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Abstract

This paper proposes a regularisation method for the estimation of large covariance
matrices that uses insights from the multiple testing (MT ) literature. The approach
tests the statistical signi�cance of individual pair-wise correlations and sets to zero
those elements that are not statistically signi�cant, taking account of the multiple
testing nature of the problem. By using the inverse of the normal distribution at a
predetermined signi�cance level, it circumvents the challenge of estimating the theoret-
ical constant arising in the rate of convergence of existing thresholding estimators, and
hence it is easy to implement and does not require cross-validation. TheMT estimator
of the sample correlation matrix is shown to be consistent in the spectral and Frobe-
nius norms, and in terms of support recovery, so long as the true covariance matrix is
sparse. The performance of the proposed MT estimator is compared to a number of
other estimators in the literature using Monte Carlo experiments. It is shown that the
MT estimator performs well and tends to outperform the other estimators, particularly
when the cross section dimension, N , is larger than the time series dimension, T:
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1 Introduction

Improved estimation of covariance matrices is a problem that features prominently in a
number of areas of multivariate statistical analysis. In �nance it arises in portfolio selection
and optimisation (Ledoit and Wolf (2003)), risk management (Fan et al. (2008)) and testing
of capital asset pricing models (Sentana (2009)). In global macro-econometric modelling
with many domestic and foreign channels of interactions, error covariance matrices must be
estimated for impulse response analysis and bootstrapping (Pesaran et al. (2004); Dees et
al. (2007)). In the area of bio-informatics, covariance matrices are required when inferring
gene association networks (Carroll (2003); Schäfer and Strimmer (2005)). Such matrices are
further encountered in �elds including meteorology, climate research, spectroscopy, signal
processing and pattern recognition.
Importantly, the issue of consistently estimating the population covariance matrix, � =

(�ij), becomes particularly challenging when the number of variables, N , is larger than the
number of observations, T . In this case, one way of obtaining a suitable estimator for �
is to appropriately restrict the o¤-diagonal elements of its sample estimate denoted by �̂.
Numerous methods have been developed to address this challenge, predominantly in the
statistics literature. See Pourahmadi (2011) for an extensive review and references therein.
Some approaches are regression-based and make use of suitable decompositions of � such as
the Cholesky decomposition (see Pourahmadi (1999, 2000), Rothman et al. (2010), Abadir
et al. (2014), among others). Others include banding or tapering methods as proposed, for
example, by Bickel and Levina (2004, 2008a) and Wu and Pourahmadi (2009), which assume
that the variables under consideration follow a natural ordering. Two popular regularisation
techniques in the literature that do not make use of any ordering assumptions are those of
thresholding and shrinkage.
Thresholding involves setting o¤-diagonal elements of the sample covariance matrix that

are in absolute terms below certain threshold values to zero. This approach includes �uni-
versal�thresholding put forward by El Karoui (2008) and Bickel and Levina (2008b), and
�adaptive�thresholding proposed by Cai and Liu (2011). Universal thresholding applies the
same thresholding parameter to all o¤-diagonal elements of the unconstrained sample co-
variance matrix, while adaptive thresholding allows the threshold value to vary across the
di¤erent o¤-diagonal elements of the matrix. Furthermore, the selected non-zero elements
of �̂ can either be set to their sample estimates or can be adjusted downward. This relates
to the concepts of �hard�and �soft�thresholding, respectively. The thresholding approach
traditionally assumes that the underlying (population) covariance matrix is sparse, where
sparseness is loosely de�ned as the presence of a su¢ cient number of zeros on each row
of � such that it is absolute summable row (column)-wise, or more generally in the sense
de�ned by El Karoui (2008). However, Fan et al. (2011, 2013) show that such regularisation
techniques can be applied even if the underlying population covariance matrix is not sparse,
so long as the non-sparseness is characterised by an approximate factor structure. The main
challenge in applying this approach lies in the estimation of the thresholding parameter.
The method of cross-validation is primarily used for this purpose which has its own limita-
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tions and may not be appropriate in applications where the underlying model generating the
observations is unstable over time.
In contrast to thresholding, the shrinkage approach reduces all sample estimates of the

covariance matrix towards zero element-wise. More formally, the shrinkage estimator of � is
de�ned as a weighted average of the sample covariance matrix and an invertible covariance
matrix estimator known as the shrinkage target - see Friedman (1989). A number of shrinkage
targets have been considered in the literature that take advantage of a priori knowledge of
the data characteristics under investigation. Examples of covariance matrix targets can be
found in Ledoit and Wolf (2003), Daniels and Kass (1999, 2001), Fan et al. (2008), and
Ho¤ (2009), among others. Ledoit and Wolf (2004) suggest a modi�ed shrinkage estimator
that involves a linear combination of the unrestricted sample covariance matrix with the
identity matrix. This is recommended by the authors for more general situations where no
natural shrinking target exists. On the whole, shrinkage estimators tend to be stable, but
yield inconsistent estimates if the purpose of the analysis is the estimation of the true and
false positive rates of the underlying true sparse covariance matrix (the so called �support
recovery�problem).
This paper considers an alternative to cross-validation by making use of a multiple testing

(MT ) approach to set the thresholding parameter. The idea has been suggested by El
Karoui (2008, p. 2748) but has not been theoretically developed in the literature. As
noted by El Karoui, hard thresholding can also be implemented by testing the N(N � 1)=2
null hypotheses that �ij = 0, for all i 6= j. However, such tests will not be standard and
their critical value must be determined from the knowledge of the inferential problem and
the fact that N and T both tend to in�nity. The MT approach can readily accommodate
both Gaussian and non-Gaussian observations and does not require cross-validation which
is often quite time consuming to apply. The MT procedure is shown to be equivalent to
the application of the multiple testing procedure due to Bonferroni (1935) to the individual
rows of �, separately, when �ij = 0 implies independence, and to all distinct non-diagonal
elements of �, if �ij = 0 does not imply independence. We show that the MT estimator
of R, the correlation matrix associated with �, converges in spectral norm at the rate of
Op

�
mNp
T

�
, where mN is the maximum number of non-zero elements in the o¤-diagonal rows

of R. This compares favourably with the corresponding Op

�
mN

q
log(N)
T

�
rate established

in the literature. Similarly, we show that the MT estimator converges in Frobenius norm

at the rate of Op

�q
mNN
T

�
, even if the underlying observations are non-Gaussian. To

the best of our knowledge, the only work that addresses the theoretical properties of the
thresholding estimator for the Frobenius norm is Bickel and Levina (2008b), who establish the

rate of Op

�q
mNN log(N)

T

�
, assuming the observations are Gaussian. TheMT estimator also

consistently recovers the support of the population covariance matrix under non-Gaussian
observations.
The performance of the MT estimator is investigated using a Monte Carlo simulation
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study, and its properties are compared to a number of extant regularised estimators in
the literature. The simulation results show that the proposed multiple testing estimator is
robust to the typical choices of p used in the literature (10%, 5% and 1%), and performs
favourably compared to the other estimators, especially when N is large relative to T . The
MT procedure also dominates other regularised estimators when the focus of the analysis is
on support recovery.
The rest of the paper is organised as follows: Section 2 outlines some preliminaries,

introduces the MT procedure and derives its asymptotic properties. The small sample
properties of the MT estimator are investigated in Section 3. Concluding remarks are
provided in Section 4. Some of the technical proofs and additional simulation results are
provided in a Supplementary Appendix.
Notation: We denote the largest and the smallest eigenvalues of theN�N real symmetric

matrix A = (aij) by �max (A) and �min (A) ; respectively, its trace by tr (A) =
PN

i=1 aii, its

maximum absolute column sum norm by kAk1 = max1�j�N

�PN
i=1 jaijj

�
, its maximum

absolute row sum norm by kAk1 = max1�i�N

�PN
j=1 jaijj

�
, its spectral radius by % (A) =

j�max (A)j, its spectral (or operator) norm by kAkspec = �1=2max (A
0A), its Frobenius norm

by kAkF =
p
tr (A0A). Note that kAkspec = % (A). aN = O(bN) states the deterministic

sequence faNg is at most of order bN , xN = Op(yN) states the vector of random variables,
xN ; is at most of order yN in probability, and xN = op(yN) is of smaller order in probability
than yN , !p denotes convergence in probability, and !d convergence in distribution. All
asymptotics are carried out under N !1 jointly with T !1.

2 Regularising the sample correlation matrix: A mul-
tiple testing (MT) approach

Let fxit; i 2 N; t 2 Tg, N � N; T � Z, be a double index process where xit is de-
�ned on a suitable probability space (
; F; P ), and denote the covariance matrix of xt =
(x1t; x2t; :::; xNt)

0 by
V ar (xt) = � = E

�
(xt � �) (xt � �)0

�
; (1)

where E(xt) = � = (�1; �2; :::; �N)
0, and � is an N � N symmetric, positive de�nite real

matrix with (i; j) element, �ij.
We consider the regularisation of the sample covariance matrix estimator of �, denoted

by �̂, with elements

�̂ij;T = T�1
TX
t=1

(xit � �xi) (xjt � �xj) ; for i; j = 1; 2; :::; N; (2)

where �xi = T�1
PT

t=1 xit. To this end we assume that � is (exactly) sparse de�ned as follows.
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Assumption 1 The population covariance matrix, � = (�ij); where �min (�) � "0 > 0, is
sparse in the sense that mN de�ned by

mN = max
i�N

NX
j=1

I (�ij 6= 0) ; (3)

is bounded in N , where I(A) is an indicator function that takes the value of 1 if A holds and
zero otherwise. The remaining N(N �mN � 1) non-diagonal elements of � are zero.

A comprehensive discussion of the concept of sparsity applied to � and alternative ways
of de�ning it are provided in El Karoui (2008) and Bickel and Levina (2008b). De�nition 1
is a natural choice when considering concurrently the problems of regularisation of �̂ and
support recovery of �. We also make the following assumption about the bivariate moments
of (xit; xjt).

Assumption 2 The T observations f(xi1; xj1); (xi2; xj2); ::::; (xiT ; xjT )g are drawn from a
general bivariate distribution with mean �i = E(xit), j�ij < K, variance �ii = V ar(xit), 0 <
�ii < K, and correlation coe¢ cient �ij = �ij=

p
�ii�jj satisfying 0 < �min <

���ij�� < �max < 1.
Also, it is assumed that the following �nite higher-order moments exist

�ij(2; 2) = E
�
y2ity

2
jt

�
; �ij(3; 1) = E(y3ityjt), and �ij(1; 3) = E(yity

3
jt),

�ij(4; 0) = E(y4it) < K; and �ij(0; 4) = E(y4jt) < K;

where yit = (xit � �i)=
p
�ii, and E

�
yrity

s
jt

�
= �ij(r; s); for all r; s � 0.

