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Appendix A Technical Lemmas

A.1 Statement of technical lemmas

We begin by stating a few technical lemmas that are needed for the proof of the main results.

Lemma 1 Consider the sample correlation coeffi cient, ρ̂ij,T , defined by (8) and suppose that As-
sumptions 2 and 3 hold. Then

lim
aij,T→±∞

{
e
1−ε
2
a2ij,T [Fij,T (aij,T |Pij )− Φ(aij,T )]

}
= 0, (A.1)

for some small positive ε.

Lemma 2 Suppose that z ∼ N(0, 1), then

E [zI(L ≤ z ≤ U)] = φ (L)− φ(U), (A.2)

and
E
[
z2I(L ≤ z ≤ U)

]
= [Φ (U)− Φ (L)] + Lφ(L)− Uφ(U). (A.3)

Lemma 3 Let cp(N) = Φ−1
(

1− p
2f(N)

)
, where 0 < p < 1, f(N) is an increasing function of N ,

and suppose there exist finite T0 and N0 such that for all N > N0

1− p

2f(N)
> 0, (A.4)

and as N and T →∞
ln f(N)

T
→ 0. (A.5)

Then
cp(N) ≤

√
2 [ln f(N)− ln(p)], (A.6)

and for all N > N0 and T > T0, cp(N)/
√
T is bounded and

cp(N)√
T
→ 0, (A.7)

as N and T →∞.

Lemma 4 Consider the standardised sample correlation coeffi cient zij,T =
[ρ̂ij,T−E(ρ̂ij,T )]√

V ar(ρ̂ij,T )
, where

ρ̂ij,T is defined by (7) and E
(
ρ̂ij,T

)
and V ar

(
ρ̂ij,T

)
> 0 are given by (8) and (9), respectively.

Suppose that cp(N) = Φ−1
(

1− p
2f(N)

)
, and conditions (A.4) and (A.5) hold. Then for all i and

j, there exist N0 and T0 such that for N > N0 and T > T0

lim
T→∞

E

[
zsij,T

[
I

(∣∣ρ̂ij,T ∣∣ ≤ cp(N)√
T

)]]
= lim

T→∞
E
[
zsij,T I (Lij,T ≤ zij,T ≤ Uij,T )

]
= lim

T→∞
E [zsI (Lij,T ≤ z ≤ Uij,T )] , (A.8)

for s = 0, 1, 2, ..., where

Uij,T =
cp(N)−

√
TE

(
ρ̂ij,T

)√
V ar

(√
T ρ̂ij,T

) , Lij,T =
−cp(N)−

√
TE

(
ρ̂ij,T

)√
V ar

(√
T ρ̂ij,T

) (A.9)

and z ∼ N(0, 1).
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Lemma 5 Consider the cumulative distribution function of a standard normal variate, defined by

Φ(x) = (2π)−1/2
∫ x
−∞e

−u
2

2 du.

Then for x > 0

Φ(−x) = 1− Φ(x) ≤ 1

2
exp(−x

2

2
). (A.10)

Lemma 6 Consider the sample correlation coeffi cient, ρ̂ij,T , defined by (7) and suppose that As-
sumptions 2 and 3 hold, then there exists N0 and T0 such that for all N > N0 and T > T0

1

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ > cp(N)

∣∣ρij = 0
)
≤ Ke−

1−ε
2

c2p(N)

κij [1 + o(1)] (A.11)

where κij =
[
µij(2, 2)

∣∣ρij = 0
]
, µij(2, 2) is defined under Assumption 2, and ε is a small positive

constant. Further, if
∣∣ρij∣∣ > cp(N)/

√
T we have

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ < cp(N)|ρij 6= 0

)
≤ Ke

−1
2

T

(
|ρij|− cp(N)√

T

)2
Kv (θij) [1 + o(1)] , (A.12)

where Kv(θij) is given by (11),

cp(N) = Φ−1

(
1− p

2f(N)

)
> 0, (A.13)

0 < p < 1, and f(N) is an increasing function of N such that

ln f(N)/T → 0, as N and T →∞. (A.14)

Lemma 7 Consider the data generating process

yt = Put,

where yt and ut are N×1 vectors of random variables, and P is an N×N matrix of fixed constants,
such that PP′ = R, where R is a correlation matrix. Suppose that ut follows a multivariate
t-distribution with v degrees of freedom generated as

ut =

(
v − 2

χ2
v,t

)1/2

εt,

where εt = (ε1t, ε2t, ..., εNt)
′ ∼ IIDN(0, IN ), and χ2

v,t is a chi-squared random variate with v > 4
degrees of freedom distributed independently of εt. Then we have that

µij(2, 2) = E(y2
ity

2
jt) =

(v − 2)
[
(p′ipi)

2 + (p′ipj)
2
]

(v − 4)
,

where p′i is the i
th row of P. In the case where P = IN , µij(2, 2) = (v − 2)/(v − 4) and

E(y2
ityjt) = E(y2

jtyit) = 0.

Lemma 8 Fat-tailed shocks do not necessarily generate µij(2, 2) > 1.

1To simplify the notation we have dropped explicit reference to Pij , the underlying bivariate distribution of the
observations.
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A.2 Proofs of lemmas for the MT estimator

Proof of Lemma 1. Under (12), and noting that

e
1−ε
2
a2ij,T φ (aij,T ) = e

1−ε
2
a2ij,T (2π)−1/2 exp

(
−1

2
a2
ij,T

)
= (2π)−1/2 exp

(
− ε

2
a2
ij,T

)
,

we have

e
1−ε
2
a2ij,T [Fij,T (aij,T |Pij )− Φ(aij,T )] = (2π)−1/2 exp

(
− ε

2
a2
ij,T

)
×
[
T−1/2G1 (aij,T |Pij ) + T−1G2 (aij,T |Pij ) + ....,

]
.

and the desired result follows noting that asij,T exp
(
− ε

2a
2
ij,T

)
→ 0 as aij,T → ±∞, for all s ≥ 0.

This result holds for a fixed T , and as T →∞.
Proof of Lemma 2. Denote the density of the standard normal distribution by φ(z) =
(2π)−1/2e−(1/2)z2 , then

E [zI(L ≤ z ≤ U)] =

∫ U

L
z(2π)−1/2e−(1/2)z2dz = [−φ(z)]UL = φ (L)− φ(U).

Similarly, to prove (A.3) note that E
[
z2I(L ≤ z ≤ U)

]
=
∫ U
L z2φ(z)dz. Hence, integrating by parts,

we have ∫ U

L
z2φ(z)dz = [−zφ(z)]UL +

∫ U

L
φ(z)dz = [Φ (U)− Φ (L)] + Lφ(L)− Uφ(U),

as required.
Proof of Lemma 3. First note that

Φ−1 (z) =
√

2 erf−1(2z − 1), z ∈ (0, 1),

where Φ(x) is cumulative distribution function of a standard normal variate, and erf(x) is the error
function defined by

erf(x) =
2√
π

∫ x
0 e
−u2du. (A.15)

Consider now the inverse complementary error function erfc−1(x) given by

erf c−1(1− x) = erf−1(x).

