An Exponential Class of Dynamic Binary Choice Panel

Data Models with Fixed Effects*

Majid M. Al-Sadoon Tong Li

Universitat Pompeu Fabra and Barcelona GSE Vanderbilt University

M. Hashem Pesaran

University of Southern California and Trinity College, Cambridge

August 12, 2014

Abstract

This paper develops a model for dynamic binary choice panel data that allows for
unobserved heterogeneity to be arbitrarily correlated with covariates. The model is
of the exponential type. We derive moment conditions that enable us to eliminate
the unobserved heterogeneity term and at the same time to identify the parameters of
the model. We then propose GMM estimators that are consistent and asymptotically
normally distributed at the root-N rate. We also study the conditional likelihood
approach, which can only identify the effect of state dependence in our case. Monte
Carlo experiments demonstrate the finite sample performance of our estimators.

JEL Classification: C23, C25

Keywords: Dynamic Discrete Choice; Fixed Effects; Panel Data; GMM; CMLE

*Al-Sadoon acknowledges financial assistance from the Spanish Ministry of Economy and Competitiveness
(project ECO2012-33247). Li gratefully acknowledges support from National Science Foundation (SES-
0922109). Pesaran acknowledges support from ESRC grant no. ES/1031626/1.



1 Introduction

This paper considers estimation and inference in dynamic binary choice panel data models
with unobserved heterogeneity that is allowed to be arbitrarily correlated with the covariates.
This type of unobserved heterogeneity is usually referred to as the fixed effect. These models
are of particular interest in many applications because they can be used to distinguish between
the presence of state dependence and the effect of unobserved heterogeneity, as discussed in
Heckman (1981a and 1981b). These models are usually specified in terms of the distribution of
the dependent variable conditional on the lagged dependent variable, a set of (possibly time-
varying) covariates, and an individual specific term that represents unobserved heterogeneity.

As is well known, for dynamic panel data models with unobserved effects, an important
issue is the treatment of the initial observations. While in some cases the initial observation
can be viewed as a fixed constant if the actual start of the dynamic process coincides with
the first time period in the data, in general, if the dynamic model under consideration has
been in effect before the first period of the sample under consideration, there is an intrinsic
and complex relationship between the unobserved heterogeneity and the initial observations.
Therefore, in general, it is important to allow for the dependence of the initial observations
on the unobserved individual effects.

For linear models with an additive unobserved effect, appropriate transformations such
as differencing have been used to eliminate the unobserved effect, and GMM type estimators
have been proposed to estimate the transformed model. For example, see Anderson and Hsiao
(1982), Arellano and Bover (1995), Arellano and Carrasco (2003), Ahn and Schmidt (1995),
Blundell and Bond (1998), Hahn (1999), and Hsiao, Pesaran, and Tahmiscioglu (2002), and
among others surveyed in Arellano and Honoré (2001) and Hsiao (2003). However, for non-
linear panel data models in general and binary choice models in particular the treatment
becomes more complicated. When the unobserved effect is assumed to be a random effect
in that it is not correlated with the strictly exogenous variables, Heckman (1981b) suggests
to approximate the conditional distribution of the initial values given the exogenous vari-

ables and the unobserved individual effects so as to use the maximum likelihood estimation



to estimate the model parameters. Alternatively, Wooldridge (2005) proposes to specify
an auxiliary distribution of the unobserved individual effect conditional on the initial value
and the exogenous variables leading to a simple conditional maximum likelihood estimation.
Both methods, while useful in addressing the initial value problem, can be best viewed as
approximations of the true (conditional) distributions of the initial value, and the unobserved
heterogeneity, respectively. As discussed in Honoré (2002), because of the complicated re-
lationship between the initial value and the unobserved heterogeneity and the exogenous
variables, it is almost unavoidable that modeling these two conditional distributions are in-
consistent with the original model. Furthermore, as pointed out in Honoré (2002), there
could be some potential incoherent problems with an ad hoc treatment of the initial values
in the case of unbalanced panel data models.

Dealing with dynamic nonlinear panel data models with fixed effects, on the other hand, is
further complicated by the so-called incidental parameters problem, in addition to the initial
value problem. The incidental parameters problem arises because the number of parameters
(unobserved effect terms) increases with the number of the individuals. As a result, the max-
imum likelihood estimator of the structural parameters, while consistent with both N (the
number of individuals) and 7' (the number of time periods) going to infinity, is inconsistent
with large N and fixed T. One strand of the literature has been trying to propose modified
maximum likelihood estimators to obtain bias reduction for a fixed T'. See, e.g. Arellano
(2003) for static binary choice panel data models, and Carro (2007) as well as Bartolucci, Bel-
lio, Salvan, and Sartori (2012) for dynamic binary choice panel data models. This approach
usually requires a relatively large T" to attain significant bias reduction, as demonstrated in
the Monte Carlo studies in Carro (2007) and Bartolucci, Bellio, Salvan, and Sartori (2012),
even in the simplest case where the initial values are fixed constants. Another approach in the
literature is to eliminate the fixed effects as in the linear models. This approach, solves the
incidental parameters problem, although the initial values problem remains. So far, however,
there are only a few papers following this approach. Honoré and Kyriazidou (2000) consider

the dynamic logit model and derive a set of conditions under which the parameters of the



model are identified. They also propose consistent estimators of the model based on the iden-
tification results, albeit the rate of convergence of the estimators is slower than the usual v N
rate. In a more recent paper, Bartolucci and Nigro (2010) consider a version of the quadratic
exponential model that closely mimics the dynamic logit model and propose a conditional
maximum likelihood estimator conditioning on sufficient statistics for the individual specific
terms. However, with this specification the strict exogeneity assumption usually made on
the covariates in the standard dynamic panel data models is not met.! Also there could be
some potential incoherent problems arising from the separate model specification for the last
period from the other periods if one conducts sequential estimation, or if one deals with an
unbalanced panel. Arellano and Bonhomme (2011) provide a review of recent developments
in the econometric analysis of nonlinear panel data models.

In this paper we introduce a binary choice panel data model where the idiosyncratic
error term follows an exponential distribution. With this specification we derive moment
conditions that enable us to eliminate the fixed effect term and at the same time to identify
the parameters of the model. We drive appropriate moment conditions that identify the state
dependent parameter as well as the coefficients of the exogenous covariates. We then propose
GMM estimators that are consistent and asymptotically normally distributed at the v/ N
rate. Compared with the existing approaches, our method identifies all the parameters of the
model and yields simple-to-implement estimators that have standard asymptotic properties.
The model, as well as the moment conditions we employ, are variants of those proposed in
Wooldridge (1997).2 In addition to the GMM estimators, since the conditional maximum
likelihood approach has been adopted in the literature in the case of the logistic distribution
or the quadratic exponential distribution in order to eliminate the fixed effects, we also study

the conditional likelihood approach, which can only identify the effect of state dependence

IStrict exogeneity typically allows us to specify the likelihood of y;; conditional on ¢;, x;; and y;;—1. But
in the Bartolucci and Nigro (2010) specification, all periods observations of x;; must be taken into account.
On the strict exogeneity assumption and the other approaches in the literature, see Wooldridge (2002) for a

survey.
2See Remark 1 for more details.



in our case. Since our GMM estimators are general and simple to implement, we study their
finite sample performance through a comprehensive simulation study and the results indicate
that our estimators perform quite well in relatively small size samples.

Given that we are the first to propose explicitly the use of an exponential model in a
binary choice setting, it is important that this choice is motivated and further discussed.
The first point to bear in mind is that in the case of fixed effects binary choice models,
the choice of the distribution is in fact secondary; fixed effects (which are totally free of
any restrictions) can be used to match probability outcomes based on exponential and any
other specification, including the logistic ones used in the literature. In the case of models
without any covariates (x;’s), the match can be performed perfectly for all distributional
specifications. When the model contains covariates, the match between the exponential and
other distributions, including the logistic, can be done for specific values of x;;, (at some t)
or at the mean of x;;, namely at X;, as we demonstrate later in Section 4.3. Therefore, at
least in a binary choice setting the choice of the distribution is more a matter of analytical
and estimation convenience. Moreover, since in analyzing a nonlinear model such as a binary
choice model, a key quantity of interest is the average partial effect (APE), we will investigate
through Monte Carlo simulations how well the APEs are estimated with the exponential
model if the true model is the logistic. Our results show that the exponential model yields
sensible estimates for the APEs even with a misspecified distribution.

The rest of the paper is organized as follows. Section 2 lays out the model of interest.
Section 3 considers the case with only the lagged dependent variable but without covariates,
and Section 4 generalizes and extends Section 3 to allow for time-varying covariates. Section 5
presents Monte Carlo results that demonstrate the usefulness and feasibility of our approach.

Section 6 concludes. All technical proofs are included in Section 7 that serves as an appendix.



2 The General Form of the Model

Suppose that y;; takes the values of zero and unity, for v = 1,2,...., N, and t = 1,2,..., T,
and x;; is a k x 1 vector of strictly exogenous, time-varying regressors; common time-varying
regressors, such as a time dummy, can also be included in x;;. The standard dynamic binary

panel data model with fixed effects assumes that

yie = 1yz =0], (1)

Yy = PYip—1+ B'xit + ¢ + i

where y, is a latent variable that is not observed by the econometrician, u;; is the random
error term assumed to be i.i.d with mean zero, and ¢; represents the individual unobserved
effect that can be arbitrarily correlated with x;; and u;. We suppose that T is fixed and
N sufficiently large. We are interested in the parameters of the covariates 3 and the state
dependence parameter p, both of which together are usually called structural parameters,
while ¢;, for i = 1,..., N, are referred to as incidental parameters.