We follow the hard thresholding literature but, as noted above, we employ multiple
testing rather than cross-validation to decide on the threshold value. More speci�cally, we
set to zero those elements of R = (�ij) that are statistically insigni�cant and therefore
determine the threshold value as a part of a multiple testing strategy rather than by cross-
validation. We apply the thresholding procedure explicitly to the correlations rather than the
covariances. This has the added advantage that one can use a so-called �universal�threshold
rather than making entry-dependent adjustments, which in turn need to be estimated when
thresholding is applied to covariances. This feature is in line with the method of Bickel and
Levina (2008b) or El Karoui (2008) but shares the properties of the adaptive thresholding
estimator developed by Cai and Lui (2011).
Speci�cally, denote the sample correlation of xit and xjt, computed over t = 1; 2; :::; T ,

by

�̂ij;T = �̂ji;T =
�̂ij;Tp
�̂ii;T �̂jj;T

; (4)

where �̂ij;T is de�ned by (2). For a given i and j, it is well known that under H0;ij : �ij = 0,p
T �̂ij;T is asymptotically distributed as N(0; 1) for T su¢ ciently large. This suggests using

T�1=2��1
�
1� p

2

�
as the threshold for

���̂ij;T ��, where ��1 (�) is the inverse of the cumulative
distribution of a standard normal variate, and p is the chosen nominal size of the test,
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typically taken to be 1% or 5%. However, since there are in fact N (N � 1) =2 such tests and
N is large, then using the threshold T�1=2��1

�
1� p

2

�
for all N(N �1)=2 pairs of correlation

coe¢ cients will yield inconsistent estimates of � and fails to recover its support.
A popular approach to the multiple testing problem is to control the overall size of

the n = N(N � 1)=2 tests jointly (known as family-wise error rate) rather than the size
of the individual tests. Let the family of null hypotheses of interest be H01; H02; :::; H0n;

and suppose we are provided with the corresponding test statistics, Z1T ; Z2T ; ::::; ZnT , with
separate rejection rules given by (using a two-sided alternative)

Pr (jZiT j > CViT jH0i ) � piT ;

where CViT is some suitably chosen critical value of the test, and piT is the observed p-value
for H0i. Consider now the family-wise error rate (FWER) de�ned by

FWERT = Pr [[ni=1 (jZiT j > CViT jH0i )] ;

and suppose that we wish to control FWERT to lie below a pre-determined value, p. One
could also consider other generalized error rates (see for example Romano et al. (2008)).
Bonferroni (1935) provides a general solution, which holds for all possible degrees of depen-
dence across the separate tests. Using the union bound, we have

Pr [[ni=1 (jZiT j > CViT jH0i )] �
nX
i=1

Pr (jZiT j > CViT jH0i )

�
nX
i=1

piT :

Hence to achieve FWERT � p, it is su¢ cient to set piT � p=n. Alternative multiple testing
procedures advanced in the literature that are less conservative than the Bonferroni procedure
can also be employed. One prominent example is the step-down procedure proposed by Holm
(1979) that, similar to the Bonferroni approach, does not impose any further restrictions on
the degree to which the underlying tests depend on each other. More recently, Romano and
Wolf (2005) proposed step-down methods that reduce the multiple testing procedure to the
problem of sequentially constructing critical values for single tests. Such extensions can be
readily considered but will not be pursued here.
In our application we scale p by a general function of N , which we denote by f(N) and

then derive conditions on f(N) which ensure consistent support recovery and a suitable
convergence rate of the error in estimation of R = (�ij). In particular, we show that the
spectral norm of R and its support recovery can be consistently estimated so long as f(N)
rises linearly in N , and does not depend on whether xit and xjt are dependently distributed
when �ij = 0. However, we show that under the Frobenius norm the form of f(N) depends
on whether the pairs (xit; xjt), for all i 6= j display non-linear dependence, in the sense that
they are dependent even if �ij = 0. As will be shown in Section 2.1, under the null hypothesis,
H0;ij : �ij = 0 for all i and j, i 6= j, the degree of non-linear dependence is de�ned by the
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parameter �max = supij (�ij) where �ij =
�
�ij(2; 2)

���ij = 0�. Under independence, �max = 1
and f(N) = N , while under non-linear dependence we have �max > 1 and f(N) = O (N�max).
More precisely, the multiple testing (MT ) estimator of R, denoted by eRMT =

�
~�ij
�
; is

given by

~�ij = �̂ijI
����̂ij�� > T�1=2cp(N)

�
; i = 1; 2; :::; N � 1; j = i+ 1; :::; N; (5)

where

cp(N) = �
�1
�
1� p

2f(N)

�
: (6)

It is evident that since cp(N) is selected a priori and does not need to be estimated, the
multiple testing procedure in (5) is also computationally simple to implement. This con-
trasts with traditional thresholding approaches which face the challenge of evaluating the
theoretical constant, C, arising in the rate of convergence of their estimators. A separate
cross-validation procedure is typically employed for the estimation of C that has its own
limitations.
Finally, the MT estimator of � is now given by

e�MT = D̂
1=2 eRMTD̂

1=2
;

where D̂ = diag(�̂11;T ; �̂22;T ; :::; �̂NN;T ). The MT procedure can also be applied to de-
factored observations following the de-factoring approach of Fan et al. (2011, 2013).

2.1 Theoretical properties of the MT estimator

Next we investigate the asymptotic properties of theMT estimator de�ned by (5). We begin
with the following proposition.

Proposition 1 Let yit = (xit � �i)=
p
�ii, where �i = E(xit), j�ij < K, and �ii = V ar(xit),

0 < �ii < K, for all i and t, and suppose that Assumption 2 holds. Consider the sample
correlation coe¢ cient de�ned by (4) which can also be expressed in terms of yit as

�̂ij;T =

PT
t=1 (yit � �yi) (yjt � �yj)hPT

t=1 (yit � �yi)
2
i1=2 hPT

t=1 (yjt � �yj)
2
i1=2 : (7)

Then

�ij;T = E
�
�̂ij;T

�
= �ij +

Km(�ij)

T
+O

�
T�2

�
; (8)

!2ij;T = V ar
�
�̂ij;T

�
=
Kv(�ij)

T
+O

�
T�2

�
; (9)

where

Km(�ij) = �
1

2
�ij(1��2ij)+

1

8

�
3�ij [�ij(4; 0) + �ij(0; 4)]� 4 [�ij(3; 1) + �ij(1; 3)] + 2�ij�ij(2; 2)

	
;

(10)
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Kv(�ij) = (1��2ij)2+
1

4

�
�2ij [�ij(4; 0) + �ij(0; 4)]� 4�ij [�ij(3; 1) + �ij(1; 3)] + 2(2 + �2ij)�ij(2; 2)

	
;

(11)

�ij(4; 0) = �ij(4; 0)� 3�2ij(2; 0) = E(y4it)� 3;
�ij(0; 4) = �ij(0; 4)� 3�2ij(0; 2) = E(y4jt)� 3;
�ij(3; 1) = �ij(3; 1)� 3�ij(2; 0)�ij(1; 1) = E(y3ityjt)� 3�ij;
�ij(1; 3) = �ij(1; 3)� 3�ij(0; 2)�ij(1; 1) = E(y3jtyit)� 3�ij;
�ij(2; 2) = �ij(2; 2)� �ij(2; 0)�ij(0; 2)� 2�ij(1; 1) = �ij(2; 2)� 2�ij � 1;

and �ij = (�ij; �ij(0; 4)+�ij(4; 0); �ij(3; 1)+�ij(1; 3); �ij(2; 2))
0. Furthermore jKm(�ij)j < K,

Kv(�ij) = limT!1
�
TV ar

�
�̂ij;T

��
, and Kv(�ij) < K.

Proof of Proposition 1. The results for E
�
�̂ij;T

�
and V ar

�
�̂ij;T

�
are established in

Gayen (1951) using a bivariate Edgeworth expansion approach. This con�rms earlier �ndings
obtained by Tschuprow (1925, English Translation, 1939) who shows that results (8) and (9)
hold for any law of dependence between xit and xjt. See, in particular, p. 228 and equations
(53) and (54) in Gayen (1951). Using (9) and (11) we have limT!1

�
TV ar

�
�̂ij;T

��
= Kv(�ij).

Finally, the boundedness of jKm(�ij)j and Kv(�ij) follows directly from the assumption that
the fourth-order moment of yit exists for all i and t. The existence of the other moments,
E(y3ityjt) and E

�
y2ity

2
jt

�
, follows by application of Holder�s and Cauchy�Schwarz inequalities

as given below: ��E(y2ity2jt)�� � �E(jyitj4)�1=2 �E �jyjtj4��1=2 < K

and ��E(yity3jt)�� � E(
��yity3jt��) � �E(jyitj4)�1=4 hE ���y3jt��4=3�i3=4

=
�
E(jyitj4)

�1=4 �
E
�
jyjtj4

��3=4
= E(jyitj4) < K:

Remark 1 From Gayen (1951) p.232 (eq (54)bis) it follows that Kv(�ij) > 0 for each
correlation coe¢ cient �ij = �ij=

p
�ii�jj satisfying 0 < �min <

���ij�� < �max < 1. Further,
under the null H0;ij : �ij = 0, (11) becomes Kv(�ij) = 1 + �ij(2; 2) = �ij(2; 2) > 0.

We introduce the following assumption which is inspired from the above proposition.

Assumption 3 The standardised correlation coe¢ cients, zij;T =
�
�̂ij;T � E

�
�̂ij;T

��
=
q
V ar

�
�̂ij;T

�
,

for all i and j (i 6= j) admit the Edgeworth expansion

Pr (zij;T � aij;T jPij ) = Fij;T (aij;T jPij ) (12)

= �(aij;T ) + T�1=2� (aij;T )G1 (aij;T jPij ) + T�1� (aij;T )G2 (aij;T jPij ) + ::::;

where E
�
�̂ij;T

�
and V ar

�
�̂ij;T

�
are de�ned by (8) and (9) of Proposition 1, �(aij;T ) and

� (aij;T ) are the cumulative distribution and density functions of the standard Normal (0; 1),
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respectively, and Gs (aij;T jPij ), s = 1; 2; ::: are polynomials in aij;T , whose coe¢ cients depend
on the underlying bivariate distribution of the observations (xit,xjt for t = 1; 2; :::; T ) which
is denoted by Pij.

Remark 2 While Assumption C1 of Cai and Liu (2011) characterising the tail-property of
yit can be used, we opt to focus on the standardised correlation coe¢ cient, zij;T . This is a
self-normalised process where E

�
�̂ij;T

�
and V ar

�
�̂ij;T

�
are given by (8) and (9) respectively.

Then, for a �nite T , all moments of zij;T exist and as T !1, zij;T !d z s N(0; 1). Hence,
following the theorem of Sargan (1976) on p.423 the Edgeworth expansion is valid.

Given Assumptions 1-3, �rst we establish the rate of convergence of the MT estimator
under the spectral (or operator) norm which implies convergence in eigenvalues and eigen-
vectors (see El Karoui (2008), and Bickel and Levina (2008a)).

