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Abstract

In this paper we provide a characterization of the degree of cross-sectional dependence

in a two dimensional array, {xit, i = 1, 2, ...N ; t = 1, 2, ..., T} in terms of the rate at which

the variance of the cross-sectional average of the observed data varies with N . We show

that under certain conditions this is equivalent to the rate at which the largest eigenvalue

of the covariance matrix of xt = (x1t, x2t, ..., xNt)
′ rises with N . We represent the degree of

cross-sectional dependence by α, defined by the standard deviation, Std(x̄t) = O
(
Nα−1),

where x̄t is a simple cross-sectional average of xit. We refer to α as the ‘exponent of cross-

sectional dependence’, and show how it can be consistently estimated for values of α > 1/2.

We propose bias corrected estimators, derive their asymptotic properties and consider a

number of extensions. We include a detailed Monte Carlo simulation study supporting the

theoretical results. We also provide a number of empirical applications investigating the

degree of inter-linkages of real and financial variables in the global economy, the extent to

which macroeconomic variables are interconnected across and within countries, and present

recursive estimates of α applied to excess returns on securities included in the Standard &

Poor 500 index.
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1 Introduction

Over the past decade there has been a resurgence of interest in the analysis of cross-sectional

dependence applied to households, firms, markets, regional and national economies. Researchers

in many fields have turned to network theory, spatial and factor models to obtain a better

understanding of the extent and nature of such cross dependencies. There are many issues to

be considered: how to test for the presence of cross-sectional dependence, how to measure the

degree of cross-sectional dependence, how to model cross-sectional dependence, and how to carry

out counterfactual exercises under alternative network formations or market inter-connections.

Many of these topics are the subject of ongoing research. In this paper we focus on measures of

cross-sectional dependence and how such measures are related to the behaviour of cross-sectional

averages or aggregates.

The literature on cross-sectional dependence distinguishes between strong and weak forms of

dependence, with the former typically associated with factor models and the latter with spatial

models. In finance, the approximate factor model of Chamberlain (1983) provides a popular

characterization of cross-sectional dependence of asset returns in terms of a factor dependence

and a remainder term. The factors are intended to capture the pervasive market effects, whilst

the remainder term is assumed to be only weakly cross-sectionally correlated (Ross (1976), Ross

(1977)). Strong and weak cross-sectional dependence are defined in terms of the rate at which

the largest eigenvalue of the covariance matrix of the cross section units rises with the number

of the cross section units. See, for example, Chudik et al. (2011).

Let xit denote a double array of random variables indexed by i = 1, 2, ..., N and t = 1, 2, ..., T,

over space and time, respectively, and without loss of generality assume that E(xit) = 0. Then

the covariance matrix of xt = (x1t, x2t, ..., xNt)
′ is given by ΣN = E (xtx

′
t) = (σij,x) with

its largest eigenvalue denoted by λmax (ΣN ). The variables xit are said to be strongly cross-

sectionally correlated if λmax (ΣN ) rises with N , and they are said to be weakly cross-sectionally

correlated if λmax (ΣN ) is bounded in N . This is clearly an important distinction and forms the

basis of most factor models considered in finance and macroeconometric literature - Forni et al.

(2000), Forni and Lippi (2001), Bai and Ng (2002) and Bai (2003).

In particular, standard factor models assume that λmax (ΣN ) = O(N), whilst spatial models

typically assume that λmax (ΣN ) = O(1). In practice one would expect to encounter degrees of

cross-sectional dependence that lie between these two extremes. Also, in empirical applications

where the degree of cross-sectional dependence is weak, it might not be possible to distinguish

different models of cross-sectional dependence in terms of λmax (ΣN ). For example, λmax (ΣN )

is bounded in N irrespective of whether xit are cross-sectionally independent or spatially depen-

dent. For this reason, and as we shall see below, it is only possible to identify and consistently

estimate α for values of α > 1/2. Accordingly, we consider models of cross-sectional dependence

for which λmax (ΣN ) = O(Nα), and 1/2 < α ≤ 1, and investigate the problem of estimating α. It
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is important that empirical analysis of cross-sectional dependence is firmly based on observations

rather than on an a priori chosen value of α.

We propose estimating α using the variance of the cross-sectional average of the observed

data, x̄t = T−1ΣT
t=1xit, and present bias corrected estimators of α under a multiple factor

setting. We derive their asymptotic properties and consider a number of extensions that allow

for the presence of temporal dependence in the factors or the idiosyncratic component, and weak

cross-sectional dependence in the latter. It is also worth pointing out that our estimators of α

do not use explicitly a factor structure. The factor representation is only needed as a vehicle

to derive the theoretical properties of the estimator and to give α a unique interpretation as a

measure of cross-sectional dependence. We use this vehicle because working with covariances

directly would involve high level assumptions and would potentially lead to stricter conditions

such as the need for T to rise faster than N . A further crucial reason for using the factor model

is that, as proven in Theorem 4 of Chamberlain and Rothschild (1983), a covariance matrix

that has a finite number of eigenvalues that tend to infinity as N increases, has a unique factor

representation. This makes the factor model a canonical model for analysing cross-sectional

dependence associated with covariance matrices with a finite number of exploding eigenvalues.

To illustrate the properties of the proposed estimators of α and their asymptotic distribu-

tions, we carry out a detailed Monte Carlo study that considers a battery of robustness checks.

Finally, we provide a number of empirical applications investigating the degree of inter-linkages

of real and financial variables in the global economy, the extent to which macroeconomic vari-

ables are interconnected across and within countries, and present recursive estimates of α applied

to excess returns on securities included in the Standard & Poor 500 index.

The rest of the paper is organised as follows: Section 2 provides a formal characterisation of

α and discusses potential estimation strategies. This section also presents the rudiments of the

analysis of the variance of the cross-sectional average and motivates the baseline estimator and

bias corrected versions of it. Section 3 presents the theoretical results of the paper. Section 3.1

provides the full inferential theory under a multiple factor set up. Section 3.2 deals with possible

cross-sectional dependence in the error terms and touches upon an alternative specification of

factor loadings. Section 4 presents a detailed Monte Carlo study. The empirical applications

are discussed in Section 5. Finally, Section 6 concludes. Proofs of all theoretical results are

relegated to Appendices.

Notations: ‖A‖ = [Tr(AA′)]
1/2

is the Frobenius norm of the m×n matrix A. supiWi is the

supremum of Wi over i. an = O(bn) states the deterministic sequence {an} is at most of order bn,

xn = Op(yn) states the vector of random variables, xn, is at most of order yn in probability, and

xn = op(yn) is of smaller order in probability than yn, →p denotes convergence in probability,

and→d convergence in distribution. All asymptotics are carried out under N →∞, jointly with

T →∞.
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2 Preliminaries and Motivations

In this section we introduce the concept of the exponent of cross-sectional dependence and our

proposed estimator of it. We start our discussion by considering a simple measure of cross-

sectional dependence based on cross-sectional averages defined by x̄t = N−1
∑N

i=1 xit. The

limiting behaviour of x̄t is of interest in its own right and provides information on the nature

and degree of cross-sectional dependence. In the case of asset returns this determines the extent

to which risk, associated with investing in particular portfolios of assets, is diversifiable. In

the case of firm sales this is of interest in relation to the effect of idiosyncratic, firm level,

shocks onto aggregate macroeconomic variables such as GDP. In the case where xit are cross-

sectionally independent, using CLT, one obtains the result that V ar (x̄t) = O
(
N−1

)
. However,

in the more general and realistic case where xit are cross-sectionally correlated, we have that

V ar (x̄t) declines at a rate that is a function of α where α is defined by

0 < c1 < lim
N→∞

N−αλmax (ΣN ) < c2 <∞. (1)

We note that V ar (x̄t) cannot decline at a rate faster than N−1. It is also easily seen that

V ar (x̄t) cannot decline at a rate slower than Nα−1, 0 ≤ α ≤ 1. To see this we explore the link

between λmax (ΣN ) and V ar (x̄t). Note that x̄t = N−1ι′xt, where ι is an N × 1 vector of ones.

Then, we have

V ar (x̄t) = N−2ι′ΣN ι ≤ N−2ι′ι λmax (ΣN ) = N−1λmax (ΣN ) .

Therefore, α defined by N−1λmax (ΣN ) = O(Nα−1) provides an upper rate for V ar (x̄t).

It is interesting to note that the above measures of cross-sectional dependence are also

related to the degree of pervasiveness of factors in unobserved factor models often used in the

literature to model cross-sectional dependence. Factor models have a long pedigree both as a

conceptual device for summarising multivariate data sets as well as an empirical framework with

sound theoretical underpinnings both in finance and economics. Conventionally, these make the

distinction between the ‘common component’ which has a pervasive effect on the data so that

α, as defined in (1), is assumed to equal unity, and the ‘idiosyncratic component’ whose impact

is localised in nature, i.e. α = 0. Recent econometric research on factor models include Bai and

Ng (2002), Bai (2003), Forni et al. (2000), Forni and Lippi (2001), Forni et al. (2009), Pesaran

(2006) and Stock and Watson (2002).1

1While Forni et al. (2000) and Forni and Lippi (2001) study the eigenvalues of the spectral density matrix,
Forni et al. (2009) focus on the eigenvalues of the covariance matrix which reflect closely the assumptions of
Chamberlain and Rothschild (1983). In turn, Bai and Ng (2002) and Bai (2003) make assumptions on the sum
of the covariances of the errors.
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As an illustration consider the single factor model

xit = βi1f1t + uit for i = 1, 2, ..., N ; t = 1, 2, ..., T, (2)

where xit depends on a single unobserved factor f1t, with the associated factor loadings, βi1, and

cross-sectionally independent idiosyncratic errors, uit. The extent of cross-sectional dependence

in xit crucially depends on the nature of the factor loadings. It is easily seen that

λmax (ΣN ) = O

(
N∑
i=1

β2
i1

)
= O

[(
sup
j
|βj1|

)
N∑
i=1

|βi1|

]
= O

(
N∑
i=1

|βi1|

)
,

when supj |βj1| < K. Also V ar (x̄t) = O

{
max

[(
N−1

∑N
i=1 βi1

)2
, N−1

]}
.2 The degree of

cross-sectional dependence will be strong if the average value of βi1 is bounded away from zero.