Using results in Chiani et al. (2003, p.842) we have

erf c−1(x) ≤
√
− ln(x).

Applying the above results to cp(N) we have

cp(N) = Φ−1

(
1− p

2f(N)

)
=
√

2 erf−1

[
2

(
1− p

2f(N)

)
− 1

]
=
√

2 erf−1

(
1− p

f(N)

)
=
√

2 erf c−1

(
p

f(N)

)
≤
√

2

√
− ln

(
p

f(N)

)
=
√

2 [ln f(N)− ln(p)].
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Hence, in view of condition (A.5), and noting that p is fixed, then cp(N)
√
T is bounded in N and T ,

and result (A.7) follows noting that cp(N)/
√
T ≤

√
2 [ln f(N)− ln(p)] /T → 0, as N and T →∞.

Proof of Lemma 4. We first note that since V ar
(
ρ̂ij,T

)
> 0

I

(∣∣ρ̂ij,T ∣∣ ≤ cp(N)√
T

)
= I

(
−cp(N)√

T
≤ ρ̂ij,T ≤

cp(N)√
T

)

= I

 −cp(N)√
T
− E

(
ρ̂ij,T

)√
V ar

(
ρ̂ij,T

) ≤
ρ̂ij,T − E

(
ρ̂ij,T

)√
V ar

(
ρ̂ij,T

) ≤ cp(N)√
T
− E

(
ρ̂ij,T

)√
V ar

(
ρ̂ij,T

)


= I (Lij,T ≤ zij,T ≤ Uij,T ) . (A.16)

Also, since ρ̂ij,T is a correlation coeffi cient,
∣∣ρ̂ij,T ∣∣ < 1, and for a finite T > T0, V ar

(
ρ̂ij,T

)
> 0,

then

|zij,T | <
∣∣ρ̂ij,T ∣∣+

∣∣E (ρ̂ij,T )∣∣√
V ar

(
ρ̂ij,T

) < 2 sup
i,j

 1√
V ar

(
ρ̂ij,T

)
 < K.

Hence all moments of zij,T exist for T finite. Furthermore, it is well known that zij,T →d N(0, 1)
as T → ∞. Therefore, all moments of zij,T exist for all values of T > T0, and by the second
limit-theorem (see, for example, Rao and Kendall (1950, p. 228))

E
(
zsij,T

)
→ E (zs) , as T →∞, for all s = 1, 2, ....

Furthermore, since I (Lij,T ≤ zij,T ≤ Uij,T ) = I
(∣∣ρ̂ij,T ∣∣ ≤ cp(N)√

T

)
≤ cp(N)/

√
T , and under condi-

tions (A.4) and (A.5), cp(N)/
√
T is bounded (see Lemma 3). Then for all N > N0 we must also

have

lim
T→∞

E

[
zsij,T I

(∣∣ρ̂ij,T ∣∣ ≤ cp(N)√
T

)]
= lim

T→∞
E [zsI (Lij,T ≤ z ≤ Uij,T )] ,

as required.
Proof of Lemma 5. Using results in Chiani et al. (2003, eq. (5)) we have

erf c(x) =
2√
π

∫∞
x e−u

2
du ≤ exp(−x2), (A.17)

where erf c(x) is the complement of the erf(x) function defined by (A.15). But

1− Φ(x) = (2π)−1/2
∫∞
x e−

u2

2 du =
1

2
erf c

(
x√
2

)
,

and using (A.17) we have

1− Φ(x) =
1

2
erf c

(
x√
2

)
≤ 1

2
exp

[
−
(
x√
2

)2
]

=
1

2
exp

(
−x

2

2

)
.

Proof of Lemma 6. We first note that

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ ≤ cp(N)

)
= Pr

(
−cp(N) ≤

√
T ρ̂ij,T ≤ cp(N)

)

= Pr

Lij ≤
√
T
[
ρ̂ij,T − E

(
ρ̂ij,T

)]√
V ar

(√
T ρ̂ij,T

) ≤ Uij

 ,
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where

Uij =
cp(N)−

√
TE

(
ρ̂ij,T

)√
V ar

(√
T ρ̂ij,T

) , Lij =
−cp(N)−

√
TE

(
ρ̂ij,T

)√
V ar

(√
T ρ̂ij,T

) . (A.18)

Using (8) and (9), we also note that under ρij = 0, and setting ψij = 0.5
[
µij(3, 1) + µij(1, 3)

]
E
(
ρ̂ij,T

∣∣ρij = 0
)

=
−ψij
T

+O
(
T−2

)
,

V ar
(
ρ̂ij,T

∣∣ρij = 0
)

=
κij
T

+O
(
T−2

)
,

where κij =
[
µij(2, 2)

∣∣ρij = 0
]
, and

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ ≤ cp(N)

∣∣ρij = 0
)

= Fij,T [Uij,T (0)]− Fij,T [Lij,T (0)]

where

Uij,T (0) =
cp(N) +

ψij(ρij=0)√
T

+O
(
T−3/2

)√
κij +O (T−1)

, Lij,T (0) =
−cp(N) +

ψij(ρij=0)√
T

+O
(
T−3/2

)√
κij +O (T−1)

. (A.19)

Hence,

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ > cp(N)

∣∣ρij = 0
)

= 1− Fij,T [Uij,T (0)] + Fij,T [Lij,T (0)] . (A.20)

Setting aij,T = Uij,T (0) we have that (recall by assumption supij
∣∣ψij∣∣ < K)

a2
ij,T =

c2
p(N)

κij
+O

(
cp(N)√

T

)
+O

(
T−1

)
.

By Lemma 3, cp(N)/
√
T = o(1), as N and T →∞ (see (A.7)), and hence

a2
ij,T =

c2
p(N)

κij
+ o(1). (A.21)

Therefore, in view of (A.1) established in Lemma 1 and (A.21), we have (for some small positive ε)

Fij,T (Uij,T (0)) = Φ [Uij,T (0)] +Ke
− 1−ε

2

c2p(N)

κij [1 + o(1)] ,

Fij,T (Lij,T (0)) = Φ [Lij,T (0)] +Ke
− 1−ε

2

c2p(N)

κij [1 + o(1)] .

