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Abstract

This paper develops a model for dynamic binary choice panel data that allows for

unobserved heterogeneity to be arbitrarily correlated with covariates. The model is

of the exponential type. We derive moment conditions that enable us to eliminate

the unobserved heterogeneity term and at the same time to identify the parameters of

the model. We then propose GMM estimators that are consistent and asymptotically

normally distributed at the root-N rate. We also study the conditional likelihood

approach, which can only identify the e¤ect of state dependence in our case. Monte

Carlo experiments demonstrate the �nite sample performance of our estimators.
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1 Introduction

This paper considers estimation and inference in dynamic binary choice panel data models

with unobserved heterogeneity that is allowed to be arbitrarily correlated with the covariates.

This type of unobserved heterogeneity is usually referred to as the �xed e¤ect. These models

are of particular interest in many applications because they can be used to distinguish between

the presence of state dependence and the e¤ect of unobserved heterogeneity, as discussed in

Heckman (1981a and 1981b). These models are usually speci�ed in terms of the distribution of

the dependent variable conditional on the lagged dependent variable, a set of (possibly time-

varying) covariates, and an individual speci�c term that represents unobserved heterogeneity.

As is well known, for dynamic panel data models with unobserved e¤ects, an important

issue is the treatment of the initial observations. While in some cases the initial observation

can be viewed as a �xed constant if the actual start of the dynamic process coincides with

the �rst time period in the data, in general, if the dynamic model under consideration has

been in e¤ect before the �rst period of the sample under consideration, there is an intrinsic

and complex relationship between the unobserved heterogeneity and the initial observations.

Therefore, in general, it is important to allow for the dependence of the initial observations

on the unobserved individual e¤ects.

For linear models with an additive unobserved e¤ect, appropriate transformations such

as di¤erencing have been used to eliminate the unobserved e¤ect, and GMM type estimators

have been proposed to estimate the transformed model. For example, see Anderson and Hsiao

(1982), Arellano and Bover (1995), Arellano and Carrasco (2003), Ahn and Schmidt (1995),

Blundell and Bond (1998), Hahn (1999), and Hsiao, Pesaran, and Tahmiscioglu (2002), and

among others surveyed in Arellano and Honoré (2001) and Hsiao (2003). However, for non-

linear panel data models in general and binary choice models in particular the treatment

becomes more complicated. When the unobserved e¤ect is assumed to be a random e¤ect

in that it is not correlated with the strictly exogenous variables, Heckman (1981b) suggests

to approximate the conditional distribution of the initial values given the exogenous vari-

ables and the unobserved individual e¤ects so as to use the maximum likelihood estimation
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to estimate the model parameters. Alternatively, Wooldridge (2005) proposes to specify

an auxiliary distribution of the unobserved individual e¤ect conditional on the initial value

and the exogenous variables leading to a simple conditional maximum likelihood estimation.

Both methods, while useful in addressing the initial value problem, can be best viewed as

approximations of the true (conditional) distributions of the initial value, and the unobserved

heterogeneity, respectively. As discussed in Honoré (2002), because of the complicated re-

lationship between the initial value and the unobserved heterogeneity and the exogenous

variables, it is almost unavoidable that modeling these two conditional distributions are in-

consistent with the original model. Furthermore, as pointed out in Honoré (2002), there

could be some potential incoherent problems with an ad hoc treatment of the initial values

in the case of unbalanced panel data models.

Dealing with dynamic nonlinear panel data models with �xed e¤ects, on the other hand, is

further complicated by the so-called incidental parameters problem, in addition to the initial

value problem. The incidental parameters problem arises because the number of parameters

(unobserved e¤ect terms) increases with the number of the individuals. As a result, the max-

imum likelihood estimator of the structural parameters, while consistent with both N (the

number of individuals) and T (the number of time periods) going to in�nity, is inconsistent

with large N and �xed T . One strand of the literature has been trying to propose modi�ed

maximum likelihood estimators to obtain bias reduction for a �xed T . See, e.g. Arellano

(2003) for static binary choice panel data models, and Carro (2007) as well as Bartolucci, Bel-

lio, Salvan, and Sartori (2012) for dynamic binary choice panel data models. This approach

usually requires a relatively large T to attain signi�cant bias reduction, as demonstrated in

the Monte Carlo studies in Carro (2007) and Bartolucci, Bellio, Salvan, and Sartori (2012),

even in the simplest case where the initial values are �xed constants. Another approach in the

literature is to eliminate the �xed e¤ects as in the linear models. This approach, solves the

incidental parameters problem, although the initial values problem remains. So far, however,

there are only a few papers following this approach. Honoré and Kyriazidou (2000) consider

the dynamic logit model and derive a set of conditions under which the parameters of the
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model are identi�ed. They also propose consistent estimators of the model based on the iden-

ti�cation results, albeit the rate of convergence of the estimators is slower than the usual
p
N

rate. In a more recent paper, Bartolucci and Nigro (2010) consider a version of the quadratic

exponential model that closely mimics the dynamic logit model and propose a conditional

maximum likelihood estimator conditioning on su¢ cient statistics for the individual speci�c

terms. However, with this speci�cation the strict exogeneity assumption usually made on

the covariates in the standard dynamic panel data models is not met.1 Also there could be

some potential incoherent problems arising from the separate model speci�cation for the last

period from the other periods if one conducts sequential estimation, or if one deals with an

unbalanced panel. Arellano and Bonhomme (2011) provide a review of recent developments

in the econometric analysis of nonlinear panel data models.

In this paper we introduce a binary choice panel data model where the idiosyncratic

error term follows an exponential distribution. With this speci�cation we derive moment

conditions that enable us to eliminate the �xed e¤ect term and at the same time to identify

the parameters of the model. We drive appropriate moment conditions that identify the state

dependent parameter as well as the coe¢ cients of the exogenous covariates. We then propose

GMM estimators that are consistent and asymptotically normally distributed at the
p
N

rate. Compared with the existing approaches, our method identi�es all the parameters of the

model and yields simple-to-implement estimators that have standard asymptotic properties.

The model, as well as the moment conditions we employ, are variants of those proposed in

Wooldridge (1997).2 In addition to the GMM estimators, since the conditional maximum

likelihood approach has been adopted in the literature in the case of the logistic distribution

or the quadratic exponential distribution in order to eliminate the �xed e¤ects, we also study

the conditional likelihood approach, which can only identify the e¤ect of state dependence

1Strict exogeneity typically allows us to specify the likelihood of yit conditional on ci, xit and yit�1. But

in the Bartolucci and Nigro (2010) speci�cation, all periods observations of xit must be taken into account.

On the strict exogeneity assumption and the other approaches in the literature, see Wooldridge (2002) for a

survey.
2See Remark 1 for more details.
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in our case. Since our GMM estimators are general and simple to implement, we study their

�nite sample performance through a comprehensive simulation study and the results indicate

that our estimators perform quite well in relatively small size samples.

Given that we are the �rst to propose explicitly the use of an exponential model in a

binary choice setting, it is important that this choice is motivated and further discussed.

The �rst point to bear in mind is that in the case of �xed e¤ects binary choice models,

the choice of the distribution is in fact secondary; �xed e¤ects (which are totally free of

any restrictions) can be used to match probability outcomes based on exponential and any

other speci�cation, including the logistic ones used in the literature. In the case of models

without any covariates (xit�s), the match can be performed perfectly for all distributional

speci�cations. When the model contains covariates, the match between the exponential and

other distributions, including the logistic, can be done for speci�c values of xit, (at some t)

or at the mean of xit, namely at xi, as we demonstrate later in Section 4.3. Therefore, at

least in a binary choice setting the choice of the distribution is more a matter of analytical

and estimation convenience. Moreover, since in analyzing a nonlinear model such as a binary

choice model, a key quantity of interest is the average partial e¤ect (APE), we will investigate

through Monte Carlo simulations how well the APEs are estimated with the exponential

model if the true model is the logistic. Our results show that the exponential model yields

sensible estimates for the APEs even with a misspeci�ed distribution.

The rest of the paper is organized as follows. Section 2 lays out the model of interest.

Section 3 considers the case with only the lagged dependent variable but without covariates,

and Section 4 generalizes and extends Section 3 to allow for time-varying covariates. Section 5

presents Monte Carlo results that demonstrate the usefulness and feasibility of our approach.

Section 6 concludes. All technical proofs are included in Section 7 that serves as an appendix.

4



2 The General Form of the Model

Suppose that yit takes the values of zero and unity, for i = 1; 2; :::; N , and t = 1; 2; :::; T ,

and xit is a k� 1 vector of strictly exogenous, time-varying regressors; common time-varying

regressors, such as a time dummy, can also be included in xit. The standard dynamic binary

panel data model with �xed e¤ects assumes that

yit = 1[y�it � 0]; (1)

y�it = �yi;t�1 + �
0xit + ci + uit:

where y�it is a latent variable that is not observed by the econometrician, uit is the random

error term assumed to be i.i.d with mean zero, and ci represents the individual unobserved

e¤ect that can be arbitrarily correlated with xit and uit. We suppose that T is �xed and

N su¢ ciently large. We are interested in the parameters of the covariates � and the state

dependence parameter �, both of which together are usually called structural parameters,

while ci, for i = 1; : : : ; N , are referred to as incidental parameters.