In such a case, N−1λmax (ΣN ) and V ar (x̄t) are both O(1), which yields α = 1.

However, other configurations of factor loadings can also be entertained that yield values of

α in the range (0, 1]. Since both f1t and βi1 are unobserved, taking a strong stand on a particular

value of α might not be justified empirically. Accordingly, Chudik et al. (2011), Kapetanios and

Marcellino (2010) and Onatski (2012) have considered an extension of the above factor model

which allows the factor loadings, βi1, to vary with N , such that βi1 = O(N (α−1)/2), for any 0 <

α < 1. This specification implies N−1λmax (ΣN ) = O
(
Nα−1

)
, so long as maxi |βi1| = op

(
Nd
)
,

for all d > 0, and V ar (x̄t) = O
(
Nα−1

)
.

Although mathematically convenient, the assumption that all factor loadings vary with N

(almost uniformly) is rather restrictive in many economic applications. Therefore, we will not

consider it in detail, but only briefly as an alternative formulation. In this paper we consider a

baseline formulation where we assume that only [Nα] of the N factor loadings are individually

important ([Nα] is the integer part of Nα, 0 < α ≤ 1), in the sense that they are bounded

away from zero. In effect, the factor loadings β = (β11, β21, ..., βN1)′ are grouped into two

categories: a strong category (
(
β11, β21, ..., β[Nα]1

)′
) with non-zero means, and a weak cate-

gory (
(
β([Nα]+1)1, β([Nα]+2)1, ..., βN1

)′
) with negligible effects and a mean that tends to zero

with N . Under this setup, N−1λmax (ΣN ) = O
(
Nα−1

)
, as long as maxi βi1 = op

(
Nd
)
, for

all d > 0, V ar (x̄t) = O
(
N2α−2

)
and the standard deviation of x̄t, denoted by Std (x̄t) is

O
[
max

(
Nα−1, N−1/2

)]
. Note that at least N1/2 of the loadings must have non-zero means

for the covariances in ΣN to dominate the diagonal of ΣN and result in a rate of decline

for Std(x̄t) that is O
(
Nα−1

)
. If fewer than N1/2 of the loadings have non-zero means, then

Std(x̄t) = O
(
N−1/2

)
. The presence of at least N1/2 loadings with non-zero means implies that

α > 1/2. In that case, and as long as the mean of the loadings from the strong category is

non-zero, then N−1λmax (ΣN ) and Std (x̄t) decline at the same rate. As a result in the context

2A similar analysis can be made using the column sum norm of ΣN , defined by ‖ΣN‖1 = supj
∑N
i=1 |σij,x|.
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of the factor model in (2), α has a unique role as a measure of cross-sectional dependence. It is

important to note that if the sum of the means of the loadings from the strong category over

m factors, say µv, is equal to zero, then Std (x̄t) = O
(
N−1/2

)
for all α including the case of

α = 1. The implication is that even a strong factor model allows full portfolio diversification

at the same rate as if no factors have been present. Seen from this perspective, the case where

µv = 0 does not seem very plausible, at least in the case of macro and financial data sets where

full diversification of risk does not seem to be a possibility.

As we shall see, since we are interested in the behaviour of cross-sectional averages, our

proposed estimator of α will be invariant to the ordering of the factor loadings within each

group. The only important consideration is that there exists a split between loadings with

non-zero means and loadings that are cumulatively of a small order. The split need not be

known.

Consider now the following multiple factor generalisation of our basic setup:

xit =
m∑
j=1

βijfjt + uit = β′i f t + uit, i = 1, 2, ..., N,

where f t = (f1t, f2t, ..., fmt)
′ is an m× 1 vector of unobserved factors, and βi is the associated

vector of factor loadings (m is fixed). Stacking over cross section units we get

xt = β′ f t + ut, (3)

where xt = (x1t, x2t, ..., xNt)
′, f t is specified above, ut = (u1t, u2t, ..., uNt)

′ and β is the asso-

ciated matrix of factor loadings: β = (β1,β2, ...,βN )′, βi = (βi1, βi2, ..., βim)′. We specify the

loadings as follows

βij = vij for i = 1, 2, ..., [Nαj ] , (4)

βij = ṽij , for i = [Nαj ] + 1, [Nαj ] + 2, ..., N ,

where 1/2 < α1 ≤ 1, and {vij}[N
α]

i=1 is an identically, independently distributed (IID) sequence

of random variables with mean µvj 6= 0 and variance 0 < σ2
vj < ∞. Without loss of generality,

α := α1 ≥ αj , j = 2, ...,m. Also,
∑N

i=[Nα]+1 ṽij = Op (1). Further conditions are discussed in

the next section. At this point the above conditions are sufficient to motivate our estimator.

As discussed above, the factor loadings in (4) are classified into two groupings: a category with

pervasive effects that have a non-zero mean µv and a category whose impact is non-pervasive

and fades as N increases. This loading setup infers that N−1
∑N

i=1 β
2
ij = Op

(
Nαj−1

)
, which is

more general than the standard assumption in the factor literature that requires N−1
∑N

i=1 β
2
ij

to have a strictly positive limit (see, e.g., Assumption B of Bai and Ng (2002)). The standard

assumption is satisfied only if αj = 1. Also, this implies a rate of decline for Std(x̄t) of O
(
Nα−1

)
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so long as µv 6= 0 and at least N1/2 of the loadings have non-zero mean. As mentioned earlier,

if µvj = 0, j = 1, ...,m, then Std (x̄t) = O
(
N−1/2

)
for all α including the case α = 1, but we do

not see this case as very plausible, at least for macro and financial data sets.

Given the above setting, Σβ = E(ββ′) − E(β)E(β′), with λmax(Σβ) < K < ∞. Further,

E(ut) = 0, Σu = E(utu
′
t), with λmax(Σu) < K < ∞, µfj = E(fjt) = 0, σ2

fj
= E(fjt − µfj )2 =

1, j = 1, ...,m. Finally, fjt are distributed independently of β and of the idiosyncratic errors,

uit′ , for all i, t and t′. Hence,

Cov(xt) =
[
Σβ + E(β)E(β′)

]
+ Σu.

Consider now the cross-sectional averages of the observables x̄t = ι′xt/N . Then,

σ2
x̄ = V ar(x̄t) = N−2ι′Cov(xt)ι = N−2ι′ [Σβ + Σu] ι+

[
ι′E(β)

N

] [
ι′E(β)

N

]′
. (5)

But under (4),

N−1ι′E(β) = O(Nα−1) +O(N−1).

Also,

N−2ι′Σβι ≤
[
Nα−2

]
λmax (Σβ) .

Using the above results in (5) we now have

V ar(x̄t) ≤
[
Nα−2

]
λmax (Σβ) +N−1cN + µ2

v

[
N2α−2

]
+O(N−2), (6)

where

cN =
ι′Σuι

N
< K <∞, (7)

and µ2
v is defined in terms of µvj in a way that will be discussed in detail in the next section.

By assumption λmax (Σβ) < K <∞, and hence under 1 ≥ α > 1/2, we have

σ2
x̄ = V ar(x̄t) = µ2

v

[
N2α−2

]
+N−1cN +O(Nα−2). (8)

As pointed out earlier, in cases where α ≤ 1/2, the second term in the RHS of (8), that arises

from the contribution of the idiosyncratic components, will be at least as important as the

contribution of a weak factor, and using V ar(x̄t) we cannot identify α when it is less than 1/2.

But in cases where α > 1/2 a simple manipulation of (8) yields

2(α− 1) ln(N) = ln(σ2
x̄)− ln

(
µ2
v

)
+ ln

(
1− N−1cN

σ2
x̄

)
≈ ln(σ2

x̄)− ln
(
µ2
v

)
− N−1cN

σ2
x̄

,
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or

α ≈ 1 +
1

2

ln(σ2
x̄)

ln(N)
− 1

2

ln
(
µ2
v

)
ln(N)

− cN
2 [N ln(N)]σ2

x̄

. (9)

Initially, α can be identified from (9) using a consistent estimator of σ2
x̄, given by

σ̂2
x̄ =

1

T

T∑
t=1

(x̄t − x̄)2 , (10)

where x̄ = T−1
∑T

t=1 x̄t. This gives rise to the following estimator of α

α̂ = 1 +
1

2

ln(σ̂2
x̄)

ln(N)
, (11)

which is consistent and has a rate of convergence of ln(N)−1. Note here that the fourth term

on the RHS of (9) is of smaller order of magnitude than the previous three terms and can be

ignored. However, it is important that the estimator of α also allows for the third term in (9).

This can be achieved by replacing µ2
v with a suitable estimator. There are many alternatives

for this estimation which are discussed in detail in the next section. Our chosen estimator of µ2
v

is obtained through identifying the significant slope coefficients of the cross-sectional averages,

x̄t, from the OLS regression of each unit xit on x̄t, and we denote it by µ̂2
v (see Section 3.1 for

details of the procedure).