Denote the distribution of —u; by F(-). Then we have

Pr(yit = 1|yl,t—1792,t—17---;yN,t—MCl’Cz;---7CN§X1t7X2t;--->XNt)

= Pr(yit =1 ‘yi,tfly Ci,Xit) = F(Pyi,tq + leit + Ci); (2)

where the first equation follows from the strict exogeneity assumption on x;;. The commonly
used probit or logit models correspond to F(+) being either the standard normal distribution
or the logistic distribution, respectively. The model can also be thought of as an inhomoge-

neous Markov chain with transition probabilities
Yit = 0 1
Yit-1= 0 1— F(B'%i + ) F(B'xy + ¢;)
1 1-Flp+Bxu+c) Flp+Bxu+c)



3 The Case of 3=0

3.1 The Likelihood Function

In the case where 3 = 0, the Markov chain has a time-invariant initial distribution which is

given by (for all t)

_ _ F(c;) .
Pr(yy =1lc;) = 1= Fla+p) + F(o) =T, (3)
e =01) = [y =1 0

The joint probability distribution of ¢;, y;1, ¥s2, ..., ¥i7 can now be derived using the familiar

decomposition

Pr (Cm Yi1, Yi2, -+ yiT) = PY(Ci) Pr(yﬁ |Cz) Pr(@/iz |y¢1, Cz) PT(Z/z’T ’yi,TA? Ci)-

Consider now the observations y;; for t = 1,2, ..., T, and note that the likelihood function for

the i'" unit at time t = 1 is given by
Pr(ya [ci, p) = (m7)"* (1 —mp)t 7, (5)
and for time t = 2,3, .., T, by

Pr(yit [Yit—1,¢is p) (6)
_ [F(C, + p)]yityi,t—l [1 o F(Ci + p)](l—yit)yi,tfl [F(Ci)]yu(l—yi,tq) [1 . F(Ci)](l_y”)(l_yi*“l),

Setting Y = (yu, ¢ = 1,..., N;t = 1,2,....T), the log likelihood function for the panel



(assuming independence across 7) is given by

lplY,c) = é[yu In(m}) + (1 — ya) In(1 — 77)] +
ii%t?/m—l In [F(c; + p)] +
ZZ — Yty I [L = F(ei + p)] +
ZZy — yie1) I [F(e)] +
igﬂ — i) (1 = gig1) In[1 — F(e,)] .

It is clear that there is an incidental parameter problem here that cannot be resolved without
a specification of Pr(¢;). This can be accomplished by specifying a distribution in terms of the
observables. Note, however, that Pr(c;) can be specified independently of the initial value,
Yi1, or the other observations. The assumption that ¢; are independent across ¢ can also be
relaxed to allow for simple patterns of cross-sectional dependence across i (i.e. using more

general specifications of Pr(c)) although we do not pursue this here.

3.2 Exponential Distribution for F'()

The literature on estimation of binary choice panel data models with fixed effects has focussed
on a logit specification for F(-). In this paper we consider an alternative specification. We
consider first the case where 3 = 0 and equations (3) and (4) hold, and focus on consistent
estimation of p. Pesaran and Timmermann (2009) show that a Markov chain can be written
as a vector autoregressive (VAR) model in the indicator variables. In our context it can be

easily established that
gir = Vit — F(ci) — [Fci + p) — F(ci)] yir

is a martingale difference process with respect to v; 1, ¥;—2, .... This suggests the following

linear binary AR(1) regression with reduced form parameters that are non-linear functions
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of the parameters of the underlying model:
yit = F(ci) + [Fei + p) — Fe)] gig + € (7)

It is possible to eliminate ¢; from the above regression when F'(c + p) — F(¢) = G(p)H (c).
The only non—constant, differentiable, distribution function that satisfies this condition is

the exponential distribution F'(z) =1 — exp(—z).> Under this specification, we have

F(ci+ p) = Flei) = exp(=c;) [1 = exp(=p)]. (8)

Consistent estimation of p can now be achieved using the conditional maximum likelihood

or the GMM methods.

3.3 Conditional Maximum Likelihood Estimation

Building on an early work by Cox (1958), Chamberlain (1985) shows that it is possible to
estimate p consistently using a conditional maximum likelihood estimator (CMLE) approach
if F(-) is logistic, 3 =0 and T > 4. Honoré and Kyriazidou (2000) extend this analysis
to the case where 3 # 0, under certain restrictions on the distribution of the covariates, x;;,
over time. In this sub-section we show similar results hold if F'(-) is exponential, 3 = 0 and
T > 3.

Using (5) and (6) the likelihood function (conditional on ¢;) for the i*" unit can be written

as

[1 - F(Cz + p) —I— F<Cl)] PI" (yZT |C“ p) = [F(CZ + p)]23:2 YitYi,t—1 [1 o F(Cl + p)]17yi1+2?:2(17yit)yi,t71
> [F(Ci)]yertT:g pie(egier) [1— F(Ci)}2312(1—%)(1_%,5,1) '

3See Appendix 7.1 for a proof where it is shown that the general solution to the problem is given by
F(z) =1— Cexp(—Dz), for C, and D > 0. Since these two parameters are not identifiable, we set them

both equal to 1. Similar rescaling and normalization is also used for the standard logit and probit models.
4See Chamberlain (2010) for identification in a two-period case and Magnac (2004) for more general

identification results with the conditional likelihood approach, and also Magnac (2001) for an empirical

application.



Let s;7 = Zthl Yir and pir = ZtTZQ YitYi—1 write the above likelihood function as

Pr (YZ-T |Ci7p> = Pr<SiTapiTayi17yiT |Cm0)
[F(Ci + p)]piT [1 _ F(Ci + p)]lf?}u*yiTJrSiT*PiT

[F(Ci)]siT_pz‘T [1 . F(Ci>](T_1)+yi1+yiT_23iT+PiT

[1— F(c;+p)+ F(c)]

It is clear that s;r, p;r, yi1, and y;r are minimal sufficient statistics for ¢; and p. Following
Andersen (1970), we consider the likelihood function of p conditional on given values of
siv = 80 and p;r = p° for all i. Let Bir(s°,p°) be the set of all sequences i1, Yo, ..., yir that
satisty S0 vy = 0 and S yavis 1 = p° for 8 = 1,..,T — 1 and p° = 0,1,..,T — 1
(s° > p%) There is no point considering the values of s® = 0 and T, since for these values it
is easily seen that the conditional likelihood function does not depend on p.

In general we have

Pr (SiT = SO,Pz’T = p07 Yi1, YiT |Ci7 P)
Pr (SiT =59 pip = p° |Ci7p)

Pr (i1, yir }SiT = s, pir = PO>Ci>P) =

where

Ai(soij) [1 o F(Ci)]yil‘l'yiT [1 - F(Ci 4 p)]—yn—ym
[1 = Fei+ p) + F(ei)] ’

Pr (s;r = 8°, pir = 1°, i1, Yir |ci, p) =

and

Ai(SO,p()) Zyil,yiTEBiT(SO,pO) [1 o F(Ci>]y1¢1+yiT [1 o F(CZ + p)]—yil—yiT
[1— F(c; +p) + F(c;)]

Pr (s;p = 8%, pir = p°lei, p) =
in which

A ) = [Fles + )] [F(e)] ™7 1= Pe) 02 L= P+ p)) 0
Therefore

[1 _ F(Ci)]yi1+yiT [1 . F(Ci _|_p)]_yi1_yiT
Zyil,yiTEBiT(so,po) [1 - F(Ci)]yiﬁ_ym [1 - F(Ci + p)]_yil_yiT

It is clear that for a general specification of F'(-) the conditional distribution of y;; and y;r

Pr (yi1, yir ‘SiT = SoapiT = p0>Cz‘,P) =

still depends on the incidental parameters ¢;. But in the case of the exponential distribution

9



we have

exp [p(yi1 + yir)]
yi1,yir €Bir (s0,p0) OXP [/0<yz'1 + Z/iT)] ’

Pr (yi1, yir |sir = SovpiT = p(],Ci,P) =
| >

which does not depend on ¢}s.

The conditional likelihood for the cross section observations i = 1,2, .., N is now given by

LC(P) _ H 1:[ f[ Z eXp [p(yil + yiT)] (9)

yi1,yir €Bir (s0,p0) OXP [p(yia + vir)]

Not all the components of this conditional likelihood function will depend on p. For example,
in the case where T' = 3, which is derived in detail in the appendix, the only component that
depends on p is for values of s =1 and p® = 0. When T = 3 we exclude observation where
sY =3 and p° = 2. The remaining values are (s°,p°) = (2,0) and (s°, p°) = (2,1). Under the
former we must have y;; = 1,7;0 = 0 and ;3 = 1 and

exp [p(vi1 + vi3)]
Zyu,yise&s(z,o) exp [p(yi1 + ¥i3)]

=1.

Under (s° p°) = (2,1) the only admissible sequences are (110) and (011) and we have

exp [p(yi1 + i3)] _exp(p) 1

Zyilyyi368i3(2,l) exp [p(yn + yiz)]  2exp(p) 2

The only set of observations for which the conditional likelihood depends on p is given by

=xp(p) _ for (100)

2exp(p)+1°
exp [p(vi1 + vi3)] _ X for (010
Zyilzyil%eBi?»(l,O) exp [p(yil + yi3>] zeXp((P))*p
ex
2expp(pl;+1 ) fOI' (OOl)

Hence, the conditional log-likelihood function for the case where T' = 3 can be written as

lep) = p ) (yn + s (sis = DI(piz = 0) = log [2exp (p) + 1] Y _ I(si3 = 1)1 (piz = 0)

i=1 =1
It is easily verified that this is the same as (21) obtained in the appendix. Following Andensen
(1970), consistency and y/n-asymptotic normality of the resulting conditional maximum like-

lihood estimator can be established.
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3.4 GMM Estimation

Under the exponential distribution, the binary AR(1) model (7) can be written as
Yir = o + (1 — i) VY1 + €, (10)

where a; = 1 — exp(—¢;), and v = 1 — exp(—p). First—differencing here will not eliminate
the incidental parameters since the slope also depends on ¢;. But since «; is time invariant
it can be eliminated by using lagged observations. For example, noting that 1 — vy, ;2 can

only take the values of 1 and 1 — v, and will not be zero for all bounded values of p