Theorem 1 (Convergence under the spectral norm) Denote the sample correlation coe¢ -
cient of xit and xjt over t = 1; 2; :::; T by �̂ij;T (as de�ned in (7) of Proposition 1) and the
population correlation matrix by R = (�ij). Suppose that Assumptions 1-3 hold. Let f(N)
be an increasing function of N , p a �nite constant (0 < p < 1), and suppose there exist �nite
T0 and N0 such that for all T > T0 and N > N0,

1� p

2f(N)
> 0

and
ln f(N)=T ! 0; as N and T !1:

Then so long as N=
p
T ! 0 we have

E



eRMT �R





spec

= O

�
mNp
T

�
; (13)

where mN is de�ned by (3), eRMT = (~�ij;T ) = �̂ij;T I
����̂ij;T �� > T�1=2cp(N)

�
; and cp(N) =

��1
�
1� p

2f(N)

�
> 0:

Proof. See Appendix.
Under the conditions of Theorem 1, and since by Assumptions 1 and 2, �min (R) � "0 > 0,

then the eigenvalues of eRMT are bounded away from zero with probability approaching 1,
and we have



�eRMT

��1
�R�1






spec

=





�eRMT

��1 �
R� eRMT

�
R�1






spec

� �min

�eRMT

��1 


R� eRMT





spec

�min (R)
�1

= Op

�
mNp
T

�
:

Also see Appendix A of Fan et al. (2013) and proof of lemma A.1 in Fan et al. (2011).
Similarly, we establish the rate of convergence of the MT estimator under the Frobenius

norm.
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Theorem 2 (Convergence under the Frobenius norm) Denote the sample correlation coe¢ -
cient of xit and xjt over t = 1; 2; :::; T by �̂ij;T (as de�ned in (7) of Proposition 1) and the
population correlation matrix by R = (�ij). Suppose that Assumptions 1-3 hold. Let f(N)
be an increasing function of N , p a �nite constant (0 < p < 1), and suppose there exist �nite
T0 and N0 such that for all T > T0 and N > N0,

1� p

2f(N)
> 0;

ln f(N)=T ! 0; as N and T !1;

and

�max � limN!1
ln [f(N)]

ln(N)
; (14)

where �max = supij [�ij], �ij =
�
�ij(2; 2)

���ij = 0�, with �ij(2; 2) de�ned in Assumption 2.
Then as long as N=

p
T ! 0 we have

E



eRMT �R





F
= O

 r
mNN

T

!
; (15)

where mN is de�ned by (3), eRMT = (~�ij;T ) = �̂ij;T I
����̂ij;T �� > T�1=2cp(N)

�
; and cp(N) =

��1
�
1� p

2f(N)

�
> 0:

Proof. See Appendix.

Remark 3 For the convergence of the Frobenius norm, E



eRMT �R





F
, at the rate of

Op

�p
mNN=T

�
, the rate at which f(N) rises with N is dictated by the magnitude of �max.

For example if �max = 1; setting f(N) = N � 1 meets all the conditions of Theorem 2. But
for values of �max > 1, we need f(N) to rise with N at a faster rate. For �max 2 (1; 2], it is
su¢ cient to set f(N) = N(N � 1)=2. It is easily seen that in this case

lim
N!1

�
ln f(N)

ln(N)
� �max

�
= lim

N!1

�
ln(N) + ln(N � 1)� ln(2)

ln(N)
� �max

�
= 2� �max;

and the conditions are met if �max � 2. Similarly, for �max � 3 we need to specify f(N) =
O(N3).

Remark 4 While in practice we �nd it reasonable to set �max no greater than two, further
research is required in determining this data dependent measure, which is beyond the scope
of the present paper. Convergence under the spectral norm is less demanding than under the
Frobenius norm. Unlike Theorem 2, the statement of Theorem 1 does not require a condition
on �max. This implies that under the spectral norm, when controlling the errors in estimation
of R; it is su¢ cient for f(N) to rise linearly with N irrespective of the value of �max.
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Remark 5 The orders of convergence in (13) and (15) are in line with the results in the
thresholding literature. See, for example, Theorem 1 of Cai and Liu (2011, CL), and Bickel
and Levina (2008b, BL), with q = 0, that state the convergence rate using the spectral norm

in terms of probability,



e���




spec
= Op

�
mN

q
log(N)
T

�
, where e� is the thresholded es-

timator of �̂ using either the CL or BL approaches. Similarly, Theorem 2 of Bickel and
Levina (2008b), with q = 0, using the Frobenius norm under the Gaussianity assumption,

obtains a convergence rate of



e���




F
= Op

�q
mNN log(N)

T

�
. In fact (13) and (15) are

improvements on the existing rates since the log (N) factor is absent in both cases. The rate
of Op

�p
mN
T

�
is achieved in the shrinkage literature as well if the assumption of sparseness

is imposed. Here mN also can be assumed to rise with N in which case the rate of conver-
gence becomes slower. This compares with a rate of Op

�p
N=T

�
for the sample covariance

(correlation) matrix - see Theorem 3.1 in Ledoit and Wolf (2004 - LW). Note that LW use
an unconventional de�nition for the Frobenius norm (see their De�nition 1 p. 376).

Remark 6 Results (13) and (15) also hold if a concept of �approximate�sparseness is used in
place of Assumption 1, such that mN is de�ned more generally as mN = maxi�N

PN
j=1 j�ijj

q,
for some q 2 [0; 1). See Bickel and Levina (2008b) or Fan et al. (2013).

Remark 7 It is interesting to note that application of the Bonferroni procedure to the prob-
lem of testing �ij = 0 for all i 6= j, is equivalent to setting f(N) = N(N � 1)=2: Our
theoretical results suggest that this is too conservative if �ij = 0 implies xit and xjt are
independent, but could be appropriate otherwise. In our Monte Carlo study we consider ob-
servations with linear and non-linear dependence, and experiment with f(N) = N � 1 and
f(N) = N(N � 1)=2: We �nd that the simulation results conform closely to our theoretical
�ndings.

Consider now the issue of consistent support recovery of R (or �), which is de�ned in
terms of true positive rate (TPR) and false positive rate (FPR) statistics. Consistent support
recovery requires TPR ! 1 and FPR ! 0 with probability 1 as N and T ! 1, and does
not follow from the results obtained above on the convergence rates of di¤erent estimators
of R. The problem is addressed in the following theorem.

Theorem 3 (Support Recovery) Consider the true positive rate (TPR) and the false positive
rate (FPR) statistics computed using the multiple testing estimator

~�ij;T = �̂ij;T I
����̂ij;T �� > T�1=2cp(N)

�
;
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given by

TPR =

PP
i6=j

I(~�ij;T 6= 0; and �ij 6= 0)PP
i6=j

I(�ij 6= 0)
(16)

FPR =

PP
i6=j

I(~�ij;T 6= 0; and �ij = 0)PP
i6=j

I(�ij = 0)
; (17)

where �̂ij;T is the pair-wise correlation coe¢ cient de�ned by (7), cp(N) = �
�1
�
1� p

2f(N)

�
>

0, 0 < p < 1, f(N) is an increasing function such that cp(N) ! 1, as N ! 1,
ln f(N)=T ! 0 and cp(N)=

p
T ! 0, as N and T ! 1. Suppose also that Assumptions

1-3 hold. Then with probability tending to 1, TPR = 1, and with probability tending to 1,
FPR = 0, if there exist N0 and T0 such that for N > N0 and T > T0,

p
T�min �cp(N) > 0,

where �min = minij
���ij�� > 0.

Proof. See Appendix.

Remark 8 The proof of support recovery does not depend on �ij(2; 2). Also it only requires
that f(N) rises with N linearly. For example, setting f(N) = N � 1 it is easily seen that
ln f(N)=T = ln(N � 1)=T ! 0; as N and T ! 1, and cp(N) = ��1

�
1� p

2f(N)

�
! 1, as

N ! 1, and conditions of Theorem 3 are met. Interestingly, this suggests that consistent
support recovery is ensured if Bonferroni�s MT procedure is applied to R (or �) row-wise.
One is likely to encounter loss of power if Bonferroni�s procedure is applied to all the distinct
o¤-diagonal elements of R. A similar argument can be made for Holm�s MT procedure,
although the application of Holm�s procedure row-wise can result in contradictions due to the
symmetry of the correlation matrix.

3 Monte Carlo simulations

We investigate the numerical properties of the proposed multiple testing (MT ) estimator
using Monte Carlo simulations. We compare our estimator with a number of thresholding
and shrinkage estimators proposed in the literature, namely the thresholding estimators of
Bickel and Levina (2008b, BL) and Cai and Liu (2011, CL), and the shrinkage estimator of
LW. As mentioned earlier the thresholding methods of BL and CL require the computation
of a theoretical constant, C, that arises in the rate of their convergence. For this purpose,
cross-validation is typically employed which we use when implementing these estimators. For
the CL approach we also consider the theoretical value of C = 2 proposed by the authors.
A review of these estimators along with details of the associated cross-validation procedure
can be found in the Supplementary Appendix B.
We begin by generating the standardised variates, yit, as

yt = Put; t = 1; 2; :::; T;
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where yt = (y1t; y2t; :::; yNt)0, ut = (u1t; u2t; :::; uNt)0, and P is the Cholesky factor associated
with the choice of the correlation matrix R = PP 0. We consider two alternatives for the
errors, uit: (i) the benchmark Gaussian case where uit s IIDN(0; 1) for all i and t, and (ii)
the case where uit follows a multivariate t-distribution with v degrees of freedom generated
as

uit =

�
v� 2
�2v;t

�1=2
"it, for i = 1; 2; :::; N;

where "it s IIDN(0; 1), and �2v;t is a chi-squared random variate with v > 4 degrees of
freedom, distributed independently of "it for all i and t. As fourth-order moments are required
by Assumption 2 we set v = 8 to ensure that E (y4it) exists and �max � 2. Note that under
�ij = 0; �ij = �ij(2; 2

���ij = 0) = (v�2)=(v�4), and with v = 8 we have �ij = �� = 1:5.
Therefore, in the case where the standardised errors are multivariate t-distributed to ensure
that conditions of Theorem 2 are met we must set f(N) = N (N � 1) =2. (See also Remark
3 and Lemma 7 in the Supplementary Appendix A). One could further allow for fat-tailed
"it shocks, though fat-tail shocks alone (e.g. generating uit as such) do not necessarily result
in �ij > 1 as shown in Lemma 8 of the Supplementary Appendix A. The same is true for
normal shocks under case (i), where �ij(2; 2) = 1 whether P = IN or not. In such cases
setting f(N) = N � 1 is then su¢ cient for conditions of Theorem 2 to be met.
Next, the non-standardised variates xt = (x1t;x2t; :::;xNt)

0 are generated as

xt = a+ 
ft +D
1=2yt, (18)

where D = diag(�11; �22; ::::; �NN), a = (a1; a2; :::; aN)0 and 
 = (
1; 
2; :::; 
N)
0.

We report results for N = f30; 100; 200g and T = 100; for the baseline case where

 = 0 and a = 0 in (18). The properties of the MT procedure when factors are included
in the data generating process are also investigated by drawing 
i and ai as IIDN (1; 1) for
i = 1; 2; ::::; N , and generating ft, the common factor, as a stationary AR(1) process, but to
save space these results are made available upon request. Under both settings we focus on
the residuals from an OLS regression of xt on an intercept and a factor (if needed).
In accordance with our theoretical assumptions we consider two exactly sparse covariance

(correlation) matrices:
Monte Carlo design A: Following Cai and Liu (2011) we consider the banded matrix

� = (�ij) = diag(A1;A2);

whereA1 = A+�IN=2,A = (aij)1�i;j�N=2; aij = (1� ji�jj
10
)+ with � = max(��min(A); 0)+0:01

to ensure that A is positive de�nite, and A2 = 4IN=2: � is a two-block diagonal matrix,
A1 is a banded and sparse covariance matrix, and A2 is a diagonal matrix with 4 along the
diagonal. Matrix P is obtained numerically by applying the Cholesky decomposition to the
correlation matrix, R = D�1=2�D�1=2 = PP0, where the diagonal elements of D are given
by �ii = 1 + �; for i = 1; 2; :::; N=2 and �ii = 4; for i = N=2 + 1; N=2 + 1; :::; N:

Monte Carlo design B : We consider a covariance structure that explicitly controls for the
number of non-zero elements of the population correlation matrix. First we draw the N � 1
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vector b = (b1; b2; :::; bN)
0 with elements generated as Uniform (0:7; 0:9) for the �rst and

last Nb (< N) elements of b, where Nb =
�
N �
�
, and set the remaining middle elements of b

to zero. The resulting population correlation matrix R is de�ned by

R = IN + bb
0 � diag (bb0) , (19)

for which
p
T�min �cp(N) > 0 and �min = minij

���ij�� > 0, in line with Theorem 3. The
degree of sparseness of R is determined by the value of the parameter �. We are interested
in weak cross-sectional dependence, so we focus on the case where � < 1=2 following Pesaran
(2015), and set � = 0:25. Matrix P is then obtained by applying the Cholesky decomposition
to R de�ned by (19). Further, we set � = D1=2RD1=2, where the diagonal elements of D
are given by �ii s IID (1=2 + �2(2)=4), i = 1; 2; :::; N .
An additional two covariance speci�cations based on approximately sparse matrices as

de�ned in Bickel and Levina (2008b, p. 2580 for 0 < q < 1), namely the correlation matrices
corresponding to an AR(1) and spatial AR(1), SAR(1), process respectively, along with their
associated simulation results can be found in the Supplementary Appendix D.

