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Abstract

In this paper we provide a characterization of the degree of cross-sectional dependence in
a two dimensional array, {z;;,i = 1,2,...N;t = 1,2,...,T} in terms of the rate at which the
variance of the cross-sectional average of the observed data varies with V. We show that
under certain conditions this is equivalent to the rate at which the largest eigenvalue of the
covariance matrix of @y = (x4, xat, ..., ty¢)' rises with N. We represent the degree of cross-
sectional dependence by «, defined by the standard deviation, Std(Z;) = O (N “‘1), where
Z; is a simple cross-sectional average of ;. We refer to « as the ‘exponent of cross-sectional
dependence’, and show how it can be consistently estimated for values of a@ > 1/2. We
propose bias corrected estimators, derive their asymptotic properties and consider a number
of extensions. We include a detailed Monte Carlo study supporting the theoretical results.
We also provide a number of empirical applications investigating the degree of inter-linkages
of real and financial variables in the global economy, the extent to which macroeconomic

variables are interconnected across and within countries.
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1 Introduction

Over the past decade there has been a resurgence of interest in the analysis of cross-sectional
dependence applied to households, firms, markets, regional and national economies. Researchers
in many fields have turned to network theory, spatial and factor models to obtain a better

understanding of the extent and nature of such cross dependencies. There are many issues to
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be considered: how to test for the presence of cross-sectional dependence, how to measure the
degree of cross-sectional dependence, how to model cross-sectional dependence, and how to carry
out counterfactual exercises under alternative network formations or market inter-connections.
Many of these topics are the subject of ongoing research. In this paper we focus on measures of
cross-sectional dependence and how such measures are related to the behaviour of cross-sectional
averages or aggregates.

The literature on cross-sectional dependence distinguishes between strong and weak forms
of dependence, with the former typically associated with factor models and the latter with
the spatial models. In finance, the approximate factor model of Chamberlain (1983) provides
a popular characterization of cross-sectional dependence of asset returns in terms of a factor
dependence and a remainder term. The factors are intended to capture the pervasive market
effects, whilst the remainder term is assumed to be only weakly cross-sectionally correlated (Ross
(1976), Ross (1977)). Strong and weak cross-sectional dependence are defined in terms of the
rate at which the largest eigenvalue of the covariance matrix of the cross section units rises with
the number of the cross section units. See, for example, Chudik et al. (2011).

Let x;+ denote a double array of random variables indexed by ¢ = 1,2,..., N andt =1,2,..., T,
over space and time, respectively, and without loss of generality assume that E(x;) = 0. Then
the covariance matrix of ®; = (x14,72,...,xn¢) is given by Ty = E(zyz)) = (0ij,2) with
its largest eigenvalue denoted by Apmax (X ). The variables x;; are said to be strongly cross-
sectionally correlated if Apax (X ) rises with N, and they are said to be weakly cross-sectionally
correlated if Apax (2 ) is bounded in N. This is clearly an important distinction and forms the
basis of most factor models considered in finance and macroeconometric literature - Forni et al.
(2000), Forni and Lippi (2001), Bai and Ng (2002) and Bai (2003). However, since both the fac-
tors and their loadings are unobserved it is desirable to consider statistical techniques that test
the strong/weak factor assumption. A test of weak cross-sectional dependence is recently pro-
posed by Pesaran (2013), but a more general framework is needed to address intermediate cases
between weak and strong forms of dependence. Such intermediate cases can be parameterized

in terms of the exponent «, such that N™*A\pax (Zn) = O(1), and

lm N~ Amax (Sn) > 0. (1)

N—oo
The weak and strong dependence cases then relate to « = 0 and « = 1, respectively.

Amax (X ) and its limiting properties have been the object of considerable interest in the
statistical literature on large data sets. However, former work in the area (see, e.g., Yin et al.
(1988), Bai and Silverstein (1998), Hachem et al. (2005a) and Hachem et al. (2005b)) and more
recent contributions that allow unequal eigenvalues in the design of the population covariance
matrix (see, e.g., Fan et al. (2013) and Shen et al. (2013)) suggest that as a statistical measure of

cross-sectional dependence A\pax (X ) could be difficult to analyse, especially for temporally and



cross-sectionally dependent data as the theoretical asymptotic properties of sample estimators
of Amax () depend crucially on the form of the dependence. In particular, we note that this
work predominantly uses i.i.d. and gaussianity assumptions in its approach.

In this paper we consider a simpler alternative measure based on cross sectional averages
defined by z; = N~} Z,fil Zit. The limiting behaviour of Z; is of interest in its own right and
provides information on the nature and degree of cross-sectional dependence. In the case of
asset returns this determines the extent to which risk, associated with investing in particular
portfolios of assets, is diversifiable. In the case of firm sales this is of interest in relation to the
effect of idiosyncratic, firm level, shocks onto aggregate macroeconomic variables such as GDP.
In the case where z;; are cross-sectionally independent, using standard law of large numbers,
one obtains the result that Var (z;) = O (N~'). However, in the more general and realistic
case where x;; are cross-sectionally correlated, we have that Var (Z;) declines at a rate that is a
function of & where « is defined in (1). We note that Var (Z;) cannot decline at a rate faster than
N—1. It is also easily seen that Var (Z;) cannot decline at a rate slower than N ol g<a<l.
To see this we explore the link between Apax (Xn) and Var (Z;). Note that #; = N~1/x;, where

tis an N x 1 vector of ones. Then, we have
Var (zy) = N72/2N0 < N720 Apax (Xn) = N\ phax (Xn).

Therefore, a defined by N~ A\pax (Zn) = O(N®~1) provides an upper rate for Var (z;).
It is interesting to note that the above measures of cross-sectional dependence are also related
to the degree of pervasiveness of factors in unobserved factor models often used in the literature

to model cross-sectional dependence.! As an illustration consider the simple factor model
Tit = a; + Birfie +uip fori =1,2, ... N; t=1,2,....T, (2)

where z;; depends on a single unobserved factor fi;, with the associated factor loadings, 3;1, and
cross-sectionally independent idiosyncratic errors, u;. The extent of cross-sectional dependence
in z;; crucially depends on the nature of the factor loadings. It is easily seen that Amax (En) =
0 (vazl 121>, the column sum norm? of Xy, defined by ||Ex|; = sup, Zf\il |oijzl, is of order

2
O ((supj 18i1]) N, |ﬂ7;1\) and Var (7;) = O {max [(N1 >y 51'1) ,Nl] } The degree of
cross-sectional dependence will be strong if the average value of 5;1 is bounded away from zero.

In such a case, N~ A\pax (En), [|[Zn]|; and Var (Z;) are all O(1), which yields o = 1.

However, other configurations of factor loadings can also be entertained, that yield values

!Factor models have a long pedigree both as a conceptual device for summarising multivariate data sets as
well as an empirical framework with sound theoretical underpinnings both in finance and economics. Recent
econometric research on factor models include Bai and Ng (2002), Bai (2003), Forni et al. (2000), Forni and Lippi
(2001), Pesaran (2006) and Stock and Watson (2002).

2We introduce the column sum norm of Xy as it is a commonly used measure of cross-sectional dependence
alongside Amax (Xn) .



of a in the range (0,1]. Since both fi; and (;; are unobserved, taking a strong stand on
a particular value of « might not be justified empirically. Accordingly, Chudik et al. (2011),
Kapetanios and Marcellino (2010) and Onatski (2012) have considered an extension of the above
factor model which allows the factor loadings, 3;1, to vary with N. In particular, by considering
Bin = O(N©@=1/2) for any 0 < a < 1. This specification implies N~ A\pay (Zn) = O (Na_l),
N7 [Zn]; = O (N>1), aslong as max; 81 = op (N?), foralld > 0 and Var (z;) = O (N*~1).3

Although mathematically convenient, the assumption that all factor loadings vary with N
(almost uniformly) is rather restrictive in many economic applications. Therefore, we will not
consider it in detail, but only briefly as an alternative formulation. In this paper we consider a
baseline formulation where we assume that only N® of the N factor loadings are individually
important, in the sense that they are bounded away from zero. More specifically, we consider
Bi1 = vi1, for i = 1,2,....[N?], and B;j1 = 041, for i = [N®] +1,[N%] +2, ..., N, where [N¢] is the
integer part of N, 0 < o < 1, vj1 ~ @d(finy, 03,), po, # 0, 02, > 0 and Z,f\;[NQ]H 01 = Op (1).
In effect, the factor loadings are grouped into two categories: a strong category with effects
that have non-zero mean, and a weak category with negligible effects with a mean that tends
to zero with N. Under this setup, N ' Apax (Bn) = O (N7 1), N7H||Ex]|; = O (N*1), as
long as max; 31 = oy (Nd), for all d > 0, Var(z;) = O (NQO‘_Q) and the standard deviation
of Zy, denoted by Std (z;) is O [max (No‘*l, N*1/2)]. At least N/2 of the loadings must have
non-zero mean for the covariances in ¥ to dominate the diagonal of ¥ and result in a rate
of decline for Std(z;) that is O (N 0‘*1). If fewer than N1/2 of the loadings have non-zero mean,
then Std(z;) = O (N -V 2). The presence of at least N 1/2 Joadings with non-zero mean implies
that o > 1/2. In that case, and as long as iy, # 0, N ' Apax (En), N7 En |, and Std (7;)
decline at the same rate. As a result in the context of the factor model in (2), a has a unique role
as a measure of cross-sectional dependence. It is important to note that if g, = > ;" fty, = 0,
where m is the number of factors, then Std (z:) = O (N_1/2) for all « including the case a = 1.
The implication is that even a strong factor model allows full portfolio diversification at the
same rate as if no factors were present. Seen from this perspective, the case where p, = 0 does
not seem very plausible, at least in the case of macro and financial data sets.

As we shall see, since we are interested in the behaviour of cross-sectional averages, our
proposed estimator of a will be invariant to the ordering of the factor loadings within each
group. The only important consideration is that there exists a split between loadings with non-
zero mean and loadings that are cumulatively of a small order. The split need not be known.

Following the theoretical line of reasoning advanced above, in this paper we propose the use
of the variance of the cross-sectional average of the observed data, Z;, to estimate and carry out
inference on a. We provide a feasible estimator for o under a multiple factor setting and derive

inferential theory for it. We derive the asymptotic distribution of our estimator for a given value

3A different strand of literature that deals with weaker forms of cross-sectional dependence includes spatial
econometric models. These correspond to the case of a = 0.



of ;2. Further, we present our preferred estimator that additionally takes into account the term
p2 together with its asymptotic properties. We consider extensions that relate to the presence
of temporal dependence in f, = (fit, ..., fmt)/ or u;, and weak cross-sectional dependence in ;.
It is also worth pointing out that our estimators of a do not use explicitly a factor structure.
The factor representation is only needed as a vehicle to derive the theoretical properties of the
estimator and to give a a unique interpretation as a measure of cross-sectional dependence. We
use this vehicle because working with covariances directly would involve high level assumptions
and would potentially lead to stricter conditions such as the need for T to rise faster than N. A
further crucial reason for using the factor model is that, as proven in Theorem 4 of Chamberlain
and Rothschild (1983), a covariance matrix that has a finite number of eigenvalues that tend
to infinity as N increases, has a unique factor representation. This makes the factor model a
canonical model for analysing cross-sectional dependence associated with covariance matrices
with a finite number of exploding eigenvalues.

To illustrate the properties of the proposed estimators of o and their asymptotic distribu-
tions, we carry out a detailed Monte Carlo study that considers a battery of robustness checks.
Finally, we provide a number of empirical applications investigating the degree of inter-linkages
in real and financial variables in the global economy, the extent to which macroeconomic vari-
ables are interconnected across and within countries, with special reference to the US and UK
economies in the second case.

The rest of the paper is organised as follows: Section 2 provides a formal characterisation
of a in the context of a single factor model, and discusses potential estimation strategies. This
section also presents the rudiments of the analysis of the variance of the cross-sectional average
and motivates the baseline estimator and bias corrected versions of it. Section 3 presents the
theoretical results of the paper. Section 3.1 provides the full inferential theory under a multiple
factor set up. Section 3.2 deals with possible cross sectional dependence in the error terms and
touches upon an alternative specification of factor loadings. Section 4 presents a detailed Monte
Carlo study. The empirical applications are discussed in Section 5. Finally, Section 6 concludes.
Proofs of all theoretical results are relegated to Appendices.

Notations: ||A|| = [T?‘(AA')]l/2 is the Frobenius norm of the m x n matrix A. sup; W; is the
supremum of W; over i. a,, = O(by,) states the deterministic sequence {ay,} is at most of order b,,,
x, = O,(yn) states the vector of random variables, @, is at most of order y,, in probability, and
Zp, = 0p(yn) is of smaller order in probability than y,,, —, denotes convergence in probability,
and —4 convergence in distribution. All asymptotics are carried out under N — oo, jointly with

T — 00.



2 Preliminaries and Motivations

In this Section we provide an informal account of the concept of the exponent of cross-sectional
dependence and our proposed estimator of it. We consider the single factor model given by
(2) as it allows a simpler exposition. Our formal theoretical analysis, provided in Section 3, is
couched in terms of a multiple factor model and is therefore appropriately general. We specify

the loadings as follows

Bﬂ = V1 for i = 1,2,...,[Na], (3)
Bi1 = Uit for i = [N*] + 1,[N®] +2,..., N,
where 1/2 < a < 1, [N?] is the integer part of N¢, and {vil}ga] is an identically, independently
distributed (IID) sequence of random variables with mean p,, # 0 and variance 012,1 < oo. Also,
Zij\i[ Nel+1 0;1 = Op (1). Throughout our analysis and without loss of generality, we assume that

factors have unit variance, and, in the case of multiple factors, are uncorrelated with each other.

2

»,» in anticipation of our multiple factor

We introduce the subscript 1 for (51, vi1, ey, and o
analysis in the next section.

In effect, the factor loadings are grouped into two categories: a strong category with effects
that have non-zero mean, and a weak category with negligible effects and a mean that tends
to zero with N. Under this setup, N *Apax (En) = O (N7 1), N7H|Zy|, = O (N*1), as
long as max; 31 = op (Nd), for all d > 0, Var(z;) = O (NZO‘*Q) and the standard deviation
of Z;, denoted by Std (z;) is O [max (N1, N_l/Q)]. At least N'/2 of the loadings must have
non-zero mean for the covariances in 35 to dominate the diagonal of X and result in a rate
of decline for Std(z;) that is O (Na_l). If fewer than N'/2 of the loadings have non-zero
mean, then Std(z;) = O (N -1/ 2). The presence of at least N'/2 loadings with non-zero mean
implies that o > 1/2. In that case, and as long as py, # 0, N ' Amax (En), N1 ||Zy||; and
Std (z;) decline at the same rate. As a result, in the context of the factor model in (2), a has
a unique role as a measure of cross-sectional dependence. The above loading setup implies that
N1 Zf\i 1 5121 =0, (N 0‘*1), which is more general than the standard assumption in the factor
literature that requires N1 Zfil 5221 to have a strictly positive limit (see, e.g., Assumption B of
Bai and Ng (2002)). The standard assumption is satisfied only if & = 1. It is important to note
that if p,, = 0, then Std (z;) = O (N_1/2) for all o including the case a = 1. The implication
is that even a strong factor model allows full portfolio diversification at the same rate as if no
factors were present. Seen from this perspective, the case where u,, = 0 does not seem very
plausible, at least in the case of macro and financial data sets.

To motivate our choice of @ as the exponent of cross-sectional dependence of x;;, we write

(2) as



e =a+ 0 fi+uy, (4)

where &; = (214, at, ..., Tnt)', a = (a1, a2, ...,an)’, B = (11, P21, .., Bn1) and wy = (us, uat, ..., unt)'.
We also note that under the above assumptions, X5 = E(88') — E(B8)E(8'), with Anax(E3) <
K < 00, 3y, = E(wu}), with Apax(By) < K < 00, py, = E(f11) =0, 012[1 =E(fu—pp)? =1,
and fi; and B are distributed independently. Hence,

Cov(zy) = [Zg + E(B)E(B')] + 2.

