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Appendix A Technical Lemmas

A.1 Statement of technical lemmas

We begin by stating a few technical lemmas that are needed for the proof of the main results.

Lemma 1 Consider the sample correlation coe¢ cient, �̂ij;T , de�ned by (7) and suppose that As-
sumptions 2 and 3 hold. Then

lim
aij;T!�1

n
e
1��
2
a2ij;T [Fij;T (aij;T jPij )� �(aij;T )]

o
= 0; (A.1)

for some small positive �.

Lemma 2 Suppose that z s N(0; 1), then

E [zI(L � z � U)] = � (L)� �(U); (A.2)

and
E
�
z2I(L � z � U)

�
= [� (U)� � (L)] + L�(L)� U�(U): (A.3)

Lemma 3 Let cp(N) = ��1
�
1� p

2f(N)

�
; where 0 < p < 1, f(N) is an increasing function of N ,

and suppose there exist �nite T0 and N0 such that for all N > N0

1� p

2f(N)
> 0; (A.4)

and as N and T !1
ln f(N)

T
! 0: (A.5)

Then
cp(N) �

p
2 [ln f(N)� ln(p)]; (A.6)

and for all N > N0 and T > T0, cp(N)=
p
T is bounded and

cp(N)p
T

! 0; (A.7)

as N and T !1:

Lemma 4 Consider the standardised sample correlation coe¢ cient zij;T =
[�̂ij;T�E(�̂ij;T )]q

V ar(�̂ij;T )
, where

�̂ij;T is de�ned by (7) and E
�
�̂ij;T

�
and V ar

�
�̂ij;T

�
> 0 are given by (8) and (9), respectively.

Suppose that cp(N) = ��1
�
1� p

2f(N)

�
, and conditions (A.4) and (A.5) hold. Then for all i and

j, there exist N0 and T0 such that for N > N0 and T > T0

lim
T!1

E

�
zsij;T

�
I

����̂ij;T �� � cp(N)p
T

���
= lim

T!1
E
�
zsij;T I (Lij;T � zij;T � Uij;T )

�
= lim

T!1
E [zsI (Lij;T � z � Uij;T )] ; (A.8)

for s = 0; 1; 2; :::; where

Uij;T =
cp(N)�

p
TE

�
�̂ij;T

�r
V ar

�p
T �̂ij;T

� , Lij;T =
�cp(N)�

p
TE

�
�̂ij;T

�r
V ar

�p
T �̂ij;T

� (A.9)

and z s N(0; 1).
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Lemma 5 Consider the cumulative distribution function of a standard normal variate, de�ned by

�(x) = (2�)�1=2
R x
�1e

�u2

2 du:

Then for x > 0

�(�x) = 1� �(x) � 1

2
exp(�x

2

2
): (A.10)

Lemma 6 Consider the sample correlation coe¢ cient, �̂ij;T , de�ned by (7) and suppose that As-
sumptions 2 and 3 hold, then there exists N0 and T0 such that for all N > N0 and T > T0

1

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� � Ke
� 1��

2

c2p(N)

�ij [1 + o(1)] (A.11)

where �ij =
�
�ij(2; 2)

���ij = 0�, �ij(2; 2) is de�ned under Assumption 2, and � is a small positive
constant. Further, if

���ij�� > cp(N)=
p
T we have

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
� Ke

�1
2

T

�
j�ijj� cp(N)p

T

�2
Kv (�ij) [1 + o(1)] ; (A.12)

where Kv(�ij) is given by (11),

cp(N) = �
�1
�
1� p

2f(N)

�
> 0; (A.13)

0 < p < 1, and f(N) is an increasing function of N such that

ln f(N)=T ! 0; as N and T !1: (A.14)

Lemma 7 Consider the data generating process

yt = Put;

where yt and ut are N�1 vectors of random variables, and P is an N�N matrix of �xed constants,
such that PP0 = R, where R is a correlation matrix. Suppose that ut follows a multivariate
t-distribution with v degrees of freedom generated as

ut =

 
v � 2
�2v;t

!1=2
"t,

where "t = ("1t; "2t; :::; "Nt)0 s IIDN(0; IN ), and �
2
v;t is a chi-squared random variate with v > 4

degrees of freedom distributed independently of "t. Then we have that

�ij(2; 2) = E(y2ity
2
jt) =

(v � 2)
h
(p0ipi)

2 + (p0ipj)
2
i

(v � 4) ;

where p0i is the i
th row of P. In the case where P = IN , �ij(2; 2) = (v � 2)=(v � 4) and

E(y2ityjt) = E(y2jtyit) = 0:

Lemma 8 Fat-tailed shocks do not necessarily generate �ij(2; 2) > 1.

1To simplify the notation we have dropped explicit reference to Pij ; the underlying bivariate distribution of the
observations.
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A.2 Proofs of lemmas for the MT estimator

Proof of Lemma 1. Under (12), and noting that

e
1��
2
a2ij;T � (aij;T ) = e

1��
2
a2ij;T (2�)�1=2 exp

�
�1
2
a2ij;T

�
= (2�)�1=2 exp

�
� �
2
a2ij;T

�
;

we have

e
1��
2
a2ij;T [Fij;T (aij;T jPij )� �(aij;T )] = (2�)�1=2 exp

�
� �
2
a2ij;T

�
�
h
T�1=2G1 (aij;T jPij ) + T�1G2 (aij;T jPij ) + ::::;

i
:

and the desired result follows noting that asij;T exp
�
� �
2a
2
ij;T

�
! 0 as aij;T ! �1, for all s � 0.

This result holds for a �xed T , and as T !1:

Proof of Lemma 2. Denote the density of the standard normal distribution by �(z) =
(2�)�1=2e�(1=2)z

2
, then

E [zI(L � z � U)] =

Z U

L
z(2�)�1=2e�(1=2)z

2
dz = [��(z)]UL = � (L)� �(U):

Similarly, to prove (A.3) note that E
�
z2I(L � z � U)

�
=
R U
L z2�(z)dz. Hence, integrating by parts,

we have Z U

L
z2�(z)dz = [�z�(z)]UL +

Z U

L
�(z)dz = [� (U)� � (L)] + L�(L)� U�(U);

as required.

