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Abstract

This paper considers tests of the null hypothesis of the ineffectiveness of a policy interven-
tion, defined as a change in the parameters of a policy rule, in the context of a macroecono-
metric dynamic stochastic general equilibrium (DSGE) model. This is an ex post evaluation
of an intervention in a single country, where data are available before and after the interven-
tion. The tests are based on the difference between the realisations of the outcome variable of
interest and counterfactuals based on no policy intervention, using only the pre-intervention
parameter estimates, and in consequence the Lucas Critique does not apply. We show that
such tests will have power to detect the effect of a policy intervention on a target outcome
variable that changes the steady state value of that variable, e.g. the target inflation rate.
They will have less power against interventions which do not change the steady state, since
these typically only have transitory effects. Asymptotic distributions of the proposed tests
are derived both when the post intervention sample is fixed as the pre-intervention sample
expands, and when both samples rise jointly but at different rates. The performance of the
test is illustrated by a simulated policy analysis of a three equation New Keynesian Model.
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1 Introduction

This paper considers tests of the null hypothesis of the ineffectiveness of a policy intervention,

defined as a change in the parameters of a policy rule, in the context of a macroeconometric

dynamic stochastic general equilibrium (DSGE) model.1 We are concerned with ex post evaluation

of a policy intervention in the case of an individual unit (say a country), where time series data are

available before as well as after the intervention. The proposed tests are based on the difference

between the realisations of the outcome variable of interest and counterfactuals obtained assuming

no policy intervention, using only the pre-intervention parameter estimates. The Lucas Critique

is not an issue since the counterfactuals, given by the predictions from the model estimated on

pre-intervention data, will embody pre-intervention parameters while the actual post-intervention

outcomes will embody the effect of any change in the policy parameters and the consequent

change in expectations. Different issues are involved in ex ante policy formulation where post-

intervention data are not available and the Lucas Critique could be an issue since the possible

effects of the policy change on parameters and expectations must be taken into account. To

illuminate the effects of interventions that change policy parameters, we supplement the usual

‘shock impulse response functions’, which show the time profile of the effects of shocking the

policy equation errors, with ‘policy impulse response functions’, which show the time profile of

the effects on the variables of changing the policy rule parameters.

There is a large literature on policy interventions, such as the Volcker disinflation which

marked the transition from an era of macroeconomic turbulence and high inflation to an era of

"Great Moderation" and low inflation. For instance, Primiceri (2006) provides an explanation

of changes in policy in terms of learning about the parameters of the Phillips curve. Sims and

Zha (2006) estimate regime switching structural VARs and find that the best fit allows time

variation in the disturbance variances only. Benati and Surico (2009) show how structural VAR

based counterfactuals and impulse response functions may be misleading in not revealing changes

in policy parameters. However, this literature has tended to emphasise estimation issues in the

context of structural VARs and has not typically been concerned with constructing formal tests

of the effects of changes in policy regimes in the context of DSGE models.

We consider both standard DSGE models where all variables, including policy variables, are

endogenous and DSGE models augmented by exogenous variables. The latter case accommodates

interventions that change exogenous policy parameters, such as a target inflation rate or a fixed

money supply target. Thus our framework can also accommodate policy changes that alter the

steady states of some of the variables, as occurs when the inflation target is changed.

1Note that we are concerned with the empirical issue of whether the effect of a policy intervention can be
detected; not the theoretical policy ineffectiveness proposition of Sargent and Wallace (1975).
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Where the policy intervention changes the steady state, the test has fairly good power: a

reasonable probability of detecting the effect of the intervention on a target outcome variable.

The power of the test increases towards one as the evaluation horizon increases. Tests of policy

interventions that do not change the steady states tend to have low power since they affect only

the deviations from steady state and such effects are transitory. Thus the average effect of the

intervention on the target variable over the evaluation sample will fall towards zero as the length

of the evaluation sample is increased. Furthermore, the power of such tests will depend on the

state of the economy at the time of the policy intervention. If at the time the economy is in steady

state, the intervention cannot be detected and the test will have no power. In practice, however,

this may not be a problem, because major policy interventions tend to take place at times when

the economy is far from its steady state.

We investigate the size and power of the proposed tests by a simulation analysis using a

standard three equation New Keynesian DSGE model, where the policy interventions involve

changing the parameters of the Taylor rule. The model shows very standard shock impulse

responses that show the time profile of the effects of monetary policy, demand and supply shocks.

We also present the policy impulse response functions that show the time profile of the effects of

a change in policy rule parameters. The simulations accord with the theoretical results and show

that in all applications the tests have the correct size; but, if the intervention does not change the

steady state, the power of the test is low. The simulations demonstrate how the power varies with

the magnitude of the policy change, the difference between pre and post-intervention parameter

values; the particular parameters of the Taylor rule which are changed; the state of the economy

at the time of policy intervention, and the post-intervention evaluation horizon.

