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estimators that are based on autoregressive distributed lag (ARDL) specifications. It is shown

that unlike the ARDL type estimator, the CS-DL estimator is robust to misspecification of

dynamics and error serial correlation. The theoretical results are illustrated with small sample

evidence obtained by means of Monte Carlo simulations, which suggest that the performance

of the CS-DL approach is often superior to the alternative panel ARDL estimates particularly

when T is not too large and lies in the range of 30 ≤ T < 100.
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1 Introduction

Estimation of long-run effects, or level relationships, is of great importance in economics.

The concept of "long-run relations" is typically associated with the steady-state solution of

a structural macroeconomic model. Often the same long-run relations can also be obtained

from arbitrage conditions within and across markets. As a result, many long-run relationships

in economics are free of particular model assumptions; examples being purchasing power

parity, uncovered interest parity and the Fisher inflation parity. Other long-run relations,

such as those between macroeconomic aggregates like consumption and income, output and

investment, and technological progress and real wages, are less grounded in arbitrage and

hence are more controversial, but still form a major part of what is generally agreed-upon in

empirical macroeconomic modelling. This is in contrast to the analysis of short-run effects,

which are model specific and subject to identification problems.

This paper is concerned with the estimation and inference of long-run effects using panel

data models where the time dimension (T ) and the cross-section dimension (N) are both

large. Such panels are becoming increasingly available and cover countries, counties, re-

gions, industries and firms, and typically feature dynamics in the form of lagged depen-

dent variables, slope heterogeneity (at least in the case of short-run coeffi cients), as well as

cross-sectionally dependent innovations. These three key features complicate estimation and

inference.

Earlier literature on the estimation of long-run effects using panel data, including the

pooled mean group approach (Pesaran, Shin, and Smith 1999), the panel dynamic OLS

approach (Mark and Sul 2003) and the panel fully modified OLS approach (Pedroni 2001),

allows for lagged dependent variables and heterogeneity of short-run dynamics, but it does

not allow for error cross-section dependence. Wrongly assuming that errors are independently

distributed leads to incorrect inference and in some cases inconsistent estimates, depending

on the nature of error cross-section dependence. For example, when cross-section dependence

is due to the presence of unobserved common factors, parameter inconsistency arises if the

factors and the regressors are correlated.

The problem of error cross-section dependence has been addressed in the literature pri-

marily in the context of panel data models without lagged dependent variables. See, for

example, the common correlated effects (CCE) approach of Pesaran (2006), the interac-

tive fixed effects estimator (IFE) of Bai (2009), or the quasi-maximum likelihood estimator

(QMLE) of Moon and Weidner (2010). A survey of the recent literature is provided by

Chudik and Pesaran (2014b). Two exceptions are Song (2013) who extends Bai’s approach

to allow for coeffi cient heterogeneity, and Chudik and Pesaran (2014a), who extend the CCE
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approach to allow for weakly exogenous regressors (including lagged dependent variables).

Both approaches rely on the estimation of unit-specific ARDL specifications, appropriately

augmented with cross-section averages to filter out the effects of the unobserved common

factors, from which long-run effects can be indirectly estimated. We refer to this approach

as cross-sectionally augmented ARDL or CS-ARDL in short. The main drawback of com-

puting the long-run coeffi cients from CS-ARDL specifications is that due to the inclusion of

lagged dependent variables in the regressions a relatively large time dimension is required

for satisfactory small sample performance, especially if the sum of the AR coeffi cients in the

ARDL specifications are close to one. In the case of heterogenous slope specifications the

CS-ARDL estimates of the long-run coeffi cients could also be sensitive to outlier estimates

of the long-run effects for individual cross-section units.

This paper makes a theoretical contribution to the econometric analysis of the long run by

proposing a new approach to the estimation of the long-run coeffi cients in dynamic heteroge-

neous panels with cross-sectionally dependent errors. The approach is based on a distributed

lag representation that does not feature lags of the dependent variable, and allows for resid-

ual factor error structure and weak cross-section dependence of idiosyncratic errors. Similar

to CCE estimators proposed by Pesaran (2006), we appropriately augment the individual re-

gressions by cross-section averages to deal with the effects of common factors. We derive the

asymptotic distribution of the proposed cross-sectionally augmented distributed lag (or CS-

DL in short) mean group and pooled estimators under the coeffi cient heterogeneity and large

time and cross-section dimensions. We also investigate consequences of various departures

from our maintained assumptions by means of Monte Carlo experiments, including a unit

root in factors and/or in regressors, homogeneity of coeffi cients or breaks in error processes.

We also investigate whether the imposition of CS-DL estimates of long-run coeffi cients can

improve the estimation of the short-run coeffi cients.

The main advantage of the proposed CS-DL approach is that its small sample perfor-

mance is often better compared to estimating unit-specific CS-ARDL specifications, under a

variety of settings investigated in the Monte Carlo experiments when T is moderately large

(30 ≤ T < 100). Furthermore, the imposition of CS-DL estimates of long-run coeffi cients

can substantially improve the estimates of short-run coeffi cients when T is moderately large.

However, the CS-DL approach should be seen as complementary and not as superior to the

CS-ARDL approach. The main drawback is that, unlike the panel CS-ARDL approach, the

CS-DL approach does not allow for feedback effects from the dependent variable onto the

regressors. However, a careful investigation of the size of the small sample bias emanating

from the presence of such feedback effects suggests that the CS-DL approach can still out-

perform the CS-ARDL approach when T is moderately large. The relative merits of different

2



approaches are carefully documented in the paper, and our main conclusion is that the CS-

DL approach is a valuable complementary method for estimating long-run effects in panels

where the time dimension is moderately large.

The remainder of the paper is organized as follows. We begin with the definition of

long-run coeffi cients and discuss their estimation in Section 2. The next section introduces

the CS-DL approach to the estimation of long-run relationships. Section 4 investigates the

small sample performance of the CS-DL approach and compares it with the performance of

the CS-ARDL approach by means of Monte Carlo experiments. The last section concludes.

Mathematical derivations are relegated to the Appendix.

A brief word on notation: All vectors are column vectors represented by bold lower case

letters and matrices are represented by bold capital letters. ‖A‖ =
√
% (A′A) is the spectral

norm of A, % (A) is the spectral radius ofA.1 an = O(bn) denotes the deterministic sequence

{an} is at most of order bn. Convergence in probability and convergence in distribution are
denoted by

p→ and d→, respectively. (N, T )
j→∞ denotes joint asymptotics in N and T, with

N and T → ∞, in no particular order. We use K to denote a positive fixed constant that

does not vary with N or T .

2 Estimation of long-run or level relationships in eco-

nomics

The estimation of long-run relations can be carried out with or without constraining the

short-run dynamics. In this section, we focus on the estimation of long-run relations without

restricting the short-run dynamics and assuming that there exists a single long-run relation-

ship between the dependent variable, yt, and a set of regressors.2 For illustrative purposes,

suppose that there is one regressor xt and suppose that zt = (yt, xt)
′ is jointly determined

by the following vector autoregression of order 1, VAR(1),

zt = Φzt−1 + et, (1)

where Φ = (φij) is a 2 × 2 matrix of unknown parameters, and et = (eyt, ext)
′ is a 2-

dimensional vector of reduced form errors. Denoting the covariance of eyt and ext by

1Note that if x is a vector, then ‖x‖ =
√
% (x′x) =

√
x′x corresponds to the Euclidean length of the

vector x.
2The problem of estimation and inference in the case of multiple long-run relations is further complicated

by the identification problem and simultaneous determination of variables. The case of multiple long-run
relations is discussed for example in Pesaran (1997).
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ωV ar (ext), we can write

eyt = E (eyt |ext ) + ut = ωext + ut, (2)

where by construction ut is uncorrelated with ext, namely E (ut |ext ) = 0. Substituting (2)

for eyt, the equation for the dependent variable yt in (1) is

yt = φ11yt−1 + φ12xt−1 + ωext + ut. (3)

Using the equation for the regressor xt in (1), we obtain the following expression for ext

ext = xt − φ21yt−1 − φ22xt−1,

and substituting this expression for ext back in (3) yields the following conditional model for

yt,

yt = ϕyt−1 + β0xt + β1xt−1 + ut, (4)

where

ϕ = φ11 − ωφ21, β0 = ω, β1 = φ12 − ωφ22. (5)

Note that ut is uncorrelated with the regressor xt and its lag by construction. (4) is

ARDL(1,1) representation of yt conditional on xt, and the short-run coeffi cients ϕ, β0, and

β1 can be directly estimated from (4) by least squares. Model (4) can also be written in the

form of the error-correction model,

∆yt = − (1− ϕ) (yt−1 − θxt−1) + β0∆xt + ut,

or as the following level relationship

yt = θxt + α (L) ∆xt + ũt, (6)

where ũt = (1− ϕL)−1 ut, α (L) =
∑∞

`=0 α`L
`, α` =

∑∞
s=`+1 δs, for ` = 0, 1, 2, ..., and

δ (L) =
∞∑
`=0

δ`L
` = (1− ϕL)−1 (β0 + β1L) .

The level coeffi cient, θ, is defined by

θ =
β0 + β1

1− ϕ .
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Note that if zt is integrated of order one (I (1) for short) then (1,−θ)′ is the cointegrating
vector and the level relation (6) is also cointegrating.

