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Abstract

This paper considers methods for estimating the slope coe¢ cients in large panel data models that are robust

to the presence of various forms of error cross section dependence. It introduces a general framework where

error cross section dependence may arise because of unobserved common e¤ects and/or error spill-over e¤ects

due to spatial or other forms of local dependencies. Initially, this paper focuses on a panel regression model

where the idiosyncratic errors are spatially dependent and possibly serially correlated, and derives the asymptotic

distributions of the mean group and pooled estimators under heterogeneous and homogeneous slope coe¢ cients,

and for these estimators proposes non-parametric variance matrix estimators. The paper then considers the more

general case of a panel data model with a multifactor error structure and spatial error correlations. Under this

framework, the Common Correlated E¤ects (CCE) estimator, recently advanced by Pesaran (2006), continues to

yield estimates of the slope coe¢ cients that are consistent and asymptotically normal. Small sample properties

of the estimators under various patterns of cross section dependence, including spatial forms, are investigated

by Monte Carlo experiments. Results show that the CCE approach works well in the presence of weak and/or

strong cross sectionally correlated errors.

Keywords: Panels, Common Factors, Spatial Dependence, Common Correlated E¤ects Estimator.
JEL Classi�cation: C10, C31, C33

�We are grateful to the Editor (Cheng Hsiao), an Associate Editor and three anonymous referees, Badi Baltagi, Alexander Chudik
and George Kapetanios for helpful comments and suggestions.



1 Introduction

Over the past few years there has been a growing literature, both empirical and theoretical, on econometric analy-

sis of panel data models with cross sectionally dependent error processes. Such cross correlations can arise for

a variety of reasons, such as omitted common factors, spatial spill-overs, and interactions within socioeconomic

networks. Conditioning on variables speci�c to the cross section units alone does not deliver cross section error

independence; an assumption required by the standard literature on panel data models. In the presence of such

dependence, conventional panel estimators such as �xed or random e¤ects can result in misleading inference and

even inconsistent estimators (Phillips and Sul (2003)). Further, conventional panel estimators may be inconsis-

tent if regressors are correlated with unobserved common factors that might be causing the error cross section

dependence (Andrews (2005)).

Currently, there are two main strands in the literature for dealing with error cross section dependence in

panels where N is large relative to T , namely the residual multifactor and the spatial econometric approaches.

The multifactor approach assumes that the cross dependence can be characterized by a �nite number of unobserved

common factors, possibly due to economy-wide shocks that a¤ect all units, albeit with di¤erent intensities. Under

this framework, the error term is a linear combination of few common time-speci�c e¤ects with heterogeneous

factor loadings plus an idiosyncratic (individual-speci�c) error term. Estimation of a panel with such multifactor

residual structure can be addressed by using statistical techniques commonly adopted in factor analysis, such

as the maximum likelihood (Robertson and Symons (2000); Robertson and Symons (2007)), and the principal

components procedures (Coakley, Fuertes, and Smith (2002); Bai (2009)). Recently, Pesaran (2006) has suggested

an estimation method, referred to as Common Correlated E¤ects (CCE), that consists of approximating the linear

combinations of the unobserved factors by cross section averages of the dependent and explanatory variables

and then running standard panel regressions augmented with these cross section averages. An advantage of this

approach is that it yields consistent estimates under a variety of situations, such as serial correlation in errors,

unit roots in the factors and possible contemporaneous dependence of the observed regressors with the unobserved

factors (Coakley, Fuertes, and Smith (2006); Kapetanios and Pesaran (2007); Kapetanios, Pesaran, and Yagamata

(2009)).

The spatial approach assumes that the structure of cross section correlation is related to location and distance

among units, de�ned according to a pre-speci�ed metric. Proximity need not be measured in terms of physical

space, but can be de�ned using other types of metrics, such as economic (Conley (1999); Pesaran, Schuermann, and

Weiner (2004), policy, or social distance (Conley and Topa (2002)). Hence, cross section correlation is represented

by means of a spatial process, which explicitly relates each unit to its neighbours (Whittle (1954)). Estimation

of panels with spatially correlated errors can be based on maximum likelihood (ML) techniques (Lee (2004)), or

on the generalized method of moments (GMM) (Kelejian and Prucha (1999); Lee (2007); Kelejian and Prucha

(2009)). Recently, non-parametric methods based on heteroskedasticity and autocorrelation consistent estimators

applied to spatial models have also been proposed (Conley (1999); Kelejian and Prucha (2007); Bester, Conley,

and Hansen (2009)).

In this paper we build on the existing literature and consider a general panel data model where error cross

section dependence is due to unobserved common factors and/or spatial dependence, whilst at the same time allow
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for the errors to be serially correlated. We focus on estimation and inference procedures that are robust to the

presence of various forms of cross sectional and temporal dependencies in the error processes. Robust methods are

needed because the source and extent of error cross section dependence is often unknown. The error cross section

dependence can take many di¤erent forms and its nature could di¤er at micro and macro levels. For instance,

at a micro-level, individual consumption behaviour can be in�uenced by economy-wide factors, such as changes

in taxation and interest rates, and by local neighbourhood e¤ects such as keeping up with the Jones�s (Cowan,

Cowan, and Swann (2004)). In macroeconomics, several studies have argued business cycle �uctuations could be

the result of both strategic interactions as well as aggregate technological shocks (Cooper and Haltiwanger (1996)).

Our econometric speci�cation, by allowing for the presence of both sources of contemporaneous error correlations,

is su¢ ciently general and includes the models proposed in the literature as special cases.

We focus on estimation of slope coe¢ cients in the case of a number of di¤erent speci�cations. Initially, we

concentrate on a panel data model without unobserved factors where the errors are spatially dependent and

possibly serially correlated, and derive the asymptotic distribution of the mean group and pooled estimators,

under alternative assumptions regarding the slope coe¢ cients. In the presence of heterogeneous slopes, we show

that the non-parametric approach advanced by Pesaran (2006) continues to be applicable and can be used to

obtain standard errors that are robust to both spatial and serial error correlations. However, in the case of

homogeneous slopes the CCE procedure will not be applicable. In this case we propose a non-parametric variance

matrix estimator that adapts the Newey and West (1987)�s heteroskedasticity autocorrelation consistent (HAC)

procedure to allow for the spatial e¤ects along the lines recently advanced by Kelejian and Prucha (2007). We

refer to this variance estimator as spatial, heteroskedasticity, autocorrelation (SHAC) estimator. We then consider

the more general case where the error term in the panel data model is composed of a multifactor structure and

a spatial process, and show that Pesaran�s CCE approach continues to be valid and yields consistent estimates

of the slope coe¢ cients and their standard errors. We also show how to obtain consistent estimates of the errors

in the panel to be used in tests of cross section independence, and for further analysis of the underlying spatial

processes.

Using Monte Carlo techniques, we investigate the small sample performance of the estimators under various

patterns of error cross section dependence, with and without error serial correlation, under both cases of hetero-

geneous and homogeneous slopes. We examine the performance of the alternative estimators when the errors only

display spatial dependence, when they are subject to unobserved common factors as well as spatial dependence,

and in the case where the source of cross section dependence changes over time. Our results indicate that the

mean group and pooled estimators with robust standard errors do work well under certain regularity conditions

outlined in our theorems. However, under slope homogeneity or in the presence of unobserved common factors

these estimators fail to provide correct inference. The results also document the tendency of the tests based on

HAC type standard errors to over reject the null hypothesis in small samples even in the case of error cross section

dependence which is purely spatial. In contrast, our Monte Carlo experiments clearly show that the augmentations

of panel regressions with cross section averages, as formulated by the CCE procedure, eliminates the e¤ects of

all forms of spatial and temporal correlations, irrespective of whether these are due to spatial and/or unobserved

common factors. The small sample properties of CCE estimators do not seem to be a¤ected by the heterogeneity
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assumptions on slope coe¢ cients, or by the presence of error serial correlations. It is this level of robustness of

the CCE estimator which particularly commends it for use in empirical analysis.

The plan of the remainder of the paper is as follows: Section 2 sets out a panel regression model with unobserved

common factors and general spatial and temporal error processes. Section 3 develops the asymptotic distribution

of the mean group and pooled estimators in the presence of spatial error dependence and error serial correlation.

Sections 4 considers the more general case where the errors also contain unobserved common factors, and establishes

the validity of the CCE estimators for this class of models. Consistent estimation of the residuals from such models

is considered in Section 5, where the necessary identi�cation conditions are stated. Section 6 describes the Monte

Carlo experiments and report the results. Section 7 ends with some concluding remarks.

Notation: �1(A) � �2(A) � ::: � �n(A) are the eigenvalues of a matrix A 2 Mn�n, where Mn�n is

the space of real n � n matrices. A� denotes a generalized inverse of A. The column norm of A 2 Mn�n

is kAk1 = max
1�j�n

Pn
i=1 jaij j. The row norm of A is kAk1 = max

1�i�n

Pn
j=1 jaij j. The Euclidean norm of A is

kAk2 = [Tr(AA0)]
1=2. K is used for a �xed positive constant. (N;T )

j! 1 denotes N and T tending to in�nity

jointly but in no particular order.

2 Heterogenous panels with unobserved common factors and spatial error

correlation

We begin with a general speci�cation where the dependent variable is a function of a set of individual-speci�c

regressors, a linear combination of common observed and unobserved factors, and includes errors that are serially

and spatially correlated. Let yit be the observation on the ith cross section unit at time t for i = 1; 2; :::; N ;

t = 1; 2; :::; T , and suppose that it is generated as

yit = �
0
idt + �

0
ixit + 

0
ift + eit; (1)

where dt = (d1t; d2t; :::; dnt)
0 is a n � 1 vector of observed common e¤ects, and xit is a k � 1 vector of observed

individual-speci�c regressors on the ith cross section unit at time t, ft = (f1t; f2t; :::; fmt)
0 is an m-dimensional

vector of unobservable common factors, i = (1i; 2i; :::; mi)
0 is the associated m � 1 vector of factor loadings.

The number of factors, m, is assumed to be �xed relative to N , and in particular m < N . The common factors,

ft simultaneously a¤ect all cross section units, albeit with di¤erent degrees as measured by i. For instance, a

rise in the interest rate may a¤ect household consumption and �rm investment decisions; oil price shocks may

in�uence �rm production costs; real shocks, such as a decline in the aggregate demand and employment could

simultaneously slow growth in a number of countries (see Andrews (2005)).

Finally, the unit-speci�c or idiosyncratic errors, eit, are assumed to be spatially and temporally correlated.

The most widely used spatial models are the Spatial Moving Average (SMA), the Spatial Autoregressive (SAR)

model, and the Spatial Error Component (SEC) speci�cations. These models di¤er in the range of dependence

implied by their covariance matrices, but under certain invertibility conditions they can all be written as special
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cases of

e:t = Rt":t; for t = 1; 2; :::; T; (2)

where e:t = (e1t; :::; eNt)0, ":t = ("1t; :::; "Nt)
0 and Rt is a given N �N matrix.

We shall make use of the following assumptions.

ASSUMPTION 1 For each i, "it follows the linear stationary process with absolute summable autocovariances:

"it =
1X
s=0

ais�is;

where �is � IID(0; 1) with �nite fourth-order cumulants.

ASSUMPTION 2 Rt has bounded row and column norms for all t.

ASSUMPTION 3 The slope coe¢ cients �i follow the random coe¢ cient model

�i = � + �i; �i � IID(0;
�) for i = 1; 2; :::; N;

where k�k2 < K , k
�k2 < K, 
� is a symmetric non-negative de�nite matrix, and the random deviations, �i,

are distributed independently of "jt;xjt; and dt; for all i; j and t.

ASSUMPTION 4 (d0t;x
0
it)
0 and "js are independently distributed for all t, s; i and j.

Note that under Assumption 1 we have

V ar ("it) =

1X
s=0

a2is = �
2
i � K <1;

and the covariance matrix of "i: = ("i1; "i2; :::; "iT )
0 has bounded row and column norms, for all i. Assumption

2 implies that the spatial error process, (2), carries weak cross section dependence at all points in time, namely

that its weighted averages converges to zero for all set of weights satisfying certain regularity conditions (see also

Lemma A.1 in the Appendix). Notions of weak and strong cross section dependence are developed and discussed

in Chudik, Pesaran, and Tosetti (2010). We note that Assumption 2 holds for most widely used spatial models

that are subject to a set of regularity conditions that are standard in the spatial econometrics literature. These

regularity conditions ensure consistency and asymptotic normality of quasi-ML and GMM estimators of spatial

parameters (see Kelejian and Prucha (1999), Lee (2004), and Mardia and Marshall (1984) for details).

The model outlined in equations (1)-(2) is quite general and renders a variety of linear panel data models as

special cases. The coe¢ cients �i may be treated as �xed or random, possibly correlated with the other variables

in the panel. The vector dt could contain deterministic terms such as an intercept or linear trends, or common

observed variables such as oil prices. For example, in the case of panel data models with �xed e¤ects we would

set n = 1, and d1t = 1, for t = 1; 2; :::; T .
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The focus of this paper is on estimating the slope coe¢ cients �i, their cross section means, � = E(�i), and

unit-speci�c errors, uit. We shall consider four cases of interest. Initially, we abstract from unobserved common

factors, and concentrate exclusively on the e¤ects of weak spatial error dependence. Accordingly, we impose i = 0

in equation (1), and consider estimation of the slope coe¢ cients and their cross section means in a panel regression

model where eit follows an invertible spatial process of type (2). We then investigate the properties of the proposed

estimators under the special case of homogeneous slopes, namely when �i = � for i = 1; 2; :::; N (i..e., 
� = 0 in

Assumption 3). Next, we turn to the more general speci�cation where i 6= 0, and allow the unobserved common
factors to be correlated with the individual-speci�c regressors, xit. Initially, we deal with the case of heterogeneous

slopes and then consider the special case of 
� = 0. There are two further speci�cations that may be derived

from (1)-(2). These are the cases of common factors and no spatial error correlation with either heterogeneous or

homogeneous slopes. However, these speci�cations have already been discussed in Pesaran (2006) and will not be

considered here. Consistent estimators of the residuals in the general case is addressed in Section 5.