We also consider policy changes that increase or reduce the inflation target. Once again

simulation results are in line with the theory, and show that our test has power when it is applied

to interest rates and inflation and the power rises with the evaluation horizon and eventually

approaches unity. But when the test is applied to output deviations, the power is low and does

not rise with the evaluation horizon, since the effect of the policy change on output is only

transitory. The simulations also show interesting interactions between the direction of the policy

change in the inflation target and the degree of interest rate smoothing. In cases where the policy

change aims at increasing the inflation target then smoothing of interest rate changes can have

beneficial effects on output, but in cases where the inflation target is reduced further smoothing

of interest rate changes can be costly as output losses will be greater.

The rest of the paper is organized as follows: Section 2 develops the counterfactuals and policy

impulse response functions and derives the policy ineffectiveness test for a standard DSGE where

all the variables, including the policy variable, are endogenous. Section 3 augments the standard
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DSGE model to allow for exogenous variables including exogenous policy variables. Section 4

provides the simulated policy analysis of the New Keynesian model. Section 5 ends with some

concluding remarks. The more technical derivations are given in an Appendix.

2 Policy ineffectiveness tests for a standard RE model

2.1 Derivation of the counterfactuals and policy effects: standard case

Consider a standard rational expectations (RE) model, where all the variables are endogenous.

We suppose that the target variable, yt, is affected directly by a vector of variables, zt, including

the policy variable, and assume that the (kz + 1) × 1 vector qt = (yt, z
′
t)
′ is determined by the

RE model (which could result from some well defined decision problem) of the form

A0qt = A1Et(qt+1) + A2qt−1 + ut, (1)

where the structural shocks, ut, have mean zero, E(ut) = 0, are serially uncorrelated and have the

constant variance matrix, E(utu
′
t) = Σu, typically a diagonal matrix. Et(qt+1) = E(qt+1 | It),

It is the information set that includes ut, and the lagged values of the variables, qt. We assume

that qt are measured as deviations from their steady state values, but discuss policy changes that

alter the steady states, such as the inflation target, below.

Initially we abstract from parameter estimation uncertainty and denote the vector of structural

and policy parameters by θ = vec(A0,A1,A2), and assume that Σu remains invariant to the

policy change. The parameter vector, θ, is composed of a set of policy parameters, θp, and a

set of structural parameters, θs, that are invariant to changes in θp. A policy intervention is

defined in terms of a change in one or more elements of θp. The null hypothesis of our test is

policy ineffectiveness to be defined more formally below. We assume that the model is known

by economic agents, the announcement and implementation of the intervention are credible, and

no further changes are expected.2 We suppose that the policy intervention occurs at the end of

time t = T0, and we have a pre-intervention sample that runs from t = M,M + 1, ..., T0, and

a post-intervention sample for t = T0 + 1, T0 + 2, .., T0 + H. Therefore, the post-intervention

evaluation horizon is H and the sample size for estimation of the pre-intervention parameters is

T = T0 −M + 1. This notation allows us to increase the sample size T (by letting M → −∞),

while keeping the time of intervention, T0, fixed.

A prominent example of a system of this form is the three equation new Keynesian DSGE

model, which has an IS curve determining log output-gap, yt, a Phillips curve determining in-

flation, πt, and a Taylor rule determining the short interest rate, Rt. The policy parameters are

2Kulish and Pagan (2014) consider solutions of forward looking models in the case of imperfect credibility where
policy announcements are not necessarily incorporated into expectations.
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the parameters of the Taylor rule. We use such a model in the simulation analysis in Section 4.

In the literature the effects of policy is usually measured by "shock impulse response functions",

SIRFs. For instance in the NK model, this estimates the expected effect over time of a one stan-

dard error monetary policy shock to the interest rate equation, assuming that the shock is small

enough to leave the parameters unchanged. In contrast, we focus on a "policy impulse response

function" (PIRF), that measures the effect over time of a policy intervention that takes the form

of a change in the policy parameters, θp, such as those of the Taylor rule, rather than a shock

to its equation error. In the context of the SIRF, it is often not clear what is the source of this

policy implementation error that is shocked to produce the IRF in response to a monetary policy

shock.

Under the above set up, the RE model (1) has the unique solution

qt = Φ(θ)qt−1 + Γ(θ)ut, (2)

if the quadratic matrix equation

A1Φ
2 −A0Φ + A2 = 0, (3)

has a solution, Φ, with all its eigenvalues inside the unit circle, and Γ(θ) = (A0 −A1Φ)−1. Below

we shall also use the reduced form shocks, εt = Γ(θ)ut, and we note that

Σε(θ) = E(εtε
′
t) = (A0 −A1Φ)−1Σu(A0 −A1Φ)

′−1. (4)

Notice that (2) is a vector autoregression and corresponds to the reduced form of a standard

simultaneous equations model where there are no exogenous variables.

A policy change, defined as a change in one or more elements of θp, will affect the mean

outcomes through changes inΦ(θ) and the variance of the outcomes through Γ(θ). Denote the pre-

intervention parameters by θ0 = (θ0′p , θ
′
s)
′, and the post-intervention parameters by θ1 = (θ1′p , θ

′
s)
′,

where only one or more elements of the policy parameters are changed. If the intervention at

T0 is transparently and fully communicated, it is understood to be credible, with expectations

adjusting immediately, then the process switches from

qt = Φ(θ0)qt−1 + Γ(θ0)ut, t = M,M + 1,M + 2, ..., T0

to

qt = Φ(θ1)qt−1 + Γ(θ1)ut, t = T0 + 1, T0 + 2, ..., T0 +H.