~ Yig—1 — VVYir—2 Eit—1

I — Y2 1- 7%,1t—27

(%)

then «; can be eliminated from (10) to yield the non-linear differenced equation

I —vYit
I —7Yir—2

I —vyis
Vig = Eit — —— | Eit—1-
I —vYit—2

However, v;; in this specification does not have mean zero since even conditional on y; ;o we

Yit = VYit—1 + ( ) (Yit—1 — VYit—2) + Vi, (11)

where

have

E(@',tfl |yi,t72) —vE (yi,tflei,tfl ’yi,t72)
L —vYis—2

E(Uit |yi,t—2) = E(&‘t |yi,t—2) -

vE (yi,t—lgi,t—l |yi,t—2)
L= Yis2

Due to the contemporaneous dependence of y;;—1 and €;;1 in general E(vi|y;1—2) # 0.
Using further lagged values of y;; will not resolve this problem. However, we can consider

the following alternative formulation

1 — vy it — YYi,t— 1— i t—
€ = <M) Eit — &it—1 — (yt Vit 1>( Vit 2) - (yi,tfl - 'Vyi,t72)a (12)

L —YYir— (1 = YYiz-1)
which is obtained by multiplying both sides of (11) by (1 — yy;+—2) / (1 — YYis—1). It is now
easily seen that

11—y
E(eit ‘yi,t—l, yi,t72) = (#) E<5it |yi,t—1, yi,t—2> - E(Ei,tfl ‘yi,t—l, yi,t—2)-
— YYit—1

11



But E(ei |yit—1,Yit—2) = 0 by the Markov property as established in Pesaran and Timmer-
mann (2009). Hence

E(ez’t |yi,t—1; yz’,t—2) = —E(&',t—l |yz‘,t—17 yi,t—Z)-

Now by chain rule of conditional expectations

EE(ei|Yit—1,Vit—2) |Yir—2] = —E[E(€it—1|Yit—1,Yit—2) |Yir—2],

Eei ‘yi,t—2> = —Eeu ‘yi,t—2) =0,
as required. In fact we have, more generally,
E(eit|yir—s) =0, for s = 2,3, ... (13)

As aresult, v can be estimated consistently by applying the GMM to (12) using y; 12, Yit—3, ---»
as well as the constant, as instruments, very much as when GMM is applied to the first-
differenced version in the linear case.

Note that the constant (i.e. the sequence of 1’s) should be used as an instrument with
caution. It is easy to show that E(e;) = 0 whenever v = 0 or v = 7,. Thus the constant
instrument fails to uniquely pin down ~,. However, the other instruments do not suffer
from this anomaly. Therefore, there is no danger in using the constant as an instrument if

accompanied by some of the lags y;;—2,yit—3,. . ..

Remark 1 Wooldridge (1997) considers multiplicative panel data models of the form 7(y, o) =
o1 (Xit, By)wir, and shows that with sequential moment conditions on w; as specified in Cham-
berlain (1992), thus allowing for lagged dependent variables such as y; -1 included in x;;, the

transformation
rit(a) ET<yit7 A) - [M(Xih BO)//“I’(XitJrla ﬁO)]T(yih A>7t = 17 sy T — 17
satisfies the conditional moment condition

E[rit(90)|q§i,xﬂ, -~-Xit] = O,t = 1, ,T — 1

12



In our case, we can rewrite our model as 1— yy; = ¢,u(Xy, By)uir, where p(xy,By) =
exp(—pyit-1) and ¢; = exp(—c;). Noting that exp(pAyit) = (1 — Yii-1)/(1 — vpyit), it can
be shown that r;1(0y) in our case is identical to e;411. As a result, the conditional moment

conditions in (18) can also be derived from those obtained by Wooldridge (1997).

Notice that since p = —In(1 — ), to estimate p consistently we must have 7 < 1.
Alternatively, one could consider the GMM estimation problem directly in terms of p, namely
by considering the moment conditions in terms of

(Ayit + yir—1exp(—p)) (1 — Yiz—2 + Yiz—2 exp(—p))
(1= Y1+ Yig1exp(—p))
Let y; = (yi1, Yi2, ---, Yir)', then these moment conditions may be written as

eir(p) = —(Ayi,t—1+yz’,t—2 exp(—p)). (14)

Elmp(yi,7)] =0, k=12 (T+1)(T—-2)/2

Note that we require 7" > 3 in order to use these moments. When 7" = 3, there are two

moments.” The moment conditions for T' = 5, for example, are given by

mi(y:,y) = (yﬁ _(71%_2)7(;12; 1) — (yi2 — ’Y’yﬂ); ,
ma(yi,y) = :(ym _(71%_32(;35 102 — (yis — 7%2): )
ms(yi, ) = _(yi_E’ _(Vlyfg(ylj Ta) _ (yia — 7%’3)_ g
ma(yi,y) = Ya _(yig _(ny)7§2; ") — (yi2 — 7%1)_ ,
ms(yi,y) = Ya _(yi4 _(ny)v(ylz?,; "52) — (yis — 7%2)_ ,
me(yi7) = Yi2 :(ym — ayf>7§3; 12) — (yis — ’sz‘2): )
mr(yi,y) = ¥a :(yi5 —(ny)7§4; 1) — (Yia — ’Yyi?,): ,
ms(yi, V) = Yio :(y% _(ny)7§4; i) — (i — 7%‘3): )
mo(yi,V) = Yis -(y¢5 — (vlyf)v(ylij is) — (yia — 7%‘3)_ )

°In the appendix, we considered in detail the case of 7' = 3 and the moment E(e;3y;1) = 0. In this case,

the GMM estimator has a closed-form solution.

13



and so on.
Let m<yza 7) = (ml(Yiv 7)7 m?(Yi? 7)7 ceey mK(yZJ 7))/7 and write the K = (T + 1)(T - 2)/2
moment conditions as F [m(y,,7)] = 0. Using the familiar results on GMM estimation we

have
Yomm = arg mwin [MIN(V)AINANMN(’Y)] )
where

Mpy(y) = N~* Z m(y,,7),

and Ay is a 1 x K weight vector. An optimal choice for limy_..Axy = A(7,) is given by

A(yy) = DI(VO)SA(%);

where 7, is the true value of v, and

S(v) = E[NMN(’Y(J)MIN(%)]

vy ] g (20)

i=1

D(yy) = FE

But (denoting ¢ = (¢4, ¢, ..., cn)’)

E [NMN(VO)MEV<’YO)] =F

N1 i i E [m<Yi7 7)m'(y;,7) ‘C}] ’

i=1 j=1
Note that conditional ¢, y; and y; are independently distributed, which establishes that
m(y,;,7) and m(y;,7) are also conditionally independent (since range of variations of y;

does not depend on ). Hence, recalling that £ [m(y,,y)] = 0, we have

N

E[NMy(79)My(70)] = N7' > Em(y;, 7)m’(y,,7)] .

i=1
In general, analytical expressions for F [%ﬂoq and £ m(y,,v)m'(y,,v)] will be a com-

plicated function of c. However, for a given initial consistent estimate of v, say 4, Ay can

be consistently estimated as

Ay — Ax(9) = [Nz%ﬁ”)] [N—lzmwmmxym W)

=1



The asymptotic variance of 4.,/ is given by

1

AsyVar [\/N(:YGMM - ’Yo)} = [D/(’Yo)sfl(’Yo)D(’Yo)]i )

which can be consistently estimated as
7 A 1 N/ 2 Sd—1/2 A WP -1
Var (Yeum) = N [D (Yanar)S (’YGMM)(’VGMM)D(’VGMM)} )

where

-1 Z am ylv ’YGMM)

f)(7 GMM

Y

and

A~

N
SGieum) =N Z m(y;, V)™ (Vi Yarrm)-
i—1

The initial estimate of v, say 4;5; can be obtained, for example, by imposing equal

weights on the K moment conditions, namely
YN = arg mvin My (7 )My (7)] -

This initial estimate can then be used to compute

N N -1
A (s N Oy - . e A
An(ing) = [N 1ZTINI)] [N 1Zm(yia’>’m1>m (yia’YINJ)] ;
i=1

=1

with 4qp0, computed as

Yomm = arg mvin [Mﬁv(V)AEV(%NI)AN(%NQMN(V)] )

An iterated GMM estimator, where in computation of A (9;x7), ¥7n7 is replaced by Yasars
and a new GM M estimator is computed using A N(Yaur), and so on.

The following theorem illustrates the issues involved in proving the asymptotic properties
of the GMM estimator when only a single instrument, namely v; o, is used. The general
case where additional instruments are considered can be established along similar lines.
Theorem 1. Suppose y;; = 1(¢; + poyir—1 +uy > 0) fori =1,...,N,t =1,...,T and the

following conditions hold
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(A1) Pr(c;+py > 0) =1, Pr(¢; > 0) =1, and Pr(¢; <oo) >0fori=1,..., V.

(A2) {uy :i=1,...,N,t =1,...,T} is an independent array of random variables. wu;; is
uniformly distributed on [0, 1], while for ¢t > 1, —uy is geometrically distributed with mean
1. {u;} is independent of {¢;}.

(A3) gy =1 (uﬂ < ﬁ) fori=1,.... N.

(A4) For all p € R, a compact subset of R containing p, in its interior, N " 3"~ e, (p)yir—2 —
Eew(p)yir—2]-

(A5) For and all p € R, N"' o8 ei(p)yie—2 —p E [en(p)yin_a).

(A6) N=V2 320, ein(po)yie—2 —a N(0,V), where V = limy oo N™' 3201, E[ef(pg)yi2] > 0.
Then N~Y2(Bans — Po) —a N (O, m>, where Py 18 the GMM estimator using
Yit_o @S an instrument.

Assumption (A1) allows us to circumvent the positivity constraint on geometrically dis-
tributed random variables. Without it, Pr(y;: = 1|¢i, yir—1) = 1 —exp(— max{0, ¢; + p,yir—1}),
which greatly complicates the analysis. Assumption (A2) makes a distinction between the
initial shocks and the shocks that occur for ¢ > 1; together with (A3), it allows y;; to be
stationary, conditional on ¢;. Assumptions (A4) — (A6) are high-level asymptotic conditions
that hold under a variety of weak—dependence assumptions on the fixed effects. They hold

when ¢; are cross-sectionally independent but they may also allow for weak cross-sectional

dependence, including spatial dependence, so long as the dependence is not too strong.’