Consider now the cross-sectional averages of the observables defined by Z; = //x;/N, where

¢ is an N x 1 vector of ones. Then,

/E 2
Var(z) = N"2/Cov(z)e = N72/ [Z5 + 2] o+ [L ]\(7'8)} . (5)
But under (3), it follows that

[N¥]

E Vi1 | = Ule

N
> B =[N
=1

where U1y = Na] Zz 1 Vo is Op (1) and — [NQ} Zi]\i[Na]+1 Bi1 — 0, for i > [N?]. Recall that
any sequence of loadings, for which Zi: vl B = Op (1) is permitted. Hence,

NTUEB) = iy [N

Also,
N72/S50 =N 500 < [N7?] Amax (E5) ,

where 17 is an [N°] x 1 vector of ones and X 40 is the upper [N] x [N®]sub-matrix of ¥z.

Using the above results in (5) we now have

Var(z,) < [N°7?] Amax (2p) + N len + p2 [N?*7?], (6)
where .
15D M)
eN = < K < oo. (7)

Note that u? enters (6), rather than /ﬁ,l. In the case of a single factor u2 =: ,u%l. However, for
multiple factors p2 will be defined in terms of the means of the loadings of all the factors in a
way that will be discussed in detail in the next Section. By assumption Amax (3g) < K < oo,
and hence under 1 > a > 1/2, we have

02 =Var(z) = pi [N**7?] + Nley + O(N*2). (8)



As pointed out earlier, in cases where o < 1/2, the second term in the RHS of (8), that arises
from the contribution of the idiosyncratic components, will be at least as important as the
contribution of a weak factor, and using Var(z;) we cannot identify o when it is less than 1/2.

But in cases where a > 1/2 a simple manipulation of (8) yields

2(a —1)In(N) = In(02) — In (42) + In <1 - N_ZCN)

0z

NﬁlcN

~lIn(oz) —1 2 —
Il(O'x) n (:u’v) 0_% 5
or ) (2
11In(oz 1
wn1y tinlod) L) N 9)

2In(N) 2 In(N) 2[NIn(N)|oz

Note that the fourth term on the RHS of (9) is of smaller order of magnitude than the previous
three terms and can be ignored, and « can be identified from (9) using a consistent estimator
of 02, given by

e,
:TZ@—.@) , (10)

=1

SN

o]

~+

where 7 = 771 Zthl Z;. Ignoring terms that eventually vanish as N — oo, we obtain the

following initial estimator of «
b= 14 LD (11)
N 21In(N)’

which is consistent and has a rate of convergence that is In(N)~!. It is important that the
estimator of a also allows for the third term in (9). This can be achieved by replacing u2 with a
suitable estimator. There are many alternatives for this estimation which are discussed in detail
in the next section. We denote the estimator of u2 by fi2.

Next, we discuss correcting the bias arising from the final term in (9). This is easily achieved
in the case of exact factor models where the idiosyncratic errors are cross-sectionally independent,

and Y, is a diagonal matrix. In this case a consistent estimator of ¢y is given by
N —_
én=N"1> 67 =5%, (12)
i=1

where 01-2 is the i*" diagonal term of ¥,,, 61-2 = % Z;le ﬁ?t, Ui = xit—gizf:t, and 51 denotes the OLS
estimator of the regression coefficient of x;; on Z;. It is also useful, at this point, to introduce the
notation 512\/ =N"1 Zf\il af to denote the population quantity corresponding to 515\,. Note that
if 32, is diagonal, ¢y = 6']2\,. Further, note that while ¢y, as an estimator for ¢y, is motivated by
appealing to an exact factor model, mild deviations from this model can be dealt with by using

an alternative estimator for cy, as discussed in Section 3.2. Using consistent estimators of o2,



u2, and cy, we propose the following bias-adjusted estimator

1n(6%) (i) N , (13)

= () =1H 51N T 2 (V) 2V In(N)] 62

3 Theoretical Derivations

3.1 Main Results

Consider now the following multiple factor generalisation of our basic setup:

m
Tit = Zﬁijfjt +uip = B fy+uir, i =1,2,..., N,
j=1
where f, = (fit, faty -, fmt)’ 18 an m x 1 vector of unobserved factors, and 8, is the associ-
ated vector of factor loadings (m is fixed). Our first set of theoretical results characterise the

asymptotic behaviour of &. We make the following assumptions.
Assumption 1 The factor loadings are given by

Bij = vij fori=1,2,..,[N%], (14)
Bij = vij, for i =[NY]+1,[N%]+2,.., N,

where ap > 1/2, 0 < oj <1 and a1 > o, j = 2,...,m. Also, {Uij}z[zl]] and {ﬁij}fi[Naj] are

+1
1ID sequences of random variables for all j = 1,2,...,m. The former sequences have a non-zero

2

mean, fw,; # 0, and a finite variance 0y, < 00. The latter sequences are summable such that

Kj = Zi]i[Naj]H vij = Op(1) has a finite mean, pu,, and a finite variance, 0’,%]-7 for all j and N.

Assumption 2 The m x 1 vector of factors, f, follows a linear stationary process given by
[e.e]
fe= ZT/’ijf,t—jy (15)
j=0

where vy 1s a sequence of IID random variables with mean zero and a finite variance matriz,
2Vf7

the absolute summability condition

and uniformly finite p-th moments for some ¢ > 4. The matriz coefficients, ¥ ;, satisfy

o0
D g < oo,
j=0

such that {C(¢ — 2)}/{2(p — 1)} > 1/2. f, is distributed independently of the idiosyncratic

errors, wiy, for all i, t and t'.



Assumption 3 For each 1, u; follows a linear stationary process given by

(0. ]
Uit = Zl/}ijl/i,t—j; (16)
§=0
where vy, 1 = ...,—1,0,..., t = 0,..., is a double sequence of IID random variables with mean

zero and uniformly finite variances, 0' and uniformly finite p-th moments for some ¢ > 4. We
assume that
o0
sup Y _ 5 [¢] < oo, (17)
7 ]:0

such that {C(¢ —2)}/{2(¢ — 1)} = 1/2.

Assumptions 2 and 3 are mostly straightforward specifications of the factor and error processes
assuming a linear structure with sufficient restrictions to enable the use of central limit theorems.
Note that Assumption 3 rules out the existence cross-sectional dependence in the error terms.
This condition will be relaxed in Section 3.2.

First, note that

(V]

Bin = N1 Z Bi NOU 2izt Yy
j - 7/] R

N -
Ei:[N“J’]H Vij

= N%1o;n +Op(N 1) (18)

[N ] N
and
z oy [INY] 2y _ a;—2
Var(Bjn) = e 0, FON"7) = O(N“ 7).

Consider now Z; — E(%;) = Sinfit + Bon for + --.BmnN fmt + s, and, without loss of generality,

recall that o =: a1 > «a, j = 2,...,m, and that the factors are orthogonal. Then,

m

Var(z;) = > E(Bly) + E(1})
j=1

_ Z [E(BjN)]Q + Z Var(Bin) + BE(a;),

J=1 Jj=1

and, as in the single factor case, we have Var(z;) = O(N?*~2) 4+ O(N~1), namely the order
of Var(z;) is dominated by the factor with the largest exponent of cross-sectional dependence,

assuming that o > 1/2. We also note that

where By = (BlN; ...,BmN)/, oy = (U1N, ..., Umn)', and Dy is an m x m diagonal matrix with

diagonal elements given by N%~% and set

1 a—1/2 1/2
dr = v'NSff/ fr— I’l’vsz/ My, (20)

10



— T
T IZt:Iftv Ypp=
(lev'“vul)m)/> v; =

where S¢p = (sjo,f) = %Zthl (ft _f_T) (ft - f_T),’ jo=1,...m, fr
diag (03) = I, my = B(f)) = (psesny,)s and p, = (B(v;))

!/
<v1j, e ’U[Naj]j> . Further, define p2 = Z;":l ,ugj. Our informal exposition in Section 2 suggests

o . . . . 1n(u%) eN
that &, as an estimator of «, is subject to two sources of bias, (V) and N T, Dy S DNon

where the latter bias corresponds to the last part of (13) in the multiple factor case. This can be

corrected using a first order accurate estimator given by ]\‘;10‘_72 or a second order bias correction
T

N62
use of these corrections by

given by 111(15#02 (1 + L ), where ¢y is defined in (12). We denote the estimators that make

and

G—d— N 1y
~ T 2In(N)Ns2 N&?2

T

We now introduce the main theorem of the paper.

Theorem 1 (a) Suppose Assumptions 1 to 8 hold, « = a1 = ag = ... =y, > 1/2. Then,
. * A CN
Net. T) (2In(N) (& — o) — N m 21

where

wm = lim min (N T)Var(d%),

N, T—o0

dr is defined by (20),

and 12 = S i
(b) Continue to assume that « = a1 = ag = ... = ay, > 1/2, and suppose that either

NT%,/_Z — 0 ora>4/7, then

Vmin(N* , T)2In(N) (& — a*) =4 N (0,wn) , (22)
and
Vmin(Ne*, T)2In(N) (& — ™) —4 N (0,wy,) . (23)

(¢) Further, if either
a=a; >a+1/4, (24)
or if
1

3a/4, T°=N, b>-—" 25
oy < CY/, y >4(C¥—O{2), ( )

11



and ag > a3 > ... >y >0, (21), (22) and (23) hold with w replacing wy,, where

L min(N,T) min(N®, T) 402,
o= [Py D | (26)
Vz=Var ( flzt> +2 Z Cov (f~12t7 flzt—i) )
' i=1
and fi, = (fi — pp)/op, but o is now defined by
1 2
af=ay=a+ n (1) (27)

2In(N)’

(d) Finally, if « = a1 > ag > az... > oy, > 0 but neither (24) or (25) hold, then (21), (22)
and (23) hold with w replacing wy,, and

In (E}?ll N 2(“j‘a)#3j)
2In (N)

a*

ay =a+

The above result gives a full distribution theory but it is not operational in practice since
p2 is not known. So next, we consider the third term of (9) which depends on pu2. While
noting that the value of 2 is irrelevant for the probability limit of &, in small samples it is an
important determinant of cross-sectional dependence. Hence, correcting for this bias provides
us with a refined estimator of o that is likely to have better small sample properties. The
first step towards deriving an estimator for u2 is to note that y, is the mean of the population
regression coefficient of z;; on &; = %/ for units z;; that have at least one non-zero factor
loading. Therefore, once we identify which units have non-zero loadings, an estimate of u, can
be obtained by the average covariance between z;; and &y over i = 1,2, ..., [N O‘} . While there are
many ways to identify which units have non-zero loadings, a multiple testing approach to this
problem seems appropriate, considering that we are interested in u, as N — oco. This estimate is
equivalent to the one given by the standard deviation of the cross-sectional average of the units
that have non-zero loadings. We prefer the latter estimator, due to its simplicity, and propose

the following procedure:

1. Run the OLS regression of x; on a constant and ZT; and denote the estimated coefficient

of Ty by oi fori=1,2,...,N.
2. Compute the t-ratio associated with the it coefficient, &-, 1=1,2,...,N, as z5 = &-/s.e. (51) .

3. Construct
N
> oimg Tl (’25‘ > Cpi,N>

Zi]ill ()Z@‘ > Cpi,N)

Ti(cp) =

)
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where cp, N s the critical value of the i-th test that depends on N as well as the overall

nominal size of the test, which we denote by p, and c, = (cp, N Cpy, N, s Cpy.N) -

4. FEstimate p, by

1 T
ﬂv = ﬂv (cp) = T Z [i‘t(cp) - ;E(cp)]27
t=1

where Z(c,) = T~ 21 Zi(cy).

The critical values, cp, v, can be set using the multiple testing approaches of Bonferroni
(Bonferroni (1935), Bonferroni (1936)) or Holm (Holm (1979)). Both approaches deal with the
multiple testing problem without making any assumptions about the cross dependence of the
underlying N individual ¢ tests.* But Holm’s approach is less conservative and uses different
, for i = 1,2,..., N, and

sort these t-ratios in a descending order, such that ¢y > f) > .... > t(n), with associated

critical values across the units. To be more specific let t; = ‘z(;/_

critical values, Cp(iy,N- Suppose also that under the null hypothesis 5;1 = 0, 23, is asymptotically
distributed as N(0, 1), with the cumulative distribution function ®(.). Then under Bonferroni’s
approach Cp(iy,N = o1 (1 - %) which is the same for all units, whilst under Holm’s approach
Cpisy,N = o1 (1 - m) corresponding to ;).

Note that in this paper we focus more on the case when o = a1 > as > ... > «a,, which
we consider to be more realistic than the case of o = «;, j = 1,...,m. In the supplementary
Appendix V we consider the conditions under which 2 can be a consistent estimator of the
population quantity of “12)1' In particular, it is shown that fi2, computed using Bonferroni or
Holm procedures, is a consistent estimator of ugl if o >2/3and o =a1 > ar > ... > ap.
The supplement also provides more general conditions on the choice of ¢,, n, and shows that
the critical values used in Bonferroni and Holm approaches satisfy these conditions (see (B42)
and (B43) in the Supplementary Appendix V). In the simulation section we study a two factor
setting where o = a1 > a and use both Bonferroni and Holm procedures. We find that Holm’s
method performs better uniformly across all experiments. Therefore, all the results reported are
based on the Holm approach for o = a1 > ap. Monte Carlo results for o = o5, j = 1,...,m are

available in the Supplementary Appendix VI.

3.2 Extensions

In this section we consider two extensions to our main analysis. For simplicity of the treatment
we discuss these in the context of a single factor model but the extension to multiple factors is
straightforward. First, we relax Assumption 3 and allow the error terms to be cross-sectionally

weakly dependent. Accordingly, we modify Assumption 3 as follows:

‘For a recent review of this literature see Efron (2010).
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Assumption 4 For each 1, u; follows a linear stationary process given by

wir =Y i ( > fisVs,t—]) ; (28)
7=0 § = —00

where vy, 1 = ...,—1,0,..., t = 0,..., is a double sequence of IID random variables with mean
zero and uniformly finite variances, O'l%z,, and uniformly finite p-th moments for some ¢ > 4.
We assume that
o0
sup Y 5 [i] < oo,
7 ]:0
and

sup Z |5 |&:s] < o0, (29)

S§=—00

such that {{(¢ —2)}/{2(¢ — 1)} > 1/2.

Under the above assumption ¥, is no longer a diagonal matrix. When « > 2/3 the bias
term in (21) is o, (1) and, as a result, cy can still be estimated by g?v, to construct the various
estimators of a. However, in the case where 1/2 < o < 2/3, an alternative estimator for cy is
needed to take account of the non-zero covariances between u;; and wuj;. One possibility is to

use the following estimator

T 2
Z(\f 3, — ) , (30)

where
G=N"'Y éyande=T""> &, (31)
=1 t=1

and é;; = xy — 0ipCy, PC; is the first principal component of x;, ¢ = 1,..., N, and g; denotes the
OLS estimator of the regression coefficient of x;; on pc,. The use of cross section averages, Ty, in
place of pe¢, to compute é;; does not help in estimation of ¢y since Zf\; 1 (xit — &a‘ct> = 0, where
&; is the OLS slope coefficient in the regression of x;; on Z;, and suggests setting ¢y to zero. In
a multiple factor setting additional principal components are needed to filter out any remaining
cross-sectional error dependencies.

Up to now we have analysed estimators of the exponent of cross-sectional dependence assum-
ing that factor loadings take the form given in Assumption 1. We briefly examine an alternative
formulation (discussed in the Introduction) which is mathematically convenient, although it is
more difficult to justify from an economic perspective as it assumes that all factor loadings fall

at the same rate. More specifically consider the following alternative formulation:

14



Assumption 5 Suppose that the factor loadings vary uniformly with N as in
B =NV 0<a<l1 (32)

N . .. . . .
where {vin};_, is an ii.d. sequence of random wariables with mean p,, # 0, and variance

o2 < oo. Then,

N N
Z Z Oijr = O(N), N \pax (En) = O (N*7Y), N7H|Zx]), = O (N1, Var (z)

In(62)
=1 = 33
=1+ Ny (33)
and its first bias-corrected version is given by
- CN
- 34
T (N)NGZ (34)

In this case of the alternative formulation, (32), there is no need for further bias-corrections.