Proof of Lemma 3. First note that

��1 (z) =
p
2 erf�1(2z � 1); z 2 (0; 1);

where �(x) is cumulative distribution function of a standard normal variate, and erf(x) is the error
function de�ned by

erf(x) =
2p
�

R x
0 e

�u2du: (A.15)

Consider now the inverse complementary error function erfc�1(x) given by

erf c�1(1� x) = erf�1(x):

Using results in Chiani et al. (2003, p.842) we have

erf c�1(x) �
p
� ln(x):

Applying the above results to cp(N) we have

cp(N) = ��1
�
1� p

2f(N)

�
=

p
2 erf�1

�
2

�
1� p

2f(N)

�
� 1
�

=
p
2 erf�1

�
1� p

f(N)

�
=
p
2 erf c�1

�
p

f(N)

�
�

p
2

s
� ln

�
p

f(N)

�
=
p
2 [ln f(N)� ln(p)]:
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Hence, in view of condition (A.5), and noting that p is �xed, then cp(N)
p
T is bounded in N and T ,

and result (A.7) follows noting that cp(N)=
p
T �

p
2 [ln f(N)� ln(p)] =T ! 0, as N and T !1:

Proof of Lemma 4. We �rst note that since V ar
�
�̂ij;T

�
> 0

I

����̂ij;T �� � cp(N)p
T

�
= I

�
�cp(N)p

T
� �̂ij;T �

cp(N)p
T

�

= I

0@ �cp(N)p
T

� E
�
�̂ij;T

�q
V ar

�
�̂ij;T

� �
�̂ij;T � E

�
�̂ij;T

�q
V ar

�
�̂ij;T

� �
cp(N)p

T
� E

�
�̂ij;T

�q
V ar

�
�̂ij;T

�
1A

= I (Lij;T � zij;T � Uij;T ) : (A.16)

Also, since �̂ij;T is a correlation coe¢ cient,
���̂ij;T �� < 1, and for a �nite T > T0, V ar

�
�̂ij;T

�
> 0,

then

jzij;T j <
���̂ij;T ��+ ��E ��̂ij;T ���q

V ar
�
�̂ij;T

� < 2 sup
i;j

0@ 1q
V ar

�
�̂ij;T

�
1A < K:

Hence all moments of zij;T exist for T �nite. Furthermore, it is well known that zij;T !d N(0; 1)
as T ! 1. Therefore, all moments of zij;T exist for all values of T > T0, and by the second
limit-theorem (see, for example, Rao and Kendall (1950, p. 228))

E
�
zsij;T

�
! E (zs) ; as T !1, for all s = 1; 2; ::::

Furthermore, since I (Lij;T � zij;T � Uij;T ) = I
����̂ij;T �� � cp(N)p

T

�
� cp(N)=

p
T , and under condi-

tions (A.4) and (A.5), cp(N)=
p
T is bounded (see Lemma 3). Then for all N > N0 we must also

have

lim
T!1

E

�
zsij;T I

����̂ij;T �� � cp(N)p
T

��
= lim

T!1
E [zsI (Lij;T � z � Uij;T )] ;

as required.

Proof of Lemma 5. Using results in Chiani et al. (2003, eq. (5)) we have

erf c(x) =
2p
�

R1
x e�u

2
du � exp(�x2); (A.17)

where erf c(x) is the complement of the erf(x) function de�ned by (A.15). But

1� �(x) = (2�)�1=2
R1
x e�

u2

2 du =
1

2
erf c

�
xp
2

�
;

and using (A.17) we have

1� �(x) = 1

2
erf c

�
xp
2

�
� 1

2
exp

"
�
�
xp
2

�2#
=
1

2
exp

�
�x

2

2

�
:

Proof of Lemma 6. We �rst note that

Pr
����pT �̂ij;T ��� � cp(N)

�
= Pr

�
�cp(N) �

p
T �̂ij;T � cp(N)

�

= Pr

0BB@Lij �
p
T
�
�̂ij;T � E

�
�̂ij;T

��r
V ar

�p
T �̂ij;T

� � Uij

1CCA ;
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where

Uij =
cp(N)�

p
TE

�
�̂ij;T

�r
V ar

�p
T �̂ij;T

� , Lij =
�cp(N)�

p
TE

�
�̂ij;T

�r
V ar

�p
T �̂ij;T

� : (A.18)

Using (8) and (9), we also note that under �ij = 0, and setting  ij = 0:5
�
�ij(3; 1) + �ij(1; 3)

�
E
�
�̂ij;T

���ij = 0� =
� ij
T

+O
�
T�2

�
;

V ar
�
�̂ij;T

���ij = 0� =
�ij
T
+O

�
T�2

�
;

where �ij =
�
�ij(2; 2)

���ij = 0�, and
Pr
����pT �̂ij;T ��� � cp(N)

���ij = 0� = Fij;T [Uij;T (0)]� Fij;T [Lij;T (0)]

where

Uij;T (0) =
cp(N) +

 ij(�ij=0)p
T

+O
�
T�3=2

�p
�ij +O (T�1)

; Lij;T (0) =
�cp(N) +

 ij(�ij=0)p
T

+O
�
T�3=2

�p
�ij +O (T�1)

: (A.19)

Hence,

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� = 1� Fij;T [Uij;T (0)] + Fij;T [Lij;T (0)] : (A.20)

Setting aij;T = Uij;T (0) we have that (recall by assumption supij
�� ij�� < K)

a2ij;T =
c2p(N)

�ij
+O

�
cp(N)p

T

�
+O

�
T�1

�
:

By Lemma 3, cp(N)=
p
T = o(1), as N and T !1 (see (A.7)), and hence

a2ij;T =
c2p(N)

�ij
+ o(1): (A.21)

Therefore, in view of (A.1) established in Lemma 1 and (A.21), we have (for some small positive �)

Fij;T [Uij;T (0)] = � [Uij;T (0)] +Ke
� 1��

2

c2p(N)

�ij [1 + o(1)] ;

Fij;T [Lij;T (0)] = � [Lij;T (0)] +Ke
� 1��

2

c2p(N)

�ij [1 + o(1)] :

Substituting the above results in (A.20) yields

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� = 1� � [Uij;T (0)] + � [Lij;T (0)]

+Ke
� 1��

2

c2p(N)

�ij [1 + o(1)] ;

or

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� = � [�Uij;T (0)] + � [Lij;T (0)] (A.22)

+Ke
� 1��

2

c2p(N)

�ij [1 + o(1)] :
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Since by assumption
�� ij�� < K, and cp(N) is an increasing function of N then there must exist N0

and T0 such that for values of N > N0 and T > T0

�Uij;T (0) =
�cp(N)�

 ij(�ij=0)p
T

+O
�
T�3=2

�p
�ij +O (T�1)

< 0,

and

Lij;T (0) =
�cp(N) +

 ij(�ij=0)p
T

+O
�
T�3=2

�p
�ij +O (T�1)

< 0;

and by Lemma 5 we have

� [�Uij;T (0)] � 1

2
exp

8><>:�
h
cp(N) +

 ij(�ij=0)p
T

+O
�
T�3=2

�i2
2 [�ij +O (T�1)]

9>=>;
=

1

2
e
� 1
2

c2p(N)

�ij

�
1 +O

�
cp(N)p

T

�
+O

�
T�1

��
(A.23)

=
1

2
e
� 1
2

c2p(N)

�ij [1 + o(1)] :

Similarly,

� [Lij;T (0)] �
1

2
e
� 1
2

c2p(N)

�ij [1 + o(1)] : (A.24)

Substituting the above results in (A.22) now yields

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� �
"
e
� 1
2

c2p(N)

�ij(2;2) +Ke
� 1��

2

c2p(N)

�ij(2;2)

#
[1 + o(1)] ;

or2

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� � Ke
� 1��

2

c2p(N)

�ij [1 + o(1)] ;

as required.
Consider now the case where �ij 6= 0 and note that

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
= Fij;T

�
Uij;T (�ij)