The variance of pgyay = — In(1 —Haprs) can now be obtained using the delta method as
_ 1 2 __
Var (paym) = | 7—=—— ) Var Gamn) -
L= Yanm

6The assumptions we lay out here demonstrate the fact that while the asymptotic properties of GMM
estimators such as consistency and asymptotic normality are established under high level regularity conditions
in Hansen (1982), whether they are satistified in a specific nonlinear model could be a delicate matter that
is often technicially more involved than one would expect. It is worth noting that in the literature where
GMM estimators are proposed, the conventional approach has been to derive moment conditions of the model
and then claim the GMM estimators based on these moment conditions are consistent and asymptotically

normally distributed implicitly assuming that the required regularity conditions are satisfied.
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A test of p = 0 (or v = 0) can be carried out using (12), or by testing A\ = 0 in the

first-differenced regression (assuming a; # 1)
Ayis = MNAY; -1 + Aeyy,

using Ay; o, Ay;;_3,... as instruments.
R ’ A 9

4 The Case of 3 #0

4.1 Conditional ML Estimator

Consider the case when T' = 3. Denote the set of all observations such that y; = 0 and

Yio + yis = 1 by D and define the sets

D, = {yz‘l = 0,%2 = O,yis = 1}7

Dy = {yn =0,yi2 = 1,413 =0}.
It is now easily seen that (given the Markov property and (3))
Pr(Dei, Xi3, Xig, Xi1, Xio, Xi, -1, ) = (1 = ) [l = F(B8'%ia + ;)] F(B'%i3 + i),

Pr(Ds|ci, Xit, Xit—1, .- Xi1, Xig, Xi 1, -..) = (1 — 7Ti1)F<,3/Xz'2 +c)[l—F(p+ B'xi3 + )]

Therefore

PT(D|Cia Xi3, X2, X1, X0, Xi,—1, )
= Pr(D:l’CZa X’i37xi27 Xil, Xi07 Xiyfl, ) + PI‘(DQ‘c“ ){74-37 XZ-2’ X’il? Xi07 Xi,*l; )

= (1 — 7Ti1) [1 — F(,B/Xig + CZ)] F(,BIXB + Ci> + (1 — ’/Til)F(ﬁIXiz + Cl)[l — F(p + ﬁIXig + Cl)]

It then follows that when x;5 = x;3

1 — F(B%is + i)
]_ — F(IB/XZ‘Q + Ci) + 1 — F(p + ,6,X7;3 + Ci)
1
1+ exp(—p)’

PT(D1|D,Cz‘7 Xity Xit—15 --- X415 X450, X4, -1, ) =

17



1= F(p+ B'%3 +ci)
1—F(B%i+¢)+1—Flp+ B'%i3+ )
exp(—p)
L+ exp(—p)’

Hence p can be consistently estimated when x;5 = x;3 using the sample characterized

Pr(D2 |D7Cia Xty Xit—15 ---Xi1, X405, X4,—1, ) =

by D. If x;5 # X;3, provided that x;, — X;3 has support in a neighborhood of 0, then an
estimator similar to Honoré and Kyriazidou (2000) can be implemented by using a kernel to
give weights in the likelihood function that depend inversely on the magnitude of x;5 — X;3.

It is interesting to note that it does not seem possible to use the CMLE approach
to identify (3, although it can be identified by the CMLE in a logit model as studied
in Honoré and Kyriazidou (2000). A key difference to our specification is that ours has
Pr(yis = 1)ci, Yir—1,%it) = 1 — exp(—pyir—1 — B'Xit — ¢;). ¢; cannot be cancelled out from the
numerator and the denominator from the terms involving 1 — exp(—py;;—1 — B'x; — ¢;). This
means that we have to make x; = x;_1;. As a result, when we try to use the conditional
likelihood approach to eliminate c;, 3'x;; are also cancelled out from the numerator and the
denominator. In contrast Honoré and Kyriazidou (2000) use a logistic specification, which
does not have the problem we encounter with the term like 1 —exp(—py;;—1 — 8% — ¢;). For

estimation of 3 we therefore turn to the GMM procedure.

4.2 GMM Estimation

In the general case where 8 # 0, the dynamic non-linear autoregressive model, (7), associated

to the binary choice model generalizes to
yir = F(B'xu + ¢;) + [F(B'%i + ¢ + p) — F(B'%i + ¢;)] Yit—1 t+ Eit,

and we continue to have F (;|Yit—1,Yit—2,.-; Xit, Xit—1,...) = 0. In the exponential case

under consideration, the non-linear AR(1) formulation can be written as
Yy — 1= eXp<_IB/Xit —¢) + eXP(—B/Xit —¢;)(1 — exp(—p))Yie1 + Eit,
or setting v =1 — exp(—p)
exp(B'xit) (yie — 1) = —(exp(—c;))(1 = yie—1) + exp(Bxit )i

18



Since 1 — yy;4—1 cannot be zero if |y| < 1, we have

eXP(BIXit) (1- yit)
(1 - ’Yyi,t—l)

€Xp (ﬁlxit)€ it
(1 - 'Y?Jz’,t—l)

= expl—c) -
Now first differencing to eliminate ¢; yields

exp(B'%i) (1 —yir)  exp(B%ip-1) (1 —wir1)  exp(BXi)en  exp(B'Xir-1)eir

(1 = YYie-1) (1 = YYit—2) (1= YYii-1) (1 —vYi—2)
which after some algebra simplifies to

1 — vy
e = ewa/AXit) (%) Eit — Eit—1 (16)
— VYii—

I —it—2 /
— 1 — Yit— — 1 — Yy _ A it ) -
( Yit 1) ( yt) (1 _ ’Vyi,t1> eXp(IB X t)

Again, y;; 2 Yit—3.... and the constant can be used as instruments.” If x;; is exogenous, then
the regressors x; 1,X; 2, ..., X; 7 can also be used as instruments. It is also easily seen that e;
given above reduces to (12) if we set 3 = 0, as to be expected.®

In empirical applications of the GMM approach the choice of instruments can play an
important role on the small sample properties of the estimators. The problem becomes
particularly serious in panel data models where the number of instruments can rise quite
rapidly with 7. The pitfalls in using too many instruments in the case of linear dynamic
panel data models is investigated in Roodman (2009). In the case of non-linear specifications,
the use of additional instruments that involve powers of y; ;_, for s > 2, or powers of lagged
exogenous variables, such as y;_o¥i—3, Xii—s ® X;4—s, and y; ;—9X; s, can also be justified
which could lead to even a larger set of instruments to be used in GMM estimation. A number
of procedures have been proposed to deal with this problem. Carrasco (2012) proposes using
regularization techniques to invert the covariance matrix of the instruments. Mehrhoff (2009)

proposes factorizing the instrument set whereby the full set of instruments is replaced by a

"The same caveat as mentioned earlier continues to hold. E(e;) = 0 for (v, 3) = (0,0) and for (v, 3) =
(705 Bp)- Therefore, the constant should never be used as an instrument unless accompanied by at least one

lagged variable.
8 Also Remark 2 on the link between the moment conditions in (13) when 8 = 0 and Wooldridge (1997)

applies to the case when 3 # 0 here.
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few principal components of the instrument set. Both approaches rely on related choice
parameters such as the extent of regularization/shrinkage in the case of Carrasco’s approach
and the number of principle components to be used as instruments. The application of
these basically linear techniques to the non-linear specification that we consider could also
be problematic as they need not be optimal in non-linear settings. In view of these difficulties
we do not recommend the use of GMM approach developed in this paper for applications
where T' is relatively large, say more than 6. In case of non-linear panels with moderate T’
samples the ML approach combined with bias correction (as proposed by Carro, 2007) might

be more appropriate.

Remark 2 [t is clear from the analysis above that GMM estimation can also be applied to

the model with additional lags,

Pr(yis = 1lci, Yir—1, Yit—2, - - Xit) = F(ci+ prlfie—1 + -+ ppYis—p + B'x,),

with F' exponential as before. Considering the way the moment conditions are obtained, it is
also clear that we may also allow for time variation in p. Finally, missing observations (so
long as they are missing at random) pose no particular problem for our estimation method.
One simply obtains each average Nj’1 > mi(yi, v, B) separately, where Nj is the number of

observations for which the data necessary for calculating m;(y;,~, 3) is available.

4.3 Discussion on Robustness of the Exponential Specification

As discussed in Section 1, various specifications of dynamic binary choice panel data models
have been used in the literature depending on their convenience or/and whether they enable
the researcher to resolve the incidental parameter problem. In the same vein, we propose
to use the exponential specification and construct GMM estimators that are consistent and
asymptotically normally distributed. As for any specification in the parametric approach, a
natural question is how robust it is with regard to misspecification. The results given below
show that for a distribution F(-) in (2), under certain conditions, there is an exponential

distribution that gives the same probabilities for Pr(y; = 1|y; -1, ¢i, X ).
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Proposition 1. Suppose that the true model is given by (2) with a distribution F(-) which
satisfies | log[(1 — F(8'X; +¢;))/(1— F(p+ B'%; + ¢;)]| < 1. Suppose also that an exponential

distribution is specified so that
Pr(yit =1 |yi,t—1a Cies Xi; Me) =1- GXP(—Peyi,t—l - 6lexit - Ci,e)-

Then we can find the values of ¢;. and p, such that Pr(y; = 1|y;—1, Cie, Xi; M. ) = Pr(yy =
Lyiz—1, ¢, %) = Fpyip—1 + B% + ;).

The condition |log[(1— F(8'X;+¢))/(1— F(p+8'X;+¢;)]| < 1is used to ensure that the
resulting p, is between —1 and 1. Note that this condition can be written alternatively as
e <Pr(yu =0lyis—1=0,¢,%;)/Pr(yix = 0lyis—1 = 1,¢;,X;) < e, meaning that the slope
of F'(-) cannot be too steep. It is worth noting that this condition is satisfied by the logistic
distribution. Therefore, for any logistic distribution, there exists an exponential distribution

that matches the logistic distribution at X;.

