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Abstract

This paper is concerned with identification of dynamic stochastic general equilibrium

(DSGE) models from a Bayesian perspective, and proposes two Bayesian indicators. The

first indicator follows a suggestion by Poirier of comparing the posterior density of the pa-

rameter of interest with the posterior expectation of its prior conditional on the remaining

parameters, as opposed to comparing the posterior distribution to its prior as is usually done.

The second indicator examines the rate at which the posterior precision of the parameter gets

updated with the sample size, using simulated data. For identified parameters the posterior

precision increases at rate T. We show that for parameters that are either unidentified or are

weakly identified the posterior precision may be updated but its rate of update will be slower

than T. We use empirical examples to demonstrate that these methods are useful in practice.

JEL Classifications: C11, C15, E17

Key Words: Bayesian identification, weak identification, DSGE models, posterior updat-

ing.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are typically estimated by Bayesian

methods (DeJong, Ingram and Whiteman, 2000, Smets and Wouters, 2003, 2007, and An and

Schorfheide, 2007). The application of Bayesian techniques to DSGE models, made possible

through the use of Markov Chain Monte Carlo (MCMC) algorithms presents a natural progres-

sion from the earlier calibrated DSGE models popularized by Kydland and Prescott (1996). The

Bayesian approach also seems to conveniently circumvent the problems often encountered when

estimating DSGE models by maximum likelihood, where the likelihood function in terms of the

structural parameters of DSGE models was often found to be badly behaved. Although, solutions

of DSGE models are usually in the forms of linear VAR or VARMA models, the structural parame-

ters are non-linear functions of the solution parameters, often involving complicated cross-equation

restrictions. Unlike the simpler simultaneous equations model (SEM) the non-linear nature of the

cross equation restrictions in DSGE models and the role of unobserved shocks makes it more

diffi cult to analytically check identification or to judge identification from the information matrix

or curvature of the likelihood function.

The early literature on identification of rational expectations (RE) models started with the

work of Sargent (1976) and McCallum (1979) on observational equivalence and was extended to

more general set ups by Wallis (1980), Pesaran (1981, 1987), and Pudney (1982). Interest in

identification of RE models then waned as models tended to be calibrated rather than estimated.

But recent interest in estimation of DSGE models has prompted a return to the problem of

identification of RE models in general and that of DSGE models in particular. The issues in

identification of the new Keynesian Phillips curve has been discussed by Mavroeidis, (2005),

Nason and Smith, (2008), Kleibergen and Mavroeidis, (2009), Dees et al., (2009); and of the

Taylor rule by Cochrane (2011). More generally Canova and Sala (2009) conclude “it appears

that a large class of popular DSGE structures are only very weakly identified”and Iskrev (2010b)

concludes "the results indicate that the parameters of the Smets and Wouters (2007) model are
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quite poorly identified in most of the parameter space". Other recent papers which consider

determining the identification of DSGE models are Andrle (2010), Iskrev (2010a), Iskrev and

Ratto (2010), and Komunjer and Ng (2011).

Whereas papers like Iskrev (2010a,b) and Komunjer and Ng (2011) provide classical or fre-

quentist procedures for determining identification based on the rank of particular matrices, our

objective is to provide Bayesian indicators of the identification of one or more parameters. This

seems useful both because these models are usually estimated by Bayesian methods and because

the issues raised by identification are rather different in a Bayesian context.

Given an informative prior, such that a well behaved marginal prior exists for the parameter

of interest, then there is a well defined posterior distribution, whether or not the parameter is

identified. Thus an individual can like Lindley, in one of the classic Bayesian texts, conclude

“that unidentifiability causes no real diffi culty in the Bayesian approach” (Lindley, 1971, page

46 footnote 34). However, for social learning, where different people may have different priors,

sensitivity to the choice of priors is an important issue. If the parameter is not identified, one

cannot learn about the parameter directly from the data and even with an infinite sample of data

the posterior would be determined by the priors.

Within a Bayesian context, learning is interpreted as a changing posterior distribution, and a

common practice in DSGE estimation is to judge identification by a comparison of the prior and

posterior distributions for a parameter. As we discuss, not only can the posterior distribution

differ from the prior even when the parameter is unidentified, but in addition a changing posterior,

apparent learning, need not be informative about identification. This can happen because, for

instance, the requirement for a determinate solution of a DSGE model puts restrictions on the joint

parameter space, which may create dependence between identified and unidentified parameters,

even if their priors are independent. What proves to be informative in a Bayesian context is the

rate at which learning takes place (posterior precision increases) as more data becomes available.

This paper suggests two Bayesian indicators of identification. The first, like the classical
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procedures, indicates non-identification while the second, which is likely to be more useful in

practice, indicates either non-identification or weak identification. Like most of the literature our

analysis is local in the sense that we investigate identification at a given point in the feasible

parameter space. Although our indicators can be applied to any point in the parameter space, in

the Bayesian context prior means seem a natural start point. If the parameters are identified at

their prior means then other points could be investigated. Also, whilst we focus on DSGE models,

our analysis is more generally applicable.

The first indicator, to be referred to as the ‘Bayesian comparison indicator’, is based on

Proposition 2 of Poirier (1998) and considers identification of the p1 × 1 vector of parameters,

θ1, assuming that the remaining p2 × 1 vector of parameters, θ2, is identified. It compares the

posterior distribution of θ1 with the posterior expectation of its prior distribution conditional on

θ2, and concludes that θ1 is unidentified if the two distributions coincide. This contrasts to the

direct comparison of the prior of θ1 with its posterior. These could differ from one another even if

θ1 is unidentified. Like the classical indicators based on the rank of a matrix, the outcome of this

Bayesian indicator is a yes/no answer, but in practice will depend on the numerical accuracy of

the MCMC procedures used to compute the posterior distributions. The MCMC approximation

error, however, can be made as small as required, unlike the classical procedures which require

determining whether a particular numerical eigenvalue is zero. Komunjer and Ng (2011) note that

the magnitude of the eigenvalues depends on the units of measurement and discuss the choice of

numerical cut-off used to determine whether the eigenvalues are suffi ciently small.

Despite its generality, the application of the Bayesian comparison indicator to DSGE models

can be problematic, since it is often diffi cult to suitably partition the parameters of the model such

that there exists a sub-set which is known to be identified. Furthermore, in many applications the

main empirical issue of interest is not a yes/no response to an identification question, but if one or

more parameters of the model are weakly identified, in the sense discussed, for example, by Stock,

Wright and Yogo (2002), and Andrews and Cheng (2011), in the classical literature. Accordingly,
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we also propose a second indicator, which we refer to as the ‘Bayesian learning rate indicator’,

that examines the rate at which the posterior precision of a given parameter gets updated with the

sample size, T, using simulated data. For identified parameters the posterior precision increases

at the rate T . But for parameters that are either not identified or weakly identified the posterior

precision may be updated but its rate of update will be slower than T . Notice that this procedure

simulates sample of increasing size and does not require the size of the available realized data

to be large. To our knowledge this paper is the first to present a Bayesian treatment of weak

identification.

Empirical illustrations show the usefulness of both of these indicators for checking the presence

and strength of identification in Bayesian contexts. They are easy to implement in standard

software packages such as Dynare (http://www.dynare.org/). In a recent paper Caglar et al

(2012) applies the learning rate indicator to examine the identification of the parameters of the

Bayesian DSGE model of Smets and Wouters (2007), and find that many parameters of this

widely used model do not appear to be well identified.

The paper is organized as follows. Section 2 discusses the identification issues that arise in

linear rational expectations DSGE models, and provides two simple examples that will be used for

illustration. General issues in Bayesian identification are considered in Section 3, whilst Section

4 considers issues that are more specific to Bayesian identification of DSGE models. The two

Bayesian indicators of identification advanced in the paper are outlined in sub-sections 4.1 and

4.2. The main theoretical results are summarized in two propositions with proofs provided in

an Appendix. Section 5 presents several empirical illustrations of the methods developed and

discussed in Sections 2 and 4. Section 6 concludes.

2 Rational Expectations DSGE Models

2.1 A General Framework

Most macroeconomic DSGE models are constructed by linearizing an underlying non-linear ra-

tional expectations, RE, model around its steady state. A typical log-linearized RE model can be
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written as

A0(θ)yt = A1(θ)Et(yt+1) +A2(θ)yt−1 +A3(θ)xt + ut, (1)

xt = Φxxt−1 + vt, ut = Φuut−1 + εt,

where yt is an n× 1 vector of deviations from the steady states, xt is an m× 1 vector of observed

exogenous variables, ut is an n × 1 vector of unobserved variables, and εt is the n × 1 vector

of structural shocks, assumed to be serially uncorrelated with zero mean, the covariance matrix,

E(εtε
′
t) = Ω(θ). For Bayesian or maximum likelihood estimation, εt is also typically assumed to

be normally distributed. The expectations Et(yt+1) = E(yt+1 | It) are assumed to be rationally

formed with respect to the information set, It = (yt, xt, yt−1, xt−1, ....). To simplify the exposition

it is assumed that both the exogenous and unobserved variables follow VAR(1) processes. The

parameters of interest are the p×1 vector of structural parameters, θ, and the remaining (reduced

form) parameters Φx and Φu are assumed as given. It is also assumed that there are no feedbacks

from yt to xt or ut. To identify the structural shocks it is common in the literature to assume that

Ω(θ) = In.

If A0(θ) is nonsingular, then (1) can be written

yt = A0(θ)−1A1(θ)Et(yt+1) +A0(θ)−1A2(θ)yt−1 (2)

+A0(θ)−1A3(θ)xt +A0(θ)−1ut.