Then, the next Corollary follows (a proof is provided in the Supplementary Appendix II):

Corollary 1 Let Assumptions 5 and 2-8 hold, m = 1. Let & be defined as in (33). Then,

min(N, T) (2 In(N) (& — a*) — ‘_7N> —q N (0,w),

=0 (N*1).

2
where o and w are defined in (27) and (26), respectively and 33‘1 =71 Zle (flt —-T1 Zthl flt) .

Further, let & be defined as in (34)
2y/min(N,T)In(N) (& —a*) -4 N (0,w).

Remark 1 It is of interest to consider circumstances where Assumption 5 fails but the above

result still holds. In particular, let
Bin =N 2y 0<a<l (35)

where vy; = U; +Cn; and {zu)l}fil s an i.1.d. sequence of random variables with mean py # 0, and
variance 0?) < 0o. Lemma 14 provides general conditions for this Assumption, under which our
theoretical results hold. In this remark we explore a leading case of departure from Assumption
b that is covered by Lemma 14. Without loss of generality, we order the cross section units such
that Cni = NA=0/2p. fori=1,2, ..., M, where {ni}ij\;l is an i.i.d. sequence of random variables

with mean p, # 0, and variance 072] < oo. This implies that M wunits have loadings that are
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bounded away from zero. Then, using Lemma 14, it is easy to see that the theorems relating to

the asymptotic distribution of the estimators continue to hold as long as M = o (N®).

4 Monte Carlo Study

We investigate the small sample properties of the proposed estimator of a through a detailed

simulation study. We consider the following two factor model
Ty = d; + Bir fue + Bizfor + Soivit, (36)

for i = 1,2,...,N, and ¢t = 1,2,....,T. We generate the intercepts as d; ~ IIDN(0,1), i =

1,2,..., N. The factors are generated as
fjt = pjfj,t—l + 1- p?th j = 1727 for t = _497 _487 "'707 17 "'7T7

with fj 50 = 0, for j = 1,2, and (jy ~ IIDN(0,1). Therefore, by construction Uj%j = 1, for
ji=1,2.
The shocks follow an AR(1) process:

it = Qi1 + /1 — ¢2ey, for i =1,2,..,N and t = —49,—48,...,0,1,...,T, with u; _50 = 0,
git ~IIDN(0,1), i =1,2,..,N

where ¢; ~ IIU (0,1) and o2 ~ IID (% —1—%), i = 1,2,...,N, ensuring that all o2 are
bounded away from zero. Also, 6]2\[ =N"1 Zf\il 01-2 — 2, a8 N — oo.

With regard to the factor loadings, we generate them as follows:

Bi1 = vi1, fori=1,2,...,[N“]

Bi1 =0, fori = [N“]+1,[N“|+2,..,N
Bia = vio, fori=1,2,... [N*?],

Biz =0, for i = [N“?] + 1,[N*?] +1,..., N,

where ;2 are then randomised across N to achieve independence from ;1. The loadings are gen-
erated as vi; ~ I1DU (juy; — 0.2, piy; +0.2), for j = 1,2. We examine the case where az < a1 = a

and consider values of v and a such that ag = %a to reflect the more realistic scenario where the

two factors have different strengths. Further, we set j,, = 0.71 and p,, = \/ w2 — N 2(0‘2*0‘)/%2)2
- see Theorem 1 (d) -, yielding p2 + p2, = p2 = 0.75. Both p,, and /i, are picked so that they

meet the condition that p,; # 0, j = 1,2 without u;js being too distant from zero either.’

Other values of My, j = 1,2 have been entertained. Also, 8;; = 0, for ¢ > [N?/], j = 1,2 are set for simplicity.

The case of B;; = p;_[N 3}7 for i > [N%], j = 1,2 and p; = 0.5 has been considered as well as an example of

16



In fixing the remaining parameters we calibrate the fit of each cross section unit, as measured
by RZ, in order to achieve an average fit across all the units of around k%, = N~} Zf\; | R? =~ 0.40,
an average figure one obtains in most large data sets used in macroeconomics and finance.® To

this end we note that

R2 — AtBh Wi +vh

= , if for the ¢*" unit: both B;; # 0 and B # 0,
' A+ Bh ol 14+Uf + U l Z

where %’23' = ZQJ /o2, for j = 1,2. Similarly,

2

RZ? = ; +i1 5 if for the i unit: Bi1 # 0 but B2 =0,
il
2
R} = - +Z2 5, if for the i"" unit: Bjs # 0 but By =0,
i2

and
R? = 0, if for the it" unit: both B;1 =0 and B;5 = 0.

The calibration of R% is done by scaling of o7 in (36) using ¢ = 1/2.

Experiment A Here we use a basic design of (36) where the factors, fj, for j = 1,2, are

serially uncorrelated, namely we set p; = 0.0 for j = 1,2.

Experiment B Under this experiment we use the same design as in Experiment A, but

allow for temporal dependence in the factors, namely we set p; = 0.5 for j = 1, 2.

Experiment C Under this experiment we use the same design as in Experiment A, but
we allow for departure of the idiosyncratic errors from normality and generate the idiosyncratic

errors as € ~ IID((x3(2) —2)/4),i=1,2,...,N.

Experiment D The design for this experiment is as in Experiment A, but allows the
errors, u;, to be cross-sectionally dependent according to a first order spatial autoregressive

/
model. Let u; = (uy¢, ugy, ..., unt) , and set u; as

w = Qey, g =o0en; M~ IIDN(0,1y),

Zii[N“i]-kl Bi; = O, (1), j = 1,2. Results for these setups are available upon request.

SWe calibrated R% from a number of data sets, some of which are used in our empirical applications. Details
can be found in the Supplementary Appendix VI.
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where Q = (Iy — 6S)™!, and

0 1 0 0

1/2 0 1/2 ... 0
s_| - L

0 0 0 1/2

0 0 0

We set 6 = 0.2, and 02 = N/Tr(QQ’) which ensures that N ! Zf\il var(u;) = 1.

For all experiments we consider the values of o = 0.70,0.75, ..., 0.90,0.95, 1.00, N = 100, 200, 500, 1000
and T = 100, 200, 500, and base them on 2,000 replications. For each replication, the values
of a, ava, d;, pj, ¢, ¢ and S are given as set out above. These parameters are fixed across all
replications. The values of v;;, j = 1,2 are drawn randomly (N of them) for each replication.

In all experiments we present bias and RMSE results for the bias-adjusted estimator & given
by (13), where p,, is estimated using the Holm approach to address the associated multiple test-
ing problem. For experiments A-C we use ¢y given by (12) to estimate ¢y while for experiment

D we use ¢y, given by (30). All results are scaled up by 100.

4.1 Summary of the results

The results for Experiment A are summarized on the left-hand-side panel of Table A-B, giving
the bias and Root Mean Square Error (RMSE) when & is used as the estimator for «, and when
setting p, = 0.75 and as = 2a/3. We focus on the bias-corrected estimator, ¢, which can be
used for any value of p1,, # 0, and we only report results for values of « over the range [0.70, 1.0].
Recall that « is identified only if v > 1/2. As predicted by the theory, the bias and RMSE of &
decline with both N and 7', and tend to be somewhat smaller for larger values of «, especially as
T rises. In the Supplementary Appendix VI we show additional results relating to Experiment
A. First, we report bias, RMSE, size and power of estimator & when setting u, = 1. The
asymptotic distribution of & is derived in Theorem 1 and estimation of the variance component
is discussed in Section VI of the Supplementary Appendix. Second, we show size and power of
tests based on ¢&. Finally, we consider the case when o = as. A discussion of the results for all
variants of Experiment A can be found in Appendix VI.

The results for Experiment B, where the factors are allowed to be serially correlated, are
summarized on right-hand-side panel of Table A-B. As compared to the baseline case, we see a
marginal deterioration in the results, particularly for relatively small values of NV, T and «. But
these differences tend to vanish as IV and T are increased.

The results of Experiment C, where the idiosyncratic errors, u;, are allowed to be non-
normal, are summarized on the left-hand-side panel of Table C-D. As can be seen, the results

are slightly affected by the non-normality of the error terms when « is relatively small. Consistent
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with the baseline case of Experiment A, both the bias and RMSE of & fall gradually as N, T
and « are increased.

Finally, the effects of allowing for weak cross-sectional dependence in the idiosyncratic errors,
uit, on estimation of a are summarized on the right-hand-side panel of Table C-D for Experiment
D. Considering the moderate nature of the spatial dependence introduced into the errors (with
the spatial parameter, 6, set to 0.2), the results are not that different from the ones reported
in Table A-B, for the baseline experiments.” However, one would expect greater distortions as
0 is increased, although the effects of introducing weak dependence in the idiosyncratic errors
are likely to be less pronounced if higher values of o are considered. For values of a near the
borderline value of 1/2, it will become particularly difficult to distinguish between factor and
spatial dependent structures.

The Monte Carlo results clearly illustrate the potential utility of the estimation and inferen-
tial procedure proposed in the paper for the analysis of cross-sectional dependence. The results
are broadly in agreement with the theory and are reasonably robust to departures from the basic
model assumptions. Although, the results tend to deteriorate slightly when we consider serially
correlated factors or weak error cross-sectional dependence, the estimated values of « tend to
retain a high degree of accuracy even for moderate sample sizes. It is also worth bearing in
mind that in most empirical applications the interest will be on estimates of o that are close to
unity, as it is for these values that a factor structure makes sense as compared to spatial or other
network models of cross-sectional dependence. It is, therefore, helpful that the small sample

performance of the proposed estimator improves when values of « close to unity are considered.

5 Empirical Applications

In this section we provide estimates of the exponent of cross-sectional dependence, «, for a
number of panel data sets used extensively in economics and finance.® Specifically, we consider
two types of data sets: quarterly cross-country data used in global modelling, and large quarterly
data sets used in empirical factor model literature.We denote the typical elements of these data
sets by y;:. The observations were standardized as z;; = (yit — ¥i)/Si, where g; and s; are the
sample means and standard deviations of y;; fort =1,2,...,T.

But before providing estimates of the exponent of cross-sectional dependence for these data
sets we first need to verify that the degree of cross-dependence in these data sets is sufficiently
large. Recall that « is identifiable only if o > 1/2. To this end we first apply the recent test
of weak Cross-Sectional Dependence (CD) developed by Pesaran (2013) to these data sets. The

"Note that in the estimation of &y, given by (30), we use 2 principal components since we are focusing on a
two factor model specification. In our empirical section we use 4 principal components instead as we consider
these to be sufficient in order to absorb any additional cross-sectional dependence.

®1n all empirical applications we use the Holm approach when implementing the procedure described on page
10. Results using the Bonferroni method are available upon request.
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CD test statistic is defined by

TN(N —1)]"%.
CDnr = [(2)] PN (37)
where
YON - i=1 j=i+1 .

and p;; is the pair-wise correlation coefficient of ;; and xj;. Pesaran (2013) shows that when T’
= O(NY) for some 0 < d < 1, then the implicit null of the CD test is given by 0 < a < (2—d) /4,
and it is asymptotically distributed as N(0,1). In our applications N and T are of the same

order of magnitude and d ~ 1.7

5.1 Cross-country dependence of macro-variables

We consider the cross-correlations of real output growth, inflation and rate of change of real
equity prices over 33 countries (when available), over the period 1979Q2-2009Q4. These data sets
are from Cesa-Bianchi et al. (2012) and update the earlier GVAR (global vector autoregressive)
data sets used in Pesaran et al. (2004), and Dees et al. (2007).1

The CD statistics turned out to be 44.32, 88.34 and 77.78 for output growth, inflation and real
equity prices, respectively, which are hugely statistically significant and reject the null hypothesis
of weak cross-sectional dependence for all the three data sets and justify the use of our procedure
for estimation of c. Table 1 presents the bias corrected estimates, &, computed using available
cross-country time series, x;, over the period 1979Q2-2009Q4. Table 1 also reports the 90%
confidence bands constructed following the procedure set out in the Supplementary Appendix
VI. Although, there are 33 countries in the GVAR data set, not all variables are available for all
the countries. For example, real equity prices are available only for 26 of the 33 countries.

Looking at the results of Table 1 for &, we observe that the point estimates for all variables
considered fall in a small range and indicate that approximately 1/7*" of the variables are
cross-sectionally weakly correlated while the remaining ones belong to the strongly correlated
group.'’ The exponent of cross-sectional dependence for real equity prices at 0.972 points
to financial variables being strongly correlated. Similar estimates are also obtained for the

macro variables. For real GDP growth and inflation we obtain the estimates 0.977 and 0.978,

In all the empirical applications we present o estimates to be quite high. This alleviates an issue that arises
when using the CD test in this context. The issue is that the CD test rejects when o > 1/4 while our cross-
sectional exponent estimator assumes that 1/2 < a < 1, and hence it is important that the rejection of the CD
is not necessarily interpreted as evidence in favour of o > 1/2. But in cases where CD test does not result in a
rejection we could safely maintain that o <1/2,if N and T are of the same order of magnitude.

10This version of GVAR data set can be downloaded from

http://www-cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html

'Note that & corresponds to the most robust estimator of the exponent of cross-sectional dependence and
corrects for both serial correlation in the factors and weak cross-sectional dependence in the error terms. We use
four principal components when estimating (30).
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respectively. The confidence bands all lie above 0.5 and do include unity (though marginally),
suggesting that in these examples a factor structure might be a good approximation for modelling
global dependencies. However, in some instances the value of a = 1, typically assumed in
the empirical factor literature, might be exaggerating the importance of the common factors
for modelling cross-sectional dependence at the expense of other forms of dependencies that
originate from trade or financial inter-linkages that are more local or regional rather than global

in nature.

Table 1: Exponent of cross-country dependence of macro-variables

N T .05 e .95
Real GDP growth, q/q 33 122 0.923 0.977 1.031
Inflation, q/q 33 123 0.915 0.978 1.041

Real equity prices, q/q 26 122 0.924 0.972 1.019

*90% level confidence bands

5.2 Within-country dependence of macroeconomic variables

An important strand in the empirical factor literature, influenced by the theoretical and empirical
work of Stock and Watson (2002), uses factor models to estimate and forecast a few key macro
variables such as output growth, inflation or unemployment rate with a large number of macro-
variables, that could exceed the number of available time periods. It is typically assumed that the
macro variables satisfy a strong factor model with @ = 1. We estimated « using the quarterly
data sets used in Eklund et al. (2010). For the US the data set comprises 95 variables and
cover the period 1960Q2 to 2008Q3. For the UK the data set covers 94 variables spanning the
period1977Q1 to 2008Q2.

As before, we first computed the CD statistic for the two data sets and obtained 84.72 and
54.29 for the US and UK, respectively, which are again highly significant and justify the use
of our estimation procedure. The estimates of « together with their 90% confidence bands are
summarized in Table 2.

For the US data set we obtained & = 0.946 which suggests that more than 1/4" of the
variables considered can be regarded as being cross-sectionally weakly dependent, and the rest
being strongly cross-correlated. For the UK data set we obtained & = 0.930, slightly below the
a estimate for the US. The 90% confidence bands for the US and UK data sets are well above

the threshold value of 0.50, but fall short of unity routinely assumed in the literature.
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Table 2: Exponent of within-country dependence of macro-variables

US UK
1960Q2-2008Q)3 1977Q1-2008Q2
N=95, T=19/ N=94, T=126
5,05 & 40,95 5,05 & 0,95
0.908 0.946 0.984 0.863 0.930 0.996

*90% level confidence bands

6 Conclusions

Cross-sectional dependence and the extent to which it occurs in large multivariate data sets is
of great interest for a variety of economic, econometric and financial analyses. Such analyses
vary widely. Examples include the effects of idiosyncratic shocks on aggregate macroeconomic
variables, the extent to which financial risk can be diversified, and the performance of standard
estimators such as principal components when applied to data sets where the cross sectional
dependence might not be sufficiently strong.

