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Abstract

The policy innovations that followed the recent Great Recession, such as unconventional
monetary policies, prompted renewed interest in the question of how to measure the e¤ective-
ness of such policy interventions. To test policy e¤ectiveness requires a model to construct a
counterfactual for the outcome variable in the absence of the policy intervention and a way to
determine whether the di¤erences between the realised outcome and the model-based counter-
factual outcomes are larger than what could have occurred by chance in the absence of policy
intervention. Pesaran & Smith (2014b) propose tests of policy ine¤ectiveness in the context
of macroeconometric rational expectations dynamic stochastic general equilibrium models.
When we are certain of the speci�cation, estimation of the complete system imposing all the
cross-equation restrictions implied by the full structural model is more e¢ cient. But if the full
model is misspeci�ed, one may obtain more reliable estimates of the counterfactul outcomes
from a parsimonious reduced form policy response equation, which conditions on lagged values,
and on the policy measures and variables known to be invariant to the policy intervention.
We propose policy ine¤ectiveness tests based on such reduced forms and illustrate the tests
with an application to the unconventional monetary policy known as quantitative easing (QE)
adopted in the UK.
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1 Introduction

The Great Recession that followed the �nancial crisis starting in 2007 prompted a range of pol-

icy innovations. These included unconventional monetary policies and increased �scal activism,

through either stimulus or austerity measures depending on the country concerned. These inno-

vations have prompted renewed interest in the question of how one measures the e¤ectiveness of

such policy interventions. To test policy e¤ectiveness requires a model to construct a counterfac-

tual for the outcome variable in the absence of the policy intervention and a way to determine

whether the di¤erence between the realised outcome and the counterfactual outcome is larger

than one would expect by chance. In a companion paper, Pesaran & Smith (2014b), PS, we pro-

pose asymptotic tests for the null hypothesis of policy ine¤ectiveness in the context of complete

systems of macroeconometric dynamic stochastic general equilibrium (DSGE), rational expecta-

tions, RE, models. In this paper we consider testing for the e¤ectiveness of policy using "reduced

form policy response equations" rather than full structural models. We pay particular attention

to the speci�cation of the counterfactual and the role of endogenous and exogenous conditioning

variables. As an illustration, we test for the e¤ectiveness of the unconventional monetary policy

known as quantitative easing (QE) adopted in March 2009 in the UK.

When we are reasonably con�dent in the speci�cation, estimation of the complete system

imposing all the cross-equation restrictions implied by the structural DSGE model yields more

reliable estimates of the counterfactual outcomes as compared to using the reduced form speci�-

cations. However, we are rarely certain of the correct speci�cation for the complete system and if

the full model is misspeci�ed, more robust estimates of the counterfactuals may be obtained from

a reduced form policy response equation for the variable of interest. Since a counterfactual is a

type of forecast, and parsimonious models tend to forecast better, using a small policy model to

construct the counterfactual outcomes might even be preferable to using a large structural models,

where one may be more liable to misspeci�cation of some equations with adverse consequences for

the quality of counterfactual outcomes reliability of the other equations. Accordingly, we propose

tests for policy ine¤ectiveness based on such reduced forms.

As in PS, we consider a policy intervention which takes the form of a change in one or

more of the parameters of a policy rule. The tests are then based on the di¤erences, over a

given policy evaluation horizon, between the post-intervention realizations of the policy target(s)

and associated counterfactual outcomes based on the parameters estimated using data before

the policy intervention. The Lucas Critique is not an issue since the counterfactual, given by

the predictions from the model estimated on pre-intervention data, will embody pre-intervention

parameters while the actual post-intervention outcomes will embody any e¤ect of the change in
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policy, the change in parameters and the consequent change in expectations. The development of

the test does not require knowing the post-intervention parameters.

We are concerned with ex post evaluation of a policy intervention on a single unit (country),

where data are available before and after the intervention. Di¤erent issues are involved in ex ante

policy formulation where post-intervention data are not available and the Lucas Critique could

be an issue since the possible e¤ects of the policy change on parameters and expectations must be

taken into account. We develop tests of policy ine¤ectiveness and derive their asymptotic distri-

butions both when the post-intervention sample is �xed as the pre-intervention sample expands,

and when both samples rise jointly but at di¤erent rates and investigate the power of the tests.

In the case of static reduced forms we also derive an exact test.

The concept of counterfactual used in the development of our proposed test refers to hypothet-

ical outcomes obtained under the null of policy ine¤ectiveness and is, therefore, more narrowly

de�ned than in the literature. The term "counterfactual" has a variety of distinct, though con-

nected, uses in philosophy, history, economics and statistics. In philosophy counterfactual scenar-

ios are often used in the analysis of causality, e.g. Lewis (1973). Pearl (2009) provides an overview

of the concepts and develops an analysis of causality based on structural models. In history coun-

terfactuals are posed by "what if" questions, such as "what would the U.S. economy have been

like in 1890 had there been no railroads?", Fogel (1964). In economics alternative counterfactuals

(hypothetical states of the world) are considered in decision making under uncertainty. In statis-

tics and econometrics counterfactuals are used in medical trials and microeconometric program

evaluations. These uses, whilst connected, are quite distinct and the appropriate de�nition of a

counterfactual crucially depends on the context.

Counterfactuals have been used to examine a range of macroeconometric questions. Abadie

and Gardeazabal (2003) examine the e¤ect of terrorism on the Basque country using a "synthetic

control region" to provide a counterfactual. Pesaran, Smith and Smith (2007) examine what would

have happened to the economies of the UK and the eurozone had the UK joined the euro in 1999,

using "euro" restrictions on a GVAR model to construct counterfactual outcomes. Hsiao, Ching

and Wan (2011) examine the e¤ect on output growth in Hong Kong of political and economic

integration with mainland China, constructing counterfactuals based on predictions from similar

economies. Fagan, Lothian and McNelis (2013) examine whether the Gold Standard was really

destablising, constructing the counterfactual by replacing the pre-1914 US money supply process

with a Taylor rule in a DSGE model.

Whereas there is a large literature on microeconometric policy evaluation that focuses on the

measurement and testing of treatment e¤ects, surveyed, for example, by Imbens and Wooldridge

(2009), there has been less systematic methodological discussion of macroeconometric policy eval-
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uation. The micro and macro issues are rather di¤erent. For instance, the endogeneity and sample

selection bias that arise due to correlated heterogeneity across the units in the micro-treatment

case is not a problem in the macro case when the focus of the policy evaluation is on a single

unit, and the "policy on/policy o¤" comparisons are done over time rather than across units. In

micro terminology, the parameter of interest in the macro cases is the e¤ect of treatment on the

treated: it makes no sense to consider either the e¤ect of Hong Kong joining the euro or of the

UK being integrated with China.

Another recent approach to macro policy evaluation borrows techniques from the micro liter-

ature to obtain an estimate of an average treatment e¤ect. Angrist, Jorda and Kuersteiner (2013,

AJK), drawing on Angrist and Kuersteiner (2011), estimate the e¤ect of monetary policy, while

Jorda and Taylor (2013) use similar procedures to estimate the e¤ect of �scal policy. AJK use

local linear projection type estimators to measure the average e¤ect of policy changes on future

values of the outcome variables (in�ation, industrial production, and unemployment), weighted

inversely by policy propensity scores in a way similar to that used to adjust non-random samples.