3 Estimating panels with spatial error correlation

The literature on spatial econometrics typically considers the problem of spatial dependence under strong assump-

tions of homogeneity and temporal independence. Only recently, a strand of literature in spatial econometrics has

considered the incorporation of unobserved heterogeneity in spatial panel data models, where N is usually assumed

to be large relative to T . Baltagi, Song, and Koh (2003) and Kapoor, Kelejian, and Prucha (2007) have focused

on ML and GMM estimation of panels where the error term is the sum of an individual-speci�c component and a

spatially autocorrelated idiosyncratic error. Baltagi, Egger, and Pfa¤ermayr (2009) generalized their earlier work

by allowing for spatial correlations in both the individual means and the remainder error components, with pos-

sibly di¤erent spatial autoregressive parameters. Fingleton (2008) extended Kapoor, Kelejian, and Prucha (2007)

contribution on GMM estimation of spatial random e¤ects panels to the case where the idiosyncratic error term

follows a spatial moving average process, while Egger, Pfa¤ermayr, and Winner (2005) have focused on extensions

to the case of unbalanced panels. Lee and Yu (2008) considered estimation of a spatial panel data model with

individual-speci�c �xed e¤ects, and proposed a �transformation approach�to eliminate the �xed e¤ects and then

apply quasi-ML to the transformed model. Yu, de Jong, and Lee (2007), Yu, de Jong, and Lee (2008) and Yu and

Lee (2007) focused on the properties of the quasi-ML estimator in the case of dynamic, possibly non-stationary,

panels with �xed e¤ects and spatial error correlation, assuming both N and T large.

It is worth noting that application of ML techniques requires the serial correlation processes of the error

terms, if any, to be fully speci�ed. In panels where N is relatively large this could be quite demanding, since

di¤erent dynamic speci�cations might be appropriate across di¤erent cross sectional units. The GMM method

is less demanding but still requires moment conditions that correctly take account of speci�c spatial and serial

correlation patterns of the errors. The use of quasi-ML and GMM becomes even more involved if the errors also

depend on unobserved common factors. It is, therefore, of interest to develop estimation and inference procedures

for panels that are reasonably robust to the presence of cross section and temporal dependencies in the error

processes.
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In this section we focus on two estimators that can be used for estimating the mean, �, of the slope coe¢ cients

in equation (1), when errors are spatially correlated. The �rst, known as mean group (MG) estimator of �, is

given by (see Pesaran and Smith (1995))

�̂MG = N
�1

NX
i=1

�̂i; (3)

where

�̂i =
�
X0i:MDXi:

��1
X0i:MDyi:; (4)

with yi: = (yi1; yi2; :::; yiT )0, X0i: = (xi1;xi2; :::;xiT ),MD = IT �D(D0D)�1D0, and D0 = (d1;d2; :::;dT ). Alterna-

tively, we can use the �xed e¤ects, or pooled, estimator of �

�̂P =

 
NX
i=1

X0i:MDXi:

!�1 NX
i=1

X0i:MDyi:: (5)

To derive the asymptotic distribution of the above estimators, we make the following additional assumption on

the individual-speci�c regressors and observed common factors.

ASSUMPTION 5 We assume:

(a) For each i = 1; 2; :::; N , the k � k observation matrix T�1X0i:MDXi: is non-singular for the sample size T

under consideration and tends to a �nite non-singular matrix, Qi as T ! 1. Also, the elements of the
k � T matrix W0

i: =
�
T�1X0i:MDXi:

��1
X0i:MD are uniformly bounded, and T�1W0

i:Wi: =
�
X0
i:MDXi:

T

��1
has bounded elements as T !1.

(b) The k � k pooled observation matrix (NT )�1
PN
i=1X

0
i:MDXi: is �nite and non-singular for sample sizes N

and T under consideration and tends to a �nite non-singular matrix, Q, as (N;T )
j!1.

We have

p
N
�
�̂MG � �

�
=

1p
N

NX
i=1

�i +
1p
N

NX
i=1

h�
T�1X0i:MDXi:

��1
T�1X0i:MDei:

i
; (6)

p
N
�
�̂P � �

�
=

 
N�1

NX
i=1

T�1X0i:MDXi:

!�1
1p
N

NX
i=1

�
T�1X0i:MD (Xi:�i + ei:)

�
: (7)

where ei: = (ei1; ei2; :::; eiT )0. The asymptotic distributions of (6) and (7) are summarized in the following theorems.

Theorem 1 (MG estimator - Heterogeneous slopes, spatial corr. and no common factors) Consider the
panel data model (1) with errors eit following the spatial process given by (2). Suppose that Assumptions 1-4 and

5(a) hold and that i = 0, for i = 1; 2; :::; N . Then for the mean group estimator, �̂MG, given by (3), as (N;T )
j!1

we have p
N
�
�̂MG � �

�
d! N(0;�MG);

where �MG = 
�:
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Theorem 2 (Pooled estimator - Heterogeneous slopes, spatial corr. and no common factors) Consider
the panel data model (1)-(2). Suppose that Assumptions 1-4 and 5(b) hold and that i = 0, for i = 1; 2; :::; N .

Then for the pooled estimator, �̂P ; given by (5), as (N;T )
j!1, we have

p
N
�
�̂P � �

�
d! N(0;�P );

where

�P = Q
�1�Q�1; (8)

with

Q = lim
N;T!1

N�1
NX
i=1

�
X0i:MDXi:

T

�
; (9)

� = lim
N;T!1

"
N�1

NX
i=1

�
X0i:MDXi:

T

�

�

�
X0i:MDXi:

T

�#
:

�

The proofs are provided in the Appendix. We observe that, to obtain the asymptotic distribution of both

estimators, we have premultiplied them by
p
N rather than the usual

p
NT . This follows from the random

coe¢ cients hypothesis stated in Assumption 3, since the time-invariant variability of �i dominates the other

sources of randomness in the model. Robust estimators for �P and �MG can be obtained following the non-

parametric approach employed in Pesaran (2006), which makes use of estimates of � computed for di¤erent cross

sectional units. A consistent estimator of the asymptotic variance of the mean group estimator is given by

\Asy:V ar
�
�̂MG

�
=

1

N (N � 1)

NX
i=1

�
�̂i � �̂MG

��
�̂i � �̂MG

�0
: (10)

Similarly, a consistent non-parametric estimator of the asymptotic variance of the pooled estimator is

\Asy:V ar
�
�̂P

�
=
1

N
Q�1NT�NTQ

�1
NT ; (11)

where

QNT =
1

N

NX
i=1

�
T�1X0iMDXi

�
; (12)

�NT =
1

N � 1

NX
i=1

��
X0iMDXi

T

��
�̂i � �̂MG

��
�̂i � �̂MG

�0�X0iMDXi
T

��
:

One advantage of the above non-parametric variance estimators is that their computation does not require a priori

knowledge of the spatial arrangement of cross sectional units. As we shall see later in the paper, mis-speci�cation

of the spatial weights matrix may lead to substantial size distortions in tests based on the ML or quasi-ML
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estimators of �i (or �). Another advantage of using the above approach over standard spatial techniques is that,

while allowing for serially correlated errors, it does not entail information on the time series processes underlying

"it, so long as these processes are covariance stationary.

Under the special case of homogeneous slopes, with �i = � for all i, to obtain non-degenerate asymptotic

distributions, the MG and pooled estimators should now be multiplied by
p
NT , rather than by

p
N . In this case,

we have

p
NT

�
�̂MG � �

�
=

1p
NT

NX
i=1

h�
T�1X0i:MDXi:

��1
X0i:MDei:

i
; (13)

p
NT

�
�̂P � �

�
=

"
N�1

NX
i=1

�
T�1X0i:MDXi:

�#�1 1p
NT

NX
i=1

X0i:MDei:: (14)

Using results (A.15) and (A.16) in the appendix, the asymptotic distributions of (13) and (14) can be easily

derived. These are set out in the following theorem.

Theorem 3 (MG estimator - Homogeneous slopes, spatial corr. and no common factors) Consider the
panel data model (1)-(2). Suppose that Assumptions 1-4 and 5(a) hold, that i = 0 for i = 1; 2; :::; N , and 
� = 0.

Then for the mean group estimator, �̂MG, given by (3), as N and/or T !1 we have

p
NT

�
�̂MG � �

�
d! N(0;�MG);

where

�MG = lim
M!1

�
1

M
H0
""H

�
; (15)

with M = NT , H0 = (W0
:1R1;W

0
:2R2; :::;W

0
:TRT ); W

0
:t = (w1t;w2t; :::;wNt), and wit is the tth column of

W0
i: =

�
T�1X0i:MDXi:

��1
X0i:MD.

Theorem 4 (Pooled estimator - Homogeneous slopes, spatial corr. and no common factors) Consider
the panel data model (1)-(2). Suppose that Assumptions 1-4 and 5(b) hold, and that i = 0 for i = 1; 2; :::; N , and


� = 0. Then for the pooled estimator, �̂P , given by (5), as N and/or T !1 we have

p
NT

�
�̂P � �

�
d! N(0;�P );

where

�P = Q
�1	PQ

�1; (16)
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with

Q = lim
M!1

 
1

M

NX
i=1

X0i:MDXi:

!
;

	P = lim
M!1

�
1

M
P0
""P

�
;

M = NT , P0 = (eX0:1R1; eX0:2R2; :::; eX0:TRT ), eX:t = (ex1t; ex2t; :::; exNt)0, and exit is the tth column of eX0i: = X0i:MD.�

The asymptotic variances �MG and �P depend on the particular speci�cations of Rt, t = 1; 2; :::; T , and on


"". One important question is to determine whether the robust variance estimators introduced above can still be

used under the case of homogeneous slopes. To investigate this issue, one possibility would be to check whether

the individual estimators
p
T
�
�̂i � �

�
, for i = 1; 2; :::; N (see formula 4), are asymptotically independent and

normal across i. Under these conditions, using results in Ibragimov and Müller (2010), it is easy to show that it

is still valid to base inference on �̂MG and its robust variance estimator given by (10). These authors prove that

the type I error using a t-test based on �̂MG is not greater than the level of signi�cance chosen for this test, �,

under the condition that � < 0:083 (see also Bakirov and Székely (2006)). Note that

p
T
�
�̂i � �

�
=
�
T�1X0i:MDXi:

��1 1p
T
X0i:MDei:;

and the covariance between
p
T
�
�̂i � �

�
and

p
T
�
�̂j � �

�
for i 6= j, is given by

T � E
��
�̂i � �

��
�̂j � �

�0�
=

1

T
W0

i:E
�
ei:e

0
j:

�
Wj: =

1

T

TX
t=1

TX
s=1

�
witw

0
jsE (eitejs)

�
=

1

T

TX
t=1

TX
s=1

�
witw

0
jsE

�
r0i:;t"t"

0
srj:;s

��
=

1

T

TX
t;s=1

"�
witw

0
js

� NX
h=1

E (rih;trjh;s"ht"hs)

#
:

The above covariance is zero for all i 6= j only under certain conditions. For example, it is zero if the idiosyncratic
errors are cross sectionally independent (though possibly serially correlated), or if the elements, rih;t; are random

and satisfy E (rih;trjh;s) = 0, for for all i 6= j, h = 1; 2; ::; N and t; s = 1; 2; :::; T . We observe that condition

E (rih;trjh;s) = 0 holds if the entries in the ith row in Rt are independently distributed of the entries in the jth

row of Rt, at all time periods. However, these restrictions are unlikely to hold in general.

To obtain robust estimates of the asymptotic variances in the general case one possibility would be to consider

a generalized version of the Newey-West procedure that allows for the spatial e¤ects. For purely spatial error

processes, heteroskedasticity, spatially consistent (HSC) estimators have been proposed by Conley (1999) (see

also early contributions by Driscoll and Kraay (1998), and the method suggested in Pinkse, Slade, and Brett
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(2002)). More recently, Kelejian and Prucha (2007) have proposed a new HSC estimator that approximate the true

covariance matrix with a weighted average of cross products of regression errors, where each element is weighted by

a function of (possible multiple) distances between cross section units. Bester, Conley, and Hansen (2009), using

results taken from Ibragimov and Müller (2010), propose to divide the sample in groups so that group-level averages

are approximately independent, and accordingly suggest a HSC estimator based on a discrete group-membership

metric. However, the validity of this approach relies on the ability of the researcher to construct groups whose

averages are approximately independent. In contrast, the Kelejian and Prucha (2007) approach stands out as a

�exible and robust method, as it does not entail high level assumptions, allows for multiple distance measures,

and is robust to some measurement errors in the speci�cation of the distance matrix.

Note that (15) and (16) can be written as

�MG =
1

NT

NX
i;j=1

TX
t;s=1

witw
0
jsE (eitejs) ;

�P = Q�1

24 1

NT

NX
i;j=1

TX
t;s=1

exitex0jsE (eitejs)
35Q�1:

Following Kelejian and Prucha (2007), assume that there exists a �meaningful�, time-invariant, measure of distance

between cross sectional units, summarized in the N �N matrix, D with elements dij � 0. Let êit = yit � �̂0idt �
�̂
0
MGxit (see Section 5 for estimation of �i). A Newey-West SHAC estimator of the variance of �̂MG can be

computed as

\Asy:V ar
�
�̂MG

�
=

1

(NT )2

NX
i;j=1

TX
t;s=1

K

�
dij
dN
;
jt� sj
p+ 1

�
witw

0
jsêitêjs; (17)

where dN > 0 is an arbitrary scalar function of N , p is the window size for the time series dimension, and K(:) is

a kernel function that we set equal to

K

�
dij
dN
;
jt� sj
p+ 1

�
= K1

�
dij
dN

�
K2

�
jt� sj
p+ 1

�
;

whereK1 (:) andK2(:) satisfy a set of regularity conditions (see, in particular, Assumption 7 in Kelejian and Prucha

(2007)). Note that K1
�
dij
dN

�
= 0 for dij > dN , and K2

�
jt�sj
p+1

�
= 0 for jt� sj > p+1, and that K1 (0) = K2 (0) = 1.