In this paper we propose a relatively simple method of measuring the extent of inter-
connections in large panel data sets in terms of a single parameter that we refer to as the
exponent of cross-sectional dependence. We find that this exponent can accommodate a wide
spectrum of cross-sectional dependencies in macro and financial data sets. We propose consis-
tent estimators of the cross-sectional exponent and derive their asymptotic distribution. The
inference problem is complex, as it involves handling a variety of bias terms and, from an econo-
metric point of view, has noteworthy characteristics such as nonstandard rates of convergence.
We provide a feasible and relatively straightforward estimation and inference implementation
strategy.

A detailed Monte Carlo study suggests that the estimated measure has desirable small sample
properties. We apply our measure to two widely analysed classes of data sets. In all cases, we
find that the results of the empirical analysis accord with prior intuition.

We conclude by pointing out some of the implications of our analysis for large N factor models
of the type analysed by Bai and Ng (2002), Bai (2003), and Stock and Watson (2002). This
literature assumes that all factors have the same cross-sectional exponent of @ = 1, which, as
our empirical applications suggest, may be too restrictive, and it is important that implications
of this assumption’s failure are investigated. Chudik et al. (2011), Kapetanios and Marcellino
(2010) and Onatski (2012) discuss some of these implications, namely that when 1/2 < a < 1,
factor estimates are consistent but their rates of convergence are different (slower) as compared to
the case where a = 1, and in particular their asymptotic distributions may need to be modified.
In cases where o < 1, methods used to determine the number of factors in large data sets,
discussed for example by Bai and Ng (2002), Onatski (2009) and Kapetanios (2010), are invalid
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and can select the wrong number of factors, even asymptotically.'? Finally, the use of estimated
factors in regressions for forecasting or other modelling purposes might not be justified under

the conditions discussed in Bai and Ng (2006).
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Appendix: Proofs of Theorems

In the derivations of the proofs that follow we allow for X¢s # I in general, apart from the specific instances
relating to the estimation of p, and & where, without loss of generality, we impose X¢¢= I. Further note that
the proofs assume ¥, is diagonal and, therefore, 5% = cny and 5% = ¢n. The technical Lemmas used in the

Appendices are stated in Supplementary Appendix I and proven in Supplementary Appendix III.

Proof of Theorem 1

We start by noting that

where Z; = Bin fuie + Ban for 4 oo + BN frnt + Gt = By Fy + U, and T =T 7 & = finfi + Banfo + oo +
BN fm +10 = B;\,f—i—ﬂ. Further, we assume the general setting discussed in Assumption 1 of Section 3.1 regarding
the weak factor loadings and let K, = (K,,, ..., K,,,)’, where

N
Kpj = Kj = Z ,Bz‘j < 00, (38)

i=N;+1

and N;=[N®7]. Then, we have

62 =BnSsiBy + 2By +

1 T
TZ(.ftif)ﬁt
t=1

1< }
2 _2

7w

T t=1

where

T
Sff:%Z(ft—f)(ft—f)’—wsz>0>asT—>0°-
t=1

But under Assumption 1, By = N 'Dnony+N"'K,, where o5 = (D15, V2N, -, Umn) and O;§ = N]fl Zf\;’l Vij.
So,

Bstfﬂ_N = N2a_2’t_)§vDNSffDN'l_)N+2Na_2'l_)§vDNSfpr-i-N_QK;JSfpr = NQa_2'l_)§\7DNSffDNﬁN+O (Na_2) .
Hence,

In (B}stf,éN) =In (N** 25y DyS;Dnoy + 2N 25yDnS; K, + N °K,S; K,) =

IN N DnSs K, + N 2°K'S: K
2(cuf1)1n(N)+1n(z—;§VDNSffDNﬁN)+1n(1Jr UNDNSy Ky + pOff p)

’l_J?VDNSffDN’l_JN
= 2(a — 1) In (N) +1In (’l_}fNDNSffDN’l_)N) + Op (N_a) .
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Then,

’ 2 ) T Z; t Ut t= t u
I (62) = (B SyBy) +1n [ 14+ — [T T _,f) ‘ } [ 2 ; (39)
ﬁNSff:BN

In (&;) =2(a—1)In(N) +In(syDnS;sDnDN)
2By [+ XL (f - D] + [+ XL, 9 - @]

= +0p (N79).
BNSff:BN

+In|1+

Hence, recalling from (11) that & = 1 + In(62)/21In(N),we have

+25’N [%Zle (ft—f)ﬂt] [ S 11@—@2]
BySiiBy BrnStiBy

2In(N) (& — a)~In(By Dy Sy DnDN) = In +0, (N79),

or

By [+ (- D] 35l -]

2In(N) (& — a)—In(8y Dy S DnON) = +0, (N™%)+0p(Bn,1),

BnS1iBn BnS1iBy (w0)
where
ZﬂN [ Zt 1 (ft f) ﬂt] [% 23:1 a; — ﬂ2]
By, = + — - .
BnS1iBy BnSriBy
Consider the first term of the RHS of (40). We have,
28’y [% Zthl (f.—f) ﬂt] B \/;*NN“_IT;’NDN [2;}}/2% (-0 \Fuz] (1)
BnS1iBn BuSYESY PR By
We note that Sl/2 _1/2 =14 0,(T~"?). But, by Lemma 2 (as N and T — oo)
1 I

1/2 Z -f) (\Fuf) —p N(0,5% 1), (42)

where 7% is as in (B1).
We need to determine the probability order of 1/8y 8. We note that

1 1
ﬂ_/NB_N N2e-25) D} on

1 1
"~ N20—2g) D%y + 2N 25y DyK, + N-2K,K, N2-23 Doy
7 ~N°?pyDyK, - N°K|K,
N4e—4 (g, DX on)? + N3o—45, Dy K 0y Doy + N2~ K K, o)y D%t

_— [Nz’?’a (v D¥on) ONDNK,+ N> K K, (ﬁQVD?Vt_JN)_z] (8w D¥on + N *ByDNK,+ N *K,K,) "

_ Op (NQ—Sa) ;

and hence ~
2ﬁ;\f [% ZtT:I (ft - f) ﬂt]
BrnStiBy

—0, (T_1/2N1/2_a) 10, (T_1/2N1/2_2a) : (43)

Consider now the second term on the RHS of (40). We use (43) again. Note that since, by Lemma 1 and
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Theorems 17.5 and 19.11 of Davidson (1994), vV NTa@ = Op(1), and, since SffE;; = 1+ 0,(T~?) where
0< Eff < 00,

2
2 (\/NT‘)
(No‘leN’l_}N + Nﬁle), Sff (No‘leNﬁN + Nﬁle) - NT (No‘leN’l_)N =+ Nﬁle), Sff (No‘leN’l_)N + Nﬁle)
(44)
=0, (T7'N'7?%). (45)
Similarly,
T _
% Zt:l ’LL% (46)
(No‘_lDN’l_]N =+ N_le)l Sff (NO‘_IDNTJN + N_IKP)
o { & L [(VRa)? - o3| + vTok |
- (No—'Dnony + N-'K,) Sf; (Ne~'DnTn + N1K )
52 a 2
A (e [(Ee) -1+ vr}
~ (No'Dnony + N-1K,) Sf; (Ne~'DnTn + N-1K )
5% 1 T VNa, \?
N%ﬁ 2=t [( 5Nt> o 1}
- (No—'Dn&ny + N-1K,) Sf; (Ne~'DnTn + N1K )
+ 7N
N (No‘_lDNﬁN + N_le), Sff (No‘_lDN’l_JN + N_le) ’
Note that
5% X

- =O0,(N'7%%). (7
N(Ne—'DnoN + N-1K,)' S;; (N 'Dnon + N71K,) N2*7'%DnS;;DNON o o

Also, by Lemma 3,

T _ 2
. (met) — 1| —a N(0,1),
= N
and
5% 1 T VNa 2
N% (ﬁ 2 {( N t) B 1]) 0 (T—1/2N1—2a) ) (T—1/2N1—3a) (48)
(N*-1DN®By + N-1K,) 8¢ (N> 'Dyoy + N-1K,) * P '
So,
52
2In(N) (& — @) — In(FyDn S DNTN) — -

N2e=15DNSrDNON
-0, (max (T_1/2N1/2_a,T_lNl_Qa,T_l/QNI_Qa,Nl_sa,N_a)) _

Since a > 1/2, in the first instance this implies that

G—a=0, (ﬁ) (49)

which establishes the consistency of & as an estimate of @ as N and T"— oo, in any order.
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Consider now the derivation of the asymptotic distribution of &. We have

~1/2 T _
) 5% B 7w [Eff 77 L (Fe = F) (V N“f)}
In(N) (& — «a) — " — = In(OyDnS¢sDnTN) + +
N ’UNDNSffDNUN NQ—IS%IZ (5%022;)3/2) DnxoN

2

(\/NTﬁ)

NT (NO‘*lDNﬁN + Nﬁle)/ Sff (No‘leNﬁN + Nﬁle)
G 1 T VNa 2

5 (e (2]

(No‘leN'l_)N —I—Nfle),Sff (No‘leN'L_)N + Nﬁle)

+ +OP(N70‘)'

We first examine In(vy DnSfrDnOn). If aj= a, for all j = 1,...,m, then by Lemma 11 we have

Vmin(Ne, T) [In(@ySfon) — In(py, Bsrp,)] —a N (0,wm),

while if & > aa... > am, then by Lemma 12 we have

\/ min(Na, T) (ln(’l_JGVDNSffDNﬁN) — ln(/,L:JDNfoDN[J,,U)) —>,1N(0,w).

Further, since o > 1/2,

\/;TVNQ_IB;VDN [2;1‘1/2% i1 (£ F) \/Nﬂt]

min(Ne, T) -0, ( min(N“,T)T_l/QNl/Q_O‘) = 0,(1).
—92=/ 1/2 1/2 —1/2 —
N2e—25) Dy SV (Sf§ =;}%) Dnon
Similarly,
2
(\/NTa)
min(Ne, T) _ : _ =0, (\/min(Na,T)Tle“%‘) = 0p(1),
NT (NaleN’UN + Nﬁle) Sff (NaleN’UN =+ Nﬁle)
and
a3 1 T VNag )2
N\% (ﬁZf:l {(ﬁ) 71}) 1/2 Ar1—2
min(N<, T) . i - = Op( min(Ne, 7Y~ /2 N*~ a) = 0p(1).
(NQ_IDN’UN+N_1KP) S.ff (N“—lDN'vNJrN—le)

Thus, if aj=a, forall j =1,...,m,

_2
. ~ * ON
min(N*,T) ( In(N) (& — axn) — — — N (0,wm),
( )< ( )( N) Nzo‘*l’U/NDNSffDNUN> T ( )
where oy = a 4 In(p?)/2In(N) and p2= i ,ufw by setting Xy = I as normalisation. Otherwise, if
o> 2. > Om,
min(N<, T) <1n(N) (G —ak) — o ) —a N (0,0)
’ N N2a_11_}9\,DNSffDN1_)N d ’ ’

where either ay = a + ln(,uf,l)/2 In(N) when (24) or (25) hold, or ajy = a + ln(Z:;":1 N2(D‘J'7°‘)u%j)/2 In(N) if
neither of these two conditions hold, by referring to Lemma 13 as well. Again, we set ¥7y= I as normalisation.

Also, by Lemmas 7 and 9 we have

_2 gy
- = oN [ _ ( - p 27404)
Ne, T — = VA N, T)N
min(N*, T <N2“117INDNSffDN'UN N&g) Op [ Vmin(Ne, T)
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and .
52

2

B @ aN UN
min(Ne,T) In(N) <N2a117’NDNSffDN"_’N a Né3

which prove the remainder of the theorem.
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Supplementary Appendices

Supplementary Appendix I: Statement of technical Lemmas

Lemma 1 Under Assumptions 2 and 3, f,,{wic}e,, and {ui}io, are L.-bounded, La-NED processes of size

—(, for some r > 2. This result holds uniformly over i, in the case of {uit}re,, and overt, in the case of {ui}io .

Lemma 2 Under Assumptions 2 and 3,

T
1
= S (£.-F) (\/Nat) —p N(0,5%Im),
t=1
where
i Ef\[ﬂ (‘71'2 + 2]71 j#i ULJ) B1
ON = Nl—r>noo N ’ ( )
o2 = E(u?t), and 0i; = E(usttiz—j).

Lemma 3 Under Assumption 3,

«%i [(via)' -5 (vWa)] ~a w0,

where
2 i 2 2
V = Nlim <Var ((\/ﬁﬂt) > + ZOO’U ((\/Nﬂt) , (\/ﬁﬂt,j) )> .
Lemma 4 Under Assumptions 1-3, if m = 1 then 512\\, o =0, (T7")+ 0O, ((NT)71/2). If m > 1 then
52 — 3% =0, (Naflel/z) .
Lemma 5 Under Assumptions 1-2 and m = 1, \/min(N*,T) (ln(sfcl@fN) - ln(afrl/ﬁ,l)) —4 N(0,w).

Lemma 6 Under Assumption 5 and Assumptions 2-3 and m = 1, \/min(N,T) (In(s7,07y5) — In(c}, u2,)) —a
N (0,w).

Lemma 7 Under Assumptions 1-3, and as long as a > 1/2,

_2 Y
- o oN oN ( . = 274(1)
min(Ne, T - =0p | Vmin(N*, TN .
(N, T) <N2a16§VDNSffDN'TJN N&g) P in(N<, T)

Lemma 8 Under Assumption 5 and Assumptions 2-3,

min(N, T) ( In 7% ) = 0p(1).

NewyDnS;sDnoy  No2

Lemma 9 Under Assumptions 1-2, and as long as a > 1/2,

_o —y —y

RN ON ON ON
« 1 —_ + = .
min(N, T) In(N) <N2‘1—117§\,DNSHDN17N Né&2 (1 N&2>) op (1)

T T

Lemma 10 Under Assumptions 1-3 and Xy =1, if o = co= ... = qg—1> @¢>...> Oy,
a
62— N**723 "l =, 0.
j=1

In particular if a > as> ... > a,,,
A2 20-2 2
6z — N"“""uy, —p 0.



Lemma 11 Under Assumptions 1-2, and assuming a; = «, for all j =1,...,m,
Vmin(Ne, T) (In(@y S¢son) — In(p, Bssp,)) —a N (0,0m),

where p, = B (v;), Srr = E (£, = 1g) (£~ 1)),

wm = lim min(N®T)E ({(ﬁ’NfT ~dopy)’ B[O Fr — wmg)?] }2) ,

N, T 500
Ky =E(f,) andfT = %23:1.1315'
Lemma 12 Under Assumptions 1-2, and assuming o > Qg > ... > Qm,

Vmin(N*,T) (In(@y Dn S5 Dxox) — In(p, DxEs Dnp,)) —a N (0,0).
Lemma 13 Under Assumptions 1-8, and o > a2 > g > ... > O,

V/min (Ne, T)In (N)In(u, DnS Dy p,) — In (M12)1UJ2”1) =o0(1),
if either ag — a < —0.25 or, if T = N, a2 < 3a/4 and

1
b> e (B2)

Lemma 14 Let ;1 = N* o, 1/2 < a < 1, where vii = vni = ¥; + eni and {61}21\;1 s an i.1.d. sequence of
random variables with mean py # 0, and variance 0'?) < oo. Let ey = % Zil cni. Under Assumptions 2-3, (a)
&, & and & are consistent estimators of «, if cn = op (N€) for all ¢ > 0, (b) Corollary 1 holds, if V Nen = o, (1).

Lemma 15 Let a denote a generic estimator of a such that & — o = Op(hn) where hy — 0. Then,

N — N* = O,(N“hy In N).

N
Lemma 16 Denote the OLS estimator of the regression coefficient of xix on &+ = T+/6z, by V:1, and let {ﬁff)}
=1

be the reordering of {ﬁil}ivzl where 'f}ff) > 171(3-1 , Vi. Under Assumptions 1-3, m = 1 and assuming that

limr, Ny —oo T~ 'N® < 0o and that o, 7# 0 is known, we have

N& N& 2
£ (- wEa)
i= ji=
N 1 —MTZOp(l)» (B3)
vy

if, further, & — a = o, ((In N)_l) .