The level coeffi cient θ can still be motivated as the long-run outcome of a counterfactual

exercise even if zt is stationary . One possible counterfactual is to consider the effects of a

permanent shock to the xt process on yt in the long run. Let

gyt = lim
s→∞

E
(
yt+s − µy,t+s

∣∣ It−1, ex,t+h = σx, for h = 0, 1, 2, ...
)
,

and similarly

gxt = lim
s→∞

E
(
xt+s − µx,t+s

∣∣ It−1, ex,t+h = σx, for h = 0, 1, 2, ...
)
,

where µyt and µxt, respectively, are the deterministic components of yt and xt (in the cur-

rent illustrative example deterministic components are zero) and It is the set containing all
information up to the period t. Using (1) and noting that E (eyt |ext ) = ωext, we obtain

gyt = gy, gxt = gx,3

g =

(
gy

gx

)
= (I2 −Φ)−1

(
ω

1

)
σx =

(
− ω+φ12−ωφ22

φ11+φ22−φ11φ22+φ12φ21−1

− ωφ21−φ11+1
φ11+φ22−φ11φ22+φ12φ21−1

)
σx,

and
gy
gx

=
ω + φ12 − ωφ22

1− (φ11 − ωφ21)
,

which upon using (5), yields, gy = θgx, namely the long-run impact of a permanent change

in the mean of x on y is given by θ. Note that only in the special case when the reduced form

errors are uncorrelated (ω = 0), is the short-run coeffi cient β0 in the ARDL model (4) equal

to 0 and the long-run coeffi cient θ reduces to φ12/ (1− φ11). But, in general, when ω 6= 0,

the short-run coeffi cient β0 is non-zero and contemporaneous values of the regressor should

not be excluded from (4). In the stationary case with regressors not strictly exogenous, θ

depends also on the parameters of the xt process and the estimation of θ should therefore

be based on (4).

An alternative way to show that θ is equal to the ratio gy/gx is to consider the ARDL

representation (4) for the future period t + s, given the information at time t− 1. We first

note that

yt+s = ϕyt+s−1 + β0xt+s + β1xt+s−1 + ut+s,

and after taking the conditional expectation with respect to {It−1, ex,t+h = σx, for h = 0, 1, 2, ...},
3Note that, in the stationary case,

∑∞
`=0 Φ` = (I−Φ)

−1.

5



taking limits as s → ∞, and noting that in the stationary case gyt = gy and gxt = gx, we

obtain

gy = ϕgy + β0gx + β1gx,

and hence
gy
gx

=
β0 + β1

1− ϕ = θ,

as desired.

Regardless of whether the variables are integrated of order one or integrated of order zero

or whether the regressors are exogenous or not, the level coeffi cient θ is well defined and can

be consistently estimated. The rates of convergence and the asymptotic distributions of the

ARDL estimates of θ are established in Pesaran and Shin (1999). See, in particular, their

Theorem 3.3.

2.1 Two approaches to the estimation of long-run effects

Consider now the problem of estimation of long-run effects in heterogeneous dynamic panels

with a multi-factor error structure. Let yit be the dependent variable of the ith cross-section

unit, xit be the k × 1 vector of unit-specific regressors, and consider the following panel

ARDL(pyi, pxi) specification,

yit =

pyi∑
`=1

ϕi`yi,t−` +

pxi∑
`=0

β′i`xi,t−` + uit, (7)

uit = γ ′ift + εit, (8)

for i = 1, 2, ..., N and t = 1, 2, ..., T , where ft is an m × 1 vector of unobserved common

factors, and pyi and pxi are the lag orders chosen to be suffi ciently long so that uit is a

serially uncorrelated process across all i. The vector of long-run coeffi cients is then given by

θi =

∑pxi
`=0 βi`

1−
∑pyi

`=1 ϕi`
. (9)

There are two approaches to estimating the long-run coeffi cients. One approach, already

considered in the literature, is to estimate the individual short-run coeffi cients {ϕi`} and {βi`}
in the ARDL relation, (7), and then compute the estimates of long-run effects using formula

(9) with the short-run coeffi cients replaced by their estimates {ϕ̂i`} and
{
β̂i`

}
. We shall

refer to this approach as the "ARDL approach to the estimation of long-run effects". The

advantage of this approach is that the estimates of short-run coeffi cients are also obtained.
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But when the focus is on the long-run coeffi cients, θi can be estimated directly without first

estimating the short run coeffi cients. This is possible by observing that the ARDL model,

(7), can be written as

yit = θixit +α′i (L) ∆xit + ũit, (10)

where ũit = ϕ (L)−1 uit, ϕi (L) = 1 −
∑pyi

`=1 ϕi`L
`, θi = δi (1), δi (L) = ϕ−1

i (L)βi (L) =∑∞
`=0 δi`L

`, βi (L) =
∑pxi

`=0 βi`L
`, and αi (L) =

∑∞
`=0

∑∞
s=`+1 δsL

`. We shall refer to the

direct estimation of θi based on the distributed lag representation (10) as the "distributed

lag (DL) approach to the estimation of long-run effects". Under the usual assumptions

on the roots of ϕi (L) falling strictly outside the unit circle, the coeffi cients of αi (L) are

exponentially decaying; and it is possible to show that, in the absence of feedback effects from

lagged values of yit onto the regressors xit, a consistent estimate of θi can be obtained directly

based on the least squares regression of yit on xit and {∆xit−`}p`=0 , where the truncation lag

order p is chosen appropriately as an increasing function of the sample size. But, when

the feedback effects from the lagged values of the dependent variable to the regressors are

present, ũit will be correlated with xit and the DL approach would no longer be consistent.

Note that strict exogeneity is, however, not necessarily required for the consistency of the

DL approach, since arbitrary correlations amongst the individual reduced form innovations

in et are still allowed. After the individual estimates θ̂i are obtained, either using ARDL

or DL approach, they can then be averaged across i to obtain a consistent estimate of the

average long-run effects, given by θ̂ = N−1ΣN
i θ̂i.

2.2 Pros and cons of the two approaches to the estimation of long-

run effects

Consider first the ARDL approach, where the estimates of long-run effects are computed

based on the estimates of the short-run coeffi cients in (7). In the case where the unobserved

common factors are serially uncorrelated and are also uncorrelated with the regressors, the

long-run coeffi cients can be estimated consistently from the Ordinary Least Squares (OLS)

estimates of the short-run coeffi cients, irrespective of whether the regressors are strictly

exogenous or jointly determined with yit, in the sense that zit = (yit,x
′
it)
′ follows a VAR

model. The long-run estimates are also consistent irrespective of whether the underlying

variables are I (0) or I (1). These robustness properties are clearly important in empirical

research. However, the ARDL approach has also a number of drawbacks. The sampling

uncertainty could be large especially when the speed of convergence towards the long-run

relation is rather slow and the time dimension is not suffi ciently long. This is readily apparent

from (9) since even a small change to 1−
∑pyi

`=1 ϕ̂i` could have large impact on the estimates of
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θi when
∑pyi

`=1 ϕ̂i` is close to unity. In this respect, a correct specification of lag orders could

be quite important for the performance of the ARDL estimates of θi. Underestimating the

lag orders leads to inconsistent estimates, whilst overestimating the lag orders could result

in loss of effi ciency and low power when the ARDL long-run estimates are used for inference.

In the more general case when the unobserved common factors are correlated with the

regressors then LS estimation of the ARDL model is no longer consistent and the effects of

unobserved common factors need to be taken into account. There are so far two possible

estimators developed in the literature for this case:4 a principal-components based approach

by Song (2013) who extends the interactive fixed effects estimator of Bai (2009) to the

dynamic heterogeneous panels, and the dynamic common correlated effects mean group

estimator suggested by Chudik and Pesaran (2014a). A recent overview of these methods is

provided in Chudik and Pesaran (2014b). These estimators have (so far) been proposed only

for stationary panels, and are subject to the small T bias of the ARDL approach discussed

above. Bias correction techniques can also be used, but overall they do not seem to be

effective when the speed of adjustment to the steady state is slow.5

The main merit of the DL approach proposed in this paper is its robustness along a

number of important dimensions, and the fact that it tends to exhibit better small sample

performance as compared to the panel ARDL estimates when the time dimension T is not

very large. Specifically, (i) it is robust to the possibility of unit roots in regressors and/or

factors, (ii) it is applicable irrespective of whether the short and/or long-run coeffi cients are

heterogenous or homogeneous, (iii) it is robust to an arbitrary degree of serial correlation in εit
and ft,6 (vi) it does not require knowledge of the number of unobserved common factors under

certain conditions, and (v) it continues to be valid under weak cross-section dependence in

the idiosyncratic errors, εit. These robustness properties are very important considerations in

applied research. In addition, the CS-DL approach does not require specifying the individual

lag orders, pyi and pxi, and is robust to possible breaks in εit. The main drawback of the

CS-DL approach, however, is that ũit = ϕ (L)−1 uit will be correlated with xit when there

are feedback effects from lagged values of yit onto the regressors, xit. This correlation in turn

introduces a bias even when N and T suffi ciently large, and therefore the CS-DL estimation

of the long-run effects is consistent only in the case when the feedback effects (or reverse

causality) are not present. The second drawback is that the small sample performance is very

good only when the eigenvalues of ϕ (L) are not close to the unit circle. We will provide small

4Related is also the quasi maximum likelihood estimator for dynamic panels by Moon and Weidner (2010),
but this estimators has been developed only for panels with homogeneous slope coeffi cients.