Denote the distribution of �uit by F (�). Then we have

Pr(yit = 1 jy1;t�1; y2;t�1; :::; yN;t�1; c1; c2; :::; cN ;x1t;x2t; :::;xNt )

= Pr(yit = 1 jyi;t�1; ci;xit ) = F (�yi;t�1 + �0xit + ci); (2)

where the �rst equation follows from the strict exogeneity assumption on xit. The commonly

used probit or logit models correspond to F (�) being either the standard normal distribution

or the logistic distribution, respectively. The model can also be thought of as an inhomoge-

neous Markov chain with transition probabilities

yi;t�1 =

yit = 0 1

0 1� F (�0xit + ci) F (�0xit + ci)

1 1� F (�+ �0xit + ci) F (�+ �0xit + ci)
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3 The Case of � = 0

3.1 The Likelihood Function

In the case where � = 0, the Markov chain has a time-invariant initial distribution which is

given by (for all t)

Pr (yit = 1 jci ) =
F (ci)

1� F (ci + �) + F (ci)
= ��i ; (3)

Pr (yit = 0 jci ) =
1� F (ci + �)

1� F (ci + �) + F (ci)
= 1� ��i . (4)

The joint probability distribution of ci; yi1; yi2; :::; yiT can now be derived using the familiar

decomposition

Pr (ci; yi1; yi2; :::; yiT ) = Pr(ci) Pr(yi1 jci ) Pr(yi2 jyi1; ci )::::Pr(yiT jyi;T�1; ci ):

Consider now the observations yit for t = 1; 2; :::; T; and note that the likelihood function for

the ith unit at time t = 1 is given by

Pr(yi1 jci; �) = (��i )
yi1 (1� ��i )1�yi1 ; (5)

and for time t = 2; 3; ::; T; by

Pr(yit jyi;t�1; ci; �) (6)

= [F (ci + �)]
yityi;t�1 [1� F (ci + �)](1�yit)yi;t�1 [F (ci)]yit(1�yi;t�1) [1� F (ci)](1�yit)(1�yi;t�1) :

Setting Y = (yit; i = 1; :::; N ; t = 1; 2; :::; T ), the log likelihood function for the panel
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(assuming independence across i) is given by

l(� jY; c) =
NX
i=1

[yi1 ln(�
�
i ) + (1� yi1) ln(1� ��i )] +

NX
i=1

TX
t=2

yityi;t�1 ln [F (ci + �)] +

NX
i=1

TX
t=2

(1� yit)yi;t�1 ln [1� F (ci + �)] +

NX
i=1

TX
t=2

yit(1� yi;t�1) ln [F (ci)] +

NX
i=1

TX
t=2

(1� yit)(1� yi;t�1) ln [1� F (ci)] :

It is clear that there is an incidental parameter problem here that cannot be resolved without

a speci�cation of Pr(ci). This can be accomplished by specifying a distribution in terms of the

observables. Note, however, that Pr(ci) can be speci�ed independently of the initial value,

yi1; or the other observations. The assumption that ci are independent across i can also be

relaxed to allow for simple patterns of cross-sectional dependence across i (i.e. using more

general speci�cations of Pr(c)) although we do not pursue this here.

3.2 Exponential Distribution for F (�)

The literature on estimation of binary choice panel data models with �xed e¤ects has focussed

on a logit speci�cation for F (�). In this paper we consider an alternative speci�cation. We

consider �rst the case where � = 0 and equations (3) and (4) hold, and focus on consistent

estimation of �. Pesaran and Timmermann (2009) show that a Markov chain can be written

as a vector autoregressive (VAR) model in the indicator variables. In our context it can be

easily established that

"it = yit � F (ci)� [F (ci + �)� F (ci)] yi;t�1

is a martingale di¤erence process with respect to yi;t�1; yi;t�2; :::. This suggests the following

linear binary AR(1) regression with reduced form parameters that are non-linear functions
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of the parameters of the underlying model:

yit = F (ci) + [F (ci + �)� F (ci)] yi;t�1 + "it: (7)

It is possible to eliminate ci from the above regression when F (c + �) � F (c) = G(�)H(c).

The only non�constant, di¤erentiable, distribution function that satis�es this condition is

the exponential distribution F (z) = 1� exp(�z).3 Under this speci�cation, we have

F (ci + �)� F (ci) = exp(�ci) [1� exp(��)] : (8)

Consistent estimation of � can now be achieved using the conditional maximum likelihood

or the GMM methods.

3.3 Conditional Maximum Likelihood Estimation

Building on an early work by Cox (1958), Chamberlain (1985) shows that it is possible to

estimate � consistently using a conditional maximum likelihood estimator (CMLE) approach

if F (�) is logistic, � = 0 and T � 4.4 Honoré and Kyriazidou (2000) extend this analysis

to the case where � 6= 0, under certain restrictions on the distribution of the covariates, xit,

over time. In this sub-section we show similar results hold if F (�) is exponential, � = 0 and

T � 3.

Using (5) and (6) the likelihood function (conditional on ci) for the ith unit can be written

as

[1� F (ci + �) + F (ci)] Pr (yiT jci; �) = [F (ci + �)]
PT
t=2 yityi;t�1 [1� F (ci + �)]1�yi1+

PT
t=2(1�yit)yi;t�1

� [F (ci)]yi1+
PT
t=2 yit(1�yi;t�1) [1� F (ci)]

PT
t=2(1�yit)(1�yi;t�1) :

3See Appendix 7.1 for a proof where it is shown that the general solution to the problem is given by

F (z) = 1 � C exp(�Dz), for C; and D > 0. Since these two parameters are not identi�able, we set them

both equal to 1. Similar rescaling and normalization is also used for the standard logit and probit models.
4See Chamberlain (2010) for identi�cation in a two-period case and Magnac (2004) for more general

identi�cation results with the conditional likelihood approach, and also Magnac (2001) for an empirical

application.
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Let siT =
PT

t=1 yit and piT =
PT

t=2 yityi;t�1 write the above likelihood function as

Pr (yiT jci; �) = Pr (siT ; piT ; yi1; yiT jci; �)

=

[F (ci + �)]
piT [1� F (ci + �)]1�yi1�yiT+siT�piT

[F (ci)]
siT�piT [1� F (ci)](T�1)+yi1+yiT�2siT+piT

[1� F (ci + �) + F (ci)]

It is clear that siT ; piT ; yi1; and yiT are minimal su¢ cient statistics for ci and �. Following

Andersen (1970), we consider the likelihood function of � conditional on given values of

siT = s
0 and piT = p0 for all i. Let BiT (s0; p0) be the set of all sequences yi1; yi2; :::; yiT that

satisfy
PT

t=1 yit = s0 and
PT

t=2 yityi;t�1 = p0, for s0 = 1; :::; T � 1 and p0 = 0; 1; ::; T � 1

(s0 > p0) There is no point considering the values of s0 = 0 and T , since for these values it

is easily seen that the conditional likelihood function does not depend on �.

In general we have

Pr (yi1; yiT
��siT = s0; piT = p0; ci; �) = Pr (siT = s

0; piT = p
0; yi1; yiT jci; �)

Pr (siT = s0; piT = p0 jci; �)
;

where

Pr (siT = s
0; piT = p

0; yi1; yiT jci; �) =
Ai(s

0; p0) [1� F (ci)]yi1+yiT [1� F (ci + �)]�yi1�yiT
[1� F (ci + �) + F (ci)]

;

and

Pr (siT = s
0; piT = p

0 jci; �) =
Ai(s

0; p0)
P

yi1;yiT2BiT (s0;p0) [1� F (ci)]
yi1+yiT [1� F (ci + �)]�yi1�yiT

[1� F (ci + �) + F (ci)]

in which

Ai(s
0; p0) = [F (ci + �)]

p0 [F (ci)]
1+s0�p0 [1� F (ci)](T�1)�2s

0+p0 [1� F (ci + �)]1+s
0�p0:

Therefore

Pr (yi1; yiT
��siT = s0; piT = p0; ci; �) = [1� F (ci)]yi1+yiT [1� F (ci + �)]�yi1�yiTP

yi1;yiT2BiT (s0;p0) [1� F (ci)]
yi1+yiT [1� F (ci + �)]�yi1�yiT

:

It is clear that for a general speci�cation of F (�) the conditional distribution of yi1 and yiT
still depends on the incidental parameters ci. But in the case of the exponential distribution
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we have

Pr (yi1; yiT
��siT = s0; piT = p0; ci; �) = exp [�(yi1 + yiT )]P

yi1;yiT2BiT (s0;p0) exp [�(yi1 + yiT )]
;

which does not depend on c0is.

The conditional likelihood for the cross section observations i = 1; 2; ::; N is now given by

Lc(�) =
NY
i=1

T�2Y
p0=0

T�1Y
s0=1

exp [�(yi1 + yiT )]P
yi1;yiT2BiT (s0;p0) exp [�(yi1 + yiT )]

(9)

Not all the components of this conditional likelihood function will depend on �. For example,

in the case where T = 3, which is derived in detail in the appendix, the only component that

depends on � is for values of s0 = 1 and p0 = 0. When T = 3 we exclude observation where

s0 = 3 and p0 = 2. The remaining values are (s0; p0) = (2; 0) and (s0; p0) = (2; 1): Under the

former we must have yi1 = 1; yi2 = 0 and yi3 = 1 and

exp [�(yi1 + yi3)]P
yi1;yi32Bi3(2;0) exp [�(yi1 + yi3)]

= 1:

Under (s0; p0) = (2; 1) the only admissible sequences are (110) and (011) and we have

exp [�(yi1 + yi3)]P
yi1;yi32Bi3(2;1) exp [�(yi1 + yi3)]

=
exp (�)

2 exp (�)
=
1

2
:

The only set of observations for which the conditional likelihood depends on � is given by

exp [�(yi1 + yi3)]P
yi1;yi32Bi3(1;0) exp [�(yi1 + yi3)]

=

8>>><>>>:
exp(�)

2 exp(�)+1
; for (100)

1
2 exp(�)+1

; for (010)
exp(�)

2 exp(�)+1
; for (001)

Hence, the conditional log-likelihood function for the case where T = 3 can be written as

`c(�) = �

NX
i=1

(yi1 + yi3)I(si3 = 1)I(pi3 = 0)� log [2 exp (�) + 1]
NX
i=1

I(si3 = 1)I(pi3 = 0)

It is easily veri�ed that this is the same as (21) obtained in the appendix. Following Andensen

(1970), consistency and
p
n-asymptotic normality of the resulting conditional maximum like-

lihood estimator can be established.
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3.4 GMM Estimation

Under the exponential distribution, the binary AR(1) model (7) can be written as

yit = �i + (1� �i)
yi;t�1 + "it; (10)

where �i = 1 � exp(�ci); and 
 = 1 � exp(��). First�di¤erencing here will not eliminate

the incidental parameters since the slope also depends on ci. But since �i is time invariant

it can be eliminated by using lagged observations. For example, noting that 1 � 
yi;t�2 can

only take the values of 1 and 1� 
, and will not be zero for all bounded values of �

�i =
yi;t�1 � 
yi;t�2
1� 
yi;t�2

� "i;t�1
1� 
yi;t�2

;

then �i can be eliminated from (10) to yield the non-linear di¤erenced equation

yit = 
yi;t�1 +

�
1� 
yi;t�1
1� 
yi;t�2

�
(yi;t�1 � 
yi;t�2) + vit; (11)

where

vit = "it �
�
1� 
yi;t�1
1� 
yi;t�2

�
"i;t�1:

However, vit in this speci�cation does not have mean zero since even conditional on yi;t�2 we

have

E(vit jyi;t�2 ) = E("it jyi;t�2 )�
E("i;t�1 jyi;t�2 )� 
E (yi;t�1"i;t�1 jyi;t�2 )

1� 
yi;t�2

=

E (yi;t�1"i;t�1 jyi;t�2 )

1� 
yi;t�2
:

Due to the contemporaneous dependence of yit�1 and "i;t�1 in general E(vit jyi;t�2 ) 6= 0.