Substituting the above results in (A.20) yields

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ > cp(N)

∣∣ρij = 0
)

= 1− Φ [Uij,T (0)] + Φ [Lij,T (0)]

+Ke
− 1−ε

2

c2p(N)

κij [1 + o(1)] ,

or

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ > cp(N)

∣∣ρij = 0
)

= Φ [−Uij,T (0)] + Φ [Lij,T (0)] (A.22)

+Ke
− 1−ε

2

c2p(N)

κij [1 + o(1)] .
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Since by assumption
∣∣ψij∣∣ < K, and cp(N) is an increasing function of N then there must exist N0

and T0 such that for values of N > N0 and T > T0

−Uij,T (0) =
−cp(N)− ψij(ρij=0)√

T
+O

(
T−3/2

)√
κij +O (T−1)

< 0,

and

Lij,T (0) =
−cp(N) +

ψij(ρij=0)√
T

+O
(
T−3/2

)√
κij +O (T−1)

< 0,

and by Lemma 5 we have

Φ [−Uij,T (0)] ≤ 1

2
exp

−
[
cp(N) +

ψij(ρij=0)√
T

+O
(
T−3/2

)]2

2 [κij +O (T−1)]


=

1

2
e
− 1
2

c2p(N)

κij

[
1 +O

(
cp(N)√

T

)
+O

(
T−1

)]
(A.23)

=
1

2
e
− 1
2

c2p(N)

κij [1 + o(1)] .

Similarly,

Φ [Lij,T (0)] ≤ 1

2
e
− 1
2

c2p(N)

κij [1 + o(1)] . (A.24)

Substituting the above results in (A.22) now yields

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ > cp(N)

∣∣ρij = 0
)
≤
(
e
− 1
2

c2p(N)

µij(2,2) +Ke
− 1−ε

2

c2p(N)

µij(2,2)

)
[1 + o(1)] ,

or2

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ > cp(N)

∣∣ρij = 0
)
≤ Ke−

1−ε
2

c2p(N)

κij [1 + o(1)] ,

as required.
Consider now the case where ρij 6= 0 and note that

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ < cp(N)|ρij 6= 0

)
= Fij,T

[
Uij,T (ρij)

]
− Fij,T

[
Lij,T (ρij)

]
, (A.25)

where

Uij,T (ρij) =
cp(N)−

√
Tρij −

Km (θij)√
T

+O
(
T−3/2

)√
Kv(θij) +O (T−1)

, (A.26)

Lij,T (ρij) =
−cp(N)−

√
Tρij −

Km (θij)√
T

+O
(
T−3/2

)√
Kv(θij) +O (T−1)

, (A.27)

2Note that

e
− 1

2

c2p(N)

µij(2,2)

e
− 1−ε

2

c2p(N)

µij(2,2)

= e
− ε

2

c2p(N)

µij(2,2) → 0, as c2p(N)→∞.
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|Km(θij)| < K, and 0 < Kv(θij) < K. Suppose that ρij > 0. Then
√
Tρij + cp(N) → ∞ and√

Tρij − cp(N) → ∞, as N and T → ∞ (recall that cp(N)/
√
T → 0 with N and T → ∞). Again

using (A.26) and (A.27) for aij,T in (A.1) we have

Fij,T
[
Uij,T (ρij)

]
= Φ

[
Uij,T (ρij)

]
+Ke

−1
2

[cp(N)−
√
Tρij]

2

Kv (θij) [1 + o(1)] ,

Fij,T
[
Lij,T (ρij)

]
= Φ

[
Lij,T (ρij)

]
+Ke

−1
2

[cp(N)+
√
Tρij]

2

Kv (θij) [1 + o(1)] .

Hence

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ < cp(N)|ρij 6= 0

)
= Φ

[
Uij,T (ρij)

]
− Φ

[
Lij,T (ρij)

]
+Ke

−1
2

[cp(N)−
√
Tρij]

2

Kv (θij) [1 + o(1)]

+Ke
−1
2

[cp(N)+
√
Tρij]

2

Kv (θij) [1 + o(1)] .

Further, since Φ
[
Lij,T (ρij)

]
≥ 0, then

Φ
([
Uij,T (ρij)

])
− Φ

([
Lij,T (ρij)

])
≤ Φ

cp(N)−
√
Tρij −

Km (θij)√
T

+O
(
T−3/2

)√
Kv(θij) +O (T−1)

 .

Also, there exists N0 and T0 such that for ρij > 0, and all N > N0 and T > T0, we have (using
Lemma 5)

Φ

cp(N)−
√
Tρij −

Km (θij)√
T

+O
(
T−3/2

)√
Kv(θij) +O (T−1)

 ≤ 1

2
e
−1
2

[cp(N)−
√
Tρij]

2

Kv (θij) [1 + o(1)] ,

and hence

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ < cp(N)|ρij > 0

)
≤ Ke

−1
2

[cp(N)−
√
Tρij]

2

Kv (θij) [1 + o(1)] .

A similar result can also be obtained for ρij < 0, yielding the overall result

Pr
(∣∣∣√T ρ̂ij,T ∣∣∣ < cp(N)|ρij 6= 0

)
≤ Ke

−1
2

T

[
|ρij|− cp(N)√

T

]2
Kv (θij) [1 + o(1)] .

Proof of Lemma 7. We first note that

E

(
1

χ2
v,t

)
=

1

v − 2
, V ar

(
1

χ2
v,t

)
=

2

(v − 2)2 (v − 4)

E

(
1

χ2
v,t

)2

=
2

(v − 2)2 (v − 4)
+

(
1

v − 2

)2

=
v − 2

(v − 2)2 (v − 4)
. (A.28)

Then

E
(
utu

′
t

)
= E

[(
v − 2

χ2
v

)
εtε
′
t

]
= E

(
v − 2

χ2
v,t

)
E
(
εtε
′
t

)
= IN ,

and
E(yt) = 0, E

(
yty

′
t

)
= PP′ = R.
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It is clear that yit has mean zero and a unit variance. Denote the ith row of P by p′i and note that

yit = p′iut =
(
v−2
χ2v,t

)1/2
p′iεt, and hence

µij(2, 2) = E(y2
ity

2
jt) = E

(v − 2

χ2
v,t

)2 (
p′iεt

)2 (
p′jεt

)2 ,
and since εt and χ2

v,t are distributed independently using (A.28) we have

µij(2, 2) =
(v − 2)3

(v − 2)2 (v − 4)
E
[(
ε′tAiεt

) (
ε′tAjεt

)]
,

where Ai = pip
′
i. But since εt ∼ N(0, IN ), using results in Magnus (1978) we have

E
[(
ε′tAiεt

) (
ε′tAjεt

)]
= tr

(
pip

′
i

)
tr
(
pjp

′
j

)
+ tr

(
pip

′
ipjp

′
j

)
=

(
p′ipi

)2
+
(
p′ipj

)2
.

Hence

µij(2, 2) =
(v − 2)

[
(p′ipi)

2 + (p′ipj)
2
]

(v − 4)
.

When P is an identity matrix then p′ipi = 1 and p′ipj = 0, and hence µij(2, 2) = (v − 2)/(v − 4).
Also

E(y2
ityjt) = E

(v − 2

χ2
v,t

)3/2
E [(ε′tAiεt

)
p′jεt

]
= 0.

Proof of Lemma 8. Consider the data generating process yt = Put where the elements of
ut = (u1t, u2t, ..., uNt)

′, uit, are generated as a standardized independent chi-squared distribution
with vi degrees of freedom, namely

uit =
χ2
it(vi)− vi√

2vi
, for all i and t.