5Chudik and Pesaran (2014a) consider the application of two bias correction procedures to dynamic CCE
type estimators, but find that they do not fully eliminate the bias.

6Note that θi is identified even when εit is serially correlated.
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sample evidence on the two approaches by means of Monte Carlo experiments in Section 4.

3 Cross-sectionally augmented distributed lag (CS-DL)

approach to estimation of mean long-run coeffi cients

3.1 The ARDL panel data model

To simplify the exposition we consider the panel ARDL data model (7) with pyi = 1 and

pxi = 0,

yit = ϕiyi,t−1 + β′ixit + γ ′ift + εit. (11)

To allow for correlation between the m unobserved factors, ft, and the k observed regressors,

xit, we assume that the latter is generated according to the following factor model

xit = Γ′ift + vit, (12)

for i = 1, 2, ..., N and t = 1, 2, ..., T , where Γi is m× k matrix of factor loadings, and vit are

the idiosyncratic components of xit which are assumed to be distributed independently of

the idiosyncratic errors, εit. The panel data model (11) and (12) is identical to the model

considered by Pesaran (2006), with the exception that the lagged dependent variable is

included in (11). We have also omitted observed common effects and deterministics (such

as intercepts and time trends) from (11) to simplify the exposition. Introducing these terms

and additional lags of the dependent variable and regressors is relatively straightforward.

We are interested in the estimation of the mean long-run coeffi cients θ = E (θi), where

θi, i = 1, 2, ..., N are the cross-section specific long-run coeffi cients defined by (9), which for

pyi = 1 and pxi = 0 reduces to

θi =
βi

1− ϕi
. (13)

We postulate the following assumptions.

Assumption 1 (Individual Specific Errors) Individual specific errors εit and vjt′ are inde-

pendently distributed for all i, j, t and t′. εit follows a linear stationary process with absolute

summable autocovariances (uniformly in i),

εit =
∞∑
`=0

αεi`ζ i,t−`, (14)

for i = 1, 2, ..., N , where the vector of innovations ζt = (ζ1t, ζ2t, ..., ζNt)
′ is spatially correlated
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according to

ζt = Rς t,

in which the elements of ς t are independently and identically distributed (IID) with zero

means, unit variances and finite fourth-order cumulants. Matrix R has bounded row and

column matrix norms, namely ‖R‖∞ < K and ‖R‖1 < K. In particular,

V ar (εit) =

∞∑
`=0

α2
εi`σ

2
ζi = σ2

i ≤ K <∞, (15)

for i = 1, 2, ..., N , where σ2
ζi = V ar (ζ it). vit follows a linear stationary process with absolute

summable autocovariances uniformly in i,

vit =
∞∑
`=0

Si`νi,t−`, (16)

for i = 1, 2, ..., N , where νit is a k × 1 vector of IID random variables, with mean zero,

variance matrix Ik, and finite fourth-order cumulants. In particular,

‖V ar (vit)‖ =

∥∥∥∥∥
∞∑
`=0

Si`S
′
i`

∥∥∥∥∥ = ‖Σi‖ ≤ K <∞, (17)

for i = 1, 2, ..., N , where ‖A‖ denotes the spectral norm of matrix A.

Assumption 2 (Common Factors) The m × 1 vector of unobserved common factors, ft =

(f1t, f2t, ..., fmt), is covariance stationary with absolute summable autocovariances, distributed

independently of ς it′ and vit′ for all i, t and t′. Fourth moments of f`t, for ` = 1, 2, ...,m, are

bounded.

Assumption 3 (Factor Loadings) The factor loadings, γi, and Γi, are independently and

identically distributed across i, and of the common factors ft, for all i and t, with fixed means

γ and Γ, respectively, and bounded second moments. In particular,

γi = γ + ηγi, ηγi ∼ IID

(
0

m×1
,Ωγ

)
, for i = 1, 2, ..., N ,

and

vec (Γi) = vec (Γ) + ηΓi, ηΓi ∼ IID

(
0

km×1
,ΩΓ

)
, for i = 1, 2, ..., N ,

where Ωγ and ΩΓ are m×m and km×km symmetric nonnegative definite matrices, ‖γ‖ <
K, ‖Ωγ‖ < K, ‖Γ‖ < K, and ‖ΩΓ‖ < K.
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Assumption 4 (Coeffi cients) The long-run coeffi cients, θi, defined in (13), follow the ran-
dom coeffi cient model

θi = θ + υi, υi ∼ IID

(
0
k×1

,Ωθ

)
, for i = 1, 2, ..., N , (18)

where ‖θ‖ < K, ‖Ωθ‖ < K, Ωθ is k × k symmetric nonnegative definite matrix, and the

random deviations υi are independently distributed of γj, Γj, ςjt, vjt, and ft for all i,j, and

t. The coeffi cients of the lagged dependent variable, ϕi, are distributed with a support strictly

inside the unit circle.

The polynomial 1 − ϕiL is invertible under Assumption 4, and multiplying (11) by

(1− ϕiL)−1 we obtain

yit = (1− ϕiL)−1 β′ixit + (1− ϕiL)−1 γ ′ift + (1− ϕiL)−1 εit

= θixit −α′i (L) ∆xit + γ ′if̃it + ε̃it, for i = 1, 2, ..., N , (19)

where ∆xit = xit − xi,t−1, αi (L) =
∑∞

`=0 ϕ
`+1
i (1− ϕi)

−1 βiL
`, f̃it = (1− ϕiL)−1 ft and

ε̃it = (1− ϕiL)−1 εit. The distributed lag specification in (19) does not include lagged values

of the dependent variable, and as a result the CCE estimation procedure can be applied to

(19) directly. The level regression of yit on xit is estimated by augmenting the individual

regressions by differences of unit specific regressors xit and their lags, in addition to the aug-

mentation by the cross-section averages that take care of the effects of unobserved common

factors. The CCE procedure continues to be applicable despite the fact that the errors, ε̃it,

are serially correlated. (see Pesaran (2006)).

Let w = (w1, w2, ..., wN)′ be an N × 1 vector of weights that satisfies the following

‘granularity’conditions

‖w‖ = O
(
N−

1
2

)
, (20)

wi
‖w‖ = O

(
N−

1
2

)
uniformly in i, (21)

and the normalization condition
N∑
i=1

wi = 1. (22)

Define the cross-section averages z̄wt = (ywt, x̄
′
wt)
′ =

∑N
i=1 wizit, and consider augmenting

the regressions of yit on xit and the current and lagged values of ∆xit, with the following

set of cross-section averages, SNpt = z̄wt∪{∆x̄w,t−`}p`=0. Cross-section averages approximate
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the unobserved common factors arbitrarily well if

ϑfNp = ft − E (ft| SNpt)
p→ 0, (23)

uniformly in t, as N and p
j→ ∞. Suffi cient conditions for result (23) to hold are given

by Assumptions 1-4 and if the rank condition rank (Γ) = m holds. Different sets of cross

section-averages could also be considered. For example, if the set of cross-section averages is

defined as SNpz̄t = {z̄wt−`}pz̄`=0, then the suffi cient condition for (23) to hold under Assumption

1-4 would be the usual rank condition rank (C) = m, where C = (γ,Γ). Using covariates to

enlarge the set of cross-section averages could also be considered, as in Chudik and Pesaran

(2014a). Theses rank conditions can be relaxed in the case where γi and Γi are independently

distributed.7 In this case, the asymptotic variance of the CCE estimator does depend on

the rank condition, nevertheless the CS-DL estimators are consistent and the proposed non-

parametric estimators of the covariance matrix of the CS-DL estimators given below continue

to be valid regardless of whether the rank condition holds.

More formally, let yi = (yi,p+1, yi,p+2, ...,yi,T )′,Xi =
(
xi,p+1,xi,p+2, ...,xi,T

)′
, Z̄w = (z̄w,p+1, z̄w,p+2, ..., z̄w,T )′,

∆Xip
(T−p)×pk

=


∆x′i,p+1 ∆x′i,p · · · ∆x′i2

∆x′i,p+2 ∆x′i,p+1 · · · ∆x′i3
...

...
...

∆x′iT ∆x′i,T−1 · · · ∆x′i,T−p+1

 ,

∆X̄wp =
∑N

i=1 wi∆Xip, Qwi =
(
Z̄w,∆X̄wp,∆Xip

)
, and define the projection matrix

Mqi = IT−p −Qwi (Q
′
wiQwi)

+
Q′wi, (24)

for i = 1, 2, ..., N , where p = p (T ) is a chosen non-decreasing truncation lag function such

that 0 ≤ p < T , and A+ is the Moore-Penrose pseudoinverse of A. We use the Moore-

Penrose pseudoinverse as opposed to standard inverse in (24) because the column vectors of

Qwi could be asymptotically (as N →∞) linearly dependent.
The CS-DL mean group estimator of the long-run coeffi cients is given by

θ̂MG =
1

N

N∑
i=1

θ̂i, (25)

7Correlation of γi and Γi could introduce a bias in the rank deficient case, as noted by Sarafidis and
Wansbeek (2012).
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where

θ̂i = (X′iMqiX
′
i)
−1

X′iMqiyi. (26)

The CS-DL pooled estimator of the long-run coeffi cients is

θ̂P =

(
N∑
i=1

wiX
′
iMqiXi

)−1 N∑
i=1

wiX
′
iMqiyi. (27)

Estimators θ̂MG and θ̂P differ from the mean group and pooled CCE estimator developed

in Pesaran (2006), which only allows for the inclusion of a fixed number of regressors, whilst

the CS-DL type estimators include pT lags of ∆xit and their cross-section averages, where

pT increases with T , albeit at a slower rate.