The solution of such a system is discussed in Binder and Pesaran (1995, 1997) and Sims (2002)

and if the unique stationary solution exists, it takes the form:

yt = C(θ)yt−1 +G1(θ, φx)xt +G2(θ, φu)ut, (3)

where φi = vec(Φi), i = x, u. The matrices Gi(θ, φi) i = x, u, can be obtained using the method of

undetermined coeffi cients (see Blinder and Pesaran, 1997, for details). Notice that the coeffi cient

matrix for the lagged dependent variable vector is just a function of θ, and not φx or φu.
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If Φu = 0, this is just a VAR with exogenous variables and the likelihood function for the

reduced form parameters is easily obtained. In the general case where the unobserved components

of the model are serially correlated, the rational expectations solution will involve moving average

components and it is more convenient to write the model as a state space model where Kalman

filtering techniques can be used to evaluate the likelihood function. In such cases the reduced

form parameters may not be identified. Below we use some simple special cases of DSGE models

where the RE solution is available analytically to demonstrate the identification issues.

2.2 DSGE models without lags

Abstracting from lagged values and exogenous regressors and for notational simplicity, not making

the dependence on θ explicit, (1) simplifies to

A0yt = A1Et(yt+1) + εt, (4)

E(εt) = 0, E(εtε
′
t) = Ω.

If A0 is non-singular using (4) we have

yt = A−1
0 A1Et(yt+1) +A−1

0 εt = QEt(yt+1) +A−1
0 εt. (5)

The regular case, where there is a unique stationary solution, arises if the non-zero eigenvalues of

Q = A−1
0 A1 lie within the unit circle. In this case, the unique solution of the model is given by

yt =

∞∑
j=0

QjA−1
0 Et(εt+j). (6)

Since Et(εt+j) = 0 for j ≥ 0, then Et(yt+1) = 0 and the solution simplifies to

A0yt = εt, (7)

or

yt = A−1
0 εt = ut, E(utu

′
t) = Σ = A−1

0 ΩA−1′
0 . (8)

Notice that (8) provides us with a likelihood function which does not depend on A1 and, therefore,

the parameters that are unique to A1 (i.e. the coeffi cients that are specific to the forward variables)
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are not identified. Furthermore, the RE model is observationally equivalent to a model without

forward variables which takes the form of (7). Since what can be estimated from the data, namely

Σ, is not a function of A1, all possible choices of A1 are observationally equivalent in the sense that

they lead to the same observed data covariance matrix. Although the coeffi cients in the forward

solution (6) are functions of A1, this does not identify them because Et(εt+j) = 0. Elements of

A1 could be identified by certain sorts of a priori restrictions, but these are likely to be rather

special, rather limited in number and cannot be tested.

If the parameters of the DSGE model were thought to be known a priori from calibration,

there would be no identification problem and the structural errors εit could be recovered and

used, for instance, in calculating impulse response functions, IRFs. However, suppose someone

else believed that the true model was just a set of random errors yt = ut, with different IRFs.

There is no information in the data that a proponent of the DSGE could use to persuade the other

person that the DSGE model was correct relative to the random error model. This is exactly the

same point that Sargent (1976) made with respect to "natural and unnatural rate theories".

The above result generalizes to higher order RE models. Consider for example the model

A0yt =

q∑
i=1

AiEt(yt+i) + εt.

Once again the unique stable solution of this model is also given by A0yt = εt, and none of the

elements of A1, A2, ..., Aq that are variation free with respect to the elements of A0 are identified.

2.2.1 Example 1. A simple New Keynesian (NK) system

As an illustration consider a standard three equation NK-DSGE model used in Benati (2010) that

involves only current and future variables:

Rt = ψπt + ε1t, (9)

xt = Et(xt+1)− σ(Rt − Et(πt+1)) + ε2t, (10)

πt = βEt(πt+1) + γxt + ε3t. (11)
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where Et(xt+1) = E(xt+1 | It). The model contains a monetary policy rule determining the

interest rate, Rt, an IS curve determining the output gap, xt, and a Phillips Curve determining

inflation, πt, all measured as deviations from their steady states. The errors, which are assumed to

be white noise, are a monetary policy shock, ε1t, a demand shock, ε2t, and a supply or cost shock,

ε3t. These are assumed to be orthogonal. The discount factor is β and σ is the inter-temporal

elasticity of substitution. This is a highly restricted system with many parameters set to zero a

priori. For instance, output does not appear in the monetary policy rule and the coeffi cient of

future output is exactly equal to unity in the IS equation. In terms of (4), yt = (Rt, xt, πt)
′ and

A0 =

 1 0 −ψ
σ 1 0
0 −γ 1

 , A1 =

 0 0 0
0 1 σ
0 0 β

 .

Hence

A−1
0 =

1

γσψ + 1

 1 γψ ψ
−σ 1 −σψ
−γσ γ 1


Q = A−1

0 A1

=
1

γσψ + 1

 0 γψ ψ(β + γσ)
0 1 σ(1− βψ)
0 γ β + γσ


and the two non-zero eigenvalues of Q are

κ1 =
1

2 (γσψ + 1)
(1 + β + γσ + ζ) , (12)

κ2 =
1

2 (γσψ + 1)
(1 + β + γσ − ζ) ,

ζ =
√
β2 − 2β + γ2σ2 + 2γσ + 2γσβ − 4γσβψ + 1.

Assuming that |κi| < 1 for i = 1, 2 then the solution is given by (7), which in the present example

can be written as:

Rt = ψπt + ε1t, xt = −σRt + ε2t, πt = γxt + ε3t. (13)

This illustrates some of the features of DSGE models. First, the RE model parameter matrices,

A0 and A1, are written in terms of deeper parameters θ = (γ, σ, ψ, β)′. Second, the parameters

9



which appear only in A1 do not enter the RE solution and, thus, do not enter the likelihood

function. In this example, β does not appear in the likelihood function, though, σ which appears

in A1 does appear in the likelihood function because it also appears in A0. Third, the restrictions

necessary to ensure regularity (i.e. |κi| < 1 for i = 1, 2), imply bounds involving the structural

parameters, including the unidentified β. Thus, the parameter space is not variation free. Fourth,

if β is fixed at some pre-selected value for the discount rate (as would be done by a calibrator),

then the model is identified. Canova and Sala (2009) make similar points with a similar model.

2.3 DSGE models with lags

In order to reproduce the dynamics that are typically observed with macroeconomic data, most

empirical DSGE models include lagged values of endogenous or exogenous (observed or unob-

served) variables. For instance Clarida, Gali and Gertler (1999) assume that the errors in the IS

and Phillips curve equations follow AR(1) processes and derive an optimal feedback policy for the

interest rate based on the forecasts from these autoregressions. In this case, there is a predictable

component in expected inflation because of the serial correlation in the equation errors.

Consider the special case of (1), where A3 = Φu = 0 so that the model only contains lagged

endogenous variables

A0yt = A1Et(yt+1) +A2yt−1 + εt. (14)

In this case the unique solution is given by

yt = Cyt−1 +A−1
0 εt, (15)

where C solves the quadratic matrix equation A1C
2 − A0C + A2 = 0. The solution is unique

and stationary if all the eigenvalues of C and (I − A1C)−1A1 lie strictly inside the unit circle.

Therefore, the RE solution is observationally equivalent to the non-RE simultaneous equations

model, SEM:

A0yt = A2yt−1 + εt,

where, in the case of the SEM, C = A−1
0 A2.
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Again whereas the order condition for identification of the SEM requires n2 restrictions, the RE

model requires 2n2 restrictions. Not only is the RE model observationally equivalent to a purely

backward looking SEM, it is observationally equivalent (in the sense of having the same reduced

form), to any other model of expectations where in (14) Et(yt+1) is replaced by Dyt−1. More

specifically, knowing the form of the solution, (15), does not, on its own, provide information on the

cross-equation parametric restrictions. In either case, the identifying cross-equation restrictions

are lost.

Thus, in models with lags, the same problem of observational equivalence between RE and

other models recurs. One may be able to distinguish the reduced forms of particular RE models

from other observationally equivalent models, because the RE models impose particular types of

cross-equation restriction on the reduced form, which arise from the nature of the rational expec-

tations. But such restrictions are subject to the objection made by Sims (1980), who criticized

identification by ‘incredible’dynamic restrictions on the coeffi cients and lag lengths. RE models,

which depend on restrictions on the form of the dynamics, such as AR(1) errors, are equally

vulnerable to such objections.

2.3.1 Example 2: A New Keynesian Phillips Curve

An important example which has been widely discussed in the literature is the New Keynesian

Phillips Curve (NKPC). The NKPC determines inflation, πt, by expected inflation and an exoge-

nous driving process, such as the output gap, xt:

πt = βEt−1πt+1 + γxt + εt, (16)

where β is the discount factor and εt is a martingale difference process and Et−1πt+1 = E(πt+1 |

It−1), where It−1 is information available at time t− 1. Note that in this model expectations are

conditioned on It−1, rather than on It. It is assumed that there is no feedback from πt to xt, and

xt follows a stationary AR(2) process

xt = ρ1xt−1 + ρ2xt−2 + vt; ∼ IID(0, σ2
v). (17)
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The RE solution of the NKPC is given in this case by

πt = α1xt−1 + α2xt−2 + επt; ∼ IID(0, σ2
επ) (18)

where

α1 =
γ (ρ1 + βρ2)

1− βρ1 − β2ρ2
, α2 =

γρ2

1− βρ1 − β2ρ2
. (19)

The reduced form parameters φ = (ρ1, ρ2, α1, α2)′ = (ρ′, α′)′ can be obtained by estimating

the system of equations (17) and (18) in yt = (πt, xt)
′. Assuming that xt is weakly exogenous

and hence uncorrelated with vπt, φ is identified and can be estimated by OLS on each equa-

tion. Identification of the structural parameters θ = (β, γ, ρ1, ρ2)′ will then involve inverting the

mapping from φ to θ, given by (19).

