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Abstract

In this paper we provide a characterization of the degree of cross-sectional dependence in

a two dimensional array, {xit,i = 1, 2, ...N ; t = 1, 2, ..., T} in terms of the rate at which the
variance of the cross-sectional average of the observed data varies with N . We show that

under certain conditions this is equivalent to the rate at which the largest eigenvalue of the

covariance matrix of xt = (x1t, x2t, ..., xNt)
′ rises with N . We represent the degree of cross-

sectional dependence by α, defined by the standard deviation, Std(x̄t) = O
(
Nα−1), where

x̄t is a simple cross-sectional average of xit. We refer to α as the ‘exponent of cross-sectional

dependence’, and show how it can be consistently estimated for values of α > 1/2. We

propose bias corrected estimators, derive their asymptotic properties and consider a number

of extensions. We include a detailed Monte Carlo study supporting the theoretical results.

We also provide a number of empirical applications investigating the degree of inter-linkages

of real and financial variables in the global economy, the extent to which macroeconomic

variables are interconnected across and within countries.

Keywords: Cross correlations, Cross-sectional dependence, Cross-sectional averages,
Weak and strong factor models

JEL Codes: C21, C32

1 Introduction

Over the past decade there has been a resurgence of interest in the analysis of cross-sectional

dependence applied to households, firms, markets, regional and national economies. Researchers

in many fields have turned to network theory, spatial and factor models to obtain a better

understanding of the extent and nature of such cross dependencies. There are many issues to

∗We are grateful to Jean-Marie Dufour and Oliver Linton for helpful comments and discussions. Natalia Bailey
and Hashem Pesaran acknowledge financial support under ESRC Grant ES/I031626/1.
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be considered: how to test for the presence of cross-sectional dependence, how to measure the

degree of cross-sectional dependence, how to model cross-sectional dependence, and how to carry

out counterfactual exercises under alternative network formations or market inter-connections.

Many of these topics are the subject of ongoing research. In this paper we focus on measures of

cross-sectional dependence and how such measures are related to the behaviour of cross-sectional

averages or aggregates.

The literature on cross-sectional dependence distinguishes between strong and weak forms

of dependence, with the former typically associated with factor models and the latter with

the spatial models. In finance, the approximate factor model of Chamberlain (1983) provides

a popular characterization of cross-sectional dependence of asset returns in terms of a factor

dependence and a remainder term. The factors are intended to capture the pervasive market

effects, whilst the remainder term is assumed to be only weakly cross-sectionally correlated (Ross

(1976), Ross (1977)). Strong and weak cross-sectional dependence are defined in terms of the

rate at which the largest eigenvalue of the covariance matrix of the cross section units rises with

the number of the cross section units. See, for example, Chudik et al. (2011).

Let xit denote a double array of random variables indexed by i = 1, 2, ..., N and t = 1, 2, ..., T,

over space and time, respectively, and without loss of generality assume that E(xit) = 0. Then

the covariance matrix of xt = (x1t, x2t, ..., xNt)
′ is given by ΣN = E (xtx

′
t) = (σij,x) with

its largest eigenvalue denoted by λmax (ΣN ). The variables xit are said to be strongly cross-

sectionally correlated if λmax (ΣN ) rises with N , and they are said to be weakly cross-sectionally

correlated if λmax (ΣN ) is bounded in N . This is clearly an important distinction and forms the

basis of most factor models considered in finance and macroeconometric literature - Forni et al.

(2000), Forni and Lippi (2001), Bai and Ng (2002) and Bai (2003). However, since both the fac-

tors and their loadings are unobserved it is desirable to consider statistical techniques that test

the strong/weak factor assumption. A test of weak cross-sectional dependence is recently pro-

posed by Pesaran (2013), but a more general framework is needed to address intermediate cases

between weak and strong forms of dependence. Such intermediate cases can be parameterized

in terms of the exponent α, such that N−αλmax (ΣN ) = O(1), and

lim
N→∞

N−αλmax (ΣN ) > 0. (1)

The weak and strong dependence cases then relate to α = 0 and α = 1, respectively.

λmax (ΣN ) and its limiting properties have been the object of considerable interest in the

statistical literature on large data sets. However, former work in the area (see, e.g., Yin et al.

(1988), Bai and Silverstein (1998), Hachem et al. (2005a) and Hachem et al. (2005b)) and more

recent contributions that allow unequal eigenvalues in the design of the population covariance

matrix (see, e.g., Fan et al. (2013) and Shen et al. (2013)) suggest that as a statistical measure of

cross-sectional dependence λmax (ΣN ) could be diffi cult to analyse, especially for temporally and
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cross-sectionally dependent data as the theoretical asymptotic properties of sample estimators

of λmax (ΣN ) depend crucially on the form of the dependence. In particular, we note that this

work predominantly uses i.i.d. and gaussianity assumptions in its approach.

In this paper we consider a simpler alternative measure based on cross sectional averages

defined by x̄t = N−1
∑N

i=1 xit. The limiting behaviour of x̄t is of interest in its own right and

provides information on the nature and degree of cross-sectional dependence. In the case of

asset returns this determines the extent to which risk, associated with investing in particular

portfolios of assets, is diversifiable. In the case of firm sales this is of interest in relation to the

effect of idiosyncratic, firm level, shocks onto aggregate macroeconomic variables such as GDP.

In the case where xit are cross-sectionally independent, using standard law of large numbers,

one obtains the result that V ar (x̄t) = O
(
N−1

)
. However, in the more general and realistic

case where xit are cross-sectionally correlated, we have that V ar (x̄t) declines at a rate that is a

function of α where α is defined in (1). We note that V ar (x̄t) cannot decline at a rate faster than

N−1. It is also easily seen that V ar (x̄t) cannot decline at a rate slower than Nα−1, 0 ≤ α ≤ 1.

To see this we explore the link between λmax (ΣN ) and V ar (x̄t). Note that x̄t = N−1ι′xt, where

ι is an N × 1 vector of ones. Then, we have

V ar (x̄t) = N−2ι′ΣN ι ≤ N−2ι′ι λmax (ΣN ) = N−1λmax (ΣN ) .

Therefore, α defined by N−1λmax (ΣN ) = O(Nα−1) provides an upper rate for V ar (x̄t).

It is interesting to note that the above measures of cross-sectional dependence are also related

to the degree of pervasiveness of factors in unobserved factor models often used in the literature

to model cross-sectional dependence.1 As an illustration consider the simple factor model

xit = ai + βi1f1t + uit for i = 1, 2, ..., N ; t = 1, 2, ..., T, (2)

where xit depends on a single unobserved factor f1t, with the associated factor loadings, βi1, and

cross-sectionally independent idiosyncratic errors, uit. The extent of cross-sectional dependence

in xit crucially depends on the nature of the factor loadings. It is easily seen that λmax (ΣN ) =

O
(∑N

i=1 β
2
i1

)
, the column sum norm2 of ΣN , defined by ‖ΣN‖1 = supj

∑N
i=1 |σij,x| , is of order

O
((

supj |βj1|
)∑N

i=1 |βi1|
)
and V ar (x̄t) = O

{
max

[(
N−1

∑N
i=1 βi1

)2
, N−1

]}
. The degree of

cross-sectional dependence will be strong if the average value of βi1 is bounded away from zero.

In such a case, N−1λmax (ΣN ) , ‖ΣN‖1 and V ar (x̄t) are all O(1), which yields α = 1.

However, other configurations of factor loadings can also be entertained, that yield values

1Factor models have a long pedigree both as a conceptual device for summarising multivariate data sets as
well as an empirical framework with sound theoretical underpinnings both in finance and economics. Recent
econometric research on factor models include Bai and Ng (2002), Bai (2003), Forni et al. (2000), Forni and Lippi
(2001), Pesaran (2006) and Stock and Watson (2002).

2We introduce the column sum norm of ΣN as it is a commonly used measure of cross-sectional dependence
alongside λmax (ΣN ) .
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of α in the range (0, 1]. Since both f1t and βi1 are unobserved, taking a strong stand on

a particular value of α might not be justified empirically. Accordingly, Chudik et al. (2011),

Kapetanios and Marcellino (2010) and Onatski (2012) have considered an extension of the above

factor model which allows the factor loadings, βi1, to vary with N . In particular, by considering

βi1 = O(N (α−1)/2), for any 0 < α < 1. This specification implies N−1λmax (ΣN ) = O
(
Nα−1

)
,

N−1 ‖ΣN‖1 = O
(
Nα−1

)
, as long asmaxi βi1 = op

(
Nd
)
, for all d > 0 and V ar (x̄t) = O

(
Nα−1

)
.3

Although mathematically convenient, the assumption that all factor loadings vary with N

(almost uniformly) is rather restrictive in many economic applications. Therefore, we will not

consider it in detail, but only briefly as an alternative formulation. In this paper we consider a

baseline formulation where we assume that only Nα of the N factor loadings are individually

important, in the sense that they are bounded away from zero. More specifically, we consider

βi1 = vi1, for i = 1, 2, ..., [Nα], and βi1 = ṽi1, for i = [Nα] + 1, [Nα] + 2, ..., N , where [Nα] is the

integer part of Nα, 0 < α ≤ 1, vi1 ∼ iid(µv1 , σ
2
v1

), µv1 6= 0, σ2
v1
> 0 and

∑N
i=[Nα]+1 ṽi1 = Op (1).

In effect, the factor loadings are grouped into two categories: a strong category with effects

that have non-zero mean, and a weak category with negligible effects with a mean that tends

to zero with N . Under this setup, N−1λmax (ΣN ) = O
(
Nα−1

)
, N−1 ‖ΣN‖1 = O

(
Nα−1

)
, as

long as maxi βi1 = op
(
Nd
)
, for all d > 0, V ar (x̄t) = O

(
N2α−2

)
and the standard deviation

of x̄t, denoted by Std (x̄t) is O
[
max

(
Nα−1, N−1/2

)]
. At least N1/2 of the loadings must have

non-zero mean for the covariances in ΣN to dominate the diagonal of ΣN and result in a rate

of decline for Std(x̄t) that is O
(
Nα−1

)
. If fewer than N1/2 of the loadings have non-zero mean,

then Std(x̄t) = O
(
N−1/2

)
. The presence of at least N1/2 loadings with non-zero mean implies

that α > 1/2. In that case, and as long as µv1 6= 0, N−1λmax (ΣN ), N−1 ‖ΣN‖1 and Std (x̄t)

decline at the same rate. As a result in the context of the factor model in (2), α has a unique role

as a measure of cross-sectional dependence. It is important to note that if µv =
∑m

k=1 µvk = 0,

where m is the number of factors, then Std (x̄t) = O
(
N−1/2

)
for all α including the case α = 1.

The implication is that even a strong factor model allows full portfolio diversification at the

same rate as if no factors were present. Seen from this perspective, the case where µv = 0 does

not seem very plausible, at least in the case of macro and financial data sets.

As we shall see, since we are interested in the behaviour of cross-sectional averages, our

proposed estimator of α will be invariant to the ordering of the factor loadings within each

group. The only important consideration is that there exists a split between loadings with non-

zero mean and loadings that are cumulatively of a small order. The split need not be known.

Following the theoretical line of reasoning advanced above, in this paper we propose the use

of the variance of the cross-sectional average of the observed data, x̄t, to estimate and carry out

inference on α. We provide a feasible estimator for α under a multiple factor setting and derive

inferential theory for it. We derive the asymptotic distribution of our estimator for a given value

3A different strand of literature that deals with weaker forms of cross-sectional dependence includes spatial
econometric models. These correspond to the case of α = 0.
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of µ2
v. Further, we present our preferred estimator that additionally takes into account the term

µ2
v together with its asymptotic properties. We consider extensions that relate to the presence

of temporal dependence in f t = (f1t, ..., fmt)
′ or uit, and weak cross-sectional dependence in uit.

It is also worth pointing out that our estimators of α do not use explicitly a factor structure.

The factor representation is only needed as a vehicle to derive the theoretical properties of the

estimator and to give α a unique interpretation as a measure of cross-sectional dependence. We

use this vehicle because working with covariances directly would involve high level assumptions

and would potentially lead to stricter conditions such as the need for T to rise faster than N . A

further crucial reason for using the factor model is that, as proven in Theorem 4 of Chamberlain

and Rothschild (1983), a covariance matrix that has a finite number of eigenvalues that tend

to infinity as N increases, has a unique factor representation. This makes the factor model a

canonical model for analysing cross-sectional dependence associated with covariance matrices

with a finite number of exploding eigenvalues.

To illustrate the properties of the proposed estimators of α and their asymptotic distribu-

tions, we carry out a detailed Monte Carlo study that considers a battery of robustness checks.

Finally, we provide a number of empirical applications investigating the degree of inter-linkages

in real and financial variables in the global economy, the extent to which macroeconomic vari-

ables are interconnected across and within countries, with special reference to the US and UK

economies in the second case.

The rest of the paper is organised as follows: Section 2 provides a formal characterisation

of α in the context of a single factor model, and discusses potential estimation strategies. This

section also presents the rudiments of the analysis of the variance of the cross-sectional average

and motivates the baseline estimator and bias corrected versions of it. Section 3 presents the

theoretical results of the paper. Section 3.1 provides the full inferential theory under a multiple

factor set up. Section 3.2 deals with possible cross sectional dependence in the error terms and

touches upon an alternative specification of factor loadings. Section 4 presents a detailed Monte

Carlo study. The empirical applications are discussed in Section 5. Finally, Section 6 concludes.

Proofs of all theoretical results are relegated to Appendices.

Notations: ‖A‖ = [Tr(AA′)]1/2 is the Frobenius norm of the m×n matrix A. supiWi is the

supremum ofWi over i. an = O(bn) states the deterministic sequence {an} is at most of order bn,
xn = Op(yn) states the vector of random variables, xn, is at most of order yn in probability, and

xn = op(yn) is of smaller order in probability than yn, →p denotes convergence in probability,

and→d convergence in distribution. All asymptotics are carried out under N →∞, jointly with
T →∞.
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2 Preliminaries and Motivations

In this Section we provide an informal account of the concept of the exponent of cross-sectional

dependence and our proposed estimator of it. We consider the single factor model given by

(2) as it allows a simpler exposition. Our formal theoretical analysis, provided in Section 3, is

couched in terms of a multiple factor model and is therefore appropriately general. We specify

the loadings as follows

βi1 = vi1 for i = 1, 2, ..., [Nα] , (3)

βi1 = ṽi1, for i = [Nα] + 1, [Nα] + 2, ..., N ,

where 1/2 < α ≤ 1, [Nα] is the integer part of Nα, and {vi1}[N
α]

i=1 is an identically, independently

distributed (IID) sequence of random variables with mean µv1 6= 0 and variance σ2
v1
<∞. Also,∑N

i=[Nα]+1 ṽi1 = Op (1). Throughout our analysis and without loss of generality, we assume that

factors have unit variance, and, in the case of multiple factors, are uncorrelated with each other.

We introduce the subscript 1 for βi1, vi1, µv1 and σ
2
v1
, in anticipation of our multiple factor

analysis in the next section.

In effect, the factor loadings are grouped into two categories: a strong category with effects

that have non-zero mean, and a weak category with negligible effects and a mean that tends

to zero with N . Under this setup, N−1λmax (ΣN ) = O
(
Nα−1

)
, N−1 ‖ΣN‖1 = O

(
Nα−1

)
, as

long as maxi βi1 = op
(
Nd
)
, for all d > 0, V ar (x̄t) = O

(
N2α−2

)
and the standard deviation

of x̄t, denoted by Std (x̄t) is O
[
max

(
Nα−1, N−1/2

)]
. At least N1/2 of the loadings must have

non-zero mean for the covariances in ΣN to dominate the diagonal of ΣN and result in a rate

of decline for Std(x̄t) that is O
(
Nα−1

)
. If fewer than N1/2 of the loadings have non-zero

mean, then Std(x̄t) = O
(
N−1/2

)
. The presence of at least N1/2 loadings with non-zero mean

implies that α > 1/2. In that case, and as long as µv1 6= 0, N−1λmax (ΣN ), N−1 ‖ΣN‖1 and
Std (x̄t) decline at the same rate. As a result, in the context of the factor model in (2), α has

a unique role as a measure of cross-sectional dependence. The above loading setup implies that

N−1
∑N

i=1 β
2
i1 = Op

(
Nα−1

)
, which is more general than the standard assumption in the factor

literature that requires N−1
∑N

i=1 β
2
i1 to have a strictly positive limit (see, e.g., Assumption B of

Bai and Ng (2002)). The standard assumption is satisfied only if α = 1. It is important to note

that if µv1 = 0, then Std (x̄t) = O
(
N−1/2

)
for all α including the case α = 1. The implication

is that even a strong factor model allows full portfolio diversification at the same rate as if no

factors were present. Seen from this perspective, the case where µv1 = 0 does not seem very

plausible, at least in the case of macro and financial data sets.

To motivate our choice of α as the exponent of cross-sectional dependence of xit, we write

(2) as
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xt = a + β f1t + ut, (4)

where xt = (x1t, x2t, ..., xNt)
′, a = (a1, a2, ..., aN )′, β = (β11, β21, ..., βN1)′ and ut = (u1t, u2t, ..., uNt)

′.

We also note that under the above assumptions, Σβ = E(ββ′)− E(β)E(β′), with λmax(Σβ) <

K < ∞, Σu = E(utu
′
t), with λmax(Σu) < K < ∞, µf1 = E(f1t) = 0, σ2

f1
= E(f1t − µf1)2 = 1,

and f1t and β are distributed independently. Hence,

Cov(xt) =
[
Σβ + E(β)E(β′)

]
+ Σu.

Consider now the cross-sectional averages of the observables defined by x̄t = ι′xt/N , where

ι is an N × 1 vector of ones. Then,

V ar(x̄t) = N−2ι′Cov(xt)ι = N−2ι′ [Σβ + Σu] ι+

[
ι′E(β)

N

]2

. (5)

But under (3), it follows that

N∑
i=1

βi1 = [Nα]

 1

[Nα]

[Nα]∑
i=1

vi1

 = [Nα] v̄1N ,

where v̄1N = 1
[Nα]

∑[Nα]
i=1 vi1 is Op (1) and 1

N−[Nα]

∑N
i=[Nα]+1 βi1 → 0, for i > [Nα]. Recall that

any sequence of loadings, for which
∑N

i=[Nα]+1 βi1 = Op (1) is permitted. Hence,

N−1ι′E(β) = µv1

[
Nα−1

]
.

Also,

N−2ι′Σβι =N−2ι′1Σβ(1)ι1 ≤
[
Nα−2

]
λmax (Σβ) ,

where ι′1 is an [Nα] × 1 vector of ones and Σβ(1) is the upper [Nα] × [Nα] sub-matrix of Σβ.

Using the above results in (5) we now have

V ar(x̄t) ≤
[
Nα−2

]
λmax (Σβ) +N−1cN + µ2

v

[
N2α−2

]
, (6)

where

cN =
ι′Σuι

N
< K <∞. (7)

Note that µ2
v enters (6), rather than µ

2
v1
. In the case of a single factor µ2

v =: µ2
v1
. However, for

multiple factors µ2
v will be defined in terms of the means of the loadings of all the factors in a

way that will be discussed in detail in the next Section. By assumption λmax (Σβ) < K < ∞,
and hence under 1 ≥ α > 1/2, we have

σ2
x̄ = V ar(x̄t) = µ2

v

[
N2α−2

]
+N−1cN +O(Nα−2). (8)

7



As pointed out earlier, in cases where α ≤ 1/2, the second term in the RHS of (8), that arises

from the contribution of the idiosyncratic components, will be at least as important as the

contribution of a weak factor, and using V ar(x̄t) we cannot identify α when it is less than 1/2.