3.1 Finite sample positive de�niteness

As with other thresholding approaches, multiple testing preserves the symmetry of R̂ and is
invariant to the ordering of the variables but it does not ensure positive de�niteness of the
estimated covariance matrix when N > T .
A number of methods have been developed in the literature that produce sparse inverse

covariance matrix estimates which make use of a penalised likelihood (D�Aspremont et al.
(2008), Rothman et al. (2008, 2009), Yuan and Lin (2007), and Peng et al. (2009)) or
convex optimisation techniques that apply suitable penalties such as a logarithmic barrier
term (Rothman (2012)), a positive de�niteness constraint (Xue et al. (2012)), an eigenvalue
condition (Liu et al. (2013), Fryzlewicz (2013), Fan et al. (2013, FLM)). Most of these
approaches are rather complex and computationally extensive.
A simpler alternative, which conceptually relates to soft thresholding (such as smoothly

clipped absolute deviation by Fan and Li (2001) and adaptive lasso by Zou (2006)), is to
consider a convex linear combination of eRMT and a well-de�ned target matrix which is
known to result in a positive de�nite matrix. In what follows, we opt to set as benchmark
target the N�N identity matrix, IN , in line with one of the methods suggested by El Karoui
(2008). The advantage of doing so lies in the fact that the same support recovery achieved
by eRMT is maintained and the diagonal elements of the resulting correlation matrix do not
deviate from unity. Given the similarity of this adjustment to the shrinking method, we dub
this step shrinkage on our multiple testing estimator (S-MT ),

eRS-MT (�) = �IN + (1� �)eRMT ; (20)

with shrinkage parameter � 2 (�0; 1]; and �0 being the minimum value of � that produces a
non-singular eRS-MT (�0) matrix. Alternative ways of computing the optimal weights on the
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two matrices can be entertained. We choose to calibrate, �, since opting to use �0 in (20),
as suggested in El Karoui (2008), does not necessarily provide a well-conditioned estimate
of eRS-MT . Accordingly, we set � by solving the following optimisation problem

�� = arg min
�0+����1




R�1
0 �eR�1

S-MT (�)



2
F
; (21)

where � is a small positive constant, and R0 is a reference invertible correlation matrix.
Finally, we construct the corresponding covariance matrix as

e�S-MT (�
�) = D̂

1=2 eRS-MT (�
�) D̂

1=2
:

Further details on the S-MT procedure, the optimisation of (21) and choice of reference
matrix R0 are available in the Supplementary Appendix C.

3.2 Alternative estimators and evaluation metrics

Using the earlier set up and the relevant adjustments to achieve positive de�niteness of the
estimators of � where required, we obtain the following estimates of �:

MTN�1: thresholding based on theMT approach applied to the sample correlation matrix
(e�MT ) using f(N) = N � 1 (e�MTN�1)

MTN(N�1)=2: thresholding based on the MT approach applied to the sample correlation
matrix (e�MT ) using f(N) = N(N � 1)=2 (e�MTN(N�1)=2)

BLĈ : BL thresholding on the sample covariance matrix using cross-validated C (e�BL;Ĉ)
CL2: CL thresholding on the sample covariance matrix using the theoretical value of

C = 2 (e�CL;2)
CLĈ : CL thresholding on the sample covariance matrix using cross-validated C (e�CL;Ĉ)

S-MTN�1: supplementary shrinkage applied to MTN�1 (e�S-MTN�1)
S-MTN(N�1)=2: supplementary shrinkage applied to MTN(N�1)=2 (e�S-MTN(N�1)=2)
BLĈ�: BL thresholding using the Fan, Liao and Mincheva (2013, FLM) cross-validation

adjustment procedure for estimating C to ensure positive de�niteness (e�BL;Ĉ�)
CLĈ�: CL thresholding using the FLM cross-validation adjustment procedure for esti-

mating C to ensure positive de�niteness (e�CL;Ĉ�)

LW�̂: LW shrinkage on the sample covariance matrix (�̂LW�̂
).

In accordance with the theoretical results in Theorem 2 and in view of Remark 3, we con-
sider two versions of theMT estimator depending on the choice of f(N) = fN � 1; N(N � 1)=2g :
The BLĈ , and CL2 and CLĈ estimators apply the thresholding procedure without ensuring
that the resultant covariance estimators are invertible. The next �ve estimators yield in-
vertible covariance estimators. The S-MT estimators are obtained using the supplementary
shrinkage approach described in Section 3.1. BLĈ� and CLĈ� estimators are obtained by
applying the additional FLM adjustments. The shrinkage estimator, LW�̂, is invertible by
construction. In the case of the MT estimators where regularisation is performed on the
correlation matrix the associated covariance matrix is estimated as D̂1=2 eRMT D̂

1=2.
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For both Monte Carlo designs A and B, we compute the spectral and Frobenius norms of
the deviations of each of the regularised covariance matrices from their respective population
� : 


����




spec
and




����



F
; (22)

where �� is set to one of the following estimators fe�MTN�1 ;
e�MTN(N�1)=2 ;

e�BL;Ĉ ;
e�CL;2;e�CL;Ĉ ;

e�S-MTN�1 ;
e�S-MTN(N�1)=2 ;

e�BL;Ĉ� ;
e�CL;Ĉ� ; �̂LW�̂

g. The threshold values, Ĉ and

Ĉ�, are obtained by cross-validation (see Supplementary Appendix B.3 for details). Both
norms are also computed for the di¤erence between ��1, the population inverse of �, and
the estimators fe��1

S-MTN�1
; e��1S-MTN(N�1)=2

; e��1
BL;Ĉ� ;

e��1CL;Ĉ� ; �̂�1
LW�̂

g. Further, we investigate the
ability of the thresholding estimators to recover the support of the true covariance matrix
via the true positive rate (TPR) and false positive rate (FPR), as de�ned by (16) and (17),
respectively. The statistics TPR and FPR are not relevant to the shrinkage estimator LW�̂

and will not be reported for this estimator.

3.3 Robustness of MT to the choice of the p-value and f(N)

We begin by investigating the sensitivity of theMT estimator to the choice of the p-value, p,
and the scaling factor f(N) used in the formulation of cp(N) de�ned by (6). For this purpose
we consider the typical signi�cance levels used in the literature, namely p = f0:01; 0:05; 0:10g;
and f(N) = fN � 1; N(N � 1)=2g. Table 1 summarises the spectral and Frobenius norm
losses (averaged over 2000 replications) for both Monte Carlo designs A and B, and for
both distributional error assumptions (Gaussian and multivariate t). First, we note that
neither of the norms is much a¤ected by the choice of the p values when the scaling factor
is N (N � 1) =2, irrespective of whether the observations are drawn from a Gaussian or a
multivariate t distribution. Perhaps this is to be expected since for N su¢ ciently large the
e¤ective p-value which is given by 2p=N(N�1) is very small and the test outcomes are more
likely to be robust to the changes in the values of p as compared to the case when the scaling
factor used is N � 1. The results in Table 1 also con�rm our theoretical �nding of Theorem
2 that in the case of Gaussian observations, where �max = 1, the scaling factor N�1 is likely
to perform better as compared to N(N � 1)=2, but the reverse is true if the observations
are multivariate t distributed and the scaling factor N(N � 1)=2 is to be preferred (see also
Remark 3). We also note that all the norm losses rise with N given that T is kept at 100 in
all the experiments. We obtain similar results when we consider other Monte Carlo designs
with approximately sparse covariance matrices. To save space the results for these designs
are provided in the Supplementary Appendix D. Overall, we �nd that the results are more
robust when the scaling factor N(N � 1)=2 is used.

3.4 Norm comparisons of MT , BL, CL, and LW estimators

In comparing our proposed estimators with those in the literature we consider a fewer num-
ber of Monte Carlo replications and report the results with norm losses averaged over 100
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replications, given the use of the cross-validation procedure in the implementation of BL and
CL thresholding. This Monte Carlo speci�cation is in line with the simulation set up of BL
and CL. Our reported results are also in agreement with their �ndings.
Tables 2 and 3 summarise the results for the Monte Carlo designs A and B, respectively.

Based on the results of Section 3.3, we provide norm comparisons for the MT estimator
using the scaling factor N(N � 1)=2; and the conventional signi�cance level of p = 0:05.
Initially, we consider the threshold estimators, MT , BL and the two versions of the CL
estimators (CL2 and CLĈ) without further adjustments to ensure invertibility. First, we
note that the MT and CL estimators (both versions) dominate the BL estimator in every
case, without any exceptions and for both designs. The same is also true if we compare
MT and CL estimators to the LW shrinkage estimator, although it could be argued that it
is more relevant to compare the invertible versions of the MT and CL estimators (namelye�CL;Ĉ� and e�S-MT ) with �̂LW�̂

. In such comparisons �̂LW�̂
performs relatively better,

nevertheless, �̂LW�̂
is still dominated by e�S-MT , with a few exceptions in the case of design

A and primarily when N = 30. However, no clear ordering emerges when we compare �̂LW�̂

with e�CL;Ĉ�.

3.5 Norm comparisons of inverse estimators

Although the theoretical focus of this paper has been on estimation of � rather than its
inverse, it is still of interest to see how well e��1

S-MT , e��1BL;Ĉ�, e��1
CL;Ĉ�, and �̂

�1
LW�̂

estimate
��1, assuming that ��1 is well de�ned. Table 4 provides average norm losses for Monte
Carlo design B whose � is positive de�nite. � for design A is ill-conditioned and will
not be considered any further here. As can be seen from the results in Table 4, e��1S-MT

performs much better than e��1
BL;Ĉ� and e��1CL;Ĉ� for Gaussian and multivariate t-distributed

observations. In fact, the average spectral norms for e��1BL;Ĉ� and e��1CL;Ĉ� include some sizeable
outliers, especially for N � 100. However, the ranking of the di¤erent estimators remains the
same if we use the Frobenius norm which appears to be less sensitive to the outliers. It is also
worth noting that e��1

S-MT performs better than LW�̂, for all sample sizes and irrespective of
whether the observations are drawn as Gaussian or multivariate t.