As noted originally in Pesaran (1981, 1987, Ch. 7) and emphasized recently by Mavroeidis

(2005) and Nason and Smith (2008) among others, identification of the structural parameters

critically depends on the process generating xt. Assuming that ρ2 6= 0, γ 6= 0 and the denominator

in (19) 1− βρ1 − β2ρ2 6= 0 then

β =
α1ρ2 − α2ρ1

ρ2α2
, for ρ2α2 6= 0,

γ =
α1

(
1− βρ1 − β2ρ2

)
ρ1 + βρ2

, for 1− βρ1 − β2ρ2 6= 0.

Within the classical framework, the matrix of derivatives of the reduced form parameters with

respect to the structural parameters, R(θ), plays an important role in identification. In this

example this matrix is given by

R(θ) =
∂α

∂θ′
=

1

1− βρ1 − β2ρ2

 γ
(
ρ2 + ρ1+2βρ2

1−βρ1−β2ρ2

)
ρ1 + βρ2

γ ρ2(ρ1+2βρ2)
1−βρ1−β2ρ2 ρ2

 .
In a classical set up a "yes/no" answer to to the question of whether a particular value of θ is

identified is given by investigating if the rank of R(θ), evaluated at that particular value, is full.

Therefore, necessary conditions for identification are 1− βρ1 − β2ρ2 6= 0, γ 6= 0 and ρ2 6= 0. This

12



matrix will also play a role in the Bayesian analysis below. We shall also examine the weakly

identified case, where 1− βρ1 − β2ρ2 6= 0, γ 6= 0, but ρ2 is replaced by ρ2T = δ/
√
T .

3 Identification: General Issues

We begin with a brief overview of identification in a general context, before focussing on DSGE

models. We use notation where θ = (θ1, θ2)′ lies in a region Φ, p (θ) is the prior, p (θ|y) is the

posterior and L (θ; y) is the likelihood function. We define identification as follows: θ is identified

if L
(
θ(1); y

)
= L

(
θ(2); y

)
implies that θ(1) = θ(2) for all y. See, for example, Hsiao (1983, pp.

226-227). It can be seen that non-identification can occur in several ways as was illustrated in

Examples 1 and 2. As we shall stress below, some of the traditional Bayesian results relate only

to particular types of non-identification.

It is worth emphasizing that θ is our notation for the structural parameters and, in many

cases one may have other parameters, π, such as reduced form parameters, which are functions

of the structural parameters, where π could be identified, but elements of θ are not. For instance

if π = θ1θ2.

Poirier (1998), building on earlier contributions (e.g. Kadane, 1974) sets out a framework for

discussing identification in Bayesian models and we describe here a few of his key results which

we will use later in our discussion of identification in DSGE models. Consider the case where

the parameters in θ2 are identified but the scalar, θ1, is not. In DSGE models, the range of one

parameter often depends on another because of the determinacy conditions, so care must be taken

with the bounds of the parameter space. Formally, let θ = (θ′1, θ
′
2)′ ∈ Φ ⊂ Rp, and suppose that

θ1 ∈ Φ1 ⊂ Rp1 and θ2 ∈ Φ2 ⊂ Rp2 , then the parameter space over θ1 and θ2 is said to be variation

free if Φ = Φ1 × Φ2, namely if the parameter space is a product space.

Result 1: Suppose θ1 is not identified in the sense that L (θ; y) is flat over θ1 ∈ Φ1 (θ2). In

this case, the likelihood function can be written as depending only on θ2 (although θ1 can still

enter the bounds of the parameter space as Φ2 (θ1)).
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It is straightforward to use Result 1 and Bayes’theorem to show:

Result 2: If there is prior independence between θ1 and θ2 such that p (θ1, θ2) = p (θ1) p (θ2)

and the parameter space is a product space (i.e. Φ = Φ1 × Φ2) then p (θ1|y) = p (θ1).

This is the commonly cited result that "posterior equals prior for unidentified parameters".

Note, however, that it only holds for the particular type of non-identification defined in Result 1

and assumes prior independence and a variation free parameter space. If any of these conditions

is not satisfied then p (θ1|y) 6= p (θ1). Informally speaking, data based learning about θ2 can “spill

over”onto the unidentified θ1 (see Koop and Poirier, 1997, for an example).

As we shall discuss below, a better metric for investigating identification can be constructed

based on Proposition 2 of Poirier (1998) which we state here.

Result 3: Assume the conditions of Result 1 apply and let p (θ1, θ2) = p (θ1|θ2) p (θ2) be the

joint prior (which may exhibit correlation between θ1 and θ2), then the following holds for all y:

p (θ1|y) =
∫

Φ(θ2) p (θ1|θ2, y) p (θ2|y) dθ2

=
∫

Φ(θ2) p (θ1|θ2) p (θ2|y) dθ2

= Eθ2|y [p (θ1|θ2)] .

. (20)

In words, the marginal posterior for the unidentified θ1 will always be the posterior expectation

of the conditional prior, p (θ1|θ2).

The concepts discussed so far can be used with any econometric model, but we will use them

below with DSGE models.

4 Bayesian Identification in DSGE Models

From the material in Section 2, it can be seen that some types of DSGE models are either simul-

taneous equations models, or closely related to them. For such models, of course, identification

issues are well-understood. In the Bayesian literature on identification in the simultaneous equa-

tions model influential papers include Drèze (1976), Drèze and Richard (1983) and Kleibergen and

van Dijk (1998). And Bayesian instrumental variable methods are well established (see, among

many others, Kleibergen and Zivot, 2003, Hoogerheide, Kleibergen and van Dijk, 2007). Insofar

as the DSGE model can be written as a conventional SEM, conventional methods can be used
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for Bayesian estimation and checking for identification. The NK-DSGE and NKPC models above

fall in this category. There is also a literature relating to specific models such as the NKPC

(e.g. Mavroeidis, 2005 and Kleibergen and Mavroeidis, 2009, 2010). For DSGEs which can be

written in structural VAR form Rubio-Ramirez, Waggoner and Zha (2010) provide an exhaustive

treatment.

Bayesians typically use posterior simulation algorithms to estimate DSGE models. Our first

proposed indicator can be calculated as part of such a posterior simulation algorithm without

the need for additional steps such as the coding of analytical derivatives. Our second indicator

involves using artificial data but it, as well, will involve standard posterior simulation algorithms.

The Bayesian who uses proper priors will (under weak conditions) obtain a proper posterior,

allowing for valid statistical inference. However, if a parameter is not identified, then there is

the possibility that there is no data-based learning about it and its posterior can solely reflect

prior information. In complicated models such as DSGEs, where it can be hard to analytically

disentangle identification issues, this can lead to the case where the researcher believes she is

presenting posterior estimates but is really simply reproducing her prior.

Even if parameters are identified, weak identification can lead to relatively flat regions of the

likelihood function where the prior is extremely influential. Such concerns have lead to a recent

interest in identification issues in Bayesian DSGE modelling. Consider, for instance, Canova (2007,

page 190) which states “while it is hard to ‘cheat’in a classical framework, it is not very diffi cult to

give the impression that identification problems are absent in a Bayesian framework by choosing

tight enough priors, presenting well-behaved posterior distributions and entirely side-stepping the

comparison between priors and posteriors”. In response to this, an increasingly common practice

is to compare priors and posteriors for structural parameters, a practice which Canova (2007,

page 191) refers to as “necessary [but] by no means suffi cient” to reveal identification problems

in DSGE models. We will draw on our earlier discussion of Bayesian identification (see Section

3.1) to discuss why this is so and introduce an alternative method for investigating identification
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in Bayesian DSGE models.

Result 2 of Section 3 underlies some informal discussion of identification in the Bayesian DSGE

literature. For instance, An and Schorfheide (2007, page 127) say that: “A direct comparison of

priors and posteriors can often provide valuable insights about the extent to which data provide

information about parameters of interest.”This is true, but can be an imperfect way of formally

investigating identification issues, since the posterior for an unidentified parameter can differ

substantially from its prior if the unidentified parameter is, a priori, correlated with identified

ones or if the parameter space is not a product space.

Nevertheless, it is common in the Bayesian DSGE literature to use such informal comparisons

of priors and posteriors, as the quote from An and Schorheide above indicates. Among many

others, Smets and Wouters (2007, page 594) compare prior and posteriors and note that the

mean of the posterior distribution is typically quite close to the mean of the prior assumptions

and later note that "It appears that the data are quite informative on the behavioral parameters,

as indicated by the lower variance of the posterior distribution relative to the prior distribution."

4.1 A Bayesian Comparison Indicator for ‘Yes/No’Identification

Result 3 of Section 3 offers a promising way of formally investigating identification issues. In

cases where a subset of structural parameters, say θ2, is known to be identified, but there is doubt

regarding the identification of another sub-set, θ1, then p (θ1|y) should be equal to Eθ2|y [p (θ1|θ2)]

where we use the notation of Section 3. For DSGE modelers interested in indicators that may

shed light on identification issues, we would recommend comparing the properties of p (θ1|y) and

Eθ2|y [p (θ1|θ2)] in addition to (or instead of) comparing p (θ1|y) to p (θ1).