In addition to Assumptions 1-4 above, we shall also require the following assumption to

hold. Assumption 5 below ensures that θ̂MG and θ̂P and their asymptotic distributions are

well defined.

Assumption 5 (a) The matrix lim
N,T,p

j→∞

∑N
i=1wiΣi = Ψ∗ exists and is nonsingular,

and supi,p
∥∥Σ−1

i

∥∥ < K, where Σi = p limT−1X′iMhiXi, and Mhi is defined in (A.3).

(b) Denote the t-th row of matrix X̃i = MhiXi by x̃′it = (x̃i1t, x̃i2t, ...., x̃ikt). The individual

elements of x̃it have uniformly bounded fourth moments, namely there exists a positive

constant K < ∞ such that E (x̃4
ist) < K, for any t = 1, 2, ..., T, i = 1, 2, ..., N and

s = 1, 2, ..., k.

(c) There exists T0 such that for all T ≥ T0,
(∑N

i=1wiX
′
iMqiXi/T

)−1

exists.

(d) There exists N0,T0 and p0 = p(T0) such that for all N ≥ N0, T ≥ T0 and p(T ) ≥ p(T0),

the k × k matrices (X′iMqiXi/T )−1 exist for all i, uniformly.

Our main findings are summarized in the following theorems.

Theorem 1 (Asymptotic distribution of θ̂MG) Suppose yit, for i = 1, 2, ..., N and t =

1, 2, ..., T is given by the panel data model (11)-(12), Assumptions 1-5 hold, and (N, T, p(T ))
j→

∞ such that
√
Np(T )ρp → 0, for any constant 0 < ρ < 1 and p(T )3/T → κ, 0 < κ < ∞.

Then, if rank (Γ) = m we have

√
N
(
θ̂MG − θ

)
d→ N (0,Ωθ) , (28)
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where Ωθ = V ar (θi) and θ̂MG is given by (25). If rank (Γ) 6= m and γi is independently

distributed of Γi, we have

√
N
(
θ̂MG − θ

)
d→ N (0,ΣMG) , (29)

where

ΣMG = Ωθ + lim
p,N→∞

[
1

N

N∑
i=1

Σ−1
i QifΩγQ

′
ifΣ

−1
i

]
, (30)

in which Ωγ = V ar (γi), Σi = p limT→∞ T
−1X′iMhiXi and Qif = p limT→∞ T

−1X′iMhiF. In

both cases, the asymptotic variance of θ̂MG can be consistently estimated nonparametrically

by

Σ̂MG =
1

N − 1

N∑
i=1

(
θ̂i − θ̂MG

)(
θ̂i − θ̂MG

)′
. (31)

Theorem 2 (Asymptotic distribution of θ̂P ) Suppose yit, for i = 1, 2, ..., N and t =

1, 2, ..., T are generated by the panel data model (11)-(12), Assumptions 1-5 hold, and (N, T, p(T ))
j→

∞, such that
√
Np(T )ρp → 0, for any constant 0 < ρ < 1 and p(T )3/T → κ, 0 < κ < ∞.

Then, if γi is independently distributed of Γi, we have(
N∑
i=1

w2
i

)−1/2 (
θ̂P − θ

)
d→ N (0,ΣP ) , (32)

where θ̂P is given by (27),

ΣP = Ψ∗−1R∗Ψ∗−1, Ψ∗ = lim
N→∞

N∑
i=1

wiΣi, (33)

R∗ = R∗θ + R∗γ, R∗θ = lim
N→∞

1

N

N∑
i=1

w̃2
iΣiΩθΣi, R∗γ = lim

N→∞

1

N

N∑
i=1

w̃2
iQifΩγQ

′
if ,

Ωθ = V ar (θi), Ωγ = V ar (γi), Σi = p limT−1X′iMhiXi, Qif = p limT−1X′iMhiF, and w̃i =
√
Nwi

(∑N
i=1 w

2
i

)−1/2

. If rank (Γ) = m, then γi is no longer required to be independently

distributed of Γi and (32) continues to hold with ΣP = Ψ∗−1R∗θΨ
∗−1. In both cases, ΣP can

be consistently estimated by Σ̂P defined by equation (A.25) in the Appendix.

Theorems 1-2 establish asymptotic distributions of θ̂MG and θ̂P under slope heterogene-

ity. These theorems distinguish between cases where the rank condition that ensures (23)

is satisfied or not. Under the former, unobserved common factors can be approximated
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by cross-section averages when N is large and regardless of whether γi is correlated with

Γi, θ̂MG and θ̂P are consistent and asymptotically normal. In the latter case, where the

unobserved common factors cannot be approximated by cross-section averages when N is

large, then so long as γi and Γi are independently distributed, both θ̂MG and θ̂P continue

to be consistent and asymptotically normal, but the asymptotic variance depends also on

unobserved common factors and their loadings. In both (full rank or rank deficient) cases,

the asymptotic variance of the CS-DL estimators can be estimated consistently using the

same non-parametric formulae as in the full rank case.

There are several departures from the assumptions of these theorems that might be

of interest in applied work, such as the consequences of breaks in the error processes, εit,

possibility of unit roots in factors and/or regressor specific components, and situations where

some or all coeffi cients are homogeneous over the cross-section units. These theoretical

extensions are outside the scope of the present paper but we investigate the robustness of

the proposed CS-DL estimator to such departures by means of Monte Carlo simulations in

the next section.

4 Monte Carlo experiments

This section investigates small sample properties of the CS-DL estimators and compares them

with the estimates obtained from the panel ARDL approach using the dynamic CCEMG esti-

mator of the short-run coeffi cients advanced in Chudik and Pesaran (2014a), which we denote

by CS-ARDL. First, we present results from the baseline experiments with heterogeneous

slopes (long- and short-run coeffi cients), and then we document small sample performance of

the alternative estimators under various deviations from the baseline experiments, including

robustness of the estimators to the introduction of unit roots in the regressors or factors,

possible breaks in the idiosyncratic error processes, and the consequences of feedback effects

from lagged values of yit onto xit. Second, we investigate whether it is possible to improve on

the estimation of short-run coeffi cients, provided the model is correctly specified, by imposing

CS-DL estimates of the long-run coeffi cients.

We start with a brief summary of the estimation methods and a description of the data

generating processes (DGP). Then we present findings on the estimation of the mean long-

run coeffi cient and on the extent to which estimates of the short-run coeffi cients can be

improved by using the CS-DL estimators of the long-run effects.
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4.1 Estimation methods

The CS-DL estimators are based on the following auxiliary regressions:

yit = cyi + θ′ixit +

p−1∑
`=0

δi`∆xi,t−` +

pȳ∑
`=0

ωy,i`ȳt−` +

px̄∑
`=0

ω′x,i`x̄t−` + eit, (34)

where x̄t = N−1
∑N

i=1 xit, ȳt = N−1
∑N

i=1 yit, px̄ is set equal to the integer part of T
1/3,

denoted as
[
T 1/3

]
, p = px̄ and pȳ is set to 0. We consider both CS-DL mean group and

pooled estimators based on (34).

The CS-ARDL estimator is based on the following regressions:

yit = c∗yi +

py∑
`=1

ϕi`yi,t−` +

px∑
`=0

β′i`xi,t−` +

pz̄∑
`=0

ψ′i`z̄t−` + e∗it, (35)

where z̄t = (ȳt, x̄
′
t)
′, pz̄ =

[
T 1/3

]
and two options for the remaining lag orders are considered:

ARDL(2,1) specification, py = 2 and px = 1, and ARDL(1,0) specification, py = 1 and

px = 0. The CS-ARDL estimates of individual mean level coeffi cient are then given by

θ̂CS−ARDL,i =

∑px
`=0 β̂i`

1−
∑py

`=1 ϕ̂i`
, (36)

where the estimates of short-run coeffi cients (ϕ̂i`,β̂i`) are based on (35). The mean long-

run effects are estimated as N−1
∑N

i=1 θ̂CS−ARDL,i and the inference is based on the usual

non-parametric estimator of asymptotic variance of the mean group estimator.

4.2 Data generating process

The dependent variable and regressors are generated using the following ARDL(2,1) panel

data model with factor error structure,

yit = cyi + ϕi1yi,t−1 + ϕi2yi,t−2 + βi0xit + βi1xi,t−1 + uit, uit = γ ′ift + εit, (37)

and

xit = cxi + κyiyi,t−1 + γ ′xift + vit. (38)

We generate yit,xit for i = 1, 2, ..., N , and t = −99, ..., 0, 1, 2, ..., T with the starting values

yi,−101 = yi,−100 = 0, and discard the first 100 observations (t = −99,−48, ..., 0) to reduce

the effects of the initial values on the outcomes. The fixed effects are generated as ciy ∼
IIDN (1, 1), and cxi = cyi + ςcxi, where ςcxi ∼ IIDN (0, 1), thus allowing for dependence
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between xit and cyi.