Next, we discuss correcting the bias arising from the final term in (9). This is easily achieved

in the case of exact factor models where the idiosyncratic errors are cross-sectionally independent,

and Σu is a diagonal matrix. In this case cN ≡ σ̄2
N = N−1

∑N
i=1 σ

2
i , where σ2

i is the ith diagonal

term of Σu, and a consistent estimator of it is given by

ĉN = ̂̄σ2
N = N−1

N∑
i=1

σ̂2
i , (12)

where σ̂2
i = 1

T

∑T
t=1 û

2
it, ûit = xit − δ̂ix̄t, and δ̂i denotes the OLS estimator of the regression

coefficient of xit on x̄t. Note that while ĉN , as an estimator for cN , is motivated by appealing to

an exact factor model, mild deviations from this model can be dealt with by using an alternative

estimator for cN , as discussed in Section 3.2. Using consistent estimators of σ2
x̄, µ

2
v, and cN , we

propose the following bias-adjusted estimator

α̊ = α̊
(
µ̂2
v

)
= 1 +

1

2

ln(σ̂2
x̄)

ln(N)
−

ln
(
µ̂2
v

)
2 ln (N)

− ĉN
2 [N ln(N)] σ̂2

x̄

. (13)
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3 Theoretical Derivations

3.1 Main Results

In this Section we present our formal theoretical results. Our first set of results characterises

the asymptotic behaviour of α̂. We make the following assumptions, where we state the full set

of conditions that were partly discussed in Section 2, for convenience.

Assumption 1 The factor loadings are given by

βij = vij for i = 1, 2, ..., [Nαj ] , (14)

βij = ṽij, for i = [Nαj ] + 1, [Nαj ] + 2, ..., N ,

where α1 > 1/2, 0 ≤ αj ≤ 1 and α1 ≥ αj, j = 2, ...,m. Also, {vij}
[Nαj ]
i=1 and {ṽij}Ni=[Nαj ]+1

are

IID sequences of random variables for all j = 1, 2, ...,m. The former sequences have a non-zero

mean, µvj 6= 0, and a finite variance 0 < σ2
vj <∞. The latter sequences are summable such that

κj =
∑N

i=[Nαj ]+1
ṽij = Op(1) has a finite mean, µκj , and a finite variance, σ2

κj , for all j and N .

Assumption 2 The m× 1 vector of factors, f t, follows a linear stationary process given by

f t =
∞∑
j=0

ψfjνf,t−j, (15)

where νft is a sequence of IID random variables with mean zero and a finite variance matrix,

Σνf , and uniformly finite ϕ-th moments for some ϕ > 4. The matrix coefficients, ψfj, satisfy

the absolute summability condition

∞∑
j=0

jζ
∥∥ψfj∥∥ <∞,

such that {ζ(ϕ − 2)}/{2(ϕ − 1)} ≥ 1/2. f t is distributed independently of the idiosyncratic

errors, uit′ , for all i, t and t′, and fjt ⊥ fst, j 6= s, j, s = 1, ...,m.

Assumption 3 For each i, uit follows a linear stationary process given by

uit =
∞∑
j=0

ψijνi,t−j, (16)

where νit, i = ...,−1, 0, ..., t = 0, ..., is a double sequence of IID random variables with mean

zero and uniformly finite variances, σ2
νi and uniformly finite ϕ-th moments for some ϕ > 4. We

assume that

sup
i

∞∑
j=0

jζ |ψij | <∞, (17)
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such that {ζ(ϕ− 2)}/{2(ϕ− 1)} ≥ 1/2.

Assumptions 2 and 3 are mostly straightforward specifications of the factor and error pro-

cesses assuming a linear structure with sufficient restrictions to enable the use of central limit

theorems. Note that Assumption 3 rules out the existence cross-sectional dependence in the

error terms. This may be considered restrictive, but relaxing it is not straightforward. While

this condition will be relaxed in Section 3.2 we choose not to discuss the fully general case at

this point, as it will detract from the main exposition with complicated but, ultimately, not

very significant methodological amendments. Further, the proposed solution that is presented

in the next section while effective in small samples, cannot be fully justified theoretically for

small values of α. This issue is discussed in detail in the next section.

First, note that

β̄jN = N−1
N∑
i=1

βij =
[Nαj ]

N

∑[Nαj ]
i=1 vij
[Nαj ]

+

∑N
i=[Nαj ]+1

ṽij

N
= Nαj−1v̄jN +Op(N

−1) (18)

and

V ar(β̄jN ) =
[Nαj ]

N2
σ2
vj+O(N−2) = O(Naj−2).

Consider now x̄t − E(x̄t) = β̄1Nf1t + β̄2Nf2t + ...β̄mNfmt + ūt, and, without loss of generality,

recall that α =: α1 ≥ αj , j = 2, ...,m, and that the factors are orthogonal. Then,

V ar(x̄t) =
m∑
j=1

E(β̄2
jN ) + E(ū2

t )

=

m∑
j=1

[
E(β̄jN )

]2
+

m∑
j=1

V ar(β̄jN ) + E(ū2
t ),

and, as shown in Section 2, we have V ar(x̄t) = O(N2a−2)+O(N−1), namely the order of V ar(x̄t)

is dominated by the factor with the largest exponent of cross-sectional dependence, assuming

that α > 1/2. We also note that

β̄N = Nα−1DN v̄N +Op(N
−1), (19)

where β̄N =
(
β̄1N , ..., β̄mN

)′
, v̄N = (v̄1N , ..., v̄mN )′, and DN is an m×m diagonal matrix with

diagonal elements given by Nαj−α, and set

dT = v̄′NS
−1/2
ff f̄T − µ′vΣ

−1/2
ff µf , (20)

where Sff = (sjo,f ) = 1
T

∑T
t=1

(
f t − f̄T

) (
f t − f̄T

)′
, j, o = 1, ...,m, f̄T = T−1

∑T
t=1 f t, Σff =

diag
(
σ2
fj

)
= I, µf = E (f t) = (µf1 , ..., µfm)′, and µv = (E (vj)) = (µv1 , ..., µvm)′, vj =(

v1j , ..., v[Nαj ]j

)′
. Further, define µ2

v =
∑m

j=1 µ
2
vj .
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Our exposition in Section 2 suggests that α̂, as an estimator of α, is subject to two sources of

bias,
ln(µ2

v)
2 ln(N) and cN

N2α−1v̄′NDNSffDN v̄N
, where the latter bias corresponds to the last part of (13)

in the multiple factor case. This can be corrected using a first order accurate estimator given

by ĉN
Nσ̂2

x̄
or a second order bias correction given by ĉN

ln(N)Nσ̂2
x̄

(
1 + ĉN

Nσ̂2
x̄

)
, where ĉN is defined in

(12). We denote the estimators that make use of these corrections by

α̃ = α̂− ĉN
2 ln(N)Nσ̂2

x̄

and

α̌ = α̂− ĉN
2 ln(N)Nσ̂2

x̄

(
1 +

ĉN
Nσ̂2

x̄

)
.

We now introduce the main theorem of the paper.

Theorem 1 (a) Suppose Assumptions 1 to 3 hold, α = α1 = α2 = ... = αm > 1/2. Then,

√
min(Nα∗ , T )

(
2 ln(N) (α̂− α∗)− cN

N2α−1v̄′NDNSffDN v̄N

)
→d N (0, ωm) (21)

where

ωm = lim
N,T→∞

min (Nα, T )V ar(d2
T ),

dT is defined by (20),

α∗ ≡ α∗N = α+
ln
(
µ2
v

)
2 ln (N)

,

and µ2
v =

∑m
j=1 µ

2
vj .

(b) Continue to assume that α = α1 = α2 = ... = αm > 1/2, and suppose that either
T 1/2

N4α−2 → 0 or α > 4/7, then

√
min(Nα∗ , T )2 ln(N) (α̃− α∗)→d N (0, ωm) . (22)

(c) Continue to assume that α = α1 = α2 = ... = αm > 1/2, and α > 1/2, then

√
min(Nα∗ , T )2 ln(N) (α̌− α∗)→d N (0, ωm) . (23)

(d) Further, if either

α = α1 > α2 + 1/4, (24)

or if

α2 < 3α/4, T b = N, b >
1

4(α− α2)
, (25)

and α2 ≥ α3 ≥ ... ≥ αm ≥ 0, (21), (22) and (23) hold with ω replacing ωm, where

ω = lim
N,T→∞

[
min(Nα, T )

T
V
f2
1

+
min(Nα, T )

Nα

4σ2
v1

µ2
v1

]
, (26)
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V
f2
1

= V ar
(
f̃2

1t

)
+ 2

∞∑
i=1

Cov
(
f̃2

1t, f̃
2
1t−i

)
,

and f̃1t = (f1t − µf1)/σf1, but α∗ is now defined by

α∗ ≡ α∗N = α+
ln
(
µ2
v1

)
2 ln (N)

. (27)

(e) Finally, if α = α1 > α2 ≥ α3... ≥ αm ≥ 0 but neither (24) or (25) hold, then (21), (22)

and (23) hold with ω replacing ωm, and

α∗ ≡ α∗N = α+
ln
(∑m

j=1N
2(αj−α)µ2

vj

)
2 ln (N)

.

The above result gives a full distribution theory but it is not operational in practice since

µ2
v is not known. So next, we consider the third term of (9) which depends on µ2

v. While

noting that the value of µ2
v is irrelevant for the probability limit of α̂, in small samples it is an

important determinant of cross-sectional dependence. Hence, correcting for this bias provides

us with a refined estimator of α that is likely to have better small sample properties. The

first step towards deriving an estimator for µ2
v is to note that µv is the mean of the population

regression coefficient of xit on x̃t = x̄t/σ̂x̄ for units xit that have at least one non-zero factor

loading. Therefore, once we identify which units have non-zero loadings, an estimate of µv can

be obtained by the average covariance between xit and x̃t over i = 1, 2, ...,
[
N α̂
]
. While there are

many ways to identify which units have non-zero loadings, a multiple testing approach to this

problem seems appropriate, considering that we are interested in µv as N →∞. This estimate is

equivalent to the one given by the standard deviation of the cross-sectional average of the units

that have non-zero loadings. We prefer the latter estimator due to its simplicity, and propose

the following procedure:

1. Run the OLS regression of xit on a constant and x̄t and denote the estimated coefficient

of x̄t by δ̂i, for i = 1, 2, ..., N.

