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Abstract

There has been increasing concern about parameter identification in dynamic stochastic

general equilibrium (DSGE) models. Given their structure it may be diffi cult to determine

whether a parameter is identified. When using Bayesian methods, a lack of identification may

not be evident since the posterior may differ from its prior even if the parameter is unidentified.

We suggest two Bayesian identification indicators that do not suffer from this diffi culty and

are relatively easy to compute. The first applies where the parameters can be partitioned into

those that are known to be identified and the rest where it is not known whether they are

identified. In such cases the marginal posterior of an unidentified parameter will equal the

posterior expectation of the prior for that parameter conditional on the identified parameters.

The second indicator is more generally applicable and considers the rate at which the posterior

precision gets updated as the sample size (T) is increased. For identified parameters the

posterior precision rises with T, whilst for an unidentified parameter its posterior precision

may be updated but its rate of update will be slower than T. These results are illustrated by

means of simple DSGE models.
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1 Introduction

Soon after rational expectations (RE) models were widely adopted in economics there was concern

about the issue of observational equivalence (Sargent, 1976, McCallum, 1979) and the identifi-

cation of the parameters of the RE models (Wallis, 1980, Pesaran, 1981, 1987, Pudney, 1982).

Observational equivalence concerns whether one can distinguish different models, such as RE and

non-RE models; the closely related issue of identification concerns the conditions under which

it is possible to estimate the parameters of a particular model from available data. During the

1990s interest in identification waned, partly because of the shift in focus to calibration, where

it is assumed that the parameters are known a priori, perhaps from microeconometric evidence.1

Kydland and Prescott (1996) argue that the task of computational experiments of the sort they

conduct is to derive the quantitative implications of the theory rather than to measure economic

parameters, one of the primary objects of econometric analysis.

Over the past ten years it has become more common to estimate, rather than calibrate,

dynamic stochastic general equilibrium (DSGE) models, often using Bayesian techniques (see,

among many others, DeJong, Ingram and Whiteman, 2000, Smets and Wouters, 2003, 2007 and

An and Schorfheide, 2007). In this context the issue of identification has attracted renewed

attention. Questions have been raised about the identification of particular equations of the

standard new Keynesian DSGE model, such as the Phillips curve (Mavroeidis, 2005, Nason and

Smith, 2008, Kleibergen and Mavroeidis, 2009, Dees et al., 2009, and others), or the Taylor rule,

Cochrane (2011). There have also been questions about the identification of DSGE systems as

a whole. Canova and Sala (2009) conclude: “it appears that a large class of popular DSGE

structures are only very weakly identified”. Iskrev (2010b) concludes "the results indicate that

the parameters of the Smets and Wouters (2007) model are quite poorly identified in most of the

parameter space". Other recent papers which consider determining the identification of DSGE

systems are Andrle (2010), Iskrev (2010a), Iskrev and Ratto (2010), Komunjer and Ng (2011), who

1The calibrators’practice of basing the estimates of the structural parameters of macro models on macroeconomic
evidence has been criticized by microeconometricians, such as Hansen and Heckman (1996).
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provide rank and order conditions for local identification based on the spectral density matrix, and

Muller (2010), who suggests measures of prior sensitivity and prior informativeness based on the

derivative of the posterior mean with respect to a particular parameterization of the prior mean.

Andrews and Cheng (2011) provide a review of more general issues relating to weak identification.

Whereas papers like Iskrev (2010a,b) and Komunjer and Ng (2011) provide classical procedures

for determining identification based on the rank of particular matrices, our objective is to provide

Bayesian indicators, since these models are usually estimated by Bayesian methods.

The 1980s literature on the identification of RE models tended to assume that the system

included observed exogenous variables, whereas most current DSGE systems do not contain such

variables. While most of the DSGE literature has focussed on the regular or determinate case

where there is a unique solution to the linear RE system, there has been some interest in the

indeterminate case, where there are multiple solutions (e.g. Clarida, Gali, and Gertler, 2000,

Beyer and Farmer, 2004 and Lubik and Schorfheide, 2004). The indeterminate case also raises

interesting identification issues.

Unlike the simpler simultaneous equations model (SEM) the non-linear nature of the cross

equation restrictions in DSGE models makes it more diffi cult to analytically check identification.

The RE structure means that they require more identifying restrictions than comparable SEMs.

Although the approximate solution of DSGE models is taken to be linear, the structural parame-

ters are complicated non-linear functions of the parameters of the linearized (reduced form) model

and as a result the likelihood function for the structural parameters may be very badly behaved.

This has led many to look at other features than the likelihood, such as impulse response functions

or impact effects. The form of the likelihood may also cause problems for understanding certain

features of the posterior, e.g. Herbst (2010). When the model involves unobserved variables the

solution is of a VARMA form rather that a VAR. Thus some of the associated reduced form pa-

rameters may not be identified. The requirement for a determinate solution also puts restrictions

on the joint parameter space, which may create dependence between identified and unidentified
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parameters.

Faced with these diffi culties, it is common practice in Bayesian DSGE modelling to compare

posteriors to priors as informal indicators of identification. We discuss how this can be misleading,

since, as we show, priors can differ from posteriors even for unidentified parameters. We then

propose two different Bayesian indicators of identification that do not suffer from this drawback.

The first draws on results from Poirier (1998) and concerns the case where the parameters can

be partitioned into those known to be identified and those where it is uncertain whether they

are identified. Then the marginal posterior of an unidentified parameter will equal the posterior

expectation of the prior for that parameter conditional on the identified parameters. The marginal

posterior and posterior expectation of the prior can be computed as a by-product of estimating a

DSGE model (e.g. using MCMC methods) and compared. However, this indicator relies on the

assumption that parameters can be separated into those which the researcher knows are identified

and those for which identification is uncertain. Unfortunately, as we show in this paper, for

the researcher working with the structural parameters of DSGE models, this assumption may not

hold. Hence, we propose a second Bayesian indicator of local identification. This uses the fact that

whilst for identified parameters the posterior precision rises with T , for an unidentified parameter

its posterior precision may be updated but its rate of update will be slower than T . This suggests

a strategy where the researcher simulates larger and larger data sets and observes the behavior of

the posterior as sample size increases. Empirical illustrations show the usefulness of both these

approaches for checking for the presence and strength of identification. This procedure is easy to

implement in standard software packages such as Dynare ( http://www.dynare.org/ ). In a recent

paper Caglar et al. (2011) use this strategy to examine the identification of the parameters of the

Bayesian DSGE model due to Smets and Wouters (2007), and find that most parameters of this

often used model do not appear to be well identified.

The paper is organized as follows. Section 2 discusses the theory of rational expectations DSGE

models and provides some simple theoretical examples. Section 3 discusses the econometrics. It
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is broken into sub-sections on i) general identification issues; ii) existing Bayesian approaches to

identification in DSGE models; iii) how (and when) these existing approaches can be used to

check for presence and/or strength of identification; and iv) asymptotic results which show the

behavior of the posterior for non-identified parameters in large samples and how these can be

used to check for identification. Section 4 provides several empirical illustrations of the methods

developed or discussed in Section 3. Section 5 concludes.

2 The Theory of Rational Expectations DSGE Models

2.1 A General Framework

Most macroeconomic DSGE models are constructed by linearizing an underlying non-linear model

around its steady state, where θ is a vector of deeper parameters of this underlying model.2

Consider a linearized rational expectations model for an n × 1 vector of stationary variables of

interest, yt, t = 1, 2, ..., T. These would usually be measured as deviations from their steady

states. Denote expectations as Et(yt+1) = E(yt+1 | It) where It is the information set available

at time t.3 There is also a vector of observed exogenous variables4 xt and an n × 1 vector of

unobserved variables ut. We assume that both the exogenous and unobserved variables follow

VAR(1) processes. Then the system can be written

A0(θ)yt = A1(θ)Et(yt+1) +A2(θ)yt−1 +A3(θ)xt + ut, (1)

xt = Φxxt−1 + vt, ut = Φuut−1 + εt.

We treat the VAR(1) parameters for xt or ut, Φi, i = x, u, as not being specified by macroeconomic

theory. This structure assumes that there is no feedback from yt to xt or ut. εt is a vector of mean

zero, serially uncorrelated, structural shocks, with E(εtε
′
t) = Ω(θ). It is common in the literature to

assume that Ω(θ) = In. For Bayesian or maximum likelihood estimation, εt is typically assumed to

be normally distributed. Notice that if Φu = 0, the structural shocks enter the equations directly.
2We focus on the linearized case where the estimated parameters are non-linear functions of the structural

parameters. Our analysis should continue to be more generally applicable were an exact solution to be available,
since again there would be a non-linear relation between the estimated and structural parameters.

3 In some papers in the literature, expectations are taken using information at time t− 1.
4Many DSGE models are closed, without exogenous variables, but we include them for completeness.
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If A0(θ) is nonsingular, then (1) can be written

yt = A0(θ)−1A1(θ)Et(yt+1) +A0(θ)−1A2(θ)yt−1 (2)

+A0(θ)−1A3(θ)xt +A0(θ)−1ut.