But in cases where α > 1/2 a simple manipulation of (8) yields

2(α− 1) ln(N) ≈ ln(σ2
x̄)− ln

(
µ2
v

)
+ ln

(
1− N−1cN

σ2
x̄

)
≈ ln(σ2

x̄)− ln
(
µ2
v

)
− N−1cN

σ2
x̄

,

or

α ≈ 1 +
1

2

ln(σ2
x̄)

ln(N)
− 1

2

ln
(
µ2
v

)
ln(N)

− cN
2 [N ln(N)]σ2

x̄

. (9)

Note that the fourth term on the RHS of (9) is of smaller order of magnitude than the previous

three terms and can be ignored, and α can be identified from (9) using a consistent estimator

of σ2
x̄, given by

σ̂2
x̄ =

1

T

T∑
t=1

(x̄t − x̄)2 , (10)

where x̄ = T−1
∑T

t=1 x̄t. Ignoring terms that eventually vanish as N → ∞, we obtain the
following initial estimator of α

α̂ = 1 +
1

2

ln(σ̂2
x̄)

ln(N)
, (11)

which is consistent and has a rate of convergence that is ln(N)−1. It is important that the

estimator of α also allows for the third term in (9). This can be achieved by replacing µ2
v with a

suitable estimator. There are many alternatives for this estimation which are discussed in detail

in the next section. We denote the estimator of µ2
v by µ̂

2
v.

Next, we discuss correcting the bias arising from the final term in (9). This is easily achieved

in the case of exact factor models where the idiosyncratic errors are cross-sectionally independent,

and Σu is a diagonal matrix. In this case a consistent estimator of cN is given by

ĉN = N−1
N∑
i=1

σ̂2
i = ̂̄σ2

N , (12)

where σ2
i is the i

th diagonal term of Σu, σ̂2
i = 1

T

∑T
t=1 û

2
it, ûit = xit− δ̂ix̄t, and δ̂i denotes the OLS

estimator of the regression coeffi cient of xit on x̄t. It is also useful, at this point, to introduce the

notation σ̄2
N = N−1

∑N
i=1 σ

2
i to denote the population quantity corresponding to

̂̄σ2
N . Note that

if Σu is diagonal, cN = σ̄2
N . Further, note that while ĉN , as an estimator for cN , is motivated by

appealing to an exact factor model, mild deviations from this model can be dealt with by using

an alternative estimator for cN , as discussed in Section 3.2. Using consistent estimators of σ2
x̄,
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µ2
v, and cN , we propose the following bias-adjusted estimator

α̊ = α̊
(
µ̂2
v

)
= 1 +

1

2

ln(σ̂2
x̄)

ln(N)
−

ln
(
µ̂2
v

)
2 ln (N)

− ĉN
2 [N ln(N)] σ̂2

x̄

. (13)

3 Theoretical Derivations

3.1 Main Results

Consider now the following multiple factor generalisation of our basic setup:

xit =

m∑
j=1

βijfjt + uit = β′i f t + uit, i = 1, 2, ..., N,

where f t = (f1t, f2t, ..., fmt)
′ is an m × 1 vector of unobserved factors, and βi is the associ-

ated vector of factor loadings (m is fixed). Our first set of theoretical results characterise the

asymptotic behaviour of α̂. We make the following assumptions.

Assumption 1 The factor loadings are given by

βij = vij for i = 1, 2, ..., [Nαj ] , (14)

βij = ṽij, for i = [Nαj ] + 1, [Nαj ] + 2, ..., N ,

where α1 > 1/2, 0 ≤ αj ≤ 1 and α1 ≥ αj, j = 2, ...,m. Also, {vij}
[Nαj ]
i=1 and {ṽij}Ni=[Nαj ]+1

are

IID sequences of random variables for all j = 1, 2, ...,m. The former sequences have a non-zero

mean, µvj 6= 0, and a finite variance σ2
vj < ∞. The latter sequences are summable such that

κj =
∑N

i=[Nαj ]+1
ṽij = Op(1) has a finite mean, µκj , and a finite variance, σ

2
κj , for all j and N .

Assumption 2 The m× 1 vector of factors, f t, follows a linear stationary process given by

f t =
∞∑
j=0

ψfjνf,t−j, (15)

where νft is a sequence of IID random variables with mean zero and a finite variance matrix,

Σνf , and uniformly finite ϕ-th moments for some ϕ > 4. The matrix coeffi cients, ψfj, satisfy

the absolute summability condition

∞∑
j=0

jζ
∥∥ψfj∥∥ <∞,

such that {ζ(ϕ − 2)}/{2(ϕ − 1)} ≥ 1/2. f t is distributed independently of the idiosyncratic

errors, uit′ , for all i, t and t′.
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Assumption 3 For each i, uit follows a linear stationary process given by

uit =
∞∑
j=0

ψijνi,t−j, (16)

where νit, i = ...,−1, 0, ..., t = 0, ..., is a double sequence of IID random variables with mean

zero and uniformly finite variances, σ2
νi and uniformly finite ϕ-th moments for some ϕ > 4. We

assume that

sup
i

∞∑
j=0

jζ |ψij | <∞, (17)

such that {ζ(ϕ− 2)}/{2(ϕ− 1)} ≥ 1/2.

Assumptions 2 and 3 are mostly straightforward specifications of the factor and error processes

assuming a linear structure with suffi cient restrictions to enable the use of central limit theorems.

Note that Assumption 3 rules out the existence cross-sectional dependence in the error terms.

This condition will be relaxed in Section 3.2.

First, note that

β̄jN = N−1
N∑
i=1

βij =
[Nαj ]

N

∑[Nαj ]
i=1 vij
[Nαj ]

+

∑N
i=[Nαj ]+1

ṽij

N
= Nαj−1v̄jN +Op(N

−1) (18)

and

V ar(β̄jN ) =
[Nαj ]

N2
σ2
vj+O(N−2) = O(Naj−2).

Consider now x̄t − E(x̄t) = β̄1Nf1t + β̄2Nf2t + ...β̄mNfmt + ūt, and, without loss of generality,

recall that α =: α1 ≥ αj , j = 2, ...,m, and that the factors are orthogonal. Then,

V ar(x̄t) =
m∑
j=1

E(β̄2
jN ) + E(ū2

t )

=
m∑
j=1

[
E(β̄jN )

]2
+

m∑
j=1

V ar(β̄jN ) + E(ū2
t ),

and, as in the single factor case, we have V ar(x̄t) = O(N2a−2) + O(N−1), namely the order

of V ar(x̄t) is dominated by the factor with the largest exponent of cross-sectional dependence,

assuming that α > 1/2. We also note that

β̄N = Nα−1DN v̄N +Op(N
−1), (19)

where β̄N =
(
β̄1N , ..., β̄mN

)′
, v̄N = (v̄1N , ..., v̄mN )′, and DN is an m×m diagonal matrix with

diagonal elements given by Nαj−α, and set

dT = v̄′NS
−1/2
ff f̄T − µ′vΣ

−1/2
ff µf , (20)
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where Sff = (sjo,f ) = 1
T

∑T
t=1

(
f t − f̄T

) (
f t − f̄T

)′, j, o = 1, ...,m, f̄T = T−1
∑T

t=1 f t, Σff =

diag
(
σ2
fj

)
= I, µf = E (f t) = (µf1 , ..., µfm)′, and µv = (E (vj)) = (µv1 , ..., µvm)′, vj =(

v1j , ..., v[Nαj ]j

)′
. Further, define µ2

v =
∑m

j=1 µ
2
vj . Our informal exposition in Section 2 suggests

that α̂, as an estimator of α, is subject to two sources of bias,
ln(µ2

v)
2 ln(N) and

cN
N2α−1v̄′NDNSffDN v̄N

,

where the latter bias corresponds to the last part of (13) in the multiple factor case. This can be

corrected using a first order accurate estimator given by ĉN
Nσ̂2

x̄
or a second order bias correction

given by ĉN
ln(N)Nσ̂2

x̄

(
1 + ĉN

Nσ̂2
x̄

)
, where ĉN is defined in (12). We denote the estimators that make

use of these corrections by

α̃ = α̂− ĉN
2 ln(N)Nσ̂2

x̄

and

α̌ = α̂− ĉN
2 ln(N)Nσ̂2

x̄

(
1 +

ĉN
Nσ̂2

x̄

)
We now introduce the main theorem of the paper.

Theorem 1 (a) Suppose Assumptions 1 to 3 hold, α = α1 = α2 = ... = αm > 1/2. Then,

√
min(Nα∗ , T )

(
2 ln(N) (α̂− α∗)− cN

N2α−1v̄′NDNSffDN v̄N

)
→d N (0, ωm) (21)

where

ωm = lim
N,T→∞

min (Nα, T )V ar(d2
T ),

dT is defined by (20),

α∗ ≡ α∗N = α+
ln
(
µ2
v

)
2 ln (N)

,

and µ2
v =

∑m
j=1 µ

2
vj .

(b) Continue to assume that α = α1 = α2 = ... = αm > 1/2, and suppose that either
T 1/2

N4α−2 → 0 or α > 4/7, then

√
min(Nα∗ , T )2 ln(N) (α̃− α∗)→d N (0, ωm) , (22)

and √
min(Nα∗ , T )2 ln(N) (α̌− α∗)→d N (0, ωm) . (23)

(c) Further, if either

α = α1 > α2 + 1/4, (24)

or if

α2 < 3α/4, T b = N, b >
1

4(α− α2)
, (25)

11



and α2 ≥ α3 ≥ ... ≥ αm ≥ 0, (21), (22) and (23) hold with ω replacing ωm, where

ω = lim
N,T→∞

[
min(Nα, T )

T
V
f2
1

+
min(Nα, T )

Nα

4σ2
v1

µ2
v1

]
, (26)

V
f2
1

= V ar
(
f̃2

1t

)
+ 2

∞∑
i=1

Cov
(
f̃2

1t, f̃
2
1t−i

)
,

and f̃1t = (f1t − µf1)/σf1, but α
∗ is now defined by

α∗ ≡ α∗N = α+
ln
(
µ2
v1

)
2 ln (N)

. (27)

(d) Finally, if α = α1 > α2 ≥ α3... ≥ αm ≥ 0 but neither (24) or (25) hold, then (21), (22)

and (23) hold with ω replacing ωm, and

α∗ ≡ α∗N = α+
ln
(∑m

j=1N
2(αj−α)µ2

vj

)
2 ln (N)

.

The above result gives a full distribution theory but it is not operational in practice since

µ2
v is not known. So next, we consider the third term of (9) which depends on µ2

v. While

noting that the value of µ2
v is irrelevant for the probability limit of α̂, in small samples it is an

important determinant of cross-sectional dependence. Hence, correcting for this bias provides

us with a refined estimator of α that is likely to have better small sample properties. The

first step towards deriving an estimator for µ2
v is to note that µv is the mean of the population

regression coeffi cient of xit on x̃t = x̄t/σ̂x̄ for units xit that have at least one non-zero factor

loading. Therefore, once we identify which units have non-zero loadings, an estimate of µv can

be obtained by the average covariance between xit and x̃t over i = 1, 2, ...,
[
N α̂
]
. While there are

many ways to identify which units have non-zero loadings, a multiple testing approach to this

problem seems appropriate, considering that we are interested in µv as N →∞. This estimate is
equivalent to the one given by the standard deviation of the cross-sectional average of the units

that have non-zero loadings. We prefer the latter estimator, due to its simplicity, and propose

the following procedure:

1. Run the OLS regression of xit on a constant and x̄t and denote the estimated coeffi cient

of x̄t by δ̂i, for i = 1, 2, ..., N.

2. Compute the t-ratio associated with the ith coeffi cient, δ̂i, i = 1, 2, ..., N , as zδ̂i = δ̂i/s.e.
(
δ̂i

)
.

3. Construct

x̄t(cp) =

∑N
i=1 xitI

(∣∣∣zδ̂i∣∣∣ ≥ cpi,N)∑N
i=1 I

(∣∣∣zδ̂i∣∣∣ ≥ cpi,N) ,

12



where cpi,N is the critical value of the i-th test that depends on N as well as the overall

nominal size of the test, which we denote by p, and cp = (cp1,N , cp2,N , ..., cpN ,N )′.

4. Estimate µv by

µ̂v = µ̂v (cp) =

√√√√ 1

T

T∑
t=1

[x̄t(cp)− x̄(cp)]
2,

where x̄(cp) = T−1
∑T

t=1 x̄t(cp).

The critical values, cpi,N , can be set using the multiple testing approaches of Bonferroni

(Bonferroni (1935), Bonferroni (1936)) or Holm (Holm (1979)). Both approaches deal with the

multiple testing problem without making any assumptions about the cross dependence of the

underlying N individual t tests.4 But Holm’s approach is less conservative and uses different

critical values across the units. To be more specific let ti =
∣∣∣zδ̂i∣∣∣ , for i = 1, 2, ..., N , and

sort these t-ratios in a descending order, such that t(1) > t(2) > .... > t(N), with associated

critical values, cp(i),N . Suppose also that under the null hypothesis βi1 = 0, zδ̂i is asymptotically

distributed as N(0, 1), with the cumulative distribution function Φ(.). Then under Bonferroni’s

approach cp(i),N = Φ−1
(
1− p

2N

)
which is the same for all units, whilst under Holm’s approach

cp(i),N = Φ−1
(

1− p
2(N−i)

)
corresponding to t(i).

Note that in this paper we focus more on the case when α = α1 > α2 ≥ ... ≥ αm which

we consider to be more realistic than the case of α = αj , j = 1, ...,m. In the supplementary

Appendix V we consider the conditions under which µ̂2
v can be a consistent estimator of the

population quantity of µ2
v1
. In particular, it is shown that µ̂2

v, computed using Bonferroni or

Holm procedures, is a consistent estimator of µ2
v1
if α > 2/3 and α = α1 > α2 ≥ ... ≥ αm.

The supplement also provides more general conditions on the choice of cpi,N , and shows that

the critical values used in Bonferroni and Holm approaches satisfy these conditions (see (B42)

and (B43) in the Supplementary Appendix V). In the simulation section we study a two factor

setting where α = α1 > α2 and use both Bonferroni and Holm procedures. We find that Holm’s

method performs better uniformly across all experiments. Therefore, all the results reported are

based on the Holm approach for α = α1 > α2. Monte Carlo results for α = αj , j = 1, ...,m are

available in the Supplementary Appendix VI.

3.2 Extensions

In this section we consider two extensions to our main analysis. For simplicity of the treatment

we discuss these in the context of a single factor model but the extension to multiple factors is

straightforward. First, we relax Assumption 3 and allow the error terms to be cross-sectionally

weakly dependent. Accordingly, we modify Assumption 3 as follows:

4For a recent review of this literature see Efron (2010).

13



Assumption 4 For each i, uit follows a linear stationary process given by

uit =
∞∑
j=0

ψij

( ∞∑
s = −∞

ξisνs,t−j

)
, (28)

where νit, i = ...,−1, 0, ..., t = 0, ..., is a double sequence of IID random variables with mean

zero and uniformly finite variances, σ2
νi , and uniformly finite ϕ-th moments for some ϕ > 4.

We assume that

sup
i

∞∑
j=0

jζ |ψij | <∞,

and

sup
i

∞∑
s=−∞

|s|ζ |ξis| <∞, (29)

such that {ζ(ϕ− 2)}/{2(ϕ− 1)} ≥ 1/2.

Under the above assumption Σu is no longer a diagonal matrix. When α > 2/3 the bias

term in (21) is op (1) and, as a result, cN can still be estimated by ̂̄σ2
N , to construct the various

estimators of α. However, in the case where 1/2 < α ≤ 2/3, an alternative estimator for cN is

needed to take account of the non-zero covariances between uit and ujt. One possibility is to

use the following estimator

c̃N = T−1
T∑
t=1

(√
Nêt −

√
Nê
)2
, (30)

where

êt = N−1
N∑
i=1

êit, and ê = T−1
T∑
t=1

êt, (31)

and êit = xit − %̂ip̂ct, p̂ct is the first principal component of xit, i = 1, ..., N , and %̂i denotes the

OLS estimator of the regression coeffi cient of xit on p̂ct. The use of cross section averages, x̄t, in

place of p̂ct to compute êit does not help in estimation of cN since
∑N

i=1

(
xit − δ̂ix̄t

)
= 0, where

δ̂i is the OLS slope coeffi cient in the regression of xit on x̄t, and suggests setting c̃N to zero. In

a multiple factor setting additional principal components are needed to filter out any remaining

cross-sectional error dependencies.

Up to now we have analysed estimators of the exponent of cross-sectional dependence assum-

ing that factor loadings take the form given in Assumption 1. We briefly examine an alternative

formulation (discussed in the Introduction) which is mathematically convenient, although it is

more diffi cult to justify from an economic perspective as it assumes that all factor loadings fall

at the same rate. More specifically consider the following alternative formulation:
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Assumption 5 Suppose that the factor loadings vary uniformly with N as in

βi1 = N (α−1)/2vi1, 0 < α ≤ 1 (32)

where {vi1}Ni=1 is an i.i.d. sequence of random variables with mean µv1 6= 0, and variance

σ2
v1
<∞. Then,

N∑
i=1

N∑
j 6=i,j=1

σij,x = O(N1+α), N−1λmax (ΣN ) = O
(
Nα−1

)
, N−1 ‖ΣN‖1 = O

(
Nα−1

)
, V ar (x̄t) = O

(
Nα−1

)
.

For this setup it is easy to show that the appropriate estimator for α is given by

α̂ = 1 +
ln(σ̂2

x̄)

ln(N)
, (33)

and its first bias-corrected version is given by

α̃ = α̂− ĉN
ln(N)Nσ̂2

x̄

. (34)

In this case of the alternative formulation, (32), there is no need for further bias-corrections.

Then, the next Corollary follows (a proof is provided in the Supplementary Appendix II):

Corollary 1 Let Assumptions 5 and 2-3 hold, m = 1. Let α̂ be defined as in (33). Then,

√
min(N,T )

(
2 ln(N) (α̂− α∗)− σ̄2

N

Nαv̄2
1Ns

2
f1

)
→d N (0, ω) ,

where α∗ and ω are defined in (27) and (26), respectively and s2
f1

= T−1
∑T

t=1

(
f1t − T−1

∑T
t=1 f1t

)2
.

Further, let α̃ be defined as in (34)

2
√

min(N,T ) ln(N) (α̃− α∗)→d N (0, ω) .

Remark 1 It is of interest to consider circumstances where Assumption 5 fails but the above

result still holds. In particular, let

βi1 = N (α−1)/2vNi, 0 < α ≤ 1 (35)

where vNi = v̆i+ζNi and {v̆i}Ni=1 is an i.i.d. sequence of random variables with mean µv̆ 6= 0, and

variance σ2
v̆ <∞. Lemma 14 provides general conditions for this Assumption, under which our

theoretical results hold. In this remark we explore a leading case of departure from Assumption

5 that is covered by Lemma 14. Without loss of generality, we order the cross section units such

that ζNi = N (1−α)/2ηi for i = 1, 2, ...,M, where {ηi}Ni=1 is an i.i.d. sequence of random variables

with mean µη 6= 0, and variance σ2
η < ∞. This implies that M units have loadings that are
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bounded away from zero. Then, using Lemma 14, it is easy to see that the theorems relating to

the asymptotic distribution of the estimators continue to hold as long as M = o (Nα).