5 Simulation Studies

In order to investigate the performance of the GMM and CMLE estimators we conduct a
series of Monte Carlo studies, which we summarize here. We have endeavored where possible

to match the Monte Carlo design employed by Honoré and Kyriazidou (2000).°

5.1 The GMM Estimator

To study the GMM estimator, we generate data from the exponential dynamic binary choice
model, with p = 0.5, and include a single exogenous regressor in the model. We draw
¢; ~ |N(0,0?)| and z;; ~ |N(0,1)|, independently. We then set o, = 3 so that the fixed
effects and exogenous regressors each contribute an equal amount of variation. The two
parameters are solved numerically for a proportion of 1s in the population of T = 50%, this

gives us o, = [ = 0.318815. The distribution of y;; is set to the stationary distribution

9The full set of Monte Carlo results is available from the authors on request.
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conditional on the fixed effect and x;;. We generate data sets of sizes T = 3,4,6,8 and
N = 250, 500, 1000, 2500, 5000, 10000 and look at the mean, variance, bias, RMSE, of the
estimates for p and 3 in 2000 replications for each experiment. The estimates are obtained

using the moment conditions

E(@it)zo, t:3,...,T,
E(£iseit):07 t:?),...,T, 821,...,T,
E(yisex) = 0, t=3,...,T, s=1,...,t—2,

and using an estimate for the optimal choice of GMM weight matrix. There are a total of
2(3T + 1)(T — 2) moment conditions. We also consider the size of the tests Hy : p = 0 and
power for H, : p = 0.6 and H, : p = 0.4 as well as the size of the tests Hy : § = 0 and power
for H, : § = 0.418815 and Hy, : = 0.218815, all at 5% significance. Henceforth, this setting
will be referred to as the benchmark specification.

We find that the percentage of s falling outside the admissible range can be substantial
for small N. For N = 250 and T = 3, 12.3% of all estimates are inadmissible; with 7" = 8,
the percentage rises to 18.2%. However, the likelihood of obtaining an inadmissible estimate
decreases sharply with N, even though it increases with 7. For N > 500 the likelihood of an
inadmissible ~ is below 5% and for for N > 1000 it is at most 1%.

Tables 1 and 2 give results for variance, bias, and RMSE in the benchmark simulations.
Variance, bias, and RMSE improve with larger N. RMSE and variance improve with in-

creased T'. However, the bias of the GMM estimator of p increases with 7.
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Table 1. Benchmark Small Samples Results for Variance, Bias, and RMSE of pgp,p,-*

T\N 250 500 1000 2500 5000 10000
3 Variance 0.0571  0.0326 0.0166  0.0065 0.0031  0.0016
Bias 0.0032 -0.0014 0.0027  0.0009 -0.0007 0.0004

RMSE 0.2239 0.1767 0.1282 0.0806 0.0556  0.0394
4 Variance 0.0240 0.0123  0.0066  0.0025 0.0012  0.0006
Bias -0.0446 -0.0253 -0.0104 -0.0041 -0.0020 -0.0011
RMSE 0.1514 0.1110 0.0815 0.0503 0.0349 0.0248

6 Variance 0.0105 0.0060 0.0026  0.0010  0.0005  0.0003
Bias -0.0889 -0.0442 -0.0209 -0.0057 -0.0026 -0.0011
RMSE 0.1252  0.0879 0.0554 0.0328 0.0226  0.0159
8 Variance 0.0075  0.0042  0.0018 0.0006  0.0003  0.0002
Bias -0.1557 -0.0774 -0.0309 -0.0081 -0.0032 -0.0014

RMSE  0.1613 0.0992 0.0528 0.0267 0.0181  0.0128
*p=0.5,8=0.32, 4 =|N(0,1)], c; ~ |N(0,0.322)].
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Table 2. Benchmark Small Samples Results for Variance, Bias, and RMSE of BG MM
T\N 250 500 1000 2500 5000 10000

3 Variance 0.0192  0.0078  0.0035 0.0015 0.0007 0.0004
Bias 0.0100 0.0073 0.0024 0.0012 0.0006 0.0007
RMSE 0.1300 0.0869 0.0591 0.0384 0.0274 0.0195

4 Variance 0.0101  0.0039  0.0019 0.0008 0.0004 0.0002
Bias 0.0024 0.0016 -0.0012 0.0006 0.0000 0.0003
RMSE 0.0942  0.0609 0.0430 0.0277 0.0198 0.0137

6 Variance 0.0047 0.0021  0.0010 0.0004 0.0002 0.0001
Bias -0.0172 -0.0040 -0.0002 0.0006 0.0003 0.0005
RMSE 0.0653 0.0448 0.0323 0.0206 0.0140 0.0099

8 Variance 0.0035 0.0016 0.0008 0.0003 0.0001 0.0001
Bias -0.0323 -0.0128 -0.0008 0.0005 0.0003 0.0001

RMSE  0.0607 0.0406 0.0279 0.0175 0.0122 0.0085
*p=0.5,8=0.32, x4 =|N(0,1)], c; ~ |N(0,0.322)].

Tables 3 and 4 give the results for size and power. For T' = 3 and 4, size is satisfactory
even for a relatively small N. However, there are large size distortions for 7' = 6 and 8, most
likely owing to the rapidly (quadratically) growing number of instruments. For these cases,
one needs large N to reduce the percentage of over-rejection. Notably, size for the 3 tests
improves more rapidly than the size for the p tests with increased N. We need N > 2500 to
bring down the size to below 10% for p and N > 1000 for 3.
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Table 3. Benchmark Small Samples Results for Size and Power of Tests Based on pgar-*
T\N 250 200 1000 2500 5000 10000
3 Size H 0.0536 0.0636 0.0627 0.0600 0.0515 0.0545
Power H); 0.1157 0.1382 0.1728 0.2811 0.4595 0.7115
Power Hg 0.0433 0.0683 0.1102 0.2331 0.4255 0.7380
4 Size Hy 0.0817 0.0728 0.0697 0.0540 0.0545 0.0505
Power H, 0.2240 0.2619 0.3180 0.5560 0.8315 0.9780
Power H, 0.0618 0.0781 0.1976 0.5045 0.8205 0.9875

6 Size Hy 0.2478 0.1508 0.0901 0.0625 0.0560 0.0530
Power H, 0.5937 0.5780 0.6855 0.9045 0.9955 1.0000
Power H, 0.0986 0.1549 0.3540 0.8525 0.9935 1.0000
8 Size Hy 0.7072 0.3977 0.1816 0.0750 0.0530 0.0605
Power H, 0.9309 0.8785 0.9020 0.9875 1.0000 1.0000
Power H, 0.3026 0.1433 0.4667 0.9630 1.0000 1.0000

*p=0.5,8=0.32, 24 =|N(0,1)], c; ~|N(0,0.322)|.
*Ho:p=05.TH,:p=06.% Hy:p=04 (5% level).
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Table 4. Benchmark Small Samples Results for Size and Power of Tests Based on BG MM
T\N 250 500 1000 2500 5000 10000
3 Size Hj 0.0604 0.0511 0.0541 0.0490 0.0610 0.0540
Power H,I 0.1608 0.2457 0.4184 0.7274 0.9430 0.9990
Power H;F 0.1140 0.2102 0.4149 0.7654 0.9705 0.9995
4 Size Hy 0.0800 0.0660 0.0522 0.0545 0.0505 0.0445
Power H, 0.2564 0.4081 0.6670 0.9400 0.9990 1.0000
Power Hp 0.1940 0.4023 0.6354 0.9675 1.0000 1.0000

6 Size Hy 0.1450 0.0875 0.0641 0.0620 0.0450 0.0485
Power H, 0.5737 0.7185 0.8848 0.9975 1.0000 1.0000
Power H, 0.3658 0.6500 0.9049 0.9990 1.0000 1.0000

8 Size Hy ~ 0.2732  0.1376  0.0950 0.0660 0.0565 0.0590
Power H, 0.8258 0.8842 0.9630 1.0000 1.0000 1.0000
Power H, 0.4664 0.7399 0.9750 1.0000 1.0000 1.0000

*p=05,8=0.32 2y = |N(0,1)], ¢; ~ |N(0,0.32%)|.

*Hyp:f3=0.3188. T H,: 5 =0.4188.  Hy: 5 =0.2188 (5% level).

We next modify the benchmark DGP of y;;, x; and ¢; in various ways and look at the
behavior of our estimators. A selection of the results of these alternative specifications is
given in Table 5 for T'= 3 and N = 500.

First, we look at the effect of changing the variance of the fixed effects. We increase o,
so that 7 = 0.75 and then further so that 7 = 0.95. As to be expected, increasing o, causes
a deterioration of the estimates, increasing the percentage of s falling out of bounds, along
with variance, bias, and RMSE, a rise in size and decrease in power. However, the empirical
size is still generally close to the nominal size for N > 5000.

Next, we vary p and 3 individually in the benchmark simulation, choosing p = pP™ + 0.4
and § = "™ + 0.2. These variations impart little change to the results of the benchmark.
The higher value of p causes a fall in the percentage of v falling out of bounds.

Next, we modify the benchmark to allow the fixed effect to be correlated with the exoge-

: _ 7bm bm zbm __ 1 T bm bm :
nous variables. We set ¢; = b, r(wZ;™ + (1 — w)¢;™), where 7™ = 7>, 2;™ and ™ is
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the benchmark fixed effect, for w = 0.25,0.50,0.75. b, r is chosen so that 7 is equal to the
benchmark value. This has little or no effect on the results.

We also consider the effect of cross-sectional heterogeneity in x;; by modifying the bench-
mark exogenous process to, z; = h(u; + oi|ei|), where p; ~ U(0,1), 0? ~ X3, and g ~
N(0,1). We set h = 0.52444 to match the value of 7 in the benchmark model. We find
that the results for the estimates of p are not much affected by the heterogeneity in the z;;
processes. The results for 3, on the other hand, have higher variance, bias, and RMSE than
the results obtained under the benchmark model. The same also applies to size and power
where under heterogeneity we observe a deterioration in size and power as compared to the
benchmark case.