2. Compute the t-ratio associated with the ith coefficient, δ̂i, i = 1, 2, ..., N , as zδ̂i = δ̂i/s.e.
(
δ̂i

)
.

3. Construct

x̄t(cp) =

∑N
i=1 xitI

(∣∣∣zδ̂i∣∣∣ ≥ cpi,N)∑N
i=1 I

(∣∣∣zδ̂i∣∣∣ ≥ cpi,N) ,

where cpi,N is the critical value of the i-th test that depends on N as well as the overall

nominal size of the test, which we denote by p, and cp = (cp1,N , cp2,N , ..., cpN ,N )′.

11



4. Estimate µv by

µ̂v = µ̂v (cp) =

√√√√ 1

T

T∑
t=1

[x̄t(cp)− x̄(cp)]
2,

where x̄(cp) = T−1
∑T

t=1 x̄t(cp).

The critical values, cpi,N , can be set using the multiple testing approaches of Bonferroni

(Bonferroni (1935), Bonferroni (1936)) or Holm (Holm (1979)). Both approaches deal with the

multiple testing problem without making any assumptions about the cross dependence of the

underlying N individual t tests.3 But Holm’s approach is less conservative and uses different

critical values across the units. To be more specific let ti =
∣∣∣zδ̂i∣∣∣ , for i = 1, 2, ..., N , and

sort these t-ratios in a descending order, such that t(1) > t(2) > .... > t(N), with associated

critical values, cp(i),N . Suppose also that under the null hypothesis βi1 = 0, zδ̂i is asymptotically

distributed as N(0, 1), with the cumulative distribution function Φ(.). Then under Bonferroni’s

approach cp(i),N = Φ−1
(
1− p

2N

)
which is the same for all units, whilst under Holm’s approach

cp(i),N = Φ−1
(

1− p
2(N−i)

)
corresponding to t(i).

Note that in this paper we focus more on the case when α = α1 > α2 ≥ ... ≥ αm which we

consider to be more realistic than the case of α = αj , j = 1, ...,m. As stated in Theorem 1 (d),

in this case estimation of µ2
v1

assigned to the dominant factor is of interest. In supplementary

Appendix V we consider the conditions under which µ̂2
v can be a consistent estimator of the

population quantity of µ2
v1

. In particular, it is shown that µ̂2
v, computed using Bonferroni or

Holm procedures, is a consistent estimator of µ2
v1

if α > 2/3 and α = α1 > α2 ≥ ... ≥ αm. The

supplement also provides more general conditions on the choice of cpi,N , and shows that the

critical values used in Bonferroni and Holm approaches satisfy these conditions (see (B42) and

(B43) in Supplementary Appendix V). In the simulation section we study a two factor setting

where α = α1 > α2 and use both Bonferroni and Holm procedures. We find that Holm’s method

performs better uniformly across all experiments. Therefore, all the results reported are based

on the Holm approach for α = α1 > α2. Monte Carlo results for α = αj , j = 1, ...,m are

available in the Supplementary Appendix VI.

3.2 Extensions

In this section we consider two extensions to our main analysis. For simplicity of the treatment

we discuss these in the context of a single factor model but the extension to multiple factors is

straightforward. First, we relax Assumption 3 and allow the error terms to be cross-sectionally

weakly dependent. Accordingly, we modify Assumption 3 as follows:

3For a recent review of this literature see Efron (2010).
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Assumption 4 For each i, uit follows a linear stationary process given by

uit =

∞∑
j=0

ψij

( ∞∑
s = −∞

ξisνs,t−j

)
, (28)

where νit, i = ...,−1, 0, ..., t = 0, ..., is a double sequence of IID random variables with mean

zero and uniformly finite variances, σ2
νi , and uniformly finite ϕ-th moments for some ϕ > 4.

We assume that

sup
i

∞∑
j=0

jζ |ψij | <∞,

and

sup
i

∞∑
s=−∞

|s|ζ |ξis| <∞, (29)

such that {ζ(ϕ− 2)}/{2(ϕ− 1)} ≥ 1/2.

Under the above assumption Σu is no longer a diagonal matrix. When α > 2/3 the bias

term in (21) is op (1) and, as a result, cN can still be estimated by ̂̄σ2
N , to construct the various

estimators of α. However, in the case where 1/2 < α ≤ 2/3, an alternative estimator for cN is

needed to take account of the non-zero covariances between uit and ujt. One possibility is to

use the following estimator

c̃N = T−1
T∑
t=1

(√
Nêt −

√
Nê
)2
, (30)

where

êt = N−1
N∑
i=1

êit, and ê = T−1
T∑
t=1

êt, (31)

and êit = xit − %̂ip̂ct, p̂ct is the first principal component of xit, i = 1, ..., N , and %̂i denotes the

OLS estimator of the regression coefficient of xit on p̂ct. The use of cross-sectional averages, x̄t,

in place of p̂ct to compute êit does not help in estimation of cN since
∑N

i=1

(
xit − δ̂ix̄t

)
= 0,

where δ̂i is the OLS slope coefficient in the regression of xit on x̄t, and suggests setting c̃N

to zero. In a multiple factor setting additional principal components are needed to filter out

any remaining cross-sectional error dependencies. Proving the consistency of c̃N is challenging.

For the values of α where use of this estimator is needed (a < 2/3) it is not even clear whether

factors can be estimated consistently. Kapetanios and Marcellino (2010) are not able to show this

result and to the best of our knowledge it has not been proven elsewhere. Even if such a result

held, it would not automatically ensure the consistency of c̃N . Perhaps more relevantly, in that

region of α its estimation is challenging even under strict assumptions, since its identification,

while theoretically possible, is difficult. We note that we present Monte Carlo results based on

c̃N when we carry out Monte Carlo experiments with cross-sectionally dependent idiosyncratic
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components. However, we have also carried out these experiments using ĉN and these results

bear out the theoretical outcome that, for α ≥ 2/3, c̃N and ĉN provide asymptotically equivalent

estimators.4 Therefore, we believe that, both on theoretical and practical grounds proving the

consistency of c̃N is beyond the scope of the paper.

Up to now we have analysed estimators of the exponent of cross-sectional dependence assum-

ing that factor loadings take the form given in Assumption 1. We briefly examine an alternative

formulation (discussed in Section 2) which is mathematically convenient, although it is more

difficult to justify from an economic perspective as it assumes that all factor loadings fall at

the same rate. More specifically consider the following alternative formulation for a one factor

setting:

Assumption 5 Suppose that the factor loadings vary uniformly with N as in

βi1 = N (α−1)/2vi1, 0 < α ≤ 1 (32)

where {vi1}Ni=1 is an i.i.d. sequence of random variables with mean µv1 6= 0, and variance

σ2
v1
<∞. Then,

N∑
i=1

N∑
j 6=i,j=1

σij,x = O(N1+α), N−1λmax (ΣN ) = O
(
Nα−1

)
, V ar (x̄t) = O

(
Nα−1

)
.

For this setup it is easy to show that the appropriate estimator for α is given by

α̂ = 1 +
ln(σ̂2

x̄)

ln(N)
, (33)

and its first bias-corrected version is given by

α̃ = α̂− ĉN
ln(N)Nσ̂2

x̄

. (34)

In this case of the alternative formulation, (32), there is no need for further bias-corrections.

Then, the next Corollary follows (a proof is provided in Supplementary Appendix II):

Corollary 1 Let Assumptions 2-3 and 5 hold, m = 1. Let α̂ be defined as in (33). Then,

√
min(N,T )

(
2 ln(N) (α̂− α∗)−

σ̄2
N

Nαv̄2
1Ns

2
f1

)
→d N (0, ω) ,

where α∗ and ω are defined in (27) and (26), respectively and s2
f1

= T−1
∑T

t=1

(
f1t − T−1

∑T
t=1 f1t

)2
.

Further, let α̃ be defined as in (34)

2
√

min(N,T ) ln(N) (α̃− α∗)→d N (0, ω) .

4These results are available upon request.
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Remark 1 It is of interest to consider circumstances where Assumption 5 fails but the above

result still holds. In particular, let

βi1 = N (α−1)/2vNi, 0 < α ≤ 1 (35)

where vNi = v̆i+ζNi and {v̆i}Ni=1 is an i.i.d. sequence of random variables with mean µv̆ 6= 0, and

variance σ2
v̆ <∞. Lemma 14 provides general conditions for this assumption, under which our

theoretical results hold. In this remark we explore a leading case of departure from Assumption

5 that is covered by Lemma 14. Without loss of generality, we order the cross section units such

that ζNi = N (1−α)/2ηi for i = 1, 2, ...,M, where {ηi}Ni=1 is an i.i.d. sequence of random variables

with mean µη 6= 0, and variance σ2
η < ∞. This implies that M units have loadings that are

bounded away from zero. Then, using Lemma 14, it is easy to see that the theorems relating to

the asymptotic distribution of the estimators continue to hold as long as M = o (Nα).