The solution of such systems is discussed in Binder and Pesaran (1995, 1997) and Sims (2002).

Details of how this solution proceeds are given in the Technical Appendix. Suffi ce it to note here

that the unique stationary solution, if it exists, takes the form:

yt = C(θ)yt−1 +G1(θ, φx)xt +G2(θ, φu)ut, (3)

where φi = vec(Φi), i = x, u. The matrices Gi(θ, φi) i = x, u, can be obtained using the method of

undetermined coeffi cients (see Blinder and Pesaran, 1997, for details). Notice that the coeffi cient

matrix for the lagged dependent variable vector is just a function of θ, and not φx or φu.

Likelihood-based estimation of this model is straightforward. If Φu = 0, this is just a VAR

with exogenous variables and the likelihood function is easily obtained. In general where the

unobserved components of the model are serially correlated, the rational expectations solution

will involve moving average components and it is more convenient to write the model as a state

space model where Kalman filtering techniques can be used to evaluate the likelihood function. In

such cases a simple analytical relationship between the structural and reduced form parameters

might not be available, which further complicates the analysis of identification of the structural

parameters. In the next sub-sections, we use some simple special cases of DSGE models where the

RE solution is available analytically to clearly show how identification issues arise. For notational

simplicity, we do not make the dependence on θ explicit.

2.2 DSGE models without lags

Abstracting from lagged values and exogenous regressors (1) simplifies to

A0yt = A1Et(yt+1) + εt, (4)

E(εt) = 0, E(εtε
′
t) = Ω,
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where εt are serially uncorrelated. If A0 is non-singular using (4) we have

yt = A−1
0 A1Et(yt+1) +A−1

0 εt = QEt(yt+1) +A−1
0 εt. (5)

The regular case, where there is a unique stationary solution, arises if the non-zero eigenvalues of

Q lie within the unit circle. In this case, the unique solution of the model is given by

yt =
∞∑
j=0

QjA−1
0 Et(εt+j). (6)

Hence, Et(yt+1) = 0 and the unique RE solution is given by

A0yt = εt. (7)

and

yt = A−1
0 εt = ut

E(utu
′
t) = Σ = A−1

0 ΩA−1′
0 . (8)

Notice that (8) provides us with a likelihood function which does not depend on A1 and,

therefore, the parameters that are unique to A1 (i.e. the coeffi cients on the forward variables)

are not identified. Furthermore, the RE model is observationally equivalent to a model without

forward variables which takes the form of (7). Since what can be estimated from the data, namely

Σ, is not a function of A1, all possible choices of A1 are observationally equivalent in the sense that

they lead to the same observed data covariance matrix. Although the coeffi cients in the forward

solution (6) are functions of A1, this does not identify them because Et(εt+j) = 0. Elements of

A1 could be identified by certain sorts of a priori restrictions, but these are likely to be rather

special, rather limited in number and cannot be tested.

If the parameters of the DSGE model were thought to be known a priori from calibration,

there would be no identification problem and the structural errors εit could be recovered and

used, for instance, in calculating impulse response functions, IRFs. However, suppose someone

else believed that the true model was just a set of random errors yt = ut, with different IRFs.
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There is no information in the data that a proponent of the DSGE could use to persuade the other

person that the DSGE model was correct relative to the random error model. This is exactly the

same point that Sargent (1976) made with respect to "natural and unnatural rate theories".

The above result generalizes to higher order RE models. Consider for example the model

A0yt =

q∑
i=1

AiEt(yt+i) + εt.

Once again the unique stable solution of this model is also given by A0yt = εt, and none of the

elements of A1, A2, ..., Aq that are variation free with respect to the elements of A0 are identified.

2.2.1 Example 1. A New Keynesian (NK) system without lags

As an illustration consider a standard three equation NK-DSGE model used in Benati (2010) that

involves only current and future variables:

Rt = ψπt + ε1t, (9)

xt = Et(xt+1)− σ(Rt − Et(πt+1)) + ε2t, (10)

πt = βEt(πt+1) + γxt + ε3t. (11)

where Et(xt+1) = E(xt+1 | It). The model contains a monetary policy rule determining the

interest rate, Rt, an IS curve determining the output gap, xt, and a Phillips Curve determining

inflation, πt, all measured as deviations from their steady states. The errors, which are assumed to

be white noise, are a monetary policy shock, ε1t, a demand shock, ε2t, and a supply or cost shock,

ε3t. These are assumed to be orthogonal. The discount factor is β and σ is the inter-temporal

elasticity of substitution. This is a highly restricted system with many parameters set to zero a

priori. For instance, output does not appear in the monetary policy rule and the coeffi cient of

future output is exactly equal to unity in the IS equation. In terms of (4), yt = (Rt, xt, πt)
′ and

A0 =

 1 0 −ψ
σ 1 0
0 −γ 1

 , A1 =

 0 0 0
0 1 σ
0 0 β

 .

Hence
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A−1
0 =

1

γσψ + 1

 1 γψ ψ
−σ 1 −σψ
−γσ γ 1


Q = A−1

0 A1

=
1

γσψ + 1

 0 γψ ψ(β + γσ)
0 1 σ(1− βψ)
0 γ β + γσ


and the two non-zero eigenvalues of Q are

κ1 =
1

2 (γσψ + 1)
(1 + β + γσ + Ψ) , (12)

κ2 =
1

2 (γσψ + 1)
(1 + β + γσ −Ψ) ,

Ψ =
√
β2 − 2β + γ2σ2 + 2γσ + 2γσβ − 4γσβψ + 1.

Assuming that |κi| < 1 for i = 1, 2 then the solution is given by (7), which in this case is:

Rt = ψπt + ε1t, (13)

xt = −σRt + ε2t,

πt = γxt + ε3t.

This illustrates some of the features of DSGE models. First, the RE model parameter matrices,

A0 and A1, are written in terms of deeper parameters θ = (γ, σ, ψ, β)′. Second, the parameters

which appear only in A1 do not enter the RE solution and, thus, do not enter the likelihood

function. In this example, β does not appear in the likelihood function.5 Third, the restrictions

necessary to ensure regularity (i.e. |κi| < 1 for i = 1, 2), imply bounds involving the structural

parameters, including the unidentified β. Thus, the parameter space is not variation free. Fourth,

if β is fixed at some pre-selected value for the discount rate (as would be done by a calibrator),

then the model is identified. Canova and Sala (2009) make similar points with a similar model.

2.3 DSGE models with lags

In order to reproduce the dynamics that are typically observed with macroeconomic data, most

empirical DSGE models include lagged values of endogenous or exogenous (observed or unob-
5Notice, though, that σ which appears in A1 does appear in the likelihood function because it also appears in

A0.
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served) variables. For instance Clarida, Gali and Gertler (1999) assume that the errors in the IS

and Phillips curve equations follow AR(1) processes and derive an optimal feedback policy for the

interest rate based on the forecasts from these autoregressions. In this case, there is a predictable

component in expected inflation because of the serial correlation in the equation errors.

Consider the special case of (1), where A3 = Φu = 0 so that the model only contains lagged

endogenous variables

A0yt = A1Et(yt+1) +A2yt−1 + εt. (14)

In this case the unique solution is given by

yt = Cyt−1 +A−1
0 εt, (15)

where C solves the quadratic matrix equation A1C
2 − A0C + A2 = 0. The solution is unique

and stationary if all the eigenvalues of C and (I − A1C)−1A1 lie strictly inside the unit circle.

Therefore, the RE solution is observationally equivalent to the non-RE structural model :

A0yt = A2yt−1 + εt,

where, in the case of the SEM, C = A−1
0 A2.

Again whereas the order condition for identification of the SEM requires n2 restrictions, the RE

model requires 2n2 restrictions. Not only is the RE model observationally equivalent to a purely

backward looking SEM, it is observationally equivalent (in the sense of having the same reduced

form), to any other model of expectations where in (14) Et(yt+1) is replaced by Dyt−1. More

specifically, knowing the form of the solution, (15), does not, on its own, provide information on the

cross equation parametric restrictions. In either case, the identifying cross-equation restrictions

are lost.

Thus, in models with lags, the same problem of observational equivalence between RE and

other models recurs. One may be able to distinguish the reduced forms of particular RE models

from other observationally equivalent models, because the RE models impose particular types of
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cross-equation restriction on the reduced form, which arise from the nature of the rational expec-

tations. But such restrictions are subject to the objection made by Sims (1980), who criticized

identification by ‘incredible’dynamic restrictions on the coeffi cients and lag lengths. RE models,

which depend on restrictions on the form of the dynamics, such as AR(1) errors, are equally

vulnerable to such objections.

2.3.1 Example 2: A Hybrid New Keynesian Phillips Curve (NKPC)

A specific example where it is well known how identification depends on assumptions about the

dynamics is the hybrid NKPC with an exogenous driving process:

πt = βbπt−1 + βfEt−1πt+1 + γxt + εt, (16)

where it is assumed that there is no feedback from πt to xt and that xt can be written as a finite

order autoregression.