3.6 Support recovery statistics

Table 5 reports the true positive and false positive rates (TPR and FPR) for the support
recovery of � using the multiple testing and thresholding estimators. In the comparison set
we include two versions of the MT estimator (e�MTN�1 and e�MTN(N�1)=2); e�BL;Ĉ ;

e�CL;2; ande�CL;Ĉ . Again we use 100 replications due to the use of cross-validation in the implementation
of BL and CL thresholding. We include the MT estimators for both choices of the scaling
factor, f(N) = N�1 and f(N) = N(N�1)=2, computed at p = 0:05, to see if our theoretical
result, namely that for consistent support recovery only the linear scaling factor, N � 1, is
needed, is borne out by the simulations. For consistent support recovery we would like to see
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FPR values near zero and TPR values near unity. As can be seen from Table 5, the FPR
values of all estimators are very close to zero, so any comparisons of di¤erent estimators
must be based on the TPR values. Comparing the results for e�MTN�1 and e�MTN(N�1)=2 we

�nd that as predicted by the theory (Theorem 3 and Remark 8), TPR values of e�MTN�1 are
closer to unity as compared to the TPR values of e�MTN(N�1)=2 . Similar results are obtained
for the MT estimators for di¤erent choices of the p values. Table 6 provides results for
p = f0:01; 0:05; 0:10g; and for f(N) = fN � 1; N(N � 1)=2g using 2,000 replications. In
this table it is further evident that, in line with the conclusions of Section 3.3, both the
TPR and the FPR statistics are relatively robust to the choice of the p values irrespective
of the scaling factor, f(N), or whether the observations are drawn from a Gaussian or a
multivariate t distribution. This is especially true under design B, since for this speci�cation
we explicitly control for the number of non-zero elements in �, that ensures the conditions
of Theorem 3 are met.
Turning to a comparison with other estimators in Table 5, we �nd that the MT and

CL estimators perform substantially better than the BL estimator. Further, allowing for
non-linear dependence in the errors causes the support recovery performance of BLĈ ; CL2
and CLĈ to deteriorate noticeably whileMTN�1 andMTN(N�1)=2 remain remarkably stable.
Finally, again note that TPR values are higher for design B. Overall, the estimator e�MTN�1

does best in recovering the support of� as compared to other estimators, although the results
of CL and MT for support recovery are very close, which is in line with the comparative
analysis carried out in terms of the relative norm losses of these estimators.

3.7 Computational demands of the di¤erent thresholding methods

Table 7 reports the relative execution times of the di¤erent thresholding methods studied.
All times are relative to the time it takes to carry out the computations for the MTN(N�1)=2
estimator. It took 0:010, 0:013, and 0:016 seconds to apply the MT method in Matlab to
a sample of N = f30; 100; 200g; respectively, and T = 100 observations using a desktop
pc. The slight di¤erence in execution time between MTN�1 and MTN(N�1)=2 amounts to
the stricter condition imposed by the p-value on the MTN(N�1)=2 procedure, which produces
a slightly sparser version of e�. In contrast, the BLĈ and CLĈ thresholding approaches
are computationally much more demanding. Their computations took between about 18
and 412293 times longer than the MT approach, for the same sample sizes and computer
hardware. The BLĈ method was less demanding than the CLĈ method - it took between
about 18 and 500 times longer than the MT approach. Even CL2, which does not require
estimation of the threshold parameter, took up to 17 times longer than the MT approach.
Thus, compared with other thresholding methodsMT has a clear computational advantage.

4 Concluding Remarks

This paper considers regularisation of large covariance matrices particularly when the cross
section dimension N of the data under consideration exceeds the time dimension T: In this
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case the sample covariance matrix, �̂; becomes ill-conditioned and is not a satisfactory
estimator of the population covariance.
A regularisation estimator is proposed which uses multiple testing rather than cross-

validation to calibrate the threshold value. It is shown that the resultant estimator has a
convergence rate of

�
mNT

�1=2� under the spectral norm and (mNN=T )
1=2 under the Frobe-

nius norm, where T is the number of observations, and mN is bounded in N (the dimension
of �), which provide slightly better rates than the convergence rates established in the lit-
erature for other regularised covariance matrix estimators. Our results derived under the
Frobenius norm explicitly relate the scaling function in the multiple testing problem to the
possible non-linear dependence of the underlying data, and together with the spectral norm
results are valid under both Gaussian and non-Gaussian assumptions. This compliments
the existing theoretical results in the literature for the Frobenius norm of the thresholding
estimator derived only under the assumption of Gaussianity. As compared to the threshold
estimators that use cross-validation, the MT estimator is also computationally simple and
fast to implement.
The numerical properties of the proposed estimator are investigated using Monte Carlo

simulations. It is shown that the MT estimator performs well, and generally better than
the other estimators proposed in the literature. The simulations also show that in terms of
spectral and Frobenius norm losses, the MT estimator is reasonably robust to the choice of
p in the threshold criterion,

���̂ij�� > T�1=2��1
�
1� p

2f(N)

�
, particularly when f(N) is set to

N(N � 1)=2. For support recovery, better results are obtained if f(N) is set to N � 1.
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Table 1: Spectral and Frobenius norm losses for the MT (p) estimator using signi�cance
levels p = f0:01; 0:05; 0:10g and the scaling factors f(N) = fN � 1; N(N � 1)=2g, for

T = 100
Monte Carlo design A

f (N) = N � 1 f (N) = N (N � 1) =2
N MTN�1(:01) MTN�1(:05) MTN�1(:10) MTN(N�1)

2

(:01) MTN(N�1)
2

(:05) MTN(N�1)
2

(:10)

uits Gaussian
Spectral norm

30 1.70(0.49) 1.68(0.49) 1.72(0.49) 1.84(0.50) 1.75(0.50) 1.71(0.50)
100 2.61(0.50) 2.51(0.50) 2.50(0.50) 3.02(0.50) 2.84(0.50) 2.76(0.50)
200 3.04(0.48) 2.92(0.49) 2.89(0.49) 3.58(0.47) 3.37(0.47) 3.29(0.47)

Frobenius norm
30 3.17(0.45) 3.14(0.50) 3.20(0.54) 3.41(0.42) 3.25(0.44) 3.19(0.44)
100 6.66(0.45) 6.51(0.51) 6.60(0.55) 7.57(0.41) 7.17(0.42) 7.00(0.42)
200 9.87(0.46) 9.60(0.53) 9.73(0.58) 11.49(0.41) 10.89(0.42) 10.63(0.42)

uits multivariate t�distributed with 8 degrees of freedom
Spectral norm

30 2.26(1.08) 2.43(1.20) 2.55(1.27) 2.26(0.95) 2.24(1.03) 2.25(1.06)
100 3.85(4.84) 4.21(5.29) 4.47(5.48) 3.74(3.94) 3.71(4.28) 3.72(4.44)
200 4.49(3.46) 5.04(4.34) 5.45(4.77) 4.23(1.97) 4.19(2.37) 4.20(2.58)

Frobenius norm
30 4.07(1.14) 4.36(1.32) 4.62(1.40) 4.08(0.95) 4.03(1.06) 4.04(1.11)
100 8.88(5.17) 9.76(5.67) 10.51(5.88) 8.92(4.19) 8.74(4.57) 8.70(4.74)
200 12.96(4.23) 14.51(5.41) 15.82(5.95) 13.06(2.26) 12.71(2.77) 12.63(3.05)

Monte Carlo design B
uits Gaussian

Spectral norm
30 0.48(0.16) 0.50(0.16) 0.53(0.16) 0.49(0.18) 0.48(0.17) 0.48(0.17)
100 0.75(0.34) 0.76(0.32) 0.78(0.31) 0.85(0.41) 0.79(0.37) 0.77(0.37)
200 0.71(0.22) 0.74(0.20) 0.77(0.20) 0.81(0.31) 0.75(0.26) 0.73(0.26)

Frobenius norm
30 0.87(0.17) 0.92(0.18) 0.98(0.19) 0.87(0.18) 0.86(0.17) 0.86(0.17)
100 1.56(0.24) 1.66(0.24) 1.77(0.24) 1.64(0.31) 1.58(0.27) 1.57(0.27)
200 2.16(0.18) 2.32(0.20) 2.50(0.21) 2.22(0.22) 2.16(0.20) 2.15(0.20)

uits multivariate t�distributed with 8 degrees of freedom
Spectral norm

30 0.70(0.39) 0.78(0.43) 0.84(0.45) 0.67(0.34) 0.67(0.37) 0.69(0.38)
100 1.16(0.97) 1.32(1.10) 1.42(1.18) 1.12(0.77) 1.10(0.83) 1.10(0.87)
200 1.36(1.73) 1.65(2.05) 1.83(2.20) 1.13(1.11) 1.14(1.28) 1.16(1.37)

Frobenius norm
30 1.23(0.43) 1.41(0.48) 1.54(0.51) 1.15(0.36) 1.18(0.39) 1.20(0.41)
100 2.40(1.12) 2.90(1.31) 3.26(1.40) 2.16(0.81) 2.16(0.90) 2.20(0.96)
200 3.57(2.14) 4.52(2.54) 5.18(2.72) 2.97(1.30) 3.01(1.53) 3.07(1.65)
Note: Norm losses are averages over 2,000 replications. Simulation standard deviations are given in

parentheses. The MT estimators are de�ned in Section 3.2.
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Table 2: Spectral and Frobenius norm losses for di¤erent regularised covariance matrix
estimators (T = 100) - Monte Carlo design A

N = 30 N = 100 N = 200

Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius

uits Gaussian
Error matrices (����)

MTN(N�1)=2 1.81(0.54) 3.31(0.42) 2.75(0.50) 7.11(0.42) 3.37(0.43) 10.91(0.39)
BLĈ 5.30(2.16) 7.61(1.23) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.26(0.13)
CL2 1.87(0.55) 3.39(0.44) 2.99(0.49) 7.57(0.44) 3.79(0.47) 11.88(0.42)
CLĈ 1.82(0.58) 3.33(0.56) 2.54(0.50) 6.82(0.51) 3.02(0.46) 10.22(0.59)
S-MTN(N�1)=2 3.20(0.79) 4.29(0.64) 5.73(0.34) 10.77(0.46) 6.40(0.21) 16.44(0.35)
BLĈ� 7.09(0.10) 8.62(0.09) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.25(0.10)
CLĈ� 7.05(0.16) 8.58(0.12) 8.71(0.07) 16.85(0.11) 8.94(0.04) 24.23(0.09)
LW�̂ 2.99(0.47) 6.49(0.29) 5.20(0.34) 16.70(0.19) 6.28(0.20) 26.84(0.14)

uits multivariate t� distributed with 8 degrees of freedom
Error matrices (����)

MTN(N�1)=2 2.16(0.76) 4.03(0.99) 3.43(1.09) 8.43(1.26) 3.97(0.92) 12.66(1.83)
BLĈ 6.90(0.82) 8.75(0.55) 8.74(0.10) 17.26(0.30) 9.00(0.42) 24.93(1.02)
CL2 2.55(0.93) 4.53(1.00) 4.63(1.11) 10.35(1.48) 5.92(0.81) 16.43(1.74)
CLĈ 2.27(0.76) 4.24(0.94) 3.85(1.51) 9.44(2.33) 5.04(2.04) 15.65(4.71)
S-MTN(N�1)=2 3.18(0.82) 4.68(0.82) 5.75(0.45) 11.33(0.62) 6.41(0.32) 17.10(0.74)
BLĈ� 7.06(0.13) 8.84(0.30) 8.74(0.10) 17.25(0.31) 8.95(0.08) 24.84(0.55)
CLĈ� 7.01(0.16) 8.77(0.30) 8.73(0.11) 17.23(0.29) 8.94(0.08) 24.77(0.53)
LW�̂ 3.35(0.51) 7.35(0.50) 5.67(0.46) 18.04(0.45) 6.60(0.43) 28.18(0.53)
Note: Norm losses are averages over 100 replications. Simulation standard deviations are given in paren-

theses. �� = fe�MTN(N�1)=2 ;
e�BL;Ĉ ; e�CL;2; e�CL;Ĉ ; e�S-MTN(N�1)=2 ;

e�BL;Ĉ� ; e�CL;Ĉ� ; �̂LW�̂
g. e�MTN(N�1)=2

and e�S-MTN(N�1)=2 are computed using p = 0:05. BL is Bickel and Levina universal thresholding, CL is Cai

and Liu adaptive thresholding, e�BL;Ĉ is based on Ĉ which is obtained by cross-validation, e�BL;Ĉ� employs

the further adjustment to the cross-validation coe¢ cient, Ĉ�, proposed by Fan, Liao and Mincheva (2013),e�CL;2 is CL�s estimator with C = 2 (the theoretical value of C), �̂LW�̂
is Ledoit and Wolf�s shrinkage

estimator applied to the sample covariance matrix.
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Table 3: Spectral and Frobenius norm losses for di¤erent regularised covariance matrix
estimators (T = 100) - Monte Carlo design B