Then it is clear that E(uit) = 0, E(u2
it) = 1, and also E(u2

itu
2
jt) = E(u2

it)E(u2
jt) = 1, and E(utu

′
t) =

IN . Let p′i be the i
th row of P and note that

E (yityjt) = p′iE
(
utu

′
t

)
pj = p′ipj = ρij

p′ipi =
N∑
r=1

p2
ir = 1.

Also

E
(
y2
ity

2
jt

)
= E

[(
p′iutu

′
tpi
) (

p′jutu
′
tpj
)]

=
∑
r

∑
r′

∑
s

∑
s′

pirpir′pjspjs′E(urtur′tustus′t).

But

E(urtur′tustus′t) = 0 if r 6= r′ or s 6= s′

= E(u2
rtu

2
st) = 1 if r = r′ and s = s′,

and hence

E
(
y2
ity

2
jt

)
=
∑
r

∑
s

p2
irp

2
js =

(
N∑
r=1

p2
ir

)2

= 1.

Therefore, fat-tailed shocks do not necessarily generate µij(2, 2) > 1.

8



Appendix B Shrinkage on MT (S-MT) estimator

B.1 Derivation of S-MT shrinkage parameter

Recall the expression for the function f(ξ) from Section 2.2

f(ξ) = −tr
[
(A−B (ξ))B (ξ)

(
IN − R̃MT

)
B (ξ)

]
,

with A = R−1
0 and B (ξ) = R̃

−1

S-MT (ξ). We need to solve f(ξ) = 0 for ξ∗ such that f(ξ∗) = 0 for a
given choice of R0.3

Abstracting from the subscripts, note that

f(1) = −tr
[(
R−1−IN

) (
IN − R̃

)]
,

or

f(1) = −tr
[
−R−1R̃+R−1−IN + R̃

]
= tr

(
R−1R̃

)
− tr

(
R−1

)
,

which is generally non-zero. Also, ξ = 0 is ruled out, since R̃S-MT (0) = R̃ need not be non-singular.
Thus we need to assess whether f(ξ) = 0 has a solution in the range ξ0 < ξ < 1, where ξ0

is the minimum value of ξ such that R̃S-MT (ξ0) is non-singular. First, we can compute ξ0 by
implementing naive shrinkage as an initial estimate:

R̃S-MT (ξ0) = ξ0IN + (1− ξ0)R̃.

The shrinkage parameter ξ0 ∈ [0, 1] is given by

ξ0 = max

 ε− λmin

(
R̃
)

1− λmin

(
R̃
) , 0

 ,

where in our simulation study we set ε = 0.01. Here, λmin (A) stands for the minimum eigenvalue of

matrix A. If R̃ is already positive definite and λmin

(
R̃
)
> 0, then ξ0 is automatically set to zero.

Conversely, if λmin

(
R̃
)
≤ 0, then ξ0 is set to the smallest possible value that ensures positivity of

λmin

(
R̃S-MT (ξ0)

)
.

Second, we implement the optimisation procedure. In our simulation study we employ a grid
search for ξ∗ = {ξ : ξ0 + ε ≤ ξ ≤ 1} with increments of 0.005. The final ξ∗ is given by

ξ∗ = arg min
ξ

[f(ξ)]2 .

Appendix C An overview of key regularisation techniques

Here we provide an overview of three main covariance estimators proposed in the literature which
we use in our Monte Carlo experiments for comparative analysis, namely the thresholding methods
of Bickel and Levina (2008b), and Cai and Liu (2011), and the shrinkage approach of Ledoit and
Wolf (2004).

3The code for computing R0 of our choice is available upon request.
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C.1 Bickel-Levina (BL) thresholding

The method developed by Bickel and Levina (2008b, BL) employs ‘universal’thresholding of the
sample covariance matrix Σ̂ = (σ̂ij) , i, j = 1, ..., N . Under this approach Σ is required to be sparse
as they define on p. 2580. The BL thresholding estimator is given by

Σ̃BL,C =

(
σ̂ijI

[
|σ̂ij | ≥ C

√
logN

T

])
, i = 1, 2, ..., N − 1, j = i+ 1, ..., N (C.29)

where I (.) is an indicator function and C is a positive constant which is unknown. The choice of
thresholding function - I (.) - implies that (C.29) implements ‘hard’thresholding. The consistency

rate of the BL estimator is
√

logN
T under the spectral norm of the error matrix

(
Σ̃BL,C −Σ

)
.

The main challenge in the implementation of this approach is the estimation of the thresholding
parameter, C, which is usually calibrated by cross-validation and is generally considered to be
computationally expensive.4 Cross-validation performs well only when Σ is assumed to be stable
over time. Details of the BL cross-validation procedure are given in Section C.3.

As argued by BL, thresholding maintains the symmetry of Σ̂ but does not ensure positive
definiteness of Σ̃BL,Ĉ . BL show that their threshold estimator is positive definite if∥∥∥Σ̃BL,C − Σ̃BL,0

∥∥∥ ≤ ε and λmin (Σ) > ε, (C.30)

where ‖.‖ is the spectral or operator norm and ε is a small positive constant. This condition is not
met unless T is suffi ciently large relative to N . ‘Universal’thresholding on Σ̂ performs best when
the units xit, i = 1, ..., N, t = 1, ..., T are assumed homoscedastic (i.e. σ11 = σ22 = ... = σNN ).

C.2 Cai and Liu (CL) thresholding

Cai and Liu (2011, CL) proposed an improved version of the BL approach by incorporating the
unit specific variances in their ‘adaptive’ thresholding procedure. In this way, unlike ‘universal’
thresholding on Σ̂, their estimator is robust to heteroscedasticity. Specifically, the thresholding
estimator Σ̃CL,C is defined as

Σ̃CL,C =
(
σ̂ijsτ ij [|σ̂ij | ≥ τ ij ]

)
, i = 1, 2, ..., N − 1, j = i+ 1, ..., N (C.31)

where τ ij > 0 is an entry-dependent adaptive threshold such that τ ij =
√
θ̂ijωT ,with θ̂ij =

T−1
∑T

i=1(xitxjt − σ̂ij)2 and ωT = C
√

logN/T , for some constant C > 0. CL implement their
approach using the general thresholding function sτ (.) rather than I (.), but point out that all
their theoretical results continue to hold for the hard thresholding estimator. The consistency

rate of the CL estimator is
√

logN/T under the spectral norm of the error matrix
(
Σ̃CL,C −Σ

)
.

The parameter C can be fixed to a constant implied by theory (C = 2 in CL) or chosen via
cross-validation. Details of the CL cross-validation procedure are provided in Section C.3.