Their approach di¤ers from the one proposed in this paper in two important respects. First,

they rely on outcomes averaged across di¤erent (possibly heterogenous) policy episodes whilst we

consider a single policy intervention and average the counterfactual outcomes for the same post

intervention sample. Second, AJK do not use a structural model and their analysis is subject

to the Lucas Critique. Their approach requires that the underlying parameters are invariant to

policy changes, since it is only policy changes within the same regime that are identi�ed in their

framework (see AJK, p.5). In addition, matching estimators of this sort require a lot of data

whereas macroeconometric samples tend to be data-poor relative to microeconometric samples.

This is re�ected in the large con�dence bands AJK report around the measures of their estimated

e¤ects of target rate changes on macro variables.

We use the policy ine¤ectiveness tests to investigate the e¤ects of the QE introduced in the

UK after March 2009 To this end we employ an autoregressive distributed lag (ARDL) equation

in the target variable, output growth (yt) , the policy variable, the spread between long and

short rates (xt), and US and euro area output variables, wt; that we assume to be invariant to

the policy change. We exclude endogenous variables, zt; that could in�uence yt both directly

or through the changes in xt: For instance, it would be wrong to include the exchange rate in

the equation, because if QE was e¤ective in reducing the spread then the exchange rate would

almost certainly have been changed by it and we would have needed to allow for that e¤ect by

considering a separate equation that links the exchange rate to xt. By excluding the exchange rate

from the policy response equation we are in e¤ect replacing the exchange rate by its determinants

The same argument also applies to any other endogenous variable which is a¤ected by the policy
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change. This is the reverse of the usual misspeci�cation argument, since we wish to attribute to

xt the e¤ects that are transmitted through zt: It is not a question of ceteris paribus, other things

being equal, held constant, but mutatis mutandis, changing what needs to be changed.1 We �nd

that a 100 basis points reduction in the spread (due to the QE) has an impact e¤ect on output

growth of about one percentage point, but the policy impact is very quickly reversed.

The rest of the paper is organized as follows: Section 2 sets up a DSGE model with exoge-

nous variables and derives its solution which is the basis for the reduced form policy response

equations we estimate. Section 3 develops the policy ine¤ectiveness tests. Section 4 considers the

empirical application to investigate the e¤ectiveness of the QE in the UK. Section 5 ends with

some concluding remarks. The more technical derivations are given in the Appendix.

2 Derivation of the reduced form policy response equation

Following PS, we consider a standard rational expectations (RE) model, with exogenous variables.

We suppose that the target variable, yt; is a¤ected directly by a vector of variables, zt, and

assume that the (kz + 1)�1 vector qt = (yt; z0t)0 are the endogenous variables, which may include

policy variables. Endogenous policy rules, such as the Taylor rule, follow closed loop control with

feedback, but there may be open loop control without feedbacks, such as �xed money supply rules,

where the policy variable xt is exogenous. There may also be non-policy exogenous variables, wt,

such as global variables that a¤ect zt and/or yt but are invariant to changes in the policy variables,

xt.

The exogenous policy and non-policy variables are included in st = (xt;w
0
t)
0, a (1 + kw) � 1

vector. The RE model is

A0qt = A1Et(qt+1) +A2qt�1 +A3st + ut; (1)

and suppose, for illustration, that the forcing variables, st, follow the VAR(1) speci�cation

st = Rst�1 + �t; (2)

where

R =

�
� 0
0 Rw

�
; �t =

�
�xt
�wt

�
;

so that the wt process is invariant to changes in xt: The errors, ut and �t are assumed to be

serially and cross sectionally uncorrelated, with zero means and constant variances, �u, and ��,

respectively.

Initially we abstract from parameter estimation uncertainty and denote the vector of para-

meters by �; which includes a = vec(A0;A1;A2;A3), and and the parameters of the processes

1A similar argument is developed in a continuous time regression context in Pesaran and Smith (2014a).
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generating the exogenous variables, � = (�; vec(Rw)0)0:We assume that �u and �� remain �xed.

The parameter vector, �; is composed of a set of policy parameters, �p; and a set of structural

parameters, �s; that are invariant to changes in �p: A policy intervention is de�ned in terms of a

change in one or more elements of �p. The null hypothesis of our test will be that the intervention

was ine¤ective, there was no change in policy parameters. We assume that the model is known

by economic agents, the announcement and implementation of the intervention are credible, and

no further change is expected. We suppose that the policy intervention occurs at the end of time

t = T0, and we have pre-intervention sample that covers the period t =M;M + 1; :::; T0, and the

post-intervention sample for t = T0+1; T0+2; ::; T0+H. Therefore, the post-intervention horizon

is H and the sample size for estimation of the pre-intervention parameters is T = T0 �M + 1:

This notation allows us to increase the sample size T (by letting M ! �1), while keeping the

time of intervention, T0, �xed.

Initially, consider the case where there are no dynamics, namely A2 = 0; and all eigenvalues

of A�10 A1 lie within the unit circle. Then the unique solution of (1) is given by

A0qt = G(�)st + ut; (3)

where, suppressing the dependence on �,

vec(G) =
�
(Ikw+1
Ikz+1)�

�
R0
A1A�10

���1
vec (A3) :

Equation (3) is the structural form of a standard simultaneous equations model. The reduced

form is

qt = A
�1
0 G(�)st +A

�1
0 ut (4)

= � (�) st + �(�)ut:

If the intervention at T0 is fully understood and expectations adjust immediately, then the process

switches from

qt = �(�
0)st + �(�

0)ut; t =M;M + 1;M + 2; :::; T0;

to

qt = �(�
1)st + �(�

1)ut; t = T0 + 1; T0 + 2; :::; T0 +H:

In the general case, A2 6= 0; the RE solution is

qt = � (�)qt�1 +	x (�)xt +	w (�)wt + �(�)ut; (5)

where � contains a = vec(A0;A1;A2;A3) and � = (�; vec(Rw)0)0.
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3 Tests of policy ine¤ectiveness using reduced forms

Section 2 assumed a fully speci�ed RE structural models. When we are certain of the speci�ca-

tion, estimation of the complete system imposing all the cross-equation restrictions implied by

the structural RE model is more e¢ cient. In practice, we are rarely certain about the speci�ca-

tion of the complete model, and given the consequences of misspeci�cation transmitting between

equations, one may obtain more robust estimates of the counterfactuals from reduced form, policy

response, single equation. estimates. We �rst consider the static case. While dynamics are likely

to be important in practice, the static case illuminates certain aspects of the procedure and en-

ables us to derive an exact test that allows for parameter estimation uncertainty. For simplicity,

we shall assume that the policy change is formulated in terms of changes in �, the parameter of the

policy equation xt. Also to simplify the exposition we abstract from the policy implementation

errors, �xt.

3.1 The static case

In the static case, using (3), the reduced form equation is given by

qt = � (�) st + "t; (6)

where "t = �(�)ut: Recalling that yt is the �rst element of qt, we obtain the following policy

response equation

yt = �
0
y (�) st + "yt = �yx (�)xt + �

0
yw (�)wt + "yt; (7)

which does not depend on zt. But it is clear that the parameters of (7) depend on the structural

and policy coe¢ cients.