We consider three cases depending on the heterogeneity/homogeneity of the slopes:

• (heterogeneous slopes - baseline) ϕi1 = (1 + κϕi) ηϕi, ϕi2 = −κϕiηϕi, κϕi ∼ IIDU (0.2, 0.3),

ηϕi ∼ IIDU (0, ϕmax). The long-run coeffi cients are generated as θi ∼ IIDN (1, 0.22)

and the regression coeffi cient are generated as βi0 = κβiηβi, βi1 = (1− κβi) ηβi, where
ηβi = θi/ (1− ϕi1 − ϕi2) and κβi ∼ IIDU (0, 1).

• (homogeneous long-run, heterogenous short-run slopes) θi = 1 for all i and the remain-

ing coeffi cients (ϕi1, ϕi2, βi0, βi1) are generated as in the previous fully heterogeneous

case.

• (homogeneous long- and short-run slopes) ϕi1 = 1.15ϕmax/2, ϕi2 = −0.15ϕmax/2, θi =

1, and βi0 = βi1 = 0.5/ (1− ϕmax/2).

We also consider the case of ARDL(1,0) panel model by setting κϕi = 0 and κβi = 1 for

all i, which gives ϕi2 = βi1 = 0 for all i. We consider three values for ϕmax = 0.6, 0.8 or 0.9.

The unobserved common factors in ft and the unit-specific components, vit, are generated

as independent AR(1) processes:

ft` = ρf`ft−1,` + ςft`, ςft` ∼ IIDN
(
0, σ2

ςf`

)
, (39)

vit = ρxivi,t−1 + νit, ςxit ∼ IIDN
(
0, σ2

νi

)
, (40)

for i = 1, 2, ..., N , ` = 1, 2, ..,m, and for t = −99, ..., 0, 1, 2, ..., T with the starting values

f`,−100 = 0, and vi,−100 = 0. The first 100 time observations (t = −99,−48, ..., 0) are

discarded. We consider three possibilities for the AR(1) coeffi cients ρf` and ρxi:

• (stationary baseline) ρxi ∼ IIDU [0.0.95], σ2
νi = 1 − ρ2

xi for all i; ρf` = 0.6, and

σ2
ςf` = 1− ρ2

f` for ` = 1, 2, ...,m.

• (nonstationary factors) ρxi ∼ IIDU [0.0.95], σ2
νi = 1 − ρ2

xi for all i; and ρf` = 1,

σ2
ςf` = 0.12 for ` = 1, 2, ...,m.

• (nonstationary regressors and stationary factors) ρxi = 1, σ2
νi = 0.12 for all i; and

ρf` = 0.6, σ2
ςf` = 1− ρ2

f`, for ` = 1, 2, ...,m.

We consider also two options for the feedback coeffi cients κyi: no feedback effects, κyi = 0

for all i, and with feedback effects, κyi ∼ IIDU (0, 0.2).
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Factor loadings are generated as

γi` ∼ IIDN
(
γ`, 0.2

2
)
and γxi` ∼ IIDN

(
γx`, 0.2

2
)
,

for ` = 1, 2, ..,m, and i = 1, 2, ..., N . Also, without loss of generality, the means of factor

loadings are calibrated so that V ar(γ ′ift) = V ar (γ ′xift) = 1 in the stationary case. We

set γ` =
√
bγ, and γx` =

√
`bx, for ` = 1, 2, ...,m, where bγ = 1/m − 0.22, and bx =

2/ [m (m+ 1)]−2/ (m+ 1) 0.22. This ensures that the contribution of the unobserved factors

to the variance of yit does not rise with m in the stationary case. We consider m = 2 or 3

unobserved common factors.

Finally, the idiosyncratic errors, εit, are generated to be heteroskedastic, weakly cross-

sectionally dependent and serially correlated. Specifically,

εit = ρεiεi,t−1 + ζ it, (41)

where ζt = (ζ1t, ζ2t, ..., ζNt)
′ are generated using the following spatial autoregressive model

(SAR),

ζt = aεSεζt + ς t, (42)

in which the elements of ς t are drawn as IIDN
[
0, 1

2
σ2
i (1− ρ2

εi)
]
, with σ2

i obtained as inde-

pendent draws from χ2(2) distribution,

Sε =



0 1 0 0 · · · 0
1
2

0 1
2

0 0

0 1
2

0
. . .

...

0 0
. . . . . . 1

2
0

... 1
2

0 1
2

0 0 · · · 0 1 0


,

and the spatial autoregressive parameter is set to aε = 0.6. Note that {εit} is cross-sectionally
weakly dependent for |aε| < 1. We consider ρεi = 0 for all i or ρεi ∼ IIDU (0, 0.8). We

also consider the possibility of breaks in εit by generating for each i random break points

bi ∈ {1, 2, ..T} and

εit = ρaεiεi,t−1 + ζ it, for t = 1, 2, ..., bi

εit = ρbεiεi,t−1 + ζ it, for t = bi + 1, bi + 2, ..., T ,

where ρaεi, ρ
b
εi ∼ IIDU (0, 0.8), and ζt = (ζ1t, ζ2t, ..., ζNt)

′ is generated using SAR model (42)
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with ς it ∼ IIDN
[
0, 1

2
σ2
i (1− ρa2

εi )
]
.

The above DGP is more general than the other DGPs used in MC experiments in the

literature and allows the factors and regressors to be correlated and persistent. The above

DGPs also include models with unit roots, breaks in the error processes, and allows for

correlated fixed effects. To summarize, we consider the following cases:

1. (3 options for heterogeneity of coeffi cients) heterogeneous baseline, homogeneous long-

run with heterogeneous short-run, and both long-and short-run homogeneous,

2. (2 options for lags) ARDL(2,1) baseline, and ARDL(1,0) model where κϕi = 0 and

κβi = 1 for all i, which gives ϕi2 = βi1 = 0 for all i.

3. (3 options for ϕmax) ϕmax = 0.6 (baseline), 0.8, or 0.9

4. (3 options for the persistence of factors and regressors) stationary baseline, I(1) factors,

or I(1) regressor specific components vit,

5. (2 options for the number of factors) full rank case baseline m = 2, or rank deficient

case m = 3,

6. (3 options for the persistence of idiosyncratic errors) serially uncorrelated baseline

ρεi = 0, ρεi ∼ IIDU (0, 0.8), or breaks in the error process.

7. (2 options for feedback effects) κyi = 0 for all i (baseline), or κyi ∼ IIDU (0, 0.2).

Due to the large number of possible cases (648 in total), we only consider baseline exper-

iments and various departures from the baseline. We consider the following combinations of

sample sizes: N, T ∈ {30, 50, 100, 150, 200}, and set the number of replications to R = 2, 000,

in the case of all experiments.

4.3 Monte Carlo findings on the estimation of mean long-run co-

effi cients

The results for the baseline DGP are summarized in Table 1. This table shows that both

CS-DL estimators (MG and pooled) perform well in the baseline experiments. This table

also shows that the CS-ARDL approach does not perform well when T is not large (<100)

due to the small sample problems arising when
∑py

`=1 ϕ̂i` is close to unity. Also, CS-ARDL

estimates that are based on misspecified lag orders are inconsistent, as to be expected. In
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contrast, the consistency of the CS-DL estimators does not depend on knowing the correct

lag specifications of the underlying ARDL model.

Next, we investigate robustness of the results to different assumptions regarding slope

heterogeneity. Table 2 presents findings for the experiment that depart from the baseline

DGP by assuming homogeneous long-run slopes, while allowing the short-run slopes to be

heterogeneous. Table 3 gives the results when both long- and short-run slopes are homoge-

neous. These results show that the CS-DL estimators continue to have good size and power

properties in all cases.

Experiments based on the ARDL(1,0) specification (as the DGP) are summarized in Table

4. CS-DL estimators continue to perform well, showing their robustness to the underlying

ARDL specification.

The effects of increasing the value of ϕmax on the properties of the various estimators are

summarized in Tables 5 (for ϕmax = 0.8) and 6 (for ϕmax = 0.9). Small sample performance

of the CS-DL estimators deteriorates as ϕmax moves closer to unity, as to be expected. Tables

5-6 show that the performance deteriorates substantially for values of ϕmax close to unity, due

to the bias that results from the truncation of lags for the first differences of regressors. It

can take a large lag order for the truncation bias to be negligible when the largest eigenvalue

of the dynamic specification (given by the lags of the dependent variable) is close to one.

We see quite a substantial bias when ϕmax = 0.9. Therefore, it is important that the CS-DL

approach is used when the speed of convergence towards equilibrium is not too slow and/or T

is suffi ciently large so that biases arising from the approximation of dynamics by distributed

lag functions can be controlled.

The robustness of the results to the number of unobserved factors (m) is investigated in

Table 7. This table provides a summary in the case of m = 3 factors, which represents the

rank deficient case. It is interesting to note that despite the failure of the rank condition, the

CS-DL estimators continue to perform well (the results are almost unchanged as compared

with those in Table 1), while the CS-ARDL estimates are affected by two types of biases

(the time series bias and the bias due to rank deficiency) that operate in opposite directions.

Consider now the robustness of the results to the presence of unit roots in the unobserved

factors (Table 8) or in the regressors (Table 9). As can be seen the CS-DL estimators continue

to perform well when factors contain unit roots. Table 9, on the other hand, shows large

RMSE and low power for T = 30 and 50, when the idiosyncratic errors have unit roots. But,

interestingly enough, the reported size is correct and biases are very small for all sample

sizes.