As with the BL estimator, thresholding in itself does not ensure positive definiteness of Σ̃CL,Ĉ .
In light of condition (C.30), Fan, Liao and Mincheva (FLM) (2013) extend the CL approach and
propose setting a lower bound on the cross-validation grid when searching for C such that the

minimum eigenvalue of their threshold estimator is positive, λmin

(
Σ̃FLM,Ĉ

)
> 0. This idea orig-

inated from Fryzlewicz (2013). Further details of this procedure can be found in Section C.3. We
apply this extension to both BL and CL procedures. The problem of Σ̃BL,Ĉ and Σ̃CL,Ĉ not being
invertible in finite samples is then resolved. However, depending on the application, the properties
of the constrained Σ̃BL,Ĉ and Σ̃CL,Ĉ can deviate noticeably from their respective unconditional
versions (see Section C.3 for the relevant expressions).

4Fang, Wang and Feng (2013) provide useful guidelines regarding the specification of various parameters used in
cross-validation through an extensive simulation study.

10



C.3 Cross-validation for BL and CL

We perform a grid search for the choice of C over a specified range: C = {c : Cmin ≤ c ≤ Cmax}.

In the BL procedure, we set Cmin =

∣∣∣∣min
ij

σ̂ij

∣∣∣∣√ T
logN and Cmax =

∣∣∣∣max
ij
σ̂ij

∣∣∣∣√ T
logN and impose

increments of (Cmax−Cmin)
N . In CL cross-validation, we set Cmin = 0 and Cmax = 4, and impose

increments of c/N . In each point of this range, c, we use xit, i = 1, ..., N, t = 1, ..., T and select
the N × 1 column vectors xt = (x1t, ..., xNt)

′ , t = 1, ..., T which we randomly reshuffl e over the

t-dimension. This gives rise to a new set of N ×1 column vectors x(s)
t =

(
x

(s)
1t , ..., x

(s)
Nt

)′
for the first

shuffl e s = 1. We repeat this reshuffl ing S times in total where we set S = 50. We consider this to
be suffi ciently large (FLM suggested S = 20 while BL recommended S = 100 - see also Fang, Wang

and Feng (2013)). In each shuffl e s = 1, ..., S, we divide x(s) =
(
x

(s)
1 , ...,x

(s)
T

)
into two subsamples

of size N × T1 and N × T2, where T2 = T − T1. A theoretically ‘justified’split suggested in BL is

given by T1 = T
(

1− 1
log T

)
and T2 = T

log T . In our simulation study we set T1 = 2T
3 and T2 = T

3 .

Let Σ̂
(s)
1 =

(
σ̂

(s)
1,ij

)
, with elements σ̂(s)

1,ij = T−1
1

∑T1
t=1 x

(s)
it x

(s)
jt , and Σ̂

(s)
2 =

(
σ̂

(s)
2,ij

)
with elements

σ̂
(s)
2,ij = T−1

2

∑T
t=T1+1 x

(s)
it x

(s)
jt , i, j = 1, ..., N, denote the sample covariance matrices generated using

T1 and T2 respectively, for each split s. We threshold Σ̂
(s)
1 as in (C.29) or (C.31) using I (.) as the

thresholding function, where both θ̂ij and ωT are adjusted to

θ̂
(s)

1,ij =
1

T1

∑T1
t=1(x

(s)
it x

(s)
jt − σ̂

(s)
1,ij)

2,

and

ωT1 (c) = c

√
logN

T1
.

Then (C.31) becomes

Σ̃
(s)
1 (c) =

(
σ̂

(s)
1,ijI

[∣∣∣σ̂(s)
1,ij

∣∣∣ ≥ τ (s)
1,ij (c)

])
,

for each c, where

τ
(s)
1,ij (c) =

√
θ̂

(s)

1,ijωT1 (c) > 0,

and θ̂
(s)

1,ij and ωT1 (c) are defined above.
The following expression is computed for BL or CL,

Ĝ (c) =
1

S

S∑
s=1

∥∥∥Σ̃(s)
1 (c)− Σ̃

(s)
2

∥∥∥2

F
, (C.32)

for each c and
Ĉ = arg min

Cmin≤c≤Cmax
Ĝ (c) . (C.33)

If several values of c attain the minimum of (C.33), then Ĉ is chosen to be the smallest one. The
final estimator of the covariance matrix is then given by Σ̃Ĉ . The thresholding approach does not
necessarily ensure that the resultant estimate, Σ̃Ĉ , is positive definite. To ensure that the threshold
estimator is positive definite FLM (2013) propose setting a lower bound on the cross-validation grid

for the search of C such that λmin

(
Σ̃Ĉ

)
> 0 - see Fryzlewicz (2013). Therefore, we modify (C.33)

so that
Ĉ∗ = arg min

Cpd+ε≤c≤Cmax
Ĝ (c) , (C.34)

where Cpd is the lowest c such that λmin

(
Σ̃Cpd

)
> 0 and ε is a small positive constant. We do not

conduct thresholding on the diagonal elements of the covariance matrices which remain in tact.
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C.4 Ledoit and Wolf (LW) shrinkage

Ledoit and Wolf (2004, LW) considered a shrinkage estimator for regularisation which is based on
a linear combination of the sample covariance matrix, Σ̂, and an identity matrix IN , and provide
formulae for the appropriate weights. The LW shrinkage is expressed as

Σ̂LW = ρ̂1IN + ρ̂2Σ̂, (C.35)

with the estimated weights given by

ρ̂1 = mT b
2
T /d

2
T , ρ̂2 = a2

T /d
2
T

where

mT = N−1tr
(
Σ̂
)
, d2

T = N−1tr
(
Σ̂

2
)
−m2

T ,

a2
T = d2

T − b2T , b2T = min(b̄2T , d
2
T ),

and

b̄2T =
1

NT 2

T∑
t=1

∥∥∥ẋtẋ′t − Σ̂
∥∥∥2

F
=

1

NT 2

T∑
t=1

tr
[(
ẋtẋ

′
t

) (
ẋtẋ

′
t

)]
− 2

NT 2

T∑
t=1

tr
(
ẋ′tΣ̂ẋt

)
+

1

NT
tr
(
Σ̂

2
)
,

and noting that
∑T

t=1 tr
(
ẋ′tΣ̂ẋt

)
=
∑T

t=1 tr
(
Σ̂
∑T

t=1 ẋtẋ
′
t

)
= T

∑T
t=1 tr

(
Σ̂

2
)
, we have

b̄2T =
1

NT 2

T∑
t=1

(
N∑
i=1

ẋ2
it

)2

− 1

NT
tr
(
Σ̂

2
)
,

with ẋt = (ẋ1t, ..., ẋNt)
′ and ẋit = (xit − x̄i).5

Σ̂LW is positive definite by construction. Thus, the inverse Σ̂
−1
LW exists and is well conditioned.

Appendix D Additional Monte Carlo simulation results

D.1 Approximately sparse covariance matrix specifications

We present here two additional covariance (correlation) specifications based on approximately
sparse matrices. These are considered in the context of the Monte Carlo setup of Section 3.

Monte Carlo Design C : We follow Bickel and Levina (2008b) and set R to coincide with the
correlation matrix of a first-order autoregressive process with coeffi cient, φ, given by

R =



1 φ φ2 · · · φN−1

φ 1
...