�
� Fij;T

�
Lij;T (�ij)

�
; (A.25)

where

Uij;T (�ij) =
cp(N)�

p
T�ij �

Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

; (A.26)

Lij;T (�ij) =
�cp(N)�

p
T�ij �

Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

; (A.27)

2Note that

e
� 1
2

c2p(N)

�ij(2;2)

e
� 1��

2

c2p(N)

�ij(2;2)

= e
� �
2

c2p(N)

�ij(2;2) ! 0, as c2p(N)!1.
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jKm(�ij)j < K; and 0 < Kv(�ij) < K. Suppose that �ij > 0. Then
p
T�ij + cp(N) ! 1 andp

T�ij � cp(N) ! 1, as N and T ! 1 (recall that cp(N)=
p
T ! 0 with N and T ! 1). Again

using (A.26) and (A.27) for aij;T in (A.1) we have

Fij;T
�
Uij;T (�ij)

�
= �

�
Uij;T (�ij)

�
+Ke

�1
2

[cp(N)�
p
T�ij]

2

Kv (�ij) [1 + o(1)] ;

Fij;T
�
Lij;T (�ij)

�
= �

�
Lij;T (�ij)

�
+Ke

�1
2

[cp(N)+
p
T�ij]

2

Kv (�ij) [1 + o(1)] :

Hence

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
= �

�
Uij;T (�ij)

�
� �

�
Lij;T (�ij)

�
+Ke

�1
2

[cp(N)�
p
T�ij]

2

Kv(�ij) [1 + o(1)]

+Ke
�1
2

[cp(N)+
p
T�ij]

2

Kv(�ij) [1 + o(1)] :

Further, since �
�
Lij;T (�ij)

�
� 0; then

�
��
Uij;T (�ij)

��
� �

��
Lij;T (�ij)

��
� �

0@cp(N)�pT�ij � Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

1A :

Also, there exists N0 and T0 such that for �ij > 0, and all N > N0 and T > T0, we have (using
Lemma 5)

�

0@cp(N)�pT�ij � Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

1A � 1

2
e
�1
2

[cp(N)�
p
T�ij]

2

Kv(�ij) [1 + o(1)] ;

and hence

Pr
����pT �̂ij;T ��� < cp(N)j�ij > 0

�
� Ke

�1
2

[cp(N)�
p
T�ij]

2

Kv(�ij) [1 + o(1)] :

A similar result can also be obtained for �ij < 0, yielding the overall result

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
� Ke

�1
2

T

�
j�ijj� cp(N)p

T

�2
Kv(�ij) [1 + o(1)] :

Proof of Lemma 7. We �rst note that

E

 
1

�2v;t

!
=

1

v� 2 , V ar
 
1

�2v;t

!
=

2

(v� 2)2 (v� 4)

E

 
1

�2v;t

!2
=

2

(v� 2)2 (v� 4)
+

�
1

v� 2

�2
=

v� 2
(v� 2)2 (v� 4)

: (A.28)

Then

E
�
utu

0
t

�
= E

��
v� 2
�2v

�
"t"

0
t

�
= E

 
v� 2
�2v;t

!
E
�
"t"

0
t

�
= IN ;

7



and
E(yt) = 0, E

�
yty

0
t

�
= PP0 = R:

It is clear that yit has mean zero and a unit variance. Denote the ith row of P by p0i and note that

yit = p
0
iut =

�
v�2
�2v ;t

�1=2
p0i"t, and hence

�ij(2; 2) = E(y2ity
2
jt) = E

24 v� 2
�2v;t

!2 �
p0i"t

�2 �
p0j"t

�235 ;
and since "t and �2v;t are distributed independently using (A.28) we have

�ij(2; 2) =
(v� 2)3

(v� 2)2 (v� 4)
E
��
"0tAi"t

� �
"0tAj"t

��
;

where Ai = pip
0
i. But since "t s N(0; IN ), using results in Magnus (1978) we have

E
��
"0tAi"t

� �
"0tAj"t

��
= tr

�
pip

0
i

�
tr
�
pjp

0
j

�
+ tr

�
pip

0
ipjp

0
j

�
=

�
p0ipi

�2
+
�
p0ipj

�2
:

Hence

�ij(2; 2) =
(v� 2)

h
(p0ipi)

2 + (p0ipj)
2
i

(v� 4) :

When P is an identity matrix then p0ipi = 1 and p0ipj = 0, and hence �ij(2; 2) = (v�2)=(v�4).
Also

E(y2ityjt) = E

24 v� 2
�2v;t

!3=235E ��"0tAi"t
�
p0j"t

�
= 0.

Proof of Lemma 8. Consider the data generating process yt = Put where the elements of
ut = (u1t; u2t; :::; uNt)

0, uit, are generated as a standardized independent chi-squared distribution
with vi degrees of freedom, namely

uit =
�2it(vi)� vip

2vi
, for all i and t:

Then it is clear that E(uit) = 0, E(u2it) = 1; and also E(u
2
itu

2
jt) = E(u2it)E(u

2
jt) = 1, and E(utu

0
t) =

IN . Let p0i be the i
th row of P and note that

E (yityjt) = p0iE
�
utu

0
t

�
pj = p

0
ipj = �ij

p0ipi =
NX
r=1

p2ir = 1:

Also

E
�
y2ity

2
jt

�
= E

��
p0iutu

0
tpi
� �
p0jutu

0
tpj
��

=
X
r

X
r0

X
s

X
s0

pirpir0pjspjs0E(urtur0tustus0t):

But

E(urtur0tustus0t) = 0 if r 6= r0 or s 6= s0

= E(u2rtu
2
st) = 1 if r = r0 and s = s0,

8



and hence

E
�
y2ity

2
jt

�
=
X
r

X
s

p2irp
2
js =

 
NX
r=1

p2ir

!2
= 1:

Therefore, fat-tailed shocks do not necessarily generate �ij(2; 2) > 1.

Appendix B An overview of key regularisation techniques

Here we provide an overview of three main covariance estimators proposed in the literature which
we use in our Monte Carlo experiments for comparative analysis, namely the thresholding methods
of Bickel and Levina (2008b), and Cai and Liu (2011), and the shrinkage approach of Ledoit and
Wolf (2004).

B.1 Bickel-Levina (BL) thresholding

The method developed by Bickel and Levina (2008b, BL) employs �universal�thresholding of the
sample covariance matrix �̂ = (�̂ij) ; i; j = 1; 2; :::; N . Under this approach � is required to be
sparse as they de�ne on p. 2580. The BL thresholding estimator is given by

e�BL;C =

 
�̂ijI

"
j�̂ij j � C

r
log (N)

T

#!
; i = 1; 2; :::; N � 1; j = i+ 1; i+ 2; :::; N (B.29)

where I (:) is an indicator function and C is a positive constant which is unknown. The choice of
thresholding function - I (:) - implies that (B.29) implements �hard�thresholding. The consistency

rate of the BL estimator is mN

q
log(N)
T under the spectral norm of the error matrix

�e�BL;C ��
�
.