The robustness of the CS-DL estimators to the patterns of residual serial correlation

is investigated in Table 10, whilst Table 11 present results on the robustness of CS-DL
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estimators to possible breaks in the error processes. As can be seen, and as predicted by

the theory, the CS-DL estimators are robust to both of these departures from the baseline

scenario, whereas the CS-ARDL approach is not. Recall, that CS-ARDL approach requires

that the lag orders are correctly specified, and does not allow for residual serial correlation

and/or breaks in the error processes, whilst CS-DL does.

Last but not least, the consequences of feedback effects from yit to the regressors, xit,

is documented in Table 12. This table shows that the CS-ARDL approach is consistent

regardless of the feedback effects, provided that the lag orders are correctly specified, again

as predicted by the theory. But a satisfactory performance (in terms of bias and size of the

test) for the CS-ARDL approach requires T to be suffi ciently large. On the other hand, in

the presence of feedbacks, the CS-DL estimators are inconsistent and show positive bias even

for T suffi ciently large. But the bias due to feedback effects seem to be quite small; between

-0.02 and 0.06, and the CS-DL estimators tend to outperform the CS-ARDL estimators when

T < 100, even when the underlying ARDL model is correctly specified.

4.4 Monte Carlo findings on the improvement in estimation of

short-run coeffi cients

As a final exercise, we consider if it is possible to improve on the estimation of short-

run coeffi cients by imposing the CS-DL estimates of the long run, before estimating the

short-run coeffi cients. We consider the experiment that departs from the baseline model by

assuming a homogeneous long-run coeffi cient, whilst all the short-run slopes are allowed to

be heterogeneous, and use the ARDL(1,0) as the data generating process. More specifically,

we impose the CS-DL pooled estimator of the long-run coeffi cient, θ̂P , when estimating the

short-run coeffi cients using the CS-ARDL approach. In particular, we estimate the following

unit-specific regressions,

∆yit = c∗yi + λi

(
yi,t−1 − θ̂Pxit

)
+

pz̄∑
`=0

δ′i`z̄t−` + ε∗it, (43)

for i = 1, 2, ..., N , and the resulting mean group estimator of E (ϕi1) = 1 +E (λi) is denoted

by

ϕ̃1,MG =
1

N

N∑
i=1

ϕ̃i1, ϕ̃i1 = 1− λ̃i,

where λ̃i is the least square estimate of λi based on (43). The results of these experiments are

summarized in Table 13. Imposing the CS-DL pooled estimator of the long-run coeffi cient
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improves the small sample properties of the short-run estimates substantially, about 80-90%

reduction of the difference between the RMSE of the infeasible CS-ARDL estimator and the

RMSE of the unconstrained estimator, when T = 30.

5 Concluding remarks

Panel data estimation of long-run effects is an important task in economics. This often

requires a large time dimension for a panel data model featuring slope heterogeneity, lagged

dependent variables, and cross-sectionally correlated innovations. This paper proposes a

cross-sectionally augmented distributed lag (CS-DL) approach to the estimation of long-

run effects as a complementary method to cross-sectionally augmented ARDL specifications.

Based on a series of Monte Carlo simulations, we show the robustness of panel CS-ARDL

estimates to endogeneity problem. We also show that the CS-DL estimators are robust to

residual serial correlation, breaks in error processes and dynamic misspecifications. However,

unlike the CS-ARDL approach, the CS-DL procedure could be subject to simultaneity bias.

Nevertheless, the extensive Monte Carlo experiments reported in the paper suggest that the

endogeneity bias of the CS-DL approach is more than compensated for by its better small

sample performance as compared to the CS-ARDL procedure when the time dimension is

not very large. CS-ARDL seems to dominate CS-DL only if the time dimension is suffi ciently

large and the underlying ARDL model is correctly specified.
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ȳ

=
0
,
p
x̄

=
[ T1/

3
] an

d
p

=
p
x̄
−

1
)

3
0

-1
.0
4

-1
.0
4

-0
.1
4

0.
06

0.
05

16
.2
6

11
.3
3

8.
28

7.
27

6.
55

5.
65

6.
85

6.
60

5.
95

6.
55

28
.5
0

53
.2
5

71
.4
5

78
.3
0

86
.4
0

5
0

-0
.8
4

-0
.8
4

-0
.3
0

0.
20

-0
.1
6

12
.7
6

8.
51

6.
56

5.
79

5.
18

5.
15

4.
85

5.
35

6.
40

5.
70

38
.2
5

70
.5
0

87
.6
5

92
.8
0

97
.1
0

1
0
0

-1
.4
2

-0
.9
9

-0
.0
4

0.
03

-0
.1
4

9.
37

6.
29

4.
55

4.
05

3.
62

5.
30

5.
50

5.
10

5.
55

5.
40

63
.5
5

92
.6
0

98
.7
5

99
.8
0

10
0.
00

1
5
0

-1
.1
5

-0
.9
1

-0
.1
4

-0
.0
8

0.
01

7.
87

5.
26

3.
73

3.
31

2.
91

5.
90

6.
40

4.
75

4.
95

4.
90

78
.3
0

98
.1
0

99
.9
5

10
0.
00

10
0.
00

2
0
0

-1
.1
4

-0
.7
9

-0
.2
1

-0
.0
3

0.
03

6.
79

4.
43

3.
24

2.
90

2.
50

5.
50

4.
95

5.
20

5.
10

4.
95

88
.0
0

99
.6
5

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
ȳ
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A Appendix

We start by briefly summarizing the notations used in the paper, and introduce new notations

which will prove useful in the proofs provided below. We use 〈a,b〉 = a′b to denote the inner

product (corresponding to the Euclidean norm) of vectors a and b. ‖A‖1 ≡ max
1≤j≤n

∑n
i=1 |aij | , and

‖A‖∞ ≡ max
1≤i≤n

∑n
j=1 |aij | denote the maximum absolute column and row sum norms of A ∈Mn×n,

respectively, whereMn×n is the space of real-valued n×nmatrices. ‖A‖ =
√
% (A′A) is the spectral

norm of A, % (A) is the spectral radius of A, Col (A) denotes the space spanned by the column

vectors of A, and A+ is the Moore-Penrose pseudoinverse of A. Note that ‖a‖ =
√
% (a′a) =

√
a′a

corresponds to the Euclidean length of vector a.

Let zit = (yit,x
′
it)
′, z̄wt = (ȳwt, x̄

′
wt)
′ =

∑N
i=1wizit, ∆ = (1− L), L is the lag operator,

yi
T−p×1

=


yi,p+1

yi,p+2

...

yiT

 , Xi
T−p×k

=


x′i,p+1

x′i,p+2
...

x′iT

 , ∆Xip
(T−p)×pk

=


∆x′i,p+1 ∆x′i,p · · · ∆x′i2
∆x′i,p+2 ∆x′i,p+1 · · · ∆x′i3

...
...

...

∆x′iT ∆x′i,T−1 · · · ∆x′i,T−p+1

 ,

Z̄w
(T−p)×k+1

=


z̄′i,p+1

z̄′i,p+2
...

z̄′iT

 , ∆X̄wp
(T−p)×pk

=


∆x̄′w,p+1 ∆x̄′w,p · · · ∆x̄′w2

∆x̄′w,p+2 ∆x̄′w,p+1 · · · ∆x̄′w3
...

...
...

∆x̄′wT ∆x̄′w,T−1 · · · ∆x̄′w,T−p+1

 , Vi
T−p×k

=


v′i,p+1

v′i,p+2
...

v′iT


Qwi = (Qw,∆Xip), Qw =

(
Z̄w,∆X̄wp

)
,

Mqi = IT−p −Qwi

(
Q′wiQwi

)+
Q′wi, (A.1)

γip = (γ ′i, ϕiγ
′
i, ..., ϕ

p
iγ
′
i)
′,

Fp
T−p×mp

=
(
F(0),F(1), ...,F(p)

)
, F(`)
T−p×m


f ′p+1−`
f ′p+2−`
...

f ′T−`

 , for ` = 0, 1, 2, ..., p, and εi =


εi,p+1

εi,p+2

...

εiT

 .
(A.2)

Using the above notations, the model for the dependent variable can be written as

yi = Xiθi + ∆Xipαip + Fpγip + ϑi + εi,

for i = 1, 2, ..., N , where αip is a pk × 1 vector containing the first p coeffi cients vectors of the
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polynomial αi (L) stacked into one single column vector, ϑi = (ϑi,p+1, ϑi,p+1, ..., ϑi,T )′, and

ϑit =

∞∑
`=p+1

ϕ`+1
i

(
β′i∆xi,t−`+1 + γift−`

)
,

for i = 1, 2, ..., N and t = p+ 1, p+ 2, ..., T . The model for regressors can be written as

Xi = F(0)Γi + Vi,

for i = 1, 2, ..., N .

Define also the following projection matrix

Mhi
T−p×T−p

= IT−p −Hwi

(
H′wiHwi

)+
H′wi, (A.3)

in which

Hwi
T−p×k(p+2)+1

= (Hw,∆Xip) , Hw
T−p×k(p+1)+1

=


h′wp,p+1

h′w,p+2
...

h′wp,T

 ,
and

hwpt
k(p+1)+1×1

=



θ̄
′
wΓ̄′w −α′w (L) Γ̄′w + γ ′w (L)

Γ̄′w

(1− L) Γ̄′w

L (1− L) Γ̄′w
...