In terms of computation, note that our proposed indicator is typically easy to calculate. That

is, the Bayesian DSGE modeler will typically be using an MCMC algorithm and, thus, posterior

draws of θ2 will be available. Calculation of Eθ2|y [p (θ1|θ2)] simply involves evaluating p (θ1|θ2)

at each draw of θ2 at a grid of values for θ1 and averaging across the posterior draws of θ2. In

many cases an analytical form for p (θ1|θ2) will be available. For instance, if p (θ1, θ2) is normal

16



then p (θ1|θ2) is also normal with textbook formula for its mean and variance. For priors which

do not admit of analytical results, adding a prior simulation step at each posterior draw would

only slightly add to the computational burden.

Formally, if a parameter is unidentified then p (θ1|y) and Eθ2|y [p (θ1|θ2)] should be identical,

apart from MCMC approximation error. Hence, the two densities cannot be used as a test

for identification. That is, any difference between p (θ1|y) and Eθ2|y [p (θ1|θ2)] beyond MCMC

approximation error means identification is present. We will illustrate the usefulness of this

indicator below. However, for DSGE models, it has one substantive drawback. For the theory

underlying Result 3 to hold, the parameters in θ1 must not enter the likelihood function (this

point is stressed on page 489 of Poirier, 1998). When working with a DSGE model, we would

like to simply set θ to be the structural parameters. But typically we will not be able to do so

(in the sense that the indicator defined in this way will not necessarily be zero for unidentified

parameters). This is because, in general, identification problems can arise involving both the

parameters in θ1 and θ2.

To see how this can happen in practice, we return to our example involving the NKPC in sub-

section 2.3.1. If ρ2 = 0, there is only one reduced form parameter in the inflation equation, a1,

and it depends on two structural parameters β and γ and, thus, there is an identification problem

involving these structural parameters. In contrast to Example 1, the identification problem does

not manifest itself simply in terms of a single structural parameter which does not enter the

likelihood function. Using the notation of Result 3, we might be tempted to set θ1 = β and

θ2 = (γ, ρ) in order to investigate the identification of β. However, it can be easily seen that

the derivations in (20) used to prove Result 3 are no longer valid since β still appears in the

likelihood function. In such cases, we will not have p (θ1|y) = Eθ2|y [p (θ1|θ2)], even though θ1 is

only partially identified.

The advice given by Poirier (1998) in such cases is to re-parameterize the model so that θ2

contains only identified parameters. In some DSGE cases, a simple way of choosing θ2 suggests
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itself: let θ2 be some or all of the reduced form parameters and θ1 be one of the structural

parameters. We know the reduced form parameters are identified and, thus, the conditions under

which Result 3 can be used as an identification indicator are satisfied. In such cases, we can

recommend a comparison of p (θ1|y) and Eθ2|y [p (θ1|θ2)] as shedding light on the identification of

θ1.

This identification indicator aims at providing a "yes/no" answer to the question of whether

a given parameter is identified. In this sense it is comparable to the classical indicators of iden-

tification proposed in the literature by Iskrev (2010a) and Komunjer and Ng (2011). However,

it is worth noting that these classical indicators of identification are used with linearized DSGE

models, whereas our indicator is not restricted to linearized models. We also note that the

MCMC approximation error in our indicator can be made as small as desired, unlike the classical

procedures of Iskrev (2010a) and Komunjer and Ng (2011) that require determining whether a

particular numerical matrix has rank zero (the model is not identified). Komunjer and Ng (2011)

recognize this and note that the magnitude of the eigenvalues of the relevant matrix depends on

the units of measurement and that rank routines in numerical packages use a cut-off to determine

if the eigenvalues are suffi ciently small. They have an ad hoc argument for the choice of tolerance.

Furthermore, these alternative indictors face the additional diffi culty that the rank condition tells

you whether the system is identified, but it does not identify which parameter is causing the

trouble. In contrast the indicator we propose is not subject to this problem.

4.2 A Bayesian Learning Rate Indicator for Weak Identification

In this sub-section we consider our second Bayesian indicator that focusses on the rate at which

posterior precision rises with T . The advantage of this indicator is two-fold. First, it can be applied

to any parameter of interest and is relatively easy to compute. Second, and more importantly, it

can be used to detect evidence of weak identification which is likely to be more prevalent in the

empirical Bayesian analysis. Our theoretical results also show that in cases where identification is

weak the Bayesian outcomes are likely to be more sensitive to the choice of the priors even if the
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sample size under consideration is relatively large. Empirically, this indicator involves simulating

artificial data sets of increasing size and then estimating the DSGE model using these data sets.

Since the generation of simulated data is fairly standard in the DSGE literature, this strategy fits

in well with existing empirical methodologies.

To explain the theory underlying this second indicator, note that standard Bayesian results

for stationary models (see, e.g., Berger, 1985, page 224), imply that, under certain regularity

conditions, the Bayesian asymptotic theory relating to the posterior is identical to the asymptotic

distribution theory for the maximum likelihood estimator. Thus, for instance, the posterior for θ

will asymptotically converge to to its true value and the role of the prior will vanish. One of the

regularity conditions is that θ is identified. In this sub-section, we relax this assumption and show

that this asymptotic convergence will not occur. To this end we make the following assumptions.

Assumption 1 Let θ = (θ1, θ2, ..., θp)
′ ∈ Θ ⊂ Rp be a p × 1 vector of structural parameters

of interest in a DSGE model of the type set out in Section 2, and suppose that the likelihood

function of the DSGE model for a sample of T observations can be written as LT (α(θ); y) , where

α(θ) = (α1(θ), α2(θ), ..., αk(θ))
′ is a k×1 vector-valued function of θ. Further suppose that αs(θ),

for s = 1, 2, ..., k are differentiable at each point of the open convex set Θ0 containing Θ, and denote

the first derivatives of αs(θ) by ∂αs(θ)/∂θi, i = 1, 2, ..., p, and the k × p matrix of derivatives by

R(θ) =
∂α(θ)

∂θ′
= (∂αs(θ)/∂θi). (21)

Assumption 2 Let `T (α) = ln [LT (α; y)], and assume that

QT (α) =
−1

T

∂2`T (α)

∂α∂α′
(22)

is a positive definite matrix for all values of α ∈ A ⊂ Rk. Denote the maximum likelihood (ML)

estimator of α by α̂T and assume that

√
T (α̂T − a0)→d N(0, Q−1), (23)

where α0 is the true value of α ∈ A, and Q = plimT→∞QT (α0) is a symmetric positive definite

19



matrix. Similarly, corresponding to α0 select θ0 ∈ Θ such that α(θ0) = α0. The choice of θ0 need

not be unique so long as it satisfies the equation system, α0 = α(θ0).

Assumption 3 The prior distribution of θ is given by the multivariate normal density

p(θ) = (2π)−p/2 |H
¯
|1/2 exp−1

2
(θ − θ)′H

¯
(θ − θ), (24)

where θ and H
¯
are prior mean vector and prior precision matrix of θ.

Remark 1 Assumption 1 is standard and postulates a well defined likelihood function for the

model under consideration, and sets out the relationships that exist between the structural, θ,

and the reduced form, α, parameters. Assumption 2 is again standard and assumes that α is

identified and its ML estimator is asymptotically normally distributed. Since our focus is on

identification of the structural parameters, it seems reasonable to begin with the standard case

where the reduced form parameters are identified, although as we shall see below our analyses

allow for the possibility of weak identification of the structural parameters. Assumption 3 is made

for analytical convenience and can be relaxed at the expense of further mathematical complications.

In the theoretical derivations we focus on the multivariate normal prior, although in simulations

we also consider truncated normal densities for some of the priors.

Remark 2 In contrast to the identified case where the likelihood eventually dominates the prior

(assuming that the prior is nonprejudicial), as we shall see, the choice of the prior is important in

the unidentified and weakly identified cases, even if T →∞. Despite this, our Bayesian learning

rate indicator continues to be applicable even if Assumption 3 is relaxed and priors other than

multivariate normal are assumed. Although, for non-normal priors the exact expression for the

limit of the posterior precision in the unidentified or weakly identified cases would be different

from those provided below, nevertheless it still follows that the rate of increase of the posterior

precision would be slower than T in the unidentified or weakly identified cases. Therefore, the

proposed Bayesian learning rate indicator is applicable more generally and does not depend on the

particular choice of the priors.
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Given that by assumption α is identified, then in the classical sense θ is globally identified

if Rank(R(θ0)) = k ≥ p for all θ0 ∈ Θ, and θ is identified locally in the neighborhood of θ if

Rank(R(θ )) = k ≥ p. A necessary condition for identification is given by p ≤ k. Our analysis

focusses on the case where the rank condition is not met, and hence one or more elements of θ

might not identified. Nevertheless, there exists θ̂T such that α̂T = α(θ̂T ). The choice of θ̂T need

not be unique, but as can be seen from the following proposition this does not affect the posterior

precision of θ which is uniquely defined irrespective of the rank of R.

Proposition 1 Under Assumptions 1, 2, and 3, the posterior distribution of θ is approximately

normal with mean θ̄T and the precision matrix H̄T , where

θ̄T = (T ST +H
¯

)−1 (T ST θ̂T +H
¯
θ), (25)

H̄T = T ST +H
¯
, (26)

ST = R′QTR, (27)

R = R(θ), for all θ ∈ Θ0, with R(θ) defined by (21), for all choices of θ̂T such that α̂T = α(θ̂T ).

A proof is provided in the Appendix.