4 Monte Carlo Study

We investigate the small sample properties of the proposed estimator of α through a detailed

simulation study. We consider the following two factor model

xit = di + βi1f1t + βi2f2t + ςσiuit, (36)

for i = 1, 2, ..., N , and t = 1, 2, ..., T. We generate the intercepts as di ∼ IIDN(0, 1), i =

1, 2, ..., N . The factors are generated as

fjt = ρjfj,t−1 +
√

1− ρ2
jζjt, j = 1, 2, for t = −49,−48, ..., 0, 1, ..., T,

with fj,−50 = 0, for j = 1, 2, and ζjt ∼ IIDN(0, 1). Therefore, by construction σ2
fj

= 1, for

j = 1, 2.

The shocks follow an AR(1) process:

uit = φiui,t−1 +
√

1− φ2
i εit, for i = 1, 2, ..., N and t = −49,−48, ..., 0, 1, ..., T, with ui,−50 = 0,

εit ∼ IIDN(0, 1), i = 1, 2, ..., N

where φi ∼ IIU (0, 1) and σ2
i ∼ IID

(
1
2 + 3χ2(2)

4

)
, i = 1, 2, ..., N , ensuring that all σ2

i are

bounded away from zero. Also, σ̄2
N = N−1

∑N
i=1 σ

2
i → 2, as N →∞.

With regard to the factor loadings, we generate them as follows:

βi1 = vi1, for i = 1, 2, ..., [Nα1 ]

βi1 = 0, for i = [Nα1 ] + 1, [Nα1 ] + 2, ..., N

βi2 = vi2, for i = 1, 2, ..., [Nα2 ] ,

βi2 = 0, for i = [Nα2 ] + 1, [Nα2 ] + 1, ..., N,

where βi2 are then randomised across N to achieve independence from βi1. The loadings are gen-

erated as vij ∼ IIDU(µvj −0.2, µvj + 0.2), for j = 1, 2. We examine the case where α2 < α1 = a

and consider values of α and α2 such that α2 = 2α
3 to reflect the more realistic scenario where the

two factors have different strengths. Further, we set µv2 = 0.71 and µv1 =
√
µ2
v −N2(α2−α)µ2

v2

- see Theorem 1 (d) -, yielding µ2
v1

+ µ2
v2

= µ2
v = 0.75. Both µv1 and µv2 are picked so that they

meet the condition that µvj 6= 0, j = 1, 2 without µ′vjs being too distant from zero either.5

5Other values of µνj , j = 1, 2 have been entertained. Also, βij = 0, for i > [Nαj ] , j = 1, 2 are set for simplicity.

The case of βij = ρ
i−[Nαj ]
l , for i > [Nα] , j = 1, 2 and ρl = 0.5 has been considered as well as an example of
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In fixing the remaining parameters we calibrate the fit of each cross section unit, as measured

by R2
i , in order to achieve an average fit across all the units of around R̄

2
N = N−1

∑N
i=1R

2
i ≈ 0.40,

an average figure one obtains in most large data sets used in macroeconomics and finance.6 To

this end we note that

R2
i =

β2
i1 + β2

i2

β2
i1 + β2

i2 + σ2
i

=
ψ2
i1 + ψ2

i2

1 + ψ2
i1 + ψ2

i2

, if for the ith unit: both βi1 6= 0 and βi2 6= 0,

where ψ2
ij = β2

ij/σ
2
i , for j = 1, 2. Similarly,

R2
i =

ψ2
i1

1 + ψ2
i1

, if for the ith unit: βi1 6= 0 but βi2 = 0,

R2
i =

ψ2
i2

1 + ψ2
i2

, if for the ith unit: βi2 6= 0 but βi1 = 0,

and

R2
i = 0, if for the ith unit: both βi1 = 0 and βi2 = 0.

The calibration of R̄2
N is done by scaling of σ2

i in (36) using ς = 1/2.

Experiment A Here we use a basic design of (36) where the factors, fjt, for j = 1, 2, are

serially uncorrelated, namely we set ρj = 0.0 for j = 1, 2.

Experiment B Under this experiment we use the same design as in Experiment A, but

allow for temporal dependence in the factors, namely we set ρj = 0.5 for j = 1, 2.

Experiment C Under this experiment we use the same design as in Experiment A, but

we allow for departure of the idiosyncratic errors from normality and generate the idiosyncratic

errors as εit ∼ IID((χ2(2)− 2)/4), i = 1, 2, ..., N .

Experiment D The design for this experiment is as in Experiment A, but allows the

errors, uit, to be cross-sectionally dependent according to a first order spatial autoregressive

model. Let ut = (u1t, u2t, ..., uNt)
′, and set ut as

ut = Qεt, εt = σεηt; ηt ∼ IIDN(0, IN ),∑N

i=[Nαj ]+1
βij = Op (1) , j = 1, 2. Results for these setups are available upon request.

6We calibrated R2
N from a number of data sets, some of which are used in our empirical applications. Details

can be found in the Supplementary Appendix VI.
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where Q = (IN − θS)−1, and

S =



0 1 0 . . . 0

1/2 0 1/2 . . . 0
...

. . . . . . . . .

0 0 . . . 0 1/2

0 0 . . . 1 0


.

We set θ = 0.2, and σ2
ε = N/Tr(QQ′) which ensures that N−1

∑N
i=1 var(uit) = 1.

For all experiments we consider the values of α = 0.70, 0.75, ..., 0.90, 0.95, 1.00, N = 100, 200, 500, 1000

and T = 100, 200, 500, and base them on 2, 000 replications. For each replication, the values

of α, α2, di, ρj , φi, ς and S are given as set out above. These parameters are fixed across all

replications. The values of vij , j = 1, 2 are drawn randomly (N of them) for each replication.

In all experiments we present bias and RMSE results for the bias-adjusted estimator α̊ given

by (13), where µv1 is estimated using the Holm approach to address the associated multiple test-

ing problem. For experiments A-C we use ĉN given by (12) to estimate cN while for experiment

D we use c̃N , given by (30). All results are scaled up by 100.

4.1 Summary of the results

The results for Experiment A are summarized on the left-hand-side panel of Table A-B, giving

the bias and Root Mean Square Error (RMSE) when α̊ is used as the estimator for α, and when

setting µv = 0.75 and α2 = 2α/3. We focus on the bias-corrected estimator, α̊, which can be

used for any value of µvk 6= 0, and we only report results for values of α over the range [0.70, 1.0].

Recall that α is identified only if α > 1/2. As predicted by the theory, the bias and RMSE of α̊

decline with both N and T , and tend to be somewhat smaller for larger values of α, especially as

T rises. In the Supplementary Appendix VI we show additional results relating to Experiment

A. First, we report bias, RMSE, size and power of estimator α̃ when setting µv = 1. The

asymptotic distribution of α̃ is derived in Theorem 1 and estimation of the variance component

is discussed in Section VI of the Supplementary Appendix. Second, we show size and power of

tests based on α̊. Finally, we consider the case when α = α2. A discussion of the results for all

variants of Experiment A can be found in Appendix VI.

The results for Experiment B, where the factors are allowed to be serially correlated, are

summarized on right-hand-side panel of Table A-B. As compared to the baseline case, we see a

marginal deterioration in the results, particularly for relatively small values of N, T and α. But

these differences tend to vanish as N and T are increased.

The results of Experiment C, where the idiosyncratic errors, uit, are allowed to be non-

normal, are summarized on the left-hand-side panel of Table C-D. As can be seen, the results

are slightly affected by the non-normality of the error terms when α is relatively small. Consistent
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with the baseline case of Experiment A, both the bias and RMSE of α̊ fall gradually as N, T

and α are increased.

Finally, the effects of allowing for weak cross-sectional dependence in the idiosyncratic errors,

uit, on estimation of α are summarized on the right-hand-side panel of Table C-D for Experiment

D. Considering the moderate nature of the spatial dependence introduced into the errors (with

the spatial parameter, θ, set to 0.2), the results are not that different from the ones reported

in Table A-B, for the baseline experiments.7 However, one would expect greater distortions as

θ is increased, although the effects of introducing weak dependence in the idiosyncratic errors

are likely to be less pronounced if higher values of α are considered. For values of α near the

borderline value of 1/2, it will become particularly diffi cult to distinguish between factor and

spatial dependent structures.

The Monte Carlo results clearly illustrate the potential utility of the estimation and inferen-

tial procedure proposed in the paper for the analysis of cross-sectional dependence. The results

are broadly in agreement with the theory and are reasonably robust to departures from the basic

model assumptions. Although, the results tend to deteriorate slightly when we consider serially

correlated factors or weak error cross-sectional dependence, the estimated values of α tend to

retain a high degree of accuracy even for moderate sample sizes. It is also worth bearing in

mind that in most empirical applications the interest will be on estimates of α that are close to

unity, as it is for these values that a factor structure makes sense as compared to spatial or other

network models of cross-sectional dependence. It is, therefore, helpful that the small sample

performance of the proposed estimator improves when values of α close to unity are considered.

5 Empirical Applications

In this section we provide estimates of the exponent of cross-sectional dependence, α, for a

number of panel data sets used extensively in economics and finance.8 Specifically, we consider

two types of data sets: quarterly cross-country data used in global modelling, and large quarterly

data sets used in empirical factor model literature.We denote the typical elements of these data

sets by yit. The observations were standardized as xit = (yit − ȳi)/si, where ȳi and si are the
sample means and standard deviations of yit for t = 1, 2, ..., T .

But before providing estimates of the exponent of cross-sectional dependence for these data

sets we first need to verify that the degree of cross-dependence in these data sets is suffi ciently

large. Recall that α is identifiable only if α > 1/2. To this end we first apply the recent test

of weak Cross-Sectional Dependence (CD) developed by Pesaran (2013) to these data sets. The

7Note that in the estimation of c̃N , given by (30), we use 2 principal components since we are focusing on a
two factor model specification. In our empirical section we use 4 principal components instead as we consider
these to be suffi cient in order to absorb any additional cross-sectional dependence.

8 In all empirical applications we use the Holm approach when implementing the procedure described on page
10. Results using the Bonferroni method are available upon request.
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CD test statistic is defined by

CDNT =

[
TN(N − 1)

2

]1/2 ̂̄ρN , (37)

where ̂̄ρN =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂ij ,

and ρ̂ij is the pair-wise correlation coeffi cient of xit and xjt. Pesaran (2013) shows that when T

= O(Nd) for some 0 < d ≤ 1, then the implicit null of the CD test is given by 0 ≤ α < (2−d)/4,

and it is asymptotically distributed as N(0, 1). In our applications N and T are of the same

order of magnitude and d ≈ 1.9

5.1 Cross-country dependence of macro-variables

We consider the cross-correlations of real output growth, inflation and rate of change of real

equity prices over 33 countries (when available), over the period 1979Q2-2009Q4. These data sets

are from Cesa-Bianchi et al. (2012) and update the earlier GVAR (global vector autoregressive)

data sets used in Pesaran et al. (2004), and Dees et al. (2007).10

The CD statistics turned out to be 44.32, 88.34 and 77.78 for output growth, inflation and real

equity prices, respectively, which are hugely statistically significant and reject the null hypothesis

of weak cross-sectional dependence for all the three data sets and justify the use of our procedure

for estimation of α. Table 1 presents the bias corrected estimates, α̊, computed using available

cross-country time series, xit, over the period 1979Q2-2009Q4. Table 1 also reports the 90%

confidence bands constructed following the procedure set out in the Supplementary Appendix

VI. Although, there are 33 countries in the GVAR data set, not all variables are available for all

the countries. For example, real equity prices are available only for 26 of the 33 countries.

Looking at the results of Table 1 for α̊, we observe that the point estimates for all variables

considered fall in a small range and indicate that approximately 1/7th of the variables are

cross-sectionally weakly correlated while the remaining ones belong to the strongly correlated

group.11 The exponent of cross-sectional dependence for real equity prices at 0.972 points

to financial variables being strongly correlated. Similar estimates are also obtained for the

macro variables. For real GDP growth and inflation we obtain the estimates 0.977 and 0.978,

9 In all the empirical applications we present α estimates to be quite high. This alleviates an issue that arises
when using the CD test in this context. The issue is that the CD test rejects when α > 1/4 while our cross-
sectional exponent estimator assumes that 1/2 < α ≤ 1, and hence it is important that the rejection of the CD
is not necessarily interpreted as evidence in favour of α > 1/2. But in cases where CD test does not result in a
rejection we could safely maintain that α ≤ 1/2, if N and T are of the same order of magnitude.
10This version of GVAR data set can be downloaded from
http://www-cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html
11Note that α̊ corresponds to the most robust estimator of the exponent of cross-sectional dependence and

corrects for both serial correlation in the factors and weak cross-sectional dependence in the error terms. We use
four principal components when estimating (30).

20



respectively. The confidence bands all lie above 0.5 and do include unity (though marginally),

suggesting that in these examples a factor structure might be a good approximation for modelling

global dependencies. However, in some instances the value of α = 1, typically assumed in

the empirical factor literature, might be exaggerating the importance of the common factors

for modelling cross-sectional dependence at the expense of other forms of dependencies that

originate from trade or financial inter-linkages that are more local or regional rather than global

in nature.

Table 1: Exponent of cross-country dependence of macro-variables
N T α̊∗0.05 α̊ α̊∗0.95

Real GDP growth, q/q 33 122 0.923 0.977 1.031
Inflation, q/q 33 123 0.915 0.978 1.041

Real equity prices, q/q 26 122 0.924 0.972 1.019
*90% level confidence bands

5.2 Within-country dependence of macroeconomic variables

An important strand in the empirical factor literature, influenced by the theoretical and empirical

work of Stock and Watson (2002), uses factor models to estimate and forecast a few key macro

variables such as output growth, inflation or unemployment rate with a large number of macro-

variables, that could exceed the number of available time periods. It is typically assumed that the

macro variables satisfy a strong factor model with α = 1. We estimated α using the quarterly

data sets used in Eklund et al. (2010). For the US the data set comprises 95 variables and

cover the period 1960Q2 to 2008Q3. For the UK the data set covers 94 variables spanning the

period1977Q1 to 2008Q2.

As before, we first computed the CD statistic for the two data sets and obtained 84.72 and

54.29 for the US and UK, respectively, which are again highly significant and justify the use

of our estimation procedure. The estimates of α together with their 90% confidence bands are

summarized in Table 2.

For the US data set we obtained α̊ = 0.946 which suggests that more than 1/4th of the

variables considered can be regarded as being cross-sectionally weakly dependent, and the rest

being strongly cross-correlated. For the UK data set we obtained α̊ = 0.930, slightly below the

α estimate for the US. The 90% confidence bands for the US and UK data sets are well above

the threshold value of 0.50, but fall short of unity routinely assumed in the literature.
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Table 2: Exponent of within-country dependence of macro-variables
US UK

1960Q2-2008Q3 1977Q1-2008Q2
N=95, T=194 N=94, T=126

α̊∗0.05 α̊ α̊∗0.95 α̊∗0.05 α̊ α̊∗0.95

0.908 0.946 0.984 0.863 0.930 0.996
*90% level confidence bands

6 Conclusions

Cross-sectional dependence and the extent to which it occurs in large multivariate data sets is

of great interest for a variety of economic, econometric and financial analyses. Such analyses

vary widely. Examples include the effects of idiosyncratic shocks on aggregate macroeconomic

variables, the extent to which financial risk can be diversified, and the performance of standard

estimators such as principal components when applied to data sets where the cross sectional

dependence might not be suffi ciently strong.

In this paper we propose a relatively simple method of measuring the extent of inter-

connections in large panel data sets in terms of a single parameter that we refer to as the

exponent of cross-sectional dependence. We find that this exponent can accommodate a wide

spectrum of cross-sectional dependencies in macro and financial data sets. We propose consis-

tent estimators of the cross-sectional exponent and derive their asymptotic distribution. The

inference problem is complex, as it involves handling a variety of bias terms and, from an econo-

metric point of view, has noteworthy characteristics such as nonstandard rates of convergence.

We provide a feasible and relatively straightforward estimation and inference implementation

strategy.

A detailed Monte Carlo study suggests that the estimated measure has desirable small sample

properties. We apply our measure to two widely analysed classes of data sets. In all cases, we

find that the results of the empirical analysis accord with prior intuition.

We conclude by pointing out some of the implications of our analysis for largeN factor models

of the type analysed by Bai and Ng (2002), Bai (2003), and Stock and Watson (2002). This

literature assumes that all factors have the same cross-sectional exponent of α = 1, which, as

our empirical applications suggest, may be too restrictive, and it is important that implications

of this assumption’s failure are investigated. Chudik et al. (2011), Kapetanios and Marcellino

(2010) and Onatski (2012) discuss some of these implications, namely that when 1/2 < α < 1,

factor estimates are consistent but their rates of convergence are different (slower) as compared to

the case where α = 1, and in particular their asymptotic distributions may need to be modified.

In cases where α < 1, methods used to determine the number of factors in large data sets,

discussed for example by Bai and Ng (2002), Onatski (2009) and Kapetanios (2010), are invalid
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and can select the wrong number of factors, even asymptotically.12 Finally, the use of estimated

factors in regressions for forecasting or other modelling purposes might not be justified under

the conditions discussed in Bai and Ng (2006).
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Appendix: Proofs of Theorems

In the derivations of the proofs that follow we allow for Σff 6= I in general, apart from the specific instances

relating to the estimation of µv and α̊ where, without loss of generality, we impose Σff= I. Further note that

the proofs assume Σu is diagonal and, therefore, σ̄2
N = cN and ̂̄σ2

N = ĉN . The technical Lemmas used in the

Appendices are stated in Supplementary Appendix I and proven in Supplementary Appendix III.

Proof of Theorem 1

We start by noting that

σ̂2
x̄ =

1

T

T∑
t=1

(
x̄t −

1

T

T∑
τ=1

x̄τ

)2

=
1

T

T∑
t=1

x̄2
t − x̄2,

where x̄t = β̄1Nf1t + β̄2Nf2t + ... + β̄mNfmt + ūt = β̄
′
Nf t + ūt, and x̄ = T−1∑T

τ=1 x̄τ = β̄1Nf1 + β̄2Nf2 + ... +

β̄mNfm+ ū = β̄
′
Nf+ ū. Further, we assume the general setting discussed in Assumption 1 of Section 3.1 regarding

the weak factor loadings and let Kρ = (Kρ1 , ...,Kρm)′, where

Kρj = Kj =

N∑
i=Nj+1

βij <∞, (38)

and Nj=[Nαj ]. Then, we have

σ̂2
x̄ = β̄

′

NSff β̄N + 2β̄
′
N

[
1

T

T∑
t=1

(
f t − f̄

)
ūt

]
+

[
1

T

T∑
t=1

ū2
t − ū2

]
,

where

Sff =
1

T

T∑
t=1

(
f t − f̄

) (
f t − f̄

)′ →p Σff > 0, as T →∞.

But under Assumption 1, β̄N = Nα−1DN v̄N+N−1Kρ, where v̄N = (v̄1N , v̄2N , ..., v̄mN )′ and v̄jN = N−1
j

∑Nj
i=1 vij .

So,

β̄
′

NSff β̄N = N2α−2v̄′NDNSffDN v̄N+2Nα−2v̄′NDNSffKρ+N
−2K′ρSffKρ = N2α−2v̄′NDNSffDN v̄N+O

(
Nα−2) .