Lemma 17 Under Assumptions 1-8 and m = 1,
A Bi1 1 1
Bil*m:Op W +Op m .

Lemma 18 Under Assumptions 1-2, we have foz — Vs = 0p(1), as long as Il — oo, | = o(T) and I =
1

7
o (Na71/2T1/2).

Supplementary Appendix II: Proof of Corollary 1

We reconsider (39) and m = 1. Under Assumption 5, Bin = N(&_l)/zz’JlN, where t1ny = N1 Zil v14, we have

_ 2
ln(ﬁst?I) =1In (N(“fl)/Qﬂleh) =(a—1)In(N) + ln(sfclﬂfl\,),



2
where s7, = T S (fit D DF fit) for i = 1,...,N and here i = 1. Hence, recalling from (11) that
& =141n(62)/21n(N),we have

261N [% Zthl (flt - fl) ﬁt] [ Zt 1 a? — az]

22 .2
51N5f1

In(N) (& — o) — ln(s?clﬁfN) =In|1+

However,

Lo [P G-y n]+ -]\ o[BS (0 -] + [b oL a - ]
! _

In _
2 .2
1N3f1 ﬁlefl

+op (Bn,T),

(B5)
where when m =1,
28N [% Sy (fu—f) ﬂt] [ S Ui - Uz]
By = 32 .2 :
Pinsy,

Consider the first term of the RHS of (40). We have,

S [EXL, (- P 7w o S (= ) (VW)

fN 5 (SflglN) (Sf1/0f1)

We note that sy, /oj, = 1+ O,(T~'/?). But, by Lemma 2 (as N and T — c0)

o fz fre = ) (VN ) =, N(0.5%), (B6)

where 7% is as in (B1). Also, 1/81x =N1~%/2(1/%,x). Hence,

2Biv [ X0, (Fu— ) @] viw [ﬁ S0 (i = ) (mﬂt)} N
B%NS?I B SflﬁlN(sfl/Ufl) ( )

_o, (TN,

Consider now the second term on the RHS of (40). Note that since, by Lemma 1 and Theorems 17.5 and 19.11
of Davidson (1994), vV NT@ = O,(1), and, since s}, /o7, =1+ Op(T~?) where 0 < o}, < oo,

2
2 (VNTa) )
= =0, (T" N7%). (B8)
(N(e=1/27, 5 )? s2 NT (N(a=1)/25, 5)? 5%, A )

Similarly,

T D Ui o { & oL [(VNa)? - o3 ] + VTok ) ) ok {f 7 [(mﬁ)? _ 1} N ﬁ}

(N s o (N, (N7,
(B9)
Ay g [(«_m)ll]
NVT VT ~~t=1 GN 5.]2\]
B R

But, by Lemma 3,

1
VAT 2=

t=1

(‘ﬁa*)Q - 1] —q N(0,1),



and

2 N
(e ) L
(N@-D72g, )% 52 =O0,(T""*N™%).
f1
Therefore, collecting all results derived above, and keeping the highest order terms of the RHS of (B7), (B8), and
(B10), we have

(B10)

_2
2In(N) (& — a) — In(s2, 52y) — ——N— =0, (T-”?N—a/?) .
N‘*lesf1

In the first instance this implies that

d—a=0, (ﬁ) (B11)

which establishes the consistency of & as an estimate of « as N and T" — oo, in any order.

Consider now the derivation of the asymptotic distribution of &. We have

2 5 | S (e = 1) (V) |

. ON 2 -2
In(N) (& — @) = 15— =1
n(N) (& —a) N2a—1g2 52 n(sy, vin) + sy N@=D/25 5 (54, [og,)

2 52 T VNag \ 2
(VNTa) Brdr T |(4m) -]
NT (N(e=1/25, )2 2 (N(e=1)/25, 3)? 52, ’

where A ~ B denotes that A — B = 0,(B). We first examine In(s7, 97y). By Lemma 6 we have

min(N,T) (ln(s?clz’)%N) — ln(crjzc1 pil)) —4 N (0,w).

Further,
e [ S (= ) (V)
min(N, T) 57 N7, (57 JorL) =0p ( min(N,T)T N ) = op(1).
Similarly,
2
vNTu
min(N, T) ( ) . =0, ( min (N, T)T*lN*“) = o0,(1),
NT (N(@=D/27;5)" 57,
and )
% 1 g {(mu) _ 1}
NvT VT 2t=1 [ Tan
min(N, T) 2 =0, ( min (N, T)T*WN*“) = o0p(1).
(N=D/25,5)% 2.
Thus,
_o
min(N, T (ln(N) (& —an) — ]\/""’;Ns2> —q N (0,w),
iNSH

where ay = a + In(p7,)/2In(N), by setting o7 = 1 as normalisation. The second part of the Corollary follows

by Lemma 8.



Supplementary Appendix ITI: Proofs of technical Lemmas

Proof of Lemma 1

The proof of this lemma considers the more general Assumption 4 for the error terms which incorporates As-

sumption 3. By the Marcinkiewicz—Zygmund inequality (see, e.g., (Stout, 1974, Theorem 3.3.6))

Z <wzl Z gisvst—l>

=0 s§=—00

T o 0o /2
) < <sup (z w) - ( 5> w)) (s 5w )
+ \1=o ¢ it

s=—00

sup E(|uie|") = sup £ (

so wi is Lp-bounded if sup, sup, E(Jv¢|") < oo which holds by Assumption 4. Moreover, writing ||-||,. for the

L.-norm, we have, by Minkowski’s inequality,

sup ’
i

oo oo
Uit — E(Uit\fzjm|)H2 =sup|| > iy | Y &isvs < sup llvitll, (sup > |'¢’ij|> sup [ D 1€l | |
1 1 1 1
’ \

j=m+1 |s|>m 2 j=m+1 s|>m

(B12)
is the o-field generated by {vis;i,s < ¢ — m} U {vis;i,8 > t +m}. But,
Assumption 4 implies that sup; lim, e m$ > gemar [¥ijl = O (1) and sup; limm - mé (Z‘S‘Zm \gis|) =0().
Consequently {ui:}i2; and {ui}i2; are L,-bounded, L2-NED processes of size —(, uniformly over ¢ and t.

for any integer m > 0 where ]:ﬁnu

Similarly, we can show that f, are L,-bounded (r > 2) L2-NED processes of size —(.

Proof of Lemma 2

We have % Zthl (ft — f) (\/Nat) =L 23:1 z¢, where z;= (ft — f) (\/Nﬂt). We have that z; are station-

T
ary processes such that E (z¢) = 0. We note that by Lemma 1 and Theorem 24.6 of Davidson (1994), we have

2
that E ((\/ﬁﬂt) ) =% Zf\;l 0? < co. Further, by Theorem 17.8 of Davidson (1994), we have that sums of

Lo-bounded, L2-NED triangular arrays of size —( are Lz-bounded, L2-NED triangular arrays of size —( as well,
implying, given Lemma 1, that v/ Nu: is an Lg-bounded, L2-NED triangular arrays of size —(. Further, by the

T N oo o /2
> <c (Jif > < ¢z‘l|2> ( > |§is2>) sup E(|jvir|") <
i=1 \1=0 s=—00 bt

(B13)
0o 0o r/2
¢ (SPIP <Z %2) sup ( > &;s|2)> <S.“PE(|”“‘T)> < oo
[3 -0 [3 i,t

Marcinkiewicz—Zygmund inequality,

r)_E<

E(’\/Nﬁt

1 N oo [eS)
— ¢z €isU5t7

1 s=—00

S=—00

As a result, vV Nii is a Lr-bounded, L-NED triangular arrays of size —(.

Finally, since {v/Na,} and {f,} are L,-bounded (r > 2) Lo-NED processes of size —( on a ¢-mixing process
of size —n (n > 1), then, by Example 17.17 of Davidson (1994), {z;} are L-NED of size —{({(¢—2)}/{2(¢—1)} <
—1/2 on a ¢-mixing process of size —7. Since vy, and vy are i.i.d. processes they are also ¢-mixing processes of
any size. In view of Theorem 17.5(ii) of Davidson (1994), this in turn implies that {z:} are Lp-mixingale of size
—1/2, if 2n > ¢, which automatically holds by the i.i.d. property of v;; and vg:. This implies the result of the
Lemma by Theorem 24.6 of Davidson (1994).

Proof of Lemma 3

By Lemma 2, v Nu; is a L,-bounded, L2-NED triangular arrays of size —(. By Example 17.17 of Davidson
2

(1994), and (B13), (\/Nﬂt) is L,.-NED of size —{((p — 2)}/{2(¢ — 1)} < —1/2, r > 4. Then, by Theorem 24.6

of Davidson (1994), the result follows.



Proof of Lemma 4

We need to show that 5% — 5% = O, (T~1) + O, ((NT)_1/2) if m=1and 3% — 5% = O, (Na_lT_l/Q)
otherwise We have that 5:]2\\, =<7 Zi\’ 1 ZtT:1 @3, where ;¢ is the estimated residual. Then, < Zf\il ZtT LU =
NT Zz 1 Zt 1 ud + NT ZZ 1 Zt 1 ( Uy — uft) Following similar lines to those of the proof of Lemma 3 we
have that &7 Zl 1 Zt 1 ufy —p 5. Further, ﬁ vazl Zthl (uft — 612\]) =0 ((NT)_1/2). Next, we examine

W Ei:l Et:l (uit — uit). It is sufficient to consider ﬁ Ei\;l ZtT:l Uit (Qip — Uit).

Single factor case: We note that the same residual is obtained irrespective of whether we regress x;+ on Z, or

- T .
Z¢ or N17%%, or fit. We carry out the analysis by using Z; as the regressor. We have that ﬂit:MJr

T 72 Wit -
Ji= J
Then,
N T T T - N /T T
1 X 1 2 T 1 i} _
33w = 3w (B ) - () S (S ) (S -
NT i=1 t=1 NT i=1 t=1 Zj—l m? NT Zj:l xf i=1 \j=1 =1
N T 2 T 2
1 1 1 - 1 -
L Vs ((x Z:mm) E ( zu) +
NT ('111 t=1 12> =1 < T t=1 \/T t=1

2
But E ((% S ituit) ) < oo uniformly over i and % 3| #7 = O, (1), which implies that

2 2
Further, (ﬁ Zthl ftuit) —F ((ﬁ Zz;l ftuit) ) is a NED process over i, which implies that

1 1 al - ’ e ’ 1
| Y= = E — E T4 Uit - F — E T4 Uit = Op (7) )
NT <% Zthl xf) i=1 ( =1 > < Ti= ) TVvN

proving the required result.

S

Multifactor case: We will focus on the case where o = ae= ... = i, as the case a > ay> ... > a,, with at

least one strict inequality can be treated similarly and has equal or lower rates for 6% — 5%. We have

1 N T 1 N T N—-N® T
NT Z Z (Tit — wir) = NT Z Z Wit (Tie — Wit) Z Z wit (Git — Wit) (B14)
i=1t=1 i,Bi150 t=1 ,Bi1=0 t=1

The second term of the RHS of (B14) can be treated as in the single factor case, giving

—N® T

i,B1i=0 t=1

For the first term of the RHS of (B14), we note that z;; can be written as z;:= %iit—ﬁ—ﬁ;ft—}—uit,where ft is a zero

mean process that is uncorrelated to #;. Then, fi;;=— b i?(ﬁlﬁu”) +B;ft+uz't and

;e ;1 Mz - -
NT Z Zu“ (it — uir) = NT Z Zuit (/B;ft +uit) +R (B15)

4,B8i10 t=1 i,Bi10 t=1

where R is of smaller order of probability than the first term of the RHS of (B15). Following similar arguments



as above we obtain

1 N« T - a—1mp—1/2
N7 2 e (B ui) = 0p (N2,

i,Bi10 t=1
which implies that
5% —ax = O, (N“’lT’l/Q) .

giving a lower rate of convergence than the single factor case.

Proof of Lemma 5

We have that

2 -2 2 9 2 2 2 2
$%. T s 8t — 0 Uin — Mo
ln(s?lq_}%N) — ln(a?luil) =1In f; 12N =1In —j;l +1In (”121\/) = [ 2h 5 )4 ( Ll 5 K 1> +
Ufl Iu’vl Ofl le Ufl )u'vl

Op ((s?l — 0?1)2) + Oy ((17%]\7 - u31)2) .

But, under Assumption 2, and setting m = 1,

{32) )

95 t=1

where f1 = & 23:1 fit, and

Ve=E (([(fu —pup)/on)? - ) + ZCOU ([(fre = ) /op ] = 1) (((fremi — pp)/on)* = 1)) -

N 522 N _ _
Further, recalling that Ty = = SN v, VNe (%) =+v/No (UlN ””1) (UlNJr”vl) . But v”\;:l”vl —p 2,

vy Hvq Hvq
and

_ 2
SN (%) SN <O, Ugl) . (B16)
v

v1

2 _o2 52,2
Further, E {( f102 fl) < N Foy )] = 0, implying that /min(N*,T) (ln(s?lﬁfN) - ln(ojzcl,uﬁl)) —q N (0,w),
f1

=N

2

. in(N®, T in(N®,T 4o
where w = limy 7— oo mm(T )V7+ ming ),LTUI
vl

Proof of Lemma 6
The proof follows easily along the same lines as that of Lemma 5. In the present case under Assumption 5

~2 2
— — VINTH VIN— vIN+ TIN+
we have o1y = N 1Z£V:1vi17 and thus vN(%) = \/N( N “”1)( 1N ”"’1>7 and M—ﬁ, 2.

vy Huq Ho Hoq
2
v — o
Therefore,/ N (7“\[ “’1) —a N <07 Mgl) .

By 2

Proof of Lemma 7

We need to show that

2 =
- ON IN
No, T - = = 1). B17
min( ) (NQO‘II_JEVDNSHDN’TJN NU%) op (1) ( )
We have
o% A _ ok 7% 7 7%

N20-15) DNyS;;Dnoy N62  N20-15, DnS;;Dnon N20-1%) DyS;Dnon +N2a*11‘;§VDNSffDN17N - N6



But, by lemma 4
s -y
ON ON _ ( —1/2 72(,!)
— =0, (T N B18
NQO‘_LI_]/NDNSffDN’I_)N NQD‘_l’l_);VDNSffDN’I_}N P ’ ( )

which is negligible as a bias. Next,

-y -
ON oN 2
N

N2o-1g) DyS;fDnoy  N62
2 <
N

But by the proof of Theorem 1, we have

Qi

Ut S2)

Il
Qi

Q

1 1
) (NM—M—;;VDNS”DN@N B N&%)

1 2a—1 220052 _ 1
N N :— D D -
) Nza*lﬁ?vDNSffDNﬁN> ( o2 = D S;;Dron) (N&

Qi

Il
QI
SN

Qi

TnDyS Dyt — N2 262 = 0, (T’1/2N’2“) + 0, (NY72) + 0, (N~%) + 0, (N*72) .

So,

=
_2 ON 1 2a—1 22 A2 _/ _ 1
—* N N - DnS: D —
oN <2 ) <N2a715'NDNS,-fDNﬁN) ( 02— WDy S Dyow) (N&%)

O, (T71/2N72aN172a) + OP(N173QN1720¢) + Op(Nfaleza) +0, (N172aN172a) _

0, (T—1/2N1—2a) n Op(NQ_sa) + Op<N1—3a) 0, (N2—4a) ‘

Therefore, for a > 1/2, (B17) holds, which establishes the Lemma.