The parameters of (16) are nonlinear functions of underlying structural parameters. For

instance, following Gali, Gertler and Lopez-Salido (2005) suppose that there is staggered price

setting, with a proportion of firms, (1 − α), resetting prices in any period, and a proportion, α,

keeping prices unchanged. Of those firms able to adjust prices only a fraction (1 − ω) set prices

optimally on the basis of expected marginal costs. A fraction ω use a rule of thumb based on

lagged inflation. Then for a subjective discount factor, β, we have

βf = βαδ−1, βb = ωδ−1, γ = (1− ω)(1− α)(1− λα)δ−1,

where δ = α+ω[1−α(1− β)]. If ω = 0, all those who adjust prices do so optimally, then βf = β,

and βb = 0. If the discount factor, β = 1, then βf + βb = 1 in either case. We will consider the

identification of the three parameters, βf , βb, and γ; but one could also consider identification of

the four deeper parameters, β, α, ω, and δ. If the three parameters are not identified, then the

four deeper parameters will not be.

If we assume εt is a martingale difference process; xt follows a stationary time series process;

there are no feedbacks from inflation to the output gap, βb, βf ≥ 0, βfβb ≤ 1/4 and βb + βf ≤ 1,
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then the NKPC (16) has the unique solution,

πt = κbπt−1 +
γ

1− κbβf

∞∑
j=0

κ−jf Et−1 (xt+j) (17)

+ γ [xt − Et−1 (xt)] + εt,

where κb and κf are roots of βfκ2 − κ + βb = 0. The RE solution is unique if |κb| ≤ 1 and

|κf | > 1, which are satisfied if βb + βf < 1. In the case where βb + βf = 1, then κb = 1 and

κf = β−1
f (1−βf ) > 1 if βf < 1/2. Inflation will be I(1) in this case. Finally, if βb+βf > 1, the RE

solution will be indeterminate and there exists a multiplicity of solutions. Analysis of identification

in this latter case is beyond the scope of the present paper and will not be considered.

As noted originally in Pesaran (1981, 1987, Ch. 7) and emphasized recently by Mavroeidis

(2005), Beyer et al (2007) and Nason and Smith (2008) among others, identification of the struc-

tural parameters critically depends on the process generating xt. For example, suppose that xt

follows the AR(1) process

xt = ρxt−1 + vt. (18)

Then the RE solution is given by

πt = α1(θ)πt−1 + α2(θ)xt−1 + ut, (19)

where θ = (βb, βf , γ, ρ)′, ut = (εt + γvt), and

α1 = α1(βb, βf ) = κb =
1−

√
1− 4βfβb

2βf
,

α2 = α2(βb, βf , γ, ρ) =
1

1− κbβf

(
γρ

1− ρκ−1
f

)
=

γρ

1− βf (κb + ρ)
,

The reduced form for (πt, xt) is a restricted V AR(1) that allows consistent estimation of the three

parameters, α1, α2, and ρ, whilst we have four unknown coeffi cients, βf , βb, γ, and ρ. In this case

the structural parameters βf , βb and γ are not identified.

For identification we need the order of the AR(p) process for the output gap to be at least equal

to two. In general if the output gap, xt, is AR(p), the form for the RE solution is ARDL(1, p) in
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πt. In the case where xt follows the AR(2) process

xt = ρ1xt−1 + ρ2xt−2 + vt,

then the extra instrument xt−2 exactly identifies the model. But the identification can be weak if

ρ2 is not suffi ciently large. Weak instruments make GMM and the usual tests for over-identification

unreliable, e.g., Stock, Wright and Yogo (2002). We return to this example below.

3 Identification Issues in Rational Expectations DSGE Models:
The Econometrics

3.1 Identification: General Issues

We begin with a brief overview of identification in a general context, before focussing on DSGE

models. We use notation where θ = (θ1, θ2)′ lies in a region Φ, p (θ) is the prior, p (θ|y) is the

posterior and L (θ; y) is the likelihood function. We define identification as follows: θ is identified

if L
(
θ(1); y

)
= L

(
θ(2); y

)
implies that θ(1) = θ(2). It can be seen that non-identification can occur

in several ways as was illustrated in Examples 1 and 2. As we shall stress below, some of the

traditional Bayesian results relate only to particular types of non-identification.

It is worth emphasizing that θ is our notation for the structural parameters and, in many

cases one may have other parameters, α (e.g. reduced form parameters) which are functions

of the structural parameters. It may be that α is identified, but elements of θ are not, e.g. if

α = θ1θ2. Typically, economists are interested in structural parameters, ones that are invariant

to a class of policy interventions. As Marschak (1953) noted, for many economic purposes it

may be easier, and equally useful for policy purposes, to identify policy invariant combinations

of structural parameters, such as α, rather than the individual parameters themselves, a point

Heckman (2010) also makes.

Poirier (1998), building on earlier contributions (e.g. Kadane, 1974) sets out a framework for

discussing identification in Bayesian models and we describe here a few of his key results which

we will use later in our discussion of identification in DSGE models. Consider the case where the

parameters in θ2 are identified but the scalar, θ1, is not. In DSGE models, the parameter space
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is often not variation free, so care must be taken with the bounds of the parameter space. Hence,

we introduce notation where Λ1 (θ2) and Λ2 (θ1) defines the permissible range of values of θ1 for

given θ2, and θ2 for given θ1, respectively. If the parameter space is variation free then we define

Λ1 ≡ Λ1 (θ2) and Λ2 ≡ Λ2 (θ1).

Result 1: Suppose θ1 is not identified in the sense that L (θ; y) is flat over θ1 ∈ Λ1 (θ2). In

this case, the likelihood function can be written as depending only on θ2 (although θ1 can still

enter the bounds of the parameter space as Λ2 (θ1)).

It is straightforward to use Result 1 and Bayes’theorem to show:

Result 2: If there is prior independence between θ1 and θ2 such that p (θ1, θ2) = p (θ1) p (θ2)

and the parameter space is a product space (i.e. Φ = Λ1 × Λ2) then p (θ1|y) = p (θ1).

This is the commonly cited result that "posterior equals prior for unidentified parameters".

Note, however, that this result only holds for the particular type of non-identification defined in

Result 1 and assumes prior independence and a variation free parameter space. If any of these

conditions is not satisfied then p (θ1|y) 6= p (θ1). Informally speaking, data based learning about

θ2 can “spill over”onto the unidentified θ1 (see Koop and Poirier, 1997, for an example).

As we shall discuss below, a better metric for investigating identification can be constructed

based on Proposition 2 of Poirier (1998) which we state here.

Result 3: Assume the conditions of Result 1 apply and let p (θ1, θ2) = p (θ1|θ2) p (θ2) be the

prior (which may exhibit correlation between θ1 and θ2), then

p (θ1|y) =
∫

Φ(θ2) p (θ1|θ2, y) p (θ2|y) dθ2

=
∫

Φ(θ2) p (θ1|θ2) p (θ2|y) dθ2

= Eθ2|y [p (θ1|θ2)] .

. (20)

In words, the marginal posterior for the non-identified θ1 will always be the posterior expec-

tation of the conditional prior, p (θ1|θ2).

The concepts discussed so far can be used with any econometric model, but we will use them

below with DSGE models.
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3.2 Bayesian Identification in DSGE Models

From the material in Section 2, it can be seen that some types of DSGE models are either simul-

taneous equations models, or closely related to them. For such models, of course, identification

issues are well-understood. In the Bayesian literature on identification in the simultaneous equa-

tions model influential papers include Drèze (1976), Drèze and Richard (1983) and Kleibergen and

van Dijk (1998). And Bayesian instrumental variable methods are well established (see, among

many others, Kleibergen and Zivot, 2003, Hoogerheide, Kleibergen and van Dijk, 2007). Insofar

as the DSGE model can be written as a conventional SEM, conventional methods can be used

for Bayesian estimation and checking for identification. The NK-DSGE and NKPC models above

fall in this category. There is also a literature relating to specific models such as the NKPC

(e.g. Mavroeidis, 2005 and Kleibergen and Mavroeidis, 2009, 2010). For DSGEs which can be

written in structural VAR form Rubio-Ramirez, Waggoner and Zha (2010) provides an exhaustive

treatment.

Iskrev (2010a,b) are also important contributions. He uses the Jacobian of the transformation

from the first two moments of the data to the structural parameters (in Iskrev, 2010a) and

the information matrix (in Iskrev, 2010b) to investigate local identification. More informally,

directly looking at the likelihood function and whether it is flat (or nearly so) can reveal a lack of

identification or weak identification and this is sometimes done. For instance, An and Schorfheide

(2007, Figures 14 and 15) also present plots of the log-likelihood function.6

It is also worth noting that the methods in Canova and Sala (2009), Iskrev (2010a,b) and

Komunjer & Ng (2011) are not hypothesis testing procedures, but are better thought of as diag-

nostic procedures or indicators. Canova and Sala (2009) use the term diagnostics in reference to

their methods. However, since diagnostic tests for misspecification are common in econometrics,

we use the term indicator, to reinforce the point that these are not tests.