Using further lagged values of yit will not resolve this problem. However, we can consider

the following alternative formulation

eit =

�
1� 
yi;t�2
1� 
yi;t�1

�
"it � "i;t�1 =

(yit � 
yi;t�1) (1� 
yi;t�2)
(1� 
yi;t�1)

� (yi;t�1 � 
yi;t�2); (12)

which is obtained by multiplying both sides of (11) by (1� 
yi;t�2) = (1� 
yi;t�1). It is now

easily seen that

E(eit jyi;t�1; yi;t�2 ) =
�
1� 
yi;t�2
1� 
yi;t�1

�
E("it jyi;t�1; yi;t�2 )� E("i;t�1 jyi;t�1; yi;t�2 ):
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But E("it jyi;t�1; yi;t�2 ) = 0 by the Markov property as established in Pesaran and Timmer-

mann (2009). Hence

E(eit jyi;t�1; yi;t�2 ) = �E("i;t�1 jyi;t�1; yi;t�2 ):

Now by chain rule of conditional expectations

E [E(eit jyi;t�1; yi;t�2 ) jyi;t�2 ] = �E [E("i;t�1 jyi;t�1; yi;t�2 ) jyi;t�2 ] ;

E(eit jyi;t�2 ) = �E("it jyi;t�2 ) = 0;

as required. In fact we have, more generally,

E(eit jyi;t�s ) = 0; for s = 2; 3; ::: (13)

As a result, 
 can be estimated consistently by applying the GMM to (12) using yi;t�2; yi;t�3; :::,

as well as the constant, as instruments, very much as when GMM is applied to the �rst-

di¤erenced version in the linear case.

Note that the constant (i.e. the sequence of 1�s) should be used as an instrument with

caution. It is easy to show that E(eit) = 0 whenever 
 = 0 or 
 = 
0. Thus the constant

instrument fails to uniquely pin down 
0. However, the other instruments do not su¤er

from this anomaly. Therefore, there is no danger in using the constant as an instrument if

accompanied by some of the lags yi;t�2; yi;t�3; : : :.

Remark 1 Wooldridge (1997) considers multiplicative panel data models of the form �(yit;�0) =

�i�(xit;�0)uit, and shows that with sequential moment conditions on uit as speci�ed in Cham-

berlain (1992), thus allowing for lagged dependent variables such as yi;t�1 included in xit, the

transformation

rit(�) ��(yit;�)� [�(xit;�0)=�(xit+1;�0)]�(yit;�); t = 1; :::; T � 1;

satis�es the conditional moment condition

E[rit(�0)j�i;xi1; :::xit] = 0; t = 1; :::; T � 1:
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In our case, we can rewrite our model as 1� yit = �i�(xit;�0)uit, where �(xit;�0) =

exp(��yi;t�1) and �i = exp(�ci). Noting that exp(��yit) = (1 � 
yi;t�1)=(1 � 
�yit), it can

be shown that rit(�0) in our case is identical to ei;t+1. As a result, the conditional moment

conditions in (13) can also be derived from those obtained by Wooldridge (1997).

Notice that since � = � ln(1 � 
), to estimate � consistently we must have 
 < 1.

Alternatively, one could consider the GMM estimation problem directly in terms of �, namely

by considering the moment conditions in terms of

eit(�) =
(�yit + yi;t�1 exp(��)) (1� yi;t�2 + yi;t�2 exp(��))

(1� yi;t�1 + yi;t�1 exp(��))
�(�yi;t�1+yi;t�2 exp(��)): (14)

Let yi = (yi1; yi2; :::; yiT )0, then these moment conditions may be written as

E [mk(yi; 
)] = 0, k = 1; 2; ::::; (T + 1)(T � 2)=2

Note that we require T � 3 in order to use these moments. When T = 3, there are two

moments.5 The moment conditions for T = 5, for example, are given by

m1(yi; 
) =

�
(yi3 � 
yi2) (1� 
yi1)

(1� 
yi2)
� (yi2 � 
yi1)

�
;

m2(yi; 
) =

�
(yi4 � 
yi3) (1� 
yi2)

(1� 
yi3)
� (yi3 � 
yi2)

�
;

m3(yi; 
) =

�
(yi5 � 
yi4) (1� 
yi3)

(1� 
yi4)
� (yi4 � 
yi3)

�
;

m4(yi; 
) = yi1

�
(yi3 � 
yi2) (1� 
yi1)

(1� 
yi2)
� (yi2 � 
yi1)

�
;

m5(yi; 
) = yi1

�
(yi4 � 
yi3) (1� 
yi2)

(1� 
yi3)
� (yi3 � 
yi2)

�
;

m6(yi; 
) = yi2

�
(yi4 � 
yi3) (1� 
yi2)

(1� 
yi3)
� (yi3 � 
yi2)

�
;

m7(yi; 
) = yi1

�
(yi5 � 
yi4) (1� 
yi3)

(1� 
yi4)
� (yi4 � 
yi3)

�
;

m8(yi; 
) = yi2

�
(yi5 � 
yi4) (1� 
yi3)

(1� 
yi4)
� (yi4 � 
yi3)

�
;

m9(yi; 
) = yi3

�
(yi5 � 
yi4) (1� 
yi3)

(1� 
yi4)
� (yi4 � 
yi3)

�
;

5In the appendix, we considered in detail the case of T = 3 and the moment E(ei3yi;1) = 0. In this case,

the GMM estimator has a closed-form solution.
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and so on.

Let m(yi; 
) = (m1(yi; 
);m2(yi; 
); :::;mK(yi; 
))
0, and write the K = (T + 1)(T � 2)=2

moment conditions as E [m(yi; 
)] = 0. Using the familiar results on GMM estimation we

have


̂GMM = argmin


[M0

N(
)A
0
NANMN(
)] ;

where

MN(
) = N
�1

NX
i=1

m(yi; 
);

and AN is a 1�K weight vector. An optimal choice for limN!1AN = A(
0) is given by

A(
0) = D
0(
0)S

�1(
0);

where 
0 is the true value of 
, and

S(
0) = E [NMN(
0)M
0
N(
0)]

D(
0) = E

"
N�1

NX
i=1

@m(yi; 
0)

@


#
= N�1

NX
i=1

E

�
@m(yi; 
0)

@


�
:

But (denoting c = (c1; c2; :::; cN)0)

E [NMN(
0)M
0
N(
0)] = E

"
N�1

NX
i=1

NX
j=1

E
h
m(yi; 
)m

0(yj; 
) jc
i#
:

Note that conditional c, yi and yj are independently distributed, which establishes that

m(yi; 
) and m(yj; 
) are also conditionally independent (since range of variations of yi

does not depend on 
). Hence, recalling that E [m(yi; 
)] = 0, we have

E [NMN(
0)M
0
N(
0)] = N

�1
NX
i=1

E [m(yi; 
)m
0(yi; 
)] :

In general, analytical expressions for E
h
@m(yi;
0)

@


i
and E [m(yi; 
)m

0(yi; 
)] will be a com-

plicated function of c. However, for a given initial consistent estimate of 
, say 
̂, AN can

be consistently estimated as

ÂN = AN(
̂) =

"
N�1

NX
i=1

@m0(yi; 
̂)

@


#"
N�1

NX
i=1

m(yi; 
̂)m
0(yi; 
̂)

#�1
: (15)
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The asymptotic variance of 
̂GMM is given by

AsyV ar
hp
N(
̂GMM � 
0)

i
=
�
D0(
0)S

�1(
0)D(
0)
��1

;

which can be consistently estimated as

dV ar (
̂GMM) =
1

N

h
D̂0(
̂GMM)Ŝ

�1(
̂GMM)(
̂GMM)D̂(
̂GMM)
i�1

;

where

D̂(
̂GMM) = N
�1

NX
i=1

@m0(yi; 
̂GMM)

@

;

and

Ŝ(
̂GMM) = N
�1

NX
i=1

m(yi; 
̂GMM)m
0(yi; 
̂GMM):

The initial estimate of 
, say 
̂INI can be obtained, for example, by imposing equal

weights on the K moment conditions, namely


̂INI = argmin


[M0

N(
)MN(
)] :

This initial estimate can then be used to compute

ÂN(
̂INI) =

"
N�1

NX
i=1

@m0(yi; 
̂INI)

@


#"
N�1

NX
i=1

m(yi; 
̂INI)m
0(yi; 
̂INI)

#�1
;

with 
̂GMM computed as


̂GMM = argmin



h
M0

N(
)Â
0
N(
̂INI)ÂN(
̂INI)MN(
)

i
;

An iterated GMM estimator, where in computation of ÂN(
̂INI), 
̂INI is replaced by 
̂GMM ,

and a new GMM estimator is computed using ÂN(
̂GMM), and so on.

The following theorem illustrates the issues involved in proving the asymptotic properties

of the GMM estimator when only a single instrument, namely yi;t�2, is used. The general

case where additional instruments are considered can be established along similar lines.

