0

= 0,

where |[W|> = O (N~') by condition (27), [|Z|| = O (1) by Assumption 3, and >3 H<I>é”2 = O (1) by Assumption

4. For p =0, we have

’
[ (=522
C
Nt

HN -Var (W’utuit + Z W’@éut_zuit>
=1

IA

N <||W||2 1%+ o2 W2 2 Y [+ 0 (Nl)) ,
£=1
= o),

where as before ¥;; is N X N symmetric matrix with the element (n, s) equal to E (usuituniust). Therefore for p > 0,
the two-dimensional vector array {Knit/cn¢} is uniformly bounded in Lz norm. This proves uniform integrability of

{K/Nit/CNt}-

0 for any n > 0 and any fixed p > 0
E|E(knit | FNi-n)| = : (91)
Ty cN:O (1) for n = 0 and any fixed p > 0

and {{"‘Nitvat}toi_oo}ifo:i is Li-mixingale with respect to constant array {cNt}.25 Note that

and

1
hm ZCNt* IE»IlOQZTNN ngnooﬁf().

24Note that W and vU¢—p change with N, but as before we ommit subscript N here to keep the notation simple.
25The last equality in equation (91) takes advatage of Liapunov’s inequality. T, is m. X 1 dimensional vector of
ones.
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Therefore for each fixed i € N, each of the m, two-dimensional arrays given by the elements of vector array

{{rnit, FNt}gﬁfoo};O:i satisfies conditions of a mixingale weak law?®, which implies

Tn
1 L
F E W/’Ut_puit —V TNE (W’vt_puit) —1> 0.
N =1

But
VTN E Wiy

= VTn |E (Waiuir)||, = VTNO (%) —0,

since imy—oo Tn/N = 2 < oo. Convergence in L; norm implies convergence in probability. This completes the
proof of result (89).

Result (88) is established in a very similar fashion. Define new vector array qni: = ﬁ/ﬁNit where kit is array
defined in (90) and ¢ € N is fixed. Let Ty = T (V) be any non-decreasing integer-valued function of N such that such
that limy_,.c Tv = co. Notice that for any fixed ¢ € N, vector array {{\/ﬁqm,g/cm,fm}z_oo}:}:i is uniformly

integrable because {{KNit/CNt,FNt}?i_m}]ovo:i is uniformly integrable. Furthermore, {{qutath}Z_oo}]o\;O:i is L1-

mixingale with respect to the constant array \/;,—CNt} since {{mwt, th}fi_oo}jovoii is L1 mixingale with respect
'~ =

to the constant array {cn:}. Note that

Tn
1 1 1
lim E ——cnt = lim E = lim —— =0,
N=ooi VTN M N t= TvVN  N=oo /N

and

Tn 1 2 Tn 1 2 1
li = 1 — lim —— =0.
NEHOOZ <cht) NE‘;Z (TN\/N) N T N

t=1

Therefore for any fixed i € N, a mixingale weak law?" implies

TN
Z qnNit 4 0as N — oo. (92)
t=1
Since also
E(W'vi_pui) =0 (N1,
it follows

T
1
T ZW’vt_puit 2 0,

t=1
as N, T 7, 00 at any rate. Convergence in L; norm implies convergence in probability. This completes the proof of

result (83). m

Lemma 6 Let x¢ be generated by model (25), Assumptions 1-8 hold and (N, T) 2, 00 such that T/N — 3, with
0 < 5 < 0. Then for any sequence of non-random matrices of weights W of growing dimension N X m,, satisfying

conditions (27)-(28), and for any i € K, we have,

*6See Theorem 19.11 of Davidson (1994).
?"See Theorem 19.11 of Davidson (1994).
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a) under Assumption 9,
1

044

T
-1 1 ~
(OF ﬁ E gitUit 2’ N(07 Iki)7 (93)
t=1

— — !
where Ci = F (8uh) and & = (€, BT 1, Tiw, 1),
b) under Assumption 10,

T
1 -1 D
—F=0,.2 E Vig—1uit — N (0,1p;), 94
oaVT " = v ( ) o

where matriz Qv = E (viviy) and vector vy = 87> 2, dlu,_y.