The potential computational burden in the implementation of this approach is the estimation of the
thresholding parameter, C. This is usually calibrated by a separate cross-validation (CV) procedure.
The quality of the performance of the BL estimator is therefore rooted in the speci�cation chosen
for the implementation of CV.3 Further, cross-validation performs well only when � is assumed to
be stable over time. Details of the BL cross-validation procedure are given in Section B.3.

As argued by BL, thresholding maintains the symmetry of �̂ but does not ensure positive
de�niteness of e�BL;Ĉ in �nite samples. BL show that their threshold estimator is positive de�nite
if e�BL;C � e�BL;0


spec

� � and �min (�) > �; (B.30)

where k:kspec is the spectral or operator norm and � is a small positive constant. This condition is

not met unless T is su¢ ciently large relative toN . �Universal�thresholding on �̂ performs best when
the units xit; i = 1; 2; :::; N; t = 1; 2; :::; T are assumed homoscedastic (i.e. �11 = �22 = ::: = �NN ).

B.2 Cai and Liu (CL) thresholding

Cai and Liu (2011, CL) proposed an improved version of the BL approach by incorporating the
unit speci�c variances in their �adaptive� thresholding procedure. In this way, unlike �universal�
thresholding on �̂, their estimator is robust to heteroscedasticity. Speci�cally, the thresholding
estimator e�CL;C is de�ned as

e�CL;C =
�
�̂ijs� ij [j�̂ij j � � ij ]

�
; i = 1; 2; :::; N � 1; j = i+ 1; i+ 2; :::; N (B.31)

3Fang, Wang and Feng (2013) provide useful guidelines regarding the speci�cation of various parameters used in
cross-validation through an extensive simulation study.
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where � ij > 0 is an entry-dependent adaptive threshold such that � ij =
q
�̂ij!T ;with �̂ij =

T�1
PT

i=1(xitxjt � �̂ij)
2 and !T = C

p
log (N) =T ; for some constant C > 0. CL implement their

approach using the general thresholding function s� (:) rather than I (:), but point out that all their
theoretical results continue to hold for the hard thresholding estimator. The consistency rate of

the CL estimator is C0mN

p
log (N) =T under the spectral norm of the error matrix

�e�CL;C ��
�
.

The parameter C can be �xed to a constant implied by theory (C = 2 in CL) or chosen via
cross-validation. Details of the CL cross-validation procedure are provided in Section B.3.

As with the BL estimator, thresholding in itself does not ensure positive de�niteness of e�CL;Ĉ :
In light of condition (B.30), Fan, Liao and Mincheva (FLM) (2013) extend the CL approach and
propose setting a lower bound on the cross-validation grid when searching for C such that the min-

imum eigenvalue of their threshold estimator is positive, �min
�e�FLM;Ĉ

�
> 0. This idea originated

from Fryzlewicz (2013). Further details of this procedure can be found in Section B.3. We apply
this extension to both BL and CL procedures (see Section B.3 for the relevant expressions).

B.3 Cross-validation for BL and CL

We perform a grid search for the choice of C over a speci�ed range: C = fc : Cmin � c � Cmaxg.

In the BL procedure, we set Cmin =

����minij �̂ij

����q T
logN and Cmax =

����maxij �̂ij

����q T
logN and impose

increments of (Cmax�Cmin)N . In CL cross-validation, we set Cmin = 0 and Cmax = 4; and impose
increments of c=N . In each point of this range, c; we use xit; i = 1; 2; :::; N; t = 1; 2; :::; T and select
the N � 1 column vectors xt = (x1t; x2t; :::; xNt)0 ; t = 1; 2; :::; T which we randomly reshu e over
the t-dimension. This gives rise to a new set of N �1 column vectors x(s)t =

�
x
(s)
1t ; x

(s)
2t ; :::; x

(s)
Nt

�0
for

the �rst shu e s = 1. We repeat this reshu ing S times in total where we set S = 50:We consider
this to be su¢ ciently large (FLM suggested S = 20 while BL recommended S = 100 - see also Fang,

Wang and Feng (2013)). In each shu e s = 1; 2; :::; S, we divide x(s) =
�
x
(s)
1 ;x

(s)
2 ; :::;x

(s)
T

�
into two

subsamples of size N �T1 and N �T2; where T2 = T �T1: A theoretically �justi�ed�split suggested
in BL is given by T1 = T

�
1� 1

log(T )

�
and T2 = T

log(T ) . In our simulation study we set T1 =
2T
3

and T2 = T
3 . Let �̂

(s)
1 =

�
�̂
(s)
1;ij

�
; with elements �̂(s)1;ij = T�11

PT1
t=1 x

(s)
it x

(s)
jt ; and �̂

(s)
2 =

�
�̂
(s)
2;ij

�
with elements �̂(s)2;ij = T�12

PT
t=T1+1

x
(s)
it x

(s)
jt ; i; j = 1; 2; :::; N; denote the sample covariance matrices

generated using T1 and T2 respectively, for each split s. We threshold �̂
(s)
1 as in (B.29) or (B.31)

using I (:) as the thresholding function, where both �̂ij and !T are adjusted to

�̂
(s)

1;ij =
1

T1

PT1
t=1(x

(s)
it x

(s)
jt � �̂

(s)
1;ij)

2;

and

!T1 (c) = c

s
log (N)

T1
:

Then (B.31) becomes e�(s)1 (c) =
�
�̂
(s)
1;ijI

h����̂(s)1;ij��� � �
(s)
1;ij (c)

i�
;

for each c; where

�
(s)
1;ij (c) =

q
�̂
(s)

1;ij!T1 (c) > 0;

and �̂
(s)

1;ij and !T1 (c) are de�ned above.
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The following expression is computed for BL or CL,

Ĝ (c) =
1

S

SX
s=1

e�(s)1 (c)� e�(s)2 2
F
; (B.32)

for each c and
Ĉ = arg min

Cmin�c�Cmax
Ĝ (c) : (B.33)

If several values of c attain the minimum of (B.33), then Ĉ is chosen to be the smallest one. The
�nal estimator of the covariance matrix is then given by e�Ĉ . The thresholding approach does not
necessarily ensure that the resultant estimate, e�Ĉ , is positive de�nite. To ensure that the threshold
estimator is positive de�nite FLM (2013) propose setting a lower bound on the cross-validation grid

for the search of C such that �min
�e�Ĉ

�
> 0 - see Fryzlewicz (2013). Therefore, we modify (B.33)

so that
Ĉ� = arg min

Cpd+��c�Cmax
Ĝ (c) ; (B.34)

where Cpd is the lowest c such that �min
�e�Cpd

�
> 0 and � is a small positive constant. We do not

conduct thresholding on the diagonal elements of the covariance matrices which remain in tact.