Proof of Lemma 8

We need to show that .
5% 72 B19
in(N,T — =o0,(1). 1
mln( I ) NQEINDNSffDNT)N Na_% OP ( ) ( )
We have
ok R _ o% 7 7 7%

Nev DnSysDNON - N&2 New\ \DnSysDNON B New \DnSyssDNON + New DnSysDNON - Né&2'

But, by lemma 4
2

_2 Z
ON oN . —1/2 nr—a
- -0 (T N )
NO"I_I/NDNSffDN’I_)N No"l_)/NDNSffDN’I_)N P

which is negligible as a bias. Next,

&2, 52 G 1 1
N _ 9N _ 52 N _
No‘i_}?VDNSffDN’l_JN N@'% 6]2\7 N("l_)'NDNSffDN’l_JN Né’%
-
_2 [ ON 1 a 1—a a2 — 1
— N® (N z— D D — .
N (5%) (Na@;VDNSffDNﬁN) ( 0z — Oy DSy Dyox) (N&g)

But by the proof of Theorem 1, we have

FNDnS;Dnoy — N2 =0, (T’l/QN’a/Q) .

So
2 (2 : N (N'62 — By Dn S Dyoy) (g ) = O (T_l/ZN_?’C“/Q)
% | \NeoyDnSs;DnON ¢ N42 P

which establishes the Lemma.



Proof of Lemma 9

We have that

=2
2 [ ON 1 200—1 120 [ 1 - N2 I3 1 _ 2—dapn—1/2
ON <‘712v) <N2°‘_117§VDNSffDN17N) N (N (T Z(\/NUt) Ty Va2 ) = Oy (N T ) ;

2
But it is straightforward to show that & 3"/, ((ﬁ >N uit) ) 5% = O0p(T™ ) and 63— 3 SN, o), ud =

2
OP(T71/2)~ Finally, by Lemma 4, ﬁ Zil 23:1 ﬁ?t*ﬁ Zi\rzl ZtT:1 uf = OP(T*1/2)' So, % 23:1 ((\/% Zi\rzl mt) >7

Proof of Lemma 10

We have that

1< 1 & | N1 X al
—2 _
T =2 |2 ey e 2o | oy | =
t=1 t=1 | j=1 =1 =1
T m 20 NI
1 o N=%i 1
TZ Z Jit N2 N Vi +
t=1 | j=1 i=1
T m N“J m N&s
1 N<i 1 N 1
fz Z it N N Vij Z |:f§t N (N"‘% ZU“") +
t=1 | j=1,j#s i=1 s=1 i=1
T m N<J N
1 N% 1 1
T2 Z 1N wes ZW ] (NZW> !
t=1 j=1 i=1 i=1
T N 2
1 1
P (v )
t=1 i=1
But,
11 & ’
P (A m) —oe
t=1 i=1
T N N
1 N 1 1 —3/2pn—1/2 .
*Z fit ZUzg ZuLt> =0y (Na’ T ),]:1,...,m
T t=1 N N% i=1 N i=1
T NI N%s
1 N% 1 N% 1 e — 2 . .
TZ f]t N N9 Zvﬂ <fStNND¢s Z’Uls> =0 (N itas 2T 1/2>7.775: 17"~7m7 J 7557
t=1 i=1 i=1
and )
T 2a N
1 N=% 1 s
Tz fj2t N2 NQJ.Z/UZ] 7N2] 2/‘1’12) HpO,J—l, , M



T q

1 _2 202 2

T E i — N E Po; —p 0.
In particular if a > a2 > ... > am

1 o
>SF N, 0

Proof of Lemma 11

Without loss of generality we consider the case of two factors. The result extends straightforwardly to m factors.

We further assume, for simplicity, that factors are independent from each other. Then,

=2 2 = =2 2
UIN Sy, T 201NV2NS12,5 + v2N5f2>

_2 2 _ — —2 2 2 2 2 2
In (lesfl +201NVaNS12,5 + U2N5f2) —In (Ufly‘vl + o—fzp‘vz) =In 2 2 2 2
Uflu'ul + Ule’L’UQ

Then,

2 2 = 2 2 =2 2 = =2 2
VINSF + 2U01NVaNS12.f + VsnS VINSF + 201NVa2NS12.f + Von S
ln< INSF 12,f T VaNSp, | _ ViINSH o TN g (B20)

0% K +ogud, ot K3, +otu3,
(s, — ohid)) + (Pt — ohid,) + 2nTansnns
2 2 -
0% M%l + 0%, M%z

(@%NS?H — T)%Naj%l + E%No—]zﬁ — 012‘1 iu‘l%l) + (631\]8?2 — ﬁgNo—?z + 'DSNUf’z — 0—?2“1212) + 2ft0y frog S12, 1 _
0% u3, + 0% u3,
2 2 2 2 (-2 2 2 2 2 2 (-2 2
Moy (Sfl — Jfl) 9 (UlN — :U‘vl) Hog (sz — O—f2) Ifs (UQN — 'uvz) 2pvy Hoy S12,5
o, +otud,  ofud +ofud,  ofud, toLud, o pd, +ofud,  of ud +of i,

Note that

VINU2NS12,f = VINU2NS12,f — VLN vy S12,f + VLN oo 812, f — VINHos 012, + V1N Hog 012, — 2hvy Poe O12,f =

$12, ;01N (V2N — fhoy ) + V1N oy (S12,F — O12,5) + 012, f fhog (1IN — 20, ) =
(s12f — 012,7) U1n (V2N — oy ) + 012, f 01N (T2N — fhos ) + DIN oy (S12,F — O12,5) + O12,f fhos (T1IN — 20y ) -

But

(s12f — 012,4) Tan (Tan — fwy) = 0p(T1/?),

and 12, = 0, and so

(812,f — 012,7) V1N (V2N — Hwy) + O12,#01N (V2N — Huy) + V1N poy (S12,f — O12,7) + 012, 1 flog (V1N — 2fb0; )

_ V1IN —
= UIN vy S12,f = ( > Py fvg S12,§ + Op (T 1/2) :
Hovy
Then

’ 2 2 2 2 2 2 2
Mo (Sfi in) _ Ho; O f; (Sfi in) i=1.2
0?1“%1 +0]2‘2“%2 U?l‘ugl +UJ2"2‘M%2 J?i ’ Y
012'7‘, (1_)1'21\7 - sz) “1211‘0'12’7: (1_}1'21\7 - le) :

= , 1=1,2.

0?1 i, + U?QM%Q Ufﬁ u3, + 0?2/‘12)2 p,

Assuming loadings of factors and factors are independent of each other and across factors, gives

2 o2 1 a = 2 .
“12%012% <ﬁw> = 'u'iio-?i <\/T ; { [(flt - fl)/afz] - 1}) —a N (0’ (N3¢U;¢)2H§4)) , =12,

fi
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Migi (,/ch <7‘uvl)> = Mf}lo—i (1 /NO‘ (UZN um) <'UzN +,U/vz' )) —y N (0’40_1#31 (0?1)2) ’ i = 1’2
3, [ho;

Ho;

Further,

T — _
\/ 0f10f> Jie—h Jat — fo 2 2 2 2
v U T v v N 0 v v .
Moy Pog 512, = Moy Moy \/T ;1:( o ) ( ot d ( » Moy T f1 H 2Uf2)

Further, by factor independence

E ( \/ITtZT;{[(fit —fi)/os]” - 1}

1\ fu—ﬁ)(fzt—fz) —0. i=1.2
aa (et (FaR)]) o e

So
min (N, T 53 — o3 % — o3
(T ) <N12;10'J2’1 <\/f( f1 : f1)> _,'_”520)202 ( /T( f2 5 fz) + 240, [y /T512,f +
9% TFs
min (N, T) (5 5 VN Uiy — W, R N N Uiy — oy
o (M h (VN =5 | | + 05, ( VNS | —5— —d
N IL‘L‘Ul /LLUQ

o 0T (82,037 18" + (u2,0%,)" 1SV + 4122, (%)% 12, (03,)7) .
"f'w (20-12)1 Iuil O‘?cl + 2012;2/1%20]2‘2)

Proof of Lemma 12

Again, without loss of generality we look at the case of two factors. The result again extends straightforwardly.

We further assume, for simplicity, that factors are independent from each other. Then,

In (@%stcl + 2NQ2_a51N@2N512,f + N2z a)’Usti) —1In (O’?l My, + ]\72(0‘2 @) 22:“1;2) =

n Vinst, + 2N “UinTansiz,f + Nz(azfa)T)gNS?fg .
Uf u3, + N2(ez= OL)Uf 13,

Then, similarly to the proof of Lemma 11

In U1N8f1 +2N*27*U1NV2N S12,f + NQ(aZia)ﬁgNS?Q _ o, (55, —of) ot (Uin — uiy) n
oF 13, + N2e2=o? 13, oF k3, + N2e2=o? 13, of i3, + N>2=)of i,
N2(a2_a)ﬂv2 (sf2 UJ2‘2) N2(a2—a)0227f (v2N lqu) 2N27 Uy floy S12,f
of u3, + N2ez=o)g? 2 oF p3 + N2e2=)g? pi2, o pd, + N2e2=g? 12,
Then,
2 2 2 2 2 2 2
Hoy (Sfl — Ufl) _ My, Ofy (Sf1 _ Ufl)
of uE, + N2e2mod p3, of pd, + N2 y3, of
o (v -d) 2,0, (B — 1)
0% WE, + N2e2=gd u2 oF p3, + N2e2=)gf 12, w2, ’
2(a a), 2 2 2 2 2(ag—a 2 2
N2z )“Uz (sz Gf2) _ Moy O gy N3z )(sz 7Jf2) (B21)
012’1H12’1 + N2(ez= O‘)U%u?& UJ2‘1'u12’1 + N2(a27a)0?2M12’2 0?2
2(ag—av) 2 ~2 2 2 2 2(a a
N3z )Uf2 (va 7“”2) _ Huy 0 gy NE(ezme) (U 2N “m) (B22)
of W3, + N2e2=g? 2 oF p3, + N2ez=o? 12, u2,

But, then it is obvious that the Lemma holds since (B21) and (B22) are o, (1) , when multiplied by min(\/f vV N"‘)
respectively, as well as min (\/T, vV N"‘) N7y, fhog S12, f -
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Proof of Lemma 13

We analyse the population counterpart of In (3yDnSsfDy¥y) assuming for simplicity that 3¢ is diagonal and
a>az > ag > ... > Qn. We have

m
ln(llt;DszfDNNU) =1n (Milgll,f + N2(D<2—0t) ZN2(aj—a2)M3]a.f]>

j=2
Then,
N2(a27a) m (NZ(QJfaQ)IJP O' ) m (N2(QJ7[X2) 2 )
=2 v fj j=2 Ho; Oy, 2(ag—a)
In(p, DN Dyp,)—In (3,07, ) =In [ 1+ ’ = NAe2me),
( 1 fl) :“1211012‘1 M%10;1
So,

Vmin(Ne, T)In (N) (In(txDnSssDnon) — In(u,DnZsDyp,)) =

Z] =2 (Nz(a 70‘2)/411](7,‘])
leo-fl

Vmin(Ne, T)In (N [ln vNDNSffDNvN) In( /L,,lafl ] vmin(Ne T)In (N N2(O‘2_°‘)

We need
S, (4401

/Lvl Ufl

NQ(ag—a) =0 (mm (Na7T)71/2 In (N)_l) .

This holds if\/rmN%”*a) = o(1). If T < N then a sufficient condition for the above to hold is
az —a < —0.25. Otherwise, the sufficient condition is a2 < 3a/4. But, this condition is implied by az —ax < —0.25
as long as @ < 1. An alternative condition that relates to the relative rate of growth of NV and T is that a2 < 3a/4
and T® = N and 1/(4b) + a2 —a < 0 or b >

4(a— Ot2)

Proof of Lemma 14

We note that the first part of the Lemma holds if

ln(sfc1 17]2\71)

v =0 () (B23)

We have
ln(s?lﬁ?\q) =1In (5?1) +2In(on1) =1n (Sh +2In ( sz + CN> .

So (B23) holds if + ZZ 1 Ui +en = 0p (N°) for all ¢ > 0, which holds if éx = o0, (N°) for all ¢ > 0, proving the
first part of the Lemma. For the second part of the Lemma we reconsider (B16). We have v'N (Tn1 — pg) =
VN (% Zf\;l U; + N — I,L»[j) But, \/>< ZZ LU — ug) —q N (0,0?,) . Therefore, vVNen = op (1) is sufficient
for the second part of the Lemma to hold.

Proof of Lemma 15
We have that . . .
NT =N N (Y L (e (A
N« - Ne — N« P N« ’
Then,

implying the result of the Lemma.
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Proof of Lemma 16

The factor loadings of the cross-sectional units are partitioned into two groups by Assumption 1 and setting m = 1.
The first group has non-zero loadings, denoted by w;1, while the second group has loadings that are summable
over the group. We do not observe the partition and need to estimate it. For this reason, we rank the estimated
loadings as discussed in the statement of the Lemma. The first step in the proof is to show that the number of
cross-sectional units that are misclassified, i.e., that are included in the variance calculation when their loading
is not a function of any wvi1, is op (N®). The first thing to note is that we abstract from the possibility that any
v;1 = 0. By the fact that Pr (v;1 = 0) = 0, it follows that the number of units with v;1 = 0 is op (N<). Without
loss of generality, we further assume that units whose loadings do not depend on any v;1 have zero loadings. There
are two sources of errors in partitioning the loadings. The first arises because N@ is not equal to N®. But by
Lemma 15 this error is o, (N®) if & — a = 0, ((In N)fl) which is the case under the conditions of the Lemma.
The fact that & — a = 0, ((In N)_l) justifies using the true « rather than the estimated one throughout the rest
of the proof. The second source of error arises from the possibility that units are missclassified. We consider this
source next assuming the true value of « is used. We know that the probability that any unit’s coefficient is € > 0
away from its true value is of the order of N™% (by Lemma (17) and the Markov inequality). We know that N*®
units can be misclassified only if the estimated coefficients of any unordered and without replacement, sample of
size N from the N units, jointly exceed their true value by e. We know that since the v;1 are independent, that
the event that an estimated coefficient will be away from its true value will be independent from the same event
for another unit. So the probability that a given set of N units can be jointly misclassified is bounded from

above by N~*N"_ There are WLNW such sets. So the probability that any set will behave thus, is bounded

—aN® np

from above by NJX We need to aggregate across i = N?, ..., N. So overall the probability is bounded

(N—Na)l*
—anN® 5

. We replace this by (N — N¢) NN and justify this step below. We have

from above by >, _, o No(N—Na)!

(N—NP)
NN NI NN NI
Nal(N — Na)l = Nal(N — Ne — 1)

We need the logarithm of the above quantity to have a limit of —co. We have using repeatedly Stirling’s formula

(N - N%)

(B24)

that (~ denotes equality up to an order of magnitude lower that any included terms)

—aN“In(N) +In(N!) = In(N*) = In (N = N = 1)) ~
—aN®In(N) 4+ NIn(N) = N — N*In (N®) + N% — (N = N* = 1)In (N = N® = 1) + (N = N* — 1) ~
—aN®In(N) + NIn(N) = N — aN®In (N) + N* — (N = N® = 1)In (N = N* — 1) + (N — N* — 1) =
—aN*In(N) + NIn(N) = N —aN“In(N) + N* = (N = N* = 1)In (N1 - N“"' = N"H) + (N - N"—1) =
—aN“In(N)+ NIn(N) = N —aN“In(N) + N* — (N = N“ —1)In(N) —
~(N=N*-1)In(1-N"'"-N)4+(N-N*-1) =
—aN®In(N) —aN*In(N)+ N°In(N)+ NIn(N) = N+ N — NIn(N) +1In (N) —
+N*4+1—-N>**"1 NN ' NP (N-N"—1) =
—(2a—1)N*In(N) = N + N® +In (N) —
—(N=N*“—1)(-N*"'—=N7") + (N -N*-1).
The term —(2a — 1)N®In (N) dominates other terms and tends to —oo, as N — oo, for a > 1/2, proving the

_aN® _aNb
result. We now justify replacing (N — N¢) NJZ,(N*ALNJ\Q), for 37,0, NNm(NiAi]\J;V;). in (B24). We have

In <m> —In (N_“NbN!) —In (N”! (N - Nb)!) -

13



—aN’In (N) + In(N!) — In (N”!) ~In ((N N 1) !) ~
—aN’In(N) + NIn(N) = N — N’In (N”) + N (N—N”— 1) In (N—N"— ) + (N—Nb— 1) ~
)

—aN"In(N) + NIn(N) — N — bN"In (N) + N* — (N ~ N - 1) In (N(l NPT N_l)) + (N NP - 1) -

—aN"In(N) + NIn(N) — N — bN®In (N) + N — (Nbefl) ln(Nbefl +(N7Nb71) ~

—aN’In(N) + NIn(N) — N — bN®In (N) + N* — (N NY ) In (N) —
—(N—Nb—l)ln(l—Nb LN ‘1) (N Nt — )
The dominant term here is —(a + b — 1)N®In (N) which for b > a > 1/2 is tending to —oo faster than —(2a —
1)N®1n (N) justifying the replacement.