Similarly, a Newey-West SHAC estimator of the variance of �̂P is

\Asy:V ar
�
�̂P

�
= Q�1NT

24 1

(NT )2

NX
i;j=1

TX
t;s=1

K

�
dij
dN
;
jt� sj
p+ 1

�exitex0jsêitêjs
35Q�1NT ; (18)

where QNT is given by (12), and êit is now given by êit = yit � �̂0idt � �̂
0
Pxit. The rest of the notations are as

above. We observe that the above estimators require knowledge of the exact relative position of units across space,

although as argued in Kelejian and Prucha (2007), the estimator remains valid under certain mis-speci�cations of

the distance metric.
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4 Estimating panels with unobserved common factors and spatial error cor-

relation

We now turn to the estimation of the slope coe¢ cients in the context of panels with both common factors and

spatial error dependence. We restrict our attention to the CCE approach since, as compared to other existing

methods, it is simple to apply and has been shown to be robust to the choice of m (the number of common

factors), the temporal dynamics of unobserved common factors, and the idiosyncratic error. The idea underlying

this approach is that, as far as estimation of the slope coe¢ cients are concerned, the unobservable common

factors can be well approximated by the cross section averages of the dependent variable �y:t = N�1PN
i=1 yit and

individual-speci�c regressors, �x:t = N�1PN
i=1 xit. Hence, estimation can be carried out by least squares applied

to auxiliary regressions where the observed regressors are augmented with these cross section averages plus the

observed common factors, dt.

To model the correlation between the individual-speci�c regressors, xit, and the common factors, it is supposed

that

xit = A
0
idt + �

0
ift + vit; (19)

whereAi and �i are n�k andm�k factor loading matrices with �xed components, and vit is the individual-speci�c
component of xit.

Let �M be de�ned by
�M = IT � �H(�H0 �H)� �H0; (20)

�H = (D; �Z); where D and �Z are, respectively, the matrices of observations on dt and �z:t = (�y:t; �x0:t)
0. We make the

following assumptions on the common factors and their loadings and on the individual, or unit-speci�c, errors:

ASSUMPTION 6 The (n+m)�1 vector gt = (d0t; f 0t)0 is a covariance stationary process, with absolute summable
autocovariances, distributed independently of eis and vis for all i; t; s.1

ASSUMPTION 7 The unobserved factor loadings, i and �i are bounded, i.e. kik2 < K and k�ik2 < K, for
all i. Further, it is assumed that the random deviations, �i, for the slope coe¢ cients are independently distributed

of i and �i.

ASSUMPTION 8 The individual-speci�c errors eit and vjs are distributed independently for all i; j; t and s,
and for each i; vit follows a linear stationary process with absolute summable autocovariances given by

vit =
1X
`=0

�i`�i;t�`;

where for each i, �it is a k�1 vector of serially uncorrelated random variables with mean zero, the variance matrix

1This assumption can be relaxed to allow for unit roots in the common factors, along the lines set out in Kapetanios, Pesaran, and
Yagamata (2009).

11



Ik; and �nite fourth-order cumulants. For each i, the coe¢ cient matrices �i` satisfy the condition

V ar(vit) =
1X
`=0

�i`�
0
i` = �vi ;

where �vi is a positive de�nite matrix, such that supi k�vik2 < K:

ASSUMPTION 9 Let ~� = E (i;�i) = (;�). We assume that Rank
�
~�
�
= m.

ASSUMPTION 10 Consider the cross section averages of the individual-speci�c variables, zit = (yit;x
0
it)
0 de-

�ned by �z:t = 1
N

PN
i=1 zit, and let �M be de�ned by (20). Then the following conditions hold:

(a) The matrix limN!1 1
N

PN
i=1�vi exists and is non-singular.

(b) There exists T0 and N0, such that for all T � T0 and N � N0, the k � k matrices
�
T�1X0i:

�MXi:
�
, and�

T�1X0i:MgXi:
�
, where Mg = IT �G(G0G)�G0, with G = (D;F); exist and are non-singular for all i, and

supiE
X0

i:MgXi:

T

2 < K <1.

Remark 1 Note that Assumption 10 provides extensions of Assumption 5 to the case where individual-speci�c
regressors, xit, are random and correlated with the common factors. These conditions ensure the existence of the

probability limits involved in the derivation of the asymptotic distribution of the CCE estimators as (N;T )
j!1.

Following Pesaran (2006), the mean group and pooled estimators for � in a panel with spatial correlation

and common factors are given by (3) and (5), applied to a regression equation where the observed regressors are

augmented with the cross section averages of the dependent variable, �y:t, and of the regressors, �x:t. Speci�cally,

the CCE mean group estimator is

�̂CCEMG = N
�1

NX
i=1

�̂CCE;i; (21)

where

�̂CCE;i = (X
0
i:
�MXi:)

�1X0i: �Myi:; (22)

and the CCE pooled estimator is

�̂CCEP =

 
NX
i=1

X0i: �MXi:

!�1 NX
i=1

X0i �Myi:; (23)

The following theorems apply to the above estimators (proofs are provided in the Appendix).

Theorem 5 (CCE MG estimator - Heterogeneous slopes, spatial corr. and common factors) Consider
the panel data model given by equations (1), (2), and (19). Suppose that Assumptions 1-3 and 6-10 hold. Then

for the common correlated e¤ects mean group estimator �̂CCEMG given by (21), as (N;T )
j!1 we have

p
N
�
�̂CCEMG � �

�
! N(0;�CCEMG); (24)
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where �CCEMG = 
�:

Theorem 6 (CCE Pooled estimator - Heterogeneous slopes, spatial corr. and common factors) Consider
the panel data model given by equations (1), (2) and (19). Suppose that Assumptions 1-3 and 6-10 hold. Then for

the common correlated e¤ects pooled estimator �̂CCEP given by (23), as (N;T )
j!1, we have

p
N
�
�̂CCEP � �

�
! N(0;�CCEP );

where

�CCEP = 	
��1R�	��1;

with

	� = lim
N!1

 
1

N

NX
i=1

�vi

!
;

R� = lim
N!1

"
1

N

NX
i=1

�vi
��vi

#
:

�

Consistent estimators for the asymptotic variances of �̂CCEP and �̂CCEMG are (see also Section 3 above)

\Asy:V ar
�
�̂CCEMG

�
=

1

N (N � 1)

NX
i=1

�
�̂CCE;i � �̂CCEMG

��
�̂CCE;i � �̂CCEMG

�0
; (25)

\Asy:V ar
�
�̂CCEP

�
=

1

N
	̂��1R̂�	̂��1: (26)

with

	̂� =
1

N

NX
i=1

�
X0i:

�MXi:
T

�
;

R̂� =
1

N � 1

NX
i=1

��
X0i:

�MXi:
T

��
�̂CCE;i � �̂CCEMG

��
�̂CCE;i � �̂CCEMG

�0�X0i: �MXi:
T

��
:

As in the pure spatial case, if the slope coe¢ cients �i are homogeneous the CCE estimators must be multiplied

by
p
NT , rather than by

p
N , to obtain non-degenerate asymptotic distributions, namely

p
NT

�
�̂CCEMG � �

�
=

1p
NT

NX
i=1

h�
T�1X0i: �MXi:

��1
X0i: �M (Fi + ei:)

i
; (27)

p
NT

�
�̂CCEP � �

�
=

"
N�1

NX
i=1

�
T�1X0i: �MXi:

�#�1 1p
NT

NX
i=1

X0i: �M (Fi + ei:) : (28)
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Using results (A.17)-(A.18) and (A.19)-(A.20) in the Appendix, it follows that �̂CCEMG and �̂CCEP continue to

be consistent for � as N ! 1, for T �xed or T ! 1, although their asymptotic distributions will generally
depend on nuisance parameters. Following similar lines of reasoning as in the pure spatial case, we now investigate

whether �̂CCEMG together with the non-parametric variance estimator (10) can still be used in the homogeneous

slopes case. First note that, using results (A.12)-(A.14) in the Appendix, we have

p
T
�
�̂CCE;i � �

�
= 	̂�1

iT

X0i:
�M (Fi + ei:)p

T
=

1p
T
W0

i:ei: +Op

 p
T

N

!
+Op

�
1p
N

�
;

whereW0
i: =

�
T�1X0i:MgXi:

��1
X0i:Mg. Further, for large N and T with

p
T=N ! 0,

T �
��
�̂CCE;i � �

��
�̂CCE;j � �

�0�
= 	̂�1

iT

�
T�1X0i: �M (Fi + ei:)

�
 0jF

0 + e0j:
�
�MXj:

�
	̂�1
jT

� T�1W0
i:ei:e

0
j:Wj :

As in the pure spatial case, the above expression is asymptotically zero only under certain conditions, for example

when the idiosyncratic errors are cross sectionally independent, or if the entries of the matrix Rt, for t = 1; 2; :::; T ,

are random and independently distributed across rows. Later in the paper, we will investigate the small sample

properties of tests based on robust variances (25) and (26) both under heterogenous and homogeneous slopes.

Remark 2 The CCE continues to be applicable even if the rank condition outlined in Assumption 9 is not satis�ed.
Failure of the rank condition can occur if there is an unobserved factor for which the average of the loadings in

the yit and xit equations tends to a zero vector (Pesaran and Tosetti (2009)). This could happen if, for example,

such a factor carries weak cross section dependence. Another possible reason for failure of Assumption 9 is if

the number of unobservable factors, m, is larger than k + 1, where k is the number of regressors. In these cases,

common factors cannot be estimated from cross section averages. However, it is possible to show that the cross

sectional means of the slope coe¢ cients, �i, can still be consistently estimated, under the additional assumption

that the unobserved factor loadings, i, in equation (1) are independently and identically distributed across i; and

of ejt, vjt, and gt = (d0t; f
0
t)
0 for all i; j and t. No assumptions (other than Assumption 7) are required on the

loadings attached to the regressors, xit. The proofs of consistency and asymptotic normality of the CCE estimator

in the rank de�ciency case are straightforward extensions of the results provided in Pesaran (2006).

Remark 3 We observe that the CCE estimator does not entail any assumptions on the cumulative e¤ect of factors
on cross section units. This is in contrast to the use of principal components that require errors to display a strong

factor structure, namely that
PN
i=1 

2
i` >

p
c�2, for ` = 1; 2; :::;m, where c is such that NT � c = o

�
N�1=2�, and �2

is the variance of the idiosyncratic error. In the absence of this condition the principal components estimates of

the factors would be inconsistent. See, for example, Onatski (2009), and Paul (2007).

Remark 4 Kapetanios, Pesaran, and Yagamata (2009) considered the case where the unobservable common fac-
tors follow unit root processes and could be cointegrated. They showed that the asymptotic distribution of panel

estimators in the case of I(1) factors is similar to that in the stationary case, reported in Theorems 5 and 6 above.
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5 Residuals from CCE regression

We now consider the consistent estimation of regression errors uit = yit � �0idt � �0ixit in model (1). Estimation
of uit is needed for computing tests of error cross section independence, or when the objects of interest are the

coe¢ cients of the spatial process, eit. Before continuing, without loss of generality, we specify some further

assumptions on the observed and unobserved common factors. In particular:

ASSUMPTION 11 E (ft) = 0, for t = 1; :::; T , and the n�1 vector of observed common factors, dt, is distributed
independently of ft0, for all t and t0, such that

D0F

T
= Op

�
1p
T

�
: (29)

This is an identi�cation condition that allows to separate the e¤ects of observed and unobserved common

e¤ects in uit. Note that the cross section averages, �z:t, contain information not only on the unobserved factors, ft,

but also on the observed factors, dt. Given that the number, nature and the source of the unobserved common

factors are unknown, without Assumption 11 it would not be possible to separate the e¤ects of these two sets of

common variables. However, since ft is unobserved this assumption can be easily accommodated by a suitable

re-de�nition of ft and the associated factor loadings.

Consider the OLS estimates

�̂i =
�
D0D

��1
D0
�
yi: �Xi:�̂CCE;i

�
; (30)

where �̂CCE;i is given by (22). Under Assumptions 1-3 and 6-10, and given (A.12)-(A.14), we have
2

�̂CCE;i � �i =
�
T�1X0i: �MXi:

��1 X0i: �M (Fi + ei:)

T
= Op

�
1

N

�
+Op

�
1p
NT

�
+Op

�
1p
T

�
;

�̂i ��i =
�
T�1D0D

��1�D0Xi:
T

��
�i � �̂CCE;i

�
+
�
T�1D0D

��1�D0F

T

�
i

+
�
T�1D0D

��1�D0ei:
T

�
;

and hence

�̂i ��i = Op
�
1

N

�
+Op

�
1p
NT

�
+Op

�
1p
T

�
: (31)

Note that, unlike in the case of a simple panel data model with �xed e¤ects and no unobserved common factors,

consistency of �̂i requires both N and T going to in�nity, due to the additional Op
�
N�1� term in (31). This

2Note that under our assumptions T�1D0ei: = Op
�
T�1=2

�
. Indeed, E

�
T�1D0ei:

�
= 0, since under Assumption 6, D and ei: are

independently distributed. Further, under Assumption 6 and from Proposition A.1 (see result (A.2)), the largest eigenvalue of E (ei:e0i:)
is bounded. It follows that

V ar
�
T�1D0ei:

�
= E

�
T�2D0ei:e

0
i:D
�
� K � E

�
T�2D0D

�
= O(T�1):
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term arises since the unobserved common factors are approximated by cross section averages. Now, consider the

residuals ûit = yit � �̂CCE;ixit � �̂0idt. Given the consistency of �̂CCE;i and �̂i, it follows that

uit = ûit +Op

�
1

N

�
+Op

�
1p
NT

�
+Op

�
1p
T

�
:

Similarly, in the homogenous case, adopting the CCEP estimator, under Assumptions 1-3 and 6-10, from (A.20)

we have

�̂i ��i =
�
T�1D0D

��1�D0Xi:
T

��
� � �̂CCEP

�
+
�
T�1D0D

��1�D0F

T

�
i +

�
T�1D0D

��1�D0ei:
T

�
= Op

�
1p
N

�
+Op

�
1p
T

�
+Op

�
1p
NT

�
: (32)

Let ûit = yit � �̂
0
CCEPxit � �̂0idt. Given (32) and (A.20), we obtain

uit = ûit +Op

�
1p
N

�
+Op

�
1p
T

�
+Op

�
1p
NT

�
:

Principal components analysis can be applied to the above residuals, ûit, to estimate the common factors, ft, and

their loadings, i. Note that these residuals continue to be consistent, as (N;T )
j! 1; even when the loadings

attached to the unobserved factors are set to zero, namely, when the data generating process is (1)-(2). In this

case, the parameters of the spatial process can be recovered by applying standard spatial econometric techniques

to ûit.

6 Monte Carlo experiments

6.1 Monte Carlo design

This section provides Monte Carlo evidence on the small sample properties of our estimators, under a range

of assumptions on the stochastic process generating the error terms. The study is comprised of three sets of

experiments. In the �rst set, we consider a panel where the error term is generated by a SAR process and with no

common factors. In the second set, we assume that the error process is the orthogonal sum of a factor structure

and a spatial process, and allow the dependent variable and the individual-speci�c regressors to be correlated with

the unobserved common factors. In the third set of experiments, we make a number of robustness checks, to see

the extent to which our estimators are e¤ective in dealing with various special conditions, such as when errors are

serially correlated, there are sizeable spatial error correlations, or when the pattern of cross section dependence

varies over time.