It is clear that the posterior precision, H̄T , is unique and well defined even if R, or equivalently

ST , fails the rank condition. In what follows we use this result and consider the limiting behaviour

of the posterior precision of one or more elements of θ. To simplify the exposition consider the case

where p = k, and partition θ into a p1×1 vector, θ1, whose identification is under consideration on

the assumption that the remaining p2 × 1 parameter vector, θ2, is identified. Since the marginals

of the multivariate normal distribution are also normally distributed, the posterior of θ1, up to

terms of order Op(T−1/2), is normally distributed with the posterior precision given by

H̄11,T = H̄11,T − H̄12,T H̄
−1
22,T H̄21,T ,

where, using (26),

H̄T =

(
H̄11,T H̄12,T

H̄21,T H̄22,T

)
= T

(
S11,T S12,T

S21,T S22,T

)
+

(
H
¯ 11 H

¯ 12

H
¯ 21 H

¯ 22

)
.
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Hence

H̄11,T = (TS11,T +H
¯ 11)− (TS12,T +H

¯ 12) (TS22,T +H
¯ 22)−1 (TS21,T +H

¯ 21) . (28)

For a finite T , H̄11,T is well defined irrespective of whether R is a full rank matrix. Thus in

small samples identification is not an issue in Bayesian analysis, although in public discourse the

sensitivity of the posterior means and precisions to the choice of the priors will be an issue. It

is for answering this question that it is important to investigate the limiting properties of H̄11,T

under different assumptions about the rank of ST .

4.2.1 The identified case

Initially, we consider the identified case where ST is bounded in T , and has a full rank for all T

including as T → ∞. In this case S11,T − S12,TS
−1
22,TS21,T is a positive definite matrix for all T ,

and we have

T−1H̄11,T = (S11,T + T−1H
¯ 11)−

(
S12,T + T−1H

¯ 12

) (
S22,T + T−1H

¯ 22

)−1 (
S21,T + T−1H

¯ 21

)
= S11,T + T−1H

¯ 11 −
(
S12,T + T−1H

¯ 12

)
S−1

22,T

(
I + T−1H

¯ 22S
−1
22

)−1 (
S21,T + T−1H

¯ 21

)
.

(29)

Furthermore, all eigenvalues of H
¯ 22S

−1
22,T will also be bounded in T , and we have

(
Ip2 + T−1H

¯ 22S
−1
22,T

)−1
= Ip2 − T−1H

¯ 22S
−1
22,T +O

(
T−2

)
.

Using this result in (29) now yields

T−1H̄11,T =
(
S11,T − S12,TS

−1
22,TS21,T

)
(30)

+ T−1
(
H
¯ 11 −H¯ 12S

−1
22,TS21,T − S12,TS

−1
22,TH¯ 21 + S12,TS

−1
22,TH¯ 22S

−1
22 S21,T

)
+O

(
T−2

)
.

Therefore, in the identified case the dependence of the average posterior precision on the priors

diminish at the rate of T−1 and eventually vanish for T suffi ciently large. In the limit we have

lim
T→∞

(
T−1H̄11,T

)
= lim

T→∞

(
S11,T − S12,TS

−1
22,TS21,T

)
> 0.
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4.2.2 Unidentified/weakly identified cases

We now turn to the weakly identified case. Following the classical literature on weak identification

(see, e.g., Stock, Wright and Yogo, 2002), we allow the elements of ∂αs(θ)/∂θi to vary with T , so

that RT could be full rank for a fixed T but not as T →∞. Specifically, we set

RT =

(
R11,T R12,T

R21,T R22,T

)
, (31)

and define weak identification by

R11,T = T−1/2∆11,T , R12,T = T−1/2∆12,T , (32)

where ∆11,T and ∆12,T are respectively p1 × p1 and p1 × p2 matrices bounded in T . Addi-

tional terms of order T−1 can also be included in specification of R11,T and R12,T , by setting

R11,T = T−1/2∆11,T + O
(
T−1

)
, and R12,T = T−1/2∆12,T + O

(
T−1

)
, with no effects on the lim-

iting behaviour of the posterior precision. We also allow R21,T and R22,T to vary with T , but

require R22,T to have full rank uniformly in T (for all T and as T → ∞). The unidentified case

then arises as a special case when ∆11,T = 0 and ∆12,T = 0.

Since under Assumption 2, QT is a symmetric positive definite matrix bounded in T , then we

can write QT = U ′TUT , where UT , the Cholesky factor of QT , is a lower triangular matrix. Define

PT as

PT = UTRT =

(
U11,T 0
U21,T U22,T

)(
R11,T R12,T

R21,T R22,T

)
=

(
U11,TR11,T U11,TR12,T

U21,TR11,T + U22,TR21,T U21,TR12,T + U22,TR22,T

)
=

(
P11,T P12,T

P21,T P22,T

)
, (33)

and note that under weak identification we have

P11,T = T−1/2U11,T∆11,T = T−1/2D11,T , P12,T = T−1/2U11,T∆12,T = T−1/2D12,T .

Note that D11,T and D12,T continue to be bounded in T . It can also be seen that P22,T =

U21,TR12,T + U22,TR22,T is a full rank matrix for all T . Recall that U22,T and R22,T are both

p2× p2 full rank matrices and are bounded in T . The second main theoretical result of the paper

can now be summarized in the following proposition
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Proposition 2 Suppose that Assumptions 1-3 hold, and θ1, the p1×1 sub-vector of the structural

parameters, θ = (θ′1, θ
′
2)′, is weakly identified as defined by (32). Then the posterior precision of

θ1 is given by

H̄11,T =
(
D11,T −D12,TP

−1
22,TP21,T

)′ (
D11,T −D12,TP

−1
22,TP21,T

)
(34)

+H
¯ 11 − P ′21,TP

′−1
22,T −H¯ 12P

−1
22,TP21,T + P ′21,TP

′−1
22,TH¯ 22P

−1
22,TP21,T +O(T−1).

where

D11,T = U11,T∆11,T , D12,T = U11,T∆12,T ,

P22,T = U21,TR12,T + U22,TR22,T , P21,T = U21,TR11,T + U22,TR21,T ,

H
¯ 11, H¯ 21, and H¯ 22, are the prior precisions associated with the partitioned vector, θ = (θ′1, θ

′
2)′,

and U11,T , U21,T , and U22,T are defined by UT , the lower triangular Cholesky factor of QT .

See the Appendix for a proof.

This proposition establishes that the posterior precision of the weakly identified θ1 does not

rise with T and is bounded in the prior precisions (H
¯ 11,H¯ 21, H¯ 22), and the data, through the

matrices D11,T , D12,T , P22,T , and P21,T . Using (34), it also readily follows that, in the unidentified

case where ∆11,T = 0 and ∆12,T = 0, the posterior precision of θ1 reduces to

H̄11,T = H
¯ 11 − P ′21,TP

′−1
22,TH¯ 21 −H¯ 12P

−1
22,TP21,T + P ′21,TP

′−1
22,TH¯ 22P

−1
22,TP21,T +O(T−1), (35)

and shows that, in general, the prior and posterior precisions of θ1 differ even if θ1 is unidentified.

For the lim of H̄11,T to coincide with H¯ 11, we also need limT→∞P21,T = limT→∞ (U21,TR11,T + U22,TR21,T ) =

0. Suffi cient conditions for this latter condition to hold are

lim
T→∞

1

T

∂2`T (α)

∂αi∂α′j
= 0, and

∂αi(θ)

∂θj
= 0, for i = 1, 2...., p1;j = p1 + 1, p2 + 2, ...., p.

Namely, the posterior precisions of unidentified parameters tend to their prior precisions if they

are isolated from the rest of the structural parameters, and can be estimated using reduced form
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parameters that are asymptotically uncorrelated with the remaining reduced form parameters

used for estimation of the structural parameters that are identified.

Finally, it is interesting to note that the average precision, T−1H̄11,T , tends to zero irrespective

of whether θ1 is unidentified or weakly identified. But, the limiting value of the posterior precision

of θ1 under the weakly identified case can never be smaller than the limiting value of the posterior

precision under the unidentified case. More specifically, denoting the limit values of D11,T , D12,T ,

P22,T , etc. by D11, D12, P22, ..., we have

lim
T→∞

(
H̄11,T |θ1 is weakly identified

)
− lim
T→∞

(
H̄11,T |θ1 is unidentified

)
=
(
D11 −D12P

−1
22 P21

)′ (
D11 −D12P

−1
22 P21

)
≥ 0. (36)

In terms of the original parameterization recall that D11 = U11∆11, D12 = U11∆12, P22 =

U21R12 + U22R22, and P21 = U21R11 + U22R21, where

U =

(
U11 0
U21 U22

)
,

is the Cholesky factor ofQ = p limT→∞(QT ), and∆11,∆12, R11, ... are the limits of∆11,T ,∆12,T , R11,T ,...

as T →∞.

Implications for practice: The above results suggest using the limiting behavior of poste-

rior precision as an indicator of weak identification in Bayesian analysis. The problem of whether

a parameter is identified or not (a yes/no answer) can be provided either with the help of classical

procedures of the type proposed by Iskrev (2010a) and Komunjer and Ng (2011), or by using

our first indicator when possible. Once, we are satisfied that a parameter of interest is (locally)

identified, the posterior precision of the parameter in question can then be computed using simu-

lated data of increasing size. More specifically, suppose that it is of interest to investigate if one

or more elements of θ are weakly identified, for example in the locality of the prior mean vector,

θ. First, the researcher should generate an artificial data set of size T from the DSGE model

at θ = θ. T should be chosen to be a large value where asymptotic results are expected to be

very good approximations (e.g. the empirical illustrations below set T = 10, 000). Second, the
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researcher should estimate the posterior precision of the parameters of the DSGE model using

sample sizes τ = cT for a grid of values for c (e.g. c = 0.001, 0.01, 0.1, 1.0). By comparing the

behavior of the posterior precision over different sample sizes, the researcher can see which para-

meters are weakly identified and which are not. For instance, the posterior precision should be

rising with the sample size for a well identified parameter, but will not be doing so for a weakly

identified parameter, while the posterior precision, divided by the sample size will go to a constant

for identified parameters, and go to zero for unidentified parameters. Notice that for identified

parameters, the posterior precision need not rise monotonically with T , the posterior precision

may fall before rising depending on the priors.