Proof. Let a be any k; x 1 dimensional vector such that ||al| = 1 and define
N a/C7%~
K = . it Wit
Nt TNO'“' i itUit

where Ty = T (N) is any non-decreasing integer-valued function of N such that limy— oo Tn = 00 and limy .00 Tn /N =
x < 00, where 0 < »r < 0co. Array {kn¢, Fnt} is a stationary martingale difference array.?® Lemmas 1 and 2 imply

1
a’C, 2g; is ergodic in variance, in particular

1 In 1 1

INT S~ ) 5. P
723 Ci 2gitgitci *a— 1.
Tn t=1

1
g+ and u;; are independent and the fourth moments of u;; are finite. Therefore a'Ci 2gitu,t is ergodic in variance

and

Tn
> ke DL (95)
t=1

4
Furthermore, E (agla/Ci—l/Q'g}tu,-t) = O (1) and therefore

N —oo

TN
lim Z E (f-c‘}w) =0.
t=1
Using Liapunov’s theorem (Theorem 23.11 of Davidson (1994)), Lindeberg condition?® holds, which in turn implies
max |kne| 2 0 as N — oo. (96)

1<t<Ty

Results (95), (96) and the martingale difference array central limit theorem (Theorem 24.3 of Davidson (1994))

establish
TN 1 , I b
kNt = ———a'C. 2 gituit — N (0,1 97
tz:; Nt man i tz:; it Uit ( ) ( )
Since equation (97) holds for any k; x 1 dimensional vector a such that [ja| = 1, result (93) directly follows from

equation (97) and Theorem 25.6 of Davidson (1994).
1

1 0" 2
a'Q, 2 vi_1uie,

VINTii

28 As before, {Fn+} denotes the array of o-fields that is increasing in ¢ for each N and ky¢ is measurable with
respect to Fnt.
?9See Condition 23.17 of Davidson (1994).

Result (94) can be established in the same way as the result (93), but this time we set Kyt =
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where a is any h; x 1 dimensional vector such that |jal| =1. m

Lemma 7 Let x; be generated by model (25), and suppose Assumptions 1-8 hold and (N, T) Iy 0. Then for any

arbitrary matriz of weights, W, satisfying conditions (27)-(28), for any p,q € {0,1}, and for any i € K,

e ()

N
T
1 _ 1
T > Bwipfi_g = 0p (ﬁ (99)

N—

T
1 . 1
T > Vit—pDw,t—q = Op (ﬁ) ; (100)

T
1 _ _ 1
T > Tw,i—pTiwi—g = 0p (ﬁ) ; (101)
T

=1
!
iQ
T = op(1). (102)
Furthermore,
HQ ,,QQ 1
T = A T + 0p ~ ) (103)
ZH Z.Q 1
i _ i A 104
20 () (104)
H'H ,Q'Q 1
H,Uio _ /Q,uio 1
T = A T + Op 7]\] 5 (106)
where
Y, = (Vio, Vit, -, Vir—1) (107)
TXxh;

vit = Si Y e, ®u,_, H and Z; are defined by (41) and (42), respectively, and Q, F and A are defined in equations
(43)-(44)-

Proof. Result (98) follows directly from equation (64) of Lemma 1 since the spectral norm of any column vector
of the matrix W is O (Nfé). Result (99) follows from result (98) by noting that f; is independently distributed
of Tw,: and all elements of the variance matrix of f; are finite. Furthermore, since (by Lemma 1) + S vie 20,
equation (102) follows. Results (100) and (101) follows directly from equation (65) of Lemma 1 by noting that

VNE (viy—pTw,—q) = O (ﬁ) (108)

as well as®®

VNE (Bw,i—pTiv_q) = O (ﬁ) . (109)

In order to prove equations (103)-(106), first note that the row ¢ of the matrix H — QA is (0,6"/‘/“6’%%1).

30Results (108) and (109) are straightforward to establish by taking the row norm and by noting that the granularity
conditions (27)-(28) imply [[W|| = O (N7').
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Using results (98)-(101), we have

0
T
(H-QA)Q 1 Z 1
— = = Vwit 1, f, £/, =0p | 7= |> (110)
T T~ ( ) VN
Uw,t-1
. 0
Z,(H — QA) 1 5 1
" = = i Uwie =0 | 7= |> (111)
T T & VN
Uw,t—1
- -
. 0
H' (H - QA) 1 5 Xwi ( 1 )
—_—— = = Twt =0 | 7| (112)
T T t=1 XW,t—1 VN
Vw,t—1
- -
. 0 0
(H-QA)H-QA) _ 1 _ _ 1
T =7 ; Vwit Uwit = 0p VN )’ (113)
Vw,t—1 Vw,t—1
Equations (110)-(111) establish results (103) and (104). Note that
H'H H (H-QA) H (QA)
T T T
H'H-QA) (H-QA)Q QQ
A+A A,
T + T + T
a5
= A A+o, | —— |,
T PAVN

where the last equality uses equations (110) and (112). This completes the proof of result (105).