Lp−1 (1− L) Γ̄′w


ft,

where

θ̄w =
N∑
i=1

wiθi, Γ̄w =
N∑
i=1

wiΓi, αw (L) =
N∑
i=1

wiαi (L) , γw (L) =
N∑
i=1

wiγi (L) ,

and γi (L) =
∑∞

`=0 ϕ
p
iγiL

p.

A.1 Proofs of Theorems

Proof of Theorem 1. We have

√
N
(
θ̂MG − θ

)
=

1√
N

N∑
i=1

υθi+
1√
N

N∑
i=1

Ψ̂−1
iT

X′iMqiFpγip
T

+
1√
N

N∑
i=1

Ψ̂−1
iT

X′iMqiϑi
T

1√
N

N∑
i=1

Ψ̂−1
iT

X′iMqiεi
T

(A.4)
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where Ψ̂iT = T−1X′iMqiXi,

Fp
T−p×m(p+1)

=


f ′p+1 f ′p · · · f ′1
...

...
...

f ′T f ′T−1 · · · f ′T−p

 ,
γip = (γ ′i, ϕiγ

′
i, ..., ϕ

p
iγ
′
i)
′, ϑi = (ϑi,p+1, ϑi,p+1, ..., ϑi,T )′, and

ϑit =
∞∑

`=p+1

ϕ`+1
i

(
β′i∆xi,t−`+1 + γift−`

)
.

Consider the asymptotics (N,T, p)
j→ ∞ such that

√
Npρp → 0, for any constant 0 < ρ < 1 and

p3/T → κ, 0 < κ < ∞. In what follows we establish convergence of the individual terms on the
right side of (A.4).

It follows from (A.26) of Lemma A.1 and (A.27) of Lemma A.2 that

Ψ̂Ξ,iT −Σi = op

(
N−1/2

)
uniformly in i. (A.5)

(A.5), (A.28) of Lemma A.2, and (A.30) of Lemma A.3 imply

1√
N

N∑
i=1

Ψ̂−1
iT

X′iMqiεi
T

p→ 0
k×1
. (A.6)

Consider now the second term on the right side of (A.4), which involves common factors and their

loadings. In the previous literature on CCE estimators, Pesaran (2006) established the asymptotic

results for the term involving factors and their loadings in the expression for his CCEMG estimator

by focusing on the properties of the matrix (using Pesaran (2006)’s notations) X′iM̄wF/T , see

equation (40) in Pesaran (2006), in the full rank case, and by exploring the relation (still using

Pesaran (2006)’s notations) MqFC̄w = 0, see p. 979 of Pesaran (2006), in the rank deficient case.

But unlike in the set-up of Pesaran (2006), the dimension of X′iMqiFp/T in this paper increases

with the sample size, and furthermore MhiFpγwp is not necessarily zero since Fpγwp (due to the

truncation lag p) does not necessarily belong to the linear space spanned by the column vectors

of Hwi. We therefore focus on the elements of the vector X′iMqiFpγip/T below, which has fixed

(finite) dimensions, and we also take advantage of the exponential decay of certain coeffi cients

below. Using (A.5), boundedness of Σ−1
i (by Assumption 5), and the result (A.29) of Lemma A.2

we obtain

1√
N

N∑
i=1

(
X′iMqiXi

T

)−1 X′iMqiFp

T
γip −

1√
N

N∑
i=1

(
X′iMhiXi

T

)−1 X′iMhiFp

T
γip

p→ 0
k×1
.
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Vector γip can be written as γip =
(
γwp − ηγwp

)
+ ηγip, and

T−1X′iMhiFpγip = T−1X′iMhiFpγwp + T−1X′iMhiFp

(
ηγip − ηγwp

)
.

Note again that Fpγwp does not necessarily belong to the linear space spanned by the column

vectors of Hwi due to the truncation lag p. But Assumption 4 constrains the support of ϕi to fall

strictly within the unit circle, which implies that there exists a positive constant ρ < 1 such that

|ϕi| < ρ < 1 for all possible realizations of the random variable ϕi. Therefore, under Assumptions

3-4, the coeffi cients in the polynomials αw (L) =
∑N

i=1wiαi (L) and γw (L) =
∑N

i=1wiγi (L), where

αi (L) =
∑∞

`=0 ϕ
`+1
i (1− ϕi)−1 βiL

` and γi (L) =
∑∞

`=0 ϕ
p
iγiL

p, decay exponentially to zero8 and

we have

γ̄ ′w (L, p) ft − E
[
γ̄ ′w (L, p) ft |hwpt

]
= Op (ρp) , (A.7)

uniformly in t, where γ̄w (L, p) =
∑p

`=0

∑N
i=1wiϕ

`
iγiL

` is the truncated polynomial of γ̄w (L)

featuring only orders up to Lp. Using the properties of orthogonal projectors, we obtain9

∥∥MhiFpγwp
∥∥ ≤ ∥∥Fpγwp −Hwic

∥∥ , (A.8)

for any k (p+ 1)+1×1 vector c. Let c be defined by E [γ̄ ′w (L, p) ft |hwpt ] = c′hwpt. Then it follows

from (A.7) that the individual elements of T − p× 1 vector
(
Fpγwp −Hwic

)
are uniformly Op (ρp)

and using (A.8) we have ∥∥MhiFpγwp
∥∥ = Op

[
(T − p)1/2 ρp

]
.

Now using Cauchy-Schwarz inequality, we obtain10

T−1X′iMhiFpγwp = Op (ρp) . (A.9)

Noting that
√
Nρp → 0, and using (A.5) and boundedness of Σ−1

i (by Assumption 5) we have

1√
N

N∑
i=1

(
X′iMhiXi

T

)−1 X′iMhiFp

T
γwp

p→ 0,

8See Pesaran and Chudik (2014) for a related discussion.
9We use the following property. Let A be a s1 × s2 dimensional matrix, s1 > s2, and let MA =

Is1 − A (A′A)
+

A′ be the corresponding orthogonal projector that projects on orthogonal complement of
the space spanned by the column vectors of A. Then for any s1 × 1 dimensional vector x and any s2 × 1
dimensional vector c, ‖MAx‖ ≤ ‖x−Ac‖.
10〈a,b〉 ≤ ‖a‖ ‖b‖. We set a = T−1Xi, and b = MhFpγpw, where ‖a‖ = Op

[
(T − p)−1/2

]
, and ‖b‖ =

Op

[
(T − p)1/2 ρp

]
.
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and it then follows that

1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

X′iMqiFp

T
γip −

1√
N

N∑
i=1

(
X′iMhiXi

T

)−1 X′iMhiFp

T

(
ηγip − ηγwp

) p→ 0
k×1
. (A.10)

Now consider the term 1√
N

∑N
i=1

(
X′
iMhiXi

T

)−1 X′
iMhiFp
T ηγwp. Let us denote individual columns

of Fp as fp,[j], for j = 1, 2, ...,mp, and individual elements of ηγwp and γwp as ηγwp,j and γwp,j ,

respectively, for j = 1, 2, ...,mp. Fpηγwp thus can be written as
∑mp

j=1 fp,[j]ηγwp,j . Let

πj =
ηγwp,j

γp,j + ηγwp,j
,

where γp,j is the j-th element of the vector E
(
γip
)
. Note that p limN→∞ πj = 1 if γp,j = 0 and

p limN→∞ πj = 0 if γp,j 6= 0. Expression Fpηywp can now be written as Fpηywp =
∑mp

j=1 fp,[j]γwp,jπj

and
X′iMhiFp

T
ηywp =

mp∑
j=1

X′iMhifp,[j]

T
γwp,jπj .

Using the same arguments as in the derivation of (A.9), we obtain
X′
iMhifp,[j]

T γwp,j = Op (ρp) and

using the properties of πj we have

mp∑
j=1

X′iMhifp,[j]

T
γwp,jπj = Op (pρp) .

But
√
Npρp → 0 and therefore

√
N

X′iMhiFp

T
ηywp

p→ 0
k×1
. (A.11)

Using this result in (A.10) together with (A.5) and the boundedness of
∥∥Σ−1

i

∥∥ we obtain
1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

X′iMqiFp

T
γi −

1√
N

N∑
i=1

(
X′iMhiXi

T

)−1 X′iMhiFp

T
ηγip

p→ 0
k×1
. (A.12)

Consider now the third term on the right side of (A.4). Let x̃it denote the column (t− p) of
the matrix X′iMqi, for t = p + 1, p + 2, ..., T . We have x̃it = Op (1) uniformly in i, Ψ̂−1

iT = Op (1)

uniformly in i, and

E
∣∣∣√Nϑit∣∣∣ ≤ √N ∞∑

`=p+1

|ϕi|`+1E
∣∣β′i∆xi,t−`+1 + γift−`

∣∣ < K
√
Nρp, (A.13)

40



uniformly in i and t. It follows that E
∣∣∣√Nϑit∣∣∣ p→ 0 as

√
Nρp → 0,

1

T

T∑
t=1

x̃itϑit
p→ 0 uniformly in i, (A.14)

and

1

N

N∑
i=1

Ψ̂−1
iT

X′iMwi

(√
Nϑi

)
T

 p→ 0
k×1
. (A.15)

Using (A.6), (A.12) and (A.15) in (A.4), we obtain

√
N
(
θ̂MG − θ

)
d∼ ϑθi, ,

where

ϑθi =
1√
N

N∑
i=1

υi +
1√
N

N∑
i=1

(
X′iMhiXi

T

)−1 X′iMhiFp

T
ηγip, (A.16)

and recall that υi and ηγip are independently distributed across i. It now follows that when ηγi is in-

dependently distributed from Γi and regardless whether the rank condition holds,
√
N
(
θ̂MG − θ

)
d→

N

(
0
k×1

,ΣMG

)
, where

ΣMG = Ωθ + lim
p,N→∞

[
1

N

N∑
i=1

Σ−1
iξ QifΩγQ

′
ifΣ

−1
iξ

]
, (A.17)

in whichΩθ = V ar (θi),Ωγ = V ar (γi), andΣi = p limT−1X′iMhiXi andQif = p limT−1X′iMhiF.