B.4 Ledoit and Wolf (LW) shrinkage

Ledoit and Wolf (2004, LW) considered a shrinkage estimator for regularisation which is based on
a linear combination of the sample covariance matrix, �̂, and an identity matrix IN , and provide
formulae for the appropriate weights. The LW shrinkage is expressed as

�̂LW = �̂1IN + �̂2�̂; (B.35)

with the estimated weights given by

�̂1 = mT b
2
T =d

2
T , �̂2 = a2T =d

2
T

where

mT = N�1tr
�
�̂
�
; d2T = N�1tr

�
�̂
2
�
�m2

T ;

a2T = d2T � b2T ; b2T = min(�b2T ; d2T );

and

�b2T =
1

NT 2

TX
t=1

 _xt _x0t � �̂2
F
=

1

NT 2

TX
t=1

tr
��
_xt _x

0
t

� �
_xt _x

0
t

��
� 2

NT 2

TX
t=1

tr
�
_x0t�̂ _xt

�
+

1

NT
tr
�
�̂
2
�
;

and noting that
PT

t=1 tr
�
_x0t�̂ _xt

�
=
PT

t=1 tr
�
�̂
PT

t=1 _xt _x
0
t

�
= T

PT
t=1 tr

�
�̂
2
�
, we have

�b2T =
1

NT 2

TX
t=1

 
NX
i=1

_x2it

!2
� 1

NT
tr
�
�̂
2
�
;

with _xt = ( _x1t; _x2t; :::; _xNt)
0 and _xit = (xit � �xi).4

�̂LW is positive de�nite by construction. Thus, the inverse �̂
�1
LW exists and is well conditioned.

4Note that LW scale the Frobenius norm by 1=N , and use kAk2F = tr(A0A)=N . See De�nition 1 of Ledoit and
Wolf (2004, p. 376). Here we use the standard notation for this norm.
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Appendix C Shrinkage on MT estimator (S-MT)

Recall the shrinkage on the multiple testing estimator (S-MT ) expression displayed in Section 3.1,

eRS-MT (�) = �IN + (1� �)eRMT ; (C.36)

where the N�N identity matrix IN is set as benchmark target, the shrinkage parameter is denoted
by � 2 (�0; 1]; and �0 is the minimum value of � that produces a non-singular eRS-MT (�0) matrix.
Note that shrinkage is deliberately implemented on the correlation matrix eRMT rather than one�MT . In this way we ensure that no shrinkage is applied to the variances. Further, shrinkage is
applied to the non-zero elements of eRMT , and as a result the shrinkage estimator, eRS-MT , also
consistently recovers the support of R, since it has the same support recovery property as eRMT .
With regard to the calibration of the shrinkage parameter, �, we solve the following optimisation
problem

�� = arg min
�0+����1

R�1
0 �eR�1

S-MT (�)
2
F
; (C.37)

where � is a small positive constant, and R0 is a reference invertible correlation matrix. Let

A = R�1
0 and B (�) = eR�1

S-MT (�). Note that since R0 and eRS-MT are symmetricR�1
0 �eR�1

S-MT (�)
2
F
= tr

�
A2
�
� 2tr[AB (�)] + tr[B2 (�)]:

The �rst order condition for the above optimisation problem is given by

@
R�1

0 �eR�1
S-MT (�)

2
F

@�
= �2tr

�
A
@B (�)

@�

�
+ 2tr

�
B (�)

@B (�)

@�

�
;

where

@B (�)

@�
= �eR�1

S-MT (�)
�
IN � ~RMT

� eR�1
S-MT (�)

= �B (�)
�
IN � ~RMT

�
B (�) :

Hence, �� is obtained as the solution of

f(�) = �tr
h
(A�B (�))B (�)

�
IN � eRMT

�
B (�)

i
= 0;

where f(�) is an analytic di¤erentiable function of � for values of � close to unity, such that B (�)
exists.

The resulting eRS-MT (�
�) is guaranteed to be positive de�nite since

�min

h eRS-MT (�)
i
= ��min (IN ) + (1� �)�min

�eRMT

�
> 0;

for any � 2 [�0; 1], where �0 = max
�
���min(eRMT )
1��min(eRMT )

; 0

�
.

C.1 Derivation of S-MT shrinkage parameter

We need to solve f(�) = 0 for �� such that f(��) = 0 for a given choice of R0.5

Abstracting from the subscripts, note that

f(1) = �tr
h�
R�1�IN

� �
IN � eR�i ;

5The code for computing R0 of our choice is available upon request (see Section C.2).
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or

f(1) = �tr
h
�R�1 eR+R�1�IN + eRi

= tr
�
R�1 eR�� tr �R�1� ;

which is generally non-zero. Also, � = 0 is ruled out, since eRS-MT (0) = eR need not be non-singular.
Thus we need to assess whether f(�) = 0 has a solution in the range �0 < � < 1, where �0

is the minimum value of � such that eRS-MT (�0) is non-singular. First, we can compute �0 by
implementing naive shrinkage as an initial estimate:eRS-MT (�0) = �0IN + (1� �0)eR:
The shrinkage parameter �0 2 [0; 1] is given by

�0 = max

0@ �� �min
�eR�

1� �min
�eR� ; 0

1A ;

where in our simulation study we set � = 0:01. Here, �min (A) stands for the minimum eigenvalue of

matrix A. If eR is already positive de�nite and �min
�eR� > 0, then �0 is automatically set to zero.

Conversely, if �min
�eR� � 0, then �0 is set to the smallest possible value that ensures positivity of

�min

�eRS-MT (�0)
�
.

Second, we implement the optimisation procedure. In our simulation study we employ a grid
search for �� = f� : �0 + � � � � 1g with increments of 0:005. The �nal �� is given by

�� = argmin
�
[f(�)]2 :

C.2 Speci�cation of reference matrix R0

Implementation of the above procedure requires the use of a suitable reference matrix R0. Our
experimentations suggested that the shrinkage estimator of Ledoit and Wolf (2004, LW) applied to
the correlation matrix is likely to work well in practice, and is to be recommended. Schäfer and
Strimmer (2005) consider LW shrinkage on the correlation matrix. In our application we also take
account of the small sample bias of the correlation coe¢ cients in what follows. We set as reference
matrix R0 the shrinkage estimator of LW applied to the sample correlation matrix:

R̂0 = �IN + (1� �)R̂;

with shrinkage parameter � 2 [0; 1]; and R̂ = (�̂ij). The optimal value of the shrinkage parameter
that minimizes the expectation of the squared Frobenius norm of the error of estimating R by R̂0:

E
R̂0 �R2

F
=
PP
i6=j

E
�
�̂ij � �ij

�2
+ �2

PP
i6=j

E
�
�̂2ij
�
� 2�

PP
i6=j

E
�
�̂ij
�
�̂ij � �ij

��
; (C.38)

is given by

�� =

PP
i6=j

E
�
�̂ij
�
�̂ij � �ij

��
PP
i6=j

E
�
�̂2ij
� = 1�

PP
i6=j

E
�
�̂ij�ij

�
PP
i6=j

E
�
�̂2ij
� ; (C.39)

with

�̂
�
= 1�

PP
i6=j

�̂ij

�
�̂ij �

�̂ij(1��̂2ij)
2T

�
1
T

PP
i6=j

(1� �̂2ij)2 +
PP
i6=j

�
�̂ij �

�̂ij(1��̂2ij)
2T

�2 :
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Note that limT!1(�̂
�
) = 0 for any N . However, in small samples values of �̂

�
can be obtained that

fall outside the range [0; 1]. To avoid such cases, if �̂
�
< 0 then �̂

�
is set to 0, and if �̂

�
> 1 it is set

to 1, or �̂
��
= max(0;min(1; �̂

�
)).