This approach provides an indicator of weak identification at a locality of a point in the sample

space. Hence, the researcher may wish to carry out the procedure for various artificial data sets

generated with different parameter values. This strategy is comparable to the one used by Iskrev

(2010a), who draws parameter values from the prior and checks identification at each of the draws.

4.3 Example 2 (continued): The posterior precisions for the NKPC under
weak identification

To illustrate the case of weak identification we derive the posterior precision of β in the NKPC

example in sub-section 2.3.1 from the general derivations in sub-section 4.2.2. It proves convenient

to define α as α = (α2, α1)′, namely switching the position of α1 and α2 in α. But as before we

set θ = (β, γ)′ and recall that

α1 =
γ (ρ1 + βρ2)

1− βρ1 − β2ρ2
, α2 =

γρ2

1− βρ1 − β2ρ2
.

The other parameters in the model are the coeffi cients for the AR(2) process for the output gap,

ρ1 and ρ2. We assume weak identification through the specification ρ2 = ρ2T = δ/
√
T . Under

this specification we have

RT (θ) =
∂α

∂θ′
=

1

1− βρ1 − β2ρ2T

 γ ρ2T (ρ1+2βρ2T )
1−βρ1−β2ρ2T ρ2T

γ
(
ρ2T + ρ1+2βρ2T

1−βρ1−β2ρ2T

)
ρ1 + βρ2T

 .
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and

QT =
1

σ̂2
επ

(
T−1

∑T
t=3 x

2
t−1 T−1

∑T
t=3 xt−1xt−1

T−1
∑T

t=3 xt−1xt−2 T−1
∑T

t=3 x
2
t−2

)
=

(
σ̂2

1 σ̂1σ̂
2
2λ̂

σ̂1σ̂
2
2λ̂ σ̂2

2

)
,

where σ̂2
επ = T−1

∑T
t=3(πt − α̂1xt−1− α̂2xt−2)2, and α̂1 and α̂2 are OLS estimators of α1 and α2

in the regression (18), which we repeat:

πt = α1xt−1 + α2xt−2 + επt, επt ∼ IID(0, σ2
επ).

Assuming that xt is a stationary process we have

Q = p lim
T→∞

(QT ) =
1

σ2
επ

(
γx(0) γx(1)
γx(1) γx(0)

)
,

where γx(s) is the autocovariance of xt of order s, and σ2
επ = V ar(επt). Hence,

σ2
1 = σ2

2 = γx(0)/σ2
επ, and λ = γx(1)/γx(0) = ρx(1), (37)

where ρx(1) is the first order autocorrelation coeffi cient of xt. We note for reference, that using

familiar results for the autocovariances of an AR(2) process, e.g. Hamilton(1994, p. 58), we have

γx(0) =
σ2
v (1− ρ2T )

(1 + ρ2T )
[
(1− ρ2T )2 − ρ2

1

] , γx(1) =

(
ρ1

1− ρ2T

)
γx(0). (38)

Since xt is stationary, the limit value of QT , does not change as a result of switching the

positions of α1 and α2 in α, and we have

Q =
γx(0)

σ2
επ

(
1 ρx(1)

ρx(1) 1

)
= U ′U,

with the Cholesky factor of Q given by

U =

√
γx(0)

σεπ

( √
1− ρ2

x(1) 0
ρx(1) 1

)
=

(
U11 U12

U21 U22

)
.

Under weak identification where ρ2T = δ/
√
T , we obtain

R11,T = T−1/2 γδρ1

(1− βρ1)2
+O(T−1), R12,T = T−1/2 δ

1− βρ1
+O(T−1),

and in terms of our general notation in (32) we have

∆11 =
γδρ1

(1− βρ1)2
, and ∆12 =

δ

1− βρ1
.
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R =
1

1− βρ1

(
0 0
γρ1

1−βρ1 ρ1

)
=

(
R11 R12

R21 R22

)
.

Also, using U ,

D11 = U11∆11 =

√
γx(0)

σεπ

√
1− ρ2

x(1)γδρ1

(1− βρ1)2
(39)

D12 = U11∆12 =

√
γx(0)

σεπ

√
1− ρ2

x(1)δ

1− βρ1

Similarly,

P22 = U21R12 + U22R22 = ρx(1)× 0 +
ρ1

1− βρ1
=

ρ1

1− βρ1
(40)

P21 = U21R11 + U22R21 = ρx(1)× 0 +
γρ1

(1− βρ1)2 =
γρ1

(1− βρ1)2

From our general results in (34)

lim
T→∞

(
H̄11,T

∣∣∣ρ2 = δ/
√
T
)

=
(
D11 −D12P

−1
22 P21

)′ (
D11 −D12P

−1
22 P21

)
H
¯ 11 − P ′21P

′−1
22 H

¯ 21 −H¯ 12P
−1
22 P21 + P ′21P

′−1
22 H

¯ 22P
−1
22 P21

But since P12 and P22 are scalars we have H¯ 21 =H
¯ 12

lim
T→∞

(
H̄11,T

∣∣∣ρ2 = δ/
√
T
)

=

(
D11 −D12

P21

P22

)′(
D11 −

P21

P22
D12

)
+H
¯ 11 − 2H

¯ 12

P21

P22
+H
¯ 22

(
P21

P22

)2

.

Now using (39) and (40) we have P21/P22 = γ/ (1− βρ1) ,and

D11 −D12
P21

P22
=

√
γx(0)

σεπ

√
1− ρ2

x(1)γδρ1

(1− βρ1)2
−
√
γx(0)

σεπ

√
1− ρ2

x(1)δ

1− βρ1

γ

1− βρ1

=

√
γx(0) [1− ρ2

x(1)]

σεπ

γδ (ρ1 − 1)

(1− βρ1)2 .

Hence

lim
T→∞

(
H̄11,T

∣∣∣ρ2 = δ/
√
T
)

=
γ2δ2 (1− ρ1)2

(1− βρ1)4

(
γx(0)

σ2
επ

)[
1− ρ2

x(1)
]

(41)

+H
¯ 11 − 2H

¯ 12

(
γ

1− βρ1

)
+H
¯ 22

(
γ

1− βρ1

)2

.
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Noting that in the present example all the precisions are scalars, we set H̄11,T = h̄T,ββ, H¯ 11 =h
¯ ββ

,

H
¯ 22 =h

¯ γγ
, H
¯ 12 =h

¯ βγ
, and note that

h̄ββ(δ) = lim
T→∞

h̄T,ββ

(
ρ2T = δ/

√
T
)

=
γ2δ2 (1− ρ1)2

(1− βρ1)4

γx(0)

σ2
επ

[
1− ρ2

x(1)
]

+
(
h
¯ ββ

+ κ2h
¯ γγ
− 2κh

¯ βγ
)
.

where κ = P21/P22 = γ/ (1− βρ1).

Using (37) and (38) this is

h̄ββ(δ) = lim
T→∞

h̄T,ββ

(
ρ2T = δ/

√
T
)

= κ2δ2

(
σ2
v

σ2
επ

)
(1− ρ1)2

(1− βρ1)2 +
[
h
¯ ββ

+ κ2h
¯ γγ
− 2κh

¯ βγ
]
. (42)

A similar procedure can be used to show that

h̄γγ(δ) = lim
T→∞

h̄T,γγ

(
ρ2T = δ/

√
T
)

= δ2

(
σ2
v

σ2
επ

)
(1− ρ1)2

(1− βρ1)2 +
[
κ−2h

¯ ββ
+ h
¯ γγ
− 2κ−1h

¯ βγ
]
. (43)

Therefore, as to be expected from the general theoretical results, in the weakly identified case

the posterior precisions do not rise with T , and tend to a finite limit the size of which depend on

the prior precisions, the parameters of the underlying model, and the strength of identification as

measured by δ.

In line with the analysis in sub-section 4.2, we will now give simulations below in sub-section

5.2 that illustrate the effect of weak identification on posterior precision for the NKPC parameters.

5 Applications

In this section, we illustrate both of our Bayesian identification indicators in the context of the

two examples of DSGE models introduced in Section 2. These are the NK-DSGE (see Section

2.2.1) and the NKPC (see Section 2.3.1).

5.1 Example 1 (cont.): Bayesian identification of the simple NK-DSGE model

Previously, we introduced a simple NK-DSGE in (9), (10) and (11). We will illustrate some issues

relating to Bayesian inference and identification in this simple and easily understood model where

the identification of the model can be immediately seen. This example involves four structural

parameters, σ, γ, ψ and β. The rational expectations solution given in (13) does not involve β so
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this parameter is unidentified. However, the bounds given in (12) which ensure regularity such

that there is a unique stationary solution do involve β.

We generated one artificial data set of T = 10, 000 observations from (13) with σ = 0.4,

γ = 0.75 and ψ = 2.0. These values were chosen so as to be not too far from the boundaries given

in (12), but also not too near. The posterior simulation algorithm rejected 3.1% of the draws for

violating the bounds. The errors, εjt for j = 1, 2, 3 are all standard normal and independent of

one another.