The policy impulse response function for yt is given by the expected difference in the outcomes

associated with the two parameter vectors

PIRFy(h, θ
0, θ1,qT0) = s′

{[
Φ
(
θ1
)]h − [Φ (θ0)]h}qT0 , (5)
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where s is a the (kz + 1)× 1 selection vector with all its elements zero except for its first element

which is set to unity. Unlike the shock impulse response functions the PIRF depends on the state

of the economy at the time of the intervention, qT0 . To evaluate this PIRF requires knowing, or

being able to estimate, the post-intervention parameters θ1. However, the counterfactual values

of the focus variable, yT0+h, on the assumption of no change in policy, are given by

y0T0+h = s′
[
Φ
(
θ0
)]h

qT0 , (6)

and only require estimation of θ0. The effect of policy on the target variable is then the difference

between the realised values, yT0+h, and the counterfactual values, y
0
T0+h

,

dT0+h = yT0+h − y0T0+h, h = 1, 2, ...,H. (7)

These measured policy effects will be subject to the post intervention random errors, εy,T0+h..

Notice that if there are no dynamics in (1), A2 = 0, then assuming that all eigenvalues of

A−10 A1 lie within the unit circle, the unique solution is:

qt = A−10 ut = Γ(θ)ut.

Thus in the absence of persistence (dynamics), a policy intervention (defined by a change in some

elements of A0) has no effect on the mean outcomes, qt, but does change the variance of the

outcomes. The variance of qt changes from Σε(θ
0) = Γ(θ0)ΣuΓ(θ0)′ to Σε(θ

1) = Γ(θ1)ΣuΓ(θ1)′.

Conditional on the structural error variances, Σu, remaining constant, one could derive a test

statistic for a policy induced variance change corresponding to the policy ineffectiveness test for a

mean change discussed below. It will be more challenging to develop tests that separate the effects

of a policy change from other changes in Σu that happen by chance. When there is persistence,

policy can effect mean outcomes, but that effect is transitory since the system returns to steady

state.

2.2 Derivation of the test statistic: standard case

To derive the distribution of the policy effects and develop a policy ineffectiveness test we require

the following assumptions.

Assumption 1: The RE model defined by (1) has a unique solution given by (2), and

the structural parameters, θ ∈ Θ, are identified at θ0 and θ1 (the pre and post-intervention

parameters). The structural errors, ut, are serially uncorrelated with zero means and a constant

covariance matrix, Σu.

Assumption 2a: The spectral radius of Φ(θ), defined by |λmax [Φ(θ)]|, is strictly less than

unity for values of θ = θ0 and θ1 ∈ Θ.3

3λmax(A) stands for the largest eigenvalue of matrix A.
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Assumption 2b: There exists a matrix norm ofΦ(θ), denoted by ‖Φ(θ)‖, such that ‖Φ(θ)‖ <

1, for values of θ = θ0 and θ1 ∈ Θ.

Assumption 3: Standard regularity assumptions on the structural errors, ut, and the

processes generating the exogenous variables (if any) apply such that θ0 can be consistently

estimated by θ̂
0
T based on the pre-intervention sample, t = M,M + 1,M + 2, ..., T0, where

T = T0 −M + 1, and θ̂0T = θ0 +Op
(
T−1/2

)
. In particular

√
T
(
θ̂0T − θ0

)
a∼ N(0,Σθ0), (8)

E
∥∥∥θ̂0T − θ0∥∥∥ = O(T−1/2), (9)

where Σθ0 is a symmetric positive definite matrix.

Assumption 4: Φ(θ) = (φij(θ)), is bounded and continuously differentiable in θ, such that∥∥∂φij(θ)/∂θ′∥∥, for all i and j exist and are bounded.
Assumption 5: The initial values, qT0 , are bounded, namely ‖qT0‖ < K, where K is a fixed

positive constant.

Assumptions 1, 2a, 3 and 4 are standard in the literature on the econometric analysis of DSGE

models. The conditions for identification in Assumption 1 are discussed in Koop, Pesaran and

Smith (2013). Assumption 2a ensures that ‖Φ(θ)‖ < λ, where λ is a finite positive constant.4

Assumption 2b is stronger than 2a and further requires that λ < 1. This latter restriction allows

us to simplify the proofs considerably and obtain the main theoretical results without requiring

high order differentiability of Φ(θ) which will be needed in the absence of Assumption 2b.

In the cases where both H and T go to infinity we will also use the following joint asymptotic

condition:

Condition 1 The post-intervention sample size, H, rises with the pre-intervention sample size,

T , such that H = κT ε, where κ is a fixed positive constant, and ε ≤ 1/2.