4 Monte Carlo Study

We investigate the small sample properties of the proposed estimator of α through a detailed

simulation study. We consider the following two factor model

xit = di + βi1f1t + βi2f2t + ςσiuit, (36)

for i = 1, 2, ..., N , and t = 1, 2, ..., T. We generate the intercepts as di ∼ IIDN(0, 1), i =

1, 2, ..., N . The factors are generated as

fjt = ρjfj,t−1 +
√

1− ρ2
jζjt, j = 1, 2, for t = −49,−48, ..., 0, 1, ..., T, (37)

with fj,−50 = 0, for j = 1, 2, and ζjt ∼ IIDN(0, 1). Therefore, by construction σ2
fj

= 1, for

j = 1, 2.

The shocks follow an AR(1) process:

uit = φiui,t−1 +
√

1− φ2
i εit, for i = 1, 2, ..., N and t = −49,−48, ..., 0, 1, ..., T, with ui,−50 = 0,

εit ∼ IIDN(0, 1), i = 1, 2, ..., N

where φi ∼ IIU (0, 1) and σ2
i ∼ IID

(
1
2 + 3χ2(2)

4

)
, i = 1, 2, ..., N , ensuring that all σ2

i are

bounded away from zero. Also, σ̄2
N = N−1

∑N
i=1 σ

2
i → 2, as N →∞.
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With regard to the factor loadings, we generate them as follows:

βi1 = vi1, for i = 1, 2, ..., [Nα1 ]

βi1 = 0, for i = [Nα1 ] + 1, [Nα1 ] + 2, ..., N

βi2 = vi2, for i = 1, 2, ..., [Nα2 ] ,

βi2 = 0, for i = [Nα2 ] + 1, [Nα2 ] + 1, ..., N,

where βi2 are then randomised across N to achieve independence from βi1. The loadings are gen-

erated as vij ∼ IIDU(µvj −0.2, µvj + 0.2), for j = 1, 2. We examine the case where α2 < α1 = a

and consider values of α and α2 such that α2 = 2α
3 to reflect the more realistic scenario where the

two factors have different strengths. Further, we set µv2 = 0.71 and µv1 =
√
µ2
v −N2(α2−α)µ2

v2

- see Theorem 1 (e) -, yielding µ2
v1

+ µ2
v2

= µ2
v = 0.75. Both µv1 and µv2 are picked so that they

meet the condition that µvj 6= 0, j = 1, 2 without µ′vjs being too distant from zero either.5

In fixing the remaining parameters we calibrate the fit of each cross section unit, as measured

by R2
i , in order to achieve an average fit across all the units of around R̄2

N = N−1
∑N

i=1R
2
i ≈ 0.40,

an average figure one obtains in most large data sets used in macroeconomics and finance.6 To

this end we note that

R2
i =

β2
i1 + β2

i2

β2
i1 + β2

i2 + σ2
i

=
ψ2
i1 + ψ2

i2

1 + ψ2
i1 + ψ2

i2

, if for the ith unit: both βi1 6= 0 and βi2 6= 0,

where ψ2
ij = β2

ij/σ
2
i , for j = 1, 2. Similarly,

R2
i =

ψ2
i1

1 + ψ2
i1

, if for the ith unit: βi1 6= 0 but βi2 = 0,

R2
i =

ψ2
i2

1 + ψ2
i2

, if for the ith unit: βi2 6= 0 but βi1 = 0,

and

R2
i = 0, if for the ith unit: both βi1 = 0 and βi2 = 0.

The calibration of R̄2
N is done by scaling σ2

i in (36) using ς2 = 1/2.

Experiment A Here we use a basic design of (36) where the factors, fjt, for j = 1, 2, are

serially uncorrelated, namely we set ρj = 0.0 for j = 1, 2, in (37).

5Other values of µνj , j = 1, 2 have been entertained. Also, βij = 0, for i > [Nαj ] , j = 1, 2 are set for simplicity.

The case of βij = ρ
i−[Nαj ]
l , for i > [Nα] , j = 1, 2 and ρl = 0.5 has been considered as well as an example of∑N

i=[Nαj ]+1
βij = Op (1) , j = 1, 2.

6We calibrated R2
N from a number of data sets, some of which are used in our empirical applications. Details

can be found in the Supplementary Appendix VI.
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Experiment B Under this experiment we use the same design as in Experiment A, but

allow for temporal dependence in the factors, namely we set ρj = 0.5 for j = 1, 2, in (37).

Experiment C Under this experiment we use the same design as in Experiment A, but

we allow for departure of the idiosyncratic errors from normality and generate the idiosyncratic

errors as εit ∼ IID((χ2(2)− 2)/4), i = 1, 2, ..., N .

Experiment D The design for this experiment is as in Experiment A, but allows the

errors, uit, to be cross-sectionally dependent according to a first order spatial autoregressive

model. Let ut = (u1t, u2t, ..., uNt)
′, and set ut as

ut = Qεt, εt = σεηt; ηt ∼ IIDN(0, IN ),

where Q = (IN − θS)−1, and

S =



0 1 0 . . . 0

1/2 0 1/2 . . . 0
...

. . .
. . .

. . .

0 0 . . . 0 1/2

0 0 . . . 1 0


.

We set θ = 0.2, and σ2
ε = N/Tr(QQ′) which ensures that N−1

∑N
i=1 var(uit) = 1.

For all experiments we consider the values of α = 0.70, 0.75, ..., 0.90, 0.95, 1.00, N = 50, 100, 200, 500, 1000

and T = 100, 200, 500, and base them on 2, 000 replications. For each replication, the values

of α, α2, di, ρj , φi, ς and S are given as set out above. These parameters are fixed across all

replications. The values of vij , j = 1, 2 are drawn randomly (N of them) for each replication.

In all experiments we present bias and RMSE results for the bias-adjusted estimator α̊ given

by (13), where µv1 is estimated using the Holm approach to address the associated multiple test-

ing problem. For experiments A-C we use ĉN given by (12) to estimate cN while for experiment

D we use c̃N , given by (30). All results are scaled up by 100.

4.1 Summary of the results

The results for Experiment A are summarized on the left-hand-side panel of Table A-B, giving

the bias and Root Mean Square Error (RMSE) when α̊ is used as the estimator for α, and when

setting µv = 0.75 and α2 = 2α/3. We focus on the bias-corrected estimator, α̊, which can be

used for any value of µvk 6= 0, and we only report results for values of α over the range [0.70, 1.0].

Recall that α is identified only if α > 1/2. As predicted by the theory, the bias and RMSE of α̊

decline with both N and T , and tend to be somewhat smaller for larger values of α, especially

as T rises. In Supplementary Appendix VI we show additional results relating to Experiment
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A. First, we report bias, RMSE, size and power of estimator α̃ when setting µv = 1. The

asymptotic distribution of α̃ is derived in Theorem 1 and estimation of the variance component

is discussed again in Supplementary Appendix VI. Second, we show size and power of tests based

on α̊. Finally, we consider the case when α = α2. A discussion of the results for all variants of

Experiment A can be found in Supplementary Appendix VI.

The results for Experiment B, where the factors are allowed to be serially correlated, are

summarized on right-hand-side panel of Table A-B. As compared to the baseline case, we see a

marginal deterioration in the results, particularly for relatively small values of N, T and α. But

these differences tend to vanish as N and T are increased.

The results of Experiment C, where the idiosyncratic errors, uit, are allowed to be non-

normal, are summarized on the left-hand-side panel of Table C-D. As can be seen, the results

are slightly affected by the non-normality of the error terms when α is relatively small. Consistent

with the baseline case of Experiment A, both the bias and RMSE of α̊ fall gradually as N, T

and α are increased.

Finally, the effects of allowing for weak cross-sectional dependence in the idiosyncratic errors,

uit, on estimation of α are summarized on the right-hand-side panel of Table C-D for Experiment

D. Considering the moderate nature of the spatial dependence introduced into the errors (with

the spatial parameter, θ, set to 0.2), the results are not that different from the ones reported

in Table A-B, for the baseline experiments.7 However, one would expect greater distortions as

θ is increased, although the effects of introducing weak dependence in the idiosyncratic errors

are likely to be less pronounced if higher values of α are considered. For values of α near the

borderline value of 1/2, it will become particularly difficult to distinguish between factor and

spatial dependent structures. In order to illustrate this point we also consider the case when

θ = 0.4. Results in Table A6 of Supplementary Appendix VI show some deterioration in the

bias, RMSE, size and power of the α estimator, especially for smaller α and N .

In line with Experiment A, we show the full set of bias, RMSE, size and power results based

on α̊ for the remaining Experiments B-D. All additional results and their discussion can be

found in Supplementary Appendix VI (see Tables A2-A5).

The Monte Carlo results clearly illustrate the potential utility of the estimation and inferen-

tial procedure proposed in the paper for the analysis of cross-sectional dependence. The results

are broadly in agreement with the theory and are reasonably robust to departures from the basic

model assumptions. Although the results tend to deteriorate slightly when we consider serially

correlated factors or weak error cross-sectional dependence, the estimated values of α tend to

retain a high degree of accuracy even for moderate sample sizes. It is also worth bearing in mind

that in most empirical applications the interest will be on estimates of α that are close to unity,

7Note that in the estimation of c̃N , given by (30), we use 2 principal components since we are focusing on a
two factor model specification. In our empirical section we use 4 principal components instead as we consider
these to be sufficient in order to absorb any additional cross-sectional dependence.
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as it is for these values that a factor structure makes sense as compared to spatial or other

network models of cross-sectional dependence. It is, therefore, helpful that the small sample

performance of the proposed estimator improves when values of α close to unity are considered.