Appendix D Additional Monte Carlo simulation results

D.1 Approximately sparse covariance matrix speci�cations

We present here two additional covariance (correlation) speci�cations based on approximately
sparse matrices. These are considered in the context of the Monte Carlo setup of Section 3.

Monte Carlo design C : We follow Bickel and Levina (2008b) and set R to coincide with the
correlation matrix of a �rst-order autoregressive process with coe¢ cient, �; given by

R =

0BBBBBBB@

1 � �2 � � � �N�1

� 1
...

�2 �
. . .

...
... � � � � � � . . . �

�N�1 � � � � � � � 1

1CCCCCCCA
:

The Cholesky factor, P , for this speci�cation is given by

P =

0BBBBBBBB@

1 0 � � � 0 0

�
p
1� �2 � � � 0

�2 �
p
1� �2 � � � 0

...
...

. . .
...

...
�N�2 �N�3

p
1� �2 � � �

p
1� �2 0

�N�1 �N�2
p
1� �2 � � � �

p
1� �2

p
1� �2

1CCCCCCCCA
:

Also, �ii = 1=
�
1� �2

�
, i = 1; 2; :::; N . In this experiment we set � = 0:7, and hence we generate

xt =
�
1� �2

��1=2
Put, with P given above.

Monte Carlo design D : Under this speci�cation � (= D1=2RD1=2) is set to the covariance
matrix of a standard �rst-order spatial autoregressive model (SAR) with coe¢ cient # and weight
matrix, W ,

� = (�ij) = (IN � #W )�1�(IN � #W 0)�1; (D.40)

where� = diag(�11; �22; ::::; �NN ), andD = diag(�11; �22; ::::; �NN ) with �ii s IID
�
1=2 + �2(2)=4

�
,

i = 1; 2; :::; N . The weight matrix W is row-standardised with all units having two neighbours ex-
cept for the �rst and last units that have only one neighbour

W =

0BBBBBBB@

0 1 0 � � � � � � 0 0
1=2 0 1=2 � � � � � � 0 0
0 1=2 0 � � � � � � 0 0
...

...
...

...
...

...
...

0 0 0 � � � 1=2 0 1=2
0 0 0 � � � 0 1 0

1CCCCCCCA
N�N

:

This ensures that the largest eigenvalue ofW is unity and the degree of cross-sectional dependence
is measured by #. The correlation matrix in this case is given by

R =D�1=2(IN � #W )�1�(IN � #W 0)�1D�1=2;
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with the associated Cholesky factor, P , given by

P =D�1=2(IN � #W )�1�1=2:

To ensure that V ar(xit) = �ii, we need to set �ii such that

diag
h
(IN � #W )�1�(IN � #W 0)�1

i
= D.

Computation of �ii can be done numerically. Let di(�), where � = (�11; �22; :::; �NN )0 be the ith

diagonal element of (IN � #W )�1�(IN � #W 0)�1, then we compute � by solving the following
optimisation problem

min
�

NX
i=1

[di(�)� �ii]2 :

The initial vector of � is set to � = (�11; �22; ::::; �NN )0 generated as above.
All results are reported for N = f30; 100; 200g and T = 100; for the case where  = 0 and a = 0

in (19). Results for  6= 0 and a 6= 0 are very similar and are available upon request.

D.2 Additional results

Overall, similar conclusions are drawn when considering approximately sparse matrices in our
experiments to those obtained under the exactly sparse Monte Carlo designs of Section 3.

D.2.1 Robustness of MT to the choice of the p-value and f(N)

In line with Table 1, Table D1 shows the sensitivity of the MT estimator to di¤erent levels of
signi�cance, p, and scaling factors f(N) inherent in the theoretical critical value, cp(N), by way of
average spectral and Frobenius norm losses over 2,000 replications for Monte Carlo designs C and
D when p = f0:01; 0:05; 0:10g and f(N) = fN � 1; N (N � 1) =2g, and under both distributional
assumptions for the errors (Gaussian and multivariate t). Neither of the norms is a¤ected much
by the choice of p under the error speci�cations considered for all N . With regard to the scaling
factor f(N), under normality of the errors, where �max = 1, both norms of MTN�1 outperform
MTN(N�1)=2 for designs C and D, which is expected given Theorem 2. Under non-linear dependence
of the errors for Monte Carlo design C, MTN�1 still outperforms MTN(N�1)=2. However, the
di¤erence between the two norms reduces considerably. On the other hand, for Monte Carlo design
D, MTN(N�1)=2 produces lower norms than MTN�1 almost uniformly when the spectral norm is
considered, which is in line with the theory of Section 2.1.

D.2.2 Norm comparisons of MT , BL, CL, and LW estimators

Results when comparing our proposed estimators with those suggested in the literature (average
norms over 100 replications) from Monte Carlo designs C and D are shown in Tables D2 and D3,
respectively. As in Section 3.4, the MT estimators are computed using scaling factor f(N) =
N(N � 1)=2 and p = 0:05. In general, for both designs thresholding outperforms shrinkage across
N . Since design C considers a correlation matrix, BLĈ performs comparatively well while CL2
outperforms CLĈ as N increases. Design D analyses heteroskedastic data, hence in this case BLĈ
is outperformed by CLĈ , especially when looking at the Frobenius norms, whilst CLĈ outperforms
CL2 across N as suggested in Cai and Liu (2011). Overall, CLĈ performs best but theMT method
records lower norms at times especially when the errors are non-linearly dependent (t-distributed),
as shown in the bottom panel of Tables D2 and D3. Looking at the adjusted thresholding methods,
they su¤er universally compared to their unadjusted counterparts which is expected. For both
designs, S-MTN(N�1)=2 clearly outperforms BLĈ� and CLĈ� across all N .
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D.2.3 Norm comparisons of inverse estimators

Finally, Tables D4 and D5 present norm results for the inverses of the regularisation methods we
consider for designs C and D respectively. In line with Monte Carlo design B, S-MTN(N�1)=2
outperforms BLĈ� and CLĈ� irrespective of whether the errors are Gaussian or t-distributed.
The adjusted BL and CL methods are both prone to sizeable outliers, especially for smaller N .
For design C, LW�̂ performs more favourably than S-MTN(N�1)=2 for N = f30; 100g under both
Gaussian and non-linearly dependent errors but su¤ers as N increases to 200. For design D,
however, LW�̂ is outperformed by the shrinkage on MT estimator uniformly across N .
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Table D1: Average spectral and Frobenius norm losses for the MT (p) estimator using signi�cance
levels p = f0:01; 0:05; 0:10g and scaling factors f(N) = fN � 1; N(N � 1)=2g, for T = 100