Theorem 1. Suppose yit = 1(ci + �0yit�1 + uit � 0) for i = 1; : : : ; N; t = 1; : : : ; T and the

following conditions hold
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(A1) Pr(ci + �0 � 0) = 1, Pr(ci � 0) = 1, and Pr(ci <1) > 0 for i = 1; : : : ; N .

(A2) fuit : i = 1; : : : ; N; t = 1; : : : ; Tg is an independent array of random variables. ui1 is

uniformly distributed on [0; 1], while for t > 1, �uit is geometrically distributed with mean

1. fuitg is independent of fcig.

(A3) yi1 = 1
�
ui1 � 1�e�ci

1�e�ci (1�e��0 )

�
, for i = 1; : : : ; N .

(A4) For all � 2 R, a compact subset ofR containing �0 in its interior,N�1PN
i=1 eit(�)yit�2 !p

E [eit(�)yit�2].

(A5) For and all � 2 R, N�1PN
i=1 eit(�)yit�2 !p E [eit(�)yit�2].

(A6) N�1=2PN
i=1 eit(�0)yit�2 !d N(0; V ), where V = limN!1N

�1PN
i=1E [e

2
it(�0)yit�2] > 0.

Then N�1=2(b�GMM � �0)!d N
�
0; V

E[eit(�0)yit�2]
2

�
, where b�GMM is the GMM estimator using

yit�2 as an instrument.

Assumption (A1) allows us to circumvent the positivity constraint on geometrically dis-

tributed random variables. Without it, Pr(yit = 1jci; yit�1) = 1�exp(�maxf0; ci+�oyit�1g),

which greatly complicates the analysis. Assumption (A2) makes a distinction between the

initial shocks and the shocks that occur for t > 1; together with (A3), it allows yit to be

stationary, conditional on ci. Assumptions (A4) �(A6) are high�level asymptotic conditions

that hold under a variety of weak�dependence assumptions on the �xed e¤ects. They hold

when ci are cross-sectionally independent but they may also allow for weak cross-sectional

dependence, including spatial dependence, so long as the dependence is not too strong.6

The variance of �̂GMM = � ln(1� 
̂GMM) can now be obtained using the delta method as

dV ar (�̂GMM) =

�
1

1� 
̂GMM

�2 dV ar (
̂GMM) :

6The assumptions we lay out here demonstrate the fact that while the asymptotic properties of GMM

estimators such as consistency and asymptotic normality are established under high level regularity conditions

in Hansen (1982), whether they are satisti�ed in a speci�c nonlinear model could be a delicate matter that

is often technicially more involved than one would expect. It is worth noting that in the literature where

GMM estimators are proposed, the conventional approach has been to derive moment conditions of the model

and then claim the GMM estimators based on these moment conditions are consistent and asymptotically

normally distributed implicitly assuming that the required regularity conditions are satis�ed.
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A test of � = 0 (or 
 = 0) can be carried out using (12), or by testing � = 0 in the

�rst-di¤erenced regression (assuming �i 6= 1)

�yit = ��yi;t�1 +�"it;

using �yi;t�2, �yi;t�3; ::: as instruments.

4 The Case of � 6= 0

4.1 Conditional ML Estimator

Consider the case when T = 3. Denote the set of all observations such that yi1 = 0 and

yi2 + yi3 = 1 by D and de�ne the sets

D1 = fyi1 = 0; yi2 = 0; yi3 = 1g ;

D2 = fyi1 = 0; yi2 = 1; yi3 = 0g :

It is now easily seen that (given the Markov property and (3))

Pr(D1jci;xi3;xi2;xi1;xi0;xi;�1; :::) = (1� �i1) [1� F (�0xi2 + ci)]F (�0xi3 + ci);

Pr(D2jci;xit;xi;t�1; :::xi1;xi0;xi;�1; :::) = (1� �i1)F (�0xi2 + ci)[1� F (�+ �0xi3 + ci)]:

Therefore

Pr(Djci;xi3;xi2;xi1;xi0;xi;�1; :::)

= Pr(D1jci;xi3;xi2;xi1;xi0;xi;�1; :::) + Pr(D2jci;xi3;xi2;xi1;xi0;xi;�1; :::)

= (1� �i1) [1� F (�0xi2 + ci)]F (�0xi3 + ci) + (1� �i1)F (�0xi2 + ci)[1� F (�+ �0xi3 + ci)]:

It then follows that when xi2 = xi3

Pr(D1jD;ci;xit;xi;t�1; :::xi1;xi0;xi;�1; :::) =
1� F (�0xi2 + ci)

1� F (�0xi2 + ci) + 1� F (�+ �0xi3 + ci)

=
1

1 + exp(��) ;
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Pr(D2jD;ci;xit;xi;t�1; :::xi1;xi0;xi;�1; :::) =
1� F (�+ �0xi3 + ci)

1� F (�0xi2 + ci) + 1� F (�+ �0xi3 + ci)

=
exp(��)

1 + exp(��) :

Hence � can be consistently estimated when xi2 = xi3 using the sample characterized

by D. If xi2 6= xi3, provided that xi2 � xi3 has support in a neighborhood of 0, then an

estimator similar to Honoré and Kyriazidou (2000) can be implemented by using a kernel to

give weights in the likelihood function that depend inversely on the magnitude of xi2 � xi3.

It is interesting to note that it does not seem possible to use the CMLE approach

to identify �, although it can be identi�ed by the CMLE in a logit model as studied

in Honoré and Kyriazidou (2000). A key di¤erence to our speci�cation is that ours has

Pr(yit = 1jci; yit�1;xit) = 1� exp(��yit�1 � �0xit � ci). ci cannot be cancelled out from the

numerator and the denominator from the terms involving 1� exp(��yit�1��0xit� ci). This

means that we have to make xit = xi�1t. As a result, when we try to use the conditional

likelihood approach to eliminate ci, �
0xit are also cancelled out from the numerator and the

denominator. In contrast Honoré and Kyriazidou (2000) use a logistic speci�cation, which

does not have the problem we encounter with the term like 1� exp(��yit�1��0xit� ci). For

estimation of � we therefore turn to the GMM procedure.

4.2 GMM Estimation

In the general case where � 6= 0, the dynamic non-linear autoregressive model, (7), associated

to the binary choice model generalizes to

yit = F (�
0xit + ci) + [F (�

0xit + ci + �)� F (�0xit + ci)] yi;t�1 + "it;

and we continue to have E ("it jyi;t�1; yi;t�2; :::;xit;xi;t�1; :::) = 0. In the exponential case

under consideration, the non-linear AR(1) formulation can be written as

yit � 1 = exp(��0xit � ci) + exp(��0xit � ci)(1� exp(��))yi;t�1 + "it;

or setting 
 = 1� exp(��)

exp(�0xit) (yit � 1) = �(exp(�ci))(1� 
yi;t�1) + exp(�0xit)"it:
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Since 1� 
yi;t�1 cannot be zero if j
j < 1, we have

exp(�0xit) (1� yit)
(1� 
yi;t�1)

= exp(�ci)�
exp(�0xit)"it
(1� 
yi;t�1)

:

Now �rst di¤erencing to eliminate ci yields

exp(�0xit) (1� yit)
(1� 
yi;t�1)

� exp(�
0xi;t�1) (1� yi;t�1)
(1� 
yi;t�2)

= �exp(�
0xit)"it

(1� 
yi;t�1)
� exp(�

0xi;t�1)"i;t�1
(1� 
yi;t�2)

;

which after some algebra simpli�es to

eit = exp(�0�xit)

�
1� 
yi;t�2
1� 
yi;t�1

�
"it � "i;t�1 (16)

= (1� yi;t�1)� (1� yit)
�
1� 
yi;t�2
1� 
yi;t�1

�
exp(�0�xit):

Again, yi;t�2;yi;t�3;:::: and the constant can be used as instruments.7 If xit is exogenous, then

the regressors xi;1;xi;2; :::;xi;T can also be used as instruments. It is also easily seen that eit

given above reduces to (12) if we set � = 0, as to be expected.8

In empirical applications of the GMM approach the choice of instruments can play an

important role on the small sample properties of the estimators. The problem becomes

particularly serious in panel data models where the number of instruments can rise quite

rapidly with T . The pitfalls in using too many instruments in the case of linear dynamic

panel data models is investigated in Roodman (2009). In the case of non-linear speci�cations,

the use of additional instruments that involve powers of yi;t�s;for s � 2, or powers of lagged

exogenous variables, such as yit�2yit�3, xi;t�s 
 xi;t�s, and yi;t�2xi;t�s; can also be justi�ed

which could lead to even a larger set of instruments to be used in GMM estimation. A number

of procedures have been proposed to deal with this problem. Carrasco (2012) proposes using

regularization techniques to invert the covariance matrix of the instruments. Mehrho¤ (2009)

proposes factorizing the instrument set whereby the full set of instruments is replaced by a

7The same caveat as mentioned earlier continues to hold. E(eit) = 0 for (
;�) = (0;0) and for (
;�) =

(
0;�0). Therefore, the constant should never be used as an instrument unless accompanied by at least one

lagged variable.
8Also Remark 2 on the link between the moment conditions in (13) when � = 0 and Wooldridge (1997)

applies to the case when � 6= 0 here.
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few principal components of the instrument set. Both approaches rely on related choice

parameters such as the extent of regularization/shrinkage in the case of Carrasco�s approach

and the number of principle components to be used as instruments. The application of

these basically linear techniques to the non-linear speci�cation that we consider could also

be problematic as they need not be optimal in non-linear settings. In view of these di¢ culties

we do not recommend the use of GMM approach developed in this paper for applications

where T is relatively large, say more than 6. In case of non-linear panels with moderate T

samples the ML approach combined with bias correction (as proposed by Carro, 2007) might

be more appropriate.

Remark 2 It is clear from the analysis above that GMM estimation can also be applied to

the model with additional lags,

Pr(yit = 1jci; yit�1; yit�2; : : : ;xit) = F (ci + �1yit�1 + � � �+ �pyit�p + �0xit);

with F exponential as before. Considering the way the moment conditions are obtained, it is

also clear that we may also allow for time variation in �. Finally, missing observations (so

long as they are missing at random) pose no particular problem for our estimation method.