5 Empirical Applications

In this section we provide estimates of the exponent of cross-sectional dependence, α, for a

number of panel data sets used extensively in economics and finance.8 Specifically, we consider

three types of data sets: quarterly cross-country data used in global modelling, large quarterly

data sets used in empirical factor model literature, and monthly stock returns on the constituents

of Standard and Poor 500 index. We denote the typical elements of these data sets by yit. The

observations were standardized as xit = (yit− ȳi)/si, where ȳi and si are the sample means and

standard deviations of yit for t = 1, 2, ..., T .

But before providing estimates of the exponent of cross-sectional dependence for these data

sets we first need to verify that the degree of cross dependence in these data sets is sufficiently

large. Recall that α is identifiable only if α > 1/2. To this end we first apply the recent test

of weak Cross-Sectional Dependence (CD) developed by Pesaran (2015) to these data sets. The

CD test statistic is defined by

CDNT =

[
TN(N − 1)

2

]1/2 ̂̄ρN , (38)

where ̂̄ρN =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂ij ,

and ρ̂ij is the pair-wise correlation coefficient of xit and xjt. Pesaran (2015) shows that when T

= O(Nd) for some 0 < d ≤ 1, then the implicit null of the CD test is given by 0 ≤ α < (2−d)/4,

and it is asymptotically distributed as N(0, 1). In our applications N and T are of the same

order of magnitude and d ≈ 1.9

5.1 Cross-country dependence of macro-variables

We consider the cross-correlations of real output growth, inflation and rate of change of real

equity prices over 33 countries (when available), over the period 1979Q2-2009Q4. These data sets

are from Cesa-Bianchi et al. (2012) and update the earlier GVAR (global vector autoregressive)

8In all empirical applications we use the Holm approach when implementing the procedure described on pages
12-13. Results using the Bonferroni method are available upon request.

9In all the empirical applications we present α estimates to be quite high. This alleviates an issue that arises
when using the CD test in this context. The issue is that the CD test rejects when α > 1/4 while our cross-
sectional exponent estimator assumes that 1/2 < α ≤ 1, and hence it is important that the rejection of the CD
is not necessarily interpreted as evidence in favour of α > 1/2. But in cases where CD test does not result in a
rejection we could safely maintain that α ≤ 1/2, if N and T are of the same order of magnitude.
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data sets used in Pesaran et al. (2004), and Dees et al. (2007).10

The CD statistics turned out to be 44.32, 88.34 and 77.78 for output growth, inflation

and real equity prices, respectively, which are hugely statistically significant and reject the null

hypothesis of weak cross-sectional dependence for all the three data sets and justify the use of our

procedure for estimation of α. Table 1 presents the bias corrected estimates, α̊, computed using

available cross-country time series, xit, over the period 1979Q2-2009Q4. Table 1 also reports the

90% confidence bands constructed following the procedure set out in Supplementary Appendix

VI. Although, there are 33 countries in the GVAR data set, not all variables are available for

all the countries. For example, real equity prices are available only for 26 of the 33 countries.

Looking at the results of Table 1 for α̊, we observe that the point estimates for all variables

considered fall in a small range and indicate that approximately 1/7th of the variables are

cross-sectionally weakly correlated while the remaining ones belong to the strongly correlated

group.11 The exponent of cross-sectional dependence for real equity prices at 0.972 points

to financial variables being strongly correlated. Similar estimates are also obtained for the

macro variables. For real GDP growth and inflation we obtain the estimates 0.977 and 0.978,

respectively. The confidence bands all lie above 0.5 and do include unity (though marginally),

suggesting that in these examples a factor structure might be a good approximation for modelling

global dependencies. However, in some instances the value of α = 1, typically assumed in

the empirical factor literature, might be exaggerating the importance of the common factors

for modelling cross-sectional dependence at the expense of other forms of dependencies that

originate from trade or financial inter-linkages that are more local or regional rather than global

in nature.

Table 1: Exponent of cross-country dependence of macro-variables
N T α̊∗0.05 α̊ α̊∗0.95

Real GDP growth, q/q 33 122 0.923 0.977 1.031
Inflation, q/q 33 123 0.915 0.978 1.041

Real equity prices, q/q 26 122 0.924 0.972 1.019
*90% level confidence bands

5.2 Within-country dependence of macroeconomic variables

An important strand in the empirical factor literature, influenced by the theoretical and empirical

work of Stock and Watson (2002), uses factor models to estimate and forecast a few key macro

variables such as output growth, inflation or unemployment rate with a large number of macro-

variables, that could exceed the number of available time periods. It is typically assumed that

10This version of GVAR data set can be downloaded from
http://www-cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html
11Note that α̊ corresponds to the most robust estimator of the exponent of cross-sectional dependence and

corrects for both serial correlation in the factors and weak cross-sectional dependence in the error terms. We use
four principal components when estimating (30).
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the macro variables satisfy a strong factor model with α = 1. We estimated α using the quarterly

data sets used in Eklund et al. (2010). For the US the data set comprises 95 variables and cover

the period 1960Q2 to 2008Q3. For the UK the data set covers 94 variables spanning the period

1977Q1 to 2008Q2.

As before, we first computed the CD statistic for the two data sets and obtained 84.72 and

54.29 for the US and UK, respectively, which are again highly significant and justify the use

of our estimation procedure. The estimates of α together with their 90% confidence bands are

summarized in Table 2.

For the US data set we obtained α̊ = 0.946 which suggests that more than 1/4th of the

variables considered can be regarded as being cross-sectionally weakly dependent, and the rest

being strongly cross-correlated. For the UK data set we obtained α̊ = 0.930, slightly below the

α estimate for the US. The 90% confidence bands for the US and UK data sets are well above

the threshold value of 0.50, but fall short of unity routinely assumed in the literature.

Table 2: Exponent of within-country dependence of macro-variables
US UK

1960Q2-2008Q3 1977Q1-2008Q2
N=95, T=194 N=94, T=126

α̊∗0.05 α̊ α̊∗0.95 α̊∗0.05 α̊ α̊∗0.95

0.908 0.946 0.984 0.863 0.930 0.996
*90% level confidence bands

5.3 Cross-sectional exponent of stock returns

One of the important considerations in the analysis of financial markets is the extent to which

asset returns are interconnected. This is encapsulated in the capital asset pricing model (CAPM)

of Sharpe (1964) and Lintner (1965), and the arbitrage pricing theory (APT) of Ross (1976).

Both theories have factor representations with at least one strong common factor and an id-

iosyncratic component that could be weakly correlated (see, for example, Chamberlain (1983)).

The strength of the factors in these asset pricing models is measured by the exponent of the

cross-sectional dependence, α. When α = 1, as it is typically assumed in the literature, all indi-

vidual stock returns are significantly affected by the factor(s), but there is no reason to believe

that this will be the case for all assets and at all times. The disconnect between some asset

returns and the market factor(s) could occur particularly at times of stock market booms and

busts where some asset returns could be driven by non-fundamentals. Therefore, it would be of

interest to investigate possible time variations in the exponent α for stock returns. Note that

under our methodology the market factor associated with the CAPM specification is implied by

the data rather than imposed by use of a specific market portfolio composition which can be

limiting, as explained in Roll (1977).

We base our empirical analysis on monthly excess returns of the securities included in the
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Standard & Poor 500 (S&P 500) index of large cap U.S. equities market, and estimate α re-

cursively using rolling samples of size 60 months (5 years). Due to the way the composition of

S&P 500 changes over time, we compiled returns on all 500 securities at the end of each month

over the period from September 1989 to September 2011, and included in the rolling samples

only those securities that had a sufficiently long history in the month under consideration. On

average we ended up with 476 securities at the end of each month for the rolling samples of size

5 years. The one-month US treasury bill rate was chosen as the risk free rate (rft), and excess

returns computed as r̃it = rit − rft, where rit is the monthly return on the ith security in the

sample inclusive of dividend payments (if any).12 Recursive estimates of α were then computed

using the standardized observations xit = (r̃it− r̃i)/si, where r̃i is the sample mean of the excess

returns over the selected rolling sample, and si is the corresponding standard deviations.

The recursive estimates of α based on 5 years rolling windows are given in Figure 1.13 We

also computed rolling standard errors for the estimates, α̊t, which as discussed in Section VI of

the Supplementary Appendix are conservative bands. Based on these standard errors, the 95%

confidence bands of the recursive estimates were on average ±0.03 around the point estimates

for the rolling sample size considered. These bands are not shown in Figure 1, since we aim to

highlight the time variations in the estimates of α.14

Figure 1: α̊t associated with S&P 500 securities’ excess returns - 5-yr rolling samples
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12For further details of data sources and definitions see Pesaran and Yamagata (2012).
13As in the previous two applications we computed the CD statistic for all rolling 5 year windows. In all samples

it is highly significant and justifies the use of our estimation procedure. Results of the rolling CD statistics are
available upon request.

14The rolling estimates of α including their 95% confidence bands are shown in Figure 5 of Supplementary
Appendix VII.
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The figure covers 23 years of monthly recursive estimates of α, and yet these fall in a relatively

narrow range of 0.951 − 1.001. These estimates clearly show a high degree of inter-linkages

across individual securities, but at times the null hypothesis that α = 1 is clearly rejected.

The ratio of number of times that the α estimate falls short of unity to the number of periods

considered (Pr(α̊ < 1)) amounts to 0.917. Computing the same probability using the α estimates

corresponding to the upper limit of the conservative confidence bands points to a considerably

high value of 0.438.

More importantly, there are clear trends in the estimates of α. They fall from a high of 1.00 in

1990 to below 0.96 just before the burst of the dot-com bubble in 1999-2000. The period of 1997-

2000 saw some relatively pronounced fluctuations in α due to smaller crises caused by the Asian

economic turmoil, LTCM and the bursting of the dot-com bubble. Over the period 2000− 2008

the estimates of α hovered around the value of 0.965, before slightly falling again towards the

end of 2008 at the time of the market crash, and then rising again to a level of 0.99 in September

2011. The factors behind these fluctuations are complex and reflect the relative importance of

micro and macro fundamentals prevailing in financial markets. A standard factor model does

not seem able to fully account for the changing nature of the dependencies in securities market

over the 1989-2011 period.