N = 30 N = 100 N = 200

Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius

uits Gaussian
Error matrices (����)

MTN(N�1)=2 0.48(0.16) 0.88(0.17) 0.84(0.36) 1.61(0.26) 0.70(0.21) 2.13(0.18)
BLĈ 0.91(0.50) 1.35(0.43) 1.40(0.95) 2.25(0.78) 2.53(0.55) 3.49(0.32)
CL2 0.49(0.17) 0.90(0.18) 1.00(0.48) 1.77(0.44) 0.90(0.37) 2.30(0.30)
CLĈ 0.49(0.15) 0.92(0.17) 0.83(0.31) 1.71(0.28) 1.14(0.83) 2.54(0.58)
S-MTN(N�1)=2 0.68(0.25) 1.08(0.20) 1.50(0.50) 2.14(0.35) 1.18(0.38) 2.40(0.24)
BLĈ� 1.19(0.46) 1.63(0.40) 3.32(0.20) 3.90(0.14) 2.73(0.11) 3.61(0.08)
CLĈ� 1.08(0.46) 1.53(0.46) 3.34(0.15) 3.92(0.06) 2.73(0.10) 3.61(0.08)
LW�̂ 1.05(0.13) 2.07(0.10) 2.95(0.26) 4.47(0.09) 2.46(0.06) 6.01(0.03)

uits multivariate t�distributed with 8 degrees of freedom
Error matrices (����)

MTN(N�1)=2 0.65(0.25) 1.13(0.25) 1.02(0.45) 2.11(0.51) 1.33(2.46) 3.19(2.81)
BLĈ 1.36(0.40) 1.84(0.35) 2.70(0.94) 3.58(0.74) 2.70(0.29) 4.08(0.67)
CL2 0.71(0.29) 1.21(0.30) 1.69(0.70) 2.73(0.70) 1.62(0.57) 3.31(0.65)
CLĈ 0.80(0.39) 1.33(0.39) 2.03(1.08) 3.07(0.90) 2.19(0.78) 3.72(0.62)
S-MTN(N�1)=2 0.69(0.26) 1.18(0.23) 1.37(0.53) 2.32(0.44) 1.30(0.80) 3.02(0.89)
BLĈ� 1.49(0.26) 1.98(0.21) 3.33(0.24) 4.07(0.18) 2.77(0.37) 4.04(0.56)
CLĈ� 1.26(0.40) 1.79(0.40) 3.35(0.17) 4.08(0.14) 2.73(0.14) 4.01(0.42)
LW�̂ 1.13(0.15) 2.25(0.11) 3.14(0.21) 4.68(0.11) 2.52(0.08) 6.18(0.13)

See the note to Table 2.
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Table 4: Spectral and Frobenius norm losses for the inverses of di¤erent regularised
covariance matrix estimators for Monte Carlo design B - T = 100

N = 30 N = 100 N = 200

Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (��1����1)
uits Gaussian

S-MTN(N�1)=2 4.42(1.22) 2.66(0.31) 15.62(2.68) 5.87(0.46) 13.89(2.29) 5.45(0.36)

BLĈ� 3.8�103(2.4�104) 19.56(58.88) 1.2�103(1.1�104) 12.16(33.25) 41.07(143.74) 7.66(3.17)

CLĈ� 1.9�103(1.7�104) 10.92(42.39) 51.99(241.39) 8.16(4.23) 28.45(24.37) 7.35(1.11)

LW�̂ 11.03(0.58) 4.26(0.09) 31.04(0.64) 8.62(0.06) 31.81(0.21) 9.40(0.05)

uits multivariate t�distributed with 8 degrees of freedom
S-MTN(N�1)=2 3.42(1.55) 2.44(0.38) 12.39(3.01) 5.49(0.54) 11.23(4.12) 5.54(0.66)

BLĈ� 157.26(1.0�103) 6.11(11.28) 349.35(3.1�103) 9.80(17.03) 28.58(22.06) 7.77(1.04)

CLĈ� 85.82(546.85) 5.53(7.84) 517.27(4.8�103) 10.07(21.25) 25.61(3.55) 7.54(0.50)

LW�̂ 12.08(1.19) 4.48(0.20) 31.78(1.32) 8.74(0.23) 32.06(1.00) 9.50(0.33)

Note: ��
�1
= fe��1S-N(N�1)=2; e��1BL;Ĉ� ; e��1CL;Ĉ� ; �̂

�1
LW�̂

g: See also the note to Table 2.

Table 5: Support recovery statistics for di¤erent multiple testing and thresholding
estimators - T = 100

Monte Carlo design A Monte Carlo design B
N MTN�1 MTN(N�1)=2 BLĈ CL2 CLĈ N MTN�1 MTN(N�1)=2 BLĈ CL2 CLĈ

uits Gaussian
30 TPR 0.80 0.73 0.29 0.72 0.78 30 TPR 1.00 0.98 0.64 0.98 1.00

FPR 0.00 0.00 0.04 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00
100 TPR 0.69 0.59 0.00 0.56 0.68 100 TPR 1.00 0.98 0.80 0.94 0.99

FPR 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00
200 TPR 0.66 0.55 0.00 0.50 0.65 200 TPR 1.00 0.97 0.11 0.88 0.78

FPR 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00
uits multivariate t�distributed with 8 degrees of freedom

30 TPR 0.80 0.73 0.03 0.62 0.74 30 TPR 1.00 0.99 0.26 0.89 0.82
FPR 0.01 0.00 0.00 0.00 0.00 FPR 0.01 0.00 0.00 0.00 0.00

100 TPR 0.69 0.59 0.00 0.43 0.57 100 TPR 1.00 0.98 0.27 0.70 0.57
FPR 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00

200 TPR 0.66 0.55 0.00 0.35 0.47 200 TPR 0.99 0.94 0.05 0.57 0.30
FPR 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00

Note: TPR is the true positive and FPR is the false positive rates de�ned by (16) and (17), respectively.
MT estimators are computed with p = 0:05. For a description of other estimators see the note to Table 2.
The TPR and FPR numbers are averages over 100 replications.
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Table 7: Relative execution time for the di¤erent thresholding methods
T = 100

N = 30 N = 100 N = 200
MTN(N�1)=2 1.000 1.000 1.000
MTN�1 1.176 1.239 1.110
BLĈ 18.25 102.2 500.9
CL2 1.304 5.746 17.39
CLĈ 1278 59907 412293
Note: All times are relative to the MTN(N�1)=2 estimator.
See Table 2 for a note on the thresholding methods.

Appendix: Mathematical proofs of theorems for the MT
estimator

In what follows we suppress subscript MT from eRMT for notational convenience. All state-
ments and proofs of technical lemmas are relegated to the Supplementary Appendix A.

Proof of Theorem 1. Consider the spectral norm,


eR�R



spec

= �1=2max

��eR�R�0 �eR�R�� = �1=2max

��eR�R�2� = ����max h�eR�R�i��� ;
and note that (see Horn and Johnson (1985, p.297))����max h�eR�R�i��� � 


eR�R




1
= max

1�i�N

P
j

��~�ij;T � �ij
�� :

Also

~�ij;T � �ij =
�
�̂ij;T � �ij

�
I
����pT �̂ij;T ��� > cp(N)

�
� �ij

h
1� I

����pT �̂ij;T ��� > cp(N)
�i
:

Hence,��~�ij;T � �ij
�� � ���(�̂ij;T � �ij)I

����pT �̂ij;T ��� > cp(N)
����+ ����ij hI ����pT �̂ij;T ��� > cp(N)

�
� 1
i���

andP
j

��~�ij;T � �ij
�� �P

j

���(�̂ij;T � �ij)I
����pT �̂ij;T ��� > cp(N)

����+P
j

����ij h�I ����pT �̂ij;T ��� � cp(N)
�i��� :

For any given i, where i = 1; 2; :::; N , and taking expectations, we obtain

E

 P
j

��~�ij;T � �ij
��! � E

"P
j

���(�̂ij;T � �ij)I
����pT �̂ij;T ��� > cp(N)

����#+
E

"P
j

����ijI ����pT �̂ij;T ��� � cp(N)
����# ; (23)
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or P
j

E
���~�ij;T � �ij

��� � Ai + Bi + Ci;

where

Ai =
P
j

E
h���ij�� I ����pT �̂ij;T ��� � cp(N)

���ij 6= 0�i ;
Bi =

P
j

E
h���(�̂ij;T � �ij)I

����pT �̂ij;T ��� > cp(N)
���ij 6= 0����i ;

Ci =
P
j

E
h���̂ij;T �� I ����pT �̂ij;T ��� > cp(N)

���ij = 0�i :
Consider now the orders of these three terms Ai;Bi; and Ci in turn, starting with Ai.

Since under Assumption 2, 0 < �min <
���ij�� < �max < 1, then uniformly over all i,

Ai � mN�max sup
ij
E
h
I
����pT �̂ij;T ��� � cp(N)

���ij 6= 0�i
= mN�max sup

ij
Pr
h
I
����pT �̂ij;T ��� � cp(N)

���ij 6= 0�i ;
and using equation (A.12) of Lemma 6 we have

Ai � mN�max sup
ij
Ke

�1
2

[cp(N)�
p
Tj�ijj]2

Kv (�ij) [1 + o(1)]

� mN�max sup
ij
Ke

�1
2

T

�
�min�

cp(N)p
T

�2
supij Kv (�ij) [1 + o(1)] :

Recalling that supijKv(�ij) < K and by assumption �min > 0; it then readily follows that
Ai is of order O(e�T ) so that Ai is uniformly bounded for all i and N (recalling that mN is
bounded in N), and tends to zero as N and T !1, jointly.
Consider now Bi and note that since �̂ij;T = !ij;T zij;T + �ij;T (to simplify the notation we

use !2ij;T and �ij;T for V ar
�
�̂ij;T

�
and E

�
�̂ij;T

�
, respectively) we have the following inequality,

Bi � Bi1 + Bi2, where

Bi1 =
P

j;�ij 6=0
E
h
j!ij;T zij;T j I

����pT �̂ij;T ��� > cp(N)
���ij 6= 0�i ;

Bi2 =
P

j;�ij 6=0
E
h���ij;T � �ij

�� I ����pT �̂ij;T ��� > cp(N)
���ij 6= 0�i :

Using (8) and (9)

!ij;T =
K
1=2
v (�ij)

T 1=2
+O

�
T�3=2

�
; (24)

�ij;T � �ij =
Km(�ij)

T
+O

�
T�2

�
: (25)
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Hence (noting that mN is bounded in N and T , and !ij;T > 0), Bi1 becomes