We estimate the model using different sample sizes and two different priors. Both priors are

normal with prior means: E (σ) = 0.4, E (γ) = 0.75, E (ψ) = 2.0 and E (β) = 0.9. The two

priors differ in their prior variances. Let θ = (σ, γ, ψ, β)′. The first prior (which we call the

Independent Prior) has var (θ) = I4. The second prior (the Dependent Prior) has the same prior

covariance matrix except for a single element: this is the covariance between β and σ which is

set to 0.9. These priors are combined with the likelihood function based on the three equation

system in (13). We use a random walk Metropolis-Hastings algorithm to do posterior simulation

in this model. In this small model, with only four parameters, this algorithm works well. In larger

models, depending on the form of the prior, more effi cient posterior simulation algorithms could

be used.

We begin by illustrating the properties of our first Bayesian identification indicator with

T = 100 (i.e. we use only the first 100 of the artificially generated observations). Figures 1 and 2

graph various priors and posteriors for β and σ, respectively, for the Independent Prior. Figures

3 and 4 do the same for the Dependent Prior. For the sake of brevity, we only present graphs for

one identified and one unidentified parameter and, thus, do not present graphs for γ and ψ.

Consider first the priors and posteriors for β. Since β is unidentified, a naive researcher may

expect its posterior to equal its prior. For the reasons discussed in Section 3, this may not be the

case. The top panels of Figures 1 and 3 illustrate this empirically. Even with the Independent

Prior (where β is, a priori, uncorrelated with the other parameters in the model), the fact that β
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enters the bounds for the regularity region given in (12) has an appreciable impact on the posterior

in Figure 1. In Figure 3 (which uses a prior where the unidentified β is strongly correlated with

the identified σ), this effect is even more noticeable. The posterior for β has a much smaller

variance than its prior, indicating how information about σ is spilling over onto β.

The priors and posterior for σ show (as expected) that learning is occurring about this iden-

tified parameter. The posteriors in the top panels of Figures 2 and 4 are concentrated near the

true value used to generate the data.

This example illustrates an important point we have made previously: An informal compar-

ison of priors and posteriors of structural parameters in DSGE models can be a useful way of

investigating if learning is occurring about a parameter. However, such a comparison will not

tell the researcher why the learning is occurring. Our figures show posteriors can differ from

priors, even for parameters which do not enter the likelihood function, either when the parameter

space is not variation free or through prior correlations with identified parameters. Since DSGE

models will often exhibit such features, this illustration shows how caution should be taken when

interpreting comparisons of priors with posteriors.

In Section 3.2, we recommended using an alternative indicator based on (20). If interest

centers on identification issues relating to θ1 then this indicator involved comparing p (θ1|y) to

Eθ2|y [p (θ1|θ2)]. The bottom panels of Figures 1 through 4 present such a comparison for β and

σ for our two priors. Clearly our indicator is working well. For the unidentified parameter,

p (β|y) and Eσ,γ,ψ|y [p (β|σ, γ, ψ)] are the same density. For the identified parameter, p (σ|y) and

Eβ,γ,ψ|y [p (σ|β, γ, ψ)] are massively different, indicating the parameter is identified.
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To illustrate our second Bayesian identification indicator, based on large sample derivations,

Table 1 presents the posterior precisions of the parameters divided by T in the model using larger

and larger data sets. Remember that the theoretical derivations underlying our second Bayesian

identification indicator imply that the posterior precision of the identified parameters, σ, γ and

ψ, should be increasing at a rate of T . But the posterior precision of the unidentified parameter,
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β, will be increasing (if at all) at a slower rate. These properties can be clearly seen in Table

1. In contrast to the identified parameters, the posterior precision of β divided by sample size is

heading towards zero. This result holds irrespective of whether the prior distribution of β depends

on the other parameters or not. For example, in the case of independent priors, when T = 10, 000

the average posterior precision of β is 2×10−4 as compared to 2.941, 0.909 and 0.689 for σ, γ and

ψ, respectively.

Table 1: Posterior Precisions Divided by Sample Size
Number of observations σ γ ψ β

Independent Prior
T=20 1.191 0.233 0.625 0.107
T=50 2.105 0.741 0.571 0.044
T=100 2.222 0.769 0.588 0.023
T=1,000 2.439 0.833 0.556 0.002
T=10,000 2.941 0.909 0.689 2×10−4

Dependent Prior
T=20 1.163 0.225 0.625 0.263
T=50 1.539 1.333 0.556 0.131
T=100 1.961 0.741 0.588 0.072
T=1,000 2.941 1.052 0.526 0.008
T=10,000 2.778 1.102 0.476 8×10−4

5.2 Example 2 (cont.): The NKPC model

For the reasons discussed in Section 4.1, our first Bayesian indicator of identification will not work

reliably when we work with the NKPC and parameterize the model in terms of its structural

parameters. However, our second Bayesian identification indicator of Section 4.2, based on the

rate at which the posterior precision is updated, should still work. Accordingly, we use the NKPC

to investigate the performance of this second identification indicator. We simulate artificial data

under various assumptions about ρ2. We first consider where ρ2 is a constant, not a function of

T ; then ρ2 = 0 gives the unidentified case; ρ2 6= 0 gives the identified case. We then consider the

weakly identified case where ρ2 is a function of T so that ρ2 = δ/
√
T for various values of δ.

Unidentified and Identified Cases for Fixed Values of ρ2 We generated one artificial data

set of 10, 000 observations from the NKPC with β = 0.6, γ = 0.9, ρ1 = 0.3 and the three values

of ρ2 = 0, 0.3, 0.6. In addition, ut is i.i.d. N(0, 0.25) and vt is i.i.d. N(0, 1). The priors for all
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the parameters are normal: N (0.5, 0.1I4). This prior is chosen so that the prior means are a bit

different (but not too different) from the true values and the prior variance is fairly informative.

Note that, for β, a unique RE solution exists when 0 < β < 1 and we impose this on the model.

The prior is combined with the likelihood function based on the two equations for πt and xt. We

use a random walk Metropolis-Hastings algorithm to do posterior simulation using the first T of

the artificially generated observations for T = 20, 50, 100, 1, 000 and 10, 000. In order to make

these data sets as comparable as possible, we use the same seed for the random number generator

for all DGPs.

Table 2 reports posterior precisions divided by T for the case where ρ2 = 0. The average

precision for γ and β go to zero, those for ρ1 and ρ2 do not. The average precision seems to go

to zero faster for β than for γ. To illustrate what happens in the identified case, Table 3 gives

results for ρ2 = 0.30 and Table 4 for ρ2 = 0.60.

Table 2: Posterior Precisions Divided by T (DGP: ρ2 = 0)
Number of observations ρ1 ρ2 γ β

T=20 2.778 3.333 0.820 0.633
T=50 2.564 3.356 0.364 0.256
T=100 2.326 3.360 0.213 0.128
T=1,000 1.017 4.167 0.050 0.013
T=10,000 1.091 4.348 0.009 0.001
Table 3: Posterior Precisions Divided by T (DGP: ρ2 = 0.30)
Number of observations ρ1 ρ2 γ β

T=20 2.671 3.910 0.839 1.331
T=50 2.417 2.621 0.389 0.702
T=100 2.219 2.377 0.231 0.428
T=1,000 1.401 1.670 0.039 0.062
T=10,000 1.148 1.121 0.018 0.030
Table 4: Posterior Precisions Divided by T (DGP: ρ2 = 0.60)
Number of observations ρ1 ρ2 γ β

T=20 3.321 4.167 0.877 2.273
T=50 3.309 3.287 0.466 1.429
T=100 2.459 2.478 0.303 0.987
T=1,000 1.144 1.098 0.083 0.376
T=10,000 1.760 1.603 0.098 0.251

The Weakly Identified Case To investigate our results relating to weak identification, we

use the same data generating process and prior as in the preceding section except that we set

ρ2 = δ/
√
T and use various values of δ to control the strength of identification. Note that this
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implies there are different data generating processes for different choices of T . Thus, unlike

the preceding artificial data illustrations, we cannot simulate a single artificial data set of size

T = 10, 000 and then take sub-sets of it to produce results for different sample sizes. The need

to simulate completely different artificial data sets (using the same seed in the random number

generator) for different sample sizes adds another cause for results to differ across sample size

in the table below. Furthermore, for some sample sizes, our chosen values of δ lead to explosive

AR(2) processes for the output gap. These are omitted in the table below.

Our aim is to investigate the quality of the asymptotic approximations obtained under the

assumption of weak identification. The asymptotic approximations to the posterior precisions of β

and γ are given in (42) and (43), respectively. Table 5 calculates these formulae, evaluated at the

true values for the parameters. By definition, these will be the same for all T . We also estimate

these posterior precisions using the artificially generated data and our random walk Metropolis-

Hastings algorithm. Note here we give posterior precision, rather than posterior precision divided

by T.

There are several reasons why the estimated results can differ from the asymptotic results

including small sample effects, the fact that the estimated results are based on a single artifi-

cial data set and parameter uncertainty (i.e. the asymptotic results use the true values of the

parameters, whereas the estimated results do not). But still, Table 7 indicates that our weak

identification asymptotic results are at least roughly reliable. In general, estimated precisions are

somewhat less than asymptotic precisions, which is due to parameter uncertainty. That is, the

need to estimate parameters (as opposed to knowing their true values) slightly lowers precision.

It is interesting to note that the estimated precisions for γ tend to slightly increase with T but

the opposite is true for β. This is consistent with findings in Table 2 for the unidentified NKPC,

though that table gives average precisions rather than precision. Note that there we are finding

the posterior precision of γ to rise with sample size (although this rise was not at a rate of T ) to

a greater extent than occurred for β. This finding is repeated in the estimated results in Table 5,
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but does not occur with the asymptotic results.