One simply obtains each average N�1
j

P
imj(yi; 
;�) separately, where Nj is the number of

observations for which the data necessary for calculating mj(yi; 
;�) is available.

4.3 Discussion on Robustness of the Exponential Speci�cation

As discussed in Section 1, various speci�cations of dynamic binary choice panel data models

have been used in the literature depending on their convenience or/and whether they enable

the researcher to resolve the incidental parameter problem. In the same vein, we propose

to use the exponential speci�cation and construct GMM estimators that are consistent and

asymptotically normally distributed. As for any speci�cation in the parametric approach, a

natural question is how robust it is with regard to misspeci�cation. The results given below

show that for a distribution F (�) in (2), under certain conditions, there is an exponential

distribution that gives the same probabilities for Pr(yit = 1 jyi;t�1; ci;xi ).
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Proposition 1. Suppose that the true model is given by (2) with a distribution F (�) which

satis�es j log[(1�F (�0xi+ ci))=(1�F (�+�0xi+ ci)]j < 1. Suppose also that an exponential

distribution is speci�ed so that

Pr(yit = 1 jyi;t�1; ci;e;xi;Me ) = 1� exp(��eyi;t�1 � �0exit � ci;e):

Then we can �nd the values of ci;e and �e such that Pr(yit = 1 jyi;t�1; ci;e;xi;Me ) = Pr(yit =

1 jyi;t�1; ci;xi ) = F (�yi;t�1 + �0xi + ci).

The condition j log[(1�F (�0xi+ ci))=(1�F (�+�0xi+ ci)]j < 1 is used to ensure that the

resulting �e is between �1 and 1. Note that this condition can be written alternatively as

e�1 < Pr(yit = 0 jyi;t�1 = 0; ci;xi )=Pr(yit = 0 jyi;t�1 = 1; ci;xi ) < e, meaning that the slope

of F (�) cannot be too steep. It is worth noting that this condition is satis�ed by the logistic

distribution. Therefore, for any logistic distribution, there exists an exponential distribution

that matches the logistic distribution at xi.

5 Simulation Studies

In order to investigate the performance of the GMM and CMLE estimators we conduct a

series of Monte Carlo studies, which we summarize here. We have endeavored where possible

to match the Monte Carlo design employed by Honoré and Kyriazidou (2000).9

5.1 The GMM Estimator

To study the GMM estimator, we generate data from the exponential dynamic binary choice

model, with � = 0:5, and include a single exogenous regressor in the model. We draw

ci � jN(0; �2c)j and xit � jN(0; 1)j; independently. We then set �c = � so that the �xed

e¤ects and exogenous regressors each contribute an equal amount of variation. The two

parameters are solved numerically for a proportion of 1s in the population of �� = 50%, this

gives us �c = � = 0:318815. The distribution of yi1 is set to the stationary distribution

9The full set of Monte Carlo results is available from the authors on request.
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conditional on the �xed e¤ect and xi1. We generate data sets of sizes T = 3; 4; 6; 8 and

N = 250; 500; 1000; 2500; 5000; 10000 and look at the mean, variance, bias, RMSE, of the

estimates for � and � in 2000 replications for each experiment. The estimates are obtained

using the moment conditions

E(eit) = 0; t = 3; : : : ; T;

E(xiseit) = 0; t = 3; : : : ; T; s = 1; : : : ; T;

E(yiseit) = 0; t = 3; : : : ; T; s = 1; : : : ; t� 2;

and using an estimate for the optimal choice of GMM weight matrix. There are a total of
1
2
(3T + 1)(T � 2) moment conditions. We also consider the size of the tests H0 : � = 0 and

power for Ha : � = 0:6 and Hb : � = 0:4 as well as the size of the tests H0 : � = 0 and power

for Ha : � = 0:418815 and Hb : � = 0:218815, all at 5% signi�cance. Henceforth, this setting

will be referred to as the benchmark speci�cation.

We �nd that the percentage of 
s falling outside the admissible range can be substantial

for small N . For N = 250 and T = 3, 12.3% of all estimates are inadmissible; with T = 8,

the percentage rises to 18.2%. However, the likelihood of obtaining an inadmissible estimate

decreases sharply with N , even though it increases with T . For N � 500 the likelihood of an

inadmissible 
 is below 5% and for for N � 1000 it is at most 1%.

Tables 1 and 2 give results for variance, bias, and RMSE in the benchmark simulations.

Variance, bias, and RMSE improve with larger N . RMSE and variance improve with in-

creased T . However, the bias of the GMM estimator of � increases with T .
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Table 1. Benchmark Small Samples Results for Variance, Bias, and RMSE of b�GMM .
?

TnN 250 500 1000 2500 5000 10000

3 Variance 0.0571 0.0326 0.0166 0.0065 0.0031 0.0016

Bias 0.0032 -0.0014 0.0027 0.0009 -0.0007 0.0004

RMSE 0.2239 0.1767 0.1282 0.0806 0.0556 0.0394

4 Variance 0.0240 0.0123 0.0066 0.0025 0.0012 0.0006

Bias -0.0446 -0.0253 -0.0104 -0.0041 -0.0020 -0.0011

RMSE 0.1514 0.1110 0.0815 0.0503 0.0349 0.0248

6 Variance 0.0105 0.0060 0.0026 0.0010 0.0005 0.0003

Bias -0.0889 -0.0442 -0.0209 -0.0057 -0.0026 -0.0011

RMSE 0.1252 0.0879 0.0554 0.0328 0.0226 0.0159

8 Variance 0.0075 0.0042 0.0018 0.0006 0.0003 0.0002

Bias -0.1557 -0.0774 -0.0309 -0.0081 -0.0032 -0.0014

RMSE 0.1613 0.0992 0.0528 0.0267 0.0181 0.0128

? � = 0:5, � = 0:32, xit = jN(0; 1)j, ci � jN(0; 0:322)j.
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Table 2. Benchmark Small Samples Results for Variance, Bias, and RMSE of b�GMM .
?

TnN 250 500 1000 2500 5000 10000

3 Variance 0.0192 0.0078 0.0035 0.0015 0.0007 0.0004

Bias 0.0100 0.0073 0.0024 0.0012 0.0006 0.0007

RMSE 0.1300 0.0869 0.0591 0.0384 0.0274 0.0195

4 Variance 0.0101 0.0039 0.0019 0.0008 0.0004 0.0002

Bias 0.0024 0.0016 -0.0012 0.0006 0.0000 0.0003

RMSE 0.0942 0.0609 0.0430 0.0277 0.0198 0.0137

6 Variance 0.0047 0.0021 0.0010 0.0004 0.0002 0.0001

Bias -0.0172 -0.0040 -0.0002 0.0006 0.0003 0.0005

RMSE 0.0653 0.0448 0.0323 0.0206 0.0140 0.0099

8 Variance 0.0035 0.0016 0.0008 0.0003 0.0001 0.0001

Bias -0.0323 -0.0128 -0.0008 0.0005 0.0003 0.0001

RMSE 0.0607 0.0406 0.0279 0.0175 0.0122 0.0085

? � = 0:5, � = 0:32, xit = jN(0; 1)j, ci � jN(0; 0:322)j.

Tables 3 and 4 give the results for size and power. For T = 3 and 4, size is satisfactory

even for a relatively small N . However, there are large size distortions for T = 6 and 8; most

likely owing to the rapidly (quadratically) growing number of instruments. For these cases,

one needs large N to reduce the percentage of over-rejection. Notably, size for the � tests

improves more rapidly than the size for the � tests with increased N . We need N � 2500 to

bring down the size to below 10% for � and N � 1000 for �.
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Table 3. Benchmark Small Samples Results for Size and Power of Tests Based on �̂GMM .
?

TnN 250 500 1000 2500 5000 10000

3 Size H�
0 0.0536 0.0636 0.0627 0.0600 0.0515 0.0545

Power Hy
a 0.1157 0.1382 0.1728 0.2811 0.4595 0.7115

Power Hz
b 0.0433 0.0683 0.1102 0.2331 0.4255 0.7380

4 Size H0 0.0817 0.0728 0.0697 0.0540 0.0545 0.0505

Power Ha 0.2240 0.2619 0.3180 0.5560 0.8315 0.9780

Power Hb 0.0618 0.0781 0.1976 0.5045 0.8205 0.9875

6 Size H0 0.2478 0.1508 0.0901 0.0625 0.0560 0.0530

Power Ha 0.5937 0.5780 0.6855 0.9045 0.9955 1.0000

Power Hb 0.0986 0.1549 0.3540 0.8525 0.9935 1.0000

8 Size H0 0.7072 0.3977 0.1816 0.0750 0.0530 0.0605

Power Ha 0.9309 0.8785 0.9020 0.9875 1.0000 1.0000

Power Hb 0.3026 0.1433 0.4667 0.9630 1.0000 1.0000

? � = 0:5, � = 0:32, xit = jN(0; 1)j, ci � jN(0; 0:322)j.
� H0 : � = 0:5. y Ha : � = 0:6. z Hb : � = 0:4 (5% level).
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Table 4. Benchmark Small Samples Results for Size and Power of Tests Based on �̂GMM .
?

TnN 250 500 1000 2500 5000 10000

3 Size H�
0 0.0604 0.0511 0.0541 0.0490 0.0610 0.0540

Power Hy
a 0.1608 0.2457 0.4184 0.7274 0.9430 0.9990

Power Hz
b 0.1140 0.2102 0.4149 0.7654 0.9705 0.9995

4 Size H0 0.0800 0.0660 0.0522 0.0545 0.0505 0.0445

Power Ha 0.2564 0.4081 0.6670 0.9400 0.9990 1.0000

Power Hb 0.1940 0.4023 0.6354 0.9675 1.0000 1.0000

6 Size H0 0.1450 0.0875 0.0641 0.0620 0.0450 0.0485

Power Ha 0.5737 0.7185 0.8848 0.9975 1.0000 1.0000

Power Hb 0.3658 0.6500 0.9049 0.9990 1.0000 1.0000

8 Size H0 0.2732 0.1376 0.0950 0.0660 0.0565 0.0590

Power Ha 0.8258 0.8842 0.9630 1.0000 1.0000 1.0000

Power Hb 0.4664 0.7399 0.9750 1.0000 1.0000 1.0000

? � = 0:5, � = 0:32, xit = jN(0; 1)j, ci � jN(0; 0:322)j.
� H0 : � = 0:3188. y Ha : � = 0:4188. z Hb : � = 0:2188 (5% level).