Using (6), estimates of the counterfactuals in the absence of the policy change are given by

ŷ0T0+h = s′
[
Φ
(
θ̂0T

)]h
qT0 , (10)

where under Assumption 3, θ̂0T is a
√
T - consistent estimator of θ based on the pre-intervention

sample. Therefore, the estimated policy effects are given by

d̂T0+h(θ̂0T ) = s′qT0+h − s′
[
Φ
(
θ̂0T

)]h
qT0 , (11)

for h = 1, 2, ...,H. It is clear that estimation of the policy effects only requires estimates of θ0

that can be obtained using the pre-intervention sample. Also, the sampling distribution of the
4Note that there exists a matrix norm, ‖A‖, such that |λmax(A)| ≤ ‖A‖ ≤ |λmax(A)| + ε, where ε is a positive

constant. See, for example, Lemma 5.10.10 in Horn and Johnson (1985).
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d̂T0+h(θ̂0T ), depends on post-intervention parameters only under the alternative that the policy is

effective, but not under the null hypothesis of no policy effect as defined by

H0 : θ1 = θ0. (12)

To derive the distribution of the policy effects, d̂T0+h(θ̂0T ), first note that post-intervention

realized values, qT0+h, (for h = 1, 2, ...,H) are given by

qT0+h =
[
Φ
(
θ1
)]h

qT0 +

h−1∑
j=0

[
Φ
(
θ1
)]j

Γ(θ1)uT0+h−j . (13)

Using (13) and substituting the results for qT0+h in (11) we have

d̂T0+h(θ̂0T ) = µ̂T0,h(θ̂0T ) + vT0,h (14)

where

µ̂T0,h(θ̂0T ) = −s′
{[

Φ
(
θ̂0T

)]h
−
[
Φ
(
θ1
)]h}

qT0 , (15)

vT0,h =
h−1∑
j=0

s′
[
Φ
(
θ1
)]j

Γ(θ1)uT0+h−j , (16)

In (14) the estimated policy effect, d̂T0+h(θ̂0T ), has a systematic component, µ̂T0,h(θ̂0T ), and a

random component, vT0,h. The random component is a weighted linear combination of serially

uncorrelated shocks, ut with the weights decaying exponentially under Assumption 2a. A policy

ineffectiveness test of H0 can now be based on the policy effects, d̂T0+h(θ̂0T ), h = 1, 2, ...,H. But

to develop formal statistical tests of policy ineffectiveness, we also need to make distributional

assumptions regarding the shocks, ut. The role of such assumptions can be minimized by basing

the policy ineffectiveness test on a "mean policy effect" computed over the post-intervention

horizon T0 + h, for h = 1, 2, ...,H, namely

d̂H(θ̂0T ) =
1

H

H∑
h=1

d̂T0+h(θ̂0T ). (17)

For a fixed H, the implicit null hypothesis of no policy effects can now be specified as

H ′0 : p lim
T→∞

(
H−1/2

H∑
h=1

µ̂T0,h(θ̂0T )

)
= 0. (18)

As we shall see, this condition is met under Assumptions 1, 2a, 3 and 4 when H is fixed and as

T →∞.

Interestingly enough, H ′0 continues to hold even if H → ∞, so long as Assumption 2b holds

and the rate of increase of H in relation to T is governed by the joint asymptotic condition 1. If
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the underlying RE model is correctly specified, then under the null of no policy change, H0, we

have

H−1/2
H∑
h=1

µ̂T0,h(θ̂0T ) = −s′
{
H−1/2

H∑
h=1

[
Φ
(
θ̂0T

)]h
−
[
Φ
(
θ0
)]h}

qT0 . (19)

Now using results in Lemmas 2 and 3, given in the Appendix, we have∥∥∥∥∥H−1/2
H∑
h=1

µ̂T0,h(θ̂0T )

∥∥∥∥∥ ≤ ∥∥s′∥∥ ‖qT0‖H−1/2
∥∥∥∥∥
H∑
h=1

[
Φ
(
θ̂0T

)]h
−
[
Φ
(
θ0
)]h∥∥∥∥∥

≤ K
∥∥s′∥∥ ‖qT0‖H−1/2

(
H∑
h=1

hλh−1T

)∥∥∥θ̂0T − θ0∥∥∥ , (20)

where K is a fixed constant. Using (70) in Lemma 3, we have∥∥∥Φ(θ̂0T )
∥∥∥ ≤ ∥∥Φ(θ0)

∥∥+ aT

∥∥∥θ̂0T − θ0∥∥∥ ,
where aT =

∥∥∂Φ
(
θ̄0T
)
/∂θ′

∥∥, and elements of θ̄0T lie on the line segment joining θ0 and θ̂0T . Con-
sidering that θ̄0T →p θ

0, and by Assumption 4 ‖∂φij(θ)/∂θ′‖ for all i and j exist and are bounded,

then it must also follow that aT is bounded in T . Hence, recalling that under Assumption 3,
√
T
∥∥∥θ̂0T − θ0∥∥∥ = Op(1), then λT ≤ λ + aTT

−1/2, where
∥∥Φ (θ0)∥∥ ≤ λ, and aT is bounded in T .

In the case where H is fixed and T →∞,∣∣∣∣∣H−1/2
(

H∑
h=1

hλh−1T

)∣∣∣∣∣ ≤ H−1/2
H∑
h=1

h
(
λ+ aTT

−1/2
)h−1

→ H−1/2
H∑
h=1

hλh−1 < K, as T →∞.