6Canova and Sala (2009) consider matching impulse response functions, so the diagnostics for detecting the
existence and source of identification problems are not expressed in likelihood terms. But the basic ideas and
concepts they use transfer to likelihood function terms discussed below.
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Bayesians typically use posterior simulation algorithms to estimate DSGE models. Our first

proposed indicator can be calculated as part of such a posterior simulation algorithm without

the need for additional steps such as the coding of analytical derivatives. Our second indicator

involves using artificial data but it, as well, will involve standard posterior simulation algorithms.

The Bayesian who uses proper priors will (under weak conditions) obtain a proper posterior,

allowing for valid statistical inference. Since the parameters in DSGE models have a structural

interpretation, sensible proper priors are usually available. These priors may be purely subjective

or could reflect data from other sources (e.g. the priors could reflect estimates of structural

parameters produced in microeconometric studies or could be based on a training sample of

macroeconomic data). Given such prior information, there is a sense in which identification is not

a worry for the Bayesian DSGE modeler.7 However, if a parameter is not identified, then there

is the possibility that there is no data-based learning about it and its posterior can solely reflect

prior information. In complicated models such as DSGEs, where it can be hard to analytically

disentangle identification issues, this can lead to the case where the researcher believes she is

presenting posterior estimates but is really simply reproducing her prior.

Even if parameters are identified, weak identification can lead to relatively flat regions of the

likelihood function where the prior is extremely influential. Such concerns have lead to a recent

interest in identification issues in Bayesian DSGE modelling. Consider, for instance, Canova (2007,

page 190) which states “while it is hard to ‘cheat’in a classical framework, it is not very diffi cult to

give the impression that identification problems are absent in a Bayesian framework by choosing

tight enough priors, presenting well-behaved posterior distributions and entirely side-stepping the

comparison between priors and posteriors”. In response to this, an increasingly common practice

is to compare priors and posteriors for structural parameters, a practice which Canova (2007,

page 191) refers to as “necessary [but] by no means suffi cient” to reveal identification problems

in DSGE models. We will draw on our earlier discussion of Bayesian identification (see Section

7 In one of the classic Bayesian texts, identification is mentioned only in an oft-quoted footnote: “In passing it
might be noted that unidentifiability causes no real diffi culty in the Bayesian approach” (Lindley, 1971, page 46
footnote 34).
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3.1) to discuss why this is so and introduce an alternative method for investigating identification

in Bayesian DSGE models.

Result 2 of Section 3.1 underlies some informal discussion of identification in the Bayesian

DSGE literature. For instance, An and Schorfheide (2007, page 127) say that: “A direct compar-

ison of priors and posteriors can often provide valuable insights about the extent to which data

provide information about parameters of interest.”This is true, but can be an imperfect way of

formally investigating identification issues, since the posterior for an unidentified parameter can

differ substantially from its prior if the non-identified parameter is, a priori, correlated with iden-

tified ones or if the parameter space is not a product space. Both of these are likely to hold with

DSGE models. In fact, papers such as Del Negro and Schorfheide (2008) make a strong case that

priors for structural parameters in DSGE models should not exhibit prior independence. Thus,

informally comparing priors to posteriors could be useful to see if learning about parameters

occurs, but may not be able tell the researcher why it is occurring. That is, the researcher may

be unable to distinguish between learning via the likelihood function and learning solely due to

the fact that the prior does not exhibit independence or the parameter space is not variation free.

Nevertheless, it is common in the Bayesian DSGE literature to use such informal comparisons

of priors and posteriors, as the quote from An and Schorheide above indicates. Among many

others, Smets and Wouters (2007, page 594) compare prior and posteriors and note that the

mean of the posterior distribution is typically quite close to the mean of the prior assumptions

and later note that "It appears that the data are quite informative on the behavioral parameters, as

indicated by the lower variance of the posterior distribution relative to the prior distribution." As a

recent example, Guerron-Quintana (2010, page 782) says “Initial estimation attempts showed that

the posteriors of [certain structural parameters] sat on top of their priors. Hence those parameters

are fixed to the values [taken from another paper]”. Statements similar to this implicitly suggest a

comparison of prior to posterior is useful for checking identification in complicated DSGE models

where it is not easy to analytically check identification.
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Result 3 of Section 3.1 offers a promising way of formally investigating identification issues. In

cases where a subset of structural parameters, say θ2, is known to be identified, but there is doubt

regarding the identification of another sub-set, θ1, then p (θ1|y) should be equal to Eθ2|y [p (θ1|θ2)]

where we use the notation of Section 3.1. For DSGE modelers interested in indicators that may

shed light on identification issues, we would recommend comparing the properties of p (θ1|y) and

Eθ2|y [p (θ1|θ2)] in addition to (or instead of) comparing p (θ1|y) to p (θ1).

In terms of computation, note that our proposed indicator is typically easy to calculate. That

is, the Bayesian DSGE modeler will typically be using an MCMC algorithm and, thus, posterior

draws of θ2 will be available. Calculation of Eθ2|y [p (θ1|θ2)] simply evolves evaluating p (θ1|θ2)

at each draw of θ2 at a grid of values for θ1 and averaging across the posterior draws of θ2. In

many cases an analytical form for p (θ1|θ2) will be available. For instance, if p (θ1, θ2) is normal

then p (θ1|θ2) is also normal with textbook formula for its mean and variance. For priors which

do not admit of analytical results, adding a prior simulation step at each posterior draw would

only slightly add to the computational burden.

Formally, if a parameter is unidentified then p (θ1|y) and Eθ2|y [p (θ1|θ2)] should be identical,

apart from MCMC approximation error. Hence, the two densities cannot be used as a test

for identification. That is, any difference between p (θ1|y) and Eθ2|y [p (θ1|θ2)] beyond MCMC

approximation error means identification is present. However, we can use the magnitude of the

difference between these densities as an indicator revealing the strength of identification.

We will illustrate the usefulness of this indicator below. However, for DSGE models, it has

one substantive drawback. For the theory underlying Result 3 to hold, the parameters in θ2 must

all be identified and θ1 must not enter the likelihood function (this point is stressed on page 489

of Poirier, 1998). When working with a DSGE model, we would like to simply set θ to be the

structural parameters. But typically we will not be able to do so (in the sense that the indicator

defined in this way will not necessarily be zero for non-identified parameters). This is because the

parameters in θ2 defined in this way may not all be identified.
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To see how this can happen in practice, we return to our example involving the NKPC (see

Example 2 in Section 2) with an AR(1) process for the output gap. The two reduced form

parameters in the inflation equations, a1 and a2, depend on three structural parameters βf , βb

and γ and, thus, there is an identification problem involving these three structural parameters.8

In contrast to Example 1, the identification problem does not manifest itself simply in terms of

a single structural parameter which does not enter the likelihood function. Using the notation

of Result 3, we might be tempted to set θ1 = βf and θ2 = (βb, γ, ρ) in order to investigate the

identification of βf . However, it can be easily seen that the derivations in (20) used to prove

Result 3 are no longer valid. In such cases, we will not have p (θ1|y) = Eθ2|y [p (θ1|θ2)], even

though θ1 is only partially identified.

The advice given by Poirier (1998) in such cases is to re-parameterize the model so that θ2

contains only identified parameters. In some DSGE cases, a simple way of choosing θ2 suggests

itself: let θ2 be some or all of the reduced form parameters and θ1 be one of the structural

parameters. We know the reduced form parameters are identified and, thus, the conditions under

which Result 3 holds are satisfied. In such cases, we can recommend a comparison of p (θ1|y) and

Eθ2|y [p (θ1|θ2)] as shedding light on the identification of θ1.

3.3 A Bayesian Identification Indicator Based on Large Sample Results

The advantage of the identification indicator of the preceding sub-section is that it can be calcu-

lated as a by-product of estimating a DSGE model (on the actual data) using MCMC methods.

The disadvantage is that we typically cannot simply work with the structural parameters of a

model. A second Bayesian identification indicator can be obtained based on the asymptotic the-

ory of non-identified models written in terms of the structural parameters. Thus, we can focus on

identification of a single structural parameter without worrying about whether the other struc-

tural parameters are identified or not. Empirically, this indicator involves simulating artificial

data sets of increasing size and then estimating the DSGE model using these data sets. Since the

8a2 also depends on ρ but, since this parameter identified through the AR(1) process for the output gap, this
dependence is irrelevant for the argument we are making here.
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generation of simulated data is fairly standard in the DSGE literature, this strategy fits in with

existing empirical methodologies.

To explain the theory underlying this second indicator of identification, note that standard

Bayesian results for stationary models (see, e.g., Berger, 1985, page 224), imply that, under certain

regularity conditions, the Bayesian asymptotic theory relating to the posterior is numerically

identical to the asymptotic distribution theory for the maximum likelihood estimator. Thus, for

instance, the posterior for θ will asymptotically converge to to its true value and the role of the

prior will vanish. One of the regularity conditions is that θ is identified. In this sub-section, we

relax this assumption and show that this asymptotic convergence will not occur. This result holds

even for cases of partial identification such as the NKPC of our Example 2.