We next modify the benchmark DGP of yit, xit and ci in various ways and look at the

behavior of our estimators. A selection of the results of these alternative speci�cations is

given in Table 5 for T = 3 and N = 500.

First, we look at the e¤ect of changing the variance of the �xed e¤ects. We increase �c

so that �� = 0:75 and then further so that �� = 0:95. As to be expected, increasing �c causes

a deterioration of the estimates, increasing the percentage of 
s falling out of bounds, along

with variance, bias, and RMSE, a rise in size and decrease in power. However, the empirical

size is still generally close to the nominal size for N � 5000.

Next, we vary � and � individually in the benchmark simulation, choosing � = �bm � 0:4

and � = �bm � 0:2. These variations impart little change to the results of the benchmark.

The higher value of � causes a fall in the percentage of 
 falling out of bounds.

Next, we modify the benchmark to allow the �xed e¤ect to be correlated with the exoge-

nous variables. We set ci = b!;T (!�x
bm
i + (1 � !)cbmi ), where �xbmi = 1

T

PT
t=1 x

bm
it and cbmi is
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the benchmark �xed e¤ect, for ! = 0:25; 0:50; 0:75. b!;T is chosen so that �� is equal to the

benchmark value. This has little or no e¤ect on the results.

We also consider the e¤ect of cross-sectional heterogeneity in xit by modifying the bench-

mark exogenous process to, xit = h(�i + �ij"itj), where �i � U(0; 1), �2i � �22, and "it �

N(0; 1). We set h = 0:52444 to match the value of �� in the benchmark model. We �nd

that the results for the estimates of � are not much a¤ected by the heterogeneity in the xit

processes. The results for �, on the other hand, have higher variance, bias, and RMSE than

the results obtained under the benchmark model. The same also applies to size and power

where under heterogeneity we observe a deterioration in size and power as compared to the

benchmark case.

We then consider the e¤ect of autocorrelation in the exogenous variables on the results. In

this case we modify the benchmark exogenous process to xit = j0:1� it+dT+0:2tj, where � i is a

Gaussian AR(1) with autoregressive coe¢ cient 0.5, variance 1, and independently distributed

across i. ci are generated as in the benchmark case. The parameters are calibrated by

simulation to produce an expected proportion of 1�s of ��bm in populations of size N = 10000.

We �nd that autocrrelation in the covariates has no signi�cant e¤ect on the results for �.

However, the variance, bias, and RMSE of b� are all higher than in the benchmark. Size
also deteriorates with autocorrelation, with power being signi�cantly lower than under the

benchmark case.
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5.2 GMM versus CMLE

In this subsection we report comparative results for GMM and CMLE estimation methods

for � with � = 0. Recall that CMLE method is not applicable if � 6= 0. GMM estimation

uses the following moment conditions,

E(eit) = 0; t = 3; : : : ; T;

E(yiseit) = 0; t = 3; : : : ; T; s = 1; : : : ; t� 2:

The CMLE procedure is described in 3.3.

The results for bias and RMSE are summarized in Tables 6 and 7, and for size and power

in Tables 8 and 9. In terms of RMSE, GMM outperforms CMLE for all values of T under

consideration (T = 3; 4; 6,8), although for T = 6 and 8 GMM shows a higher degree of bias

than CMLE. In terms of size, CMLE does better than GMM, and matches the nominal size

for all values of T , whilst GMM tends to over-reject when T > 6. But generally GMM

outperforms CMLE in terms of power when the sizes are comparable.

Table 6. Small Samples Results for CMLE Estimates of � when � = 0.?

TnN 250 500 1000 2500 5000 10000

3 Variance 0.1000 0.0484 0.0237 0.0093 0.0044 0.0024

Bias 0.0300 0.0150 0.0107 0.0031 0.0025 0.0006

RMSE 0.3176 0.2205 0.1543 0.0966 0.0666 0.0487

4 Variance 0.0477 0.0230 0.0116 0.0050 0.0022 0.0011

Bias 0.0078 0.0034 0.0052 0.0017 -0.0009 -0.0008

RMSE 0.2186 0.1518 0.1077 0.0706 0.0474 0.0336

6 Variance 0.0300 0.0130 0.0064 0.0026 0.0013 0.0006

Bias -0.0100 -0.0031 -0.0039 -0.0007 0.0003 -0.0005

RMSE 0.1600 0.1141 0.0804 0.0512 0.0357 0.0255

8 Variance 0.0203 0.0105 0.0055 0.0020 0.0010 0.0005

Bias -0.0019 0.0009 -0.0008 -0.0004 -0.0006 0.0001

RMSE 0.1427 0.1026 0.0745 0.0447 0.0318 0.0230

? � = 0:5, � = 0, ci � jN(0; 0:322)j.
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Table 7. Small Samples Results for GMM Estimates of � when � = 0.?

TnN 250 500 1000 2500 5000 10000

3 Variance 0.0640 0.0325 0.0170 0.0069 0.0032 0.0017

Bias 0.0301 0.0130 0.0055 0.0005 0.0001 0.0007

RMSE 0.2427 0.1774 0.1301 0.0828 0.0567 0.0412

4 Variance 0.0264 0.0135 0.0067 0.0027 0.0012 0.0006

Bias -0.0121 -0.0045 -0.0022 -0.0015 -0.0017 -0.0001

RMSE 0.1599 0.1161 0.0818 0.0522 0.0353 0.0249

6 Variance 0.0115 0.0054 0.0026 0.0010 0.0005 0.0002

Bias -0.0288 -0.0121 -0.0057 -0.0014 -0.0005 -0.0006

RMSE 0.1105 0.0747 0.0515 0.0318 0.0217 0.0156

8 Variance 0.0080 0.0036 0.0015 0.0006 0.0003 0.0002

Bias -0.0514 -0.0174 -0.0052 -0.0018 -0.0005 0.0000

RMSE 0.1030 0.0622 0.0394 0.0249 0.0177 0.0127

? � = 0:5, � = 0, ci � jN(0; 0:322)j.
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Table 8. Small Sample Size and Power Results for CMLE Estimation of � when � = 0.?

TnN 250 500 1000 2500 5000 10000

3 Size H�
0 0.0445 0.0440 0.0520 0.0410 0.0430 0.0540

Power Hy
a 0.0640 0.0730 0.0915 0.1750 0.2895 0.5475

Power Hz
b 0.0455 0.0600 0.0900 0.1715 0.3100 0.5320

4 Size H0 0.0525 0.0510 0.0560 0.0600 0.0540 0.0510

Power Ha 0.0800 0.0970 0.1490 0.3155 0.5650 0.8450

Power Hb 0.0625 0.0900 0.1545 0.3265 0.5365 0.8430

6 Size H0 0.0500 0.0475 0.0500 0.0525 0.0475 0.0535

Power Ha 0.1000 0.1530 0.2640 0.4995 0.7935 0.9765

Power Hb 0.0900 0.1415 0.2230 0.4990 0.7990 0.9725

8 Size H0 0.0455 0.0520 0.0615 0.0485 0.0445 0.0540

Power Ha 0.1090 0.1600 0.3000 0.6010 0.8710 0.9920

Power Hb 0.1050 0.1790 0.2890 0.6025 0.8810 0.9905

? � = 0:5, � = 0, ci � jN(0; 0:322)j.
� H0 : � = 0:5. y Ha : � = 0:6. z Hb : � = 0:4 (5% level).
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Table 9. Small Sample Size and Power Results for GMM Estimation of � when � = 0.?

TnN 250 500 1000 2500 5000 10000

3 Size H�
0 0.0496 0.0509 0.0533 0.0510 0.0485 0.0515

Power Hy
a 0.0926 0.1081 0.1523 0.2646 0.4405 0.6915

Power Hz
b 0.0380 0.0566 0.1016 0.2216 0.3895 0.7025

4 Size H0 0.0712 0.0607 0.0595 0.0650 0.0545 0.0480

Power Ha 0.1761 0.2007 0.2890 0.5305 0.8090 0.9755

Power Hb 0.0577 0.1069 0.2150 0.4840 0.8130 0.9815

6 Size H0 0.1097 0.0795 0.0690 0.0545 0.0425 0.0420

Power Ha 0.3179 0.3865 0.5750 0.8795 0.9930 1.0000

Power Hb 0.1268 0.2310 0.4640 0.8840 0.9960 1.0000

8 Size H0 0.1989 0.1055 0.0615 0.0490 0.0580 0.0540

Power Ha 0.5746 0.5915 0.7735 0.9785 1.0000 1.0000

Power Hb 0.1643 0.3490 0.7035 0.9840 1.0000 1.0000

? � = 0:5, � = 0, ci � jN(0; 0:322)j.
� H0 : � = 0:5. y Ha : � = 0:6. z Hb : � = 0:4 (5% level).

5.3 Reducing the Number of Instruments

In order to address the issue of the large number of instruments, we �x the DGP to the

benchmark speci�cation and limit the number of instruments following �ve di¤erent proce-

dures. (1) The �rst (benchmark) procedure uses all available linear instruments as detailed

in subsection 5.1. Procedure (2) restricts the set of instruments, following the method pro-

posed by Mehrho¤ (2009), by utilizing only the few largest principal components (PC) of the

instruments in estimation. The number of principal components is selected so that at least

95% of the total variation of the instruments under consideration is explained by the PC�s.10

Procedure (3) reduces the number of instruments to two lags of yit and xit; as well as the

10We also tried setting the threshold at 90%. This gets rid of too much information when T is small and

does not help much for large T so it does not substantively change the main results of our experiments.

32



constant. That is, it utilizes the following 5T � 11 moment conditions,

E(eit) = 0; E(xiteit) = 0; E(xi;t�1eit) = 0; for t = 3; 4; :::; T ;

E(yit�2eit) = 0; for t = 3; 4; :::; T ;

E(yit�3eit) = 0, for t = 4; 5; :::; T:

Procedure (4) applies Mehrho¤�s method to the reduced set of instruments under (3). Finally,

procedure (5) reduces the number of instruments further by using two lags of yit, and only

one lag of xit, as well as the constant, bringing the total number of instruments to 4T � 9.