Using this result in (20) and noting that under Assumptions 3 and 5, ‖qT0‖ is bounded in T,

and
∥∥∥θ̂0T − θ0∥∥∥ = Op

(
T−1/2

)
, then under the null of no policy change, H0, for a fixed H and as

T →∞, we have
∥∥∥∥∥H−1/2

H∑
h=1

µ̂T0,h(θ̂0T )

∥∥∥∥∥→p 0, as required.

Consider now the case where H rises with T and the rate of increase of H in relation to T is

governed by the joint asymptotic condition 1. Note also that under Assumption 2b, λ < 1. Then

using (71) and (72) in Lemma 4 we have

H∑
h=1

hλh−1T =
1

(1− λ)2
+Op

(
T−1/2

)
+Op

(
HλH

)
, (21)

H∑
h=1

h−1∑
j=0

jλj−1T =
1

(1− λ)2

(
H − 1 + λ

1− λ

)
+Op

(
T−1/2

)
+Op

(
HλH

)
. (22)

Using (21) in (20), and (22) we obtain

H−1/2
H∑
h=1

µ̂T0,h(θ̂0T ) = Op

(
H−1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
, under H0 (23)
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Therefore, under H0, H−1/2
H∑
h=1

µ̂T0,h(θ̂
0
T ) tends to zero in probability if H = κT ε, for ε ≤ 1/2, as

H and T →∞ (the joint asymptotic condition 1).

To derive the distribution of d̂H(θ̂0T ), using Lemma 1, in the Appendix, we first note that

1

H

H∑
h=1

vT0,h =
1

H

H∑
h=1

h−1∑
j=0

s′
[
Φ(θ1)

]j
Γ(θ1)uT0+h−j =

1

H

H∑
j=1

s′AH−j (Φ1) Γ(θ1)uT0+h−j , (24)

where

AH−j (Φ1) = Ikz+1 + Φ1 + Φ2
1 + ...+ ΦH−j

1 = (Ikz+1−Φ1)
−1 (Ikz+1−ΦH−j+1

1 ). (25)

To simplify notation we have used Φ1 for Φ(θ1). Considering that under H0, µ̂T0,H(θ̂0T ) =

Op(T
−1/2), we have

V ar
(√

Hd̂H(θ̂0T )
)

= ω20q + o(1),

where

ω20q = s′

H−1 H∑
j=1

AH−j (Φ1) Σε(θ
1)A′H−j (Φ1)

 s,
Σε(θ

1) = E(εT+jε
′
T+j) = Γ(θ1)ΣuΓ(θ1)′. See (4) for the definition of Γ(θ). Therefore, the policy

ineffectiveness test statistic can be written as

Td,H =

√
Hd̂H(θ̂0T )√

ω̂20q

, (26)

where ω20q can be estimated using pre-intervention sample as:

ω̂20q = s′

H−1
H∑
j=1

AH−j
(
Φ(θ̂0T )

)
Σε

(
θ̂0T

)
A′H−j

(
Φ(θ̂0T )

) s, (27)

where

AH−j
(
Φ(θ̂0T )

)
= Ikz+1 + Φ(θ̂0T ) +

[
Φ(θ̂0T )

]2
+ ...+

[
Φ(θ̂0T )

]H−j
(28)

Σε

(
θ̂0T

)
= T−1

T0∑
t=M

[
qt −Φ(θ̂0T )qt−1

] [
qt −Φ(θ̂0T )qt−1

]′
, (29)

Under the null hypothesis of policy ineffectiveness, and assuming that the underlying RE model

is correctly specified and the innovations εT0+h = Γ(θ)uT0+h for h = 1, 2, ...,H are normally

distributed, then for a fixed H and as T →∞, we have Td,H →d N(0, 1). For moderate values of

H, small departures from normality of the innovations over the post-intervention sample might

not be that serious for the validity of the test.

Finally, the above derivations abstract from the pre-intervention sampling uncertainty by as-

suming that T is suffi ciently large and H/T suffi ciently small. Allowing for the effects of sampling
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uncertainty on the distribution of Td,H when dealing with dynamic RE models with complicated

non-linear cross-equation restrictions is likely to be challenging and will not be attempted here.

Alternatively, one could adopt a Bayesian approach and compute the posterior distribution of

d̂H(θ̂0T ) using Markov chain Monte Carlo simulations.

2.3 Power of the policy ineffectiveness test: standard case

The power of Td,H test, defined by (26), depends on the probability limit of Td,H under the

alternative hypothesis that θ1 6= θ0. In particular, the test is consistent if its power exceeds its

size in finite samples, and if the power tends to unity as H →∞. Using (14) and suppressing the

dependence on (θ̂0T ) for simplicity, we note that

√
Hd̂H = H−1/2

H∑
h=1

µ̂T0,h +H−1/2
H∑
h=1

vT0,h. (30)

It is now easily seen that the purely random component, H−1/2
H∑
h=1

vT0,h, has a limiting distribution

with mean zero and a finite variance both under the null and the alternative hypotheses. Therefore,

for the test to be consistent the mean component of
√
Hd̂H must diverge to infinity with H. We

shall consider the limiting behaviour of H−1/2
H∑
h=1

µ̂T0,h, which relates to the internal dynamics of

the DSGE model. Under H1 : θ1 6= θ0, we have

H−1/2
H∑
h=1

µ̂T0,h = −s′
{
H−1/2

H∑
h=1

[
Φh
(
θ̂0T

)
−Φh

(
θ1
)]}

qT0

= s′

{
H−1/2

H∑
h=1

[
Φh
(
θ1
)
−Φh

(
θ0
)]}

qT0 − s′
{
H−1/2

H∑
h=1

[
Φh
(
θ̂0T

)
−Φh

(
θ0
)]}

qT0 .