For all experiments we considered the following data generating process

yit = �id1t + �i1x1it + �i2x2it + i1f1t + i2f2t + eit;

xijt = aij1d1t + aij2d2t + ij1f1t + ij3f3t + vijt; j = 1; 2;
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for i = 1; 2; :::; N and t = 1; 2; :::; T . In the above equations, d1t and d2t are observed common factors, f1t, f2t,

and f3t are unobserved common e¤ects, and eit are idiosyncratic errors. We adopt the following data generating

processes:

d1t = 1; d2t = �dd2;t�1 + vdt, t = �49; :::; 0; 1; ::; T;

vdt � IIDN(0; 1� �2d); �d = 0:5; d2;�50 = 0;

f`t = �f`f`;t�1 + vf`t , ` = 1; 2; 3; t = �49; :::; 0; 1; ::; T;

vf`t � IIDN(0; 1� �2f`); �f` = 0:5; f`;�50 = 0;

and

vijt = ��ijvij;t�1 + #ijt, t = �49; :::; 0; 1; ::; T;

#ijt � N(0; 1� �2#ij ); vij;�50 = 0;

�#ij � IIDU(0:05; 0:95) for j = 1; 2.

The �rst 50 observations are discarded. The factor loadings of the observed common e¤ects do not change across

replications and are generated as

�i � IIDN(1; 1); i = 1; 2; :::; N;

(ai11; ai21; ai12; ai22) � IIDN(0:5� 4; 0:5I4);

where � 4 = (1; 1; 1; 1)0 and I4 is a 4� 4 identity matrix.
We consider two alternative sets of experiments, that involve di¤erent hypotheses on the data generating

process for the loadings of the unobserved common factors, and the way the idiosyncratic errors eit are generated:

A The factor loadings of the unobserved common e¤ects are set to zero, i11 = i13 = i21 = i23 = i1 =

i2 = 0, and the individual-speci�c errors, eit, are generated according to the SAR process

eit = �t

NX
j=1

sijejt + "it; for i = 1; 2; :::; N , t = 1; 2; :::; T; (33)

"it � N(0; �2i ); �2i � IIDU (0:5; 1:5) ; for i = 1; 2; :::; N; (34)

where �t is the time-varying spatial autoregressive coe¢ cient, that we set �t = � = 0:4. sij , for i; j =

1; 2; :::; N , are elements of a spatial weights matrix S, assumed to be time-invariant. We follow Kelejian and

Prucha (2007) and assume that units are located on a rectangular grid at locations (r; s), for r = 1; :::;m1; s =

1; 2; :::;m2, such that N = m1m2.3 The distance dij between units is given by the Euclidean distance, and

3For a given value of N = m1m2, we set m1 and m2 such that these are integer numbers and jm1 �m2j is minimized. In particular,
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S is taken to be a rook-type matrix where two units are neighbors if their Euclidean distance is less than or

equal to one. The weights matrix is normalized such that the weights in each row sum to one.

B The parameters of the unobserved common e¤ects in the xit and yit equations are generated as 
i11 0 i13

i21 0 i23

!
� IID

 
N(0:5; 0:5) 0 N(0; 0:5)

N(0; 0:5) 0 N(0:5; 0:5)

!
;

and

i1 � IIDN(1; 0:2); i2 � IIDN(1; 0:2); i3 = 0;

and the individual-speci�c errors, eit, are generated as in (33) and (34), with �t = � = 0:4. This set of

experiments aims at investigating the extent to which the CCE estimators capture the e¤ects of local as well

global cross section dependence.

For each case, we consider two alternative assumptions on the slope coe¢ cients:

(i) The case of heterogeneous slopes where �ij = �j + �ij , with �j = 1, and �ij � IIDN (0; 0:04) ;for i =

1; 2; :::; N and j = 1; 2, varying across replications.

(ii) The case of homogeneous slopes where �ij = 1; for i = 1; 2; :::; N and j = 1; 2.

Experiment C: robustness checks

The aim of this set of experiments is to investigate the extent to which the use of robust standard errors are

e¤ective in dealing with serially correlated errors, high spatial error correlation, and time variations in the degree

and source of error cross section dependence:

1. Serially correlated errors. We allow errors "it in (33) to be serially correlated. In particular, "it are generated

as stationary AR(1) processes for half of the cross-section units, and as MA(1) processes for the remaining

cross-section units:

"it = �i""i;t�1 + �i
�
1� �2i"

�1=2
�it; i = 1; :::; bN=2c ;

"it = �i
�
1 + �2i"

��1=2 �
�it + �i"�i;t�1

�
; i = bN=2c+ 1; :::; N:

where �it � IIDN(0; 1); �2i � IIDU (0:5; 1:5) ; �i" � IIDU(0:05; 0:95); and �i" � IIDU(0; 0:8). For this

sub-experiment we set �t = � = 0:4, no unobserved common factors, and consider both cases of heterogeneous

and homogeneous slopes.

2. High spatial error correlation. For this sub-experiment we set �t = � = 0:8. Further, we assume that there

are no unobserved common factors and the slope coe¢ cients are heterogeneous (i.e. as in case (i)).

for N = 20 we set m1 = 5, m2 = 4, for N = 30 we set m1 = 6, m2 = 5, for N = 50, we set m1 = 10, m2 = 5, and for N = 100 we set
m1 = m2 = 10.
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3. Time-varying spatial correlation. The spatial autoregressive coe¢ cients are generated as �t � IIDU (0; 0:8),
for t = 1; 2; :::; T , and �xed across replications. For this sub-experiment we assume no unobserved common

factors and heterogeneous slopes (i.e. as in case (i)).

4. Time-varying cross section dependence. We allow the cross dependence to change from weak to strong and

back to weak. Speci�cally, for t = 1; 2; :::; bT=3c we assume parameters of the unobserved common e¤ects in
the xit and in the yit equations and the errors eit are generated as in Experiment A, with �t = � = 0:8. For

t = bT=3c + 1; :::; b2T=3c parameters of the unobserved common e¤ects in the xit and in the yit equations
and the errors eit are generated as in Experiment B, with �t = � = 0 (i.e., error processes include common

factors only). For t = b2T=3c+1; :::; T parameters of the unobserved common e¤ects in the xit and in the yit
equations and the errors eit are generated as in Experiment A, with �t = � = 0:8. For this sub-experiment

we assume heterogeneous slopes (i.e. as in case (i)). The aim of this set of experiments is to investigate the

robustness of our estimators to the possible time variations in the degree of cross section dependence.

Each experiment was replicated 2; 000 times for the (N;T ) pairs with N;T = 20; 30; 50; 100. We report the

small sample properties for a number of estimators of the slope coe¢ cients. In particular, we computed the mean

group estimator (3), both with robust variance (10) and with SHAC variance (17), the pooled estimator (5) both

with robust variance (11) and with SHAC variance (18). The SHAC variance estimators have been computed

using both the true distance matrix D and a mis-speci�ed version of the distance matrix obtained by incorrectly

assuming that units are ordered on a line, rather than on a rectangular grid. Following Kelejian and Prucha

(2007), we have set the parameter dN in (17) and (18) equal to N1=4, and have �xed the window size for the

time series part equal to 2T 1=2. We also computed the ML estimator for a panel containing �xed e¤ects, with

spatially correlated and heteroskedastic errors. The likelihood function of this model for a given spatial matrix, S,

is derived in a supplement which is available on request. Related derivations are also provided in Anselin (1988)

and Lee (2004). We refer to this estimator as the ML-SAR estimator. The ML-SAR estimator is computed for

two di¤erent spatial weights matrices; a correctly speci�ed one, and a mis-speci�ed version, where units with

Euclidean distance less than or equal to two are incorrectly taken as neighbors. This is done with the intent to

check the e¤ect of mis-speci�cation of S on the ML-SAR estimator. Finally, we report results for the CCE mean

group estimator (21) with variance (25), and the CCE pooled estimator (23) with variance (26).

6.2 Monte Carlo results

Results for Experiment A are summarized in Tables A1-A2, for Experiment B in Tables B1-B2, and for Experiment

C in Tables C1-C4. Each table provides estimates of bias, root mean squared errors (RMSE), size, and power.

The nominal size is set to 5 per cent, while the power of the various tests is computed under the alternative

H1 : �1 = 0:95. In what follows we focus on estimation of �1; results for �2 are very similar and are not reported.

Tables A1-A2 summarize the results for the case where the errors are generated by a spatial autoregressive

process without any common factors, under heterogeneous slopes (Table A1) and homogeneous slopes (Table A2).

We �rst note that, for these experiments, the mean group and pooled procedures provide unbiased estimators for

the mean of the slope coe¢ cients, �. Accordingly, these estimators display very small biases and their RMSEs
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decline steadily with increases in N and/or T . Considering the empirical sizes of the tests, the ones based on

the robust variance estimators (10) and (11) display rejection frequencies that are close to the nominal size under

heterogeneous slopes, while they slightly over-reject the null under slope homogeneity, namely when �i = �, for

all i.

Indeed, as noted in Section 3, the robust standard errors given by (10) and (11) are not applicable under

slope homogeneity, and consistent estimation of the variance of the pooled and mean group estimators in general

requires knowledge of the spatial arrangement of the cross section units. In contrast, the tests based on SHAC

variances severely over-reject the null hypothesis in all experiments with heterogeneous slopes, while they do have

the correct size when data are generated under �i = �; and when N and T are su¢ ciently large. Indeed, when

N and T are smaller than 50, the SHAC based tests are slightly over-sized. That the use of Newey-West robust

standard errors lead to an over-rejection of the null hypothesis in small samples is well known within the time series

literature (see, for example, the Monte Carlo study reported in Smith and McAleer (1994)). Our results seem to

indicate that adopting the Newey-West procedure jointly with the Kelejian and Prucha (2007) variance estimator

in a panel data framework may also lead to over-rejection of the null hypothesis in small samples. We note that

Kelejian and Prucha, in their Monte Carlo experiments, only report results when N is relatively large (they focus

on a single cross section, T = 1, with N = 400 and 1024). Also, they do not report sizes of tests based on their

proposed variance estimator (see also the Monte Carlo study reported in Fingleton and Le Gallo (2008)). To

further investigate this issue, we have run some additional experiments using Kelejian and Prucha (2007) Monte

Carlo design, with T = 1, N = 100; 200; 400; 1024. The results show that tests based on the non-parametric

standard errors proposed by Keleijan and Prucha have empirical sizes close to the 5 per cent nominal size if N �
400, but tend to over-reject for smaller values of N .4 However, the results in Table A2 show that errors in the

measurement of the distance between cross section units does not seem to have much a¤ect on the properties of

SHAC estimators, which is in line with the theoretical results obtained in Keleijan and Prucha.

A number of other interesting �ndings also emerge from the results reported in Table A2. We can see that

under the ideal conditions that the spatial process generating the error term and the spatial arrangement of units

are both known, the ML estimator has the correct size for large T , and a high power. Also tests based on CCE

Mean Group and CCE Pooled estimators have empirical sizes that are very close to the nominal size, under both

cases of heterogeneous and homogeneous slopes. These �ndings suggest that augmenting the panel regressions with

cross section averages even in the absence of common factors can help deal with spatial error spillover e¤ects. The

attraction of the CCE type estimators in these contexts lies in the fact that they do not require a quanti�cation

of the exact relative position of the units in space, which is required by the SHAC type estimators. But, not

surprisingly a comparison of the power of the CCE type tests with the tests based on the ML-SAR in Table A2

shows that not using information on the spatial ordering of cross section units can result in some loss of power.

In Experiments B (Tables B1-B2), the combination of common factors and spatial correlation in the error

term leads to large distortions in the pooled and mean group estimators. The bias and RMSE of the ML-SAR

estimator are smaller than those of the pooled estimator, although they remain substantial even for large values of

N and T . Further, tests based on the ML-SAR estimator substantially over-reject the null hypothesis. However,

4To save space, we have not reported these results. However, they are available upon request.
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the combination of common factors and spatial correlation in the errors does not a¤ect the empirical size of CCE

estimators, which is close to the nominal size of 5 per cent.

Turning to results in Tables C1-C5, we observe that serial correlation in errors does not seem to a¤ect the

properties of mean group and pooled estimators with robust variances (10) and (11), and of CCE estimators

under both heterogeneous and homogeneous slopes (see Tables C1-C2). Also the over-rejection tendency of the

SHAC estimator is much more pronounced in the presence of residual serial correlation (Table C2). Turning to

the experiments with a high value of the spatial coe¢ cient (� = 0:8), we see from Table C3 that tests based on

mean group and pooled estimators that use robust standard errors tend to over-reject, in some cases signi�cantly.

But it is interesting that the CCE estimators continue to have the correct size even with such high degrees of

spatial dependence, although there is some evidence of a loss in power. One explanation for this result is that,

when the degree of spatial correlation is high, an unobserved factor structure may better approximate the process

generating cross section dependence, and the CCE type estimators that allow for a factor error structure might

be more appropriate.

Finally, results reported in Table C5 suggest that CCE estimators are also robust to possible time variations in

the degree of cross section dependence. This important property of CCE type estimators is not necessarily shared

by estimation methods that use principal components (see Bai (2009)), since time variation in the degree of cross

section dependence can yield inconsistent estimates of the principal components. We refer to Chudik, Pesaran,

and Tosetti (2010) for a comparison of the CCE method with the principal components approach in the estimation

of panel regression models subject to common factors.

7 Concluding remarks

The main aim of this paper has been to consider estimation of a panel regression model under a number of di¤erent

speci�cations of cross section error correlations, such as spatial and/or common factor models. We have derived

the asymptotic distributions of the mean group and pooled estimators for a panel regression model where the

source of error cross section dependence is purely spatial or results from omitted unobserved factors, or both. In

each case we have distinguished between panels when the slopes are homogeneous across the cross section units and

when they are not. Our main conclusion (based on theoretical and Monte Carlo results) is that the augmentation

of panel regressions with cross section averages together with non-parametric variance estimators associated with

the CCE estimators, seem to be most e¤ective in dealing with error cross section dependencies, irrespective of

whether they arise from are spatial spillovers of are due to the presence of unobserved common factors. The CCE

type estimators also seem to be robust to possible serial correlations in the errors and time variations in the degree

and nature of cross section error dependence. Our Monte Carlo results also document the tendency of the tests

based on the SHAC type standard errors to over-reject the null hypothesis in small samples even in the case of

error cross section dependence which is purely spatial in nature.