Tables 10 and 11 report the results for T = 4; 6; 8 and N = 250; 500; 2500, as these were

the sample sizes for which the GMM estimator performed worse. Reducing the number of

instruments typically improves bias and size at a small cost to variance and RMSE. The

bene�t of the reduction in the number of instruments is most pronounced for T = 6; 8, where

bias and size are signi�cantly improved. In terms of variance, procedure (1) is optimal.

Procedures (4) and (5) have the lowest bias. Procedure (2) is best for the RMSE of b�.
For the RMSE of b�, there is no clear winner among the alternative instrument selection
procedures, although procedure (5) performs best in terms of RMSE for T = 8. Procedures

(4) and (5) have the best size properties. We conclude that the GMM estimator performs

well for large T when the number of instruments is reduced by one of the methods employed

here.

5.4 Average Partial E¤ects

To provide additional support for our choice of the exponential speci�cation, here we present

evidence of its ability to reproduce the average partial e¤ects of a dynamic logistic model.

Suppose the DGP is given by the logistic speci�cation

Pr(yit = 1 jyi;t�1; cil; xit ) =
e�lyi;t�1+�lxit+cil

1 + e�lyi;t�1+�lxit+cil
;

Then the marginal e¤ect for continuous xit is

@P [yit = 1jyi;t�1; cil; xit]
@xit

=
�le

�lyi;t�1+�lxit+cil

(1 + e�lyi;t�1+�lxit+cil)2
:
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On the other hand, the marginal e¤ect of yi;t�1 is given as

P [yit = 1 jyi;t�1 = 1; cil; xit ]�P [yit = 1 jyi;t�1 = 0; cil; xit ] =
�le

�l+�lxit+cil

(1 + e�l+�lxit+cil)2
� �le

�lxit+cil

(1 + e�lxit+cil)2
:

For a particular xit, say the average �x = 1
NT

P
i;t xit, we may be interested in the average mar-

ginal e¤ect over the entire population (i.e. averaging over the �xed e¤ects). These quantities

may be calculated as,

APEX (yi;t�1 = 1; xit = �x) = e�
0
l�x+�l�l lim

N!1

1

N

NX
i=1

ecil

(1 + ecil+�l�x+�l)2
;

APEX (yi;t�1 = 0; xit = �x) = e�l�x�l lim
N!1

1

N

NX
i=1

ecil

(1 + ecil+�l�x)2
;

APEY (xit = �x) = e�l�x (e�l � 1) lim
N!1

1

N

NX
i=1

�
ecil

(1 + ecil+�l�x) (1 + ecil+�l+�l�x)

�
;

where the averages over i are obtained by drawing from the distribution of cil. That is, the

average partial e¤ects are obtained by stochastic integration over cil.

Now suppose that data from this logistic DGP are used to estimate �e and �e using the

GMM procedure we have outlined above (i.e. based on the exponential speci�cation). The

question is, how well do these estimates reproduce the (true) average partial e¤ects given

above for the logistic speci�cation? To answer this question, we must �rst specify how the

�xed e¤ects of the exponential speci�cation are to be computed. We do this by deriving �xed

e¤ects under exponential speci�cation, cie, in terms of the �xed e¤ects of the true logistic

speci�cation, cil, by matching the transitions from 0 to 1 given xit = �xi =
1
T

P
t xit across

the two speci�ciations, namely11

1� e�cie��0e�xi = ecil+�
0
l�xi

1 + ecil+�
0
l�xi
;

which yields

e�cie =
e�

0
e�xi

1 + ecil+�
0
l�xi
:

11It is also possible to match the transitions from 1 to 1 given xit = �xi. This gives slightly di¤erent

exponential �xed e¤ects. But it does not change the general conclusion of this section. The results that

condition on �xi are available from the authors on request.

36



We may then estimate the average partial e¤ects as

\APEX (yi;t�1 = 1; xit = �x) = b�ee� b�e�b�e�x lim
N!1

1

N

NX
i=1

e�̂e�xi

1 + ecil+�l�xi

\APEX (yi;t�1 = 0; xit = �x) = b�ee�b�e�x lim
N!1

1

N

NX
i=1

e�̂e�xi

1 + ecil+�l�xi

\APEY (xit = �x) =e��̂e�x(1� e��̂e) lim
N!1

1

N

NX
i=1

e�̂e�xi

1 + ecil+�l�xi
:

The benchmark APE results are computed under the logistics model employed by Honoré

and Kyriazidou (2000), where �l = 0:5, �l = 1, xit � N(0; �2=3), and cil � N(0; 1). To avoid

any complications with initial conditions, the data are burned in for the �rst 100 periods in

each replication, while being careful to keep xit �xed across replications. The simulations are

based on N = 1000, T = 3, and each experiment is repeated 2000 times to obtain the mean,

variance, bias, and RMSE of the APEs. We vary the DGP and the data sets in a variety of

ways (see Table 12).

The results indicate that the average partial e¤ects obtained using the exponential spec-

i�cation, with matched �xed e¤ects as explained above, are close to the true average partial

e¤ects. In particular, the \APEY is typically quite close to APEY . This provides further

evidence of the robustness of the exponential speci�cation in that it yields sensible estimates

for the average partial e¤ects even when the exponential distribution is misspeci�ed.

6 Conclusion

In this paper we consider identi�cation and estimation of dynamic binary response panel data

models. We develop an exponential class of models and derive CML and GMM estimators

that enable us to eliminate the unobserved heterogeneity and at the same time to identify the

model parameters. The resulting estimators we propose are consistent and root-N asymp-

totically normal. As a result, our approach is simple, general, and o¤ers several advantages

over the existing estimators that will be particularly appealing for analyzing microeconomic

panel data from a dynamic perspective.
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As is well known, it is important to use a dynamic binary choice speci�cation to model

the state dependence in a panel setting because of the model�s ability to distinguish the state

dependence from the unobserved heterogeneity among other useful features. The dynamic

binary choice models, however, have been rarely used in analyzing microeconomic data,

mainly due to the problems associated with the initial condition in combination with the

incidental parameter problems. Our approach based on the exponential speci�cation resolves

the incidental parameter problem and the resulting estimators can be readily implemented,

and also have good asymptotic properties.

Both the GMM and the CML estimators performs well under a variety of scenarios.

Our results show that the estimators are robust to changes in the variance of the �xed

e¤ects, di¤erent values of � and �, correlation between the �xed e¤ects and the regressors,

heterogeneity in the regressors across the di¤erent units, and autocorrelation in the regressors.

In each of the experiments, we considered bias, variance, RMSE, size, and power of the GMM

estimators. GMM worked quite well for relatively small sample sizes. We also tested the

CMLE and compared its performance to the GMM estimator. Interestingly, GMM emerges

as a better estimator than CMLE for small values of T (when � = 0 and both estimators can

be computed). In the case of large T we experimented with the moment reduction techniques

of Mehrho¤ (2009) �nding signi�cant improvements in performance in small samples. We

also presented evidence of the ability of the exponential speci�cation to match the average

partial e¤ects from a logistic dynamic binary choice model.

7 Appendix

7.1 Proof of the Uniqueness of the Exponential Distribution

Proposition A1: Suppose F is a di¤erentiable cumulative distribution function. If there exist

functions G and H such that F (x + y) � F (x) = G(y)H(x) then F = 1 � C exp(�Dx) for

some positive constants C and D.

Proof: Assume without loss of generality that sgn(G(y)) = sgn(y) and H is non�negative.
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Now take the limit as y !1. Then A = limy!1G(y) exists and 1� F (x) = AH(x). Since

F is a cumulative distribution function, it is non�constant and so A 6= 0. In particular, the

non�negativity of G over positive real numbers implies that A > 0. This now implies that

F (x+ y)� F (x) = A�1(1� F (x))G(y). Divide both sides by y and take the limit as y ! 0.

The di¤erentiability of F implies that B = limy!0G(y)=y exists and F 0(x) = B
A
(1 � F (x)).

Since F is non�decreasing and bounded by 0 and 1, the sign of B cannot be negative. Since

F is also non�constant B 6= 0 so we must have B > 0. The �nal step is to note that we have

arrived at a di¤erential equation in x that can be solved as, F (x) = 1�C exp(�B
A
x) for some

constant C. Again, since F is a cumulative distribution function, we must have C > 0.

7.2 GMM in the case where � = 0 and T = 3

In the case where T = 3 we only have one moment condition with which to estimate 
 (or

�), namely

NX
i=1

ei3(
)yi1 =
NX
i=1

yi1

�
(yi3 � 
yi2) (1� 
yi1)

(1� 
yi2)
� (yi2 � 
yi1)

�
= 0: (17)

Note that ei3(
) does not depend on 
 if yi1+yi2+yi3 = 0 or= 3. Consider now the case where

yi1+ yi2+ yi3 = 2, and note further that observations where yi1 = 0 and yi2 = yi3 = 1 can be

dropped since yi1ei3(
) = 0. The other remaining cases are (yi1; yi2; yi3) = (1; 0; 0); (1; 1; 0);

and (1; 0; 1). Denote the number of cross section units associated with these patterns of

observations over time by n100; n110 and n101, respectively. Then the moment condition in 


can be written as

n100
̂GMM;1 � n110 + n101 = 0:

Hence, if n100 6= 0


̂GMM;1 =
n110 � n101
n100

:

An estimate for � can be obtained if n110 < n100 + n101.

In the case where n100 = 0, the above GMM estimator is not valid. But sinceE(eit jyi;t�s ) =

0; we also have unconditionally that E(eit) = 0. This suggests the following sample moment
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condition
NX
i=1

�
(yi3 � 
yi2) (1� 
yi1)

(1� 
yi2)
� (yi2 � 
yi1)

�
= 0: (18)

Once again we only need to consider observations where yi1+yi2+yi3 = 1 or yi1+yi2+yi3 = 2.