Next, we prove the Lemma assuming that we observe which units have non-zero loadings Recall that,
assuming that units whose loadings do not depend on any wv;1 have zero loadings, x;: = le (N1 aaz,«) + Ui
We analyse 0;1 by a slight abuse of notation whereby we define it to be the estimated regression coefficient of
the regression of x;; on N'~%%, rather than z;; on #;. Since [y, is assumed known, T)lN —p o, and &% —p

N?*72,2 | by Lemma 10, this does not affect the analysis. Let v§11> ““ and viv = =L We need to show that

1 ~ 1 N& 2 ”3
P S N, — L+ N . v
ch_li; (Uzl o Zj:1 %1) el op (1) . We have

o 2 2 2
1N 1 . o2 1 N” 1 1N
i (o) 2 - B (e ) e (v e B +

=1 =1

2 2 2
1 1 LR NCIN 1 V(o 1 ) o
N1 (”“V T Ne -Z{"]N> TNe1 ( 2 T s\ TN ) T

But by the law of large numbers for i.i.d. random variables with finite variance

2
U S (,o_ Lo ouy -1/2
S0P - —3o W] - N )
Ne —1/4 (”” Ne 13 Or (

v1

It is sufficient to show that

« 2 2
1 N 1N 1 N 1 ne
No —1 > (Uil -~ Ne Zvjl) T Ne 1 > <'UiN - Ne ZlvjN> =0, (1) (B25)
5=

i=1 et i=1

and

2 2
1 N 1 N 1 No " 1 No )
N — ) _ V= . = 1). B26
Neo — 11; (’U N N ]¥1U]N> Ne —1 Z <v11 Nea ng’ujl Op ( ) ( )

i=1

NOt
For (B25), it is sufficient that wa— > (91 — vin) = 0p (1) . Recall that @i = ;’“ (N'"%Z¢) 4 uit. So
i=1

1 ¥ T
1 N WZ (Zt:l jtu“)

N — 1;:1 (Din —vin) = Zt | 32 - (Ne — 1) %, (Zt 1 fu) ;;fuun

But $2 S0, frewie = 0, (NT)2) and S, 7 = 0, (T).. So

NOL
> (23:1 ft“it)
i=1

(ol #)

=0, (TN (N"T)"?) = 0, (T7/*N"*") =0, (1).
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For (B26), it is sufficient that ya— Z (U7N — v(l)) = 0p (1) . We have,

=1
1 N (UlN o Hul) Zvll
> (vuv - v“)) =
Neo — 1i:1 il No — 1
, X 1 1 2 5 Ly ’
it g Sy = Oy (1). Aboghs = e (suy = ) = 0y (N77%).So.overal 5 52 (o = £ 23, 0 -

0'2 A i
“;: = 0p (1), proving the required result.

Proof of Lemma 17

Recall that 8i1 = vi1 for i = 1,2,..., N* and 0 for : = N® + 1,..., N (without loss of generality). Here we set
m = 1. Let

N
_ 1
Tt = 7NO’ E Tit,
i=1
where we have used the normalisation N~¢ to ensure that Z; converges to fi:. We have

1 T =
T D LtTit

Bir = iy (B27)
% Zthl T3
Then,
. T ;] IX
IO ST o) B
t—1 t=1 j—1
1em 1 &
f Z ﬁ Z (/leflt + u]t) (ﬂzlflt + U'Lt)
t=1 Jj=1
e 1 &
T Z N Z (leﬁzlflt + 281851 frewie + ujtult)
t=1 j=1
We have
e 1< 1 NZQ
S b f = ( szt) ( ﬁ) |
T~ t=1 j=1 T t=1 N j=1
But,
1 3
i1
TZlet —p 7 No ZUJI —p ﬁllu’ul
=1
Next,
1 & & 1
TNe > wie ) uje =0, (Tl/zNa; 1/2’) ,
=1 =1
and

T N T N 1 ep . o
T]2VO‘ Zzﬁilﬁjlfltu“ = %;fltﬁﬂu” <(]\}a Z:lvjl>) — { OP (TI/Z) lf’L S N
= j=

t=1 j=1 0 otherwise

This concludes the analysis of the numerator of (B27). For the denominator we have,

T T N
Z ?_ TNQa ZZZ‘WW -

N
t=1 j=1 i=1

N
ZZ Birfre + uje) (Bin fre + wie) =

j=1i=1

H \

X

15



N
ZZ (ﬂjlﬂnfft + 28;1 851 freuie + thuit) .

"

j=1i=1
We have
T N N N(! N(X
TN2a Zzzﬁﬂﬂﬂflt = <T qu) <N2a 221}]1%1> )
==t j=1j=1
But,
1 I No No
LR ZZvawu —p 12,
t=1 j=1j=1
T N N .
v 3523w = O s )
T N N
TN20< Zzzﬁllﬁjlfltun =
t=1 j=1i=1
T Ne No
2 1 1 1
(e[S (0] - ()
= i= j=
Therefore,
B —p 2L,
Moy

h s Et 1 xtw“ B“;” tends to zero. This is determined by the

T i %3 Moy

T
Z fi=1) =0, (172,

611 ZUJ]- _leﬂzful :{ Op (ﬁ) if 4 < N¢ 7

Next, we need to establish the rate at whic

maximum of two rates:

’ﬂ \

0 otherwise

noting that
N® N©

1
N2a ZZ Uﬂv“ /‘vl) =0, (W)’
Jj=1j=1
and
T N N 1
TN2a ZZZ"”W - (T1/2N2a71)'
t=1 j=1 i=1
Hence

A Bi 1 1
Bin — . =0p (Na/2> + Oy <m> .

Proof of Lemma 18

We need to show Vf—z — Ve = 0p(1). and assuming a one factor setting (without loss of generality). The result
1 1

extends straightforwardly to m factors. We have VfT —Vz=Vs-— foz + Vo5 — V=5 where
1 1
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and g = (f”f fl) . But, by Theorem 25.3 of Davidson (1994) and Assumption 3, we have that Vf V= op(1),
1 1
as long as | — oo and [ = o(T). Then, it is sufficient to examine

fie Lo~ fie & 1 Tt _
3 (fe) = r (B 5) = mr g (r wetien) -

T Ne— 11—) f + lzi\; w; N~ T N N T —a T N
z:: (flt - 1]\;V‘13‘t—117ivN =) = spT z::zun - opT szt top <O’flT Zzun) ’

But, >0, S5, wie = O, ((NT)”Q).SO,%ZL1 (f“—:zt) 0, (N1/2‘”T‘1/2) Thus, V-5

proving the Lemma.

Supplementary Appendix IV: Justification of the use of the cumulative distribution function of the

standard normal in the approach used to estimate p.,,.

Consider the single factor model,
Tit = i1 fit + wir, fori=1,...,N; t=1,...,T, (B28)

and assume that BlN = %Zil Bi1 # 0 for a finite N. Recall that ;1 = w41, for ¢ = 1,..., N® and zero for
t=N+1,..., N (without loss of generality), so that

N
BIN = Na_llle, with o3y = N~ ¢ Z’U“.
i=1
Also letting Z; = % vazl Tit, 0f = ,Bil/ﬁuv and noting that Z; = Bin fit + Ut, we have
Tit = 0iTt + Eir, where & = uie — §ilUy. (B29)

Consider now the t-ratio for testing §; = 0 in the above regression and note that it is given by

bi L T
2i = Zi,T,N = Y = Lot ztlzr/; ) (B30)
T - . T - R
(Zt:l m?) O¢i (Zt:l ch) O¢i
where
T
= Z Tit — 5 :Ct 5
t=1
5 = Zthl Tyt =5 + EtT:I it&t.
S F Y
But
T
Zwtxzt = Z 51th + ﬂt) (Bi1 f1e + uit)
t=1
B T T T T
= Pufin Z f12z + B Z U f1t + Pin Z frews + Z Ut Uit
t=1 — = =
and

T

T T T
Zf? = Bin fot + 261N Zflt'at + Zﬁ?,
t=1 =1 =1
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t—1
T T T
=TI &R+ (6= 0T Y & — 200 — 0T Tubur
t=1 =1 t=1
T e 2 T e T
T i _ T _ it
ey (RIS e e ER s g,
t=1 T-1 1% t=1 T-13 1% t=1

2

T e A
oy (TELne)
t=1 -1y, 17

Also
_ BirBin Sy fi + Bt Yopy U fre 4 Bin 3oy frewie + 30, Ui
(szv S A2y T, e+ 3, ﬁf) v bei
_ Ba Sty fhA Bin X (W) Ban) fre + ey frewie + > (Ge/Bin) uit
(S5, 72+ 250, fue (@/Buv) + S0, (@/Bun)?] 5

Further, since fin= N* '%1n, we have @;/Bin = N'~%(@:/01n) and

ﬁuT Zt T Zt | frewis + (B /oan) NYTOT™ Zt LA fie+ (L/oin) NPT Zt 1Utuzt

T-1/2,,
Zi 1/2
[T 1Zt:1 f1t+2(1/U1N)N1 “T- 121&:1 fltut+(1/U1N) N2(=) = 1Zt:I u,}

0'51

T T T T
-t Z&Qt =7 Zui + 51'2T_1 Zﬂ? —25, 7" Zﬂtuit
t=1

—T_lzuzt—&—ﬂzl (1/1111\;) N2(0= Q)T_lzut — 2B (1/tain) N Ni—e~ Zutuzt

t=1 t=1

(Tfl Sy ft&t)z (T71 Sy Ee(wie — B (@f//glN))2
Ty # BINT VL R+ 2BinT V0 fute + TV, @
B ([T_l Sy S+ ('at/BlN)] [uit — Bin (at/glN)])z
TR 20 R fue (@ /Bin) + TR (@ /Buv)
B ([T71 Sy fut (ﬂt/ﬁm)} [uit — Bin (ﬂt/BlN)])2
T3 A +21 /o) N*=eT-2 0 | frtie + (1/01n)° N2G-—e)7-1 57T 32

But we have .
Tt Z fie + (@e/Bin)] [wie — Bix (@e/Bin)] =
t=1

T

T T T
Tt Z frewie — BT~} Z fie (@e/Bin) — BT ™! Z (ﬁt/Buv)Q Z Ue/Pin) wit

T
=77! Zfltuit — (Ba/on) N 0T} Zfltut Bir (1/t1n)* N*U—p—t Zut + (1/mn) NPT Zutum

t=1 t=1 t=1
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T
N2y g2 = 0, (N2, NITOT 1Zutuzt— (N”Q’“T’”z), (B31)

t=1
(B32)
T T
N'Z TS fuedie = 0, (NPT 72) 17437 frvw = 0, (T777))
t=1 t=1
(B33)
Hence,
T T T
TN € =TTy ul + B (L/on) NPT Z — 2B (1/1n) N' 7T~ lzutuzt
t=1 t=1 t=1 t=1
— o2 4 O, (T71/2) 0, (Nl/zfanl/z) 0, (N172a)
T —_ —
T3 (fue+ (@/Biw)) [uwie = Bia (e/Bin)] = Op (T7/7) + 0y (N*72%) 4 O, (NY/270T72).
t=1
2
1T 4 g
=Ty - (1 3k )
051 - it T_l ZT jQ
t=1 t=1"t
_ 01-2 1o, (T71/2) +0, (N1/270¢T71/2) +0, (N172a) '
Using the above results we now have
T—l ZT7 f u; +O NI/Q—QT—1/2
T—I/QZi _ t=1 J 1t Wit p ( ) 73 ; if /3“ =0
[ S J o+ Op (NY2=e172) 0, (N12)] 6
—1 T o
_ T Zt:l flt(uzt/al) + Op (N1/27aT71/2) + Op (N172o¢) . (B34)

(T71 23:1 f12t) v

Therefore, under 3;1 = 0, z; is asymptotically distributed as N(0,1) so long as N and T tend to infinity in any
order and a > 1/2. Also,

T2, BTt Zthl fi+17t 2321 frewir + (Bin Join) N1ToT ™1 Zz;l Gt fre + (1)) N1 Zz;l Ut Uit

i = 1/2 )

[ S J o+ Op (NY2=eT172) 0, (N2 6
if Bi1 # 0,
1/2
' Tﬁ1 T_ f Uit /04
)
(T71 D im1 f12t>
O, (NI/Z—aT—l/Q) 10, (N1—2a) ) (B35)

Thus, under 3;1 # 0, and using the normalization 7! ZtT:I o —p 1, (zi— @) —q N(0,1) as N and T' — oo,
in any order, and if & > 1/2. It is also easy to see that (B34) and (B35) also hold in mean square.

In the case of a multi-factor setting, (B29) can be re-written in the form shown in Lemma 4 so that the error
term, &;:,now is augmented by residuals from the regression of each of the m factors on Z;. The rest of the analysis

then follows through.

Supplementary Appendix V: Proof of consistency of fi,, (cp,n) based on multiple testing

The proof is heuristic to the extent that a high level assumption is needed that may be difficult to establish using
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more primitive conditions. We make the following assumption.

Assumption 6 1. Bi1 is uniformly bounded over i .

2. Tiuiris uniformly mizing over i, in the sense of the mixing assumption of Connor and Korajczyk (1993),

with mizing coefficients ¢¢mthat satisfy sup, limm—oo ¢r,m= 0.

3. Let ¢; denote a standard normal variate. Then, if zir.n — @i= Om.s (N>7*) + Om's'(Nl/ZfaT_l/Q),
sup; zi,r.N—pi = Op (N*7*%) 40, (N1/27QT71/2), and sup; E (zir.n — i)? = O(N?*74) L O(N'~2o7~1),

where Om.s.() denotes order in mean square.

4. Let v = (1,...,9n)" denote an N x 1 selector vector consisting of zeros and ones such that 'y > N¢, for
some a > 1/2. Define ul = (¢'1) " SN wiuge. Then,

2
supsup F (u?’) =o0(1).
t

Remark 2 Condition 2 is a standard uniform mizing condition. Uniform mizing is a stronger form of mizing
than strong mizing which is more widely used, but allows a CLT without any rates for the mizing coefficients and
only the existence of 2+ 9, 6 > 0 moments. One could simplify further the assumption by imposing a uniform
mizing condition on uit, and thereby firui and proving that Tiuir is uniform mixing with mixing coefficients that
have mizing size -1/2, but we choose to make this slightly less primitive assumption for simplicity. Clearly, if
uit follow (16) then Condition 2 is satisfied. If usfollow (28) then both (29) and assumptions on vs: need to be
strengthened. A discussion of these issues may be found in Section 14.3 of Davidson (1994) and, in particular,
Theorem 14.14. Conditions 8 and 4 are uniform convergence technical conditions which again seem difficult
to establish from more primitive conditions. A proof of the normality invoked in Condition 3 is provided in
Supplementary Appendiz IV and the assumption only strengthens the result to make it uniform. Condition 4
appears intuitive due to the weak cross-sectional dependence of the errors, although again uniformity is difficult

to establish formally.