Bi1 �
P

j;�ij 6=0
!ij;TE

h
jzij;T j I

����pT �̂ij;T ��� > cp(N)
���ij 6= 0�i

� mN

T 1=2

�
sup
ij
K1=2
v (�ij)

�
sup
ij

n
1� E

h
jzij;T j

�
I
���pT �̂ij;T ��� � cp(N)

���ij 6= 0�io+O
�mN

T 3=2

�
:

By the Cauchy-Schawrz inequality, we have

E
h
jzij;T j

�
I
���pT �̂ij;T ��� � cp(N)

���ij 6= 0�i
�

�
E
�
jzij;T j2

��1=2 n
E
h
I
����pT �̂ij;T ��� � cp(N)

���ij 6= 0�io1=2 < K;

since ���I ����pT �̂ij;T ��� � cp(N)
���ij 6= 0����2 = I

����pT �̂ij;T ��� � cp(N)
���ij 6= 0� ;

the second moment of zij;T exists -see Proposition 1, and E
h
I
����pT �̂ij;T ��� � cp(N)

���ij 6= 0�i
is bounded. Further, supijKv(�ij) < K, hence it readily follows that Bi1 is of order O( mNT 1=2

),
uniformly for all i.
Similarly, since E

h�
I
���pT �̂ij;T ��� > cp(N)

���ij 6= 0�i � 1, we have
Bi2 =

P
j;�ij 6=0

���ij;T � �ij
��E hI ����pT �̂ij;T ��� > cp(N)

���ij 6= 0�i
� mN

�
jKm(�ij)j

T
+O

�
T�2

��
= O

�mN

T

�
;

uniformly for all i. Overall, therefore, Bi = O( mN
T 1=2

) uniformly for all i.
Consider now Ci and note that Ci � Ci1 + Ci2, where

Ci1 =
P

j;�ij=0

E
h
j!ij;T zij;T j I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i ;

Ci2 =
P

j;�ij=0

E
h���ij;T �� I ����pT �̂ij;T ��� > cp(N)

���ij = 0�i :
Starting with Ci2, we �rst note that

Ci2 =
P

j;�ij=0

E
h���ij;T �� I ����pT �̂ij;T ��� > cp(N)

���ij = 0�i
=

P
j;�ij=0

���ij;T ��E hI ����pT �̂ij;T ��� > cp(N)
���ij = 0�i

� (N �mN � 1) sup
ij

����ij;T �� ���ij = 0� sup
ij
E
h
I
����pT �̂ij;T ��� > cp(N)

���ij = 0�i ;
and E

h
I
����pT �̂ij;T ��� > cp(N)

���ij = 0�i � 1. Using (25) and equation (A.11) of Lemma 6

(and evaluating these expressions under �ij = 0) we have

Ci2 � K
(N �mN � 1)

�
supij

�� ij��+O (T�1)
�

T
e
� 1��

2

c2p(N)

supij �ij [1 + o(1)] ;

26



where �ij =
�
�ij(2; 2)

���ij = 0� and  ij = ��ij(3; 1) + �ij(1; 3)� =2. Strictly speaking, �ij(3; 1)
and �ij(1; 3) in the above expression are also de�ned under �ij = 0, but since  ij do not enter
the asymptotic results we do not make this conditioning explicit to simplify the notation.
Therefore, so long as N=T tends to a �nite constant then Ci2 ! 0 as N and T ! 1,
uniformly for all i, since  2ij and �ij are bounded and cp(N)!1.
Finally, considering Ci1 we note that (since !ij;T > 0),

Ci1 =
P

j;�ij=0

E
h
j!ij;T zij;T j I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i

=
P

j;�ij=0

!ij;TE
h
jzij;T j I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i

� (N �mN � 1)
T 1=2

�
sup
ij
K1=2
v (�ij)

�
� sup

ij
E
h
jzij;T j I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i+O

�
(N �mN � 1)

T 3=2

�
:

and by the Cauchy-Schawrz inequality,

E
h
jzij;T j I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i

�
�
E
�
jzij;T j2

��1=2 n
E
h
I
����pT �̂ij;T ��� > cp(N)

���ij = 0�io1=2 < K;

since E
h
I
����pT �̂ij;T ��� � cp(N)

���ij = 0�i � 1 and the second moment of zij;T exists. Hence,
Ci1 is bounded as N and T !1, uniformly for all i, so long as N=

p
T ! 0.

Collecting the results for the orders of convergence of Ai;Bi, and Ci given above, overall
we obtain a convergence rate of order O( mN

T 1=2
) uniformly for all i, where i = 1; 2; :::; N .

Therefore, (13) follows as required.

Proof of Theorem 2. Consider the squared Frobenius norm,


eR�R


2
F
=
PP
i6=j

(~�ij;T � �ij)
2;

and recall that

~�ij;T � �ij =
�
�̂ij;T � �ij

�
I
����pT �̂ij;T ��� > cp(N)

�
� �ij

h
1� I

����pT �̂ij;T ��� > cp(N)
�i
:

Hence�
~�ij;T � �ij

�2
=

�
�̂ij;T � �ij

�2
I
����pT �̂ij;T ��� > cp(N)

�
+ �2ij

h
1� I

����pT �̂ij;T ��� > cp(N)
�i2

�2�ij
�
�̂ij;T � �ij

�
I
����pT �̂ij;T ��� > cp(N)

� h
1� I

����pT �̂ij;T ��� > cp(N)
�i
:

However,
I
����pT �̂ij;T ��� > cp(N)

� h
1� I

����pT �̂ij;T ��� > cp(N)
�i
= 0;
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and h
1� I

����pT �̂ij;T ��� > cp(N)
�i2

= 1� I
����pT �̂ij;T ��� > cp(N)

�
:

Therefore, we havePP
i6=j

�
~�ij;T � �ij

�2
=

PP
i6=j

�
�̂ij;T � �ij

�2
I
����pT �̂ij;T ��� > cp(N)

�
+
PP
i6=j

�2ij

h
1� I

����pT �̂ij;T ��� > cp(N)
�i

=
PP
i6=j

�
�̂ij;T � �ij

�2
I
����pT �̂ij;T ��� > cp(N)

�
+
PP
i6=j

�2ijI
����pT �̂ij;T ��� � cp(N)

�
;

which can be decomposed asPP
i6=j

E
�
~�ij;T � �ij

�2
= A+B + C; (26)

where

A =
PP
i6=j;�ij 6=0

�2ijE
h
I
����pT �̂ij;T ��� � cp(N)

���ij 6= 0�i ;
B =

PP
i6=j;�ij 6=0

E
h�
�̂ij;T � �ij

�2
I
����pT �̂ij;T ��� > cp(N)

���ij 6= 0�i ;
C =

PP
i6=j;�ij=0

E
h
�̂2ij;T I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i :

Consider now the orders of the above three terms in turn, starting with A. Since under
Assumption 2, 0 < �min <

���ij�� < �max < 1, then

A � �2maxNmN sup
ij
E
h
I
����pT �̂ij;T ��� � cp(N)

���ij 6= 0�i
= �2maxNmN sup

ij
Pr
����pT �̂ij;T ��� � cp(N)

���ij 6= 0� ;
and using Lemma 6, equation (A.12), we have

A � �2maxNmN sup
ij
Ke

�1
2

[cp(N)�
p
Tj�ijj]2

Kv (�ij) [1 + o(1)] :

� �2maxNmN sup
ij
Ke

�1
2

T

�
�min�

cp(N)p
T

�2
supij Kv (�ij) [1 + o(1)] :

Recalling that supijKv(�ij) < K and by assumption �min > 0; it then readily follows that
A is of order O(Ne�T ) so that A ! 0, as N and T ! 1. Note that this result does not
require N=T ! 0, and holds even if N=T tends to a �xed constant.
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Consider now B. Recalling that �̂ij;T = !ij;T zij;T + �ij;T we have the following decompo-
sition of B, B = B1 +B2 + 2B3, where

B1 =
PP

i6=j;�ij 6=0
!2ij;TE

h
z2ij;T

�
I
���pT �̂ij;T ��� > cp(N)

���ij 6= 0�i ;
B2 =

PP
i6=j;�ij 6=0

�
�ij;T � �ij

�2
E
h�
I
���pT �̂ij;T ��� > cp(N)

���ij 6= 0�i ;
B3 =

PP
i6=j;�ij 6=0

�
�ij;T � �ij

�
!ij;TE

h
zij;T

�
I
���pT �̂ij;T ��� > cp(N)

���ij 6= 0�i :
Again, using (8) and (9)

!2ij;T =
Kv(�ij)

T
+O

�
T�2

�
; (27)�

�ij;T � �ij
�2

=
K2
m(�ij)

T 2
+O

�
T�3

�
; (28)

�
�ij;T � �ij

�
!ij;T =

K
1=2
v (�ij)Km(�ij)

T 3=2
+O

�
T�5=2

�
: (29)

Hence (noting that mN is bounded in N and T )

B1 =
PP

i6=j;�ij 6=0
!2ij;TE

h
z2ij;T

�
I
���pT �̂ij;T ��� > cp(N)

���ij 6= 0�i
� NmN

T

�
sup
ij
Kv(�ij)

�
sup
ij

n
1� E

h
z2ij;T

�
I
���pT �̂ij;T ��� � cp(N)

���ij 6= 0�io+O

�
mNN

T 2

�
:

Since supijKv(�ij) and E
h
z2ij;T

�
I
���pT �̂ij;T ��� � cp(N)

���ij 6= 0�i are bounded, it then readily
follows thatB1 is at mostO

�
NmN
T

�
. In fact limT!1E

h
z2ij;T

�
I
���pT �̂ij��� � cp(N)

���ij 6= 0�i =
0 if

p
T�min � cp(N)!1, as N and T !1, which can be easily shown.

Similarly, since E
h�
I
���pT �̂ij;T ��� > cp(N)

���ij 6= 0�i � 1, we have
B2 =

PP
i6=j;�ij 6=0

�
�ij;T � �ij

�2
E
h�
I
���pT �̂ij;T ��� > cp(N)

���ij 6= 0�i
� NmN

�
K2
m(�ij)

T 2
+O

�
T�3

��
= O

�
NmN

T 2

�
;

and

B3 =
PP
i6=j;�ij 6=0

�
�ij;T � �ij

�
!ij;TE

n
zij;T

h
I
����pT �̂ij;T ��� > cp(N)

���ij 6= 0�io
=

PP
i6=j;�ij 6=0

�
�ij;T � �ij

�
!ij;TE

n
zij;T � zij;T

h
I
����pT �̂ij;T ��� � cp(N)

���ij 6= 0�io
= �

PP
i6=j;�ij 6=0

�
�ij;T � �ij

�
!ij;TE

h
zij;T I

����pT �̂ij;T ��� � cp(N)
���ij 6= 0�i : (30)
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Also, from Lemma 4

lim
T!1

E
h
zij;T I

����pT �̂ij;T ��� � cp(N)
���ij 6= 0�i = lim

T!1
E
�
zI
�
Lij;T � z � Uij;T

���ij 6= 0�� ;
and from Lemma 2

E
�
zI
�
Lij;T � z � Uij;T

���ij 6= 0�� = �

0@�cp(N)�pT�ij +O
�

1p
T

�
q
Kv(�ij) +O

�
1
T

�
1A

��

0@cp(N)�pT�ij +O
�

1p
T

�
q
Kv(�ij) +O

�
1
T

�
1A ; (31)

which is bounded in N and T . Since
p
T�min � cp(N) ! 1 as N and T ! 1, it is easily

seen that limT;N!1E
�
zI
�
Lij;T � z � Uij;T

���ij 6= 0�� = 0. Hence, using (29) and noting

that K1=2
v (�ij)Km(�ij) is bounded in T we have

B3 � K
PP
i6=j;�ij 6=0

����ij;T � �ij
�
!ij;T

�� = O

�
NmN

T 3=2

�
:

Overall, therefore, B = O
�
NmN
T

�
.