The policy intervention, changing �0 to �1; will cause the policy response equation to exhibit

a break at time T0 + 1:

yt = �yx(�
0)xt + �

0
yw(�

0)wt + "yt; t =M;M + 1;M + 2; :::; T0; (8)

yt = �yx(�
1)xt + �

0
yw(�

1)wt + "yt; t = T0 + 1; T0 + 2; :::; T0 +H: (9)

In the static case the policy response equation is given by (8). The counterfactual outcomes

of yt under the joint null hypothesis of (i) no policy intervention and (ii) no change in the other

parameters is just the H period forecast made at time T0 conditional on x0T0+h; what we would

expect policy to be if the policy parameter was �0; and the realised wT+h

y0T0+h = �yx(�
0)x0T0+h + �

0
yw(�

0)wT0+h; h = 1; 2; :::;H: (10)

The policy e¤ects are dT0+h = yT0+h � y0T0+h; and while we need to know �i(�
0), i = yx; yw; to

construct y0T0+h and dT0+h we do not need to know �i(�
1).
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It is instructive to decompose the policy e¤ects into the part due to the change in the policy

variable and the part that arises due to the policy-induced parameter changes. Using (9) and (10)

we have

dT0+h =
�
�yx(�

1)xT0+h � �yx(�0)x0T0+h
�
+
�
�yw(�

1)� �yw(�0)
�0
wT0+h + vy;T0+h

= �0yx
�
xT0+h � x0T0+h

�
+
�
�1ys � �0ys

�0
sT0+h + vy;T0+h;

for h = 1; 2; :::;H, where (as before) st = (xt;w0t)
0, �0yx = �yx(�

0), and �iys =
�
�yx(�

i); �0yw(�
i)
�0,

for i = 0; 1. The �rst term captures the e¤ects of the change in the policy variable, xt, whilst the

second term captures the e¤ects of the policy-induced parameter changes. Only the �rst term

would be present in the case of ad hoc policy changes that do not induce parameter change in

the policy response equation. In either case, the pure policy e¤ect is diluted due to the post-

intervention random errors, vy;T0+h. But we can reduce the importance of such random in�uences

by using the mean policy e¤ect, dH = H�1PH
h=1 dT0+h: The relative importance of the random

errors, vy;T0+h, can also be reduced by using additional policy invariant variables, wt, when

available.

In the static case it is possible to develop an exact test of policy ine¤ectiveness. Suppose that

we have kx policy variables, xt, and let X(0) be the T � kx matrix of observations on the policy

variables before the intervention, and let X(1) be the H � kx matrix of observations (realized

values) on xt after the intervention. Similarly, letW(0) to be the T � kw matrix of observations

on the policy invariant variables, wt, pre-intervention and let W(1) be the H � kw matrix of

observations on wt post-intervention. Initially, we assume that H is �xed.

The vector of policy e¤ects, d(1) = (dT0+1; dT0+2; :::; dT0+H)
0, can be written as

d(1) = �(1) + v(1); (11)

where, v(1) = (vy;T0+1; vy;T0+2; :::; vy;T0+H)
0;

�(1) =
�
X(1) �X0(1)

�
�0yx + S(1)

�
�1ys � �0ys

�
(12)

= S(1)�
1
ys � S0(1)�

0
ys

S(1) =
�
X(1);W(1)

�
, S0(1) =

�
X0(1);W(1)

�
,and X0(1) is the H � kx matrix of observations on the

counterfactual values of xt over the post-intervention sample, namely the values of xt that would

have materialized in the absence of the policy change. For example, in the case of the an AR(1)

policy rule, xt = �xt�1 + �xt, we have X0(1) =
h
�0xT0 ;

�
�0
�2
xT0 ; :::;

�
�0
�H
xT0

i0
, where �0 can be

estimated using the pre-intervention sample. In what follows we assume that X0(1) is given.
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We now consider two di¤erent speci�cations of yt for t = T0+1; T0+2; :::; T0+H: (i) realized

values of yt post-intervention, de�ned by y(1) = (yT0+1; yT0+2; :::; yT0+H)
0, and (ii) the associated

estimated counterfactual, ŷ0(1) = (ŷ
0
T0+1

; ŷ0T0+2; :::; ŷ
0
T0+H

)0. Then an estimate of d(1) can now be

written as

d̂(1) = y(1) � ŷ0(1); (13)

where

ŷ0(1) = X
0
(1)�̂

0
yx +W(1)�̂

0
yw; (14)

and �̂0ys =
�
�̂00yx; �̂

00
yw

�0 are the least squares estimates of the coe¢ cients in the regression of yt on
st = (x

0
t;w

0
t)
0 ; using the pre-intervention sample. More speci�cally,

�̂0ys =
�
S0(0)S(0)

��1
S0(0)y(0); (15)

where y(0) = (yM ; yM+1; :::; yT0)
0, and S(0) =

�
X(0);W(0)

�
is the T � (kx + kw) matrix of pre-

intervention observations on st. It is useful also to note that ŷ0(1) can be equivalently computed

as

ŷ0(1) =
�
X0(1) �X(1)

�
�̂0yx + S(1)�̂

0
ys; (16)

= S0(1)�̂
0
ys;

which decomposes the counterfactual outcomes to a part due to the change in the policy variables,

and the ex ante forecasts based on pre-intervention parameter estimates.

Di¤erent tests of policy ine¤ectiveness can now be derived by testing the statistical signi�cance

of the individual elements of d̂(1), or a linear combination of its elements. To this end we suppose

that all the classical assumptions apply to the policy response equation during pre-intervention

sample (t = M;M + 1; :::; T0), namely st and vyt0 are uncorrelated for all t and t0, and vyt are

serially uncorrelated with a constant variance, �2v . Post-intervention, we assume the same policy

response equation holds, albeit with di¤erent parameter values, namely

y(1) = S(1)�
1
ys + v(1); (17)

W(1) and v = (v
0
(0);v

0
(1))

0 are uncorrelated, and E
�
v(1)v

0
(0)

�
= 0; E

�
v(0)v

0
(0)

�
= �20vIT ; and

E
�
v(1)v

0
(1)

�
= �21vIH . Note that we do not need to make any assumptions concerning the

realized values of xt, over the post-intervention sample.

Using (16) and (17) in (13) and after some simpli�cations we have

d̂(1) = �(1) + v(1) � �(1); (18)

where

�(1) = S
0
(1)

�
�̂0ys � �0ys

�
(19)
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and S0(1) =
�
X0(1);W(1)

�
, which di¤ers from S(1) in that the post-intervention realizations of xt;

namely X(1), are replaced by their counterfactual values, X0(1).

The implicit null of the policy ine¤ectiveness test is given by

Hs;0 : �(1) = 0, �
2
0v � �21v = 0: (20)

The latter condition, �20v = �21v, is required in the implementation of the test. Under H0, and

assuming that the above classical assumptions hold we have

d̂(1) = v(1) � S0(1)
�
S0(0)S(0)

��1
S0(0)v(0); (21)

and it readily follows that d̂(1) s (0;
d), where


d = �
2
0v

�
IH + S

0
(1)

�
S0(0)S(0)

��1
S00(1)

�
:

A test can now be based on all the individual H elements of d̂(1) which yields the joint test

statistic

�2d;H =

d̂0(1)

�
IH + S

0
(1)

�
S0(0)S(0)

��1
S00(1)

��1
d̂(1)

�20v
: (22)

Under the policy ine¤ectiveness hypothesis, H0, and assuming that v = (v
0
(0);v

0
(1))

0 is normally

distributed then �2d;H is distributed as a chi-square variate with H degrees of freedom. If �20v is

replaced by its unbiased estimator based on the pre-intervention sample:

�̂20v =

�
y(0) � S(0)�̂0ys

�0 �
y(0) � S(0)�̂0ys

�
T � kx � kw

; (23)

we obtain the feasible test statistic

Fd;H =
d̂0(1)

�
IH + S

0
(1)

�
S0(0)S(0)

��1
S00(1)

��1
d̂(1)

H�̂20v
; (24)

which under the null hypothesis, Hs;0 de�ned by (20), is distributed as F with H and T �kx�kw
degrees of freedom. A proof is provided in Appendix A1.