The patterns observed in the above estimates of α are in line with changes in the degree

of correlations in equity markets. It is generally believed that correlations of returns in equity

markets rise at times of financial crises, and it would be of interest to see how our estimates of α

relate to return correlations. To this end in Figure 2 we compare the estimates of α to average

pair-wise correlation coefficients of excess returns (ρ̂N ) on securities included in S&P 500 index,

using the 5-year rolling windows.15 As the plots in these figures show, our estimates of α closely

follow the rolling estimates of ρ̄N .

Further, it would be of interest to see how our estimates of α compare with estimates obtained

using excess returns on market portfolio as a measure of the unobserved factor. This approach

starts with the capital asset pricing model (CAPM) and assumes that the single factor in CAPM

regressions can be approximated by a stock market index. Under these assumptions, a direct

estimate of α is given by α̂d = ln(M̂)/ ln(N), where M̂ denotes the estimated number of non-

zero betas, and N is the total number of securities under consideration.16 M̂ can be consistently

estimated (as N and T →∞) by the number of t-tests of βi = 0 in the CAPM regressions

rit − rft = ai + βi (rmt − rft) + uit, for i = 1, 2, ..., N, (39)

that end up in rejection of the null hypothesis at a chosen significance level, where rmt is a

15Denote the correlation of excess returns on i and j securities by ρ̂ij , the pair-wise average correlation of the
market is then computed as ρ̂N = (1/N(N − 1))

∑N−1
i=1

∑N
j=i+1 ρ̂ij , where N is the number of securities under

consideration. Almost identical estimates are also obtained if we use returns instead of excess returns.
16Note that M = [Nα], where M is the true number of non-zero betas.

23



Figure 2: Average pair-wise correlations of excess returns for securities in the S&P 500 index
and the associated α̊t estimate computed using 5-year rolling samples
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broadly defined stock market index. In our application we choose the value-weighted return on

all NYSE, AMEX, and NASDAQ stocks to measure rmt,
17 and select 1% as the significance

level of the tests. Such estimates of α obtained recursively using the 5-year rolling windows are

shown in Figure 3. For ease of comparison, this plot also includes our (indirect) estimates of α

based on the same data sets (except for the market return, rmt, which is not used). The two

sets of estimates co-move over most of the period especially prior to the dot-com bubble and

during the recent financial crisis. The correlation coefficient of the two sets of estimates is 0.815.

The scale of the direct estimates clearly depends on the measure of market return, the level

of significance chosen, and the assumption that the model contains only one single factor with

α > 1/2, and in consequence is subject to a higher degree of uncertainty.18 Nevertheless, it is

reassuring that the direct and indirect estimates of α in this application tend to move together

closely.

There is also a further consideration when comparing the estimates of α and αd. Under

CAPM the errors, uit, in (39) are assumed to be cross-sectionally weakly correlated, namely

that the cross-sectional exponent of the errors, say αu, must be ≤ 1/2. But this need not be the

case in reality. Although we do not observe uit, under CAPM the OLS residuals from regressions

of rit−rft on rmt−rft, denoted by ûit, provide an accurate estimate of uit up to Op(T
−1/2), and

17The return data on market index was obtained from Ken French’s data library.
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

18The distribution theory of the direct estimator of α is complicated by the cross dependence of the errors in
the underlying CAPM regressions and its consideration is outside the scope of the present paper.
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Figure 3: Direct (α̂d) and indirect (α̊) estimates of cross-sectional exponent of the market factor
(using excess returns on S&P 500 securities) based on 5-year rolling samples
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can be used to compute consistent estimates of αu.19 The bias-adjusted estimates of αu, denoted

by α̊u, and computed using standardized residuals over 5-year rolling samples, are displayed in

Figure 4.20 Interestingly enough, these estimates, although much smaller than those estimated

using excess returns, nevertheless tend to be larger than the threshold value of 1/2, suggesting

the presence of factors other than the market factor influencing individual security returns. The

influence of residual factor(s) is rather weak initially (around 0.60), but starts to rise in the years

leading to the dot-com bubble and reaches the peak of 0.92 in the middle of 2000 and stays at

around that level for the period up to 2006, then begins to fall significantly after the start of

the recent financial crisis, and currently stands at around 0.67. Although special care must

be exercised when interpreting these estimates (both because αu is estimated using residuals

and the fact that α̊ tends to be biased upward particularly when α < 0.75), nevertheless their

patterns over time are indicative of some departures from CAPM during the period 1999−2006.

Also, it is interesting that the rolling estimates of αu tend to move in opposite directions to

the estimates of α computed over the same rolling samples. Weakening of the market factor

tends to coincide with strengthening of the residual factor(s), thus suggesting that correlations

across returns could remain high even during periods where the cross-sectional exponent of the

dominant factor is relatively low, once the presence of multiple factors with exponents exceeding

19A formal proof and analysis when α is estimated from regression residuals is beyond the scope of the present
paper.

20As before, the rolling estimates of αu including their 95% confidence bands are shown in Figure 6 of Supple-
mentary Appendix VII.
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0.5 is acknowledged.

Figure 4: Estimates of cross-sectional exponent of residuals (α̊u) from CAPM regressions using
5-year rolling samples
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6 Conclusions

Cross-sectional dependence and the extent to which it occurs in large multivariate data sets is

of great interest for a variety of economic, econometric and financial analyses. Such analyses

vary widely. Examples include the effects of idiosyncratic shocks on aggregate macroeconomic

variables, the extent to which financial risk can be diversified, and the performance of standard

estimators such as principal components when applied to data sets where the cross-sectional

dependence might not be sufficiently strong.

In this paper we propose a relatively simple method of measuring the extent of inter-

connections in large panel data sets in terms of a single parameter that we refer to as the

exponent of cross-sectional dependence. We find that this exponent can accommodate a wide

spectrum of cross-sectional dependencies in macro and financial data sets. We propose consis-

tent estimators of the cross-sectional exponent and derive their asymptotic distribution. The

inference problem is complex, as it involves handling a variety of bias terms and, from an econo-

metric point of view, has noteworthy characteristics such as nonstandard rates of convergence.

We provide a feasible and relatively straightforward estimation and inference implementation

strategy.

A detailed Monte Carlo study suggests that the estimated measure has desirable small sample

properties. We apply our measure to three widely analysed classes of data sets. In the first two
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cases, we find that the results of the empirical analysis accord with prior intuition. For individual

securities in S&P 500 index, the estimates of cross-sectional exponents are systematically high

but at times not equal to unity, a widely maintained assumption in the theoretical multi factor

literature.

We conclude by pointing out some of the implications of our analysis for largeN factor models

of the type analysed by Bai and Ng (2002), Bai (2003), and Stock and Watson (2002). This

literature assumes that all factors have the same cross-sectional exponent of α = 1, which, as

our empirical applications suggest, may be too restrictive, and it is important that implications

of this assumption’s failure are investigated. Chudik et al. (2011), Kapetanios and Marcellino

(2010) and Onatski (2012) discuss some of these implications, namely that when 1/2 < α < 1

factor estimates are consistent but their rates of convergence are different (slower) as compared

to the case where α = 1, and in particular their asymptotic distributions may need to be

modified. In some cases such as when α < 3/4 it is not even clear if factor estimates are

consistent. Further, when α < 1, methods used to determine the number of factors in large data

sets, discussed for example by Bai and Ng (2002), Onatski (2009), Kapetanios (2010), Alessi

et al. (2010), and Ahn and Horenstein (2013), are invalid and can select the wrong number of

factors, even asymptotically.21 Finally, the use of estimated factors in regressions for forecasting

or other modelling purposes might not be justified under the conditions discussed in Bai and

Ng (2006).
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Appendix: Proofs of Theorems

In the derivations of the proofs that follow we allow for Σff 6= I in general, apart from the specific instances

relating to the estimation of µv and α̊ where, without loss of generality, we impose Σff= I. Further note that

the proofs assume Σu is diagonal and, therefore, σ̄2
N = cN and ̂̄σ2

N = ĉN . The technical Lemmas used in the

Appendices are stated in Supplementary Appendix I and proven in Supplementary Appendix III.

Proof of Theorem 1

We start by noting that

σ̂2
x̄ =

1

T

T∑
t=1

(
x̄t −

1

T

T∑
τ=1

x̄τ

)2

=
1

T

T∑
t=1

x̄2
t − x̄2,

where x̄t = β̄1Nf1t + β̄2Nf2t + ... + β̄mNfmt + ūt = β̄
′
Nf t + ūt, and x̄ = T−1∑T

τ=1 x̄τ = β̄1Nf1 + β̄2Nf2 +

... + β̄mNfm + ū = β̄
′
Nf + ū. Further, we assume the general setting discussed in Assumption 1 of Section 3.1

regarding the weak factor loadings and let Kρ = (Kρ1 , ...,Kρm)′, where

Kρj = Kj =

N∑
i=Nj+1

βij <∞, (40)

and Nj=[Nαj ]. Then, we have

σ̂2
x̄ = β̄

′

NSff β̄N + 2β̄
′
N

[
1

T

T∑
t=1

(
f t − f̄

)
ūt

]
+

[
1

T

T∑
t=1

ū2
t − ū2

]
,
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where

Sff =
1

T

T∑
t=1

(
f t − f̄

) (
f t − f̄

)′ →p Σff > 0, as T →∞.