Hence,

ln
(
β̄
′

NSff β̄N

)
= ln

(
N2α−2v̄′NDNSffDN v̄N + 2Nα−2v̄′NDNSffKρ +N−2K′ρSffKρ

)
=

2(α− 1) ln (N) + ln
(
v̄′NDNSffDN v̄N

)
+ ln

(
1 +

2N−αv̄′NDNSffKρ +N−2αK′ρSffKρ

v̄′NDNSffDN v̄N

)
= 2(α− 1) ln (N) + ln

(
v̄′NDNSffDN v̄N

)
+Op

(
N−α

)
.
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Then,

ln
(
σ̂2
x̄

)
= ln(β̄

′

NSff β̄N ) + ln

1 +
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

+
[

1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N

 , (39)

ln
(
σ̂2
x̄

)
= 2(α− 1) ln(N) + ln(v̄′NDNSffDN v̄N )

+ ln

1 +
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

+
[

1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N

+Op
(
N−α

)
.

Hence, recalling from (11) that α̂ = 1 + ln(σ̂2
x̄)/2 ln(N),we have

2 ln(N) (α̂− α)−ln(v̄′NDNSffDN v̄N ) = ln

1 +
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
+

[
1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N

+Op
(
N−α

)
,

or

2 ln(N) (α̂− α)−ln(v̄′NDNSffDN v̄N ) =
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
+

[
1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N
+Op

(
N−α

)
+op(BN,T ),

(40)

where

BN,T =
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
+

[
1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N
.

Consider the first term of the RHS of (40). We have,

2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
=

2√
TN

Nα−1v̄′NDN

[
Σ
−1/2
ff

1
T
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t=1

(
f t − f̄

)√
Nūt

]
β̄
′

NS
1/2
ff S

1/2
ff Σ

−1/2
ff β̄N

. (41)

We note that S1/2
ff Σ

−1/2
ff = 1 +Op(T

−1/2). But, by Lemma 2 (as N and T →∞)

Σ
−1/2
ff

1√
T

T∑
t=1

(
f t − f̄

) (√
Nūt

)
→p N(0, σ̄2

NIm), (42)

where σ2
N is as in (B1).

We need to determine the probability order of 1/β̄
′
N β̄N . We note that

1

β̄
′
N β̄N

− 1

N2α−2v̄′ND
2
N v̄N
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1

N2α−2v̄′ND
2
N v̄N + 2Nα−2v̄′NDNKρ +N−2K′ρKρ
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and hence
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ūt
]

β̄
′

NSff β̄N
= Op
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T−1/2N1/2−2α
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. (43)

Consider now the second term on the RHS of (40). We use (43) again. Note that since, by Lemma 1 and

26



Theorems 17.5 and 19.11 of Davidson (1994),
√
NTū = Op(1), and, since SffΣ−1

ff = 1 + Op(T
−1/2) where

0 < Σff <∞,
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Also, by Lemma 3,
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So,
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Since α > 1/2, in the first instance this implies that

α̂− α = Op

(
1

ln(N)

)
, (49)

which establishes the consistency of α̂ as an estimate of α as N and T →∞, in any order.
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Consider now the derivation of the asymptotic distribution of α̂. We have
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′ Sff (Nα−1DN v̄N +N−1Kρ)

+

σ̄2
N

N
√
T

(
1√
T

∑T
t=1

[(√
Nūt
σ̄N

)2

− 1

])
(Nα−1DN v̄N +N−1Kρ)

′ Sff (Nα−1DN v̄N +N−1Kρ)
+Op(N

−α).

We first examine ln(v̄′NDNSffDN v̄N ). If αj= α, for all j = 1, ...,m, then by Lemma 11 we have

√
min(Nα, T )

[
ln(v̄′NSff v̄N )− ln(µ′vΣffµv)

]
→d N (0, ωm) ,

while if α > α2... > αm, then by Lemma 12 we have√
min(Nα, T )

(
ln(v̄′NDNSffDN v̄N )− ln(µ′vDNΣffDNµv)

)
→dN(0, ω).

Further, since α > 1/2,

√
min(Nα, T )

 2√
TN
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ff

1
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]
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 = Op
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)

= op(1).

Similarly,

√
min(Nα, T )


(√

NTū
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 = Op
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)

= op(1),

and
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)

= op(1).

Thus, if αj= α, for all j = 1, ...,m,

√
min(Nα, T )

(
ln(N) (α̂− α∗N )− σ̄2

N

N2α−1v̄′NDNSffDN v̄N

)
→d N (0, ωm) ,

where α∗N = α + ln(µ2
v)/2 ln(N) and µ2

v=
∑m
j=1 µ

2
vj , by setting Σff = I as normalisation. Otherwise, if

α > α2... > αm,

√
min(Nα, T )

(
ln(N) (α̂− α∗N )− σ̄2

N

N2α−1v̄′NDNSffDN v̄N

)
→d N (0, ω) ,

where either α∗N = α + ln(µ2
v1

)/2 ln(N) when (24) or (25) hold, or α∗N = α + ln(
∑m
j=1 N

2(αj−α)µ2
vj )/2 ln(N) if

neither of these two conditions hold, by referring to Lemma 13 as well. Again, we set Σff= I as normalisation.

Also, by Lemmas 7 and 9 we have

√
min(Nα, T )

(
σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

)
= Op

(√
min(Nα, T )N2−4α

)
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and √
min(Nα, T ) ln(N)

(
σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

(
1 +

̂̄σ2
N

Nσ̂2
x̄

))
= op (1) ,

which prove the remainder of the theorem.
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Supplementary Appendices

Supplementary Appendix I: Statement of technical Lemmas

Lemma 1 Under Assumptions 2 and 3, f t, {uit}
∞
t=1, and {uit}

∞
i=1 are Lr-bounded, L2-NED processes of size

−ζ, for some r > 2. This result holds uniformly over i, in the case of {uit}∞t=1, and over t, in the case of {uit}
∞
i=1.

Lemma 2 Under Assumptions 2 and 3,

1√
T

T∑
t=1

(
f t − f̄

) (√
Nūt

)
→p N(0, σ̄2

NIm),

where

σ̄2
N = lim

N→∞

∑N
i=1

(
σ2
i +

∑∞
j=1,j 6=i σij

)
N

 , (B1)

σ2
i = E(u2

it), and σij = E(uituit−j).

Lemma 3 Under Assumption 3,

1√
2T

T∑
t=1

[(√
Nūt

)2

− E
(√

Nūt
)2
]
→d N(0, V ),

where

V = lim
N→∞

(
V ar

((√
Nūt

)2
)

+

∞∑
j=1

Cov

((√
Nūt

)2

,
(√

Nūt−j
)2
))

.

Lemma 4 Under Assumptions 1-3, if m = 1 then ̂̄σ2
N − σ̄2

N = Op
(
T−1

)
+ Op

(
(NT )−1/2

)
. If m > 1 then̂̄σ2

N − σ̄2
N = Op

(
Nα−1T−1/2

)
.

Lemma 5 Under Assumptions 1-2 and m = 1,
√

min(Nα, T )
(
ln(s2

f1
v̄2

1N )− ln(σ2
f1
µ2
v1

)
)
→d N (0, ω) .

Lemma 6 Under Assumption 5 and Assumptions 2-3 and m = 1,
√

min(N,T )
(
ln(s2

f1
v̄2

1N )− ln(σ2
f1
µ2
v1

)
)
→d

N (0, ω) .

Lemma 7 Under Assumptions 1-3, and as long as α > 1/2,

√
min(Nα, T )

(
σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

)
= Op

(√
min(Nα, T )N2−4α

)
.

Lemma 8 Under Assumption 5 and Assumptions 2-3,

√
min(N,T )

(
σ̄2
N

Nαv̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

)
= op(1).

Lemma 9 Under Assumptions 1-2, and as long as α > 1/2,

√
min(Nα, T ) ln(N)

(
σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

(
1 +

̂̄σ2
N

Nσ̂2
x̄

))
= op (1) .

Lemma 10 Under Assumptions 1-3 and Σff = I, if α = α2= ... = αq−1> αq≥...≥ αm,

σ̂2
x̄ −N2α−2

q∑
j=1

µ2
vj →p 0.

In particular if α > α2≥ ... ≥ αm,
σ̂2
x̄ −N2α−2µ2

v1
→p 0.

1



Lemma 11 Under Assumptions 1-2, and assuming αj = α, for all j = 1, ...,m,√
min(Nα, T )

(
ln(v̄′NSff v̄N )− ln(µ′vΣffµv)

)
→d N (0, ωm) ,

where µv = E (vj), Σff = E
((
f t − µf

)′ (
f t − µf

))
,

ωm = lim
N,T→∞

min (Nα, T )E

({(
v̄′N f̄T − µ

′
vµf

)2 − E [(v̄′N f̄T − µ′vµf)2]}2
)
,

µf = E (f t) and f̄T = 1
T

∑T
t=1 f t.

Lemma 12 Under Assumptions 1-2, and assuming α > α2 > ... > αm,√
min(Nα, T )

(
ln(v̄′NDNSffDN v̄N )− ln(µ′vDNΣffDNµv)

)
→d N (0, ω) .

Lemma 13 Under Assumptions 1-3, and α > α2 ≥ α3 ≥ ... ≥ αm,√
min (Nα, T ) ln (N) ln(µ′vDNΣffDNµv)− ln

(
µ2
v1
σ2
f1

)
= o (1) ,

if either α2 − α < −0.25 or, if T b = N , α2 < 3α/4 and

b >
1

4 (α− α2)
. (B2)

Lemma 14 Let βi1 = Nα−1vi1, 1/2 < α ≤ 1, where vi1 = vNi = v̆i + cNi and {v̆i}Ni=1 is an i.i.d. sequence of

random variables with mean µv̆ 6= 0, and variance σ2
v̆ < ∞. Let c̄N = 1

N

∑N
i=1 cNi. Under Assumptions 2-3, (a)

α̂, α̃ and α̌ are consistent estimators of α, if c̄N = op (Nc) for all c > 0, (b) Corollary 1 holds, if
√
Nc̄N = op (1).

Lemma 15 Let â denote a generic estimator of α such that â− α = Op(hN ) where hN → 0. Then,

N â −Nα = Op(N
αhN lnN).

Lemma 16 Denote the OLS estimator of the regression coeffi cient of xit on x̃t = x̄t/σ̂x̄, by v̂i1, and let
{
v̂

(s)
i1

}N
i=1

be the reordering of {v̂i1}Ni=1 where
∣∣∣v̂(s)
i1

∣∣∣ ≥ ∣∣∣v̂(s)
i1+1

∣∣∣, ∀i. Under Assumptions 1-3, m = 1 and assuming that

limT,N→∞ T
−1Nα <∞ and that µv1 6= 0 is known, we have

Nα̂∑
i=1

(
v̂

(s)
i1 − 1

Nα̂

Nα̂∑
j=1

v̂
(s)
j1

)2

N α̂ − 1
− σ2

v1

µ2
v1

= op (1) , (B3)

if, further, α̂− α = op
(
(lnN)−1) .

Lemma 17 Under Assumptions 1-3 and m = 1,

β̂i1 −
βi1
µv1

= Op

(
1

Nα/2

)
+Op

(
1

T 1/2

)
.

Lemma 18 Under Assumptions 1-2, we have V̂
f2
1
− V

f2
1

= op(1), as long as l → ∞, l = o (T ) and l =

o
(
Nα−1/2T 1/2

)
.

Supplementary Appendix II: Proof of Corollary 1

We reconsider (39) and m = 1. Under Assumption 5, β̄1N = N (α−1)/2v̄1N , where v̄1N = N−1∑N
i=1 v1i, we have

ln(β̄2
1Ns

2
f1) = ln

(
N (α−1)/2v̄1Nsf1

)2

= (α− 1) ln(N) + ln(s2
f1 v̄

2
1N ),

2



where s2
fi

= T−1∑T
t=1

(
fit − T−1∑T

t=1 fit
)2

for i = 1, ..., N and here i = 1. Hence, recalling from (11) that

α̂ = 1 + ln(σ̂2
x̄)/2 ln(N),we have

ln(N) (α̂− α)− ln(s2
f1 v̄

2
1N ) = ln

1 +
2β̄1N

[
1
T

∑T
t=1

(
f1t − f̄1

)
ūt
]

+
[

1
T

∑T
t=1 ū

2
t − ū2

]
β̄2

1Ns
2
f1

 . (B4)

However,

ln

1 +
2β̄1N

[
1
T

∑T
t=1

(
f1t − f̄1

)
ūt
]

+
[

1
T

∑T
t=1 ū

2
t − ū2

]
β̄2

1Ns
2
f1

 =
2β̄1N

[
1
T

∑T
t=1

(
f1t − f̄1

)
ūt
]

+
[

1
T

∑T
t=1 ū

2
t − ū2

]
β̄2

1Ns
2
f1

+op (BN,T ) ,

(B5)

where when m = 1,

BN,T =
2β̄1N

[
1
T

∑T
t=1

(
f1t − f̄1

)
ūt
]

+
[

1
T

∑T
t=1 ū

2
t − ū2

]
β̄2

1Ns
2
f1

.

Consider the first term of the RHS of (40). We have,

2β̄1N

[
1
T

∑T
t=1

(
f1t − f̄1

)
ūt
]

β̄2
1Ns

2
f1

=

2√
TN

[
1

σf1

√
T

∑T
t=1

(
f1t − f̄1

) (√
Nūt

)]
(
sf1 β̄1N

)
(sf1/σf1)

.

We note that sf1/σf1 = 1 +Op(T
−1/2). But, by Lemma 2 (as N and T →∞)

1

σf1
√
T

T∑
t=1

(
f1t − f̄1

) (√
Nūt

)
→p N(0, σ̄2

N ), (B6)

where σ2
N is as in (B1). Also, 1/β̄1N =N (1−α)/2 (1/v̄1N ). Hence,

2β̄1N

[
1
T

∑T
t=1

(
f1t − f̄1

)
ūt
]

β̄2
1Ns

2
f1

=

2√
TN

[
1

σf1

√
T

∑T
t=1

(
f1t − f̄1

) (√
Nūt

)]
sf1 β̄1N (sf1/σf1)

(B7)

= Op
(
T−1/2N−α/2

)
.

Consider now the second term on the RHS of (40). Note that since, by Lemma 1 and Theorems 17.5 and 19.11

of Davidson (1994),
√
NTū = Op(1), and, since s2

f1
/σ2

f1
= 1 +Op(T

−1/2) where 0 < σ2
f1
<∞,

ū2

(N (α−1)/2v̄1N )
2
s2
f1

=

(√
NTū

)2

NT (N (α−1)/2v̄1N )
2
s2
f1

= Op
(
T−1N−α

)
. (B8)

Similarly,

1
T

∑T
t=1 ū

2
t

(N (α−1)/2v̄1N )
2
s2
f1

=

1

N
√
T

{
1√
T

∑T
t=1

[
(
√
Nūt)

2 − σ̄2
N

]
+
√
T σ̄2

N

}
(N (α−1)/2v̄1N )

2
s2
f1

=

σ̄2
N

N
√
T

{
1√
T

∑T
t=1

[(√
Nūt
σ̄N

)2

− 1

]
+
√
T

}
(N (α−1)/2v̄1N )

2
s2
f1

(B9)

=

σ̄2
N

N
√
T

1√
T

∑T
t=1

[(√
Nūt
σ̄N

)2

− 1

]
(N (α−1)/2v̄1N )

2
s2
f1

+
σ̄2
N

N (N (α−1)/2v̄1N )
2
s2
f1

.

But, by Lemma 3,

1√
2T

T∑
t=1

[(√
Nūt
σ̄N

)2

− 1

]
→d N(0, 1),

3



and
σ̄2
N

N
√
T

(
1√
T

∑T
t=1

[(√
Nūt
σ̄N

)2

− 1

])
(N (α−1)/2v̄1N )

2
s2
f1

= Op(T
−1/2N−α). (B10)

Therefore, collecting all results derived above, and keeping the highest order terms of the RHS of (B7), (B8), and

(B10), we have

2 ln(N) (α̂− α)− ln(s2
f1 v̄

2
1N )− σ̄2

N

Nαv̄2
1Ns

2
f1

= Op
(
T−1/2N−α/2

)
.

In the first instance this implies that

α̂− α = Op

(
1

ln(N)

)
, (B11)

which establishes the consistency of α̂ as an estimate of α as N and T →∞, in any order.
Consider now the derivation of the asymptotic distribution of α̂. We have

ln(N) (α̂− α)− σ̄2
N

N2α−1v̄2
1Ns

2
f1

' ln(s2
f1 v̄

2
1N ) +

2√
TN

[
1

σf
√
T

∑T
t=1

(
f1t − f̄1

) (√
Nūt

)]
sf1N

(α−1)/2v̄1N (sf1/σf1)
+

(√
NTū

)2

NT (N (α−1)/2v̄1N )
2
s2
f1

+

σ̄2
N

N
√
T

1√
T

∑T
t=1

[(√
Nūt
σ̄N

)2

− 1

]
(N (α−1)/2v̄1N )

2
s2
f1

.

where A ' B denotes that A−B = op(B). We first examine ln(s2
f1
v̄2

1N ). By Lemma 6 we have

√
min(N,T )

(
ln(s2

f1 v̄
2
1N )− ln(σ2

f1µ
2
v1

)
)
→d N (0, ω) .

Further,

√
min(N,T )


2√
TN

[
1

σf1

√
T

∑T
t=1

(
f1t − f̄1

) (√
Nūt

)]
sf1N

(α−1)/2v̄1N (sf1/σf1)

 = Op
(√

min(N,T )T−1/2N−α/2
)

= op(1).

Similarly, √
min(N,T )


(√

NTū
)2

NT (N (α−1)/2v̄1N )
2
s2
f1

 = Op
(√

min(N,T )T−1N−α
)

= op(1),

and

√
min(N,T )


σ̄2
N

N
√
T

1√
T

∑T
t=1

[(√
Nūt
σ̄N

)2

− 1

]
(N (α−1)/2v̄1N )

2
s2
f1

 = Op
(√

min(N,T )T−1/2N−α
)

= op(1).

Thus, √
min(N,T )

(
ln(N) (α̂− α∗N )− σ̄2

N

Nαv̄2
1Ns

2
f1

)
→d N (0, ω) ,

where α∗N = α + ln(µ2
v1

)/2 ln(N), by setting σ2
f = 1 as normalisation. The second part of the Corollary follows

by Lemma 8.
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Supplementary Appendix III: Proofs of technical Lemmas

Proof of Lemma 1

The proof of this lemma considers the more general Assumption 4 for the error terms which incorporates As-

sumption 3. By the Marcinkiewicz—Zygmund inequality (see, e.g., (Stout, 1974, Theorem 3.3.6)),

sup
i
E(|uit|r) = sup

i
E

(∣∣∣∣∣
∞∑
l=0

(
ψil

∞∑
s=−∞

ξisvst−l

)∣∣∣∣∣
r)
≤ c

(
sup
i

( ∞∑
l=0

|ψil|2
)

sup
i

( ∞∑
s=−∞

|ξis|2
))r/2(

sup
i,t

E(|vit|r)
)
,

so uit is Lr-bounded if supi supt E(|vt|r) < ∞ which holds by Assumption 4. Moreover, writing ‖·‖r for the
Lr-norm, we have, by Minkowski’s inequality,

sup
i

∥∥∥uit − E(uit|Fvit,|m|)
∥∥∥

2
= sup

i

∥∥∥∥∥∥
∞∑

j=m+1

ψij

 ∑
|s|≥m

ξisνst

∥∥∥∥∥∥
2

≤ sup
i,t
‖vit‖2

(
sup
i

∞∑
j=m+1

|ψij |
)sup

i

 ∑
|s|≥m

|ξis|

 ,

(B12)

for any integer m > 0 where Fνit,|m| is the σ-field generated by {vis; i, s ≤ t − m} ∪ {vis; i, s ≥ t + m}. But,
Assumption 4 implies that supi limm→∞m

ζ∑∞
j=m+1 |ψij | = O (1) and supi limm→∞m

ζ
(∑

|s|≥m |ξis|
)

= O (1) .