A Appendix: proof of Theorems 1�2 and 5�6

The following two Lemmas establish a few key results used in the proofs of Theorems 1-6.
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Lemma A.1 Consider the process (2), where ":t = ("1t; "2t; :::; "Nt)0 satis�es Assumption 1, and Rt satis�es Assumption 2. Then for

all t

E
�
�e2:t
�
= O(N�1); and V ar

�
�e2:t
�
= O(N�2); (A.1)

where �e:t = 1
N

PN
i=1 eit and

�1
�
E
�
ei:e

0
j:

��
= O(1); for all i and j; (A.2)

where ei: = (ei1; ei2; :::; eiT )0.

Proof. First note that, under Assumption 1, "it has mean zero, �nite variances 0 < �2i < �
2
max <1, and �nite fourth-order moments,

E("4it) = �
0
i4 < K <1. To prove (A.1), note that
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:

where � is an N -dimensional vector of ones. But since Rt has bounded row and column norms, �1 (RtR
0
t) is bounded, and we have

E
�
�e2:t
�
= O(N�1):

LetMt =
1
N2�

1=2
" R0

t��
0Rt�

1=2
" , with elements mij;t, for i; j = 1; :::; N . The diagonal elements ofMt satisfy (denoting the ith column
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But by assumption
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jrji;tj = O(1), then mii;t = O
�
N�2� for all i and t. Using results on moments for quadratic forms established

in the literature (see Ullah (2004)), we have
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which establishes the second result in (A.1). To establish (A.2) consider the (t; s)th element of the T � T matrix E
�
ei:e

0
j:

�
and note

that, since for h 6= q, E ("ht"qs) = 0,

E (eitejs) = E
�
r0i:;t":t"

0
:srj:;t

�
=

NX
h=1

NX
q=1

rih;trjq;sE ("ht"qs) =

NX
q=1

riq;trjq;sE ("qt"qs) ;

and the largest eigenvalue of E
�
ei:e

0
j:

�
satis�es (using the result that �1(A) � kAk1)

�1
�
E
�
ei:e

0
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��
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1�s�T

TX
t=1

NX
q=1

jriq;tj jrjq;sj jE ("qt"qs)j

� q max
1�s�T

NX
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jriq;sj
TX
t=1

jE ("qt"qs)j = O(1);

given that, by Assumption 1,
PT

t=1 jE ("qt"qs)j = O(1), and by Assumption 2, jriq;tj = O(1);
PN

q=1 jriq;sj = O(1), for all s.
Therefore, for any process of form (2) with Rt having bounded row and column norms, �e2:t converges to zero in quadratic mean as

N !1, and the degree of cross section dependence of ei:will be bounded in N .

Lemma A.2 Consider the general process e:t = Rt":t. Then under Assumptions 1-8 we have
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where �e = (�e:1; :::; �e:T )
0 ; �e2:t = N

�1PN
i=1 eit, D and F are T �n and T �m matrices on observed and unobserved common factors, and
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where r:q;t =
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The above results can be used to prove further results that are helpful in deriving the asymptotic distribution of CCE estimators.

Rewrite equations (1) and (19) more compactly as
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From Lemma A.2 it follows that (see also Lemmas 2 and 3 in Pesaran (2006))
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Under Assumption 9, the above results in turn yield:
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where Mg = IT �G(G0G)�G0. Note that (A.12)-(A.14) are identical to relations (40), (43) and (44) in Pesaran (2006), and will be

used to derive the asymptotic distribution of CCE Pooled and CCE Mean Group estimators.

In what follows we sketch the proofs of Theorems 1-2 and 5-6.

Proof of Theorem 1. Consider (6), and rewrite it as
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:t = (w1t;w2t; :::;wNt). Under Assumption 1, the NT �1 vector " is a zero mean covariance stationary process, with covariance

matrix E (""0) = 
"". Since the elements of H are uniformly bounded, using standard results on double array central limit theorem

for stationary processes (see, for example, Chung (2001), Chapter 7), it follows that hNT is asymptotically normally distributed if its

variance exists and is positive semi-de�nite. Note that 
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that are absolute summable, namely
P1

s=0 ji(s)j < K for all i. It follows that 
"" has bounded row and column norms and the

variance of hNT satis�es5
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which, under Assumption 5(a), tends to a non-singular matrix with �nite elements. Hence, we have
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which proves the theorem.

Proof of Theorem 2. Consider (7), and let
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where eX:t = (ex1t; ex2t; :::; exNt)0, and P0 = (eX0
:1R1; eX0

:2R2; :::; eX0
:TRT ). Following similar lines of reasoning as for (A.15), the variance

of qNT satis�es
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which tends, under Assumption 5(b), to a �nite, positive de�nite matrix. It follows that
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which proves the theorem.

Proof of Theorem 5. Consider
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5We make use of the following result. Let A be an n�n symmetric matrix, and B be an n�m matrix. Then (B0B)�1(A)�B0AB
is a positive semi-de�nite matrix (see Bernstein (2005), pp. 264 and 271).
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where, by Assumption 10(b), 	̂�1
iT =

�
T�1X0

i:
�MXi:

��1
exists for all i. First note that, using (A.12), and since, by Assumption 7,

factor loadings are bounded, it follows that (see also Pesaran (2006), p. 983)
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Further, given (A.13)-(A.14) we have
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Using similar lines of reasoning as in the proof of Theorem 1, hNT has zero mean and its variance satis�es
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which, under Assumption 10(a) tends to a �nite, positive de�nite matrix. Therefore, we have
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which proves the theorem.

Proof of Theorem 6. Consider
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Let
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:TRT ). Following similar lines of reasoning developed in the

proofs to Theorem 2, qNT has mean zero and its variance satis�es
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which, by Assumption 10(a), tends to a �nite, positive de�nite matrix. It follows that
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which proves the theorem.
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Table A1: Small sample properties of estimators for panels with spatially correlated errors (� = 0:4) and no unobserved common factors,

under slope heterogeneity.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 -0.07 0.10 -0.15 -0.38 8.40 6.59 5.72 5.14 0.07 -0.11 0.01 -0.36 7.78 6.61 5.92 5.65

30 -0.07 -0.29 0.09 -0.07 6.40 5.44 4.52 4.03 -0.06 -0.13 0.06 -0.13 6.02 5.51 4.82 4.38

50 -0.12 0.09 0.10 0.16 4.94 4.36 3.54 3.09 -0.26 0.15 0.05 0.23 4.74 4.29 3.91 3.46

100 0.04 0.09 0.01 0.03 3.38 2.89 2.48 2.31 -0.05 0.01 -0.04 -0.01 3.35 3.02 2.74 2.65

ML-SAR ML-SAR, S mis-speci�ed(1)

20 0.06 0.02 0.06 -0.27 7.70 6.57 5.91 5.67 0.05 0.09 0.02 -0.31 7.89 6.74 5.94 5.63

30 -0.18 -0.15 0.05 -0.11 5.95 5.42 4.75 4.40 -0.10 -0.17 0.01 -0.08 6.01 5.44 4.71 4.40

50 -0.23 0.32 0.13 0.22 4.57 4.25 3.81 3.38 -0.23 0.30 0.13 0.24 4.71 4.28 3.90 3.43

100 0.00 0.02 -0.01 -0.03 3.32 2.90 2.70 2.65 -0.02 0.01 -0.01 -0.04 3.38 2.90 2.75 2.66

CCE Mean group CCE Pooled

20 0.26 0.15 -0.12 -0.32 10.24 7.61 6.12 5.33 0.40 0.20 -0.23 -0.27 8.92 7.29 6.07 5.40

30 -0.31 -0.23 0.09 -0.07 8.35 6.05 4.98 4.22 -0.24 -0.19 0.10 0.00 7.19 5.86 5.00 4.30

50 -0.33 0.27 0.12 0.20 6.24 5.02 3.81 3.25 -0.38 0.25 0.07 0.22 5.42 4.68 3.80 3.30

100 0.01 0.03 0.02 0.02 4.44 3.44 2.66 2.41 -0.04 -0.01 -0.01 0.01 3.89 3.25 2.67 2.46

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 7.70 6.70 6.50 7.60 13.60 14.40 16.10 16.40 8.90 6.30 7.10 7.10 13.80 14.30 17.20 17.40

30 7.40 6.60 6.00 6.80 15.40 20.10 20.50 21.00 6.40 6.50 5.00 6.40 15.10 18.80 21.90 22.50

50 5.50 4.90 5.40 5.20 17.30 24.30 27.40 31.00 4.90 6.70 5.10 4.70 16.60 25.70 29.00 36.60

100 5.70 5.60 5.50 5.20 33.20 38.80 43.10 51.80 5.10 6.20 5.10 5.30 31.10 42.20 51.10 60.40

SHAC Mean group SHAC Pooled

20 11.10 11.90 17.80 27.30 18.40 23.20 31.80 46.10 15.40 17.70 20.90 32.40 22.10 26.40 35.10 46.80

30 10.70 11.80 16.50 23.70 20.10 27.20 39.10 54.80 13.00 17.20 20.30 27.70 24.50 33.00 43.40 53.30

50 7.20 11.90 15.30 22.50 23.70 36.00 52.50 68.30 12.00 16.00 20.90 26.80 28.20 41.40 52.50 68.00

100 8.80 11.10 14.60 25.90 40.00 56.40 72.60 85.10 12.10 14.40 17.80 31.60 46.50 57.90 71.20 81.00

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 11.60 11.90 18.40 27.30 17.20 22.60 31.60 45.60 15.10 18.00 21.40 31.20 21.40 26.00 35.60 47.20

30 11.00 11.90 15.70 23.70 19.40 27.60 38.90 53.20 13.70 16.80 19.30 28.00 24.30 32.90 42.90 52.80

50 7.90 11.60 14.30 22.00 23.20 35.40 52.10 67.80 11.70 15.80 19.80 26.70 27.60 42.10 51.60 68.00

100 8.80 10.40 14.60 26.00 40.50 56.20 73.10 84.90 11.90 14.10 17.70 31.00 47.70 58.30 71.90 81.10

ML-SAR ML-SAR, S mis-speci�ed(1)

20 27.50 30.80 39.30 52.50 39.10 42.80 52.90 65.80 25.60 29.90 35.40 50.20 34.80 41.00 50.10 64.00

30 25.00 31.40 36.90 48.40 36.90 48.50 59.70 70.40 21.80 29.40 33.90 46.30 36.70 43.60 57.00 67.80

50 22.30 31.30 36.40 48.00 45.00 59.50 69.20 82.00 23.40 30.30 37.40 47.90 43.20 58.50 68.20 81.00

100 25.50 30.90 37.40 55.00 65.60 74.20 85.00 91.10 25.10 27.80 36.00 52.80 63.80 72.90 84.00 89.60

CCE Mean group CCE Pooled

20 7.60 7.00 7.80 8.80 9.60 12.80 16.00 18.90 7.50 8.40 7.70 8.50 11.60 13.30 15.50 20.50

30 6.90 5.30 5.90 6.70 11.80 13.90 19.50 23.50 5.90 5.10 5.50 7.10 12.50 14.80 19.50 23.10

50 5.10 7.50 5.40 5.10 11.80 23.20 27.70 37.60 5.20 5.60 5.30 5.20 13.70 24.90 26.40 36.20

100 5.10 5.70 4.70 5.60 20.50 32.60 44.70 58.10 5.70 5.30 5.40 5.50 24.60 34.70 43.90 58.00

Notes: Mean Group, Pooled, CCE Mean group and CCE Pooled are (3), (5), (21), (23), respectively. Robust variances of Mean group

and Pooled estimators are (10) and (11). SHAC variances of Mean group and Pooled estimators are given by (17) and (18).

Variances of CCE Mean group and CCE Pooled estimators are given by (25) and (26).
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.



Table A2: Small sample properties of estimators for panels with spatially correlated errors (� = 0:4) and no unobserved common factors,

under slope homogeneity.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 -0.10 0.04 -0.03 -0.05 6.25 4.81 3.43 2.30 0.01 0.06 0.02 -0.04 4.98 3.92 2.87 2.03

30 0.19 0.05 -0.08 -0.03 5.25 3.86 2.87 1.89 0.02 0.03 -0.08 0.00 4.36 3.32 2.59 1.74

50 -0.26 0.04 -0.01 -0.03 4.31 3.15 2.27 1.48 -0.11 -0.01 0.02 -0.07 3.21 2.65 1.92 1.32

100 -0.02 0.11 -0.02 -0.04 2.71 2.19 1.47 1.01 -0.05 0.03 -0.03 -0.03 2.16 1.85 1.30 0.92

ML-SAR ML-SAR, S mis-speci�ed(1)

20 0.06 0.11 0.06 0.03 4.39 3.37 2.47 1.76 -0.04 0.09 0.08 0.01 4.68 3.57 2.63 1.84

30 -0.01 0.04 -0.09 -0.06 3.73 2.85 2.19 1.45 0.04 0.04 -0.09 -0.06 3.94 3.01 2.28 1.54

50 -0.03 0.09 0.01 -0.03 2.90 2.34 1.69 1.11 0.02 0.07 0.02 -0.03 3.04 2.45 1.75 1.16

100 -0.03 -0.02 0.00 -0.04 1.87 1.56 1.11 0.76 -0.03 -0.01 -0.02 -0.04 2.00 1.68 1.18 0.80

CCE Mean group CCE Pooled

20 -0.25 0.15 0.05 -0.03 8.70 6.19 4.23 2.55 0.05 0.11 0.11 -0.02 7.21 5.38 3.88 2.44

30 0.46 0.19 -0.08 -0.09 7.19 5.07 3.50 2.24 0.29 0.04 -0.08 -0.12 5.75 4.26 3.19 2.18

50 -0.18 0.20 -0.03 0.01 5.85 4.00 2.70 1.72 -0.25 0.17 -0.03 0.00 4.49 3.44 2.45 1.63

100 0.00 0.13 -0.10 -0.04 3.85 2.72 1.80 1.19 -0.03 0.11 -0.10 -0.04 3.03 2.39 1.67 1.13

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 6.10 5.40 5.20 6.80 20.50 27.40 43.50 69.80 6.00 6.00 7.70 5.90 15.80 21.20 33.50 59.50