(31)

But it has been already established that (see (23))

s′

{
H−1/2

H∑
h=1

[
Φh
(
θ̂0T

)
−Φh

(
θ0
)]}

qT0 = Op

(
H−1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
.

Hence, under H1

H−1/2
H∑
h=1

µ̂T0,h = s′

{
H−1/2

H∑
h=1

[
Φh
(
θ1
)
−Φh

(
θ0
)]}

qT0+Op

(
H−1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
.

Now set Φ1 = Φ
(
θ1
)
and Φ0 = Φ

(
θ0
)
, and note that

H∑
h=1

Φh
1 = Φ1(Ikz+1−ΦH

1 )(Ikz+1−Φ1)
−1.

Under Assumption 2, (Ikz+1 −Φ1)
−1 exists and is finite and ΦH

1 → 0 as H →∞. Hence,

H−1/2
H∑
h=1

Φh
(
θ1
)

= H−1/2Φ1(Ikz+1 −ΦH
1 )(Ikz+1 −Φ1)

−1 → 0, as H →∞.
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Similarly, H−1/2
H∑
h=1

Φh
(
θ0
)
→ 0, with H, and H−1/2

H∑
h=1

µ̂T0,h = op(1), under the alternative

hypothesis. Hence, H−1/2
H∑
h=1

µ̂T0,h →p 0 under both the null and the alternative hypotheses as

T and H → ∞, subject to the joint asymptotic condition 1. Therefore, the internal dynamics

of the RE model do not contribute to the power of the policy ineffectiveness test for T and H

large. Thus tests based on the average policy effects, d̂H , will not be consistent in the case of

stationary DSGE models. In such cases, the best that can be hoped for is to base the test of

the policy ineffectiveness on a short post-intervention sample and accept that the test is likely to

lack power and be sensitive to the specifications of the post-intervention error processes, εT0+h,

h = 1, 2, ...,H.

3 Policy ineffectiveness tests for the RE model with exogenous
variables

3.1 Derivation of the counterfactuals and policy effects with exogenous vari-
ables

We now allow for exogenous policy and non-policy variables. Endogenous policy rules, such as the

Taylor rule, follow closed loop control with feedback, but there may be open loop control without

feedbacks, such as fixed money supply rules, where the policy variable xt is exogenous. There

may also be non-policy variables, wt, such as global variables that affect zt and/or yt but are

invariant to changes in xt. This framework also accommodates changes that shift steady states

such as target inflation.

As before let qt = (yt, z
′
t)
′, be a (kz + 1) × 1 vector, but now introduce st = (xt,w

′
t)
′, a

(1 + kw)× 1 vector. The RE model is now

A0qt = A1Et(qt+1) + A2qt−1 + A3st + ut, (32)

and suppose that the forcing variables, st, follow the VAR(1) specification

st = Rst−1 + ηt, (33)

where

R =

(
ρ 0
0 Rw

)
, ηt =

(
ηxt
ηwt

)
,

so that wt is invariant to changes in xt. The errors, ut and ηt are assumed to be serially and cross

sectionally uncorrelated, with zero means and constant variances, Σu, and Ση, respectively.

Initially, consider the case where there are no dynamics, namely A2 = 0, and all eigenvalues

of A−10 A1 lie within the unit circle. Then the unique solution of (32) is given by

A0qt = G(θ)st + ut, (34)

12



where θ includes both the structural coeffi cients, a = vec(A0,A1,A3), and the parameters of the

processes generating the exogenous variables, φ = (ρ, vec(Rw)′)′.

vec(G) =
[
(Ikw+1⊗Ikz+1)−

(
R′⊗A1A

−1
0

)]−1
vec (A3) .

Equation (34) is the structural form of a standard simultaneous equations model. The reduced

form is

qt = A−10 G(θ)st + A−10 ut (35)

= Π (θ) st + Γ(θ)ut.

Under the same assumptions as before about the intervention at T0, then the process switches

from

qt = A−10 G(θ0)st + A−10 ut = Π0st + Γ(θ)ut, t = M,M + 1,M + 2, ..., T0,

to

qt = A−10 G(θ1)st + A−10 ut = Π1st + Γ(θ)ut, t = T0 + 1, T0 + 2, ..., T0 +H.