To derive this result, let θ = (θ1, θ2, ..., θp)
′ be a p × 1 vector of structural parameters of

interest in a DSGE model of the type set out in Section 2. Let θ ∈ Θ ⊂ Rp, and suppose

that the likelihood function for a sample of T observations can be written as LT (α(θ); y) , where

α(θ) = (α1(θ), α2(θ), ..., αk(θ))
′ is a k × 1 vector-valued function of θ. Further suppose that

αs(θ), for s = 1, 2, ..., k are differentiable at each point of the open convex set Θ0 containing Θ,

and denote the first derivatives of αs(θ) by ∂αs(θ)/∂θi, i = 1, 2, ..., p. Then by the mean value

theorem for all pairs θa and θb ∈ Θ0 we have (see, for example, Jennrich (1969, lemma 3), and

Davisdon (1994, p. 340))9

αs(θ
a)− αs(θb) =

p∑
i=1

∂αs(θ̊)

∂θi
(θai − θbi ), (21)

where θ̊ ∈ Θ0 is a point on the line segment joining θa and θb.

Let `T (α) = ln [LT (α; y)], and assume that

QT (α) =
−1

T

∂2`T (α)

∂α∂α′
(22)

is a positive definite matrix for all values of α ∈ A ⊂ Rk. Denote the maximum likelihood

9Note that Jennrich formulation of the mean value theorem allows θa or θb to depend on y, as will be required
in our application below.
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estimator of α by α̂T and assume that

√
T (α̂T − a0)→d N(0,Q−1), (23)

where α0 is the true value of α ∈ A, and Q = plimT→∞QT (α0) = Q > 0, is a symmetric positive

definite matrix. Similarly, corresponding to α0 select θ0 ∈ Θ such that α(θ0) = α0. The choice

of θ0 need not be unique so long as α0 = α(θ0). Here we assume that α is identified. Since

the quadratic approximation underlying (23) might work poorly if α is weakly identified, we rule

out this case here. However, our analysis can be appropriately modified if one or more elements

of the reduced form parameters, α, are weakly identified. Since our focus is on identification

of the structural parameters, θ, it seems reasonable to begin with the standard case where the

reduced form parameters are identified and their identification is not weak. In such a setting, using

standard results from
√
T -consistent ML estimators, we have (noting that ∂`T (α̂T )/∂αs = 0)

`T (α0) = `T (α̂T ) +
1

2

k∑
s=1

k∑
r=1

∂2`T (α̂T )

∂αr∂αs
(α0r − α̂rT )(α0s − α̂sT ) +Op(T

−1/2). (24)

The object of the exercise is to derive the posterior distribution of θ1 (one of the elements of

θ) assuming that the prior density of θ is given by

p(θ) = (2π)−p/2 |H
¯
|1/2 exp−1

2
(θ − θ)′H

¯
(θ − θ), (25)

where θ and H
¯
are prior mean vector and prior precision matrix of θ defined on Θ. The posterior

density of θ, evaluated at θ0, can be written as

p(θ0 |y ) = exp{ln [p(θ0)] + `T (α(θ0))− ln(p(y))}. (26)

When T is finite, assuming a proper prior, the posterior of θ is well defined even if θ is not

identified. Denote the k × p matrix of derivatives∂α(θ)
∂θ′ = (∂αs(θ)/∂θi) by R(θ). Then in the

classical sense θ is globally identified if Rank(R(θ0)) = k ≥ p for all θ0 ∈ Θ, and θ is identified

locally in the neighborhood of θ if Rank(R(θ )) = k ≥ p. A necessary condition for identification

is given by p ≤ k.
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Suppose that p = k+ 1, and θ1 is not identified. But for simplicity assume that the remaining

(p− 1)× 1 structural parameters, θ∗ = (θ2, ..., θp)
′, are identified. The generalization to the case

where two or more structural parameters are unidentified is discussed below.

Note that, if θ1 does not enter the likelihood function and θ1 is, a priori, uncorrelated with

θ∗, then Result 2 of Section 3.1 says that p (θ1) = p (θ1|y) for all T . In this case, the posterior

precision of θ1 does not get updated at all as sample size increases (i.e. it remains equal to prior

precision). Formally, if we define average posterior precision as posterior precision divided by T ,

then average posterior precision will tend to zero with T in this case. The derivations below show

that the statement “average posterior precision will tend to zero with T”will hold whenever θ1

is unidentified (even if the nature of the identification problem is more complicated than that

assumed in Result 2). However, when θ1 is identified, then the average posterior precision will

tend to a strictly positive constant which is independent of the prior precision.

To see why the result arises, note that although θ is not identified, there exists θ̂T such that

α̂T = α(θ̂T ). The choice of θ̂T need not be unique but as we shall see this is of no consequence

for the derivation of posterior precision of θ1. Using the mean value theorem in (21) for θ̂T and

θ0 ∈ Θ0, we have

αs(θ0)− αs(θ̂T ) =
p∑
i=1

∂αs(θ̊)

∂θi
(θ0i − θ̂iT ),

where θ̊ is on the line segment joining θ̂T and θ0. Using this result in (24) we have (recalling that

α0 = α(θ0))

`T (θ0) = `T (θ̂T ) +
1

2

k∑
s=1

k∑
r=1

p∑
i=1

p∑
j=1

∂2`T (α̂T )

∂αr∂αs

∂αs(θ̊)

∂θi

∂αr(θ̊)

∂θj
(θ0i − θ̂iT )(θ0j − θ̂jT ) +Op(T

−1/2).

Written more compactly we have

`T (θ0) = `T (θ̂T )− T

2
(θ0 − θ̂T )′ŜT (θ0 − θ̂T ) +Op(T

−1/2),

where ŜT = R̊′QT R̊ and R̊ = R(θ̊), for all θ0 and θ̊ ∈ Θ0. Using this result and (25) in (26) we
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have (up to terms of Op(T−1/2))

p(θ0 |y ) ∝ exp{−1

2
(θ0 − θ)

′
H
¯

(θ0 − θ)−
T

2
(θ0 − θ̂T )′ŜT (θ0 − θ̂T )}.

Using textbook results for combining a normal prior with normal likelihood, the posterior distri-

bution of θ is approximately normal with mean θ̄T and the precision matrix H̄T , where

θ̄T =
(
T ŜT +H

¯

)−1
(T ŜT θ̂T +H

¯
θ), and H̄T = T ŜT +H

¯
.

It is clear that θ̄T is defined even if R̊, or equivalently ŜT , fails the rank condition. Since the

marginals of multivariate normal are also normally distributed, the posterior of θ1 is (approxi-

mately) normally distributed with mean θ̄1T , where θ̄1T is the first element of θ̄T , and the posterior

precision of θ1 is (approximately) given by (suppressing the T subscript to simplify the exposition)

h̄11 = H̄11 − H̄12H̄
−1
22 H̄21,

where

H̄ =

(
H̄11 H̄12

H̄21 H̄22

)
= T

(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)
+

(
H
¯ 11 H

¯ 12

H
¯ 21 H

¯ 22

)
.

Hence

h̄11 = (T Ŝ11 +H
¯ 11)−

(
T Ŝ12 +H

¯ 12

)(
T Ŝ22 +H

¯ 22

)−1 (
T Ŝ21 +H

¯ 21

)
.

It is clear that when T is finite h̄11 is well defined irrespective of whether R̊ is a full rank matrix

or not. Note that, even if H
¯ 21 = 0, the posterior of θ1 may not be independent of the posterior of

θ∗. This is because in general Ŝ12 6= 0. In the case where p = k posterior independence follows if

R̊12 = Q12 = 0.

Consider now the case where T →∞, and note that since

T−1h̄11 = (Ŝ11 + T−1H
¯ 11)−

(
Ŝ12 + T−1H

¯ 12

)(
Ŝ22 + T−1H

¯ 22

)−1 (
Ŝ21 + T−1H

¯ 21

)
,

then as T →∞ we have

lim
T→∞

(
T−1h̄11

)
= S11 − S12S

−1
22 S21,
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where

S = p lim
T→∞

(
R̊′QT R̊

)
= R′QR =

(
S11 S12

S21 S22

)
.

In general R = R(θ), where θ can take any value in Θ0. Note that the probability limit of θ̊ is

not unique but must lie in Θ0. Therefore, without loss of generality and to simplify the notations

in what follows we use the generic symbol θ to represent the limiting value of θ̊.

In the case where R is full rank, S is a positive definite matrix. Hence, S11 − S12S
−1
22 S21 > 0,

and limT→∞
(
T−1h̄11

)
is strictly positive and does not depend on the prior precision. But when

the rank condition is not satisfied the above result does not follow. For example, suppose that

p = k + 1 and consider the following partition of R

R =
(
r R∗

)
,

where r is a k × 1 vector and R∗ is k × k . Recall that p = 1 + k, and by assumption R∗ is a

non-singular matrix. Then

S = R′QR =

(
r′

R′∗

)
Q
(
r R∗

)
=

(
r′Qr r′QR∗
R′∗Qr R′∗QR∗

)
.