30 9.30 7.20 9.00 7.70 28.60 37.90 57.50 84.30 7.60 6.50 6.70 7.70 20.30 30.70 46.10 76.40

50 5.80 6.30 6.40 6.70 35.00 52.70 75.10 96.40 5.80 6.50 6.70 5.90 22.40 39.10 62.30 91.10

100 5.50 8.80 6.60 7.30 64.70 83.60 97.00 100.00 5.00 7.40 4.40 5.30 45.10 68.60 90.90 99.90

SHAC Mean group SHAC Pooled

20 7.50 6.80 7.00 5.20 14.80 22.00 33.80 61.30 7.00 6.10 5.20 5.70 21.90 29.40 44.40 70.90

30 8.30 6.40 7.30 6.90 20.80 30.70 46.60 76.70 9.40 6.60 7.70 7.10 27.60 39.10 56.60 82.60

50 7.10 6.50 7.40 6.50 23.60 40.70 64.40 92.40 7.30 7.10 6.20 6.20 35.70 56.00 75.60 96.70

100 4.80 7.60 5.00 4.70 47.30 69.40 91.80 99.90 6.60 8.60 5.50 5.70 64.80 82.20 96.50 100.00

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 6.40 6.80 7.00 4.70 15.70 22.20 34.00 61.20 6.80 6.10 5.50 5.20 22.40 30.10 44.60 71.40

30 7.90 6.80 7.60 7.00 20.60 32.30 47.30 77.50 9.50 7.00 7.90 6.80 29.90 40.30 57.80 83.80

50 7.00 6.50 6.70 6.30 23.90 40.70 63.80 92.30 7.10 7.40 6.50 5.80 36.60 56.00 76.00 96.90

100 4.70 7.80 4.40 5.50 47.20 70.30 92.20 99.90 6.70 8.40 5.90 6.40 66.80 83.30 97.00 100.00

ML-SAR ML-SAR, S mis-speci�ed(1)

20 8.00 6.20 6.10 5.90 26.50 37.20 56.20 84.70 7.30 5.10 5.40 4.70 23.30 32.80 48.30 78.00

30 8.30 5.40 5.90 5.00 34.00 46.90 65.60 93.20 7.50 6.30 5.90 4.90 32.60 42.60 61.10 89.20

50 8.30 8.70 6.30 4.40 46.60 67.10 85.70 99.40 7.70 7.70 6.10 4.70 44.50 63.40 82.90 98.80

100 6.20 7.10 5.70 4.80 80.00 91.50 99.60 100.00 7.30 8.30 5.90 4.90 75.50 88.80 98.40 100.00

CCE Mean group CCE Pooled

20 6.40 6.70 7.30 6.10 10.80 18.30 26.60 48.80 6.50 7.00 6.60 5.90 13.20 20.20 30.00 52.40

30 5.90 6.30 6.10 7.80 14.40 19.80 33.70 63.60 6.40 5.70 6.30 8.10 15.90 21.40 37.70 66.10

50 6.90 6.50 5.80 5.80 15.30 27.60 47.70 83.80 6.20 6.30 5.90 5.80 18.80 34.60 53.80 87.10

100 4.40 4.80 5.30 6.20 23.10 46.80 75.60 98.20 4.80 6.20 5.80 6.10 35.40 58.50 82.60 99.30

Notes: see notes to Table A1.
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.



Table B1: Small sample properties of estimators for panels with spatially correlated errors (� = 0:4) and unobserved common factors,

under slope heterogeneity.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 15.38 14.69 14.86 14.12 20.02 18.48 17.80 16.59 17.12 16.83 17.05 16.63 21.37 20.43 19.83 19.03

30 15.26 14.50 15.00 14.32 19.35 17.82 17.52 16.06 17.46 17.11 17.70 17.17 21.60 20.41 20.24 18.98

50 15.86 15.97 15.99 15.75 18.62 17.86 17.48 16.83 18.00 18.13 18.49 18.45 21.00 20.31 20.21 19.60

100 15.23 14.76 15.23 14.77 17.37 16.33 16.25 15.53 16.87 16.60 17.29 17.13 19.48 18.56 18.55 18.01

ML-SAR ML-SAR, S mis-speci�ed(1)

20 2.23 2.17 1.75 1.17 8.94 7.90 7.08 6.73 1.41 1.36 0.94 0.44 8.62 7.70 6.76 6.42

30 1.95 1.88 1.93 1.63 7.40 6.67 6.28 5.88 1.27 0.84 1.09 0.83 6.99 6.25 5.74 5.46

50 1.56 2.00 1.53 1.80 5.63 5.36 4.86 4.58 0.76 1.12 0.65 0.94 5.29 4.94 4.44 4.17

100 1.56 1.44 1.52 1.43 4.25 3.85 3.59 3.50 0.71 0.60 0.68 0.64 4.00 3.48 3.24 3.19

CCE Mean group CCE Pooled

20 0.54 0.16 -0.10 -0.34 10.09 7.54 6.07 5.44 0.51 0.00 -0.23 -0.34 9.06 7.46 6.17 5.62

30 -0.43 -0.08 0.13 -0.10 8.00 6.05 4.94 4.32 -0.39 -0.17 0.08 -0.06 7.22 5.97 5.03 4.40

50 -0.27 0.15 0.09 0.21 6.10 4.98 3.85 3.21 -0.28 0.23 0.06 0.22 5.35 4.73 3.84 3.28

100 0.00 0.07 -0.03 0.00 4.43 3.39 2.67 2.41 -0.02 0.05 -0.05 -0.01 3.92 3.21 2.71 2.46

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 42.90 43.50 50.50 52.20 57.90 60.00 69.70 72.10 32.80 34.50 42.90 43.90 47.40 50.90 61.00 64.20

30 54.00 58.10 63.20 70.00 69.90 74.20 82.40 87.50 44.40 46.90 54.40 59.00 59.60 66.40 75.90 83.50

50 68.90 78.10 82.40 89.70 85.00 91.50 95.40 98.20 56.40 69.60 75.50 84.20 78.00 87.40 92.60 97.10

100 80.60 87.00 93.80 96.60 93.10 95.60 99.00 99.30 76.20 82.80 92.40 94.40 91.60 95.60 99.30 99.70

SHAC Mean group SHAC Pooled

20 34.30 40.40 53.70 66.40 52.20 61.80 75.60 85.50 45.80 52.70 65.30 78.30 65.70 73.40 84.90 91.30

30 40.80 49.00 63.60 79.20 60.90 70.20 86.30 94.00 52.50 59.50 74.00 87.00 73.20 80.30 90.70 96.40

50 57.70 73.70 84.50 94.70 81.00 90.70 96.70 99.60 71.60 81.80 90.70 97.60 87.90 95.40 98.60 99.70

100 76.60 84.80 95.90 97.50 92.30 96.40 99.80 100.00 81.40 88.50 96.50 98.20 95.10 97.20 99.70 100.00

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 35.40 42.70 55.20 67.70 53.40 63.20 76.40 85.90 48.30 54.40 66.50 79.40 66.00 72.80 85.80 91.70

30 46.30 53.40 67.60 81.70 65.00 73.50 87.50 94.60 59.20 65.00 77.70 88.50 76.50 83.00 91.60 96.60

50 61.60 76.20 85.90 95.30 83.10 91.80 97.70 99.70 74.70 84.60 91.80 98.00 89.30 95.50 98.70 99.70

100 78.90 87.00 96.50 98.10 92.70 96.50 99.90 100.00 84.10 90.30 97.00 98.30 95.50 97.40 99.80 100.00

ML-SAR ML-SAR, S mis-speci�ed(1)

20 40.90 43.20 51.10 62.40 54.30 57.90 65.40 71.40 35.90 38.60 45.90 60.90 48.40 53.80 61.50 69.50

30 38.80 43.60 53.00 62.30 54.90 63.70 73.60 82.00 35.20 39.40 47.50 59.00 49.50 56.70 67.60 76.00

50 37.60 46.30 52.30 65.30 62.70 72.60 80.00 87.40 34.20 41.90 49.40 60.60 59.30 67.80 75.30 84.10

100 41.80 47.30 53.90 68.10 79.40 84.80 92.70 94.40 36.40 41.50 49.70 63.80 70.90 79.70 86.80 91.30

CCE Mean group CCE Pooled

20 7.80 6.90 7.50 8.40 12.60 12.90 14.80 17.70 8.50 7.80 7.60 8.60 13.50 13.80 14.20 17.30

30 5.70 5.80 6.10 7.80 12.10 13.50 19.00 22.30 5.70 6.10 6.10 7.80 12.50 14.30 20.00 23.10

50 4.80 6.90 5.80 5.40 11.80 21.10 27.70 36.60 4.70 6.00 5.60 5.80 14.30 24.60 27.90 35.30

100 5.20 5.50 4.60 5.20 21.10 34.00 45.00 57.00 5.10 5.60 4.60 5.20 25.40 34.90 43.20 57.50

Notes: see notes to Table A1.
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.



Table B2: Small sample properties of estimators for panels with spatially correlated errors (� = 0:4) and unobserved common factors,

under slope homogeneity.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 15.36 14.54 15.05 14.85 19.38 17.68 17.37 16.46 17.33 16.81 17.39 17.37 20.95 19.69 19.59 18.82

30 14.46 14.73 14.43 14.58 18.61 17.53 16.42 15.88 16.62 16.97 17.08 17.28 20.75 19.85 19.07 18.56

50 16.45 16.13 15.80 15.44 18.85 17.82 17.10 16.29 18.38 18.43 18.24 18.19 20.82 20.18 19.58 19.05

100 15.43 15.22 14.93 14.77 17.52 16.71 15.93 15.37 17.39 17.17 17.16 17.22 20.11 19.00 18.38 17.89

ML-SAR ML-SAR, S mis-speci�ed(1)

20 2.14 1.89 1.66 1.65 6.17 5.10 4.32 3.78 1.33 1.16 0.97 1.07 5.82 4.82 4.09 3.51

30 1.78 1.92 1.57 1.65 5.03 4.53 3.67 3.44 1.00 1.17 0.84 0.85 4.68 4.10 3.32 3.04

50 1.62 1.82 1.62 1.53 4.14 3.60 3.06 2.68 0.94 0.95 0.80 0.75 3.76 3.08 2.48 2.16

100 1.77 1.42 1.43 1.32 3.15 2.60 2.36 1.99 0.99 0.71 0.68 0.58 2.68 2.18 1.92 1.56

CCE Mean group CCE Pooled

20 -0.19 0.05 0.06 0.03 8.29 5.90 4.39 2.87 -0.03 -0.01 0.09 0.07 6.93 5.31 4.13 2.94

30 0.20 0.07 -0.08 -0.07 7.11 5.06 3.48 2.35 0.00 -0.04 -0.08 -0.10 5.76 4.45 3.20 2.32

50 -0.15 0.03 -0.03 -0.01 5.57 3.92 2.68 1.72 -0.10 0.08 -0.04 0.00 4.37 3.46 2.44 1.65

100 0.05 0.18 -0.10 -0.04 3.77 2.79 1.77 1.18 0.03 0.14 -0.09 -0.04 3.08 2.44 1.65 1.13

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 51.20 57.60 68.00 73.70 69.60 75.30 84.20 91.30 36.90 40.00 50.90 59.70 51.70 62.30 73.40 81.90

30 60.10 68.50 78.40 86.30 76.80 84.10 91.70 96.80 44.90 55.60 64.60 75.20 63.30 75.70 84.90 92.40

50 80.00 87.50 93.10 97.50 94.00 98.00 98.90 99.90 65.80 76.80 85.10 92.30 84.50 92.00 97.00 98.90

100 87.40 91.50 97.90 99.70 95.40 98.80 99.90 100.00 80.10 87.40 95.60 99.20 93.70 97.90 99.80 100.00

SHAC Mean group SHAC Pooled

20 32.10 44.00 62.10 78.40 54.90 68.20 84.80 95.50 50.20 59.00 77.80 91.40 71.10 81.90 93.40 97.90

30 41.20 54.90 69.10 86.10 62.80 78.20 90.60 98.10 55.70 68.80 81.40 94.20 76.30 88.00 94.90 99.10

50 65.00 79.40 89.70 97.70 87.10 95.50 98.50 100.00 79.10 90.30 94.90 99.80 95.00 98.80 99.40 100.00

100 80.00 87.70 96.90 99.70 94.40 97.90 99.90 100.00 86.60 91.60 98.30 99.90 95.60 98.70 100.00 100.00

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 35.20 44.80 62.40 79.30 56.60 69.20 85.00 95.40 54.60 62.10 78.80 91.20 71.60 82.10 93.50 98.10

30 46.50 58.90 72.80 87.70 67.30 80.20 91.50 98.20 61.50 72.60 85.30 95.10 80.70 89.10 95.20 99.30

50 68.20 82.00 90.80 97.60 87.80 95.50 98.70 100.00 82.50 91.40 95.70 99.70 95.50 99.00 99.30 100.00

100 82.00 89.70 97.40 99.80 94.80 98.20 99.90 100.00 88.30 93.10 98.70 99.90 96.00 99.00 100.00 100.00

ML-SAR ML-SAR, S mis-speci�ed(1)

20 24.90 25.40 30.50 41.50 52.00 60.20 74.40 86.40 19.90 21.20 26.60 32.50 45.10 51.60 64.70 80.80

30 23.90 27.30 31.20 45.20 57.80 71.10 81.50 91.40 19.10 21.30 24.70 37.60 48.70 61.60 74.20 86.00

50 25.00 30.60 36.30 44.00 70.90 85.00 92.90 98.10 20.20 22.20 25.70 34.30 63.60 78.40 88.70 96.40

100 30.70 34.50 41.00 51.10 92.40 96.90 99.20 100.00 22.50 22.20 27.80 35.80 86.80 94.10 97.70 99.90

CCE Mean group CCE Pooled

20 5.10 6.20 7.00 6.10 11.40 17.00 25.50 45.40 6.10 7.00 7.10 6.80 12.60 18.40 29.20 46.50

30 6.20 5.80 5.90 7.40 12.90 19.70 32.70 58.60 6.20 6.30 6.60 7.30 15.20 22.10 34.80 60.30

50 6.70 6.10 6.00 4.90 15.10 25.90 46.40 82.40 4.80 6.00 5.70 5.30 19.50 35.40 52.90 85.30

100 4.60 6.30 4.40 4.50 24.80 48.50 77.00 98.70 4.60 6.10 4.80 4.50 35.00 57.50 83.00 99.40

Notes: see notes to Table A1.
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.