Consider now the following decomposition of C, in (26):

C =
PP
i6=j;�ij=0

E
h
�̂2ij;T I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i

=
PP
i6=j;�ij=0

!2ij;TE
h
z2ij;T I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i

+
PP
i6=j;�ij=0

�2ij;TE
h
I
����pT �̂ij;T ��� > cp(N)

���ij = 0�i
+2
PP

i6=j;�ij=0
�ij;T!ij;TE

h
zij;T I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i

= C1 + C2 + C3:

Starting with the simpler terms, we �rst note that

C2 =
PP
i6=j;�ij=0

�2ij;TE
h
I
����pT �̂ij;T ��� > cp(N)

���ij = 0�i
� N(N �mN � 1) sup

ij

�
�2ij;T

���ij = 0� sup
ij
E
h
I
����pT �̂ij;T ��� > cp(N)

���ij = 0�i ;
and supij E

h
I
����pT �̂ij��� > cp(N)

���ij = 0�i � 1. Using (8) and equation (A.11) of Lemma
6 (and evaluating these expressions under �ij = 0) we have

C2 � K
N(N �mN � 1) supij

�
 2ij +O (T�1)

�
T 2

e
� 1��

2

c2p(N)

supij �ij [1 + o(1)] ;
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where �ij =
�
�ij(2; 2)

���ij = 0�, and  ij = �
�ij(3; 1) + �ij(1; 3)

�
=2. Therefore, so long as

N=T tends to a �nite constant then C2 ! 0 as N and T !1, since  2ij and �ij are bounded
and cp(N)!1.
Similarly

C3 =
PP
i6=j;�ij=0

�ij;T!ij;TE
h
zij;T I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i

= �
PP

i6=j;�ij=0
�ij;T!ij;TE

h
zij;T I

����pT �̂ij;T ��� � cp(N)
���ij = 0�i

� N(N �mN � 1)
T 3=2

sup
ij

��� ij��+O
�
T�1

��
sup
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�p
�ij +O

�
T�1

��
� sup

ij
E
h
zij;T I

����pT �̂ij;T ��� � cp(N)
���ij = 0�i :

But using Lemma 4, Lemma 2 and (31) and evaluating the relevant expressions under �ij = 0,
we have

lim
T;N!1

E
h
zij;T I

����pT �̂ij;T ��� � cp(N)
���ij = 0�i

= lim
T;N!1

E
�
zI
�
Lij;T � z � Uij;T

���ij = 0��
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N;T!1
�

0@�cp(N) +  ijp
T
+O

�
T�3=2

�q
�ij +O

�
1
T

�
1A� lim

N;T!1
�

0@cp(N) +  ijp
T
+O

�
T�3=2

�q
�ij +O

�
1
T

�
1A = 0:

Hence, C3 ! 0 as N and T !1, so long as N=
p
T ! 0, since cp(N)!1 with N .

Finally, considering C1 we note that

C1 =
PP
i6=j;�ij=0

!2ij;TE
h
z2ij;T I

����pT �̂ij;T ��� > cp(N)
���ij = 0�i

=
PP

i6=j;�ij=0
!2ij;TE

�
z2ij;T

�
1� I

�
Lij;T � zij;T � Uij;T

���ij = 0��	
� N(N �mN � 1)

T
sup
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�
�ij +O

�
1

T
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E
�
z2ij;T

�
1� I

�
Lij;T � zij;T � Uij;T

���ij = 0��	 : (32)

But using Lemma 4

lim
T!1

E
�
z2ij;T

�
1� I

�
Lij;T � zij;T � Uij;T

���ij = 0��	 (33)

= lim
T!1

E
�
z2
�
1� I

�
Lij;T � zij;T � Uij;T

���ij = 0��	 ;
and then Lemma 2

E
�
z2
�
1� I

�
Lij;T � zij;T � Uij;T

���ij = 0��	 = 1� E
�
z2I
�
Lij;T � z � Uij;T

���ij = 0��
= 1� f� [Uij;T (0)]� � [Lij;T (0)] + Lij;T (0)�(Lij;T (0))� Uij;T (0)� [Uij;T (0)]g
= � [�Uij;T (0)] + � [Lij;T (0)] + Uij;T (0)� [Uij;T (0)]� Lij;T (0)� [Lij;T (0)] ;
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where Uij;T (0) and Lij;T (0) are given by (A.19) which we reproduce here for convenience:

Uij;T (0) =
cp(N) +

 ijp
T
+O

�
T�3=2

�p
�ij +O (T�1)

, Lij;T (0) =
�cp(N) +

 ijp
T
+O

�
T�3=2

�p
�ij +O (T�1)

:

Since
�� ij�� < K, then there existN0 and T0 such that forN > N0 and T > T0, cp(N)�

j ijjp
T
>

0, and using Lemma 5 (also see (A.23) and (A.24) of Lemma 6), we have

E
�
z2
�
1� I

�
Lij;T � z � Uij;T

���ij = 0��	 � D1;ij +D2;ij;

where

D1;ij =
1

2
e

�1
2

0@ cp(N)+
 ijp
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+O(T�3=2)p

�ij+O(T�1)

1A2

+
1

2
e

�1
2

0@ cp(N)�
 ijp
T
+O(T�3=2)p

�ij+O(T�1)

1A2

;

and

D2;ij =

24cp(N) +  ijp
T
+O

�
T�3=2

�p
�ij +O (T�1)

35 e�12
0@ cp(N)+

 ijp
T
+O(T�3=2)p

�ij+O(T�1)

1A2

�

24�cp(N) +  ijp
T
+O

�
T�3=2

�p
�ij +O (T�1)

35 e�12
0@ cp(N)�

 ijp
T
+O(T�3=2)p

�ij+O(T�1)

1A2

:

Then, for N D1;ij we have

lim
N;T!1

N D1;ij = lim
N!1

"
e
�1
2

c2p(N)

�ij
+ln(N)

#

= lim
N!1

"
e
� ln(N)
�ij

�
c2p(N)

2 ln(N)
��ij

�#
:

Since �ij > 0, then N D1;ij tends to a �nite constant or zero if limN!1

�
c2p(N)

2 ln(N)

�
� �ij. But

using (A.6) of Lemma 3, we have

ln [f(N)]� ln(p)
ln(N)

�
c2p(N)

2 ln(N)
� �max;

where �max = supij(�ij). Next, for N D2;ij we have
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35 e�12
24 cp(N)+ ijp

T
+O(T�3=2)p

�ij+O(T�1)

352

�
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35 e�12
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;
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or

N D2;ij =

241 +  ij

cp(N)
p
T
+O

�
N�1T�3=2

�p
�ij +O (T�1)

35 e�� ln(N)
�ij

�
c2p(N)

2 ln(N)
��ij

�
1+
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241�  ij
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35 e�� ln(N)
�ij

�
c2p(N)

2 ln(N)
��ij

�
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ln(cp(N))
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���
:

Then N D2;ij tends to a �nite constant for all i and j as long as
ln(cp(N))

ln(N)
! c. Hence, for

N=T tending to a constant and using the above results in (32) we have

C1 �
(N �mN � 1)

T
sup
ij

�
�ij +O

�
T�1

��
sup
ij
(ND2;ij) :

Hence, C1 must be at most O(N=T ); since by assumption limN!1
ln[f(N)]
ln(N)

� �max.
Collecting the results for the orders of convergence of C1; C2, and C3 given above, and

those of A and B, overall we obtain a convergence rate of order O(mNN=T ), and (15) follows
as desired.

Proof of Theorem 3. Consider �rst the FPR statistic given by (17) which can be written
equivalently as

FPR = jFPRj =

PP
i6=j

I
����pT �̂ij;T ��� > cp(N)j�ij = 0

�
N(N �mN � 1)

: (34)

Note that the elements of FPR are either 0 or 1 and so jFPRj = FPR:
Taking the expectation of (34) we have

E jFPRj =

PP
i6=j

Pr
����pT �̂ij;T ��� > cp(N)j�ij = 0

�
N(N �mN � 1)

:

But using Lemma 6 (equation (A.11)) we have (recall that �ij =
�
�ij(2; 2)

���ij = 0�)
E jFPRj �

K
PP
i6=j

e
� 1��

2

c2p(N)

�ij [1 + o(1)]

N(N �mN � 1)

� Ke�
1��
2

c2p(N)

�max [1 + o(1)]

where �max = supij �ij < K, by Assumption 2. Hence, E jFPRj ! 0 as N and T ! 1,
noting that c2p(N)!1, and �max < K. Further, by the Markov inequality applied to jFPRj
we have that

P (jFPRj > �) � E(jFPRj)
�

� K

�
e�

1��
2

c2p(N)

�max [1 + o(1)] ;
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for some � > 0: Therefore, lim
N;T!1

P (jFPRj > �) = 0; and the required result is established.

This holds irrespective of the order by which N and T !1.
Consider now the TPR statistic given by (16) and note that

TPR =

PP
i6=j

I(~�ij 6= 0; and �ij 6= 0)PP
i6=j

I(�ij 6= 0)

Hence

X = 1� TPR =

PP
i6=j

I(~�ij = 0; and �ij 6= 0)

NmN

:

Since jXj = X, then

E jXj = E(X) =

PP
i6=j

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
NmN

� sup
ij
Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
:

and using the Markov inequality, P (jXj > �) � EjXj
�
, for some � > 0, we have

P (jTPR� 1j > �) � 1

�
sup
ij
Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
;

and
lim

N;T!1
P (jTPR� 1j > �) � 1

�
lim

N;T!1
sup
ij
Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
: (35)

However, using (A.25), (A.26) and (A.27) of Lemma 6 we have

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
= Fij;T

 
cp(N)�

p
T�ij �

Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

!

�Fij;T

 
�cp(N)�

p
T�ij �

Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

!
:

Suppose that �ij > 0, then as N and T !1, cp(N)�
p
T�ij ! �1 and �cp(N)�

p
T�ij !

�1, and since Fij;T (�) is a cumulative distribution function we must have

lim
N;T!1

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
= Fij;T (�1)� Fij;T (�1) = 0� 0 = 0.

Similarly if �ij < 0, then cp(N)�
p
T�ij ! +1 and �cp(N)�

p
T�ij ! +1, and we have

lim
N;T!1

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
= Fij;T (+1)� Fij;T (+1) = 1� 1 = 0.
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Hence, more generally limN;T!1 Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
= 0, if cp(N)�

p
T
���ij��!

�1, for all �ij 6= 0, or equivalently if
p
T�min � cp(N) ! 1, where �min = minij

���ij�� for
�ij 6= 0. But

p
T�min � cp(N) =

p
T

�
�min �

cp(N)p
T

�
;

and
p
T�min � cp(N) ! 1, as N and T , since by assumption there exists N0 and T0 such

that for all N > N0 and T > T0, �min � cp(N)=
p
T > 0, and cp(N)=

p
T ! 0. The latter is

ensured since by assumption ln f(N)=T ! 0 (see also Lemma 3). Using these results in (35)
it now follows that limN;T!1 P (jTPR� 1j > �)! 0; as required.
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