Then we have

n100
 �
1

1� 
n010 + n001 + n101 � n110 = 0; (19)

�n100
2 + (n100 + n110 � n001 � n101)
 + n001 + n101 � n110 � n010 = 0: (20)

Preliminary analysis suggests that the solutions to (20) could be complex, and when real

could fall outside the range [0; 1); and hence might not yield sensible estimates for �. It is,

therefore, more meaningful to use the unconditional moment condition only when n100 = 0.

In this case the solution to the unconditional moment condition is unique and is given by

(obtained by setting n100 in (19) zero)


̂GMM;2 = 1�
n101

n001 + n101 � n110
:

Hence, in general we could estimate 
 by


̂GMM =
n110 � n101
n100

, if n100 6= 0;

= 1� n101
n001 + n101 � n110

, if n100 = 0:

7.3 CMLE in the Case where � = 0 and T = 3

Suppose we have observations yi1; yi2 and yi3 on N individual units. Denote the set of all

observations such that yi1 + yi2 + yi3 = 1 by B and de�ne the sets

A1 = fyi1 = 1; yi2 = 0; yi3 = 0g ;

A2 = fyi1 = 0; yi2 = 1; yi3 = 0g ;

A3 = fyi1 = 0; yi2 = 0; yi3 = 1g :
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It is now easily seen that (given the Markov property and (3))

Pr(A1) = Pr(yi1 = 1)Pr(yi2 = 0 jyi1 = 1)Pr(yi3 = 0 jyi2 = 0)

= ��i [1� F (ci + �)] [1� F (ci)]

=
F (ci) [1� F (ci + �)] [1� F (ci)]

1� F (ci + �) + F (ci)
:

Similarly

Pr(A2) =
F (ci) [1� F (ci + �)]2

1� F (ci + �) + F (ci)
;

Pr(A3) =
[1� F (ci + �)] [1� F (ci)]F (ci)

1� F (ci + �) + F (ci)
;

and

Pr(B) =Pr(A1) + Pr(A2) + Pr(A3):

Also

Pr(Ai) = Pr(Ai \ B) =Pr(B) Pr(Ai jB );

and

Pr(Ai jB ) =
Pr(Ai)
Pr(B) for i = 1; 2; 3:

Hence

Pr(A1 jB ) =
[1� F (ci)]

[1� F (ci + �)] + 2 [1� F (ci)]
;

Pr(A2 jB ) =
[1� F (ci + �)]

[1� F (ci + �)] + 2 [1� F (ci)]
;

Pr(A3 jB ) = 1� Pr(A1 jB )� Pr(A2 jB ):

In the exponential case, 1� F (ci) = exp(�ci) and 1� F (ci + �) = exp(�ci � �), and

Pr(A1 jB ) =
1

exp(��) + 2 ;

Pr(A2 jB ) =
exp(��)

exp(��) + 2 ;

Pr(A3 jB ) =
1

exp(��) + 2 ;
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which do not depend on the incidental parameters. It is clear that conditioning on yi1+yi2+

yi3 = 0 and yi1 + yi2 + yi3 = 3 will not help. It only remains to consider the case where the

conditioning set is yi1 + yi2 + yi3 = 2. Denoting

C1 = fyi1 = 1; yi2 = 1; yi3 = 0g ;

C2 = fyi1 = 0; yi2 = 1; yi3 = 1g ;

C3 = fyi1 = 1; yi2 = 0; yi3 = 1g ;

D = C1 [ C2 [ C3 = fyi1 + yi2 + yi3 = 2g

It is easily seen that

Pr(C1 jD ) =
F (�+ ci)

2F (�+ ci) + F (ci)
;

Pr(C2 jB ) =
F (�+ ci)

2F (�+ ci) + F (ci)
;

Pr(C3 jB ) =
F (ci)

2F (�+ ci) + F (ci)
:

These conditional probabilities depend on ci even if F (�) has an exponential form. Conse-

quently, the only appropriate conditioning is yi1 + yi2 + yi3 = 1.

The conditional likelihood function for the exponential model is given by

Lc(�) =
Y
i2B

�
1

exp(��) + 2

�yi1+yi3Y
i2B

�
exp(��)

exp(��) + 2

�yi2
=

Y
i2B

�
1

exp(��) + 2

�yi1+yi2+yi3Y
i2B
(exp(��))yi2 ;

and

lnLc(�) = �
X
i2B
ln [exp(��) + 2]� �

X
i2B
yi2 (21)

= � ln [exp(��) + 2]
NX
i=1

I(yi1 + yi2 + yi3 = 1)� �
NX
i=1

yi2I(yi1 + yi2 + yi3 = 1);

where I(A) = 1 is A is true and I(A) = 0 if A is not true. The conditional log-likelihood

function can be written more compactly as

lnLc(�) = nB f� ln [exp(��) + 2]� � p̂g
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where nB =
PN

i=1 I(yi1 + yi2 + yi3 = 1), and

p̂ =

PN
i=1 yi2I(yi1 + yi2 + yi3 = 1)PN
i=1 I(yi1 + yi2 + yi3 = 1)

=

PN
i=1 I(yi1 = 0; yi2 = 1; yi3 = 0)PN

i=1 I(yi1 + yi2 + yi3 = 1)
:

Also since
@ lnLc(�)

@�
= nB

�
exp(��)

2 + exp(��) � p̂

�
then the conditional maximum likelihood estimator of � is given by

�̂ = � ln
�
2p̂

1� p̂

�
: (22)

The standard error for �̂ can be obtained using the second derivative of the conditional

log-likelihood function. We have

V ar(�̂) =
1

nB

[2 + exp(��)]2

2 exp(��) :

7.4 Proof of Theorem 1

Given assumption (A3)

Pr(yi1 = 1jci) =
1� e�ci

1� e�ci(1� e��0) ;

and it is evident that this choice of initial distribution makes yit stationary conditional on ci.

Thus ��i = Pr(yit = 1jci) = Pr(yi1 = 1jci) for t � 1.

Proof. to simplify notation we utilize the following alternative form of eit

eit = e
��yit�1(yit � 1) + 1� yit�1:
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Let the objective function be fi(�) = eityit�2. Then we have

E(e��yit�1(yit � 1)yit�2) = E(E(yit � 1jci; yit�1; yit�2; : : :)e��yit�1yit�2)

= �E(e�ci��0yit�1e��yit�1yit�2)

= �E(e�ci�(�0��)yit�1��yit�2yit�2)

= �E(E(e�(�0��)yit�1 jci; yit�2; yit�3; : : :)e�ci��yit�2yit�2)

= �E((e�(�0��)(1� e�ci��0yit�2) + e�ci��0yit�2)e�ci��yit�2yit�2)

= �E(e�ci�(�0��)��yit�2yit�2 � e�2ci�(�0��)�(�+�0)yit�2yit�2

+ e�2ci�(�+�0)yit�2yit�2)

= �e��0E(e�ci��i ) + e�2�0E(e�2ci��i )� e��0��E(e�2ci��i ):

On the other hand

E((1� yit�1)yit�2) = E(E(1� yit�1jci; yit�2; yit�3; : : :)yit�2)

= E(e�ci��0yit�2yit�2)

= e��0E(e�ci��i ):

Summing up we obtain

Efi(�) = (e
��0 � e��)e��0E(e�2ci��i ):

Now 0 � E(e�2ci��i ) � 1 and is equal to zero if and only if ci is almost surely in�nite, which

is ruled out by assumption (A1). Thus Efi(�) is continuous in � and equals zero if and only

if � = �0. This satis�es Assumption 1.1 of Harris and Mátyás (1999).

The derivative is easily obtained as f 0i(�) = e
��yit�1�yit�1(yit � 1)yit�2, which is clearly

continuous and bounded by emax(R) in R. It follows that,

jfi(�)� fi(�0)j � emax(R)j�� �0j;

for all �; �0 2 R and so f is Lipschitz. Corollary 3.1 of Newey (1991), it then follows that

N�1PN
i=1 fi(�) converges uniformly to E(fi(�)). This satis�es Assumption 1.2 of Harris and

Mátyás (1999) and it follows from the their Theorem 1.1 that b
 is consistent.
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The continuity of f 0i(�) satis�es Assumption 1.7 of Harris and Mátyás (1999). f
00
i (�) =

e��yit�1(�yit�1)
2(yit�1)yit�2 is bounded again by emax(R). It follows again from Newey (1991)

that f 0i(�) itself is Lifschitz and by assumption (A5), N
�1PN

i=1 f
0
i(�) converges uniformly to

E(f 0i(�)). By Theorem 4.1.5 of Amemiya (1985), N�1PN
i=1 f

0
i(b�) converges to Ef 0i(�0). This

satis�es Assumption 1.8 of Harris and Mátyás (1999).

Now let i 6= j. By assumption (A2), fi(�) and fj(�) are independent conditional on ci

and cj. Therefore, E(fi(�)fj(�)) = E(E(fi(�)jci; cj)E(fj(�)jci; cj)). Assumption (A2) again

implies that fi(�) is, conditional on ci, independent of cj. Thus E(fi(�)jci; cj) = E(fi(�)jci).

It follows that E(fi(�)fj(�)) = E(E(fi(�)jci)E(fj(�)jcj)). Since E(fi(�0)jci) = 0, we have

that E(fi(�0)fj(�0)) = 0 for i 6= j and so var
�

1p
N

PN
i=1 fi(�0)

�
= 1

N

PN
i=1E(f

2
i (�0)). Thus

assumption (A6) implies the last necessary assumption of Harris and Mátyás (1999), their

assumption 1.9.

7.5 Proof of Proposition 1

Choose ci;e and �e such that ci;e = ��0exi� log(1�F (�0xi+ ci)), and �e = log(1�F (�0xi+

ci)) � log(1 � F (� + �0xi + ci)) . Then one can verify that Pr(yit = 1 jyi;t�1; ci;e;xi;Me ) =

F (�yi;t�1 + �
0xi + ci) = Pr(yit = 1 jyi;t�1; ci;xi ). Also for �e to be between �1 and 1, it is

equivalent that j log[(1� F (�0xi + ci))=(1� F (�+ �0xi + ci)]j < 1.
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