We then consider the effect of autocorrelation in the exogenous variables on the results. In
this case we modify the benchmark exogenous process to z; = |0.1¢;,+dr+0.2t|, where (; is a
Gaussian AR(1) with autoregressive coefficient 0.5, variance 1, and independently distributed
across ¢. ¢; are generated as in the benchmark case. The parameters are calibrated by
simulation to produce an expected proportion of 1’s of 7°™ in populations of size N = 10000.
We find that autocrrelation in the covariates has no significant effect on the results for p.
However, the variance, bias, and RMSE of B are all higher than in the benchmark. Size
also deteriorates with autocorrelation, with power being significantly lower than under the

benchmark case.

27



(19401 %)
z0—" =¢: 9y 1+ ¢0+ Og =¢:°H 11 “uoryeoymads remotired o) Jo JH OYI UL Pash g JO dn[eA oY) ST Og oxoym ‘O0g = ¢ : Ofr
w T0-00=0d:9 4 T0+0% =0 :7g | uorpeoymads remorred oy Jo JO( oYY ut pasn d jo onfea oy st 9 axoym 0 = d : 0y

B pajyeprIodone (g1) ‘Hx snousdoroay (17) ‘L0 = ™

(01) ‘060 = ™ (6) ‘gz°0 = ™ (8) ‘d moy (1) *d ySiy (9) ‘g moy (g) ‘g ySwy (y) “o0 ySyy (g) “o swmipsw (g) “yrewnpuaq (1)

gge0’0  9¥er’0  €I1¢0  O0ITe’0  €91¢0  €€6¢’0 VOLTO 928¢°0 TIPT'O  ¥¢90°0 000T°0  COIZ0 Hmm Tomod
G890°0 ¢L9T°0 ¥SI¢0 1910 661¢0 L68C'O0 66GT°0 L9L£0 ¥6ST°0  €S0T°0 92¢1°0 L9920 ([ H 1omod
0670°0  9690°0 8090°0 T.L¥0°'0 ¢9¥0°'0 88%Y0°'0 GLG0°0 PE€G0°0 69900 ¥LL0°0 ¥¢S00  TIS0°0 woH 971§
60T€°0 8LET'0 ¢c60'0 81600 60600 66500 SITT'0 €¢90°0 €LIT'0 0£€96'Cc  8¢ET'0  6980°0 HSINY
ITI0'0  O0€T0'0  ¥600°0 2.00°0 ¥800°0 8800°0 ¥ITO'0 6¢000 99100 L6¢1°'0  9TT00  €L00°0 serq
G960°0  9610°0 9800°0 98000  ¥800°0 €S00°0 G¢I0°0 O0¥00°0 T¥PIO0 €98T°€T  90c0°0  8L00°0 OOUBLIBA
synsey ¢

GGv0°0 62900 80L0°0 18900 ¢I90°0 9¢¥P1°0 TIL0°0 ¢c90°0 TO90°0 98¢0°0 ¢Ie00  €890°0 Mm Tomod
GeeT’0  09€T°0  LLCT°0 €IPT'0  8OPI'O  €€90°0 OFVITO0 09ST°0 90€T'0  6¢L0°0 ¥cOT'0  E8ET0 VH 1omod
0890°0  TLG0°0 06S0°0 8€S0°'0 ¢I90°'0 687100 9%L0°0 LT190°0 TO90°0  ¥#ES0°0  0090°0  9€90°0 2H ozig
LLLT°0 869T°0  6VLT0 9PLT'0  GGLT'0 €L80°0 TILZ'0 9LG1T°0 T190c°0 ¢€90¢0 0Svc0  L9LT°0 HSINY
6€10°0- 0L00°0- ¥¢00°0 LT00°0- ¢€I00°0- ¥9€0°0 00000 €¥00°0- 9¢00°0- 05000 <L000- ¥I000- selq
¥1€0°0 66600 ¥IEO'0 <CIE00  9T€0°0 86000 T¥L0°0 LS00  OFPPO'0  LESE'0  90L0°0  92€0°0 OOUBLIBA
€€°09 L9'6Y 696V VL6V 6.6V  80°0F 8969  €6'8€ 6L°LG 8E76 vyl C8'67 ST JO % oFeIony
0 L€ g'c Gec LC RS g8'0 g€ €V g'ee g1 Iy I < skjoy
synsoy d

(¢1) (T1) (01) (6) (8) (2) (9) (¢) (¥) (€) (¢) (1) quorengadg

(00g = N pue ¢ = ) suorjeoyoadg oATJRUID)[Y IopU() uorewnsy NN 10J sjmsoy ojdureg [rewg jo ojdureg ¢ o[qey,

28



5.2 GMM versus CMLE

In this subsection we report comparative results for GMM and CMLE estimation methods
for p with B8 = 0. Recall that CMLE method is not applicable if 3 # 0. GMM estimation

uses the following moment conditions,

E(eit):(), t:3,...,T,

E(yisei) =0, t=3,...,T, s=1,...,t—2.

The CMLE procedure is described in 3.3.

The results for bias and RMSE are summarized in Tables 6 and 7, and for size and power
in Tables 8 and 9. In terms of RMSE, GMM outperforms CMLE for all values of 7" under
consideration (7" = 3,4, 6,8), although for 7" = 6 and 8 GMM shows a higher degree of bias
than CMLE. In terms of size, CMLE does better than GMM, and matches the nominal size
for all values of T, whilst GMM tends to over-reject when 7" > 6. But generally GMM

outperforms CMLE in terms of power when the sizes are comparable.

Table 6. Small Samples Results for CMLE Estimates of p when 3 = 0.*

T\N 250 500 1000 2500 5000 10000

3 Variance 0.1000 0.0484 0.0237 0.0093 0.0044 0.0024
Bias 0.0300 0.0150 0.0107 0.0031  0.0025 0.0006
RMSE 0.3176  0.2205 0.1543 0.0966 0.0666 0.0487

4 Variance 0.0477  0.0230 0.0116  0.0050  0.0022  0.0011
Bias 0.0078  0.0034 0.0052 0.0017 -0.0009 -0.0008

RMSE 0.2186 0.1518 0.1077 0.0706 0.0474 0.0336

6 Variance 0.0300 0.0130 0.0064 0.0026  0.0013  0.0006
Bias -0.0100 -0.0031 -0.0039 -0.0007 0.0003 -0.0005
RMSE 0.1600 0.1141 0.0804 0.0512 0.0357 0.0255

8 Variance 0.0203  0.0105 0.0055 0.0020 0.0010  0.0005
Bias -0.0019  0.0009 -0.0008 -0.0004 -0.0006 0.0001
RMSE  0.1427 0.1026 0.0745 0.0447  0.0318  0.0230

*p=0.58=0,c¢ ~|N(0,0.32%)].

29



Table 7. Small Samples Results for GMM Estimates of p when 3 = 0.*

T\N 250 500 1000 2500 5000 10000
3 Variance 0.0640 0.0325 0.0170  0.0069 0.0032  0.0017
Bias 0.0301 0.0130 0.0055 0.0005 0.0001 0.0007

RMSE 0.2427  0.1774 0.1301 0.0828 0.0567 0.0412

4 Variance 0.0264 0.0135 0.0067 0.0027 0.0012  0.0006
Bias -0.0121 -0.0045 -0.0022 -0.0015 -0.0017 -0.0001
RMSE 0.1599 0.1161 0.0818 0.0522 0.0353 0.0249

6 Variance 0.0115 0.00564 0.0026  0.0010 0.0005 0.0002
Bias -0.0288 -0.0121 -0.0057 -0.0014 -0.0005 -0.0006

RMSE  0.1105 0.0747 0.0515 0.0318 0.0217 0.0156
8 Variance 0.0080  0.0036  0.0015 0.0006  0.0003  0.0002

Bias -0.0514 -0.0174 -0.0052 -0.0018 -0.0005 0.0000

RMSE  0.1030 0.0622 0.0394 0.0249 0.0177 0.0127
*p=05,8=0,c ~|N(0,0.32%).
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Table 8. Small Sample Size and Power Results for CMLE Estimation of p when 3 = 0.*
T\N 250 500 1000 2500 5000 10000
3 Size Hy 0.0445 0.0440 0.0520 0.0410 0.0430 0.0540
Power H(I 0.0640 0.0730 0.0915 0.1750 0.2895 0.5475
Power Hg 0.0455 0.0600 0.0900 0.1715 0.3100 0.5320

4 Size Hy 0.0525 0.0510 0.0560 0.0600 0.0540 0.0510
Power H, 0.0800 0.0970 0.1490 0.3155 0.5650 0.8450
Power H, 0.0625 0.0900 0.1545 0.3265 0.5365 0.8430

6 Size Hy  0.0500 0.0475 0.0500 0.0525 0.0475 0.0535
Power H, 0.1000 0.1530 0.2640 0.4995 0.7935 0.9765
Power H, 0.0900 0.1415 0.2230 0.4990 0.7990 0.9725

8 Size Hy  0.0455 0.0520 0.0615 0.0485 0.0445 0.0540
Power H, 0.1090 0.1600 0.3000 0.6010 0.8710 0.9920
Power H, 0.1050 0.1790 0.2890 0.6025 0.8810 0.9905

*p=05,8=0,c ~|N(0,0.32%).

*Ho:p=05.TH,:p=06.% Hy:p=04 (5% level).
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Table 9. Small Sample Size and Power Results for GMM Estimation of p when 8 = 0.*
T\N 250 500 1000 2500 5000 10000

3 Size Hj 0.0496 0.0509 0.0533 0.0510 0.0485 0.0515
Power H, 0.0926 0.1081 0.1523 0.2646 0.4405 0.6915
Power Hlf 0.0380 0.0566 0.1016 0.2216 0.3895 0.7025

4 Size Hy 0.0712 0.0607 0.0595 0.0650 0.0545 0.0480
Power H, 0.1761 0.2007 0.2890 0.5305 0.8090 0.9755
Power H, 0.0577 0.1069 0.2150 0.4840 0.8130 0.9815

6 Size Hy 0.1097 0.0795 0.0690 0.0545 0.0425 0.0420
Power H, 0.3179 0.3865 0.5750 0.8795 0.9930 1.0000
Power H, 0.1268 0.2310 0.4640 0.8840 0.9960 1.0000

8 Size Hy ~ 0.1989 0.1055 0.0615 0.0490 0.0580 0.0540
Power H, 0.5746 0.5915 0.7735 0.9785 1.0000 1.0000
Power H, 0.1643 0.3490 0.7035 0.9840 1.0000 1.0000

*p=05,8=0,c ~|N(0,0.32%)].