Equation (92) (see proof or Lemma 5) implies

S|

T
1 _ _ P
E Ow,t—plit — E (Ow,t—puit) — 0,
=1

as N,T 2 o at any rate. Result (106) follows by noting that vV NE (Tw,—pui) = O (Nfé). This completes the

proof. m

Lemma 8 Let x; be generated by model (25), suppose Assumptions 1-8, 10 hold, and (N,T) 2y 0. Then for any

1 € K, and for any arbitrary matriz of weights, W, satisfying conditions (27)-(28) and Assumption 10, we have

Q,, is non-singular, and

QQ » g

T Py (114)
/ .
TiTT’ -Q. 20, (115)
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where
1 0 0

Q,=1 0 r:(0) (1) |-
0 T:(1) TI:(0)

T: (¢) = E(£if_,), Qui = E (viv}), matriz Q is defined in equation (43), and matriz X; = (Vio, Vi1, ..., ViT—1)' .

Proof. Assumption 6 implies matrix €2, is non-singular. Result (114) directly follows from the ergodicity properties
of the covariance stationary time-series process f;.
Consider now asymptotics N, T 2 00 at any rate. Lemma 1 implies that h; x 1 dimensional vector v;; = Sjivy

is ergodic in variance, in particular & Zthl SivwiS; — E (Sivv}S;) 2 0.3 This completes the proof. m

Lemma 9 Let x; be generated by model (25), suppose Assumptions 1-8 and 10 hold, and (N,T) 2y 0. Then for

any i € KK, and for any arbitrary matriz of weights W satisfying conditions (27)-(28) and Assumption 10, we have

Z:MpyZ; Z:MqoZ; 1
2 _ ZMoZ. (Tﬁ) , (116)
/ .
% —Q 2o, (117)
Z;MyQ

5 - o(17)

ZI'MHIL;O T"MQIL;O T
K K3 — 11
\/T‘ fT Op \) N |’ ( 9)

where Qy; is defined in Assumption 10, My and Z; are defined in (41) and (42), respectively, Q and F are defined

by (43), and X; = (Vio, Vi, -, Vi,r—1) -

Proof.
ZMpZi ZiZ; ZH (HH\" HZ (120)
T T T T T
Results (104)-(105) of Lemma 7 imply
ZH /HH\'HZ, ZQ ,Q'Q \" .,Q'z;
: C=TEA (A SA) A ! -~ 121
T(T)T T(T) T+°”(W> (121)
Using definition of the Moore-Penrose inverse, it follows
QQ QQ N\ (499, _[(1QQ
(ATA ATA ATA—ATA. (122)
e\ —1 e\ —1
Multiply equation (122) by (QTQ) (AA’)"" A from the left and by A’ (AA’) ™" (QTQ) from the right to obtain®?
QQ,\" ()
A(A T A) A —< T . (123)

*1IS:i|l, = O (1) by Assumption 1.
32Note that plimTﬂw%Q'Q is nonsingular by Lemma 8, equation (114). AA’ is nonsingular, since matrix A has
full row-rank by Assumption 10.
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Equations (123) and (121) imply

’ ’ + 1y/r7. ’ / -1 0o'7.
ZH(HH) sz_ZZQ(QQ) QZZ+OP(L).

T T T T T

Result (116) follows from equations (124) and (120).
Using (25) we have
Z; =T1a;S; + F(-1)TiS; + Y;.

Since Q =[7,F,F (—1)], it follows

+ T T

ZiMqZi _ YMoY: _ YIX,  YiQ (Q'Q\ ' QY,
T T T T '

Using equations (102), (114) and (115), result (117) follows directly from (126).
Results (103)-(105) of Lemma 7 imply

ZH (HH\"HQ ZQ QQ,\",,QQ )
T (T) T - TA<ATA) AT +"P(W)'

Substituting equation (123), it follows

ZH (HH\"HQ Z/Q /QQ\ 'QQ
T (T) T T T (T) T*"p(i)'

Equation (128) implies

ZMuQ _ ZiMoQ T\ _ T
- (V) = (V)

This completes the proof of result (118).
Results (104)-(106) of Lemma 7 imply

Z.H (HH +H/uio Z;Q QQ * 1 Q'uio
- <T) - _TA<A—A) A—+op(

Substituting equation (123), it follows

ZH (HH\"HQ _Z/Q (QQ\ ' Qu: ;
T<T>T_T<T) T’LOP(W)’

Noting that Mg (TS, + FI';S;) = 0 since Q = [, F,F (—1)], equations (129) and (125) imply

ZMpyuio Z:Mouio T
ZiMpuio  _ ZMouwio ([T
\/T \/T P N )

B T;MQuio_H) T
= e ,/N .

This completes the proof. m

(124)

(125)

(126)

(127)

(128)

(129)

Lemma 10 Let x: be generated by model (25), and suppose Assumptions 1-8 and 10 hold, and (N, T) 2y 00. Then

for any i € K, and for any arbitrary matriz of weights, W, satisfying conditions (27)-(28) and Assumption 10, we
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have

% _ (%) (130)

Z'-MHul-o T{uio T
=T = ¢ +op /=] +op(1), 131

where matrices My ,and Z; are defined in (41) and (42), respectively, X; = (Vio, Vi1, ..., Vi;r—1) and vector {, (—1) =

(Ci,07 . Ci,T_l)/,

Proof.
/
Z:¢ (—1 1 =
S 5| M (5 e
t=1 =0
H'¢; (-1) 1 Xwt N gl /
a = =3 Py D P
t=1 Xw,t—1 £=0

#:ll. = O (N™') by Assumption 1, therefore result (130) directly follows from equations (111) and (112).