In the general case where A2 6= 0, the RE solution is

qt = Φ (θ) qt−1 + Ψx (θ) xt + Ψw (θ) wt + Γ(θ)ut, (36)

where θ contains a = vec(A0,A1,A2,A3) and φ = (ρ, vec(Rw)′)′. The counterfactual values of

yT0+h, are now given by

y0T0+h = s′
[
Φ
(
θ0
)]h

qT0 + s′
h−1∑
j=0

[
Φ
(
θ0
)]j [

Ψx

(
θ0
)
x0T0+h−j + Ψw

(
θ0
)
wT0+h−j

]
, (37)

where x0T0+j for j = 1, 2, ...,H denote the counterfactual values of the policy variable, and wT0+j ,

for j = 1, 2, ...,H, are the realized values of the policy invariant variables. In the case where

there is a single policy variable that follows the AR(1) process, xt = ρxt−1 + ηxt, we also have

x0T0+h =
(
ρ0
)h
xT0 . Notice that the counterfactual outcomes are neither ex ante forecasts, since

y0T0+h is computed conditional on the realizations of wT0+h and not their predictions, nor are they

ex post forecasts since they are based on projected values of the policy variables, xT0+h, and the

initial values of the endogenous variables, qT0 .

3.2 Derivation of the test statistic with exogenous variables

In addition to assumptions 1-3 and the joint asymptotic condition given above we amend assump-

tions 4 and 5 to allow for the exogenous variables.

Assumption 4a: Φ(θ) = (φij(θ)), and Ψ(θ)= (ψij(θ)), are bounded and continuously differ-

entiable in θ, such that
∥∥∂φij(θ)/∂θ′∥∥, and ∥∥∂ψij(θ)/∂θ′∥∥ exist and are bounded, for all i and

j.

13



Assumption 5a: The initial values, qT0 , and post policy exogenous variables, sT0+j , for

j = 1, 2, ...,H are bounded, namely ‖qT0‖ < K, and ‖sT0+j‖ < K for all T0 and j, where K is a

fixed positive constant.

Using (37), the estimated counterfactuals are

ŷ0T0+h = s′
[
Φ
(
θ̂0T

)]h
qT0 + s′

h−1∑
j=0

[
Φ
(
θ̂0T

)]j [
Ψx

(
θ̂0T

)
x̂0T0+h−j + Ψw

(
θ̂0T

)
wT0+h−j

]
. (38)

As before under Assumption 3, θ̂0T is
√
T consistent estimator of θ based on pre-intervention

period, t = 1, 2, ..., T . In the case of the AR(1) specification for xt we also have x0T0+h = (ρ0)hxT0 ;

h = 1, 2, ...H, where ρ0 is the pre-intervention value of ρ, which can be estimated using the

pre-intervention sample, namely

x̂0T0+h−j =
[
ρ̂0T
]h−j

xT0 .

Therefore, the estimated policy effects are

d̂T0+h = s′qT0+h−s′
[
Φ
(
θ̂0T

)]h
qT0−s′

h−1∑
j=0

[
Φ
(
θ̂0T

)]j [
Ψx

(
θ̂0T

) [
ρ̂0T
]h−j

xT0 + Ψw

(
θ̂0T

)
wT0+h−j

]
,

(39)

for h = 1, 2, ...,H. The dependence of d̂T0+h on
(
θ̂
0
T

)
has not been made explicit for simplicity.

The null hypothesis of no policy effect is H0 : θ1 = θ0 and ρ1 = ρ0.

The post-intervention realized values, qT0+h, (for h = 1, 2, ...,H) are given by

qT0+h =
[
Φ
(
θ1
)]h

qT0 +

h−1∑
j=0

[
Φ
(
θ1
)]j [

Ψx

(
θ1
) [
ρ1
]h−j

xT0 + Ψw

(
θ1
)
wT0+h−j

]

+

h−1∑
j=0

[
Φ
(
θ1
)]j

Ψx

(
θ1
)
ξT0,h−j +

h−1∑
j=0

[
Φ
(
θ1
)]j

εT0+h−j .

where εt = A−10 ut, and

ξT0,h−j =

h−j∑
i=1

[
ρ1
]h−j−i

ηx,T0+i.

But after some algebra it follows that

h−1∑
j=0

[
Φ
(
θ1
)]j

Ψx

(
θ1
)
ξT0,h−j =

h−1∑
j=0

Bj
(
θ1, ρ1

)
ηx,T0+h−j , (40)

where

Bj
(
θ1, ρ1

)
=

j∑
i=0

[
Φ
(
θ1
)]i

Ψx

(
θ1
) [
ρ1
]j−i

.

The estimated policy effects are then
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d̂T0+h =
(
µ̂qT0,h + µ̂wT0,h + µ̂xT0,h

)
+
(
vqT0,h + vxT0,h

)
= µ̂T0,h + vT0,h.