Monte Carlo design C
f(N) = N � 1 f(N) = N(N � 1)=2

N MTN�1(:01) MTN�1(:05) MTN�1(:10) MTN(N�1)
2

(:01) MTN(N�1)
2

(:05) MTN(N�1)
2

(:10)

uits Gaussian
Spectral norm

30 3.85(0.58) 3.53(0.56) 3.39(0.55) 4.41(0.59) 4.07(0.59) 3.93(0.58)
100 4.88(0.41) 4.53(0.42) 4.38(0.43) 5.70(0.35) 5.38(0.38) 5.23(0.39)
200 5.31(0.32) 4.97(0.34) 4.82(0.35) 6.18(0.23) 5.91(0.27) 5.78(0.28)

Frobenius norm
30 6.83(0.40) 6.30(0.42) 6.09(0.44) 7.73(0.41) 7.19(0.40) 6.96(0.40)
100 4.88(0.41) 4.53(0.42) 4.38(0.43) 5.70(0.35) 5.38(0.38) 5.23(0.39)
200 5.31(0.32) 4.97(0.34) 4.82(0.35) 6.18(0.23) 5.91(0.27) 5.78(0.28)

uits multivariate t�distributed with 8 degrees of freedom
Spectral norm

30 4.21(0.82) 4.01(0.91) 3.94(0.97) 4.64(0.71) 4.38(0.76) 4.27(0.79)
100 5.61(4.35) 5.55(4.61) 5.59(4.75) 6.06(3.83) 5.86(4.05) 5.77(4.14)
200 6.08(2.51) 6.15(3.21) 6.29(3.57) 6.45(1.30) 6.30(1.63) 6.23(1.80)

Frobenius norm
30 7.40(0.80) 7.02(0.93) 6.90(0.99) 8.15(0.66) 7.69(0.74) 7.50(0.78)
100 15.20(4.25) 14.74(4.54) 14.71(4.68) 17.04(3.72) 16.24(3.93) 15.90(4.02)
200 22.12(2.59) 21.65(3.40) 21.76(3.83) 25.09(1.26) 23.99(1.59) 23.52(1.78)

Monte Carlo design D
uits Gaussian

Spectral norm
30 0.86(0.15) 0.78(0.15) 0.76(0.14) 1.02(0.13) 0.93(0.14) 0.89(0.15)
100 1.06(0.13) 0.97(0.14) 0.95(0.14) 1.21(0.09) 1.16(0.10) 1.14(0.11)
200 1.35(0.14) 1.25(0.15) 1.21(0.15) 1.54(0.10) 1.50(0.11) 1.47(0.12)

Frobenius norm
30 1.95(0.20) 1.73(0.18) 1.69(0.18) 2.46(0.19) 2.15(0.20) 2.02(0.20)
100 3.95(0.19) 3.45(0.20) 3.31(0.20) 5.08(0.13) 4.68(0.16) 4.48(0.17)
200 6.30(0.20) 5.54(0.22) 5.28(0.22) 8.00(0.11) 7.57(0.14) 7.33(0.16)

uits multivariate t�distributed with 8 degrees of freedom
Spectral norm

30 1.05(0.37) 1.04(0.43) 1.06(0.46) 1.13(0.29) 1.08(0.34) 1.06(0.36)
100 1.37(1.00) 1.46(1.16) 1.54(1.24) 1.35(0.71) 1.35(0.82) 1.35(0.87)
200 1.81(1.67) 1.97(2.01) 2.10(2.17) 1.72(1.01) 1.73(1.20) 1.74(1.29)

Frobenius norm
30 2.26(0.40) 2.16(0.46) 2.18(0.49) 2.61(0.30) 2.39(0.35) 2.30(0.38)
100 4.50(1.02) 4.41(1.24) 4.51(1.35) 5.23(0.66) 4.94(0.79) 4.80(0.84)
200 7.15(1.78) 7.10(2.24) 7.30(2.46) 8.19(0.94) 7.86(1.17) 7.69(1.29)
Note: Norm losses are averages over 2,000 replications. Simulation standard deviations are given in the parentheses. MT estimators

are de�ned in Section 3.2.
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Table D2: Spectral and Frobenius norm losses for di¤erent regularised covariance matrix estimators
(T = 100) - Monte Carlo design C

N = 30 N = 100 N = 200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius
uits Gaussian

Error matrices (�� ��)
MTN(N�1)=2 4.10(0.65) 7.25(0.42) 5.34(0.37) 15.23(0.42) 5.93(0.29) 23.05(0.40)

BLĈ 3.32(0.73) 5.83(0.63) 4.34(0.49) 12.46(0.57) 4.96(0.50) 18.71(0.55)
CL2 4.14(0.65) 7.36(0.46) 5.66(0.37) 16.14(0.42) 4.59(0.31) 18.36(0.50)
CLĈ 3.23(0.73) 5.77(0.59) 4.12(0.44) 12.20(0.51) 6.34(0.40) 24.78(0.49)

S-MTN(N�1)=2 5.54(0.50) 8.23(0.59) 6.86(0.24) 17.58(0.51) 7.39(0.18) 26.81(0.48)
BLĈ� 8.53(0.10) 14.44(0.07) 9.11(0.06) 27.05(0.04) 9.19(0.05) 38.44(0.04)
CLĈ� 8.43(0.16) 14.28(0.21) 9.10(0.07) 27.00(0.11) 9.18(0.05) 38.42(0.08)
LW�̂ 3.37(0.57) 5.68(0.49) 6.00(0.36) 16.05(0.40) 7.54(0.22) 27.57(0.31)

uits multivariate t� distributed with 8 degrees of freedom
Error matrices (�� ��)

MTN(N�1)=2 4.47(0.99) 7.75(0.95) 5.55(0.59) 15.94(0.71) 6.31(1.11) 24.07(1.37)
BLĈ 4.26(1.44) 7.11(1.52) 5.78(1.15) 15.76(2.54) 6.86(1.34) 25.46(5.29)
CL2 5.11(0.71) 8.94(0.94) 6.98(0.43) 19.90(1.14) 7.64(0.33) 30.34(1.55)
CLĈ 3.80(1.19) 6.72(1.20) 4.83(0.69) 14.40(1.65) 5.51(0.80) 22.03(3.04)

S-MTN(N�1)=2 5.59(0.55) 8.41(0.61) 6.85(0.38) 17.69(0.65) 7.38(0.31) 26.74(0.80)
BLĈ� 8.53(0.18) 14.51(0.13) 9.12(0.15) 27.14(0.11) 9.20(0.15) 38.60(0.18)
CLĈ� 8.46(0.22) 14.40(0.21) 9.11(0.16) 27.11(0.14) 9.19(0.15) 38.57(0.19)
LW�̂ 4.03(0.84) 6.64(0.81) 6.72(0.63) 17.95(0.75) 8.25(1.13) 29.97(0.92)

Note: Norm losses are averages over 100 replications. Simulation standard deviations are given in the parentheses.