*Ho:p=05."H,:p=06.% Hy:p=04 (5% level).

5.3 Reducing the Number of Instruments

In order to address the issue of the large number of instruments, we fix the DGP to the
benchmark specification and limit the number of instruments following five different proce-
dures. (1) The first (benchmark) procedure uses all available linear instruments as detailed
in subsection 5.1. Procedure (2) restricts the set of instruments, following the method pro-
posed by Mehrhoff (2009), by utilizing only the few largest principal components (PC) of the
instruments in estimation. The number of principal components is selected so that at least
95% of the total variation of the instruments under consideration is explained by the PC’s.!?

Procedure (3) reduces the number of instruments to two lags of y; and x;, as well as the

10We also tried setting the threshold at 90%. This gets rid of too much information when T is small and

does not help much for large T so it does not substantively change the main results of our experiments.
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constant. That is, it utilizes the following 57" — 11 moment conditions,
E(eqx) =0, E(xyey) =0, E(x;i1e4) =0, for t =3,4,..,T;
E(yir—oeq) =0, for t =3,4,...,T;
E(yir—seq) =0, for t =4,5,...,T.

Procedure (4) applies Mehrhoff’s method to the reduced set of instruments under (3). Finally,
procedure (5) reduces the number of instruments further by using two lags of y;, and only
one lag of x;;, as well as the constant, bringing the total number of instruments to 47 — 9.
Tables 10 and 11 report the results for 7' = 4,6,8 and N = 250, 500, 2500, as these were
the sample sizes for which the GMM estimator performed worse. Reducing the number of
instruments typically improves bias and size at a small cost to variance and RMSE. The
benefit of the reduction in the number of instruments is most pronounced for 7' = 6, 8, where
bias and size are significantly improved. In terms of variance, procedure (1) is optimal.
Procedures (4) and (5) have the lowest bias. Procedure (2) is best for the RMSE of J.
For the RMSE of p, there is no clear winner among the alternative instrument selection
procedures, although procedure (5) performs best in terms of RMSE for 7" = 8. Procedures
(4) and (5) have the best size properties. We conclude that the GMM estimator performs
well for large T" when the number of instruments is reduced by one of the methods employed

here.

5.4 Average Partial Effects

To provide additional support for our choice of the exponential specification, here we present
evidence of its ability to reproduce the average partial effects of a dynamic logistic model.

Suppose the DGP is given by the logistic specification

eplyqz,t—1+ﬁzrit+0u

Pr(yy = 1|Yii—1,Cit, Tip ) =
(th |yz’t 1, &by Zt) 1 + erit—1+Bizictea’

Then the marginal effect for continuous z;; is

OP[yir = 1|Yis—1, Cit, Tit] Blep’yi’t_l+ﬁlz“+8“

Oz (1 + eplyi,t71+ﬁlxit+cil)2.
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On the other hand, the marginal effect of y;,_; is given as

516P1+51Iit+0u /jleb’zxit+6u

P[yit =1 |yi’t71 - 1’ Cil xit}_P[yit =1 ’yi’til - 0’ it -Tit] - (1 + €Pl+ﬁl$it+c¢z)2 B (1 + eﬁz:m-i—cu)?'

For a particular z;;, say the average ©* = ﬁ Zi,t X, Wwe may be interested in the average mar-
ginal effect over the entire population (i.e. averaging over the fixed effects). These quantities

may be calculated as,

N

APEX (yip1 =1, zp =) = 66;£+pl51 lim 1 Z ol -
W N & (1 o)
. 1 & e
APEX (yis 1 =0, 24 =7) = €73, Nhfio 1 ; m,

N
~ 1 etil
(=) = A1) lim >
APEY (zy =7) = e (" —1) lim - {(1 T+ ecatBiz) (1 + ecutothir) |

where the averages over ¢ are obtained by drawing from the distribution of ¢;. That is, the
average partial effects are obtained by stochastic integration over c¢;.

Now suppose that data from this logistic DGP are used to estimate p, and 3, using the
GMM procedure we have outlined above (i.e. based on the exponential specification). The
question is, how well do these estimates reproduce the (true) average partial effects given
above for the logistic specification? To answer this question, we must first specify how the
fixed effects of the exponential specification are to be computed. We do this by deriving fixed
effects under exponential specification, c¢;., in terms of the fixed effects of the true logistic
specification, ¢;;, by matching the transitions from 0 to 1 given x; = Z; = %Zt Ti; acCross

the two specificiations, namely!!

| _ e B ecatBiXi
—e e eXi — -
1 4 ecatBi%i’
which yields
BeXi
e Cie = e
1 4+ ecutBiXi

Tt is also possible to match the transitions from 1 to 1 given z;; = Z;. This gives slightly different
exponential fixed effects. But it does not change the general conclusion of this section. The results that

condition on Z; are available from the authors on request.
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We may then estimate the average partial effects as

- ) b Bt
APEX (yi,tfl - 17 ‘Iit = :L.) ﬁ € © ]\}1_{1;0 N Z 1 _|_ eczl+ﬂlx7
APEX O ~ 7’3653 1 1 @/3 T;
(yzt 1= Tit = 'T) 6 e N1—>oo N Z 1 + ecutBiZi
. 1 & eBedi
_ —,Bei _ _ﬁe 1 J— _—
APEY( — ) =€ (1 € )]\}E{l)o N Zl 1 + ecil"rﬁlji '

The benchmark APE results are computed under the logistics model employed by Honoré
and Kyriazidou (2000), where p, = 0.5, 3, = 1, z;y ~ N(0,72/3), and ¢;; ~ N(0,1). To avoid
any complications with initial conditions, the data are burned in for the first 100 periods in
each replication, while being careful to keep z;; fixed across replications. The simulations are
based on N = 1000, 7" = 3, and each experiment is repeated 2000 times to obtain the mean,
variance, bias, and RMSE of the APEs. We vary the DGP and the data sets in a variety of
ways (see Table 12).

The results indicate that the average partial effects obtained using the exponential spec-
ification, with matched fixed effects as explained above, are close to the true average partial
effects. In particular, the APEY is typically quite close to APEY . This provides further
evidence of the robustness of the exponential specification in that it yields sensible estimates

for the average partial effects even when the exponential distribution is misspecified.

6 Conclusion

In this paper we consider identification and estimation of dynamic binary response panel data
models. We develop an exponential class of models and derive CML and GMM estimators
that enable us to eliminate the unobserved heterogeneity and at the same time to identify the
model parameters. The resulting estimators we propose are consistent and root-N asymp-
totically normal. As a result, our approach is simple, general, and offers several advantages
over the existing estimators that will be particularly appealing for analyzing microeconomic

panel data from a dynamic perspective.
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As is well known, it is important to use a dynamic binary choice specification to model
the state dependence in a panel setting because of the model’s ability to distinguish the state
dependence from the unobserved heterogeneity among other useful features. The dynamic
binary choice models, however, have been rarely used in analyzing microeconomic data,
mainly due to the problems associated with the initial condition in combination with the
incidental parameter problems. Our approach based on the exponential specification resolves
the incidental parameter problem and the resulting estimators can be readily implemented,
and also have good asymptotic properties.

Both the GMM and the CML estimators performs well under a variety of scenarios.
Our results show that the estimators are robust to changes in the variance of the fixed
effects, different values of p and 3, correlation between the fixed effects and the regressors,
heterogeneity in the regressors across the different units, and autocorrelation in the regressors.
In each of the experiments, we considered bias, variance, RMSE, size, and power of the GMM
estimators. GMM worked quite well for relatively small sample sizes. We also tested the
CMLE and compared its performance to the GMM estimator. Interestingly, GMM emerges
as a better estimator than CMLE for small values of 7' (when 8 = 0 and both estimators can
be computed). In the case of large T' we experimented with the moment reduction techniques
of Mehrhoff (2009) finding significant improvements in performance in small samples. We
also presented evidence of the ability of the exponential specification to match the average

partial effects from a logistic dynamic binary choice model.

7 Appendix

7.1 Proof of the Uniqueness of the Exponential Distribution

Proposition Al: Suppose F is a differentiable cumulative distribution function. If there exist
functions G and H such that F(z +y) — F(z) = G(y)H(z) then F =1 — Cexp(—Dx) for
some positive constants C' and D.

Proof: Assume without loss of generality that sgn(G(y)) = sgn(y) and H is non—negative.
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Now take the limit as y — co. Then A = lim, .., G(y) exists and 1 — F'(z) = AH(x). Since
F is a cumulative distribution function, it is non—constant and so A # 0. In particular, the
non—negativity of G over positive real numbers implies that A > 0. This now implies that
F(zx+vy)— F(z) = A7(1 — F(2))G(y). Divide both sides by y and take the limit as y — 0.
The differentiability of F' implies that B = lim,_o G(y)/y exists and F'(z) = (1 — F(z)).
Since F' is non—decreasing and bounded by 0 and 1, the sign of B cannot be negative. Since

F is also non—constant B # 0 so we must have B > 0. The final step is to note that we have

B

arrived at a differential equation in 2 that can be solved as, F'(z) = 1—C exp(—%z) for some

constant C'. Again, since F' is a cumulative distribution function, we must have C' > 0.