Hence

S11 − S12S
−1
22 S21 = r′Qr − r′QR∗

(
R′∗QR∗

)−1
R′∗Qr.

But since R∗ and Q are both non-singular then it readily follows that S11 − S12S
−1
22 S21 = 0, and

lim
T→∞

(
T−1h̄11

)
= 0.

Namely the posterior precision of θ1 must change at a rate slower than T when θ1 is non-identified.

In terms of the posterior variance this result confirms that the posterior variance of a non-identified

parameter need not tend to zero, and in cases that it does its rate of decline must be slower than

T .

The above result readily generalizes when two or more of the structural parameters are uniden-

tified. Consider the case where θ = (θ′1, θ
′
2)′ with θ1 the s×1 vector of unidentified parameters and
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θ2 the (p−s)×1 vector of the identified parameters where p−s = k. Partition R as R = (R1, R2),

where R1 and R2 are k × s and k × k matrices, where R2 is non-singular and write S as

S = R′QR =

(
R′1QR1 R′1QR2

R′2QR1 R′2QR2

)
.

Then noting that by assumption Q and R2 are non-singular matrices, it readily follows that

S11 − S12S
−1
22 S21 = 0, as required.

We propose to use these results as a second Bayesian indicator of identification which can be

used when our first Bayesian indicator of identification is not applicable. That is, we recommend

the following strategy: Suppose that it is of interest to investigate if one or more elements of θ

are identified, for example in the locality of the prior mean vector, θ. First, the researcher should

generate an artificial data set of size T from the DSGE model at θ = θ. T should be chosen to

be a large value where asymptotic results are expected to be very good approximations (e.g. the

empirical illustrations below set T = 10, 000). Second, the researcher should estimate the DSGE

model using sample sizes τ = cT for a grid of values for c (e.g. c = 0.0001, 0.001, 0.01, 0.1, 1.0) and

calculate a measure which relates to the posterior precision for every parameter. By comparing

the behavior of the measure over different sample sizes, the researcher can see which parameters

are identified and which are not. For instance, the posterior variance should be going to zero with

sample size for identified parameters, but will not be doing so for unidentified parameters, while

the posterior precision, divided by the sample size will go to a constant for identified parameters,

and go to zero for unidentified parameters. Notice that for identified parameters, the variance

need not go to zero monotonically, the variance may increase before falling, depending on the

prior.

This approach provides an indicator of local identification (i.e. it will indicate identification

at the parameter values used to generate the artificial data). Hence, the researcher may wish to

carry out the procedure for various artificial data sets generated with different parameter values.

This strategy is comparable to the one used by Iskrev (2010a), who draws parameter values from

the prior and checks identification at each of the draws.

25



3.3.1 Example 3: Regressions with exactly collinear regressors

As an example of the preceding derivations, consider the following simple regression model

yt = θ1x1t + θ2x2t + ut,

where θ1 and θ2 are the parameters of interest. Suppose that x2t = ρx1t where ρ is a known

non-zero constant . Then

yt = α(θ)x1t + ut,

where α = α(θ) = θ1 + ρθ2. Assuming a normal prior for the parameters of interest, as in (25),

causes α and θ1 to be dependent on one another (unless θ1 and θ2 are a priori dependent and ρ =

−v
¯ 11/v¯ 12, where v¯ ij

for i, j = 1, 2 denote the prior variance-covariances of θ1 and θ2). Therefore,

in cases where θ1 and θ2 are a priori independent (i.e. v¯ 12 = 0) or when v
¯ 12 6= 0 but ρ 6= −v

¯ 11/v¯ 12,

then α and θ1 are a priori dependent and Result 2 of Section 3.1. does not apply.

Using our previous results, the posterior precision of θ1 for a finite T is given by

T−1h̄11 = (ŝ11 + T−1h
¯ 11)−

(
ŝ12 + T−1h

¯ 12

) (
ŝ22 + T−1h

¯ 22

)−1 (
ŝ21 + T−1h

¯ 21

)
,

where

Ŝ = R′QTR, R =
(

1 ρ
)
, QT = T−1

T∑
t=1

x2
1t = s2

T1 = s2
1 > 0,

and hence

ŝ11 = s2
1, ŝ12 = ŝ21 = ρs2

1 and ŝ22 = ρ2s2
1.

Therefore

T−1h̄11 = s2
1

{
1 + T−1(h

¯ 11/s
2
1)−

(
ρ+ T−1h

¯ 21/s
2
1

)2
ρ2 + T−1(h

¯ 22/s
2
1)

}

= T−1s2
1

{
(h
¯ 22/s

2
1) + (h

¯ 11/s
2
1)ρ2 + (h

¯ 11/s
2
1)T−1(h

¯ 22/s
2
1)− 2ρh

¯ 21/s
2
1 − T−1

(
h
¯ 21/s

2
1

)2
ρ2 + T−1(h

¯ 22/s
2
1)

}
.

When the priors of θ1 and θ2 are independent the above expression simplifies to

h̄11 =
h
¯ 22 + ρ2h

¯ 11 + T−1h
¯ 11h¯ 22/s

2
1

ρ2 + T−1(h
¯ 22/s

2
1)

.
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Hence, posterior precision (h̄11) of the unidentified parameter, θ1, differs from its prior precision

(h
¯ 11) for all T , and as T → ∞, even though θ1 and θ2 are assumed to be a priori independent.

For T suffi ciently large we have

lim
T→∞

h̄11 = h
¯ 11 + ρ−2h

¯ 22.

Hence, the posterior precision is bounded in T , in contrast to the posterior precision of an identified

parameter.

The extent to which the posterior precision deviates from the prior precision is determined

by h
¯ 22/ρ

2. It is also worth noting, however, that as T increases the posterior precision declines.

This could be viewed as an indication that θ1 is not identified. In the case where a parameter

is identified we would expect the posterior precision to rise with T and eventually dominate the

prior precision.

3.3.2 Example 4: The NKPC with no Backward Looking Behavior

Consider the NKPC (see Example 2 in Section 2.3.1) and, for simplicity, assume that there is no

backward looking behavior (βb = 0) and simplify notation by defining β ≡ βf . The solution of

this model can be written as:

yt = α(γ, β)xt + ut,

where

α ≡ α(γ, β) =
γρ

1− ρβ ,

and assume that ρ is known (it is identified, so asymptotically its estimator will converge to the

true value). For this example we have

R =
(

ρ
1−ρβ

γρ2

(1−ρβ)2

)
.

It is clear that the rank condition is not satisfied and neither of the structural parameters is

identified.
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This example is complicated by the fact that R depends on the unknown parameters. With

this in mind we note that R can also be written as

R =
ρ

1− ρβ
(

1 α
)
.

Furthermore

R̂ =
ρ

1− ρβ̂
(

1 α̂
)
, QT = T−1

T∑
t=1

x2
t = s2

x > 0,

Ŝ = R̂′QT R̂ =
ρ2s2

x(
1− ρβ̂

)2

(
1 α̂
α̂ α̂2

)
.

α̂ could be selected to be the OLS estimator of α in the regression of yt on xt. But the choice of

β̂ is arbitrary so long as it lies in the range of [0, 1) - but as we shall see below in the limit β̂ gets

eliminated from the posterior precisions.

It can now be seen that the following approximate results hold:

T−1h̄γγ ≈

 ρ2s2
x(

1− ρβ̂
)2 + T−1h

¯ γγ

−
(

ρ2s2xα̂

(1−ρβ̂)
2 + T−1h

¯ γβ

)2

ρ2s2xα̂
2

(1−ρβ̂)
2 + T−1h

¯ ββ
,

and similarly

T−1h̄ββ ≈
ρ2α̂2s2

x(
1− ρβ̂

)2 + T−1h
¯ ββ
−

(
ρ2s2xα̂

(1−ρβ̂)
2 + T−1h

¯ γβ

)2

ρ2s2x

(1−ρβ̂)
2 + T−1h

¯ γγ
.

In the case where priors of γ and β are independent of one another, h
¯ γβ

= 0,we obtain

h̄γγ ≈ h¯ γγ
+

ρ2s2x

(1−ρβ̂)
2h¯ ββ

ρ2s2xα̂
2

(1−ρβ̂)
2 + T−1h

¯ ββ

and as T →∞

lim
T→∞

(h̄γγ) = h
¯ γγ

+
h
¯ ββ
α2

,

which does not depend on the nuisance parameter β. Similarly

h̄ββ ≈ h¯ ββ
+

ρ2α̂2s2x

(1−ρβ̂)
2h¯ γγ

ρ2s2x

(1−ρβ̂)
2 + T−1h

¯ γγ
,

and

lim
T→∞

(h̄ββ) = h
¯ ββ

+ α2h
¯ γγ

.
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In the case of both structural parameters the posterior precisions are dominated by the prior

precisions even if T is suffi ciently large. In neither case do the prior and the posterior precisions

coincide despite the prior independence of the structural parameters.