But under Assumption 1, β̄N = Nα−1DN v̄N+N−1Kρ, where v̄N = (v̄1N , v̄2N , ..., v̄mN )′ and v̄jN = N−1
j

∑Nj
i=1 vij .

So,

β̄
′

NSff β̄N = N2α−2v̄′NDNSffDN v̄N+2Nα−2v̄′NDNSffKρ+N
−2K′ρSffKρ = N2α−2v̄′NDNSffDN v̄N+O

(
Nα−2) .

Hence,

ln
(
β̄
′

NSff β̄N

)
= ln

(
N2α−2v̄′NDNSffDN v̄N + 2Nα−2v̄′NDNSffKρ +N−2K′ρSffKρ

)
=

2(α− 1) ln (N) + ln
(
v̄′NDNSffDN v̄N

)
+ ln

(
1 +

2N−αv̄′NDNSffKρ +N−2αK′ρSffKρ

v̄′NDNSffDN v̄N

)
= 2(α− 1) ln (N) + ln

(
v̄′NDNSffDN v̄N

)
+Op

(
N−α

)
.

Then,

ln
(
σ̂2
x̄

)
= ln(β̄

′

NSff β̄N ) + ln

1 +
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

+
[

1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N

 , (41)

ln
(
σ̂2
x̄

)
= 2(α− 1) ln(N) + ln(v̄′NDNSffDN v̄N )

+ ln

1 +
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

+
[

1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N

+Op
(
N−α

)
.

Hence, recalling from (11) that α̂ = 1 + ln(σ̂2
x̄)/2 ln(N),we have

2 ln(N) (α̂− α)−ln(v̄′NDNSffDN v̄N ) = ln

1 +
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
+

[
1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N

+Op
(
N−α

)
,

or

2 ln(N) (α̂− α)−ln(v̄′NDNSffDN v̄N ) =
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
+

[
1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N
+Op

(
N−α

)
+op(BN,T ),

(42)

where

BN,T =
2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
+

[
1
T

∑T
t=1 ū

2
t − ū2

]
β̄
′

NSff β̄N
.

Consider the first term of the RHS of (42). We have,

2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
=

2√
TN

Nα−1v̄′NDN

[
Σ
−1/2
ff

1
T

∑T
t=1

(
f t − f̄

)√
Nūt

]
β̄
′

NS
1/2
ff S

1/2
ff Σ

−1/2
ff β̄N

. (43)

We note that S
1/2
ff Σ

−1/2
ff = 1 +Op(T

−1/2). But, by Lemma 2 (as N and T →∞)

Σ
−1/2
ff

1√
T

T∑
t=1

(
f t − f̄

) (√
Nūt

)
→p N(0, σ̄2

NIm), (44)

where σ2
N is as in (B1).
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We need to determine the probability order of 1/β̄
′
N β̄N . We note that

1

β̄
′
N β̄N

− 1

N2α−2v̄′ND
2
N v̄N

=
1

N2α−2v̄′ND
2
N v̄N + 2Nα−2v̄′NDNKρ +N−2K′ρKρ

− 1

N2α−2v̄′ND
2
N v̄N

=
−Nα−2v̄′NDNKρ −N−2K′ρKρ

N4α−4
(
v̄′ND

2
N v̄N

)2
+N3α−4v̄′NDNKρv̄′ND

2
N v̄N +N2α−4K′ρKρv̄′ND

2
N v̄N

= −
[
N2−3α (v̄′ND2

N v̄N
)−1

v̄′NDNKρ +N2−4αK′ρKρ

(
v̄′ND

2
N v̄N

)−2
] (
v̄′ND

2
N v̄N +N−αv̄′NDNKρ +N−2αK′ρKρ

)−1

= Op
(
N2−3α) ,

and hence

2β̄
′
N

[
1
T

∑T
t=1

(
f t − f̄

)
ūt
]

β̄
′

NSff β̄N
= Op

(
T−1/2N1/2−α

)
+Op

(
T−1/2N1/2−2α

)
. (45)

Consider now the second term on the RHS of (42). We use (45) again. Note that since, by Lemma 1 and

Theorems 17.5 and 19.11 of Davidson (1994),
√
NTū = Op(1), and, since SffΣ

−1
ff = 1 + Op(T

−1/2) where

0 < Σff <∞,

ū2

(Nα−1DN v̄N +N−1Kρ)
′ Sff (Nα−1DN v̄N +N−1Kρ)

=

(√
NTū

)2

NT (Nα−1DN v̄N +N−1Kρ)
′ Sff (Nα−1DN v̄N +N−1Kρ)

(46)

= Op
(
T−1N1−2α) . (47)

Similarly,
1
T

∑T
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2
t

(Nα−1DN v̄N +N−1Kρ)
′ Sff (Nα−1DN v̄N +N−1Kρ)

(48)

=

1

N
√
T

{
1√
T

∑T
t=1

[
(
√
Nūt)

2 − σ̄2
N

]
+
√
T σ̄2

N

}
(Nα−1DN v̄N +N−1Kρ)

′ Sff (Nα−1DN v̄N +N−1Kρ)

=

σ̄2
N

N
√
T

{
1√
T
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[(√
Nūt
σ̄N

)2

− 1

]
+
√
T

}
(Nα−1DN v̄N +N−1Kρ)

′ Sff (Nα−1DN v̄N +N−1Kρ)

=

σ̄2
N

N
√
T

1√
T
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t=1

[(√
Nūt
σ̄N

)2

− 1

]
(Nα−1DN v̄N +N−1Kρ)

′ Sff (Nα−1DN v̄N +N−1Kρ)

+
σ̄2
N

N (Nα−1DN v̄N +N−1Kρ)
′ Sff (Nα−1DN v̄N +N−1Kρ)

.

Note that

σ̄2
N

N (Nα−1DN v̄N +N−1Kρ)
′ Sff (Nα−1DN v̄N +N−1Kρ)

− σ̄2
N

N2α−1v̄′NDNSffDN v̄N
= Op(N

1−3α). (49)

Also, by Lemma 3,

1√
2T

T∑
t=1

[(√
Nūt
σ̄N

)2

− 1

]
→d N(0, 1),

and

σ̄2
N

N
√
T

(
1√
T

∑T
t=1

[(√
Nūt
σ̄N

)2

− 1

])
(Nα−1DN v̄N +N−1Kρ)

′ Sff (Nα−1DN v̄N +N−1Kρ)
= Op(T

−1/2N1−2α) +Op(T
−1/2N1−3α). (50)
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So,

2 ln(N) (α̂− α)− ln(v̄′NDNSffDN v̄N )− σ̄2
N

N2α−1v̄′NDNSffDN v̄N

= Op
(

max
(
T−1/2N1/2−α, T−1N1−2α, T−1/2N1−2α, N1−3α, N−α

))
.

Since α > 1/2, in the first instance this implies that

α̂− α = Op

(
1

ln(N)

)
, (51)

which establishes the consistency of α̂ as an estimate of α as N and T →∞, in any order.

Consider now the derivation of the asymptotic distribution of α̂. We have

ln(N) (α̂− α)− σ̄2
N

N2α−1v̄′NDNSffDN v̄N
= ln(v̄′NDNSffDN v̄N ) +

2√
TN

[
Σ
−1/2
ff

1√
T
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(
f t − f̄

) (√
Nūt

)]
Nα−1S

1/2
ff
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+
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NTū
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′ Sff (Nα−1DN v̄N +N−1Kρ)
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[(√
Nūt
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− 1

])
(Nα−1DN v̄N +N−1Kρ)

′ Sff (Nα−1DN v̄N +N−1Kρ)
+Op(N

−α).

We first examine ln(v̄′NDNSffDN v̄N ). If αj= α, for all j = 1, ...,m, then by Lemma 11 we have

√
min(Nα, T )

[
ln(v̄′NSff v̄N )− ln(µ′vΣffµv)

]
→d N (0, ωm) ,

while if α > α2... > αm, then by Lemma 12 we have√
min(Nα, T )

(
ln(v̄′NDNSffDN v̄N )− ln(µ′vDNΣffDNµv)

)
→dN(0, ω).

Further, since α > 1/2,

√
min(Nα, T )

 2√
TN

Nα−1v̄′NDN

[
Σ
−1/2
ff

1
T

∑T
t=1

(
f t − f̄

)√
Nūt
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)
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Similarly,

√
min(Nα, T )


(√

NTū
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(
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[(√
Nūt
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)
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Thus, if αj= α, for all j = 1, ...,m,

√
min(Nα, T )

(
ln(N) (α̂− α∗N )− σ̄2

N

N2α−1v̄′NDNSffDN v̄N

)
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where α∗N = α+ln(µ2
v)/2 ln(N) and µ2

v=
∑m
j=1 µ

2
vj , by setting Σff= I as normalisation. Otherwise, if α > α2... > αm,

√
min(Nα, T )

(
ln(N) (α̂− α∗N )− σ̄2

N

N2α−1v̄′NDNSffDN v̄N

)
→d N (0, ω) ,

where either α∗N = α + ln(µ2
v1

)/2 ln(N) when (24) or (25) hold, or α∗N = α + ln(
∑m
j=1 N

2(αj−α)µ2
vj )/2 ln(N) if

neither of these two conditions hold, by referring to Lemma 13 as well. Again, we set Σff= I as normalisation.

Also, by Lemmas 7 and 9 we have

√
min(Nα, T )

(
σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

)
= Op

(√
min(Nα, T )N2−4α

)
and √

min(Nα, T ) ln(N)

(
σ̄2
N

N2α−1v̄′NDNSffDN v̄N
−

̂̄σ2
N

Nσ̂2
x̄

(
1 +

̂̄σ2
N

Nσ̂2
x̄

))
= op (1) ,

which prove the remainder of the theorem.
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