Consequently {uit}∞t=1 and {uit}∞i=1 are Lr-bounded, L2-NED processes of size −ζ, uniformly over i and t.

Similarly, we can show that f t are Lr-bounded (r ≥ 2) L2-NED processes of size −ζ.

Proof of Lemma 2

We have 1√
T

∑T
t=1

(
f t − f̄

) (√
Nūt

)
= 1√

T

∑T
t=1 zt, where zt=

(
f t − f̄

) (√
Nūt

)
. We have that zt are station-

ary processes such that E (zt) = 0. We note that by Lemma 1 and Theorem 24.6 of Davidson (1994), we have

that E
((√

Nūt
)2
)

= 1
N

∑N
i=1 σ

2
i < ∞. Further, by Theorem 17.8 of Davidson (1994), we have that sums of

L2-bounded, L2-NED triangular arrays of size −ζ are L2-bounded, L2-NED triangular arrays of size −ζ as well,
implying, given Lemma 1, that

√
Nūt is an L2-bounded, L2-NED triangular arrays of size −ζ. Further, by the

Marcinkiewicz—Zygmund inequality,

E(
∣∣∣√Nūt∣∣∣r) = E

(∣∣∣∣∣ 1√
N

N∑
i=1

∞∑
l=0

(
ψil

∞∑
s=−∞

ξisvst−l

)∣∣∣∣∣
r)
≤ c

(
1

N

N∑
i=1

( ∞∑
l=0

|ψil|2
)( ∞∑

s=−∞
|ξis|2

))r/2
sup
i,t

E(|vit|r) ≤

(B13)

c

(
sup
i

( ∞∑
l=0

|ψil|2
)

sup
i

( ∞∑
s=−∞

|ξis|2
))r/2(

sup
i,t

E(|vit|r)
)
<∞.

As a result,
√
Nūt is a Lr-bounded, L2-NED triangular arrays of size −ζ.

Finally, since {
√
Nūt} and {f t} are Lr-bounded (r ≥ 2) L2-NED processes of size −ζ on a φ-mixing process

of size −η (η > 1), then, by Example 17.17 of Davidson (1994), {zt} are L2-NED of size −{ζ(ϕ−2)}/{2(ϕ−1)} ≤
−1/2 on a φ-mixing process of size −η. Since νit and νft are i.i.d. processes they are also φ-mixing processes of
any size. In view of Theorem 17.5(ii) of Davidson (1994), this in turn implies that {zt} are L2-mixingale of size

−1/2, if 2η > ζ, which automatically holds by the i.i.d. property of νit and νft. This implies the result of the

Lemma by Theorem 24.6 of Davidson (1994).

Proof of Lemma 3

By Lemma 2,
√
Nūt is a Lr-bounded, L2-NED triangular arrays of size −ζ. By Example 17.17 of Davidson

(1994), and (B13),
(√

Nūt
)2

is Lr-NED of size −{ζ(ϕ− 2)}/{2(ϕ− 1)} ≤ −1/2, r > 4. Then, by Theorem 24.6

of Davidson (1994), the result follows.

5



Proof of Lemma 4

We need to show that ̂̄σ2
N − σ̄2

N = Op
(
T−1

)
+ Op

(
(NT )−1/2

)
if m = 1 and ̂̄σ2

N − σ̄2
N = Op

(
Nα−1T−1/2

)
otherwise. We have that ̂̄σ2

N = 1
NT

∑N
i=1

∑T
t=1 û

2
it, where ûit is the estimated residual. Then,

1
NT

∑N
i=1

∑T
t=1 û

2
it =

1
NT

∑N
i=1

∑T
t=1 u

2
it + 1

NT

∑N
i=1

∑T
t=1

(
û2
it − u2

it

)
. Following similar lines to those of the proof of Lemma 3 we

have that 1
NT

∑N
i=1

∑T
t=1 u

2
it →p σ̄

2
N . Further,

1
NT

∑N
i=1

∑T
t=1

(
u2
it − σ̄2

N

)
= O

(
(NT )−1/2

)
. Next, we examine

1
NT

∑N
i=1

∑T
t=1

(
û2
it − u2

it

)
. It is suffi cient to consider 1

NT

∑N
i=1

∑T
t=1 uit (ûit − uit).

Single factor case: We note that the same residual is obtained irrespective of whether we regress xit on x̄t, or

x̃t or N1−αx̄t or f1t. We carry out the analysis by using x̃t as the regressor. We have that ûit=
x̃t
∑T
j=1 x̃juij∑T
j=1 x̃

2
j

+uit.

Then,

1

NT

N∑
i=1

T∑
t=1

uit (ûit − uit) =
1

NT

N∑
i=1

T∑
t=1

uitx̃t

(∑T
j=1 x̃juij∑T
j=1 x̃

2
j

)
=

(
1

NT
∑T
j=1 x̃

2
j

)
N∑
i=1

(
T∑
j=1

x̃juij

)(
T∑
t=1

x̃tuit

)
=

1

NT

(
1

1
T

∑T
t=1 x̃

2
t

)
N∑
i=1

( 1√
T

T∑
t=1

x̃tuit

)2

− E

( 1√
T

T∑
t=1

x̃tuit

)2
+

+
1

NT

(
1

1
T

∑T
t=1 x̃

2
t

)
N∑
i=1

E
( 1√

T

T∑
t=1

x̃tuit

)2
 .

But E
((

1√
T

∑T
t=1 x̃tuit

)2
)
<∞ uniformly over i and 1

T

∑T
t=1 x̃

2
t = Op (1), which implies that

1

NT

(
1

1
T

∑T
t=1 x̃

2
t

)
N∑
i=1

E
( 1√

T

T∑
t=1

x̃tuit

)2
 = Op

(
1

T

)
.

Further,
(

1√
T

∑T
t=1 x̃tuit

)2

− E
((

1√
T

∑T
t=1 x̃tuit

)2
)
is a NED process over i, which implies that

1

NT

(
1

1
T

∑T
t=1 x̃

2
t

)
N∑
i=1

( 1√
T

T∑
t=1

x̃tuit

)2

− E

( 1√
T

T∑
t=1

x̃tuit

)2
 = Op

(
1

T
√
N

)
,

proving the required result.

Multifactor case: We will focus on the case where α = α2= ... = αm as the case α ≥ α2≥ ... ≥ αmwith at
least one strict inequality can be treated similarly and has equal or lower rates for ̂̄σ2

N − σ̄2
N . We have

1

NT

N∑
i=1

T∑
t=1

uit (ûit − uit) =
1

NT

Nα∑
i,βi16=0

T∑
t=1

uit (ûit − uit) +
1

NT

N−Nα∑
i,βi1=0

T∑
t=1

uit (ûit − uit) (B14)

The second term of the RHS of (B14) can be treated as in the single factor case, giving

1

NT

N−Nα∑
i,β1i=0

T∑
t=1

uit (ûit − uit) = Op
(
T−1)+Op

(
1

T
√
N

)

For the first term of the RHS of (B14), we note that xit can be written as xit= κix̃t+β̃
′
if̃t+uit,where f̃t is a zero

mean process that is uncorrelated to x̃t. Then, ûit=
x̃t
∑T
j=1 x̃j(β̃

′
if̃j+uij)∑T

j=1 x̃
2
j

+β̃
′
if̃t+uit and

1

NT

Nα∑
i,βi16=0

T∑
t=1

uit (ûit − uit) =
1

NT

Nα∑
i,βi16=0

T∑
t=1

uit
(
β̃′if̃t + uit

)
+R (B15)

where R is of smaller order of probability than the first term of the RHS of (B15). Following similar arguments
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as above we obtain
1

NT

Nα∑
i,βi16=0

T∑
t=1

uit
(
β̃′if̃t + uit

)
= Op

(
Nα−1T−1/2

)
,

which implies that ̂̄σ2
N − σ̄

2
N = Op

(
Nα−1T−1/2

)
.

giving a lower rate of convergence than the single factor case.

Proof of Lemma 5

We have that

ln(s2
f1 v̄

2
1N )− ln(σ2

f1µ
2
v1

) = ln

(
s2
f1
v̄2

1N

σ2
f1
µ2
v1

)
= ln

(
s2
f1

σ2
f1

)
+ ln

(
v̄2

1N

µ2
v1

)
=

(
s2
f1
− σ2

f1

σ2
f1

)
+

(
v̄2

1N − µ2
v1

µ2
v1

)
+

Op
((
s2
f1 − σ

2
f1

)2)
+Op

((
v̄2

1N − µ2
v1

)2)
.

But, under Assumption 2, and setting m = 1,

√
T

(
s2
f1
− σ2

f1

σ2
f1

)
=

1√
T

T∑
t=1

{[
(f1t − f̄1)/σf1

]2 − 1
}
→d N

(
0, V

f2
1

)
,

where f̄1 = 1
T

∑T
t=1 f1t, and

V
f2
1

= E
((

[(f1t − µf1)/σf1 ]2 − 1
)2)

+

∞∑
i=1

Cov
((

[(f1t − µf1)/σf1 ]2 − 1
) (

[(f1,t−i − µf1)/σf1 ]2 − 1
))
.

Further, recalling that v̄1N = 1
Nα

∑Nα

i=1 vi1,
√
Nα

(
v̄2
1N−µ

2
v1

µ2
v1

)
=
√
Nα

(
v̄1N−µv1
µv1

)(
v̄1N+µv1
µv1

)
. But

v̄1N+µv1
µv1

→p 2,

and
√
Nα

(
v̄1N − µv1

µv1

)
→d N

(
0,
σ2
v1

µ2
v1

)
. (B16)

Further, E
[(

s2f1
−σ2

f1

σ2
f1

)(
v̄2
1N−µ

2
v1

µ2
v1

)]
= 0, implying that

√
min(Nα, T )

(
ln(s2

f1
v̄2

1N )− ln(σ2
f1
µ2
v1

)
)
→d N (0, ω) ,

where ω = limN,T→∞

[
min(Nα,T )

T
V
f2
1

+ min(Nα,T )
Nα

4σ2
v1

µ2
v1

]
.

Proof of Lemma 6

The proof follows easily along the same lines as that of Lemma 5. In the present case under Assumption 5

we have v̄1N = N−1∑N
i=1 vi1, and thus

√
N

(
v̄2
1N−µ

2
v1

µ2
v1

)
=
√
N
(
v̄1N−µv1
µv1

)(
v̄1N+µv1
µv1

)
, and

v̄1N+µv1
µv1

→p 2.

Therefore,
√
N
(
v̄1N−µv1
µv1

)
→d N

(
0,

σ2
v1
µ2
v1

)
.

Proof of Lemma 7

We need to show that

√
min(Nα, T )

(
σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

)
= op (1) . (B17)

We have

σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−
̂̄σ2
N

Nσ̂2
x̄

=
σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

N2α−1v̄′NDNSffDN v̄N
+

̂̄σ2
N

N2α−1v̄′NDNSffDN v̄N
−
̂̄σ2
N

Nσ̂2
x̄

.
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But, by lemma 4

σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

N2α−1v̄′NDNSffDN v̄N
= Op

(
T−1/2N−2α

)
, (B18)

which is negligible as a bias. Next,

̂̄σ2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

= σ̄2
N

( ̂̄σ2
N

σ̄2
N

)(
1

N2α−1v̄′NDNSffDN v̄N
− 1

Nσ̂2
x̄

)

= σ̄2
N

( ̂̄σ2
N

σ̄2
N

)(
1

N2α−1v̄′NDNSffDN v̄N

)
N2α−1 (N2−2ασ̂2

x̄ − v̄′NDNSffDN v̄N
)( 1

Nσ̂2
x̄

)
.

But by the proof of Theorem 1, we have

v̄′NDNSffDN v̄N −N2−2ασ̂2
x̄ = Op

(
T−1/2N−2α

)
+Op(N

1−3α) +Op(N
−α) +Op

(
N1−2α) .

So,

σ̄2
N

( ̂̄σ2
N

σ̄2
N

)(
1

N2α−1v̄′NDNSffDN v̄N

)
N2α−1 (N2−2ασ̂2

x̄ − v̄′NDNSffDN v̄N
)( 1

Nσ̂2
x̄

)
=

Op
(
T−1/2N−2αN1−2α

)
+Op(N

1−3αN1−2α) +Op(N
−αN1−2α) +Op

(
N1−2αN1−2α) =

Op
(
T−1/2N1−2α

)
+Op(N

2−5α) +Op(N
1−3α) +Op

(
N2−4α) .

Therefore, for α > 1/2, (B17) holds, which establishes the Lemma.

Proof of Lemma 8

We need to show that √
min(N,T )

(
σ̄2
N

Nαv̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

)
= op (1) . (B19)

We have

σ̄2
N

Nαv̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

=
σ̄2
N

Nαv̄′NDNSffDN v̄N
−

̂̄σ2
N

Nαv̄′NDNSffDN v̄N
+

̂̄σ2
N

Nαv̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

.

But, by lemma 4
σ̄2
N

Nαv̄′NDNSffDN v̄N
−

̂̄σ2
N

Nαv̄′NDNSffDN v̄N
= Op

(
T−1/2N−α

)
,

which is negligible as a bias. Next,

̂̄σ2
N

Nαv̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

= σ̄2
N

( ̂̄σ2
N

σ̄2
N

)(
1

Nαv̄′NDNSffDN v̄N
− 1

Nσ̂2
x̄

)

= σ̄2
N

( ̂̄σ2
N

σ̄2
N

)(
1

Nαv̄′NDNSffDN v̄N

)
Nα (N1−ασ̂2

x̄ − v̄′NDNSffDN v̄N
)( 1

Nσ̂2
x̄

)
.

But by the proof of Theorem 1, we have

v̄′NDNSffDN v̄N −N1−ασ̂2
x̄ = Op

(
T−1/2N−α/2

)
.

So

σ̄2
N

( ̂̄σ2
N

σ̄2
N

)(
1

Nαv̄′NDNSffDN v̄N

)
Nα (N1−ασ̂2

x̄ − v̄′NDNSffDN v̄N
)( 1

Nσ̂2
x̄

)
= Op

(
T−1/2N−3α/2

)
which establishes the Lemma.
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Proof of Lemma 9

We have that

σ̄2
N

( ̂̄σ2
N

σ̄2
N

)(
1

N2α−1v̄′NDNSffDN v̄N

)
N2α−1

(
N1−2α

(
1

T

T∑
t=1

(
√
Nūt)

2 − ̂̄σ2
N

))(
1

Nσ̂2
x̄

)
= Op

(
N2−4αT−1/2

)
,

which is negligible as long as α > 1/2. To prove the above result we first note that

1

T

T∑
t=1

( 1√
N

N∑
i=1

uit

)2
− ̂̄σ2

N =

 1

T

T∑
t=1

( 1√
N

N∑
t=1

uit

)2
− σ̄2

N

+

(
σ̄2
N −

1

NT

N∑
i=1

T∑
t=1

u2
it

)
−
(

1

NT

N∑
i=1

T∑
t=1

û2
it −

1

NT

N∑
i=1

T∑
t=1

u2
it

)
.

But it is straightforward to show that 1
T

∑T
t=1

((
1√
N

∑N
i=1 uit

)2
)
−σ̄2

N = Op(T
−1/2) and σ̄2

N− 1
NT

∑N
i=1

∑T
t=1 u

2
it =

Op(T
−1/2). Finally, by Lemma 4, 1

NT

∑N
i=1

∑T
t=1 û

2
it− 1

NT

∑N
i=1

∑T
t=1 u

2
it = op(T

−1/2). So, 1
T

∑T
t=1

((
1√
N

∑N
t=1 uit

)2
)
−̂̄σ2

N = Op(T
−1/2).

Proof of Lemma 10

We have that

1

T

T∑
t=1

x̄2
t =

1

T

T∑
t=1

 m∑
j=1

fjtNαj

N

1

Nαj

N
αj∑
i=1

vij

+
1

N

N∑
i=1

uit

2

=

1

T

T∑
t=1


m∑
j=1

f2
jt
N2αj

N2

 1

Nαj

N
αj∑
i=1

vij

2+

1

T

T∑
t=1


m∑

j=1,j 6=s

fjtNαj

N

 1

Nαj

N
αj∑
i=1

vij

 m∑
s=1

[
fst

Nαs

N

(
1

Nαs

Nαs∑
i=1

vis

)]+

1

T

T∑
t=1


 m∑
j=1

fjtNαj

N

1

Nαj

N
αj∑
i=1

vij

( 1

N

N∑
i=1

uit

)+

1

T

T∑
t=1

(
1

N

N∑
i=1

uit

)2

.

But,

1

T

T∑
t=1

(
1

N

N∑
i=1

uit

)2

= Op
(
N−1)

1

T

T∑
t=1

fjtNαj

N

1

Nαj

N
αj∑
i=1

vij

( 1

N

N∑
i=1

uit

) = Op
(
Nαj−3/2T−1/2

)
, j = 1, ...,m

1

T

T∑
t=1

fjtNαj

N

1

Nαj

N
αj∑
i=1

vij

(fstNαs

N

1

Nαs

Nαs∑
i=1

vis

) = Op
(
Nαj+αs−2T−1/2

)
, j, s = 1, ...,m, j 6= s,

and

1

T

T∑
t=1

f2
jt
N2αj

N2

 1

Nαj

N
αj∑
i=1

vij

2−N2αj−2µ2
vj →p 0, j = 1, ...,m.
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If α = α2 = ... = αq−1 > αq ≥ ... ≥ αm

1

T

T∑
t=1

x̄2
t −N2α−2

q∑
j=1

µ2
vj →p 0.

In particular if α > α2 ≥ ... ≥ αm
1

T

T∑
t=1

x̄2
t −N2α−2µ2

v1
→p 0.

Proof of Lemma 11

Without loss of generality we consider the case of two factors. The result extends straightforwardly to m factors.

We further assume, for simplicity, that factors are independent from each other. Then,

ln
(
v̄2

1Ns
2
f1 + 2v̄1N v̄2Ns12,f + v̄2

2Ns
2
f2

)
− ln

(
σ2
f1µ

2
v1

+ σ2
f2µ

2
v2

)
= ln

(
v̄2

1Ns
2
f1

+ 2v̄1N v̄2Ns12,f + v̄2
2Ns

2
f2

σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

)
.

Then,

ln

(
v̄2

1Ns
2
f1

+ 2v̄1N v̄2Ns12,f + v̄2
2Ns

2
f2

σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

)
=
v̄2

1Ns
2
f1

+ 2v̄1N v̄2Ns12,f + v̄2
2Ns

2
f2

σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

− 1 = (B20)

(
v̄2

1Ns
2
f1
− σ2

f1
µ2
v1

)
+
(
v̄2

2Ns
2
f2
− σ2

f2
µ2
v2

)
+ 2v̄1N v̄2Ns12,f

σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

=(
v̄2

1Ns
2
f1
− v̄2

1Nσ
2
f1

+ v̄2
1Nσ

2
f1
− σ2

f1
µ2
v1

)
+
(
v̄2

2Ns
2
f2
− v̄2

2Nσ
2
f2

+ v̄2
2Nσ

2
f2
− σ2

f2
µ2
v2

)
+ 2µv1µv2s12,f

σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

=

µ2
v1

(
s2
f1
− σ2

f1

)
σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

+
σ2
f1

(
v̄2

1N − µ2
v1

)
σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

+
µ2
v2

(
s2
f2
− σ2

f2

)
σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

+
σ2
f2

(
v̄2

2N − µ2
v2

)
σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

+
2µv1µv2s12,f

σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

.