When the rank condition stated in assumptions of Theorem 1 holds then Qif = 0
k×m

, and therefore

even if ηγi is correlated with Γi,
√
N
(
θ̂MG − θ

)
d∼ 1√

N

∑N
i=1 υi. Consistency of the nonparametric

estimator can be established in the same way as in Chudik and Pesaran (2014a).

Proof of Theorem 2. Consider(
N∑
i=1

w2
i

)−1/2 (
θ̂P − θ

)
=

(
N∑
i=1

wi
X′iMqiXi

T

)−1
1√
N

N∑
i=1

w̃i
X′iMqi

(
Xivi + Fpγip + ϑi + εi

)
T

,

(A.18)

where ϑi is defined below (A.4), w̃i =
√
Nwi

(∑N
i=1w

2
i

)−1/2
, and, by granularity conditions (20)-

(21) there exists a constant K <∞ (independent of i and N), such that

|w̃i| =

∣∣∣∣∣∣√Nwi
(

N∑
i=1

w2
i

)−1/2
∣∣∣∣∣∣ < K. (A.19)

We focus on the individual terms on the right side of (A.18) below and assume that (N,T, p)
j→∞
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such that
√
Npρp → 0 for any constant 0 < ρ < 1 and p3/T → κ, 0 < κ <∞.

Using results (A.26) of Lemma A.1 we have

N∑
i=1

wi
X′iMqiXi

T
−

N∑
i=1

wiΣiq
p→ 0
k×1
,

for any weights {wi} satisfying granularity conditions (20)-(21). The limit limN→∞
∑N

i=1wiΣiq =

Ψ∗ exists by Assumption 5 and furthermore, by the same assumption, Ψ∗ is nonsingular. It

therefore follows that (
N∑
i=1

wi
X′iMqiXi

T

)−1

p→ Ψ∗−1. (A.20)

Noting that γip can be written as γip = γwp + ηip − ηwp, and using (A.9), (A.11), (A.19) and√
Nρp → 0 we obtain11

1√
N

N∑
i=1

w̃i
X′iMqiFp

T
γip −

1√
N

N∑
i=1

w̃i
X′iMqiFp

T
ηip

p→ 0
k×1
. (A.21)

(A.14) and (A.19) imply

1√
N

N∑
i=1

w̃i
X′iMqiϑi

T

p→ 0
k×1

. (A.22)

Result (A.28) of Lemma A.2 and result (A.30) of Lemma A.3 establish

√
N

X′iMqiεi
T

p→ 0
k×1

uniformly in i,

and therefore (noting that w̃i is uniformly bounded in i, see (A.19)),

1√
N

N∑
i=1

w̃i
X′iMqiεi

T
=

1

N

N∑
i=1

w̃i

(√
N

X′iMqiεi
T

)
p→ 0
k×1
. (A.23)

Using (A.20), (A.21), (A.22), (A.23) and result (A.27) of Lemma A.2 in (A.18), we obtain

(
N∑
i=1

w2
i

)−1/2 (
θ̂P − θ

)
d∼ Ψ∗−1 1√

N

N∑
i=1

w̃i
X′iMhi

(
Xivi + Fpηip

)
T

.

Assumption 5 is suffi cient for the bounded second moments of X′iMhiXi/T and X′iMhiFp/T . In

particular, condition E
(
x̃4
ist

)
< K, for s = 1, 2, .., k, is suffi cient for the bounded second moment

11(A.21) can also be established by noting that the column vectors of Xw =
∑N

i=1 wiXi are included in
Qwi and therefore X′wMqi = 0.
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of X′iMhiXi/T . To see this note that

X′iMhiXi

T
=

1

T

T∑
t=1

x̃itx̃
′
it,

and, by Minkowski’s inequality,∥∥∥∥∥ 1

T

T∑
t=1

x̃istx̃
′
ipt

∥∥∥∥∥
L2

≤ 1

T

T∑
t=1

∥∥x̃istx̃′ipt∥∥L2
,

for any s, p = 1, 2, .., k. But by Cauchy-Schwarz inequality, we have E
(
x̃2
istx̃

2
ipt

)
≤
[
E
(
x̃4
ist

)
E
(
x̃4
ipt

)]1/2
,

and therefore bounded fourth moments of the elements of x̃it are suffi cient for the existence of an

upper bound for the second moments of X′iMhiXi/T . Similar arguments can be used to establish

that X′iMhiFp/T has bounded second moments. Note also that vi and ηip are independently dis-

tributed across i; and, independently distributed ofMhi, Fp and, assuming that γi is independently

distributed of Γi, also Xi. It therefore follows, using similar arguments as in Lemma 4 of Pesaran

(2006), that (
N∑
i=1

w2
i

)−1/2 (
θ̂P − θ

)
d→ N (0,ΣP ) ,

where

ΣP = Ψ∗−1R∗Ψ∗−1, (A.24)

in which

Ψ∗ = lim
N→∞

N∑
i=1

wiΣi, R∗ = lim
N→∞

1

N

N∑
i=1

w̃2
i

(
ΣiΩθΣi + QifΩγQ

′
if

)
,

Ωθ = V ar (θi), Ωγ = V ar (γi), Σi = p limT−1X′iMhiXi and Qif = p limT−1X′iMhiF. ΣP can be

estimated as

Σ̂P =

(
N∑
i=1

w2
i

)
Ψ̂∗−1R̂∗Ψ̂∗−1, (A.25)

where

Ψ̂∗ =
N∑
i=1

wi

(
X′iMqiXi

T

)
,

and

R̂∗ =
1

N − 1

N∑
i=1

w̃2
i

(
X′iMqiXi

T

)(
θ̂i − θ̂MG

)(
θ̂i − θ̂MG

)′(X′iM̄wiXi

T

)
.

When the rank condition holds, then column vectors of Fp belong to the space spanned by

the column vectors of Hw, and therefore regardless whether ηγi is correlated with Γi or not,(∑N
i=1w

2
i

)−1/2 (
θ̂P − θ

)
d→ N (0,ΣP ) in the full rank case with ΣP reduced to Ψ∗−1R∗θΨ

∗−1 and
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Qif = 0
k×m

. Consistency of Σ̂P can be established using similar arguments as in Pesaran (2006).

A.2 Lemmas

Lemma A.1 Suppose Assumptions 1- 5 hold and (N,T, p)
j→∞ such that p3/T → κ, 0 < κ <∞.

Then,
X′iMhiXi

T

p→ Σi, uniformly in i. (A.26)

Proof. Let ξ′hit denote the individual rows of MhiXi so that

X′iMhiXi

T
=
T − p
T

1

T − p

T∑
t=p+1

ξhitξ
′
hit.

Ergodicity in mean of ξhit has been established in Chudik and Pesaran, (2014a, Lemma A3). This

completes the proof of (A.26).

Lemma A.2 Suppose Assumptions 1- 5 hold and (N,T, p)
j→∞ such that p3/T → κ, 0 < κ <∞.

Then,
√
N

X′iMqiXi

T
−
√
N

X′iMhiXi

T

p→ 0
k×k
, uniformly in i. (A.27)

√
N

X′iMqiεi
T

−
√
N

X′iMhiεi
T

p→ 0
k×1
, uniformly in i. (A.28)∥∥∥∥√NX′iMqiFp

T
−
√
N

X′iMhiFp

T

∥∥∥∥
1

p→ 0, uniformly in i. (A.29)

Proof. Results (A.27) and (A.28) can be established in the same way as Chudik and Pesaran,

(2014a, results A.21 and A.22 of Lemma A6). Consider now (A.29). Fp can be written as Fp =[
F(0),F(1), ...,F(p)

]
, where F(`) = (fp+1−`, fp+2−`, ..., fT−`)

′ for ` = 0, 1, 2, ..., p. Using the same

arguments as in Chudik and Pesaran, (2014a, results A.23 of Lemma A6), it can be shown that

√
N

X′iMqiF(`)

T
−
√
N

X′iMhiF(`)

T

p→ 0
k×m

,

uniformly in i and `. This is suffi cient for (A.29) to hold.

Lemma A.3 Suppose Assumptions 1- 5 hold and (N,T, p)
j→∞ such that p3/T → κ, 0 < κ <∞.

Then,

1√
N

N∑
i=1

X′iMhiεi
T

p→ 0
k×1
, uniformly in i. (A.30)

Proof. Results (A.27) can be established in the same way as Chudik and Pesaran, (2014a,

results A.26).
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