YiMoue _ Yiwe  YiQ (Q’Q)‘l Q'uio
VT VT T T VT '
Tl‘ 10
1—\/1% +op (1), (132)

where Q:}%" = Oy (1), plimr—0c 7Q'Q is non-singular by Lemma 8, and T;T'Q = 0p (1) by Lemma 7, equation (102).
Substituting (132) into equation (119) implies result (131). This completes the proof. m

Proof of Theorem 1.

a) Substituting for z;; in equation (39) yields
1 X -1 1 X 1 Z
wo—mi= | = & — it Qi = itUit | - 133
wom= (53w (w3 wn) (133

With N, T 7, 00 in any order, Lemma 5 yields®?

T
1
T Z gittir — 0. (134)
t=1
Also using Lemmas 3 and 4 we have
T
1
T Z gitqit — 0, (135)
t=1
and
1 Z
T Zgnggt — C(ny,i 20, (136)
t=1

T p . . .. .
33 % thl Zjt—1us¢ — 0 since zj; is ergodic in mean by Lemma 2 and wu;; is independent of z;;—; for any N € N

and any j € {1,.., N}. Furthermore, using similar arguments, % Zthl fruy 2 0.
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is bounded in N. It

respectively. Assumption 9 postulates that the matrix C(yy,; is invertible and HC(]\}“

follows from equation (136) that )
r _
(;, Zg,-tg;t> —Cy).: 2 0. (137)
t=1
Result 7; — m; % 0 directly follows from equations (134), (135) and (137).
b) Multiplying equation (133) by /T yields
T

VT (7 — ;) (T Z gzt%n) <\/IT Z gitqit + % Z gmm) . (138)

With (N, T) 2, 00 such that T/N — > < 0o, Lemma 3 can be used to show that
1 X
P
> gitgie > 0. (139)
VT 5

Since HC = O (1), equations (137) and (139) now yield

1 & T
<T gitg;t> —F= ZgitQit Zo. (140)

Lemma 5 establishes

T
1
— Ziw,t—puit 2.0 for p € {0,1}. (141)
T t=1
It follows from equation (141) that
T
1
Z it — gzt Uit ﬁ’ 07 (142)
VT =

i — ’
where g = ({;’Fl, £/ T, £ T, 1) . Lemma 6 establishes that

1
i itUit —> N(O Ik ) (143)
oon s S, \f Z
Equations (137), (140), (142) and (143) imply result (45).

c¢) Lemma 4 establishes % ZZ;I gitgi: — C(ny,i 2. 0. The estimated residuals from auxiliary regression (38) are

equal to Uy = ui — gj; (Wi — m;), which implies

T
1 ~ 1 ~
f E ’U/?t = T U?t — 2 E gitUit + - 771 < Z gltgn‘> - 71-1) ’ (144)

where + Zthl u? —J?NMZ. 2.0, ;i —m; 2 01is established in part (a) of this proof, T ZtT:1 gitgl—C(nyi = 0

is established in Lemma 4, and % ZtT:1 itWit 2, 0 is established in equation (134). This completes the proof.

Proof of Theorem 2. Vector x;, can be written, using system (25), as

Xio = T (Cli — 6;8'104) +Z;6; + F’yi - F (*1) I"Siéi -+ C1 (*1) + Ujo, (145)

48



where ¢; (—1) = (05 -, Ci,Tfl)/. Substituting equation (145) into the partition least squares formula (40) and noting

that by Lemma 9,
!
ZMAQ _ ( T) ’ (146)

VT N
it follows
~ ZMpZ:\ " | Z:My (o + ¢, (1)) T
T(3,-8:)= (= : i = 14
VT ( T ) T +op (\ (147)
Lemma 9 also establishes that
' , .
% — QB 0,as N, T 2 0 at any rate, (148)
where Q,; = E (vitVv};) is non-singular by Assumption 10.
Consider now asymptotics N, T 7, o0 such that T/N — » < co. Lemma 10 establishes
/ —

VT

Z;MHUZ‘O T;uio T
= +op |/~ | Tor(1), 150

where Y; = (vio, ..., Vi’T_l)/. Also from Lemma 6

and

T
1 -1 D
791”»2 E Vit—1Uit — N (0, Ihi) . (151)
oV T t=1

The desired result (48) now follows from (147)-(151). m
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