φ2 φ
. . .

...
... · · · · · · . . . φ

φN−1 · · · · · · φ 1


.

The Cholesky factor, P , for this specification is given by

P =



1 0 · · · 0 0

φ
√

1− φ2 · · · 0

φ2 φ
√

1− φ2 · · · 0
...

...
. . .

...
...

φN−2 φN−3
√

1− φ2 · · ·
√

1− φ2 0

φN−1 φN−2
√

1− φ2 · · · φ
√

1− φ2
√

1− φ2


.

5Note that LW scale the Frobenius norm by 1/N , and use ‖A‖2F = tr(A′A)/N . See Definition 1 of Ledoit and
Wolf (2004, p. 376). Here we use the standard notation for this norm.
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Also, σii = 1/
(
1− φ2

)
, i = 1, 2, ..., N . In this experiment we set φ = 0.7, and hence we generate

xt =
(
1− φ2

)−1/2
Put, with P given above.

Monte Carlo Design D : Under this specification Σ (= D1/2RD1/2) is set to the covariance
matrix of a standard first-order spatial autoregressive model (SAR) with coeffi cient ϑ and weight
matrix, W ,

Σ = (σij) = (IN − ϑW )−1Λ(IN − ϑW ′)−1, (D.36)

whereΛ = diag(λ11, λ22, ...., λNN ), andD = diag(σ11, σ22, ...., σNN ) with σii ∼ IID
(
1/2 + χ2(2)/4

)
,

i = 1, 2, ..., N . The weight matrix W is row-standardised with all units having two neighbours ex-
cept for the first and last units that have only one neighbour

W =



0 1 0 · · · · · · 0 0
1/2 0 1/2 · · · · · · 0 0
0 1/2 0 · · · · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1/2 0 1/2
0 0 0 · · · 0 1 0


N×N

.

This ensures that the largest eigenvalue ofW is unity and the degree of cross-sectional dependence
is measured by ϑ. The correlation matrix in this case is given by

R =D−1/2(IN − ϑW )−1Λ(IN − ϑW ′)−1D−1/2,

with the associated Cholesky factor, P , given by

P = D−1/2(IN − ϑW )−1Λ1/2.

To ensure that V ar(xit) = σii, we need to set λii such that

diag
[
(IN − ϑW )−1Λ(IN − ϑW ′)−1

]
= D.

Computation of λii can be done numerically. Let di(λ), where λ = (λ11, λ22, ..., λNN )′ be the ith

diagonal element of (IN − ϑW )−1Λ(IN − ϑW ′)−1, then we compute λ by solving the following
optimisation problem

min
λ

N∑
i=1

[di(λ)− σii]2 .

The initial vector of λ is set to σ = (σ11, σ22, ...., σNN )′ generated as above.
All results are reported for N = {30, 100, 200} and T = 100, for the case where γ = 0 and a = 0

in (19). Results for γ 6= 0 and a 6= 0 are very similar and are available upon request.

D.2 Additional results

Overall, similar conclusions are drawn when considering approximately sparse matrices in our
experiments to those obtained under the exactly sparse Monte Carlo designs of Section 3.

D.2.1 Robustness of MT to the choice of the p-value and f(N)

In line with Table 1, Table D1 shows the sensitivity of the MT estimator to different levels of
significance, p, and scaling factors f(N) inherent in the theoretical critical value, cp(N), by way of
average spectral and Frobenius norm losses over 2,000 replications for Monte Carlo designs C and
D when p = {0.01, 0.05, 0.10} and f(N) = {N − 1, N (N − 1) /2}, and under both distributional
assumptions for the errors (Gaussian and multivariate t). Neither of the norms is affected much
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by the choice of p under the error specifications considered for all N . With regard to the scaling
factor f(N), under normality of the errors, where κmax = 1, both norms of MTN−1 outperform
MTN(N−1)/2 for designs C and D, which is expected given Theorem 1. Under non-linear depen-
dence of the errors for Monte Carlo design C, MTN−1 still outperforms MTN(N−1)/2. However the
difference between the two norms reduces considerably. On the other hand, for Monte Carlo design
D, MTN(N−1)/2 produces lower norms than MTN−1 almost uniformly when the spectral norm is
considered, which is in line with the theory of Section 2.1.

D.2.2 Norm comparisons of MT , BL,CL, and LW estimators

Results when comparing our proposed estimators with those suggested in the literature (average
norms over 100 replications) from Monte Carlo designs C and D are shown in Tables D2 and D3,
respectively. As in Section 3.3, the MT estimators are computed using scaling factor f(N) =
N(N − 1)/2 and p = 0.05. In general, for both designs thresholding outperforms shrinkage across
N . Since design C considers a correlation matrix, BLĈ performs comparatively well while CL2

outperforms CLĈ as N increases. Design D analyses heteroskedastic data, hence in this case BLĈ
is outperformed by CLĈ , especially when looking at the Frobenius norms, whilst CLĈ outperforms
CL2 across N as suggested in Cai and Liu (2011). Overall, CLĈ performs best but theMT method
records lower norms at times especially when the errors are non-linearly dependent (t-distributed),
as shown in the bottom panel of Tables D2 and D3. Looking at the adjusted thresholding methods,
they suffer universally compared to their unadjusted counterparts which is expected. For both
designs, S-MTN(N−1)/2 clearly outperforms BLĈ∗ and CLĈ∗ across all N .

D.2.3 Norm comparisons of inverse estimators

Finally, Tables D4 and D5 present norm results for the inverses of the regularisation methods we
consider for designs C and D respectively. In line with Monte Carlo design B, S-MTN(N−1)/2

outperforms BLĈ∗ and CLĈ∗ irrespective of whether the errors are Gaussian or t-distributed.
The adjusted BL and CL methods are both prone to sizeable outliers, especially for smaller N .
For design C, LWΣ̂ performs more favourably than S-MTN(N−1)/2 for N = {30, 100} under both
Gaussian and non-linearly dependent errors but suffers as N increases to 200. For design D,
however, LWΣ̂ is outperformed by the shrinkage on MT estimator uniformly across N .
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Table D1: Average spectral and Frobenius norm losses for the MT (p) estimator using significance
levels p = {0.01, 0.05, 0.10} and scaling factors f(N) = {N − 1, N(N − 1)/2}, for T = 100

Monte Carlo design C
f(N) = N − 1 f(N) = N(N − 1)/2

N MTN−1(.01) MTN−1(.05) MTN−1(.10) MTN(N−1)
2

(.01) MTN(N−1)
2

(.05) MTN(N−1)
2

(.10)

uit∼ Gaussian

Spectral norm
30 3.85(0.58) 3.53(0.56) 3.39(0.55) 4.41(0.59) 4.07(0.59) 3.93(0.58)
100 4.88(0.41) 4.53(0.42) 4.38(0.43) 5.70(0.35) 5.38(0.38) 5.23(0.39)
200 5.31(0.32) 4.97(0.34) 4.82(0.35) 6.18(0.23) 5.91(0.27) 5.78(0.28)