Alternatively, one can base a test on linear combinations of the elements of d̂(1), such as the

mean d̂H = H�1� 0H d̂(1), where �H is a vector of ones of length H. The policy ine¤ectiveness test

statistic for this case is given by

td;H =

p
Hd̂H

�̂0v

r
1 +H�1T�1� 0HS

0
(1)

h
T�1S0(0)S(0)

i�1
S00(1)�H

: (25)

For this test, the assumption that v(1) is normally distributed can be relaxed, so long as H is

su¢ ciently large. This result holds irrespective of the relative rate at which H and T ! 1.
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It is now easily seen that under the null of policy ine¤ectiveness, td;H is N(0; 1) for H and T

su¢ ciently large. In the case where T is large relative to H, the estimation uncertainty will be

relatively negligible and the test statistic simpli�es to

tad;H =

p
Hd̂H
�̂0v

as N(0; 1); (26)

where �̂0v is de�ned by (23).

3.2 The dynamic case

In the general case, with dynamics, the RE solution is given by (5) above

qt = � (�)qt�1 +	x (�)xt +	w (�)wt + "t:

where � contains a as well as the parameters of the processes generating the exogenous variables,

st = (x
0
t;w

0
t)
0.

The e¤ect of policy on the target variable is the di¤erence between the realised values, yT0+h;

and the counterfactual values, y0T0+h,

dT0+h = yT0+h � y0T0+h; h = 1; 2; :::;H: (27)

These measured policy e¤ects will be subject to the post intervention random errors, "y;T0+h::

Introducing s; a the (kz + 1)� 1 selection vector with all its elements zero except for its �rst

element which is set to unity, the counterfactual values of yT0+h, are given by

y0T0+h = s
0 �� ��0��h qT0 + s0 h�1X

j=0

�
�
�
�0
��j �

	x

�
�0
�
x0T0+h�j +	w

�
�0
�
wT0+h�j

�
;

where x0T0+h for h = 1; 2; :::;H denote the counterfactual values of the policy variable, and wT+h,

for h = 1; 2; :::;H, are the realized values of the policy invariant variables.

In general where the correct speci�cation of the RE model is not known, a more robust

speci�cation for the policy response equation can be derived by eliminating the lagged values of

zt, as set out in Zellner and Palm (1974), and obtain the following ARDL(py; px; pw) speci�cation

for pre and post-intervention samples:2

yt =

pyX
i=1

�i(�
0)yt�i +

pxX
i=0

�yx;i(�
0)xt�i +

pwX
i=0

�0yw;i(�
0)wt�i + vyt; t =M;M + 1;M + 2; :::; T0;

(28)

yt =

pyX
i=1

�i(�
1)yt�i +

pxX
i=0

�yx;i(�
1)xt�i +

pwX
i=0

�0yw;i(�
1)wt�i + vyt; t = T0 + 1; T0 + 2; :::; T0 +H;

(29)

2 It is well known that univariate representations of variables in a VAR are ARMA (autoregressive moving
average) processes. For example, in the case where zt is a scalar variable and the RE model does not contain any
exogenous variables, the univariate representation of yt will be an ARMA(2,1) process. However, in practice such
ARMA processes are approximated by high order AR processes.
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where the lag orders, py; px; pw, are selected to be su¢ ciently long to ensure that the reduced

form residuals, vyt, are serially uncorrelated.

The derivation of the tests above readily extend to the dynamic speci�cation, (28) and (29).

First, set py = px = 1, pw = 0; and consider the ARDL(1,1) speci�cation that we shall be using

in the empirical application

yt = �
0yt�1 + �

0
yx0xt + �

0
yx1xt�1 + �

00
ywwt + vyt; for t =M;M + 1;M + 2; :::; T0; (30)

yt = �
1yt�1 + �

1
yx0xt + �

1
yx1xt�1 + �

10
ywwt + vyt; for t = T0 + 1; :::; T0 +H; (31)

where
���j�� < 1 for j = 0; 1. We will also assume that the estimate of �0; denoted by �̂0, satis�es

the stationary condition,
����̂0��� < 1:

To allow for the endogeniety of policy, suppose also that the policy variable xt is generated as

xt = b1(L)xt�1 + b2(L)yt�1 + vxt, bj(L) = bj0 + bj1L+ ::::+ bjsjL
sj :

with vyt and vxt being correlated. To correct for the endogeneity, following Pesaran and Shin

(1999), we can model the contemporaneous correlation between vyt and vxt; by vyt = �vxt + �t,

where by construction vxt and �t are uncorrelated. The parametric correction for the endogeniety

of xt is equivalent to augmenting the ARDL speci�cation with an adequate number of lagged

values of xt before estimation of the policy reduced form equation is carried out.

In what follows we continue to use the lag orders py = px = 1 and pw = 0, keep the notations

simple and rewrite the ARDL speci�cations for the pre-intervention sample as

y(0) = �
0y�1;(0) + S(0)�

0
ys + v(0);

where y(0) and v(0) are de�ned as before, y�1;(0) = (yM�1 ; yM ; :::; yT0�1)
0, S(0) =

�
X(0);W(0)

�
;X(0) =�

x(0);x�1;(0)
�
, x(0) = (xM ; xM+1; :::; xT0)

0, x�1;(0) = (xM�1; xM ; :::; xT0�1)
0, and �0ys =

�
�0yx0; �

0
yx1; �

00
yw

�0.
Further lagged values of xt as well as deterministic components such as intercept and linear trends

can also be included in S(0).

Based on this speci�cation and given counterfactual values of the policy variables and their

lagged values over the post-intervention sample, which as before we denote by X0(1), by forward

iterations of the dynamic equations from t = T0 we obtain the following counterfactual outcomes

ŷ0(1) = �̂
0
H

h
e1�̂

0yT0 +X
0
(1)�̂

0
yx +W(1)�̂

0
yw;
i

= �̂0H

h
e1�̂

0yT0 + S
0
(1)�̂

0
ys

i
; (32)
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where �̂0H is the H �H lower triangular matrix

�̂0H =

0BBBBBBBBBBB@

1 0 0 � � � 0 0

�̂0 1 0 � � � 0 0�
�̂0
�2

�̂0 1 � � � 0 0

...
...

...
...

...
...�

�̂0
�H�2 �

�̂0
�H�3

� � � 1 0�
�̂0
�H�1 �

�̂0
�H�2

� � � �̂0 1

1CCCCCCCCCCCA
; (33)

e1 = (1; 0; :::; 0)
0, and �̂0, �̂0ys = (�̂

00
yx; �̂

00
yw)

0 are least square estimates of �0,�0ys = (�
00
yx; �

00
yw)

0 in the

dynamic policy impulse equation, (30), based on the pre-intervention sample.3 More speci�cally,

setting '0 = (�0; �00ys)
0, and Q(0) =

�
y�1;(0);S(0)

�
, we have

'̂0 =
�
Q(0)Q

0
(0)

��1
Q0(0)y(0): (34)

For future reference we also note that under fairly general conditions on the error terms, v(0) and

assuming that
���0�� < 1, and ����̂0��� < 1, then as T !1 we have

p
T
�
'̂0 � '0

�
!d N(0;�

2
0v�

�1
0 ), (35)

where as before, E(vv0) = �20vIT+H , H is �nite and �0 = p limT!1
�
T�1Q(0)Q

0
(0)

�
is a positive

de�nite matrix.