This example illustrates the drawback of our first Bayesian indicator of identification discussed

above. That is, Results 2 and 3 of Section 3.1 (or the propositions of Poirier, 1998, Section 2),

obtain when the vector of parameters is written in terms of those which are identified and those

which are not. In cases of partial identification such as this one, the vector of structural parameters

cannot be written in this way (i.e. β and γ are both unidentified and thus, neither can be included

in what we called θ2 in Results 2 and 3). However, it also shows how our large sample derivations

can be used as a second Bayesian indicator of identification which is valid even in cases such as

this.

4 Applications

In this section, we illustrate both of our Bayesian identification indicators in the context of the

two examples of DSGE models introduced in Section 2. These are the NK-DSGE (see Section

2.2.1) and the NKPC (see Section 2.3.1). For the NKPC, we use the simplified version of the

model with no backward looking behavior (used in Section 3.3.2).

4.1 Example 1 (cont.): Bayesian identification of the simple NK-DSGE model

Previously, we introduced a simple NK-DSGE in (9), (10) and (11). We will illustrate some issues

relating to Bayesian inference and identification in this simple and easily understood model where

the identification of the model can be immediately seen. This example involves four structural

parameters, σ, γ, ψ and β. The rational expectations solution given in (13) does not involve β so

this parameter is unidentified. However, the bounds given in (12) which ensure regularity such

that there is a unique stationary solution do involve β.

We generated one artificial data set of T = 10, 000 observations from (13) with σ = 0.4,

γ = 0.75 and ψ = 2.0. These values were chosen so as to be not too far from the boundaries
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given in (12), but also not too near.10 The errors, εjt for j = 1, 2, 3 are all standard normal and

independent of one another.

We estimate the model using different sample sizes and two different priors. Both priors are

normal with prior means: E (σ) = 0.4, E (γ) = 0.75, E (ψ) = 2.0 and E (β) = 0.9. The two priors

differ in their prior variances. Let θ = (σ, γ, ψ, β)′. The first prior (which we call the Independent

Prior) has var (θ) = I. The second prior (the Dependent Prior) has the same prior covariance

matrix except for a single element: this is the covariance between β and σ which is set to 0.9.

These priors are combined with the likelihood function based on the three equation system in

(13). We use a random walk Metropolis-Hastings algorithm to do posterior simulation in this

model.11

We begin by illustrating the properties of our first Bayesian identification indicator with

T = 100 (i.e. we use only the first 100 of the artificially generated observations). Figures 1 and 2

graph various priors and posteriors for β and σ, respectively, for the Independent Prior. Figures

3 and 4 do the same for the Dependent Prior. For the sake of brevity, we only present graphs for

one identified and one non-identified parameter and, thus, do not present graphs for γ and ψ.

Consider first the priors and posteriors for β. Since β is unidentified, a naive researcher may

expect its posterior to equal its prior. For the reasons discussed in Section 3, this may not be the

case. The top panels of Figures 1 and 3 illustrate this empirically. Even with the Independent

Prior (where β is, a priori, uncorrelated with the other parameters in the model), the fact that β

enters the bounds for the regularity region given in (12) has an appreciable impact on the posterior

in Figure 1. In Figure 3 (which uses a prior where the unidentified β is strongly correlated with

the identified σ), this effect is even more noticeable. The posterior for β has a much smaller

variance than its prior, indicating how information about σ is spilling over onto β.

The priors and posterior for σ show (as expected) that learning is occurring about this iden-

tified parameter. The posteriors in the top panels of Figures 2 and 4 are concentrated near the

10The posterior simulation algorithm rejected 3.1% of the draws for violating the bounds.
11 In this small model, with only four parameters, this algorithm works well. In larger models, depending on the

form of the prior, more effi cient posterior simulation algorithms could be used.
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true value used to generate the data.

This example illustrates an important point we have made previously: An informal compar-

ison of priors and posteriors of structural parameters in DSGE models can be a useful way of

investigating if learning is occurring about a parameter. However, such a comparison will not

tell the researcher why the learning is occurring. Our figures show posteriors can differ from

priors, even for parameters which do not enter the likelihood function, either when the parameter

space is not variation free or through prior correlations with identified parameters. Since DSGE

models will often exhibit such features, this illustration shows how caution should be taken when

interpreting comparisons of priors with posteriors.

In Section 3.2, we recommended using an alternative indicator based on (20). If interest

centers on identification issues relating to θ1 then this indicator involved comparing p (θ1|y) to

Eθ2|y [p (θ1|θ2)]. The bottom panels of Figures 1 through 4 present such a comparison for β and

σ for our two priors. Clearly our indicator is working well. For the non-identified parameter,

p (β|y) and Eσ,γ,ψ|y [p (β|σ, γ, ψ)] are the same density. For the identified parameter, p (σ|y) and

Eβ,γ,ψ|y [p (σ|β, γ, ψ)] are massively different, indicating the parameter is strongly identified.
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To illustrate our second Bayesian identification indicator, based on large sample derivations,

Table 1 presents the posterior precisions of the parameters divided by T in the model using larger

and larger data sets. Remember that the theoretical derivations underlying our second Bayesian

identification indicator imply that the posterior precision of the identified parameters, σ, γ and

ψ, should be increasing at a rate of T . But the posterior precision of the unidentified parameter,

β, will be increasing (if at all) at a slower rate. These properties can be clearly seen in Table

1. In contrast to the identified parameters, the posterior precision of β divided by sample size is

heading towards zero. This result holds irrespective of whether the prior distribution of β depends

on the other parameters or not. For example, in the case of independent priors, when T = 10, 000

the average posterior precision of β is 2×10−4 as compared to 2.941, 0.909 and 0.689 for σ, γ and

ψ, respectively.
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Table 1: Posterior Precisions Divided by Sample Size
Number of observations σ γ ψ β

Independent Prior
T=10 0.991 0.209 0.641 0.194
T=20 1.191 0.233 0.625 0.107
T=50 2.105 0.741 0.571 0.044
T=100 2.222 0.769 0.588 0.023
T=1,000 2.439 0.833 0.556 0.002
T=10,000 2.941 0.909 0.689 2×10−4

Dependent Prior
T=10 1.409 0.312 0.617 0.336
T=20 1.163 0.225 0.625 0.263
T=50 1.539 1.333 0.556 0.131
T=100 1.961 0.741 0.588 0.072
T=1,000 2.941 1.052 0.526 0.008
T=10,000 2.778 1.102 0.476 8×10−4

4.2 Example 2 (cont.): The NKPC model

For the reasons discussed in Section 3.2 and in the theoretical derivations of Section 3.3.2, our

first Bayesian indicator of identification will not work reliably when we work with the NKPC and

parameterize the model in terms of its structural parameters. However, our second Bayesian iden-

tification indicator of Section 3.3, based on large sample theory, should still work. Accordingly,

we use the NKPC (as in Section 3.3.2, we assume there is no backward looking behavior) to inves-

tigate the performance of this second identification indicator. We consider both an unidentified

and identified version of the NKPC. The unidentified version assumes an AR(1) process for the

output gap. The identified version assumes an AR(2) process for the output gap. Including the

identified version allows us to investigate issues relating to the strength of identification.

4.2.1 The NKPC with AR(1) Process for the Output Gap

When no backward looking behavior exists (βb = 0), then the hybrid NKPC, with AR(1) process

(18), is parameterized in terms of three structural parameters β, γ and ρ (where β ≡ βf is the

forward-looking coeffi cient in the NKPC). The RE solution given in (19) simplifies and depends

on two reduced form parameters, α and ρ. The lack of identification reveals itself through the

mapping from structural to reduced form parameters: α = ργ/(1− ρβ).
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We generated one artificial data set of 10, 000 observations from the NKPC with β = 0.6,

γ = 0.9, ρ = 0.3. In addition, ut is i.i.d. N(0, 0.25) and vt is i.i.d. N(0, 1). For γ and ρ, the prior

is normal: N (0.5, 0.1I2). This prior is chosen so that the prior means are a bit different (but

not too different) from the true values and prior variance is fairly informative. For β, we use a

Uniform prior over (0, 1) which is the region which ensures a unique RE solution. This prior is

combined with the likelihood function based on the two equations for πt and xt. We use a random

walk Metropolis-Hastings algorithm to do posterior simulation using the first T of the artificially

generated observations for T = 10, 20, 50, 100, 1, 000 and 10, 000.

Table 2 presents posterior variances for various sample sizes. The results in Table 2 not only

confirm the large sample theory derived in this paper, but also show that it is empirically useful.

That is, in this RE model, it can clearly be seen that the posterior precision of ρ is going to zero

at the expected rate of T . In contrast, the posterior precisions divided by sample size of both

non-identified parameters are declining. However, this decline is slower for γ than β. To see why

this is occurring, remember that we have α = γρ/ (1− ρβ) and impose 0 < β < 1. Since we have

a precise (positive) estimate of ρ, then the sign of γ is the same as the sign of α, providing some

information. In addition, even though γ is not identified we can test γ = 0 by testing α = 0. Thus

in some sense there is more information about γ in the estimate of α than about β and this is

reflected in the posterior precisions.