Set

wit = Tl (|zi,7,8| > cp;N), 0 = Bl (|zio,N| > cp; N), Vie = uit (|zim,N| > Cpy N)

where cp;, v is the critical value of the i-th test. Then,

wit = 0 f1r + vir,for i =1,....N; t =1,...,T,

and
Wy = éflt + U,
where N N
@y = Dy Wit g= > i
b y
S Iz = cpin) St I(zimN| = cpyn)
and N
_ Zi:l Vit
Ut = N .
> e L (lzir N| 2 ep, )
We take

s
b = TZ("Dt—’@)z’
and consider the limiting behaviour of U?;,/uv17 where as before ., = E(vi1). Since

Wy —w =0 (f1. — fr) + (0: — D),
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then

62 21 T 1 & )
— [+ IT+III.

We concentrate on I as we will prove that I and I1] tend to zero. For I, and since % Zle (flt - f1)2 —p 1,

we have

PR 51‘1](|Z¢ TN 2 e N |Bit #0) + o0 vass Bin (2| = cp, v |Bin = 0)
STz n] > cp w18 #0) + 300 ey (|20 n| > py v |Bia = 0)

o (Zi:l Bl (|2i,m,n] 2 N 1Bt # 0) + X0l yayy Birl (|20,,85] > cp | Bin = 0))
N (va:al I(|zi,m,n] 2 N [Bit #0) + X0 yayy I (|26,1,8] > p | Bin = 0))

0=

, or

(B37)

We first consider the asymptotic behaviour of the following four terms:

= Na Zﬂu (lzir.n| 2 epy w18 # 0) = Pr([zi,r,n| 2 ¢py B # 0))

Z Bir (I (Jzi,r,N| > cp; . n|Bir = 0) = Pr (|zi,7.n| > cp; .~ |Bin = 0)),
i=No1

No
1
C= -2 (I(lzrn| > cpnlBia #0) = Pr(lzir,n| > cpn|Bia #0)),
Ne =1
N
1
D=ywa Y ((zirw| = epnlBin = 0) = Pr(lzirn| 2 ¢pn|Bi = 0)).
i=N*+41
We need to show that the summands in A — D follow a central limit theorem. It is sufficient to show that the
summands are uniformly mixing. By Condition 2 of Assumption 6 it follows that z; 7, is uniformly mixing
over 4. By the measurability of the indicator function (see, e.g., Theorem 3.27 of Davidson (1994)) and Theorem
14.1 of Davidson (1994), it follows that all summands in A — D, are uniformly mixing and, by Theorem 18.5.1 of

Ibragimov and Linnik (1971), a central limit theorem holds. Then, it follows that
A=o(N"?), B=0(N"*"), c=0(N"?), D=0(NV*").

Next, we consider

N, T—o0 Ne

e (ziﬂ r(l2imn| 2 epin Iﬁzl#0)>7and

lim

N, T—o0 N«

(Zév_zvaﬂ Pr(|zi,r,n| > cp; N |Bi1 = 0))

We have that,

Pr(ar] 2 eod #0) = 1= [o (= 220) — (g, - 2201 (535)

gi

+ O (N1720¢T71) =+ O (N274a) )
=1— @ (Cp,N — %ﬂ) —+ @ (_Cp,N _ ﬁltyﬂ) + O (N2*4Oé) + O (N172O¢T71) .

(B38) can be proven as follows. From Supplementary Appendix IV we have

zi,r,N = 2 + Op (lem) + Oy (Nl/QiaT*l/z) =2z +qnNT,
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where z; is distributed as N(0,1) and ¢; n.r = Op (N'72%) + O, (N1/27°‘T71/2). Then, we have

Pr(|zi,r,n| < cp,v) — Pr(lzi] < cpyon) = Pr(|zi +qivr| < cpyn) — Pr(|2i] < cpyv) < Pr(|gi,n,r| > 0)

yim Pr(lgive|>0)=lim lim Pr(|g,nr|> ).

But N
E (qi,N,T>

Pr(|ginr|>¢€) < =

It is easy to see from the analysis of Supplementary Appendix IV that
E (qlzNyT) — O (N2—4OL) + O (NI—ZOLT—I) ,

then
Pr(|zir.n| < cp,n) — B(ep,n) — B(—cp,n) = O (N> 7%) 4+ O (N' 201771, (B39)

proving (B38). Assumption 6 (3) strengthens this to

sup Pr (|zi,7,5| < ¢p,,n) = @(cp,,n) = D(—cp,,n) = O (N*7*) + O (N 722771). (B40)
Thus,
(2T (m N > e w80 £ 0)
P im < 1 N el (B41)
as long as
Cprv=0p(T"?) (B42)
uniformly over i. Also,
Pr (|zimn| = ep,n[Bin = 0) = [1 = @ (cp,.v) + D (—cp, )] + O (N'72°T7H) + O (N?7*7)
=2[1—®(cp,n)]+O (N'72*T7Y) 40 (N>*).
Then,
ZiV:[Na]+1 Pr (Jzi,r,n| > cp,n|Bin = 0) ZéV:[NaHl 2[1 =@ (cp,,n)] (N —N%) 1—2am—1 2o
i - o PN (o (w12t 0 (82,
and, as long as
Zi\]: Najr1 2 [1—@(cp;,n)]
R = op (1), (B43)

then,'3
Zﬁ\;[NQH-l I(Jzi,,n] > cp; ,N[Bi1 = 0)
N«
if cither a > 2/3 or a > 3/5 and N?73T~'= o(1). The latter follows, if @ > 3/5 and N = o(T"). For simplicity,

we will assume that o > 2/3. Now, we check

— 0,

N,T—o0 N

i (ZmﬁﬂPﬂzww_J%wﬁl#m and

N«

N, T— oo

i (Ziv[NaH»l Bi1 Pr (Jzi,7,n| > cp; N |Bi1 = 0))
im )

131t is easy to see that both the Holm and Bonferroni multiple testing approach discussed in Section 3.1
satisfy (B43). For Bonferroni, this is obvious. For Holm, we note that if cp, v = &' (1 —pi), pi =
Vi1 then 2[1 =@ (cp;,n)] = istveTy, for some uniformly bounded positive constants Cj. Since

S inays1 2[1— @ (cp, )] < CIn N, (B43) holds.
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We have,

lim =
N, T— oo

)

<Z£V=[N0]+1 Bi1 Pr (|zir.n| > cp, n|Bi1 = 0)>
Na

and

Zj\:; Bil [1 -e (Cpi’N B BI}’%) +e (7Cpi,N - %)]

i <Ziv—oi Bi1 Pr (|zi,r,n| > cp, n|Bin # 0)) _

N, T—oco N« N, T—o0 N«
(B44)
—p E(T}) = Moy

using (B41), or

6 —p Moy - (B45)
And therefore,

52

w N 1'
pio

Finally, for IT and IIT we first note that we have already established that N~ "N T (|zir,n| > ¢p;n) —p 1,
as N and T — oo, assuming that o > 2/3. But by the proofs of Lemma A.1 and A.2 of (Pesaran, 2006,
Theorem 15.18) and using assumption 6 it immediately follows that IT = 0,(1) and III = 0,(1) completing the
proof. In summary, consistency is obtained under Assumption 6 and conditions (B42) and (B43) if o > 2/3.
Note that in the case of a multi-factor setting, (B44) can alter. If « = a1> a2> ... > am, then the denominator

can potentially capture more elements than N“and so (B45) converges to Z;":l Cjto;,where 0 < ¢; < 1.

Supplementary Appendix VI: Additional Monte Carlo simulation results

We provide some additional Monte Carlo simulation results in this appendix. First, we set pu,= 1 and keep
a = a1> az. In this case & consistently estimates o and has the asymptotic distribution as described in Theorem
1. Next, we present size and power of tests based on & as well. We use the same confidence bands as in the case
of &. From the results shown for experiment A it is confirmed that & is super-consistent. Finally, we consider the

two factor model of (36) for the case when o = a1= a2 and depict bias and RMSE results for estimator &.

A two-factor model where p, =1

In addition to the results analysed in Section 4, here we consider the instance when g, = 1 and show bias, RMSE,

size and power results for estimator & which is asymptotically distributed in accordance to Theorem 1. We use

the set up of experiment A of Section 4 and set p,=1, pp, = 0.87, py, = \/,u,% — N2(e2=a) 2 and ¢= 3/4. Since

the leading factor (fi¢) is serially uncorrelated, the statistic for making inference about « is given by

-1/2
1~ 4 o2, / 5 N
Note that when the leading factor is serially uncorrelated then Aﬁ = E(f/{ltvg;‘cl — 1, where E(Tﬁ)\/a}1 is consis-
tently estimated by
TRw iy (@ —3)
B(fi)fot, = ===

where T; = (N_1 vazl xit) /6%, and o2, /u2, , the estimator of 012,1 /ugl, is given by

Q

[~

S
<
Il
A
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where {65?} denotes the sequence of 0;1 sorted according to their absolute values in a descending order, and ¥;1

is the OLS estimator of the regression coefficient of z;; on & = Z:/6z - see Lemma 16 for details. The above
expressions apply irrespective of the number of factors included in model (36).

Further, though not depicted in these Monte Carlo simulation results (these are available upon request), we
consider the case of serially correlated factors as it is being used in the empirical applications of Section 5. When

pj # 0, we use a corrected variance estimator of fi;. The relevant formula for the test statistic is given by

—

17y 4 o2
7 77@)] + 3 2

—1/2
} 2In(N) (@ — a*) —q N(0,1). (BAT)

Vﬁ(q) is computed by first estimating an AR(q) process for Z; = z¢—Z, where z; = (T — ~)2 , Ty = (% 25\7:1 :vit) /6,
F=T'Y] 4 and 2=T""3 ], 2, and then Vﬁ(q) =62/(1 =1 — A2 — ... — 7y)?, where 6, is the regres-
sion standard error and 7; is the it" estimated AR coefficient fitted to 2. The lag order is set to ¢ = T1/3,
and aml is computed as before. Note that this correction is not the standard Newey-West one but uses an
estimated autoregressive filter. We found that this correction leads to better finite sample properties and hence
we use this in both the Monte Carlo study and the empirical applications in Section 5.

Size of the tests is computed under Hp : @ = o, using a two-sided alternative where ao takes values in
the range [0.70,1.00], as indicated previously. Power is computed under the alternatives H, : aq = ag + 0.05

(power+), and H, : ag = ap — 0.05 (power-). Again, all results are scaled up by 100.

Size and power of tests based on & estimator

Next, we conduct size and power tests based on estimator &. We use the same variance estimates as in (B46)
which constitute conservative bands for & and show results for the setting described in Section 4 for experiment
A when p2 # 1. The same specifications for the null and alternative hypotheses are imposed as in the Section

above.

A two-factor model when a = a1 = as

Finally, we repeat the analysis of Section 4 for Experiment A using the less likely alternative of o = 1= .

Here, we set iy, = fv, = 0.5 and ¢= 1/3.

Additional results

Table A1l presents bias, RMSE, size and power statistics for experiment A in the case of the bias-corrected
estimator, &, and when p, = 1. Results in Table A1 show more clearly the asymptotic distribution derived for &
which is also used for &. Again, we only report results for values of o over the range [0.70,1.0]. Recall that « is
identified only if @ > 1/2, and for asymptotically valid inference on « it is further required that o > 4/7, unless
TY2/N@e=2) 0, as N and T — oo in the case of & (see Theorem 1), or that o > 2/3 in the case of & (see
Supplementary Appendix V).

It appears that estimator & performs reasonably well in terms of bias and RMSE for values of « in the range
[0.70 — 0.85], when pu, = 1. To get a clearer picture of the asymptotics we turn to the right-hand-side of Table A1l
that summarizes the size and power of the tests based on & . There is evidence of some size distortion when « is
below 0.75, but it tends towards the nominal 5% level as « is increased. The size distortion is also reduced as N
and T are increased. The power of the test also rises in o, N and 7', and approaches unity quite rapidly. However,
the power function seems to be asymmetric with the power tending to be higher for alternatives above the null
(denoted by Power+) as compared to the alternatives below the null (denoted by Power-). This asymmetry is
particularly marked for low values of a and disappears as « is increased.

Turning to the size and power of the tests based on &, its superior properties are verified by the results shown
on the right-hand-side of Table A2. Indeed, in general size tends to zero as a increases towards 1 and as N and

T increase. Similarly, power is uniformly close to unity irrespective of the value of a chosen or the N and T
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combination considered (low power is only recorded for the smallest value of a considered and for small N and T
combinations).

Finally, we present results for Experiment A when o« = 1= a2 in Table A3. Compared with Table A-B, both
bias and RMSE results are more elevated for estimator & for all values of @ when we impose the two factors to
be of the same strength in the data generating process. This is expected given the discussion in Supplementary
Appendix V. Consistent with the baseline case, both the bias and RMSE of & fall gradually as N, T', and « are

increased.

Calibration of R%

In order to select an appropriate R% for the Monte Carlo simulation study of Section 4 and Supplementary
Appendix VI, we computed R2s for the regressions, (36) summated based on data from a number of empirical
applications. For each data set we first calculated & corresponding to & and selected the strong N¢ units. This

resulted in a modified data set, z(*) = [mgf)] of dimension T'x N (elements of (*) were standardised to have

unit variance). Then, we extracted the principal components (pc) from 2 and run the regression
(s) _ . e ) B4
Ty = Qi +YiiPCj + Eit, (B48)

for i = 1,2,...,N% and t = 1,2,...,T. We set the number of principal components to include in (B48) to j

1,2,3, rgspectively. Finally, we computed the R? of each of the N& regressions and took their average: R% =
ﬁ Zf\[:l R?. We conducted this analysis for a number of empirical applications, of which: (i) GVAR macro
economic data sets (real GDP growth - R% = 0.28,0.37,0.44, inflation - R% = 0.47,0.57,0.64, real equity price
change - R% = 0.47,0.59,0.66), and (i) US - R% = 0.30,0.50,0.60 - and UK - R% = 0.25,0.43,0.52, all using

j =1,2,3 principal components, respectively. See also Section 5 for further details of the data sets.
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Table A3: Bias and RMSE (x100) for the & estimate of the cross-sectional exponent -
case of two serially independent factors and cross-sectionally independent idiosyncratic errors
(a2 = «, fjt and uy ~ ITDN(0,1), vi; ~ IIDU (pt, — 0.2, 1oy, +0.2), j = 1,2, p1y, = 0.5, f, = 0.5)
N=100,200,500,1000 and T=100,200,500

o 0.70 0.75 0.80 0.85 0.90 0.95 1.00

N\T 100
100 Bias 9.41 851 7.73 6.96 545 3.28 -0.04
RMSE 9.55 8.63 7.82 7.03 551 3.33 0.06
200 Bias 892 841 7.54 649 5.04 3.12 0.03
RMSE 9.00 847 7.59 6.53 508 3.14 0.04
500 Bias 7.39 7.01 6.52 5.66 4.50 281 0.05
RMSE 745 7.06 6.56 569 4.53 2.83 0.06
1000 Bias 682 649 6.00 521 4.14 256 0.05
RMSE 6.86 6.53 6.03 524 4.17 2.58 0.06

200
100 Bias 1095 9.84 891 8.00 6.29 3.72 -0.10
RMSE 11.03 9.90 8.97 804 6.32 3.75 0.10
200 Bias 9.60 9.35 856 7.51 5.92 3.68 -0.02
RMSE 9.64 938 858 7.53 593 3.69 0.02
500 Bias 876 836 7.81 6.88 556 3.50 0.02
RMSE 878 837 7.82 6.89 556 3.51 0.02
1000 Bias 808 7.77 7.29 6.46 526 3.36 0.03
RMSE 8.09 7.78 7.29 6.47 527 3.36 0.03

500
100 Bias 11.54 10.39 9.39 835 6.52 3.84 -0.12
RMSE 11.60 10.43 9.43 838 6.54 3.86 0.12
200 Bias 10.26 9.90 9.07 7.94 6.26 3.83 -0.04
RMSE 10.28 9.92 9.09 7.96 627 3.84 0.04
500 Bias 940 897 842 7.44 6.00 3.75 -0.01
RMSE 941 898 843 7.44 6.00 3.75 0.01
1000 Bias 889 843 7.93 7.08 577 3.67 0.00
RMSE 889 843 7.94 7.08 577 3.67 0.00
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