Table C1: Small sample properties of estimators for panels with spatially correlated errors (� = 0:4) no unobserved common factors,

under slope heterogeneity and serial correlation.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 0.00 0.12 0.15 -0.05 9.00 7.40 6.32 5.35 0.25 0.16 -0.01 0.01 8.24 7.61 6.69 5.72

30 0.57 0.06 0.07 0.14 7.41 6.21 5.16 4.33 0.39 -0.01 -0.10 0.18 6.96 6.14 5.37 4.56

50 -0.22 -0.08 -0.03 -0.07 5.81 4.70 3.94 3.40 -0.31 -0.01 -0.09 -0.05 5.40 4.67 4.20 3.67

100 -0.01 -0.08 0.16 -0.20 3.91 3.30 2.85 2.42 -0.05 -0.08 0.09 -0.15 3.66 3.31 3.07 2.66

ML-SAR ML-SAR, S mis-speci�ed(1)

20 0.20 -0.08 0.02 -0.06 8.04 7.74 6.90 6.01 0.24 -0.10 0.04 -0.04 8.24 7.90 6.90 6.00

30 0.35 0.11 0.09 0.17 6.65 6.29 5.45 4.94 0.27 0.16 0.06 0.16 6.79 6.35 5.50 4.96

50 -0.10 -0.22 -0.19 0.04 5.23 4.85 4.30 3.80 -0.07 -0.20 -0.18 0.03 5.35 4.85 4.38 3.84

100 -0.01 0.02 0.10 -0.18 3.66 3.31 3.00 2.70 -0.06 0.00 0.09 -0.18 3.71 3.39 3.02 2.72

CCE Mean group CCE Pooled

20 -0.24 0.01 0.11 -0.11 11.02 8.47 6.77 5.64 0.18 0.18 0.04 -0.06 9.30 8.13 6.78 5.68

30 0.51 0.05 0.14 0.10 9.15 6.88 5.77 4.60 0.40 0.08 0.11 0.12 8.01 6.42 5.55 4.69

50 -0.26 -0.18 0.08 -0.13 7.01 5.24 4.23 3.57 -0.22 -0.09 0.04 -0.09 6.09 4.99 4.24 3.60

100 0.12 -0.02 0.15 -0.22 4.94 3.85 3.08 2.53 0.13 -0.04 0.13 -0.20 4.29 3.62 3.10 2.53

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 7.00 8.60 8.10 7.50 10.70 15.20 14.70 15.70 6.70 6.80 7.20 6.40 10.80 12.80 15.80 17.70

30 8.20 7.70 6.70 6.70 14.90 17.70 19.30 22.10 7.50 7.30 6.50 6.60 14.40 16.60 18.90 23.70

50 5.20 5.50 5.70 5.80 16.00 20.40 24.20 27.40 5.60 5.10 5.60 5.50 15.30 19.50 23.90 31.30

100 5.40 6.30 5.70 5.40 29.30 34.70 42.40 44.90 6.00 4.80 5.70 5.60 25.40 33.10 45.90 52.70

SHAC Mean group SHAC Pooled

20 11.00 11.90 15.40 22.00 16.50 20.90 28.30 38.50 12.70 16.80 19.20 27.00 19.20 26.30 31.90 42.30

30 11.60 14.00 14.10 21.20 20.60 25.70 32.20 47.30 12.40 15.30 17.80 24.80 24.30 29.10 37.40 49.80

50 10.30 9.90 13.20 18.90 21.40 29.50 40.10 56.90 11.60 14.70 19.90 23.50 27.90 32.90 44.00 57.30

100 9.20 10.30 16.00 20.70 35.30 44.90 63.30 77.50 11.50 14.70 20.90 25.60 41.10 51.90 64.30 77.10

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 11.10 10.90 15.30 22.50 16.00 20.60 28.00 37.90 13.30 16.60 19.00 26.10 18.80 26.10 30.90 42.00

30 11.00 13.40 14.00 20.20 18.80 25.10 32.70 47.80 13.70 15.00 17.50 24.40 25.20 29.50 37.70 49.30

50 9.30 9.90 13.20 18.90 20.60 29.20 39.50 56.50 11.80 13.50 18.80 23.20 27.70 33.40 43.50 56.20

100 8.80 10.10 15.30 20.50 33.60 44.30 62.80 77.10 11.50 15.10 21.50 25.60 40.80 51.10 64.60 76.90

ML-SAR ML-SAR, S mis-speci�ed(1)

20 38.40 45.20 48.80 57.30 47.00 53.70 59.70 70.20 36.00 44.00 45.10 54.70 43.10 51.10 58.80 66.00

30 37.50 43.70 46.00 57.40 51.10 55.00 64.10 73.80 34.10 43.00 44.60 52.70 48.20 53.10 62.40 71.80

50 35.70 43.10 46.10 55.30 54.70 60.10 69.90 79.80 33.90 40.00 46.00 55.30 53.30 59.60 68.40 77.70

100 38.80 41.60 48.20 58.80 69.20 77.20 84.10 90.20 36.20 39.10 47.80 56.00 65.90 75.60 82.40 89.40

CCE Mean group CCE Pooled

20 7.70 6.30 7.30 7.70 11.30 11.70 15.60 18.30 6.70 6.70 8.10 8.30 10.80 12.30 15.20 17.80

30 6.30 6.20 6.30 6.70 12.50 13.40 17.40 23.00 7.30 6.10 6.30 6.20 12.30 14.40 18.10 23.10

50 6.00 5.60 6.00 5.60 13.10 14.90 21.80 31.60 6.90 4.50 6.20 6.10 13.20 17.20 21.80 30.70

100 6.50 4.90 4.50 5.40 20.50 27.00 39.00 49.00 6.00 5.30 6.20 4.90 23.80 28.00 40.60 48.50

Notes: see notes to Table A1.
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.



Table C2: Small sample properties of estimators for panels with spatially correlated errors (� = 0:4) no unobserved common factors,

under slope homogeneity and serial correlation.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 0.25 -0.15 0.11 0.01 7.83 6.16 4.40 3.10 0.16 -0.11 0.01 0.03 6.23 5.15 3.78 2.72

30 0.05 0.07 0.17 0.12 6.12 4.54 3.66 2.50 0.08 0.03 0.09 0.14 5.09 4.11 3.27 2.36

50 -0.11 -0.01 -0.09 0.06 5.20 3.94 2.82 1.90 -0.09 -0.06 -0.09 0.05 4.15 3.32 2.46 1.75

100 -0.05 -0.08 -0.01 0.03 3.46 2.60 2.01 1.53 -0.02 -0.05 -0.02 0.04 2.78 2.13 1.70 1.10

ML-SAR ML-SAR, S mis-speci�ed(1)

20 0.09 -0.03 0.00 -0.04 4.65 3.93 3.03 2.22 0.17 -0.08 -0.02 -0.02 5.05 4.22 3.23 2.31

30 0.14 0.06 0.10 0.02 4.02 3.23 2.50 1.85 0.14 -0.02 0.12 0.02 4.20 3.34 2.67 1.92

50 -0.04 0.00 -0.07 0.04 3.19 2.62 1.99 1.51 -0.03 0.03 -0.05 0.03 3.29 2.78 2.08 1.55

100 -0.01 0.05 0.02 0.03 2.07 1.70 1.32 0.94 0.01 0.06 0.01 0.02 2.18 1.76 1.40 0.97

CCE Mean group CCE Pooled

20 0.66 -0.38 -0.02 0.01 9.55 7.37 5.07 3.46 0.40 -0.20 -0.08 0.03 8.22 6.43 4.72 3.30

30 0.13 -0.12 -0.02 0.03 8.07 5.82 4.15 2.81 0.39 -0.08 -0.03 0.07 6.72 5.14 3.80 2.72

50 -0.15 -0.02 -0.01 0.05 6.39 4.64 3.32 2.18 -0.24 -0.13 -0.05 0.06 5.27 4.05 3.01 2.07

100 0.04 -0.04 0.05 0.00 4.41 3.30 2.38 1.84 -0.02 -0.08 0.02 -0.01 3.66 2.85 2.15 1.78

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 7.30 8.90 7.20 6.70 16.80 19.50 29.50 51.40 6.90 8.10 6.00 7.00 14.70 17.10 26.50 43.10

30 6.70 7.30 7.30 9.20 23.40 28.10 43.00 67.10 6.10 6.30 7.60 7.90 17.90 20.80 35.40 58.20

50 6.10 6.80 5.60 5.90 26.50 36.60 53.40 83.00 7.80 7.40 5.30 4.70 18.90 29.10 42.30 75.00

100 8.30 5.90 6.60 5.60 51.30 65.00 85.80 96.60 6.90 5.80 6.40 5.60 34.00 46.70 73.30 84.20

SHAC Mean group SHAC Pooled

20 8.30 8.50 6.20 7.40 15.00 18.60 28.10 43.10 8.30 8.30 7.10 6.50 18.80 22.70 32.40 51.50

30 7.00 7.60 7.60 7.40 19.40 23.40 36.90 59.90 6.70 7.00 7.10 7.40 24.70 28.80 41.20 65.20

50 9.50 8.50 6.00 5.30 23.10 32.20 45.30 77.20 8.50 7.80 6.90 6.00 30.60 39.90 56.50 83.60

100 8.90 6.00 8.00 7.70 38.20 51.70 75.60 95.30 9.30 7.50 6.50 7.60 52.90 67.60 86.80 99.60

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 7.80 8.20 6.70 6.60 15.60 18.60 26.90 42.70 8.30 8.80 6.90 6.40 19.30 21.50 31.70 51.30

30 8.20 5.60 8.40 8.70 19.70 22.40 37.40 59.90 8.30 7.30 7.30 8.10 25.60 29.30 43.10 67.30

50 9.70 8.40 6.60 5.40 22.00 32.10 45.40 76.80 8.20 8.00 6.90 6.00 31.10 38.80 57.20 84.10

100 8.20 6.80 7.60 7.60 37.80 51.10 75.60 95.00 9.30 7.40 7.30 7.20 54.80 68.10 86.90 100.0

ML-SAR ML-SAR, S mis-speci�ed(1)

20 17.10 18.00 17.20 16.40 40.60 46.80 60.20 79.80 16.60 17.20 16.10 13.90 37.40 43.40 56.20 75.60

30 19.00 17.70 14.70 16.80 49.90 56.50 73.20 90.90 17.70 15.40 14.50 13.70 45.30 52.00 68.70 88.00

50 16.40 17.80 16.70 17.50 60.50 71.70 85.30 98.20 16.50 17.10 14.20 17.60 57.20 69.00 83.30 96.50

100 17.80 15.80 15.40 5.60 85.40 93.80 99.10 100.0 18.00 15.30 14.60 5.20 83.00 92.30 98.50 100.0

CCE Mean group CCE Pooled

20 6.70 7.50 5.40 7.10 11.20 13.40 20.80 35.30 6.70 7.00 6.70 6.30 11.80 14.70 21.20 37.30

30 6.00 6.40 5.20 5.90 13.30 15.20 26.80 47.80 6.30 6.00 5.90 6.80 16.10 18.10 29.10 50.70

50 6.20 5.40 6.50 5.60 13.70 21.30 34.10 65.00 6.60 7.00 6.60 5.80 17.20 25.30 39.50 67.90

100 4.60 6.10 5.70 5.00 22.20 33.40 58.30 83.50 5.00 6.40 6.20 5.0 30.60 41.40 66.10 88.30

Notes: see notes to Table A1.
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.



Table C3: Small sample properties of estimators for panels with spatially correlated errors (� = 0:8) no unobserved common factors,

under slope heterogeneity.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 -0.29 0.00 -0.22 -0.46 12.72 9.64 7.61 6.18 -0.15 -0.30 -0.03 -0.42 11.33 9.15 7.48 6.59

30 -0.12 -0.38 0.21 -0.06 10.57 8.47 6.51 5.02 -0.11 -0.25 0.19 -0.13 10.18 8.67 6.94 5.44

50 0.10 -0.01 0.09 0.16 7.15 5.75 4.50 3.60 -0.13 0.04 0.06 0.25 6.49 5.50 4.76 3.91

100 0.01 0.11 0.05 0.05 4.93 4.07 3.19 2.68 -0.08 0.03 -0.02 -0.01 4.94 4.27 3.46 3.04

ML-SAR ML-SAR, S mis-speci�ed(1)

20 0.09 0.06 0.10 -0.24 7.57 6.51 5.95 5.75 0.07 0.20 0.02 -0.33 8.13 6.97 6.10 5.72

30 -0.21 -0.08 0.04 -0.12 6.02 5.48 4.86 4.49 -0.04 -0.12 -0.02 -0.06 6.29 5.59 4.83 4.48

50 -0.24 0.33 0.14 0.19 4.52 4.27 3.77 3.40 -0.25 0.29 0.13 0.23 4.89 4.40 3.99 3.51

100 0.01 0.01 -0.03 -0.04 3.35 2.93 2.71 2.69 -0.01 -0.01 -0.03 -0.06 3.51 2.96 2.83 2.70

CCE Mean group CCE Pooled

20 0.10 0.23 -0.11 -0.30 12.97 9.36 7.10 5.79 0.23 0.28 -0.26 -0.24 10.90 8.75 6.94 5.81

30 -0.32 -0.19 0.16 -0.08 10.83 7.74 6.00 4.72 -0.28 -0.18 0.16 0.00 9.12 7.31 5.84 4.75

50 -0.20 0.32 0.14 0.22 8.66 6.54 4.72 3.73 -0.31 0.30 0.06 0.23 7.09 5.85 4.59 3.72

100 -0.01 0.01 0.04 0.05 6.02 4.53 3.27 2.70 -0.05 -0.05 0.01 0.04 5.02 4.13 3.20 2.71

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 10.90 10.90 8.50 10.00 13.80 14.30 16.90 15.70 10.80 8.80 8.50 9.10 11.10 13.10 14.70 15.50

30 16.00 16.40 12.70 9.30 20.90 22.50 22.70 21.40 12.40 12.70 10.10 8.20 16.60 18.90 21.70 22.30

50 7.40 5.80 7.70 6.90 15.70 19.50 21.80 28.80 5.20 6.20 6.00 6.10 12.00 16.10 22.20 30.80

100 10.80 10.60 9.30 8.70 28.50 33.10 38.80 46.30 7.10 8.60 6.70 7.00 21.10 30.10 40.20 52.70