The estimates of the policy e¤ects are now given by

d̂(1) = y(1) � �̂0H
h
yT0 �̂

0e1 + S
0
(1)�̂

0
ys

i
:

As before, this can be decomposed into a systematic e¤ect of the policy, the random components

due to v(1) and the sampling uncertainty in estimation of �̂0, �̂0yx, and �̂
0
yw.

Using the forward recursive approach, we �rst note that

y(1) = �
1
H

�
yT0�

1e1 +X(1)�
1
yx +W(1)�

1
yw + v(1)

�
= �1H

�
yT0�

1e1 + S(1)�
1
ys + v(1)

�
:

Using the above results we have

d̂(1) = �
1
H

�
yT0�

1e1 + S(1)�
1
ys

�
� �̂0H

h
yT0 �̂

0e1 + S
0
(1)�̂

0
ys

i
+�1Hv(1);

which can be written as

d̂(1) = �(1) � �(1) +�1Hv(1); (36)

3The above counterfactual outcomes reduce to the ones obtained for the static case, (16), if �̂0 = 0.
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where

�(1) = yT0
�
�1H�

1 ��0H�0
�
e1 +

h
�1HS(1)�

1
ys ��0HS0(1)�

0
ys

i
; (37)

and

�(1) = �̂
0
H

h
yT0 �̂

0e1 + S(1)�̂
0
ys

i
��0H

�
yT0�

0e1 + S(1)�
0
ys

�
: (38)

In the dynamic case, the implicit null of the policy ine¤ectiveness hypothesis is given by

�(1) = yT0
�
�1H�

1 ��0H�0
�
e1 +

h
�1HS(1)�

1
ys ��0HS0(1)�

0
ys

i
= 0:

The third term of (36), �1Hv(1), is the vector of the random shocks during post-intervention

period, and the implementation of the test of policy ine¤ectiveness hypothesis in the dynamic

case requires making the additional assumption that under H0, we also have �1 = �0, as well as

E(v(1)v
0
(1)) = �

2
0vIH , the assumption already made in the static case. Finally, �(1) captures the

e¤ects of sampling uncertainty associated with the estimation �0 and �ys. In the dynamic case

the null hypothesis of policy ine¤ectiveness is given by

H0 : �(1) = 0; �
2
0v = �

2
1v, �

0 = �1: (39)

We now derive the asymptotic distribution of d̂(1) under H0, initially assuming that H is �xed.

Under H0

d̂(1) = �
1
Hv(1) � �(1); (40)

and using (38) we have

�(1) = yT0

�
�̂0 � �0

��
�̂0H ��0H

�
e1 +

�
�̂0H ��0H

�
S0(1)

�
�̂0ys � �0ys

�
+ yT0�

0
�
�̂0H ��0H

�
e1 +

�
�̂0H ��0H

�
S0(1)�

0
ys

+ yT0

�
�̂0 � �0

�
�0He1 +�

0
HS

0
(1)

�
�̂0ys � �0ys

�
:

Also estimating the dynamic regression model, (30), by least squares under standard assumption

we have

�̂0 = �0 + aTT
�1=2; and �̂0ys = �

0
ys + bTT

�1=2; (41)

where aT and bT are random variables bounded in T . Hence, under H0

d̂(1) = �
1
Hv(1) � yT0�0

�
�̂0H ��0H

�
e1 � yT0

�
�̂0 � �0

�
�0He1

�
�
�̂0H ��0H

�
S(1)�

0
ys ��0HS(1)

�
�̂0ys � �0ys

�
+Op(T

�1): (42)

Using a Taylor series expansion we have (for H �xed)

�̂0H ��0H =
@�0H
@�0

�
�̂0 � �0

�
+Op

�
1

T

�
:

14



where

@�0H
@�0

=

0BBBBBBBB@

0 0 � � � 0 0 0
1 0 � � � 0 0 0
2�0 1 � � � 0 0 0
...

...
...

...
...
...

(H � 2)
�
�0
�H�3

(H � 3)
�
�0
�H�4 � � � 1 0 0

(H � 1)
�
�0
�H�2

(H � 2)
�
�0
�H�3 � � � 2�0 1 0

1CCCCCCCCA
;

Using this result in (42) now yields

d̂(1) = �
1
Hv(1) �D0

(1)

�
�̂0 � �0

�
��0HS0(1)

�
�̂0ys � �0ys

�
+Op

�
1

T

�
;

where

D0
(1) = yT0

�
�0
@�0H
@�0

+�0H

�
e1 +

@�0H
@�0

S0(1)�
0
ys:

Writing the above result more compactly, we have

d̂(1) = �
1
Hv(1) �	0

(1)

�
'̂0 � '0

�
+Op

�
1

T

�
:

where 	0
(1) =

�
D0
(1);�

0
HS

0
(1)

�
.

When H is �xed and T su¢ ciently large a test can be based on all the elements of d̂(1) if

v(1) has a known distribution. But in general, as in the static case, we need to base the test

of policy ine¤ectiveness on some average of d̂(1). Again using the policy mean e¤ect statistic,

d̂H = H
�1� 0H d̂(1), under H0 de�ned by (39) we have

d̂H =
1

H
� 0H�

0
Hv(1) �

1

H
� 0H	

0
(1)

�
'̂0 � '0

�
+Op

�
1

T

�
:

For a �nite H and a su¢ ciently large T the distribution of d̂H depends on the distribution of v(1).

In the case where v(1) is normally distributed we can use the following test statistic

T ad;H =
p
Hd̂H

�̂0v

"�
� 0H�̂

0
H�̂

00
H�H

H

�
+

� 0H	̂
0
(1)

�
T�1Q(0)Q

0
(0)

��1
	̂00
(1)
� 0H

TH

#1=2 !d N(0; 1); (43)

where �̂0 and �̂0v are the least squares estimates of � and �v based on the pre-intervention sample,

	̂0
(1) =

"
yT0

 
�̂0
@�̂0H
@�0

+ �̂0H

!
e1 +

@�̂0H
@�0

S0(1)�̂
0
ys; �̂

0
HS

0
(1)

#
;

and Q(0) =
�
y�1;(0);S(0)

�
. In the case where T is reasonably large relative to H, the second term

in the denominator of (43) will be negligible and the test statistic simpli�es to

T ad;H =
p
Hd̂H

�̂0v

�
� 0H�̂

0
H�̂

00
H�H

H

�1=2 !d N(0; 1); (44)

15



where �̂0v is the estimate of �0v computed using the pre-intervention sample, and

� 0H�̂
0
H�̂

00
H�H

H
=

1�
1� �̂0

�2
26641� 2

H

0B@
�
�̂0
�H+1

� �̂0

1� �̂0

1CA+ 1

H

0BB@
�
�̂0
�2H+2

�
�
�̂0
�2�

1�
�
�̂0
�2�

1CCA
3775 : (45)

In the case where H rises with T , the derivations are best carried out in terms of the individual

elements of d̂(1) de�ned by (36), which we write as

d̂T0+h = �
��
�̂0
�h
�
�
�1
�h�

yT0 �
h�1X
j=0

��
�̂0
�h
�̂0ys �

�
�1
�h
�1ys

�0
sT0+h�j +

h�1X
j=0

�
�1
�h
vT0+h�j ;

where st = (xt; xt�1; wt; wt�1)0. The mean policy e¤ect test statistic can now be written as

p
Hd̂H = �H�1=2

HX
h=1

��
�̂0
�h
�
�
�1
�h�

yT0 (46)

�H�1=2
HX
h=1

h�1X
j=0

��
�̂0
�h
�̂0ys �

�
�1
�h
�1ys

�0
sT0+h�j

+H�1=2
HX
h=1

h�1X
j=0

�
�1
�h
vT0+h�j :

Under the null hypothesis �1 = �0, �1ys = �
0
ys, and �

2
1v = �

2
0v, we �rst note that

HX
h=1

��
�̂0
�h
�
�
�0
�h�

=

�̂0 � �0 + �̂0�0
��
�̂0
�H

�
�
�0
�H�� ���̂0�H+1 � ��0�H+1�

(1� �0)
�
1� �̂0

� :

Also using results in Lemma 3 in PS, and since �̂0 � �0 = a0T =
p
T ; (�0 6= 0)

H�1=2
������̂0�H � ��0�H ���� � H1=2

����̂0���H�1 ����̂0 � �0��� � �H
T

�1=2 ��a0T �� ���0��H ����1 + a0T
�0
p
T

����H ;
where

��a0T �� is bounded in T . But ���1 + a0T =�0pT ���H tends to a bounded random variable if H=
p
T

tends to a �xed constant , or equivalently if H = �T �, with � � 1=2 as T and H ! 1; jointly.