Note that

v̄1N v̄2Ns12,f = v̄1N v̄2Ns12,f − v̄1Nµv2s12,f + v̄1Nµv2s12,f − v̄1Nµv2σ12,f + v̄1Nµv2σ12,f − 2µv1µv2σ12,f =

s12,f v̄1N (v̄2N − µv2) + v̄1Nµv2 (s12,f − σ12,f ) + σ12,fµv2 (v̄1N − 2µv1) =

(s12f − σ12,f ) v̄1N (v̄2N − µv2) + σ12,f v̄1N (v̄2N − µv2) + v̄1Nµv2 (s12,f − σ12,f ) + σ12,fµv2 (v̄1N − 2µv1) .

But

(s12f − σ12,f ) v̄1N (v̄2N − µv2) = op(T
−1/2),

and σ12, = 0, and so

(s12,f − σ12,f ) v̄1N (v̄2N − µv2) + σ12,f v̄1N (v̄2N − µv2) + v̄1Nµv2 (s12,f − σ12,f ) + σ12,fµv2 (v̄1N − 2µv1)

= v̄1Nµv2s12,f =

(
v̄1N

µv1

)
µv1µv2s12,f + op

(
T−1/2

)
.

Then,
µ2
vi

(
s2
fi
− σ2

fi

)
σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

=
µ2
viσ

2
fi

σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

(
s2
fi
− σ2

fi

)
σ2
fi

, i = 1, 2,

σ2
fi

(
v̄2
iN − µ2

vi

)
σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

=
µ2
viσ

2
fi

σ2
f1
µ2
v1

+ σ2
f2
µ2
v2

(
v̄2
iN − µ2

vi

)
µ2
vi

, i = 1, 2.

Assuming loadings of factors and factors are independent of each other and across factors, gives

µ2
viσ

2
fi

(
√
T

(
s2
fi
− σ2

fi

)
σ2
fi

)
= µ2

viσ
2
fi

(
1√
T

T∑
t=1

{[
(fit − f̄i)/σfi

]2 − 1
})
→d N

(
0,
(
µ2
viσ

2
fi

)2
µ

(4)
i

)
, i = 1, 2,

10



µ2
viσ

2
fi

(√
Nα

(
v̄2
iN − µ2

vi

µ2
vi

))
= µ2

viσ
2
fi

(√
Nα

(
v̄iN − µvi

µvi

)(
v̄iN + µvi

µvi

))
→d N

(
0, 4σ2

viµ
2
vi

(
σ2
fi

)2)
, i = 1, 2.

Further,

µv1µv2

√
Ts12,f = µv1µv2

σf1σf2√
T

T∑
t=1

(
f1t − f̄1

σf1

)(
f2t − f̄2

σf2

)
→d N

(
0, µ2

v1
σ2
f1µ

2
v2
σ2
f2

)
.

Further, by factor independence

E

([
1√
T

T∑
t=1

{[
(fit − f̄i)/σfi

]2 − 1
}][ 1√

T

T∑
t=1

(
f1t − f̄1

σf1

)(
f2t − f̄2

σf2

)])
= 0, i = 1, 2.

So √
min (Nα, T )

T

(
µ2
v1
σ2
f1

(
√
T

(
s2
f1
− σ2

f1

)
σ2
f1

)
+ µ2

v2
σ2
f2

(
√
T

(
s2
f2
− σ2

f2

)
σ2
f2

)
+ 2µv1µv2

√
Ts12,f

)
+

√
min (Nα, T )

Nα

(
µ2
v1
σ2
f1

(√
Nα

(
v̄2

1N − µ2
v1

µ2
v1

))
+ µ2

v2
σ2
f2

(√
Nα

(
v̄2

2N − µ2
v2

µ2
v2

)))
→d

N

(
0, min(Nα,T )

T

((
µ2
v1
σ2
f1

)2
µ

(4)
1 +

(
µ2
v2
σ2
f2

)2
µ

(4)
2 + 4µ2

v1

(
σ2
f1

)2
µ2
v2

(
σ2
f2

)2)
+ min(Nα,T )

Nα

(
2σ2

v1
µ2
v1
σ2
f1

+ 2σ2
v2
µ2
v2
σ2
f2

) )
.

Proof of Lemma 12

Again, without loss of generality we look at the case of two factors. The result again extends straightforwardly.

We further assume, for simplicity, that factors are independent from each other. Then,

ln
(
v̄2

1Ns
2
f1 + 2Nα2−αv̄1N v̄2Ns12,f +N2(α2−α)v̄2

2Ns
2
f2

)
− ln

(
σ2
f1µ

2
v1

+N2(α2−α)σ2
f2µ

2
v2

)
=

ln

(
v̄2

1Ns
2
f1

+ 2Nα2−αv̄1N v̄2Ns12,f +N2(α2−α)v̄2
2Ns

2
f2

σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

)
.

Then, similarly to the proof of Lemma 11

ln

(
v̄2

1Ns
2
f1

+ 2Nα2−αv̄1N v̄2Ns12,f +N2(α2−α)v̄2
2Ns

2
f2

σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

)
=

µ2
v1

(
s2
f1
− σ2

f1

)
σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

+
σ2
f1

(
v̄2

1N − µ2
v1

)
σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

+

N2(α2−α)µ2
v2

(
s2
f2
− σ2

f2

)
σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

+
N2(α2−α)σ22,f

(
v̄2

2N − µ2
v2

)
σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

+
2Nα2−αµv1µv2s12,f

σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

.

Then,
µ2
v1

(
s2
f1
− σ2

f1

)
σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

=
µ2
v1
σ2
f1

σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

(
s2
f1
− σ2

f1

)
σ2
f1

,

σ2
f1

(
v̄2

1N − µ2
v1

)
σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

=
µ2
v1
σ2
f1

σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

(
v̄2

1N − µ2
v1

)
µ2
v1

,

N2(α2−α)µ2
v2

(
s2
f2
− σ2

f2

)
σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

=
µ2
v2
σ2
f2

σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

N2(α2−α)
(
s2
f2
− σ2

f2

)
σ2
f2

, (B21)

N2(α2−α)σ2
f2

(
v̄2

2N − µ2
v2

)
σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

=
µ2
v2
σ2
f2

σ2
f1
µ2
v1

+N2(α2−α)σ2
f2
µ2
v2

N2(α2−α)
(
v̄2

2N − µ2
v2

)
µ2
v2

. (B22)

But, then it is obvious that the Lemma holds since (B21) and (B22) are op (1) , when multiplied bymin
(√

T ,
√
Nα
)

respectively, as well as min
(√

T ,
√
Nα
)
Nα2−αµv1µv2s12,f .
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Proof of Lemma 13

We analyse the population counterpart of ln (v̄′NDNSffDN v̄N ) assuming for simplicity that Σff is diagonal and

α > α2 ≥ α3 ≥ ... ≥ αm. We have

ln(µ′vDNΣffDNµv) = ln

(
µ2
v1
σ11,f +N2(α2−α)

m∑
j=2

N2(αj−α2)µ2
vjσ

2
fj

)
.

Then,

ln(µ′vDNΣffDNµv)−ln
(
µ2
v1
σ2
f1

)
= ln

1 +
N2(α2−α)∑m

j=2

(
N2(αj−α2)µ2

vjσ
2
fj

)
µ2
v1
σ2
f1

 =

∑m
j=2

(
N2(αj−α2)µ2

vjσ
2
fj

)
µ2
v1
σ2
f1

N2(α2−α).

So, √
min(Nα, T ) ln (N)

(
ln(v̄′NDNSffDN v̄N )− ln(µ′vDNΣffDNµv)

)
=

√
min(Nα, T ) ln (N)

[
ln(v̄′NDNSffDN v̄N )− ln(µ2

v1
σ2
f1)
]
−
√

min(Nα, T ) ln (N)N2(α2−α)

∑m
j=2

(
N2(αj−α2)µ2

vjσ
2
fj

)
µ2
v1
σ2
f1

 .

We need

N2(α2−α)

∑m
j=2

(
N2(αj−α2)µ2

vjσ
2
fj

)
µ2
v1
σ2
f1

 = o
(

min (Nα, T )−1/2 ln (N)−1
)
.

This holds if
√

min(Na, T )N2(α2−α) = o(1). If T < Nα then a suffi cient condition for the above to hold is

α2−α < −0.25. Otherwise, the suffi cient condition is α2 < 3α/4. But, this condition is implied by α2−α < −0.25

as long as α ≤ 1. An alternative condition that relates to the relative rate of growth of N and T is that α2 < 3α/4

and T b = N and 1/(4b) + α2 − α < 0 or b > 1
4(α−α2)

Proof of Lemma 14

We note that the first part of the Lemma holds if

ln(s2
f1
v̄2
N1)

ln(N)
= op (1) . (B23)

We have

ln(s2
f1 v̄

2
N1) = ln

(
s2
f1

)
+ 2 ln (v̄N1) = ln

(
s2
f1

)
+ 2 ln

(
1

N

N∑
i=1

v̆i + c̄N

)
.

So (B23) holds if 1
N

∑N
i=1 v̆i + c̄N = op (Nc) for all c > 0, which holds if c̄N = op (Nc) for all c > 0, proving the

first part of the Lemma. For the second part of the Lemma we reconsider (B16). We have
√
N (v̄N1 − µv̆) =√

N
(

1
N

∑N
i=1 v̆i + c̄N − µv̆

)
. But,

√
N
(

1
N

∑N
i=1 v̆i − µv̆

)
→d N

(
0, σ2

v̆

)
. Therefore,

√
Nc̄N = op (1) is suffi cient

for the second part of the Lemma to hold.

Proof of Lemma 15

We have that
Nα −N α̂

Nα
= 1− N α̂

Nα
= ln

(
N α̂

Nα

)
+ op

(
ln

(
N α̂

Nα

))
.

Then,

ln

(
N α̂

Nα

)
= (α̂− α) lnN,

implying the result of the Lemma.
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Proof of Lemma 16

The factor loadings of the cross-sectional units are partitioned into two groups by Assumption 1 and settingm = 1.

The first group has non-zero loadings, denoted by vi1, while the second group has loadings that are summable

over the group. We do not observe the partition and need to estimate it. For this reason, we rank the estimated

loadings as discussed in the statement of the Lemma. The first step in the proof is to show that the number of

cross-sectional units that are misclassified, i.e., that are included in the variance calculation when their loading

is not a function of any vi1, is op (Nα). The first thing to note is that we abstract from the possibility that any

vi1 = 0. By the fact that Pr (vi1 = 0) = 0, it follows that the number of units with vi1 = 0 is op (Nα). Without

loss of generality, we further assume that units whose loadings do not depend on any vi1 have zero loadings. There

are two sources of errors in partitioning the loadings. The first arises because N â is not equal to Na. But by

Lemma 15 this error is op (Nα) if α̂ − α = op
(
(lnN)−1) which is the case under the conditions of the Lemma.

The fact that α̂− α = op
(
(lnN)−1) justifies using the true α rather than the estimated one throughout the rest

of the proof. The second source of error arises from the possibility that units are missclassified. We consider this

source next assuming the true value of α is used. We know that the probability that any unit’s coeffi cient is ε > 0

away from its true value is of the order of N−a (by Lemma (17) and the Markov inequality). We know that Na

units can be misclassified only if the estimated coeffi cients of any unordered and without replacement, sample of

size Na from the N units, jointly exceed their true value by ε. We know that since the vi1 are independent, that

the event that an estimated coeffi cient will be away from its true value will be independent from the same event

for another unit. So the probability that a given set of Na units can be jointly misclassified is bounded from

above by N−aN
a

. There are N !
Na!(N−Na)!

such sets. So the probability that any set will behave thus, is bounded

from above by N−aN
a
N !

Na!(N−Na)!
. We need to aggregate across i = Na, ..., N . So overall the probability is bounded

from above by
∑
b>a

N−aN
b
N !

Nb!(N−Nb)!
. We replace this by (N −Na) N−aN

a
N !

Na!(N−Na)!
and justify this step below. We have

(N −Na)
N−aN

a

N !

Na! (N −Na)!
=

N−aN
a

N !

Na! (N −Na − 1)!
. (B24)

We need the logarithm of the above quantity to have a limit of −∞. We have using repeatedly Stirling’s formula
that (∼ denotes equality up to an order of magnitude lower that any included terms)

ln

(
N−aN

a

N !

Na! (N −Na − 1)!

)
= ln

(
N−aN

a

N !
)
− ln (Na! (N −Na − 1)!) =

−aNa ln (N) + ln(N !)− ln (Na!)− ln ((N −Na − 1)!) ∼

−aNa ln (N) +N ln(N)−N −Na ln (Na) +Na − (N −Na − 1) ln (N −Na − 1) + (N −Na − 1) ∼

−aNa ln (N) +N ln(N)−N − aNa ln (N) +Na − (N −Na − 1) ln (N −Na − 1) + (N −Na − 1) =

−aNa ln (N) +N ln(N)−N − aNa ln (N) +Na − (N −Na − 1) ln
(
N(1−Na−1 −N−1)

)
+ (N −Na − 1) =

−aNa ln (N) +N ln(N)−N − aNa ln (N) +Na − (N −Na − 1) ln (N)−

− (N −Na − 1) ln
(
1−Na−1 −N−1)+ (N −Na − 1) =

−aNa ln (N)− aNa ln (N) +Na ln (N) +N ln(N)−N +Na −N ln (N) + ln (N)−

+Na + 1−N2a−1 −Na−1 −Na−1 −N−1 + (N −Na − 1) =

−(2a− 1)Na ln (N)−N +Na + ln (N)−

− (N −Na − 1)
(
−Na−1 −N−1)+ (N −Na − 1) .

The term −(2a − 1)Na ln (N) dominates other terms and tends to −∞, as N → ∞, for a > 1/2, proving the

result. We now justify replacing (N −Na) N−aN
a
N !

Na!(N−Na)!
for
∑
b>a

N−aN
b
N !

Nb!(N−Nb)!
in (B24). We have

ln

(
N−aN

b

N !

Nb! (N −Nb)!

)
= ln

(
N−aN

b

N !
)
− ln

(
Nb!

(
N −Nb

)
!
)

=

13



−aNb ln (N) + ln(N !)− ln
(
Nb!

)
− ln

((
N −Nb − 1

)
!
)
∼

−aNb ln (N) +N ln(N)−N −Nb ln
(
Nb
)

+Nb −
(
N −Nb − 1

)
ln
(
N −Nb − 1

)
+
(
N −Nb − 1

)
∼

−aNb ln (N) +N ln(N)−N − bNb ln (N) +Nb −
(
N −Nb − 1

)
ln
(
N −Nb − 1

)
+
(
N −Nb − 1

)
∼

−aNb ln (N) +N ln(N)−N − bNb ln (N) +Nb −
(
N −Nb − 1

)
ln
(
N(1−Nb−1 −N−1)

)
+
(
N −Nb − 1

)
=

−aNb ln (N) +N ln(N)−N − bNb ln (N) +Nb −
(
N −Nb − 1

)
ln (N)−

−
(
N −Nb − 1

)
ln
(

1−Nb−1 −N−1
)

+
(
N −Nb − 1

)
.

The dominant term here is −(a + b − 1)Na ln (N) which for b > a > 1/2 is tending to −∞ faster than −(2a −
1)Na ln (N) justifying the replacement.

Next, we prove the Lemma assuming that we observe which units have non-zero loadings. Recall that,

assuming that units whose loadings do not depend on any vi1 have zero loadings, xit = vi1
v̄1N

(
N1−αx̄t

)
+ uit.

We analyse v̂i1 by a slight abuse of notation whereby we define it to be the estimated regression coeffi cient of

the regression of xit on N1−αx̄t rather than xit on x̃t. Since µv1 is assumed known, v̄1N →p µv1 and σ̂
2
x̄ →p

N2α−2µ2
v1
, by Lemma 10, this does not affect the analysis. Let v(1)

i1 = vi1
µv1

and viN = vi1
v̄1N

. We need to show that

1
Nα−1

Nα∑
i=1

(
v̂i1 − 1

Nα

∑Nα

j=1 v̂j1
)2

− σ2
v1
µ2
v1

= op (1) . We have

1

Nα − 1

Nα∑
i=1

(
v̂i1 −

1

Nα

Nα∑
j=1

v̂j1

)2

− σ2
v1

µ2
v1

=
1

Nα − 1

Nα∑
i=1

(
v̂i1 −

1

Nα

Nα∑
j=1

v̂j1

)2

− 1

Nα − 1

Nα∑
i=1

(
viN −

1

Nα

Nα∑
j=1

vjN

)2

+

1

Nα − 1

Nα∑
i=1

(
viN −

1

Nα

Nα∑
j=1

vjN

)2

− 1

Nα − 1

Nα∑
i=1

(
v

(1)
i1 −

1

Nα

Nα∑
j=1

v
(1)
j1

)2

+
1

Nα − 1

Nα∑
i=1

(
v

(1)
i1 −

1

Nα

Nα∑
j=1

v
(1)
j1

)2

− σ2
v1

µ2
v1

.

But by the law of large numbers for i.i.d. random variables with finite variance

1

Nα − 1

Nα∑
i=1

(
v

(1)
i1 −

1

Nα

Nα∑
j=1

v
(1)
j1

)2

− σ2
v1

µ2
v1

= Op
(
N−1/2

)
.

It is suffi cient to show that

1

Nα − 1

Nα∑
i=1

(
v̂i1 −

1

Nα

Nα∑
j=1

v̂j1

)2

− 1

Nα − 1

Nα∑
i=1

(
viN −

1

Nα

Nα∑
j=1

vjN

)2

= op (1) (B25)

and
1

Nα − 1

Nα∑
i=1

(
viN −

1

Nα

Nα∑
j=1

vjN

)2

− 1

Nα − 1

Nα∑
i=1

(
v

(1)
i1 −

1

Nα

Nα∑
j=1

v
(1)
j1

)2

= op (1) . (B26)

For (B25), it is suffi cient that 1
Nα−1

Nα∑
i=1

(v̂i1 − viN ) = op (1) . Recall that xit = vi1
v̄1N

(
N1−αx̄t

)
+ uit. So

1

Nα − 1

Nα∑
i=1

(v̂i1 − viN ) =

1
Nα−1

Nα∑
i=1

(∑T
t=1 x̄tuit

)
∑T
t=1 x̄

2
t

=
1

(Nα − 1) v̄1N

(∑T
t=1 f

2
1t

) Nα∑
i=1

T∑
t=1

f1tuit.

But
∑Nα

i=1

∑T
t=1 f1tuit = Op

(
(NαT )1/2

)
and

∑T
t=1 f

2
1t = Op (T ) . So

Nα∑
i=1

(∑T
t=1 x̄tuit

)
Nα − 1

(∑T
t=1 x̄

2
t

) = Op
(
T−1N−α (NαT )1/2

)
= Op

(
T−1/2N−α/2

)
= op (1) .
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For (B26), it is suffi cient that 1
Nα−1

Nα∑
i=1

(
viN − v(1)

i1

)
= op (1) . We have,

1

Nα − 1

Nα∑
i=1

(
viN − v(1)

i1

)
=

(
1

v̄1N
− 1

µv1

) Nα∑
i=1

vi1

Nα − 1
.