Table 5 : Posterior Precisions: Asymptotic and Estimated
Number of obs Asymptotic β Estimated β Asymptotic γ Estimated γ

DGP: ρ2 = 0

T=20 22.046 18.490 18.301 15.919
T=50 22.046 17.226 18.301 18.269
T=100 22.046 17.399 18.301 21.875
T=1,000 22.046 18.797 18.301 55.211
T=10,000 22.046 18.169 18.301 122.415

DGP: ρ2 = 2√
T

T=20 36.092 37.202 29.961 17.781
T=50 36.092 34.224 29.961 19.578
T=100 36.092 28.939 29.961 21.730
T=1,000 36.092 22.175 29.961 42.282
T=10,000 36.092 18.907 29.961 102.344

DGP: ρ2 = 4√
T

T=50 78.229 69.292 64.940 19.875
T=100 78.229 60.524 64.940 27.105
T=1,000 78.229 29.316 64.940 36.346
T=10,000 78.229 20.448 64.940 77.017

DGP: ρ2 = 6√
T

T=100 148.458 96.640 123.239 27.921
T=1,000 148.458 37.861 123.239 37.861
T=10,000 148.458 21.591 123.239 61.395

5.3 Discussion

In this section, we have illustrated the properties of our proposed Bayesian identification indica-

tors in simple models using artificially generated data. The advantages of such an approach are

that insights can be obtained in a simple and well-understood context where the nature of the

identification problem is clear. However, the researcher will often be working with much more

complicated DSGE models. The question of how our large sample Bayesian identification indi-

cator performs in such a case is addressed in Caglar et al (2012). This paper uses the popular

medium size DSGE model of Smets and Wouters (2007) which involves 14 endogenous variables

and 36 structural parameters. The identification indicator proposed reveals that this model is

poorly identified. In particular, it finds that parameters relating to price and wage stickiness, the

monetary policy rule and the steady states in some equations are poorly identified. These findings

are similar to those presented in Iskrev (2010a). Caglar et al (2012) shows how our identification
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indicator can be used to obtain sensible results in a substantive DSGE model.

6 Concluding Remarks

This paper has examined the identification of the parameters of DSGE models, in the light of

the widespread concern in the literature that the parameters may be either not identified or

only weakly identified. In purely forward looking models, with no lags, the coeffi cients of the

expectational variables are not identified since they do not enter the likelihood function. In

forward looking models with lags, identification is dependent on the assumed structure of the

dynamics, making it vulnerable to the Sims (1980) critique of ‘incredible’identifying restrictions.

In more complicated models with unobserved variables and no analytical solution, it is diffi cult to

determine whether the models are identified. When the DSGE models are estimated by Bayesian

methods, this lack of identification may not be evident since the posterior may differ from the

prior even if the parameter is not identified and the posterior for unidentified parameters may

also be updated as the sample size increases. These properties have been demonstrated both

analytically and numerically, using familiar examples of unidentified or weakly identified rational

expectations DSGE models.

We propose two Bayesian identification indicators. The first involves comparing the marginal

posterior of a parameter with the posterior expectation of the prior for that parameter conditional

on the other parameters. This can be computed as part of the MCMC estimation of a DSGE

model using whatever real data set the researcher is working with. However, this indicator can

be applied only in situations where parameters can be partitioned into a set that are known

to be identified and another set for which identification is uncertain. This may not be possible

when the researcher is working with the structural parameters of a DSGE model. Our second

Bayesian indicator is more generally applicable and considers the rate at which the posterior

precision gets updated as the sample size (T ) is increased. For identified parameters the posterior

precision rises with T , whilst for an unidentified or weakly identified parameter its posterior
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precision may be updated but its rate of update will be slower than T . This result assumes

that the identified parameters are
√
T -consistent, but similar differential rates of updates for

identified and unidentified parameters can be established in the case of weak (or super) consistent

estimators. This suggests a strategy where the researcher simulates larger and larger data sets

and observes the behavior of the posterior as sample size increases.

We present an empirical illustration which shows the effectiveness of the first Bayesian identifi-

cation indicator, in cases where it is applicable. Further empirical illustrations show the usefulness

of our second Bayesian identification indicator, both for checking for the presence and the strength

of identification.
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Appendix

Proof of Proposition 1

The posterior density of θ, evaluated at θ0, can be written as

p(θ0 |y ) = exp { ln [p(θ0)] +`T (θ0)− ln (p(y))}. (44)

Under Assumption 3, the prior density is given by (24). To obtain `T (α(θ0)) = `T (θ0), we first

note that under Assumption 2 using standard results from
√
T -consistent ML estimators, we have

(noting that ∂`T (α̂T )/∂αs = 0)

`T (α0) = `T (α̂T )+
1

2

k∑
s=1

k∑
r=1

∂2`T (α̂T )

∂αr∂αs
(α0r−α̂rT )(α0s−α̂sT ) +Op(T

−1/2). (45)

Further, under Assumption 1 and by the mean value theorem for all pairs θa and θb ∈ Θ0 we have

(see, for example, Jennrich (1969, lemma 3), and Davidson (1994, p. 340))

αs(θ
a)− αs(θ

b) =
p∑
i=1

∂αs(θ̊)

∂θi
(θai−θ

b
i), (46)
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where θ̊ ∈ Θ0 is a point on the line segment joining θa and θb. Note that Jennrich formulation

of the mean value theorem allows θa or θb to depend on y, as will be required in our application.

Although θ is not identified, there exists θ̂T such that α̂T = α(θ̂T ). Using the mean value theorem

in (46) for θ̂T and θ0 ∈ Θ0, we have

αs(θ0)− αs(θ̂T ) =
p∑
i=1

∂αs(θ̊)

∂θi
(θ0i−θ̂iT ),

where θ̊ is on the line segment joining θ̂T and θ0. Using this result in (45) we have (recalling that

α0 = α(θ0))

`T (θ0) = `T (θ̂T )+
1

2

k∑
s=1

k∑
r=1

p∑
i=1

p∑
j=1

∂2`T (α̂T )

∂αr∂αs

∂αs(θ̊)

∂θi

∂αr(θ̊)

∂θj
(θ0i−θ̂iT )(θ0j−θ̂jT ) +Op(T

−1/2).

Written more compactly we have

`T (θ0) = `T (θ̂T )− T

2
(θ0 − θ̂T )′S̊T (θ0 − θ̂T ) +Op(T

−1/2),

where S̊T = R̊′QT R̊ and R̊ = R(θ̊), for all θ0 and θ̊ ∈ Θ0. Using this result and (24) in (44) we

have

p(θ0 |y ) ∝ exp{−1

2
(θ0 − θ)

′
H
¯

(θ0 − θ)−
T

2
(θ0 − θ̂T )′S̊T (θ0 − θ̂T ) +Op(T

−1/2)}, (47)

which establishes the desired result.

Proof of Proposition 2

Note that ST = R′TQTRT = R′TU
′
TUTRT = P ′TPT , where PT = UTRT , and consider the

following partitioned form of ST :

ST =

(
P ′11,TP11,T + P ′21,TP21,T P ′11,TP12,T + P ′21,TP22,T

P ′12,TP11,T + P ′22,TP21,T P ′12,TP12,T + P ′22,TP22,T

)
.

Then using (28) we have

H̄11,T= TP ′11,TP11,T+TP ′21,TP21,T+H
¯ 11−

(
TP ′11,TP12,T + TP ′21,TP22,T +H

¯ 12

)
×(

TP ′12,TP12,T+TP ′22,TP22,T+H
¯ 22

)−1 (
TP ′12,TP11,T+TP ′22,TP21,T+H

¯ 21

)
,
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and under weak identification we obtain

H̄11,T = TP ′21,TP21,T+G11,T−
(
TP ′21,TP22,T +G12,T

)
×(

P ′22,TP22,T+T−1G22,T

)−1 (
P ′22,TP21,T+T−1G21,T

)
(48)

where

G11,T= D′11,TD11,T+H
¯ 11, G12,T= D′11,TD12,T+H

¯ 12, (49)

G21,T= D′12,TD11,T+H
¯ 21, G22,T= D′12,TD12,T+H

¯ 22. (50)

Note that matrices Gij,T , for i, j = 1, 2, and P22,T are all bounded in T . Then

(
P ′22,TP22,T+T−1G22,T

)−1
=
[
P ′22,T

(
Ip2+T

−1P ′−1
22,TG22,TP

−1
22,T

)
P22,T

]−1

= P−1
22,T

(
Ip2+T

−1P ′−1
22,TG22,TP

−1
22,T

)−1
P ′−1

22,T

= P−1
22,T

[
Ip2−T−1P ′−1

22,TG22,TP
−1
22,T+O

(
T−2

)]
P ′−1

22,T

= A22,T−T−1A22.TG22,TA22,T+O
(
T−2

)
where A22,T =

(
P ′22,TP22,T

)−1
. Using this result in (48) we have

H̄11,T= TP ′21,TP21,T+G11,T −
(
TP ′21,TP22,T+G12,T

)
×[

A22,T−T−1A22,TG22,TA22,T+O
(
T−2

)] (
P ′22,TP21,T+T−1G21,T

)
.

However, sinceP22,T is a square full rank matrix, then P22,T

(
P ′22,TP22,T

)−1
P ′22,T = Ip2 , and the

terms of order T cancel out and we are left with

H̄11,T= G11,T−P ′21,TP
′−1
22,TG21,T−G12,TP

−1
22,TP21,T+P ′21,TP

′−1
22,TG22,TP

−1
22,TP21,T+O(T−1).

Substituting for Gij,T from (49) and (50), and after some algebra we obtain (34).
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