Under this condition we have H�1=2
������̂0�H � ��0�H ���� !p 0 since

���0�� < 1. Similarly, under the
null hypothesis

H�1=2
HX
h=1

h�1X
j=0

��
�̂0
�h
�̂0ys �

�
�1
�h
�1ys

�0
sT0+h�j

= H�1=2
HX
h=1

h�1X
j=0

24
��
�̂0
�h
�
�
�0
�h� �

�̂0ys � �0ys
�
+

��
�̂0
�h
�
�
�0
�h�

�0ys

+
�
�0
�h �

�̂0ys � �0ys
�

350 sT0+h�j ;
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we note that (using Lemma 1 in PS)

H�1=2
HX
h=1

h�1X
j=0

��
�̂0
�h
�
�
�0
�h�

�00yssT0+h�j

=

24 H1=2
�
�̂0 � �0

�
(1� �0)

�
1� �̂0

�
350@H�1

HX
j=1

�00yssT0+j

1A
�

0@H�1=2
HX
j=1

��
1��̂0

��1 �
�̂0
�H�j+1

�
�
1��0

��1 �
�0
�H�j+1�

�00yssT0+j

1A :
Since by assumption

������H�1
HX
j=1

�00yssT0+j

������ < K, and �̂0 � �0 = Op(T
�1=2), then the �rst term of

the above expression tend to zero in probability of H=T ! 0, which is satis�ed if H = �T �, with

� � 1=2. Consider the second term of the above expression and note that������H�1=2
HX
j=1

��
1��̂0

��1 �
�̂0
�H�j+1

�
�
1��0

��1 �
�0
�H�j+1�

�00yssT0+j

������
� sup

j

���00yssT0+j��H�1=2
HX
j=1

�����1��̂0��1 ��̂0�H�j+1 � �1��0��1 ��0�H�j+1����
�

supj
���00yssT0+j�����(1� �0)�1� �̂0����

24H1=2
HX
j=1

������̂0�j � ��0�j����+ ���0�� ����̂0���H1=2
HX
j=1

������̂0�j�1 � ��0�j�1����
35 :

But using results in Lemma 3 and 4 in PS we have

H1=2
HX
j=1

������̂0�j � ��0�j���� � H1=2
����̂0 � �0��� HX

j=1

j
����̂0���j�1

= H1=2
����̂0 � �0���

264 1�
����̂0���H�

1�
����̂0����2 �

H
����̂0���H+1�
1�

����̂0����
375 ;

and using similar arguments as before it follows that

H1=2
HX
j=1

������̂0�j � ��0�j����!p 0;

if supj
���00yssT0+j�� is bounded in T , and H = �T �, with � � 1=2, as T and H !1, jointly. Notice

that since, by assumption, both �̂0 and �0 are less than one in absolute value,

������̂0�j � ��0�j����
declines exponentially in j.

Under these conditions and employing the above results in (46), and using (45) with H !1,

we �nally obtain the large T and H test statistic

T bd;H =

���1� �̂0���pHd̂H
�̂0v

!d N(0; 1); (47)
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which is the large H version of (44).

The above test statistics can also be readily generalized to the higher order ARDL speci�cation

given by (28) and (29). See Appendix A2 for the details.

4 An empirical application: testing the e¤ects of quantitative
easing

We will illustrate the policy-ine¤ectiveness test with an investigation into the e¤ect of an uncon-

ventional monetary policy (UMP), known as quantitative easing (QE), in the UK introduced in

March 2009.4 We will use a reduced form approach and an ARDL(1,1) model, as in Section 3.2.

UMPs have tended to be adopted when central banks have hit the zero lower bound for the

policy interest rate, though in principle they could be adopted even if interest rates are not at the

lower bound. The term quantitative easing was used by the Bank of Japan to describe its policies

from 2001. See, for example, Bowman et al. (2011). During the �nancial crisis, starting in 2007,

and particularly after the failure of Lehman Brothers in 2008, many central banks adopted UMP.

Examples include the large scale asset purchase programme by Federal Reserve in US and the

long term repo operations and emergency liquidity assistance by the European Central Bank. The

central banks di¤ered in the speci�c measures used and had di¤erent theoretical perceptions of

what the policy interventions were designed to achieve and the transmission mechanisms involved.5

Borio and Disyatat (2010) classify such policies as balance sheet policies, as distinct from interest

rate policies, and describe the variety of di¤erent types of measures adopted by seven central

banks during the �nancial crisis. There has been considerable controversy over two questions: (a)

what was the e¤ects of UMP on various interest rates? usually answered using "event studies"

and (b) what was the e¤ect of those interest rate changes on output and in�ation? We shall

consider question (b) to illustrate our reduced form test taking the answer to (a) as given.

In the UK QE involved exchanging one liability of the state - government bonds (gilts) - for

another - claims on the central bank. That change in the quantities of the two assets could cause

a rise in the price of gilts, decline in their yields, but also cause a rise in the prices of substitute

assets such as corporate bonds and equities. The Bank of England believed that QE boosted

demand by increasing wealth and by reducing the cost of �nance to companies.6 It also increases

banks liquidity and may have prompted more lending. Event studies documented in Joyce et al.

(2011) suggest that QE reduced the spread of long over short term government interest rates (the

4See also the November 2012 Special Issue of the Economic Journal on Unconventional Monetary Policy after
the Financial Crisis.

5For instance Giannone et al. (2011), who discuss the euro area, distinguish the Eurosystem�s actions from the
QE adopted by other Central Banks.

6For instance see the Financial Times article 4 May 2012 by Charlie Bean, then the Bank�s Deputy Governor.
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�spread�) by 100 basis points from its introduction in March 2009. Thus the counterfactual we

consider is the e¤ect on log real output, Yt, of there not having been a 100 basis points reduction

in the spread. The estimate that QE reduced the spread by 100 basis points is not uncontroversial,

Meaning and Zhu (2011) estimate a smaller impact of about 25 basis points, but our estimates

could be easily scaled downwards to match this alternative estimate. This assumes a deterministic

change in policy parameters, our counterfactual value for policy is x0T0+h = xT0+h � �; where � is

a constant, so that the variance of the policy implementation errors, discussed in PS, is zero.

In examining QE we model the growth rate of output, yt = Yt � Yt�1, because log output

appears to have a unit root (and there is no long-run relationship between log output and the

spread). The test will then be based on a mean policy e¤ect computed over the post-intervention

horizon T0 + h, for h = 1; 2; :::;H, namely d̂H given by

d̂H =
1

H

HX
h=1

d̂T0+h;

where

dT0+h = yT0+h � ŷ0T0+h; h = 1; 2; :::;H:

Since log output seems to have a unit root and there is no long-run relationship between log

output, Yt and the spread, we make our dependent variable yt = Yt � Yt�1; the growth rate.