Frobenius norm
30 6.83(0.40) 6.30(0.42) 6.09(0.44) 7.73(0.41) 7.19(0.40) 6.96(0.40)
100 4.88(0.41) 4.53(0.42) 4.38(0.43) 5.70(0.35) 5.38(0.38) 5.23(0.39)
200 5.31(0.32) 4.97(0.34) 4.82(0.35) 6.18(0.23) 5.91(0.27) 5.78(0.28)

uit∼ multivariate t−distributed with 8 degrees of freedom
Spectral norm

30 4.21(0.82) 4.01(0.91) 3.94(0.97) 4.64(0.71) 4.38(0.76) 4.27(0.79)
100 5.61(4.35) 5.55(4.61) 5.59(4.75) 6.06(3.83) 5.86(4.05) 5.77(4.14)
200 6.08(2.51) 6.15(3.21) 6.29(3.57) 6.45(1.30) 6.30(1.63) 6.23(1.80)

Frobenius norm
30 7.40(0.80) 7.02(0.93) 6.90(0.99) 8.15(0.66) 7.69(0.74) 7.50(0.78)
100 15.20(4.25) 14.74(4.54) 14.71(4.68) 17.04(3.72) 16.24(3.93) 15.90(4.02)
200 22.12(2.59) 21.65(3.40) 21.76(3.83) 25.09(1.26) 23.99(1.59) 23.52(1.78)

Monte Carlo design D
uit∼ Gaussian

Spectral norm
30 0.86(0.15) 0.78(0.15) 0.76(0.14) 1.02(0.13) 0.93(0.14) 0.89(0.15)
100 1.06(0.13) 0.97(0.14) 0.95(0.14) 1.21(0.09) 1.16(0.10) 1.14(0.11)
200 1.35(0.14) 1.25(0.15) 1.21(0.15) 1.54(0.10) 1.50(0.11) 1.47(0.12)

Frobenius norm
30 1.95(0.20) 1.73(0.18) 1.69(0.18) 2.46(0.19) 2.15(0.20) 2.02(0.20)
100 3.95(0.19) 3.45(0.20) 3.31(0.20) 5.08(0.13) 4.68(0.16) 4.48(0.17)
200 6.30(0.20) 5.54(0.22) 5.28(0.22) 8.00(0.11) 7.57(0.14) 7.33(0.16)

uit∼ multivariate t−distributed with 8 degrees of freedom
Spectral norm

30 1.05(0.37) 1.04(0.43) 1.06(0.46) 1.13(0.29) 1.08(0.34) 1.06(0.36)
100 1.37(1.00) 1.46(1.16) 1.54(1.24) 1.35(0.71) 1.35(0.82) 1.35(0.87)
200 1.81(1.67) 1.97(2.01) 2.10(2.17) 1.72(1.01) 1.73(1.20) 1.74(1.29)

Frobenius norm
30 2.26(0.40) 2.16(0.46) 2.18(0.49) 2.61(0.30) 2.39(0.35) 2.30(0.38)
100 4.50(1.02) 4.41(1.24) 4.51(1.35) 5.23(0.66) 4.94(0.79) 4.80(0.84)
200 7.15(1.78) 7.10(2.24) 7.30(2.46) 8.19(0.94) 7.86(1.17) 7.69(1.29)
Notes: Norm losses are averages over 2,000 replications. Simulation standard deviations are given in the parentheses. MT estimators

are defined in Section 3.1.
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Table D2: Spectral and Frobenius norm losses for different regularised covariance matrix estimators
(T = 100) - Monte Carlo design C

N = 30 N = 100 N = 200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius
uit∼ Gaussian

Error matrices (Σ− Σ̊)
MTN(N−1)/2 4.10(0.65) 7.25(0.42) 5.34(0.37) 15.23(0.42) 5.93(0.29) 23.05(0.40)

BLĈ 3.32(0.73) 5.83(0.63) 4.34(0.49) 12.46(0.57) 4.96(0.50) 18.71(0.55)
CL2 4.14(0.65) 7.36(0.46) 5.66(0.37) 16.14(0.42) 4.59(0.31) 18.36(0.50)
CLĈ 3.23(0.73) 5.77(0.59) 4.12(0.44) 12.20(0.51) 6.34(0.40) 24.78(0.49)

S-MTN(N−1)/2 5.54(0.50) 8.23(0.59) 6.86(0.24) 17.58(0.51) 7.39(0.18) 26.81(0.48)
BLĈ∗ 8.53(0.10) 14.44(0.07) 9.11(0.06) 27.05(0.04) 9.19(0.05) 38.44(0.04)
CLĈ∗ 8.43(0.16) 14.28(0.21) 9.10(0.07) 27.00(0.11) 9.18(0.05) 38.42(0.08)
LWΣ̂ 3.37(0.57) 5.68(0.49) 6.00(0.36) 16.05(0.40) 7.54(0.22) 27.57(0.31)

uit∼ multivariate t− distributed with 8 degrees of freedom
Error matrices (Σ− Σ̊)

MTN(N−1)/2 4.47(0.99) 7.75(0.95) 5.55(0.59) 15.94(0.71) 6.31(1.11) 24.07(1.37)
BLĈ 4.26(1.44) 7.11(1.52) 5.78(1.15) 15.76(2.54) 6.86(1.34) 25.46(5.29)
CL2 5.11(0.71) 8.94(0.94) 6.98(0.43) 19.90(1.14) 7.64(0.33) 30.34(1.55)
CLĈ 3.80(1.19) 6.72(1.20) 4.83(0.69) 14.40(1.65) 5.51(0.80) 22.03(3.04)

S-MTN(N−1)/2 5.59(0.55) 8.41(0.61) 6.85(0.38) 17.69(0.65) 7.38(0.31) 26.74(0.80)
BLĈ∗ 8.53(0.18) 14.51(0.13) 9.12(0.15) 27.14(0.11) 9.20(0.15) 38.60(0.18)
CLĈ∗ 8.46(0.22) 14.40(0.21) 9.11(0.16) 27.11(0.14) 9.19(0.15) 38.57(0.19)
LWΣ̂ 4.03(0.84) 6.64(0.81) 6.72(0.63) 17.95(0.75) 8.25(1.13) 29.97(0.92)

Notes: Norm losses are averages over 100 replications. Simulation standard deviations are given in the parentheses.