SHAC Mean group SHAC Pooled

20 10.90 11.10 12.90 17.80 12.10 16.30 20.30 29.80 13.20 15.70 16.20 24.70 17.20 19.80 25.20 35.20

30 13.00 13.50 15.10 18.30 16.30 20.80 28.20 37.00 16.00 18.10 18.50 21.80 19.80 25.10 32.10 40.30

50 7.30 9.80 11.20 15.80 15.40 21.20 33.90 53.70 9.90 12.00 15.90 22.00 20.50 26.80 36.80 55.70

100 8.00 11.50 12.10 18.90 23.90 35.70 51.90 71.20 12.60 14.50 15.60 25.60 30.10 39.90 52.30 68.90

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 11.30 11.50 13.40 18.40 12.30 15.60 20.50 29.40 13.20 15.30 17.10 24.10 16.80 19.80 25.90 35.20

30 14.00 15.20 15.00 19.10 17.50 22.00 28.60 37.60 18.60 21.40 21.10 24.40 22.90 28.20 34.80 43.40

50 7.40 9.00 11.20 15.10 15.80 21.00 34.80 52.80 11.60 11.50 16.90 21.40 20.50 28.20 38.50 55.30

100 9.30 11.40 12.80 19.40 25.50 37.00 53.20 72.70 15.40 16.80 17.10 27.80 33.70 42.60 56.00 71.40

ML-SAR ML-SAR, S mis-speci�ed(1)

20 29.00 31.50 42.60 53.80 41.40 45.30 54.40 68.20 21.90 24.70 30.50 46.50 31.10 36.10 45.70 60.00

30 27.10 32.00 38.30 51.20 38.60 50.00 60.80 69.80 18.90 24.00 28.80 42.60 31.60 39.00 52.00 63.50

50 22.70 33.50 37.50 49.40 46.20 60.10 70.00 81.60 21.30 27.80 33.40 45.40 37.90 54.50 65.00 78.80

100 27.60 33.20 40.30 57.00 66.10 74.40 85.50 91.20 22.60 24.30 32.90 48.90 57.60 69.00 79.80 88.10

CCE Mean group CCE Pooled

20 7.50 6.60 7.00 7.60 9.80 11.60 13.40 17.30 8.00 7.50 7.30 7.90 9.30 13.90 13.50 18.10

30 6.40 6.50 5.80 6.50 8.70 12.10 16.20 19.00 6.40 5.70 5.80 6.90 10.20 13.30 15.70 19.80

50 4.90 6.60 6.40 5.80 9.80 16.90 20.60 31.80 5.40 6.10 6.10 5.90 9.90 18.30 20.70 31.90

100 5.30 6.90 4.60 6.00 14.40 21.70 34.60 48.60 5.10 6.60 5.40 5.30 16.00 23.70 35.50 50.30

Notes: see notes to Table A1.
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.



Table C4: Small sample properties of estimators for panels with spatially correlated errors (�t� IIDU(0; 0:8)) no unobserved common factors,
under slope heterogeneity.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 0.20 0.19 -0.13 -0.43 9.31 6.92 6.02 5.27 0.23 -0.14 0.09 -0.37 8.51 6.92 6.21 5.76

30 -0.21 -0.25 0.05 -0.08 7.37 5.99 4.75 4.13 -0.08 -0.19 0.07 -0.12 6.86 5.96 5.01 4.50

50 -0.05 0.07 0.17 0.14 5.45 4.50 3.62 3.14 -0.19 0.07 0.11 0.24 5.16 4.48 3.95 3.51

100 0.08 0.07 0.03 0.03 3.88 3.11 2.58 2.39 -0.07 -0.03 -0.04 0.01 3.68 3.20 2.86 2.70

ML-SAR ML-SAR, S mis-speci�ed(1)

20 0.31 0.03 0.13 -0.25 7.66 6.62 6.10 5.71 0.35 0.05 0.10 -0.28 8.02 6.77 6.17 5.70

30 -0.23 -0.10 0.06 -0.17 6.01 5.55 4.78 4.46 -0.14 -0.13 0.01 -0.10 6.07 5.57 4.78 4.45

50 -0.21 0.22 0.12 0.14 4.68 4.33 3.74 3.41 -0.17 0.18 0.13 0.16 4.90 4.37 3.85 3.47

100 -0.02 -0.03 -0.06 0.01 3.30 2.97 2.72 2.67 -0.05 -0.04 -0.08 0.00 3.37 2.97 2.76 2.68

CCE Mean group CCE Pooled

20 0.56 0.19 -0.12 -0.42 11.05 7.92 6.26 5.40 0.47 0.12 -0.17 -0.30 9.70 7.62 6.23 5.43

30 -0.38 -0.21 0.03 -0.04 8.99 6.52 5.05 4.30 -0.41 -0.19 0.08 0.04 7.56 6.18 5.05 4.37

50 -0.20 0.21 0.20 0.18 6.90 5.19 3.92 3.27 -0.23 0.25 0.16 0.22 5.81 4.85 3.89 3.33

100 0.09 0.06 0.03 0.02 4.84 3.59 2.77 2.46 0.01 0.00 -0.02 0.03 4.08 3.35 2.77 2.49

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 9.00 6.70 8.10 7.80 14.50 14.40 16.60 15.10 8.60 6.50 8.10 7.10 12.80 14.60 16.50 15.50

30 8.50 8.10 6.80 7.30 16.60 20.00 20.40 22.00 8.10 8.30 5.80 6.60 14.50 17.40 21.30 22.80

50 6.00 6.00 5.90 5.50 17.30 21.90 26.50 30.60 5.40 5.70 4.70 4.30 15.00 22.50 30.60 36.20

100 6.90 5.60 6.20 5.40 30.10 38.30 43.00 51.50 6.20 6.60 6.00 5.80 27.80 40.50 48.80 59.40

SHAC Mean group SHAC Pooled

20 10.60 11.00 17.90 26.50 15.90 21.40 30.10 42.20 13.70 15.90 20.80 31.40 20.40 23.90 33.00 44.60

30 9.90 13.40 14.60 22.30 17.20 24.40 38.10 51.90 13.60 15.70 19.80 26.60 21.60 30.20 40.40 50.50

50 7.70 12.00 13.00 21.40 19.70 32.00 49.30 64.80 11.70 15.00 18.20 27.40 26.40 37.90 51.00 66.80

100 9.00 11.50 14.70 25.20 33.90 51.10 70.70 83.80 10.60 14.70 18.80 30.80 40.60 54.80 68.20 79.40

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 11.50 10.90 17.80 25.60 16.60 22.10 30.10 41.50 14.60 14.50 20.40 30.30 21.00 25.00 34.30 44.00

30 10.50 14.40 14.20 22.00 17.80 24.30 37.20 51.10 14.00 18.70 20.30 26.90 22.30 29.70 40.60 51.10

50 8.20 11.00 12.10 21.30 20.00 32.10 48.80 64.60 11.70 15.00 17.80 25.90 25.20 37.70 49.90 65.90

100 9.30 11.50 14.60 24.70 34.40 50.70 70.60 83.40 12.60 15.60 19.30 31.10 42.70 55.80 68.90 79.30

ML-SAR ML-SAR, S mis-speci�ed(1)

20 28.20 29.60 39.10 52.50 38.90 41.60 55.10 66.20 25.00 27.10 34.50 50.20 34.10 39.10 50.60 63.60

30 23.90 30.10 34.50 49.30 36.30 46.00 59.10 69.60 19.60 27.80 31.60 44.80 33.30 42.20 55.10 67.40

50 24.10 29.80 34.70 46.60 44.40 56.80 69.80 80.20 24.40 28.80 35.50 46.90 43.70 56.30 67.60 80.20

100 26.60 31.30 36.20 51.30 64.00 73.00 83.90 90.30 23.60 28.20 36.20 49.70 59.90 71.60 81.80 89.50

CCE Mean group CCE Pooled

20 8.10 6.90 7.20 8.80 11.30 13.70 16.20 17.90 8.40 7.90 7.80 8.40 12.50 14.60 14.90 19.00

30 6.90 7.00 6.80 6.80 10.20 13.00 18.10 22.90 5.10 6.90 6.20 6.20 10.00 14.70 18.00 22.40

50 5.90 6.20 5.10 5.10 11.90 20.40 29.30 35.80 5.00 5.90 5.80 6.00 12.20 21.80 28.40 35.30

100 4.90 6.00 4.70 6.70 18.60 30.50 44.70 56.50 4.80 6.40 4.80 6.40 20.70 32.90 43.40 56.40

Notes: see notes to Table A1.
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.



Table C5: Small sample properties of estimators for panels with cross section dependence switching from spatial processes (� = 0:4)

to unbserved common factors, under slope heterogeneity.

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
NnT 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Mean group Pooled

20 8.42 7.94 8.07 7.17 13.88 11.91 11.21 9.87 8.60 7.85 8.29 7.45 14.08 12.24 11.78 10.40

30 8.02 7.55 7.95 7.33 12.87 11.15 10.81 9.28 8.36 7.96 8.51 7.81 13.67 11.96 11.85 10.12

50 8.75 8.38 8.83 8.49 11.99 10.84 10.59 9.74 9.04 8.63 9.16 8.92 12.70 11.42 11.28 10.47

100 8.49 7.85 8.20 7.70 11.01 9.80 9.55 8.61 8.42 7.76 8.25 7.80 11.73 10.32 10.04 9.00

ML-SAR ML-SAR, S mis-speci�ed(1)

20 2.12 1.92 1.88 1.31 8.56 7.29 6.50 6.10 1.28 1.29 1.09 0.61 8.19 7.11 6.24 5.87

30 1.89 1.88 2.01 1.79 6.82 6.21 5.67 5.15 1.12 0.94 1.10 0.97 6.33 5.77 5.23 4.81

50 1.70 2.05 1.85 2.02 5.42 5.03 4.46 4.21 0.80 1.18 0.91 1.11 5.02 4.61 4.10 3.78

100 1.64 1.58 1.67 1.63 4.10 3.67 3.41 3.27 0.78 0.70 0.77 0.75 3.68 3.18 2.98 2.87

CCE Mean group CCE Pooled

20 0.20 0.20 -0.15 -0.37 9.84 7.46 6.01 5.34 0.31 0.14 -0.30 -0.35 8.94 7.34 6.00 5.43

30 -0.22 -0.13 0.06 -0.10 7.70 5.98 4.88 4.21 -0.20 -0.20 0.03 -0.05 6.86 5.76 4.97 4.28

50 -0.22 0.14 0.11 0.22 5.95 4.81 3.80 3.19 -0.21 0.22 0.07 0.22 5.31 4.69 3.79 3.25

100 -0.01 -0.01 -0.04 0.02 4.22 3.28 2.64 2.37 -0.05 -0.03 -0.06 0.01 3.93 3.15 2.69 2.42

Size (�100) Power (�100) Size (�100) Power (�100)
Robust Mean Group Robust Pooled

20 23.90 23.10 26.40 26.10 40.80 41.40 48.60 50.80 20.40 20.30 25.00 24.90 36.40 41.00 48.30 52.20

30 32.10 34.00 36.90 36.00 50.00 54.20 63.10 68.00 27.00 28.90 33.80 32.50 45.40 51.50 60.80 68.90

50 39.70 43.00 49.90 54.70 63.40 71.60 79.70 88.00 33.30 40.80 51.60 55.70 60.90 70.60 83.20 91.10

100 53.40 55.60 65.00 69.90 78.10 84.00 90.30 94.30 53.80 56.60 69.70 75.00 79.10 87.20 94.00 98.00

SHAC Mean group SHAC Pooled

20 19.50 21.10 29.50 39.60 37.50 46.10 57.70 71.10 25.20 25.70 33.20 41.60 43.50 48.30 61.70 70.30

30 23.00 27.50 36.20 46.60 43.80 54.40 70.50 83.60 27.80 33.60 41.90 50.50 51.40 58.90 71.40 82.50

50 30.40 40.10 53.90 69.50 62.40 75.30 87.90 96.30 36.50 45.00 55.80 68.90 68.70 77.50 87.80 95.30

100 51.30 55.80 72.30 81.10 80.80 90.00 96.30 99.00 53.60 57.00 70.20 80.40 81.00 88.20 94.90 97.90

SHAC Mean group, D mis-speci�ed(2) SHAC Pooled, D mis-speci�ed(2)

20 20.20 23.10 31.90 40.90 39.00 48.00 59.60 70.90 26.40 27.30 35.20 43.10 43.80 49.40 62.60 71.00

30 27.50 31.50 41.70 51.10 47.70 58.60 72.10 84.80 32.20 38.80 47.30 54.20 55.10 60.60 74.10 84.10

50 34.20 44.50 59.60 72.00 64.60 77.90 89.40 96.60 43.10 50.90 61.30 72.40 69.10 78.50 89.10 95.70

100 55.50 60.60 76.90 83.60 81.90 91.20 96.60 99.40 56.80 61.50 74.00 82.50 81.90 89.80 95.20 98.30

ML-SAR ML-SAR, S mis-speci�ed(1)

20 34.20 35.30 41.00 55.90 49.40 53.20 63.20 73.20 29.70 33.10 38.90 54.40 42.10 48.20 57.00 67.70

30 30.30 36.00 44.60 55.60 51.00 58.30 70.20 80.30 24.70 32.30 40.60 51.10 44.10 52.70 65.10 74.70

50 30.70 40.00 43.70 56.70 60.60 71.20 81.20 90.30 28.20 35.40 40.50 52.60 53.40 66.60 75.00 85.10

100 34.40 40.90 49.20 64.10 79.00 86.30 93.10 96.50 28.90 34.40 43.50 57.50 71.70 80.00 88.50 93.60

CCE Mean group CCE Pooled

20 7.50 7.10 7.50 8.30 12.30 14.10 15.00 18.80 7.80 7.80 7.20 8.00 13.70 14.20 15.00 19.50

30 6.60 4.80 6.20 6.70 10.60 14.70 18.40 23.70 4.60 5.30 6.70 7.30 11.60 15.10 19.40 23.00

50 4.90 6.70 6.20 5.50 12.70 22.20 29.30 36.70 5.70 6.70 5.80 5.20 15.40 25.70 28.60 36.10

100 5.30 4.80 5.10 5.10 20.80 33.00 45.80 58.20 5.50 6.40 5.10 5.60 25.90 35.50 45.10 57.90

Notes: see notes to Table A1.
(1) - This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less

than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.(2) - This

estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.
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