However, our analysis still applies to log output. Consider

d̂H = [
HX
h=1

(yT0+h � ŷ0T0+h)]=H

= [(YT0+H � YT0+H�1) + (YT0+H�1 � YT0+H�2) + :::+ (YT0+1 � YT0)

�
�bY 0T0+H � bY 0T0+H�1�� �bY 0T0+H�1 � bY 0T0+H�2�+ :::+ (bY 0T0+1 � YT0)]=H

= (YT0+H � Ŷ 0T0+H)=H:

Thus d̂H measures the total level e¤ect of the policy over the horizon period. Thus d̂H measures

the total level e¤ect of the policy over the horizon period. The policy ine¤ectiveness test statistics

are given by (47) or (44), depending whether H is su¢ ciently large.

Kapetanios et al. (2012), who examine the e¤ects of QE on UK output growth and in�ation,

also use a reduction in spread of 100 basis points. They use three time-varying vector autore-

gressions, VARs, that include other zt type variables and allow for parameter change in di¤erent

ways. Baumeister and Benati (2013) also use time varying VARs to assess the macroeconomic

e¤ects of QE in the US and UK, assuming the e¤ect of QE in the UK was to reduce the spread by

50 basis points. But as our theoretical analysis highlights, the e¤ects of structural breaks due to

factors other than the policy change must be distinguished from the structural breaks that could
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result from the policy intervention. Goodhart and Ashworth (2012) challenge the view that the

o¢ cial long rate is the proper measure of the e¤ect of QE on the economy, and argue that the

transmission was through other variables such as credit risk spreads. We do not rule out that QE

might have had an impact on other such variables, the zt in our notation, with e¤ects on output

growth, but such e¤ects are indirectly accommodated in our approach. Goodhart and Ashworth

(2012) also argue that external e¤ects are important and these may be accommodated through

the inclusion of foreign variables among the wt:

Here we re-examine the e¤ects of QE on UK output growth, and for reasons explained above

we shall be using the policy impulse equation, like (30), rather than a full structural model.

The data are taken from the Global VAR data set, starting in 1979Q2 and recently extended

to 2011Q2.7 Growth, yt; is measured by the quarterly change in the logarithm of real GDP. In

calculating, xt; the spread between the short and long government interest rates, the rates are

expressed as 0:25 log(1 + Rt=100); where Rt is the annual percent rate. For the conditioning

variables, wt = (yUSt ; yEurot )0, we use US and euro area output growth as they are unlikely to

have been signi�cantly a¤ected by UK QE, but their inclusion allows for the possible indirect

e¤ects of UMPs implemented in US and euro area on UK output growth. Over the full sample

the correlation between UK growth and US growth is 0.47, in the post 1999 sample it is 0.76. For

euro growth, the correlations are 0.36 and 0.73. Like Kapetanios et al. (2012) we assume that

the reduction in the spread is permanent. But other time pro�les for the policy e¤ects of QE on

spreads could also be considered.

We use an ARDL in output growth (yt) and the spread between long and short government

interest rates (xt) augmented by current euro and US growth rates. Pesaran and Shin (1999) show

that ARDL estimates are robust to endogeneity and robust to the fact that yt (stationary) and xt

(near unit root) have di¤erent degrees of persistence. The ARDL may be more robust to structural

change, than models like VARs with a large number of variables. Since more parsimonious models

tend to forecast better, the ARDL may reduce forecast uncertainty due to parameter estimation

error. The ARDL is also preferable to VAR models for counterfactual analysis since it allows

e¢ ciency gains by conditioning on contemporaneous policy and exogenous variables.

We choose the speci�cation on the full sample 1980Q3-2011Q2, since the change in policy, while

it may change the parameters, is unlikely to in�uence the lag length. With potential structural

instability there is an issue of whether the variance or the mean shifts. When error variances are

falling, as occurred during the period before the �nancial crisis (the so-called great moderation),

it is optimal to place more weights on the most recent observations, Pesaran, Pick and Pranovich

(2013). Both AIC and SBC indicated one lag. Thus the ARDL for the pre-intervention period is

7Described in Dees et al. (2007), with updates available at https://sites.google.com/site/gvarmodelling/
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given by (30),

yt = �
0yt�1 + �

0
yx0xt + �

0
yx1xt�1 + �

00
ywwt + vyt; for t = 1; 2; :::; T0;

The equation passes diagnostic tests for serial correlation and heteroskedasticity, but fails (at

5% level) tests for normality and functional form. The restriction that it is the spread, rather than

short and long government interest rates separately, that matters is not rejected (pval=0.23). It

is clearly the change in spread that is important and the long-run e¤ect of the spread is positive,

which is implausible, but insigni�cant - the restriction �yx0 + �yx1 = 0 cannot be rejected on the

full sample, t=1.61. This restriction is imposed on the model used in obtaining the pre-policy

estimates. The estimates for the full sample and the pre-policy sample, using the change in spread

and lagged spread, are shown in Table 1.

Table 1: ARDL in UK growth (y) and spread (x) augmented with US and Euro

area growth rates, t ratios in parentheses.
1980Q3-2008Q4 1980Q3-2011Q2

yt�1 0.34688 0.3822
(3.94) (5.12)

�xt -0.94559 -0.8197
(-3.05) (-2.63)

xt�1 - 0.18960
- (1.61)

yUSt 0.15509 0.1465
(2.07) (2.00)

yEurot 0.11040 0.1636
(1.89) (3.047)

R
2

0.333 0.446
LM test Res. Serial Corr. 0.414 0.332b�v 0.0051 0.0050

The model indicates that a permanent 100 basis points reduction in the spread increases

predicted growth by almost 1% on impact, although this e¤ect is quickly reversed and disappears

altogether within two years. Although they do not emphasise this feature, the estimates of

Kapetanios et al. (2012), tell very much the same story: the bene�cial e¤ects of QE on growth are

of a similar size and rather short-lived. However this predicted positive e¤ect on growth of reducing

the spread is small relative to the large negative equation errors, the estimated equation over-

predicts growth during the recession. So the actual is below the counterfactual outcome without

QE in all but one post-intervention quarter. For H = 10; (2009Q1 � 2011Q2); d̂H = �0:00315;

and from Table 1, �̂0 = 0:347 and �̂0v = 0:0051: So the test statistic (44)

T ad;H =
p
Hd̂H

�̂0v

�
� 0H�̂

0
H�̂

00
H�H

H

�1=2 ;
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is �1:17:

The small H adjustment used in (44) does not make very much di¤erence and the test statistic

without it (47)

T bd;H =

���1� �̂0���pHd̂H
�̂0v

;

is �1:28. Also taking account of the sampling uncertainty associated with parameter estimation,

captured by the second term in the denominator of (43), namely

(TH)�1� 0H	̂
0
(1)

�
T�1Q(0)Q

0
(0)

��1
	̂00
(1)�

0
H > 0;

will not alter the test outcome. Firstly, with T = 114 this second term is likely to be small, and

secondly given that it is positive its inclusion can only reduce the statistical signi�cance of the

test.