But 1
Nα−1

Nα∑
i=1

vi1 = Op (1) . Also 1
v̄1N
− 1
µv1

= 1
v̄1Nµv1

(v̄1N − µv1) = Op
(
N−α/2

)
. So, overall 1

N−1

Nα∑
i=1

(
v̂i1 − 1

N

∑N
j=1 v̂j1

)2

−
σ2
v1
µ2
v1

= op (1) , proving the required result.

Proof of Lemma 17

Recall that βi1 = vi1 for i = 1, 2, ..., Nα and 0 for i = Nα + 1, ..., N (without loss of generality). Here we set

m = 1. Let

x̃t =
1

Nα

N∑
i=1

xit,

where we have used the normalisation N−α to ensure that x̄t converges to f1t. We have

β̂i1 =
1
T

∑T
t=1 x̃txit

1
T

∑T
t=1 x̃

2
t

. (B27)

Then,

1

T

T∑
t=1

x̃txit =
1

TNα

T∑
t=1

N∑
j=1

xjtxit =

1

T

T∑
t=1

1

Nα

N∑
j=1

(βj1f1t + ujt) (βi1f1t + uit) =

1

T

T∑
t=1

1

Nα

N∑
j=1

(
βj1βi1f

2
1t + 2βi1βj1f1tuit + ujtuit

)
.

We have
1

TNα

T∑
t=1

N∑
j=1

βj1βi1f
2
1t =

(
1

T

T∑
t=1

f2
1t

)(
1

Nα

Nα∑
j=1

vj1βi1

)
.

But,

1

T

T∑
t=1

f2
1t →p 1,

βi1
Nα

Nα∑
j=1

vj1 →p βi1µv1 .

Next,

1

TNα

T∑
t=1

uit

N∑
j=1

ujt = Op

(
1

T 1/2Nα−1/2

)
,

and
2

TNα

T∑
t=1

N∑
j=1

βi1βj1f1tuit =
2

T

T∑
t=1

f1tβi1uit

((
1

Nα

Nα∑
j=1

vj1

))
=

{
Op
(

1

T1/2

)
if i ≤ Nα

0 otherwise
.

This concludes the analysis of the numerator of (B27). For the denominator we have,

1

T

T∑
t=1

x̃2
t =

1

TN2α

T∑
t=1

N∑
j=1

N∑
i=1

xjtxit =

1

T

T∑
t=1

1

N2α

N∑
j=1

N∑
i=1

(βj1f1t + ujt) (βi1f1t + uit) =

15



1

T

T∑
t=1

1

N2α

N∑
j=1

N∑
i=1

(
βj1βi1f

2
1t + 2βi1βj1f1tuit + ujtuit

)
.

We have
1

TN2α

T∑
t=1

N∑
j=1

N∑
i=1

βj1βi1f
2
1t =

(
1

T

T∑
t=1

f2
1t

)(
1

N2α

Nα∑
j=1

Nα∑
j=1

vj1vi1

)
.

But,

1

T

T∑
t=1

f2
1t →p 1,

1

N2α

Nα∑
j=1

Nα∑
j=1

vj1vi1 →p µ
2
v1
,

1

TN2α

T∑
t=1

N∑
j=1

N∑
i=1

uitujt = Op

(
1

T 1/2N2α−1

)
,

2

TN2α

T∑
t=1

N∑
j=1

N∑
i=1

βi1βj1f1tuit =

2

T

T∑
t=1

{
f1t

[
1

Nα

Nα∑
i=1

vi1uit

(
1

Nα

Nα∑
j=1

vj1

)]}
= Op

(
1

T 1/2Nα/2

)
.

Therefore,

β̂i1 →p
βi1
µv1

.

Next, we need to establish the rate at which
1
T

∑T
t=1 x̃txit

1
T

∑T
t=1 x̃

2
t
− βi1µv1

µ2
v1

tends to zero. This is determined by the

maximum of two rates:
1

T

T∑
t=1

(
f2

1t − 1
)

= Op
(
T−1/2

)
,

βi1
Nα

Nα∑
j=1

vj1 − βi1µv1 =

{
Op
(

1

Nα/2

)
if i ≤ Nα

0 otherwise
,

noting that

1

N2α

Nα∑
j=1

Nα∑
j=1

(
vj1vi1 − µ2

v1

)
= Op

(
1

Nα

)
,

and
1

TN2α

T∑
t=1

N∑
j=1

N∑
i=1

uitujt = Op

(
1

T 1/2N2α−1

)
.

Hence

β̂i1 −
βi1
µv1

= Op

(
1

Nα/2

)
+Op

(
1

T 1/2

)
.

Proof of Lemma 18

We need to show V̂
f2
1
− V

f2
1

= op(1). and assuming a one factor setting (without loss of generality). The result

extends straightforwardly to m factors. We have V̂
f2
1
− V

f2
1

= V̂
f2
1
− V̄

f2
1

+ V̄
f2
1
− V

f2
1
where

V̄
f2
1

=
1

T

T∑
t=1

(
qt −

1

T

T∑
t=1

qt

)2

+

l∑
j=1

(
1

T

T∑
t=j+1

(
qt−j −

1

T

T∑
t=1

qt

)(
qt −

1

T

T∑
t=1

qt

))
,
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and qt =
(
f1t−f̄1
sf1

)2

. But, by Theorem 25.3 of Davidson (1994) and Assumption 3, we have that V̄
f2
1
−V

f2
1

= op(1),

as long as l→∞ and l = o(T ). Then, it is suffi cient to examine

1

T

T∑
t=1

(
f1t

sf1
− x̃t

)
=

1

T

T∑
t=1

(
f1t

sf1
− x̄t
σ̂x̄

)
=

1

sf1T

T∑
t=1

(
f1t −

x̄t
Nα−1v̄1N

)
=

1

sf1T

T∑
t=1

(
f1t −

Nα−1v̄1Nf1t + 1
N

∑N
i=1 uit

Nα−1v̄1N

)
=
N−α

sf1T

T∑
t=1

N∑
i=1

uit =
N−α

σf1T

T∑
t=1

N∑
i=1

uit + op

(
N−α

σf1T

T∑
t=1

N∑
i=1

uit

)
.

But,
∑T
t=1

∑N
i=1 uit = Op

(
(NT )1/2

)
. So, 1

T

∑T
t=1

(
f1t
sf1
− x̃t

)
= Op

(
N1/2−αT−1/2

)
. Thus, V̂

f2
1
−V

f2
1

= Op
(
lN1/2−αT−1/2

)
,

proving the Lemma.

Supplementary Appendix IV: Justification of the use of the cumulative distribution function of the

standard normal in the approach used to estimate µv1 .

Consider the single factor model,

xit = βi1f1t + uit, for i = 1, ..., N ; t = 1, ..., T, (B28)

and assume that β̄1N = 1
N

∑N
i=1 βi1 6= 0 for a finite N. Recall that βi1 = νi1, for i = 1, ..., Nα and zero for

i = Nα + 1, ..., N (without loss of generality), so that

β̄1N = Nα−1v̄1N , with v̄1N = N−α
Nα∑
i=1

vi1.

Also letting x̄t = 1
N

∑N
i=1 xit, δi = βi1/β̄1N and noting that x̄t = β̄1Nf1t + ūt, we have

xit = δix̄t + ξit, where ξit = uit − δiūt. (B29)

Consider now the t-ratio for testing δi = 0 in the above regression and note that it is given by

zi = zi,T,N =
δ̂i(∑T

t=1 x̄
2
t

)−1/2

σ̂ξi

=

∑T
t=1 x̄txit(∑T

t=1 x̄
2
t

)1/2

σ̂ξi

, (B30)

where

σ̂2
ξi = T−1

T∑
t=1

(xit − δ̂ix̄t)2,

δ̂i =

∑T
t=1 x̄txit∑T
t=1 x̄

2
t

= δi +

∑T
t=1 x̄tξit∑T
t=1 x̄

2
t

.

But

T∑
t=1

x̄txit =
T∑
t=1

(
β̄1Nft + ūt

)
(βi1f1t + uit)

= βi1β̄1N

T∑
t=1

f2
1t + βi1

T∑
t=1

ūtf1t + β̄1N

T∑
t=1

f1tuit +

T∑
t=1

ūtuit

and
T∑
t=1

x̄2
t = β̄2

1N

T∑
t=1

f2
1t + 2β̄1N

T∑
t=1

f1tūt +

T∑
t=1

ū2
t ,
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σ̂2
ξi = T−1

T∑
t=1

[
xit − δix̄t − (δ̂i − δi)x̄t

]2
= T−1

T∑
t=1

ξ2
it + (δ̂i − δi)2T−1

T∑
t=1

x̄2
t − 2(δ̂i − δi)T−1

T∑
t=1

x̄tξit

= T−1
T∑
t=1

ξ2
it +

(
T−1∑T

t=1 x̄tξit

T−1
∑T
t=1 x̄

2
t

)2

T−1
T∑
t=1

x̄2
t − 2

T−1∑T
t=1 x̄tξit

T−1
∑T
t=1 x̄

2
t

T−1
T∑
t=1

x̄tξit

= T−1
T∑
t=1

ξ2
it −

(
T−1∑T

t=1 x̄tξit
)2

T−1
∑T
t=1 x̄

2
t

.

Also

zi =
βi1β̄1N

∑T
t=1 f

2
1t + βi1

∑T
t=1 ūtf1t + β̄1N

∑T
t=1 f1tuit +

∑T
t=1 ūtuit(

β̄2
1N

∑T
t=1 f

2
1t + 2β̄1N

∑T
t=1 f1tūt +

∑T
t=1 ū

2
t

)1/2

σ̂ξi

=
βi1
∑T
t=1 f

2
1t + βi1

∑T
t=1(ūt/β̄1N )f1t +

∑T
t=1 f1tuit +

∑T
t=1

(
ūt/β̄1N

)
uit[∑T

t=1 f
2
1t + 2

∑T
t=1 f1t

(
ūt/β̄1N

)
+
∑T
t=1

(
ūt/β̄1N

)2]1/2
σ̂ξi

.

Further, since β̄1N= Nα−1v̄1N , we have ūt/β̄1N = N1−α(ūt/v̄1N ) and

T−1/2zi =
βi1T

−1∑T
t=1 f

2
1t + T−1∑T

t=1 f1tuit + (βi1/v̄1N )N1−αT−1∑T
t=1 ūtf1t + (1/v̄1N )N1−αT−1∑T

t=1 ūtuit[
T−1

∑T
t=1 f

2
1t + 2 (1/v̄1N )N1−αT−1

∑T
t=1 f1tūt + (1/v̄1N )2 N2(1−α)T−1

∑T
t=1 ū

2
t

]1/2
σ̂ξi

,

T−1
T∑
t=1

ξ2
it = T−1

T∑
t=1

u2
it + δ2

i T
−1

T∑
t=1

ū2
t − 2δiT

−1
T∑
t=1

ūtuit

= T−1
T∑
t=1

u2
it + β2

i1 (1/v̄1N )2 N2(1−α)T−1
T∑
t=1

ū2
t − 2βi1 (1/v̄1N )N1−αT−1

T∑
t=1

ūtuit

(
T−1∑T

t=1 x̄tξit
)2

T−1
∑T
t=1 x̄

2
t

=

(
T−1∑T

t=1 x̄t(uit − βi1
(
ūt/β̄1N

))2

β̄2
1NT

−1
∑T
t=1 f

2
1t + 2β̄1NT−1

∑T
t=1 f1tūt + T−1

∑T
t=1 ū

2
t

=

([
T−1∑T

t=1 f1t +
(
ūt/β̄1N

)] [
uit − βi1

(
ūt/β̄1N

)])2

T−1
∑T
t=1 f

2
1t + 2T−1

∑T
t=1 f1t

(
ūt/β̄1N

)
+ T−1

∑T
t=1

(
ūt/β̄1N

)2
=

([
T−1∑T

t=1 f1t +
(
ūt/β̄1N

)] [
uit − βi1

(
ūt/β̄1N

)])2

T−1
∑T
t=1 f

2
1t + 2 (1/v̄1N )N1−αT−1

∑T
t=1 f1tūt + (1/v̄1N )2 N2(1−α)T−1

∑T
t=1 ū

2
t

.

But we have

T−1
T∑
t=1

[
f1t +

(
ūt/β̄1N

)] [
uit − βi1

(
ūt/β̄1N

)]
=

T−1
T∑
t=1

f1tuit − βi1T−1
T∑
t=1

f1t

(
ūt/β̄1N

)
− βi1T−1

T∑
t=1

(
ūt/β̄1N

)2
+ T−1

T∑
t=1

(
ūt/β̄1N

)
uit

= T−1
T∑
t=1

f1tuit − (βi1/v̄1N )N1−αT−1
T∑
t=1

f1tūt − βi1 (1/v̄1N )2 N2(1−α)T−1
T∑
t=1

ū2
t + (1/v̄1N )N1−αT−1

T∑
t=1

ūtuit,
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N2(1−α)T−1
T∑
t=1

ū2
t = Op

(
N1−2α) , N1−αT−1

T∑
t=1

ūtuit = Op
(
N1/2−αT−1/2

)
, (B31)

(B32)

N1−αT−1
T∑
t=1

f1tūt = Op
(
N1/2−αT−1/2

)
, T−1

T∑
t=1

f1tuit = Op
(
T−1/2

)
.

(B33)

Hence,

T−1
T∑
t=1

ξ2
it = T−1

T∑
t=1

u2
it + β2

i1 (1/v̄1N )2 N2(1−α)T−1
T∑
t=1

ū2
t − 2βi1 (1/v̄1N )N1−αT−1

T∑
t=1

ūtuit

= σ2
i +Op

(
T−1/2

)
+Op

(
N1/2−αT−1/2

)
+Op

(
N1−2α)

T−1
T∑
t=1

(
f1t +

(
ūt/β̄1N

)) [
uit − βi1

(
ūt/β̄1N

)]
= Op

(
T−1/2

)
+Op

(
N1−2α)+Op

(
N1/2−αT−1/2

)
.

σ̂2
ξi = T−1

T∑
t=1

ξ2
it −

(
T−1∑T

t=1 x̄tξit
)2

T−1
∑T
t=1 x̄

2
t

= σ2
i +Op

(
T−1/2

)
+Op

(
N1/2−αT−1/2

)
+Op

(
N1−2α) .

Using the above results we now have

T−1/2zi =
T−1∑T

t=1 f1tuit +Op
(
N1/2−αT−1/2

)
[
T−1

∑T
t=1 f

2
1t +Op (N1/2−αT−1/2) +Op (N1−2α)

]1/2
σ̂ξi

, if βi1 = 0

=
T−1∑T

t=1 f1t(uit/σi)(
T−1

∑T
t=1 f

2
1t

)1/2
+Op

(
N1/2−αT−1/2

)
+Op

(
N1−2α) . (B34)

Therefore, under βi1 = 0, zi is asymptotically distributed as N(0, 1) so long as N and T tend to infinity in any

order and α > 1/2. Also,

T−1/2zi =
βi1T

−1∑T
t=1 f

2
1t + T−1∑T

t=1 f1tuit + (βi1/v̄1N )N1−αT−1∑T
t=1 ūtf1t + (1/v̄1N )N1−αT−1∑T

t=1 ūtuit[
T−1

∑T
t=1 f

2
1t +Op (N1/2−αT−1/2) +Op (N1−2α)

]1/2
σ̂ξi

,

if βi1 6= 0,

=

(
βi1
σi

)(
T−1

T∑
t=1

f2
1t

)1/2

+
T−1∑T

t=1 f1t(uit/σi)(
T−1

∑T
t=1 f

2
1t

)1/2
+

Op
(
N1/2−αT−1/2

)
+Op

(
N1−2α) . (B35)

Thus, under βi1 6= 0, and using the normalization T−1∑T
t=1 f

2
1t →p 1, (zi−

√
Tβi1
σi

)→d N(0, 1) as N and T →∞,
in any order, and if α > 1/2. It is also easy to see that (B34) and (B35) also hold in mean square.

In the case of a multi-factor setting, (B29) can be re-written in the form shown in Lemma 4 so that the error

term, ξit,now is augmented by residuals from the regression of each of the m factors on x̄t. The rest of the analysis

then follows through.

Supplementary Appendix V: Proof of consistency of µ̂v1(cp,N ) based on multiple testing

The proof is heuristic to the extent that a high level assumption is needed that may be diffi cult to establish using
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more primitive conditions. We make the following assumption.

Assumption 6 1. βi1 is uniformly bounded over i .

2. x̄tuitis uniformly mixing over i, in the sense of the mixing assumption of Connor and Korajczyk (1993),

with mixing coeffi cients φt,mthat satisfy supt limm→∞ φt,m= 0.

3. Let ϕi denote a standard normal variate. Then, if zi,T,N − ϕi= Om.s.(N
2−4α) +Om.s.(N

1/2−αT−1/2),

supi zi,T,N−ϕi = Op
(
N2−4α

)
+Op

(
N1/2−αT−1/2

)
, and supiE (zi,T,N − ϕi)2 = O(N2−4α)+O(N1−2αT−1),

where Om.s.() denotes order in mean square.

4. Let ψ = (ψ1, ..., ψN )′ denote an N × 1 selector vector consisting of zeros and ones such that ψ′ψ > Nα, for

some α > 1/2. Define uψt = (ψ′ψ)
−1∑N

i=1 ψiuit. Then,

sup
t

sup
ψ
E
(
uψt

)2

= o (1) .

Remark 2 Condition 2 is a standard uniform mixing condition. Uniform mixing is a stronger form of mixing

than strong mixing which is more widely used, but allows a CLT without any rates for the mixing coeffi cients and

only the existence of 2 + δ, δ > 0 moments. One could simplify further the assumption by imposing a uniform

mixing condition on uit, and thereby f1tuit and proving that x̄tuit is uniform mixing with mixing coeffi cients that

have mixing size -1/2, but we choose to make this slightly less primitive assumption for simplicity. Clearly, if

uit follow (16) then Condition 2 is satisfied. If uitfollow (28) then both (29) and assumptions on νs,t need to be

strengthened. A discussion of these issues may be found in Section 14.3 of Davidson (1994) and, in particular,

Theorem 14.14. Conditions 3 and 4 are uniform convergence technical conditions which again seem diffi cult

to establish from more primitive conditions. A proof of the normality invoked in Condition 3 is provided in

Supplementary Appendix IV and the assumption only strengthens the result to make it uniform. Condition 4

appears intuitive due to the weak cross-sectional dependence of the errors, although again uniformity is diffi cult

to establish formally.

Set

wit = xitI (|zi,T,N | ≥ cpi,N ) , θi = βi1I (|zi,T,N | ≥ cpi,N ) , υit = uitI (|zi,T,N | ≥ cpi,N ) ,

where cpi,N is the critical value of the i-th test. Then,

wit = θif1t + υit, for i = 1, ..., N ; t = 1, ..., T,

and

w̄t = θ̄f1t + ῡt,

where

w̄t =

∑N
i=1 wit∑N

i=1 I (|zi,T,N | ≥ cpi,N )
, θ̄ =

∑N
i=1 θi∑N

i=1 I (|zi,T,N | ≥ cpi,N )
,

and

ῡt =

∑N
i=1 υit∑N

i=1 I (|zi,T,N | ≥ cpi,N )
.