�� = fe�MTN(N�1)=2 ;
e�BL;Ĉ ; e�CL;2; e�CL;Ĉ ; e�S-MTN(N�1)=2 ;

e�BL;Ĉ� ; e�CL;Ĉ� ; �̂LW�̂
g. MTN(N�1)=2 and

S-MTN(N�1)=2 are computed using p = 0:05. BL is Bickel and Levina universal thresholding, CL is Cai and Liu

adaptive thresholding, e�BL;Ĉ is based on Ĉ which is obtained by cross-validation, e�BL;Ĉ� employs the further
adjustment to the cross-validation coe¢ cient, C�, proposed in Fan, Liao and Mincheva, e�CL;2 is CL�s estimator with
C = 2 (the theoretical value of C), �̂LW

�̂
is Ledoit and Wolf�s shrinkage estimator applied to the sample covariance

matrix.
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Table D3: Spectral and Frobenius norm losses for di¤erent regularised covariance matrix estimators
(T = 100) - Monte Carlo design D

N = 30 N = 100 N = 200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius
uits Gaussian

Error matrices (�� ��)
MTN(N�1)=2 0.93(0.13) 2.16(0.18) 1.16(0.09) 4.68(0.16) 1.50(0.12) 7.55(0.14)

BLĈ 0.91(0.16) 2.05(0.22) 1.20(0.14) 4.54(0.42) 1.46(0.16) 7.53(0.70)
CL2 0.95(0.13) 2.22(0.19) 1.17(0.09) 4.89(0.15) 1.53(0.10) 7.82(0.12)
CLĈ 0.77(0.12) 1.76(0.19) 0.98(0.13) 3.50(0.18) 1.26(0.15) 5.58(0.26)

S-MTN(N�1)=2 0.98(0.12) 2.24(0.17) 1.20(0.09) 4.72(0.16) 1.51(0.12) 7.49(0.14)
BLĈ� 0.92(0.14) 2.12(0.27) 1.21(0.15) 4.93(0.57) 1.50(0.15) 7.87(0.65)
CLĈ� 0.78(0.15) 1.82(0.33) 1.01(0.14) 3.84(0.63) 1.36(0.17) 6.36(0.93)
LW�̂ 1.09(0.11) 2.36(0.10) 1.72(0.12) 5.43(0.07) 1.90(0.05) 8.85(0.04)

uits multivariate t� distributed with 8 degrees of freedom
Error matrices (�� ��)

MTN(N�1)=2 1.03(0.16) 2.34(0.20) 1.30(0.35) 4.88(0.36) 1.93(2.35) 8.03(2.26)
BLĈ 1.16(0.18) 2.78(0.48) 1.50(0.21) 5.88(0.23) 1.68(0.25) 8.67(0.29)
CL2 1.13(0.12) 2.76(0.20) 1.31(0.15) 5.52(0.19) 1.63(0.14) 8.49(0.26)
CLĈ 1.00(0.20) 2.21(0.34) 1.32(0.25) 5.03(0.88) 1.58(0.19) 8.08(0.89)

S-MTN(N�1)=2 1.03(0.13) 2.33(0.17) 1.26(0.19) 4.79(0.23) 1.64(0.59) 7.62(0.50)
BLĈ� 1.15(0.16) 2.87(0.50) 1.47(0.18) 5.84(0.29) 1.64(0.14) 8.69(0.25)
CLĈ� 1.00(0.18) 2.34(0.49) 1.36(0.22) 5.33(0.74) 1.63(0.15) 8.49(0.54)
LW�̂ 1.23(0.14) 2.65(0.13) 1.86(0.14) 5.78(0.14) 2.01(0.19) 9.23(0.16)

See the note to Table D2.
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Table D4: Spectral and Frobenius norm losses for the inverses of di¤erent regularised covariance
matrix estimators for Monte Carlo design C - T = 100

N = 30 N = 100 N = 200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (��1 � ���1)
uits Gaussian

S-MTN(N�1)=2 4.03(0.31) 5.19(0.25) 4.75(0.19) 10.00(0.21) 4.97(0.18) 14.62(0.20)
BLĈ� 5.65(0.15) 7.37(0.16) 5.83(0.10) 13.75(0.10) 5.89(0.09) 19.50(0.11)
CLĈ� 3:4x104(1:7x105) 28.62(173.93) 31.47(255.19) 14.07(3.85) 5.89(0.09) 19.46(0.14)
LW�̂ 1.91(0.18) 3.49(0.12) 3.51(0.10) 9.45(0.16) 4.28(0.07) 15.75(0.15)

uits multivariate t� distributed with 8 degrees of freedom
S-MTN(N�1)=2 3.95(0.48) 5.21(0.33) 4.62(0.30) 9.83(0.50) 4.88(0.29) 14.23(0.77)

BLĈ� 5.67(0.23) 7.37(0.19) 5.84(0.20) 13.69(0.28) 5.95(0.20) 19.45(0.38)
CLĈ� 53.32(262.27) 8.37(5.52) 7.31(10.30) 13.75(0.54) 7.53(5:1x107) 19.47(2:4x103)
LW�̂ 2.42(0.49) 4.03(0.53) 3.90(0.33) 10.39(0.65) 4.58(0.28) 16.70(0.74)

Note: ��
�1
= fe��1S-MTN(N�1)=2

; e��1BL;Ĉ� ; e��1CL;Ĉ� ; �̂�1LW�̂
g: See also the notes to Table D2.

Table D5: Spectral and Frobenius norm losses for the inverses of di¤erent regularised covariance
matrix estimators for Monte Carlo design D - T = 100

N = 30 N = 100 N = 200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (��1 � ���1)
uits Gaussian

S-MTN(N�1)=2 3.49(0.70) 4.39(0.34) 4.78(0.46) 9.32(0.29) 5.82(0.45) 13.93(0.23)
BLĈ� 6:2x103(4:3x104) 32.11(72.33) 2:9x104(1:0x104) 33.02(46.10) 9:3x103(8:8x104) 31.84(92.70)
CLĈ� 1:3x106(1:3x107) 152.75(1:1x104) 1:3x105(3:4x106) 116.64(348.34) 5:8x105(4:1x106) 197.02(735.94)
LW�̂ 4.56(0.43) 4.94(0.16) 6.20(0.19) 11.14(0.15) 8.65(0.13) 17.22(0.13)

uits multivariate t� distributed with 8 degrees of freedom
S-MTN(N�1)=2 3.59(0.94) 4.38(0.41) 4.62(0.64) 8.99(0.51) 5.85(0.84) 13.50(0.69)

BLĈ� 3:3x103(1:7x104) 24.83(53.16) 2:4x103(2:3x104) 17.26(46.75) 13.65(63.27) 16.09(1.63)
CLĈ� 979.79(3:3x103) 22.62(23.69) 3:4x103(2:9x104) 23.80(55.00) 412.43(2:2x103) 19.87(17.46)
LW�̂ 3.66(0.86) 4.62(0.45) 9.26(0.62) 11.94(0.58) 8.99(0.60) 17.63(0.70)

Note: ��
�1
= fe��1S-MTN(N�1)=2

; e��1BL;Ĉ� ; e��1CL;Ĉ� ; �̂�1LW�̂
g: See also the notes to Table D2.
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