As a result we can safely conclude that given our model speci�cation, the null that the QE

policy intervention was ine¤ective cannot be rejected. But at the same time we need to bear in

mind that, as with all statistical tests, the null hypothesis being tested is a joint null, assuming

that under the null hypothesis either no other major policy changes were put into e¤ect, or such

additional policy changes were also ine¤ective. Separating the e¤ects of QE from other policy de-

velopments, such as the austerity measures that were put into e¤ect by the Coalition Government

in the UK would be di¢ cult. However, since the austerity measures were not introduced till after

2010Q2, the joint null problem might not be that serious in the present application.

5 Conclusion

In this paper we have derived tests for the null hypothesis of the ine¤ectiveness of a policy

intervention, de�ned as a change in the parameters of a policy rule for reduced form policy

response equations, which are simpler to implement and could be more robust than the tests

based on possibly misspeci�ed complete structural models. In such cases we propose estimating

an unrestricted reduced form policy equation which makes the target variable a function of lagged

values of the target variable, as well as current and lagged values of the policy and policy-invariant

exogenous variables (if any).

The tests are based on the di¤erences, over a given policy evaluation horizon, between the

post-intervention realizations of the target variable and the associated counterfactual outcomes

based on the parameters estimated using data before the policy intervention. The Lucas Critique

is not an issue since the counterfactual, given by the predictions from the model estimated on

pre-intervention data, will embody pre-intervention parameters, while the actual post-intervention
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outcomes will embody any e¤ect of the change in policy, the change in parameters and the conse-

quent change in expectations. The tests do not require knowing the post-intervention parameters.

We derive the asymptotic distribution of the policy ine¤ectiveness tests under alternative

assumptions concerning the type of model, the future error processes and the pre and post-

intervention sample sizes. We also develop a policy ine¤ectiveness test based on the mean policy

e¤ect which is robust to the distribution of future errors, but requires the post-intervention, policy

evaluation horizon to be reasonably large. In the case of a static model we also derive an exact

test allowing for the estimation uncertainty.

We illustrate some of the issues that arise in counterfactual policy evaluation with an empirical

application to Quantitative Easing which was introduced in the UK in March 2009. The UK QE

involved exchanging one liability of the state - government bonds (gilts) - for another - claims

on the central bank. That change in the quantities of the two assets would cause a rise in the

price of guilts, decline in their yields, but also cause a rise in the prices of substitute assets such

as corporate bonds and equities. We estimate models explaining UK output growth over two

sample periods, one ending in 2008Q4 (before QE), and the other ending in 2011Q2. We use an

ARDL(1,1) between growth and the change in the spread of long government interest rates over

short rates, augmented by current values of US and euro area output growth. We follow the Bank

of England in assuming that QE caused a permanent 100 basis points reduction in the spread of

long interest rates over short interest rates after March 2009. The model indicates that QE had

an immediate positive e¤ect on growth, but this e¤ect tends to disappear quite quickly, certainly

within a year. The estimates of Kapetanios et al. (2012) for the time pro�les of the e¤ects of

the QE tell very much the same story, namely the bene�cial e¤ects of QE are rather short-lived.

We then apply the tests we have suggested and the null hypothesis of policy ine¤ectiveness is not

rejected. QE did not have a signi�cant e¤ect on UK growth.
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Appendices

Appendix A1: Derivation of the distribution of Fd;H de�ned by (24)

Under the null hypothesis Hs0 de�ned by (20)

d̂(1) = v(1) � S0(1)
�
S0(0)S(0)

��1
S0(0)v(0) = G

0v;

y(0) � S(0)�̂0ys =
�
IT � S(0)

�
S0(0)S(0)

��1
S(0)

�
v(0) = Qv;

where v = (v0(0);v
0
(1))

0, and

G0 =

�
�S0(1)

�
S0(0)S(0)

��1
S0(0); IH

�
;

Q=

 
IT � S(0)

�
S0(0)S(0)

��1
S(0) 0T�H

0H�T 0H�H

!
:

Using these results in Fd;H de�ned by (24), we have

Fd;H =
T � kx � kw

H

d̂0(1)

�
IH + S

0
(1)

�
S0(0)S(0)

��1
S00(1)

��1
d̂(1)

v0(0)

�
IH � S(0)

�
S0(0)S(0)

��1
S(0)

�
v(0)

=
T � kx � kw

H

�0G(G0G)�1G0�

�0Q�
;
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where � = v=�0v s N(0; IT+H). It is also easily seen that G(G0G)�1G0 and Q are idempotent

matrices that are orthogonal (namely, G0Q = 0) with ranks H and T � kx � kw, which establish

that Fd;H has a F distribution with H and T � kx � kw degrees of freedom.

Appendix A2: Derivation of the distribution of Td;H in the general dynamic case

Consider the general ARDL speci�cation given by (28) and (29). In this case, setting py = p

to simplify the notation, the post-intervention model can be written as

�1Hy(1) = �
1
Hy

�
p + S(1)�

1
ys + v(1);

where y�p is theH�1 vector containing the p initial observations, y�p = (yT0 ; yT0�1; :::; yT0�p+1; 0; :::; 0)0;

�1H = �(�
1), �1

H = �H(�
1); � = (�1:�2; :::; �p)

0,

�H(�) =

0BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
��1 1 0 0 0 0 0 0
��2 ��1 1 0 0 0 0 0
...

...
...

... 0 0 0 0
��p ��p�1 � � � 1 0 0 0 0
0 0 � � � 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 � � � ��p ��p�1 � � � 1 0
0 0 � � � 0 ��p � � � ��1 1

1CCCCCCCCCCCCCCA

�H(�) =

0BBBBBBBBBB@

�1 �2 � � � 0 �p
�2 �3 � � � �p 0
...

... � � �
...

...
�p 0 � � � 0 0
0 0 � � � 0 0
...

... � � �
...

...
0 0 � � � 0 0

1CCCCCCCCCCA
;

and as before, S(1) represents the H�k matrix of post-intervention observations on the exogenous

variables, xt and wt, and their lagged values, k = (1 + px) kx + (1 + pw)kw. Also

��1H (�) = �H(�) =

0BBBBB@
a0 0 0 0 0
a1 a0 0 0 0
...

...
...

...
...

aH�2 aH�3 � � � a0 0
aH�1 aH�2 � � � a1 a0

1CCCCCA ; (48)

where �h is obtained recursively using the di¤erence equation

ah =

pX
i=1

�iah�i; h = 1; 2; ::::;H;
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with a0 = 1 and ai = 0, for all i < 0. It is easily veri�ed that for p = 1, �H(�) de�ned by

(48) reduces to the matrix de�ned by (33). Using the above set up, the estimated counterfactual

outcomes are given by

ŷ0(1) = �H(�̂
0)
h
�H(�̂

0)y�p +X
0
(1)�̂

0
yx +W(1)�̂

0
yw;
i

= �̂0H

h
�̂0
Hy

�
p + S

0
(1)�̂

0
ys

i
;

where '̂0 =
�
�̂00; �̂00ys

�0
is obtained estimating the ARDL regression using the pre-intervention

sample. The mean policy ine¤ectiveness test can be de�ned as before, Td;H =
p
Hd̂H=!̂0, where

d̂H = H
�1� 0H d̂(1); d̂(1) = y(1) � ŷ0(1),

!̂20 = �̂
2
0v

h
H�1� 0H�H(�̂

0)�0H(�̂
0)�H

i
;

and �̂20v is the estimate of �
2
0v based on the pre policy sample. Following the same line of rea-

soning as in sub-section 3.2, it follows that Td;H !d N(0; 1), under the null hypothesis of policy

ine¤ectiveness (including the restrictions �0 = �1 and �20v = �
2
1v), and as T and H !1, jointly

such that H = �T �, with � � 1=2.
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