Table 2: Posterior Precisions Divided by Sample Size
Number of observations ρ γ β

T=10 3.704 1.695 1.266
T=20 3.571 0.926 0.633
T=50 2.857 0.400 0.253
T=100 2.632 0.233 0.127
T=1,000 1.429 0.053 0.013
T=10,000 1.149 0.011 0.001

The posterior precision is not the only possible feature that the researcher could use as an

indicator of identification. An alternative is simply to plot the posteriors for different choices of

T . This is done in Figures 5, 6 and 7. In Figure 5, the posterior for ρ, clearly is converging in

the manner implied by the asymptotic theory for identified models. However, in Figures 6 and 7,
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the posteriors for γ and β are converging much more slowly. The posterior for γ changes with T

more rapidly that the posterior for β. However, there is clearly some updating of beliefs about β

occurring (remember that the prior for this parameter is uniform).
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4.2.2 The NKPC with AR(2) Process for Output Gap

We now turn to the identified version of the NKPC, where we have an AR(2) process for the

output gap. The structural parameters of this model (with no backward looking behavior) are

(β, γ, ρ1, ρ2) and the reduced form parameters are (α1, α2, ρ1, ρ2). There is a one-to-one mapping

between reduced form and structural form:

α1 =
γ (ρ1 + βfρ2)

1− βf (ρ1 + βfρ2)

and

α2 =
γρ2

1− βf (ρ1 + βfρ2)
.

Thus, all of the structural parameters are identified. However, if ρ2 is near zero then identification

will be weak. Accordingly, we use this example to investigate issues relating to the strength of

identification.

The data generating process (DGP) is the same as in our previous example, except for its
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treatment of ρ2. We generate four different data sets with ρ2 = 0, 0.01, 0.1, 0.6, respectively.12 The

prior for (β, γ, ρ1) is the same as that used in the AR(1) example. To this we add an independent

N (0.5, 0.1) prior for ρ2. Just as with the AR(1) example, this prior is combined with the likelihood

function based on the two equations for πt and xt. We use a random walk Metropolis-Hastings

algorithm to do posterior simulation using the first T of the artificially generated observations for

T = 10, 20, 50, 100, 1, 000 and 10, 000.

Table 3 reports posterior precisions divided by T for the case where ρ2 = 0. This artificial data

set is the same as that used to produce Table 2. However, the model being estimated differs in this

case. Since we are estimating an additional parameter, ρ2, it is not surprising that the posterior

precisions (especially for small sample sizes) are slightly smaller in Table 3 than Table 2. However,

the general pattern revealed by Table 3 is the same as Table 2. Table 4 (where ρ2 = 0.01) also

exhibits a similar pattern. These findings suggest that the Bayesian identification indicator based

on large sample results will present useful information even if our estimating model is identified.

Thus, it can be a useful indicator of weak identification.

In this model, the weakness of identification seems to impact mostly on β. That is, its posterior

precision is increasing very little over time in the cases where ρ2 = 0 or 0.01. With ρ2 = 0.1 (see

Table 5), we can begin to see clear signs that the posterior precision of β is increasing with T .

However, even in this case, the increase of the posterior precision is quite slow. However, when

ρ2 = 0.6 (see Table 6), the posterior of all the parameters can be seen to be converging at roughly

the same rate. This is reassuring since, in this case, all the parameters are strongly identified.

Table 3: Posterior Precisions Divided by T (DGP: ρ2 = 0)
Number of observations ρ1 ρ2 γ β

T=10 2.941 3.571 1.429 1.266
T=20 2.778 3.333 0.820 0.633
T=50 2.564 3.356 0.364 0.256
T=100 2.326 3.360 0.213 0.128
T=1,000 1.017 4.167 0.050 0.013
T=10,000 1.091 4.348 0.009 0.001

12 In order to make these data sets as comparable as possible, we use the same seed for the random number
generator for all DGPs.
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Table 4: Posterior Precisions Divided by T (DGP: ρ2 = 0.01)
Number of observations ρ1 ρ2 γ β

T=10 2.941 3.704 1.515 1.282
T=20 2.778 3.329 0.794 0.641
T=50 2.857 2.912 0.357 0.256
T=100 2.500 3.23 0.217 0.128
T=1,000 1.062 4.562 0.053 0.014
T=10,000 1.178 4.712 0.009 0.001
Table 5: Posterior Precisions Divided by T (DGP: ρ2 = 0.10)
Number of observations ρ1 ρ2 γ β

T=10 3.125 4.167 1.563 1.389
T=20 2.632 3.571 0.769 0.735
T=50 2.201 3.298 0.341 0.323
T=100 2.013 2.597 0.189 0.169
T=1,000 1.103 3.232 0.033 0.021
T=10,000 1.190 2.560 0.008 0.003
Table 6: Posterior Precisions Divided by T (DGP: ρ2 = 0.60)
Number of observations ρ1 ρ2 γ β

T=10 2.702 3.571 1.429 2.128
T=20 3.321 4.167 0.877 2.273
T=50 3.309 3.287 0.466 1.429
T=100 2.459 2.478 0.303 0.987
T=1,000 1.144 1.098 0.083 0.376
T=10,000 1.760 1.603 0.098 0.251

5 Concluding Remarks

This paper has examined the identification of the parameters of DSGE models, in the light of

the widespread concern in the literature that the parameters may be either not identified or

only weakly identified. In purely forward looking models, with no lags, the coeffi cients of the

expectational variables are generically not identified since they do not enter the likelihood function.

In forward looking models with lags, identification is dependent on the assumed structure of the

dynamics, making it vulnerable to the Sims (1980) critique of ‘incredible’identifying restrictions.

In more complicated models with unobserved variables and no analytical solution, it is diffi cult to

determine whether the models are identified. When the DSGE models are estimated by Bayesian

methods, this lack of identification may not be evident since the posterior may differ from the

prior even if the parameter is not identified and the posterior for unidentified parameters may

also be updated as the sample size increases. These properties have been demonstrated both
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analytically and numerically, using familiar examples of unidentified or weakly identified rational

expectations DSGE models.

We propose two Bayesian identification indicators. The first involves comparing the marginal

posterior of a parameter with the posterior expectation of the prior for that parameter conditional

on the other parameters. This can be computed as part of the MCMC estimation of a DSGE

model using whatever real data set the researcher is working with. However, this indicator can

be applied only in situations where parameters can be partitioned into a set that are known to

be identified and another set for which identification is uncertain. This may not be possible when

the researcher is working with the structural parameters of a DSGE model. Our second Bayesian

indicator is more generally applicable and considers the rate at which the posterior precision gets

updated as the sample size (T ) is increased. For identified parameters the posterior precision

rises with T , whilst for an unidentified parameter its posterior precision may be updated but its

rate of update will be slower than T . This result assumes that the identified parameters are
√
T -

consistent, but similar differential rates of updates for identified and unidentified parameters can

be established in the case of weak (or super) consistent estimators. This suggests a strategy where

the researcher simulates larger and larger data sets and observes the behavior of the posterior as

sample size increases.

We present an empirical illustration which shows the effectiveness of the first Bayesian identifi-

cation indicator, in cases where it is applicable. Further empirical illustrations show the usefulness

of our second Bayesian identification indicator, both for checking for the presence and the strength

of identification.
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Technical Appendix
Solving DSGE Models

The solution method proposed by Binder and Pesaran involves finding an n× n matrix C(θ)

such that in terms of the quasi-difference transformation Yt = yt − C(θ)yt−1, the model only

involves future expectations, where C(θ) is a solution of the following quadratic matrix equation

A1(θ)C(θ)2 −A0(θ)C(θ) +A2(θ) = 0. (27)

Then assuming
[
In −A0(θ)−1A1(θ)C(θ)

]
is non-singular, we obtain

Yt = F (θ)Et(Yt+1) +Wt,

where

F (θ) = [A0(θ)−A1(θ)C(θ)]−1A1(θ),

Wt = [A0(θ)−A1(θ)C(θ)]−1 [A3(θ)xt + ut] .

There will be a unique solution if there exists a real matrix solution to (27) such that all the

eigenvalues of C(θ) lie inside or on the unit circle, and all the eigenvalues of F (θ) lie strictly inside

the unit circle. In such cases the unique solution is given by

yt = C(θ)yt−1 +
∞∑
h=0

F (θ)hEt(Wt+h).

When, as assumed above, xt and ut follow a VAR(1) process, and the roots of the Φi, i = x, u lie

on or inside the unit circle, then

Et(xt+h) = Φh
xxt

Et(ut+h) = Φh
uut

and since xt and ut are independent

Et(Wt+h) = [A0(θ)−A1(θ)C(θ)]−1
[
A3(θ)Φh

xxt + Φh
uut

]
therefore the solution has the form

yt = C(θ)yt−1+ (28)
∞∑
h=0

F h(θ)[A0(θ)−A1(θ)C(θ)]−1
[
A3(θ)Φh

xxt + Φh
uut

]
,

which we can write as in (3).
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