7.2 GMM in the case where =0 and T'=3

In the case where T' = 3 we only have one moment condition with which to estimate v (or

p), namely

= = (yis — i) (1 — yya)
; eis(7)yin = ;yn { (1= 79m) — (yi2 —yya)| = 0. (17)
Note that e;3(y) does not depend on 7 if y;1 +y;2+v:3 = 0 or = 3. Consider now the case where
Yi1 + ¥i2 + vi3 = 2, and note further that observations where y;; = 0 and y;2 = y;3 = 1 can be
dropped since y;1€;3(y) = 0. The other remaining cases are (y;1, ¥i2,¥i3) = (1,0,0),(1,1,0),
and (1,0,1). Denote the number of cross section units associated with these patterns of
observations over time by nigg, 7110 and n191, respectively. Then the moment condition in ~

can be written as

n100YGamaa — Mo + nior = 0.

Hence, if 100 7£ 0

A _ Mi10 — N1o1
Yemma = — -
1100

An estimate for p can be obtained if 1119 < nigo + N101-
In the case where ny99 = 0, the above GMM estimator is not valid. But since E(e; |y;1—s) =

0, we also have unconditionally that E(e;;) = 0. This suggests the following sample moment
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condition

3 {(.%-3 —yyi2) (1 —yya) (v — )] = 0. 18)

i—1 (1= vyi2)

Once again we only need to consider observations where v;1 + ;2 + i3 = 1 or y;1 + Yo +vi3 = 2.

Then we have

N1007Y — No10 + Noo1 + Nio1 — Ni1o = 0, (19)

1 —

—n1007 + (100 + M110 — Moo1 — M101)7Y + Toor + 101 — M110 — Moo = 0. (20)

Preliminary analysis suggests that the solutions to (20) could be complex, and when real
could fall outside the range [0, 1), and hence might not yield sensible estimates for p. It is,
therefore, more meaningful to use the unconditional moment condition only when nigy = 0.
In this case the solution to the unconditional moment condition is unique and is given by
(obtained by setting nigo in (19) zero)

n101
Ngo1 + N1o1 — N110

Yemmz2 = 1-

Hence, in general we could estimate v by

A ni10 — Nio1 .
Yoy = ——, if nje # 0,
N100
ni1o01 .
= 1- ,1fn100:0.
Noo1 + M101 — M110

7.3 CMLE in the Case where 3 =0 and 7' =3

Suppose we have observations y;1, y;2 and y;3 on N individual units. Denote the set of all
observations such that y;1 + y;2 + ;3 = 1 by B and define the sets

A = {yin =142 =0,y;3 =0},

Ay = {ya =0,y = 1,43 =0},

As = {ya =0,y2 =0,y;3 = 1}.
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It is now easily seen that (given the Markov property and (3))

Pr(A;) = Pr(ya =1)Pr(yi2 =0y = 1) Pr(yis = 0]yia = 0)

= 7w [1—F(c;+p)][1— F(c)]
_ F(e)[1=F(ci+p)][1 = F(e)]
1—F(ci+p)+ F(c)

Similarly
F(e))[1 = Flei+p))”
A S e ) e
_ = Flei+p)] [t = Fe)] F(e)
Pr(ds) = 1—F(ci+p)+Fle;)
and
Pr(B) =Pr(A;) + Pr(As) + Pr(Aj3).
Also
Pr(A;) = Pr(A; N B) =Pr(B) Pr(A; |B),
and
P . PI"(.Ai) -
r(A; |B) = Pr(B) fori=1,2,3.
Hence
[1 - F(c)]
PrAB) S G 2 )

[1 = F(ci +p)] +2[1 = F(c;)]
Pr(As|B) = 1—Pr(A;|B) — Pr(As|B).

In the exponential case, 1 — F'(¢;) = exp(—¢;) and 1 — F(¢; + p) = exp(—c¢; — p), and

1
Pr(A; |B) = ma
Pr(4, |B) — _exi’zli(p—)ﬂi_z,

1
Pr(A;|B) = Wa
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which do not depend on the incidental parameters. It is clear that conditioning on y;1 + ;2 +
vis = 0 and y;1 + Y2 + v;3 = 3 will not help. It only remains to consider the case where the

conditioning set is y;1 + yi2 + i3 = 2. Denoting
Ci = {ya=1y2=1,y;3 =0},
Cy, = {yil =0,y0=1,y;3 = 1},
Cs = {yin=1y2=0,y;3 =1},
D = CUCUCs= {yi +vio +yiz = 2}

It is easily seen that

B F(p+c;)
PrGP) = o o)t Flo)
F(p+c)
Pr(C; |B) 2F(p+¢) + F(c;)’
Pr(Cs[B) = Hod

2F(p+ci) + Fle)
These conditional probabilities depend on ¢; even if F(-) has an exponential form. Conse-
quently, the only appropriate conditioning is v;1 + yio + ¥z = 1.

The conditional likelihood function for the exponential model is given by

i€B

- Ul

1€eB

[T (exp(=p))"=.

) Yi1+Yi2+Yi3
i€B

and

InLe(p) = = Infexp(—p)+2/—p>  uio (21)
i€eB i€B

N
= —Inlexp(—p) +2] Zf(yﬂ + Y t+yiz=1)— sziﬂ(’yﬂ + Yi2 + yiz = 1),

i=1 =1
where [(A) = 11is A is true and I(A) = 0 if A is not true. The conditional log-likelihood

function can be written more compactly as

In L(p) = np {—In[exp(—p) + 2] — p p}
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where ng = Zfil I(ya + yiz + yi3 = 1), and

b= ZzNzl Yiod (Y + vi2 + iz = 1) _ sz\il I{yin = 0,92 = 1,y;3 =0)
Zij\il I(yin + Yz +viz = 1) Zi\; I(yir + Y2 +vis = 1)

Also since

d1n L(p) :nB{ exp(—p) ﬁ}

dp 2 + exp(—p)

then the conditional maximum likelihood estimator of p is given by

2p
0= —1 . 22
5 “(1_15) (22)

The standard error for p can be obtained using the second derivative of the conditional

log-likelihood function. We have

VCLT‘(ﬁ) — i [2 + eXp<_p)]2

ng  2exp(—p)

7.4 Proof of Theorem 1

Given assumption (A3)
1—e“

Prlva =1le) = T = —emmy’

and it is evident that this choice of initial distribution makes y;; stationary conditional on c¢;.
Thus 77 = Pr(yi = 1|¢;) = Pr(yin = 1|¢;) for t > 1.

Proof. to simplify notation we utilize the following alternative form of e;

Cit = €pAy“71(yit -1+ 11—y

44



Let the objective function be f;(p) = €;1y;—2. Then we have

E(epAy“_l(yz‘t - 1)yit—2) = E(E(yz‘t - 1‘01‘; Yit—1, Yit—2, - - -)epAy“_lyit—2)

= —F(e”CiPovit- 1PAYit— Wit—2)

= E(e —(Po—P)yit—1—pYit— T 2)

= E(E( (Po=P Wit | e iy 9, Yit—s, . )e P2y )

= B e ey
= —E(e s Po=p)mpyi—2y, o g=2¢i=(po=p)=(pHro)yic—2q),

+ G_QCi_(p+pO)yit72yit—2)
= —e P E(e ) + e o E(e Fint) — e PO P E(e i),
On the other hand
E((l - yitfl)yith) = E(E(1 - ?Jz’tfﬂci, Yit—2, Yit—3, - - ')yitq)

— E( —Ci—PoYit— Q,y _2)

=e P E(e 7).
Summing up we obtain
Efi(p) = (e — e™)e M B(e™" ).

Now 0 < E(e™%%r¥) < 1 and is equal to zero if and only if ¢; is almost surely infinite, which
is ruled out by assumption (A1l). Thus Ef;(p) is continuous in p and equals zero if and only
if p = p,. This satisfies Assumption 1.1 of Harris and Métyds (1999).

The derivative is easily obtained as f/(p) = e” %1 Ayy_1(yir — 1)yir—_o, which is clearly

continuous and bounded by () in R. It follows that,

[fi(p) = filp)] < e B |p— ],

for all p,p’ € R and so f is Lipschitz. Corollary 3.1 of Newey (1991), it then follows that
N='SN . £i(p) converges uniformly to E(f;(p)). This satisfies Assumption 1.2 of Harris and
Mityds (1999) and it follows from the their Theorem 1.1 that 7 is consistent.
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The continuity of f/(p) satisfies Assumption 1.7 of Harris and Matyéds (1999). f/(p) =
ePAit=1 ( Ayiy—1) (i — 1)yir—o is bounded again by e™**(F), Tt follows again from Newey (1991)
that f/(p) itself is Lifschitz and by assumption (A5), N~! sz\il f1(p) converges uniformly to
E(f/(p)). By Theorem 4.1.5 of Amemiya (1985), N-' SN f/(5) converges to Ef!(p,). This
satisfies Assumption 1.8 of Harris and Matyds (1999).

Now let ¢ # j. By assumption (A2), fi(p) and f;(p) are independent conditional on ¢;
and c¢;. Therefore, E(fi(p)fi(p)) = E(E(fi(p)lci,¢;)E(fj(p)|ci,cj)). Assumption (A2) again
implies that f;(p) is, conditional on ¢;, independent of ¢;. Thus E(f;(p)|ci,c;) = E(fi(p)|ci).
It follows that E(fi(p)f;(p)) = E(E((0Ie) E(0ley). Since E(filpy)|cs) = 0, we have
that E(fi(py) f5(po)) = 0 for i # j and so var (& S, fi(po)) = % XI5y E(f2(py)). Thus

assumption (A6) implies the last necessary assumption of Harris and Matyds (1999), their

assumption 1.9. m

7.5 Proof of Proposition 1

Choose ¢; . and p, such that ¢;. = —3.X; —log(1 — F(8'X; + ¢;)), and p, = log(1 — F(B'X; +
¢i)) — log(1 — F(p+ B'X; + ¢;)) . Then one can verify that Pr(y; = 1|yii—1,Cie,Xi; M) =
F(pyis1+ B +c) = Pr(yu = 1|yis1,¢:,%:). Also for p, to be between —1 and 1, it is
equivalent that |log[(1 — F(8'X; + ))/(1 — F(p+ 8% + ¢)]| < 1.
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