Σ̊ = {Σ̃MTN(N−1)/2
, Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTN(N−1)/2

, Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
}. MTN(N−1)/2 and

S-MTN(N−1)/2 are computed using p = 0.05. BL is Bickel and Levina universal thresholding, CL is Cai and Liu

adaptive thresholding, Σ̃BL,Ĉ is based on Ĉ which is obtained by cross-validation, Σ̃BL,Ĉ∗ employs the further

adjustment to the cross-validation coeffi cient, C∗, proposed in Fan, Liao and Mincheva, Σ̃CL,2 is CL’s estimator with

C = 2 (the theoretical value of C), Σ̂LW
Σ̂
is Ledoit and Wolf’s shrinkage estimator applied to the sample covariance

matrix.
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Table D3: Spectral and Frobenius norm losses for different regularised covariance matrix estimators
(T = 100) - Monte Carlo design D

N = 30 N = 100 N = 200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius
uit∼ Gaussian

Error matrices (Σ− Σ̊)
MTN(N−1)/2 0.93(0.13) 2.16(0.18) 1.16(0.09) 4.68(0.16) 1.50(0.12) 7.55(0.14)

BLĈ 0.91(0.16) 2.05(0.22) 1.20(0.14) 4.54(0.42) 1.46(0.16) 7.53(0.70)
CL2 0.95(0.13) 2.22(0.19) 1.17(0.09) 4.89(0.15) 1.53(0.10) 7.82(0.12)
CLĈ 0.77(0.12) 1.76(0.19) 0.98(0.13) 3.50(0.18) 1.26(0.15) 5.58(0.26)

S-MTN(N−1)/2 0.98(0.12) 2.24(0.17) 1.20(0.09) 4.72(0.16) 1.51(0.12) 7.49(0.14)
BLĈ∗ 0.92(0.14) 2.12(0.27) 1.21(0.15) 4.93(0.57) 1.50(0.15) 7.87(0.65)
CLĈ∗ 0.78(0.15) 1.82(0.33) 1.01(0.14) 3.84(0.63) 1.36(0.17) 6.36(0.93)
LWΣ̂ 1.09(0.11) 2.36(0.10) 1.72(0.12) 5.43(0.07) 1.90(0.05) 8.85(0.04)

uit∼ multivariate t− distributed with 8 degrees of freedom
Error matrices (Σ− Σ̊)

MTN(N−1)/2 1.03(0.16) 2.34(0.20) 1.30(0.35) 4.88(0.36) 1.93(2.35) 8.03(2.26)
BLĈ 1.16(0.18) 2.78(0.48) 1.50(0.21) 5.88(0.23) 1.68(0.25) 8.67(0.29)
CL2 1.13(0.12) 2.76(0.20) 1.31(0.15) 5.52(0.19) 1.63(0.14) 8.49(0.26)
CLĈ 1.00(0.20) 2.21(0.34) 1.32(0.25) 5.03(0.88) 1.58(0.19) 8.08(0.89)

S-MTN(N−1)/2 1.03(0.13) 2.33(0.17) 1.26(0.19) 4.79(0.23) 1.64(0.59) 7.62(0.50)
BLĈ∗ 1.15(0.16) 2.87(0.50) 1.47(0.18) 5.84(0.29) 1.64(0.14) 8.69(0.25)
CLĈ∗ 1.00(0.18) 2.34(0.49) 1.36(0.22) 5.33(0.74) 1.63(0.15) 8.49(0.54)
LWΣ̂ 1.23(0.14) 2.65(0.13) 1.86(0.14) 5.78(0.14) 2.01(0.19) 9.23(0.16)

See the notes to Table D2.
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Table D4: Spectral and Frobenius norm losses for the inverses of different regularised covariance
matrix estimators for Monte Carlo design C - T = 100

N = 30 N = 100 N = 200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ−1 − Σ̊−1)
uit∼ Gaussian

S-MTN(N−1)/2 4.03(0.31) 5.19(0.25) 4.75(0.19) 10.00(0.21) 4.97(0.18) 14.62(0.20)
BLĈ∗ 5.65(0.15) 7.37(0.16) 5.83(0.10) 13.75(0.10) 5.89(0.09) 19.50(0.11)
CLĈ∗ 3.4x104(1.7x105) 28.62(173.93) 31.47(255.19) 14.07(3.85) 5.89(0.09) 19.46(0.14)
LWΣ̂ 1.91(0.18) 3.49(0.12) 3.51(0.10) 9.45(0.16) 4.28(0.07) 15.75(0.15)

uit∼ multivariate t− distributed with 8 degrees of freedom
S-MTN(N−1)/2 3.95(0.48) 5.21(0.33) 4.62(0.30) 9.83(0.50) 4.88(0.29) 14.23(0.77)

BLĈ∗ 5.67(0.23) 7.37(0.19) 5.84(0.20) 13.69(0.28) 5.95(0.20) 19.45(0.38)
CLĈ∗ 53.32(262.27) 8.37(5.52) 7.31(10.30) 13.75(0.54) 7.53(5.1x107) 19.47(2.4x103)
LWΣ̂ 2.42(0.49) 4.03(0.53) 3.90(0.33) 10.39(0.65) 4.58(0.28) 16.70(0.74)

Notes: Σ̊
−1

= {Σ̃−1S-MTN(N−1)/2
, Σ̃
−1
BL,Ĉ∗ , Σ̃

−1
CL,Ĉ∗ , Σ̂

−1
LW

Σ̂
}. See also the notes to Table D2.

Table D5: Spectral and Frobenius norm losses for the inverses of different regularised covariance
matrix estimators for Monte Carlo design D - T = 100

N = 30 N = 100 N = 200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ−1 − Σ̊−1)
uit∼ Gaussian

S-MTN(N−1)/2 3.49(0.70) 4.39(0.34) 4.78(0.46) 9.32(0.29) 5.82(0.45) 13.93(0.23)
BLĈ∗ 6.2x103(4.3x104) 32.11(72.33) 2.9x104(1.0x104) 33.02(46.10) 9.3x103(8.8x104) 31.84(92.70)
CLĈ∗ 1.3x106(1.3x107) 152.75(1.1x104) 1.3x105(3.4x106) 116.64(348.34) 5.8x105(4.1x106) 197.02(735.94)
LWΣ̂ 4.56(0.43) 4.94(0.16) 6.20(0.19) 11.14(0.15) 8.65(0.13) 17.22(0.13)

uit∼ multivariate t− distributed with 8 degrees of freedom
S-MTN(N−1)/2 3.59(0.94) 4.38(0.41) 4.62(0.64) 8.99(0.51) 5.85(0.84) 13.50(0.69)

BLĈ∗ 3.3x103(1.7x104) 24.83(53.16) 2.4x103(2.3x104) 17.26(46.75) 13.65(63.27) 16.09(1.63)
CLĈ∗ 979.79(3.3x103) 22.62(23.69) 3.4x103(2.9x104) 23.80(55.00) 412.43(2.2x103) 19.87(17.46)
LWΣ̂ 3.66(0.86) 4.62(0.45) 9.26(0.62) 11.94(0.58) 8.99(0.60) 17.63(0.70)

Notes: Σ̊
−1

= {Σ̃−1S-MTN(N−1)/2
, Σ̃
−1
BL,Ĉ∗ , Σ̃

−1
CL,Ĉ∗ , Σ̂

−1
LW

Σ̂
}. See also the notes to Table D2.
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