We take

σ̂2
w̄ =

1

T

T∑
t=1

(w̄t − w̄)2 ,

and consider the limiting behaviour of σ2
w̄/µv1

, where as before µv1= E(vi1). Since

w̄t − w̄ = θ̄
(
f1t − f̄1

)
+ (ῡt − ῡ) ,
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then

σ̂2
w̄

µ2
v1

=
θ̄2

µ2
v1

1

T

T∑
t=1

(
f1t − f̄1

)2
+

2θ̄

µ2
v1

1

T

T∑
t=1

(
f1t − f̄1

)
(ῡt − ῡ) +

1

µ2
v1

1

T

T∑
t=1

(ῡt − ῡ)2 (B36)

= I + II + III.

We concentrate on I as we will prove that II and III tend to zero. For I, and since 1
T

∑T
t=1

(
f1t − f̄1

)2 →p 1,

we have

θ̄ =

∑Nα

i=1 βi1I (|zi,T,N | ≥ cpi,N |βi1 6= 0) +
∑N
i=Nα+1 βi1I (|zi,T,N | ≥ cpi,N |βi1 = 0)∑Nα

i=1 I (|zi,T,N | ≥ cpi,N |βi1 6= 0) +
∑N
i=Nα+1 I (|zi,T,N | ≥ cpi,N |βi1 = 0)

, or

=

1
Nα

(∑Nα

i=1 βi1I (|zi,T,N | ≥ cpi,N |βi1 6= 0) +
∑N
i=Nα+1 βi1I (|zi,T,N | ≥ cpi,N |βi1 = 0)

)
1
Nα

(∑Nα

i=1 I (|zi,T,N | ≥ cpi,N |βi1 6= 0) +
∑N
i=Nα+1 I (|zi,T,N | ≥ cpi,N |βi1 = 0)

) . (B37)

We first consider the asymptotic behaviour of the following four terms:

A =
1

Na

Nα∑
i=1

βi1 (I (|zi,T,N | ≥ cpi,N |βi1 6= 0)− Pr (|zi,T,N | ≥ cpi,N |βi1 6= 0)) ,

B =
1

Na

N∑
i=Nα+1

βi1 (I (|zi,T,N | ≥ cpi,N |βi1 = 0)− Pr (|zi,T,N | ≥ cpi,N |βi1 = 0)) ,

C =
1

Na

Nα∑
i=1

(I (|zi,T,N | ≥ cp,N |βi1 6= 0)− Pr (|zi,T,N | ≥ cp,N |βi1 6= 0)) ,

D =
1

Na

N∑
i=Nα+1

(I (|zi,T,N | ≥ cp,N |βi1 = 0)− Pr (|zi,T,N | ≥ cp,N |βi1 = 0)) .

We need to show that the summands in A−D follow a central limit theorem. It is suffi cient to show that the

summands are uniformly mixing. By Condition 2 of Assumption 6 it follows that zi,T,N is uniformly mixing

over i. By the measurability of the indicator function (see, e.g., Theorem 3.27 of Davidson (1994)) and Theorem

14.1 of Davidson (1994), it follows that all summands in A−D, are uniformly mixing and, by Theorem 18.5.1 of

Ibragimov and Linnik (1971), a central limit theorem holds. Then, it follows that

A = O
(
N−α/2

)
, B = O

(
N1/2−α

)
, C = O

(
N−α/2

)
, D = O

(
N1/2−α

)
.

Next, we consider

lim
N,T→∞

(∑Nα

i=1 Pr (|zi,T,N | ≥ cpi,N |βi1 6= 0)

Nα

)
, and

lim
N,T→∞

(∑N
i=Nα+1 Pr (|zi,T,N | ≥ cpi,N |βi1 = 0)

Nα

)
.

We have that,

Pr (|zi,T,N | ≥ cp,N |βi1 6= 0) = 1−
[
Φ

(
cp,N −

βi1
√
T

σi

)
− Φ

(
−cp,N −

βi1
√
T

σi

)]
(B38)

+O
(
N1−2αT−1)+O

(
N2−4α) .

= 1− Φ

(
cp,N −

βi1
√
T

σi

)
+ Φ

(
−cp,N −

βi1
√
T

σi

)
+O

(
N2−4α)+O

(
N1−2αT−1) .

(B38) can be proven as follows. From Supplementary Appendix IV we have

zi,T,N = zi +Op
(
N1−2α)+Op

(
N1/2−αT−1/2

)
= zi + qi,N,T ,
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where zi is distributed as N(0, 1) and qi,N,T = Op
(
N1−2α

)
+Op

(
N1/2−αT−1/2

)
. Then, we have

Pr (|zi,T,N | ≤ cpi,N )− Pr (|zi| ≤ cpi,N ) = Pr (|zi + qi,N,T | ≤ cpi,N )− Pr (|zi| ≤ cpi,N ) ≤ Pr (|qi,N,T | > 0)

lim
N,T→∞

Pr (|qiN,T | > 0) = lim
ε→0

lim
N,T→∞

Pr (|qi,N,T | > ε) .

But

Pr (|qi,N,T | > ε) ≤
E
(
q2
i,N,T

)
ε2

.

It is easy to see from the analysis of Supplementary Appendix IV that

E
(
q2
iN,T

)
= O

(
N2−4α)+O

(
N1−2αT−1) ,

then

Pr (|zi,T,N | ≤ cpi,N )− Φ(cpi,N )− Φ(−cpi,N ) = O
(
N2−4α)+O

(
N1−2αT−1) , (B39)

proving (B38). Assumption 6 (3) strengthens this to

sup
i

Pr (|zi,T,N | ≤ cpi,N )− Φ(cpi,N )− Φ(−cpi,N ) = O
(
N2−4α)+O

(
N1−2αT−1) . (B40)

Thus,

p lim
N,T→∞

(∑[Nα]
i=1 I (|zi,T,N | ≥ cpi,N |βi1 6= 0)

Nα

)
→p 1. (B41)

as long as

cpi,N= op(T
1/2) (B42)

uniformly over i. Also,

Pr (|zi,T,N | ≥ cpi,N |βi1 = 0) = [1− Φ (cpi,N ) + Φ (−cpi,N )] +O
(
N1−2αT−1)+O

(
N2−4α)

= 2 [1− Φ (cpi,N )] +O
(
N1−2αT−1)+O

(
N2−4α) .

Then,∑N
i=[Nα]+1 Pr (|zi,T,N | ≥ cp,N |βi1 = 0)

Nα
=

∑N
i=[Nα]+1 2 [1− Φ (cpi,N )]

Nα
+

(N −Nα)

Nα

[
O
(
N1−2αT−1)+O

(
N2−4α)] ,

and, as long as ∑N
i=[Nα]+1 2 [1− Φ (cpi,N )]

Nα
= op (1) , (B43)

then,13 ∑N
i=[Nα]+1 I (|zi,T,N | ≥ cpi,N |βi1 = 0)

Nα
→ 0,

if either α > 2/3 or α > 3/5 and N2−3αT−1= o(1). The latter follows, if α > 3/5 and N = o(T 5). For simplicity,

we will assume that α > 2/3. Now, we check

lim
N,T→∞

(∑Nα

i=1 βi1 Pr (|zi,T,N | ≥ cpi,N |βi1 6= 0)

Nα

)
, and

lim
N,T→∞

(∑N
i=[Nα]+1 βi1 Pr (|zi,T,N | ≥ cpi,N |βi1 = 0)

Nα

)
.

13 It is easy to see that both the Holm and Bonferroni multiple testing approach discussed in Section 3.1
satisfy (B43). For Bonferroni, this is obvious. For Holm, we note that if cpi,N = Φ−1 (1− pi), pi =

p
2(N−i+1)

, then 2 [1− Φ (cpi,N )] = Ci
p

2(N−i+1)
, for some uniformly bounded positive constants Ci. Since∑N

i=[Nα]+1 2 [1− Φ (cpi,N )] ≤ C lnN , (B43) holds.
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We have,

lim
N,T→∞

(∑N
i=[Nα]+1 βi1 Pr (|zi,T,N | ≥ cpi,N |βi1 = 0)

Nα

)
= 0,

and

lim
N,T→∞

(∑Nα

i=1 βi1 Pr (|zi,T,N | ≥ cpi,N |βi1 6= 0)

Nα

)
= lim
N,T→∞

∑Nα

i=1 βi1
[
1− Φ

(
cpi,N −

βi1
√
T

σi

)
+ Φ

(
−cpi,N −

βi1
√
T

σi

)]
Nα


(B44)

→p E(v̄) = µv1 ,

using (B41), or

θ̄ →p µv1 . (B45)

And therefore,
σ̂2
w̄

µ2
v1

→p 1.

Finally, for II and III we first note that we have already established that N−α
∑N
i=1 I (|zi,T,N | ≥ cpi,N ) →p 1,

as N and T → ∞, assuming that α > 2/3. But by the proofs of Lemma A.1 and A.2 of (Pesaran, 2006,

Theorem 15.18) and using assumption 6 it immediately follows that II = op(1) and III = op(1) completing the

proof. In summary, consistency is obtained under Assumption 6 and conditions (B42) and (B43) if α > 2/3.

Note that in the case of a multi-factor setting, (B44) can alter. If α = α1> α2> ... > αm, then the denominator

can potentially capture more elements than Nαand so (B45) converges to
∑m
j=1 cjµvj ,where 0 < cj< 1.

Supplementary Appendix VI: Additional Monte Carlo simulation results

We provide some additional Monte Carlo simulation results in this appendix. First, we set µv= 1 and keep

α = α1> α2. In this case α̃ consistently estimates α and has the asymptotic distribution as described in Theorem

1. Next, we present size and power of tests based on α̊ as well. We use the same confidence bands as in the case

of α̃. From the results shown for experiment A it is confirmed that α̊ is super-consistent. Finally, we consider the

two factor model of (36) for the case when α = α1= α2 and depict bias and RMSE results for estimator α̊.

A two-factor model where µν = 1

In addition to the results analysed in Section 4, here we consider the instance when µν = 1 and show bias, RMSE,

size and power results for estimator α̃ which is asymptotically distributed in accordance to Theorem 1. We use

the set up of experiment A of Section 4 and set µv= 1, µν2 = 0.87, µν1 =
√
µ2
ν −N2(α2−α)µ2

ν2 and ς= 3/4. Since

the leading factor (f1t) is serially uncorrelated, the statistic for making inference about α is given by(
1

T
V̂
f2
1

+
4

N α̃

σ̂2
v1

µ2
v1

)−1/2

2 ln(N) (α̃− α∗)→d N(0, 1). (B46)

Note that when the leading factor is serially uncorrelated then V̂
f2
1

= ̂E(f4
1t)/σ

4
f1
− 1, where ̂E(f4

1t)/σ
4
f is consis-

tently estimated by

̂E(f4
1t)/σ

4
f1

=

∑T
t=1 (x̃t − x̃)4

T
,

where x̃t =
(
N−1∑N

i=1 xit
)
/σ̂x̄, and ̂σ2

v1
/µ2

v1
, the estimator of σ2

v1
/µ2

v1
, is given by

σ̂2
v1

µ2
v1

=

Nα̃∑
i=1

(
v̂

(s)
i1 − 1

Nα̃

Nα̃∑
j=1

v̂
(s)
j1

)2

N α̃ − 1
,

23



where
{
v̂

(s)
i1

}
denotes the sequence of v̂i1 sorted according to their absolute values in a descending order, and v̂i1

is the OLS estimator of the regression coeffi cient of xit on x̃t = x̄t/σ̂x̄ - see Lemma 16 for details. The above

expressions apply irrespective of the number of factors included in model (36).

Further, though not depicted in these Monte Carlo simulation results (these are available upon request), we

consider the case of serially correlated factors as it is being used in the empirical applications of Section 5. When

ρj 6= 0, we use a corrected variance estimator of f1t. The relevant formula for the test statistic is given by[
1

T

[
V̂
f2
1
(q)
]

+
4

N α̃

σ̂2
v1

µ2
v1

]−1/2

2 ln(N) (α̃− α∗)→d N(0, 1). (B47)

V̂
f2
1
(q) is computed by first estimating an AR(q) process for z̃t = zt−z̄, where zt = (x̃t − x̃)2 , x̃t =

(
1
N

∑N
i=1 xit

)
/σ̂x̄,

x̃ = T−1∑T
t=1 x̃t and z̄ = T−1∑T

t=1 zt , and then V̂f2
1
(q) = σ̂2

z/(1 − γ̂1 − γ̂2 − ... − γ̂q)2, where σ̂z is the regres-

sion standard error and γ̂i is the ith estimated AR coeffi cient fitted to z̃t. The lag order is set to q = T 1/3,

and ̂σ2
v1
/µ2

v1
is computed as before. Note that this correction is not the standard Newey-West one but uses an

estimated autoregressive filter. We found that this correction leads to better finite sample properties and hence

we use this in both the Monte Carlo study and the empirical applications in Section 5.

Size of the tests is computed under H0 : α = α0, using a two-sided alternative where α0 takes values in

the range [0.70, 1.00], as indicated previously. Power is computed under the alternatives Ha : αa = α0 + 0.05

(power+), and Ha : αa = α0 − 0.05 (power-). Again, all results are scaled up by 100.

Size and power of tests based on α̊ estimator

Next, we conduct size and power tests based on estimator α̊. We use the same variance estimates as in (B46)

which constitute conservative bands for α̊ and show results for the setting described in Section 4 for experiment

A when µ2
v 6= 1. The same specifications for the null and alternative hypotheses are imposed as in the Section

above.

A two-factor model when α = α1 = α2

Finally, we repeat the analysis of Section 4 for Experiment A using the less likely alternative of α = α1= α2.

Here, we set µv1 = µv2 = 0.5 and ς= 1/3.

Additional results

Table A1 presents bias, RMSE, size and power statistics for experiment A in the case of the bias-corrected

estimator, α̃, and when µv = 1. Results in Table A1 show more clearly the asymptotic distribution derived for α̃

which is also used for α̊. Again, we only report results for values of α over the range [0.70, 1.0]. Recall that α is

identified only if α > 1/2, and for asymptotically valid inference on α it is further required that α > 4/7, unless

T 1/2/N (4α−2) → 0, as N and T → ∞ in the case of α̃ (see Theorem 1), or that α > 2/3 in the case of α̊ (see

Supplementary Appendix V).

It appears that estimator α̃ performs reasonably well in terms of bias and RMSE for values of α in the range

[0.70− 0.85], when µv = 1. To get a clearer picture of the asymptotics we turn to the right-hand-side of Table A1

that summarizes the size and power of the tests based on α̃ . There is evidence of some size distortion when α is

below 0.75, but it tends towards the nominal 5% level as α is increased. The size distortion is also reduced as N

and T are increased. The power of the test also rises in α, N and T , and approaches unity quite rapidly. However,

the power function seems to be asymmetric with the power tending to be higher for alternatives above the null

(denoted by Power+) as compared to the alternatives below the null (denoted by Power-). This asymmetry is

particularly marked for low values of α and disappears as α is increased.

Turning to the size and power of the tests based on α̊, its superior properties are verified by the results shown

on the right-hand-side of Table A2. Indeed, in general size tends to zero as α increases towards 1 and as N and

T increase. Similarly, power is uniformly close to unity irrespective of the value of α chosen or the N and T

24



combination considered (low power is only recorded for the smallest value of α considered and for small N and T

combinations).

Finally, we present results for Experiment A when α = α1= α2 in Table A3. Compared with Table A-B, both

bias and RMSE results are more elevated for estimator α̊ for all values of α when we impose the two factors to

be of the same strength in the data generating process. This is expected given the discussion in Supplementary

Appendix V. Consistent with the baseline case, both the bias and RMSE of α̊ fall gradually as N, T , and α are

increased.

Calibration of R̄2
N

In order to select an appropriate R̄2
N for the Monte Carlo simulation study of Section 4 and Supplementary

Appendix VI, we computed R̄2s for the regressions, (36) summated based on data from a number of empirical

applications. For each data set we first calculated α̊ corresponding to α̌ and selected the strong N α̊ units. This

resulted in a modified data set, x(s) =
[
x

(s)
it

]
of dimension T × N α̊ (elements of x(s) were standardised to have

unit variance). Then, we extracted the principal components (pc) from x(s) and run the regression

x
(s)
it = ai + γijpcj + εit, (B48)

for i = 1, 2, ..., N α̊, and t = 1, 2, ..., T. We set the number of principal components to include in (B48) to j =

1, 2, 3, respectively. Finally, we computed the R2 of each of the N α̊ regressions and took their average: R̄2
N =

1
Nα̊

∑Nα̊

i=1 R
2
i . We conducted this analysis for a number of empirical applications, of which: (i) GVAR macro

economic data sets (real GDP growth - R̄2
N = 0.28, 0.37, 0.44, inflation - R̄2

N = 0.47, 0.57, 0.64, real equity price

change - R̄2
N = 0.47, 0.59, 0.66), and (ii) US - R̄2

N = 0.30, 0.50, 0.60 - and UK - R̄2
N = 0.25, 0.43, 0.52, all using

j = 1, 2, 3 principal components, respectively. See also Section 5 for further details of the data sets.
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Table A3: Bias and RMSE (×100) for the α̊ estimate of the cross-sectional exponent -
case of two serially independent factors and cross-sectionally independent idiosyncratic errors

(α2 = α, fjt and uit ∼ IIDN(0, 1), vij ∼ IIDU(µvj − 0.2, µvj + 0.2), j = 1, 2, µv1
= 0.5, µv2

= 0.5)
N=100,200,500,1000 and T=100,200,500

α 0.70 0.75 0.80 0.85 0.90 0.95 1.00

N\T 100

100 Bias 9.41 8.51 7.73 6.96 5.45 3.28 -0.04
RMSE 9.55 8.63 7.82 7.03 5.51 3.33 0.06

200 Bias 8.92 8.41 7.54 6.49 5.04 3.12 0.03
RMSE 9.00 8.47 7.59 6.53 5.08 3.14 0.04

500 Bias 7.39 7.01 6.52 5.66 4.50 2.81 0.05
RMSE 7.45 7.06 6.56 5.69 4.53 2.83 0.06

1000 Bias 6.82 6.49 6.00 5.21 4.14 2.56 0.05
RMSE 6.86 6.53 6.03 5.24 4.17 2.58 0.06

200

100 Bias 10.95 9.84 8.91 8.00 6.29 3.72 -0.10
RMSE 11.03 9.90 8.97 8.04 6.32 3.75 0.10

200 Bias 9.60 9.35 8.56 7.51 5.92 3.68 -0.02
RMSE 9.64 9.38 8.58 7.53 5.93 3.69 0.02

500 Bias 8.76 8.36 7.81 6.88 5.56 3.50 0.02
RMSE 8.78 8.37 7.82 6.89 5.56 3.51 0.02

1000 Bias 8.08 7.77 7.29 6.46 5.26 3.36 0.03
RMSE 8.09 7.78 7.29 6.47 5.27 3.36 0.03

500

100 Bias 11.54 10.39 9.39 8.35 6.52 3.84 -0.12
RMSE 11.60 10.43 9.43 8.38 6.54 3.86 0.12

200 Bias 10.26 9.90 9.07 7.94 6.26 3.83 -0.04
RMSE 10.28 9.92 9.09 7.96 6.27 3.84 0.04

500 Bias 9.40 8.97 8.42 7.44 6.00 3.75 -0.01
RMSE 9.41 8.98 8.43 7.44 6.00 3.75 0.01

1000 Bias 8.89 8.43 7.93 7.08 5.77 3.67 0.00
RMSE 8.89 8.43 7.94 7.08 5.77 3.67 0.00
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