The terms

µ̂qT0,h = −s′
{[

Φ
(
θ̂0T

)]h
−
[
Φ
(
θ1
)]h}

qT0 ,

vqT0,h =
h−1∑
j=0

s′
[
Φ
(
θ1
)]j

εT0+h−j ,

are the same as µ̂T,h in (15) and vT,h in (16) in section (2.2), without exogenous variables. The

other terms are

µ̂wT0,h = −s′
h−1∑
j=0

{[
Φ
(
θ̂0T

)]j
Ψw

(
θ̂0T

)
−
[
Φ
(
θ1
)]j

Ψw

(
θ1
)}

wT0+h−j , (41)

µ̂xT0,h = −s′
h−1∑
j=0

{[
Φ
(
θ̂0T

)]j
Ψx

(
θ̂0T

) [
ρ̂0T
]h−j − [Φ (θ1)]j Ψx

(
θ1
) [
ρ1
]h−j}

xT0 , (42)

and

vxT0,h =
h−1∑
j=0

s′Bj
(
θ1, ρ1

)
ηx,T0+h−j . (43)

For a fixed H, the implicit null hypothesis of no policy effects can now be specified as

H ′0 : p lim
T→∞

[
H−1/2

H∑
h=1

(
µ̂qT0,h + µ̂wT0,h + µ̂xT0,h

)]
= 0, (44)

which is a generalization of (18). To establish the above result, we consider each of the three

terms in (44), separately. The first term, relates to the internal dynamics of the DSGE model,

which we already discussed above in Section 2.2, while the next two terms capture the effects of

exogenous variables.

Consider now the second term in (44), and note that (under Assumption 5a)∥∥∥∥∥H−1/2
H∑
h=1

µ̂wT0,h

∥∥∥∥∥ ≤ K H−1/2
H∑
h=1

h−1∑
j=0

∥∥∥∥[Φ(θ̂0T)]j Ψw

(
θ̂0T

)
−
[
Φ
(
θ1
)]j

Ψw

(
θ1
)∥∥∥∥ . (45)

But under H0[
Φ
(
θ̂0T

)]j
Ψw

(
θ̂0T

)
−
[
Φ
(
θ1
)]j

Ψw

(
θ1
)

= Φ̂j
0Ψ̂0,w−Φj

0Ψ0,w =
(
Φ̂j
0 −Φj

0

)
Ψ̂0,w+Φj

0

(
Ψ̂0,w −Ψ0,w

)
,

where Φ0 = Φ
(
θ0
)
, Φ̂0 = Φ

(
θ̂0T

)
, Ψ0,w = Ψw

(
θ0
)
and Ψ̂0,w = Ψw

(
θ̂0T

)
. Hence

H∑
h=1

h−1∑
j=0

∥∥∥∥[Φ(θ̂0T)]j Ψw

(
θ̂0T

)
−
[
Φ
(
θ1
)]j

Ψw

(
θ1
)∥∥∥∥ (46)

≤
H∑
h=1

h−1∑
j=0

∥∥∥Φ̂j
0 −Φj

0

∥∥∥∥∥∥Ψ̂0,w

∥∥∥+
∥∥∥Φj

0

∥∥∥∥∥∥Ψ̂0,w −Ψ0,w

∥∥∥ .
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Once again using results in Lemmas 2 and 3 we have

H∑
h=1

h−1∑
j=0

∥∥∥Φ̂j
0 −Φj

0

∥∥∥∥∥∥Ψ̂0,w

∥∥∥+
∥∥∥Φj

0

∥∥∥∥∥∥Ψ̂0,w −Ψ0,w

∥∥∥
≤

 H∑
h=1

h−1∑
j=0

jλj−1T

∥∥∥Φ̂0 −Φ0

∥∥∥∥∥∥Ψ̂0,w

∥∥∥+

 H∑
h=1

h−1∑
j=0

λj−1

∥∥∥Ψ̂0,w −Ψ0,w

∥∥∥ , (47)

where λ is the upper bound of ‖Φ0‖, and as before λT ≤ λ + aTT
−1/2. Once again when H is

fixed and T → ∞,
(

H∑
h=1

∑h−1
j=0 jλ

j−1
T

)
and

(
H∑
h=1

∑h−1
j=0 λ

j−1

)
are bounded in T , by Lemma 3

and under Assumption 3,
∥∥∥Φ̂0 −Φ0

∥∥∥ and ∥∥∥Ψ̂0,w −Ψ0,w

∥∥∥ both tend to zero in probability and we
have H−1/2

H∑
h=1

µ̂wT,h →p 0, as desired. A similar result also obtains for H−1
H∑
h=1

µ̂xT,h . Therefore,

for a fixed H and under Assumptions 1-3, 4a, 5a, and the null of no policy change, H0, we have

H−1/2
H∑
h=1

(
µ̂qT0,h + µ̂wT0,h + µ̂xT0,h

)
→p 0, as T →∞, for a fixed H.

In the case where H rises with T and the rate of increase of H in relation to T is governed by

the joint asymptotic condition 1, in addition to the results above, following (21), we have

H−1/2
H∑
h=1

µ̂wT0,h = Op

(
H1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
, under H0.

Therefore, under H0, H−1/2
H∑
h=1

µ̂qT0,h and H
−1/2

H∑
h=1

µ̂wT0,h, both tend to zero in probability if H =

κT ε, for ε ≤ 1/2, as H and T →∞ (the joint asymptotic condition 1). A similar result also holds

for H−1/2
H∑
h=1

µ̂xT0,h.

To derive the distribution of the mean effect, d̂H , we use (24) and

1

H

H∑
h=1

vxT0,h =
1

H

H∑
h=1

h−1∑
j=0

s′Bj
(
θ1, ρ1

)
ηx,T0+h−j

=
1

H

H∑
j=1

s′CH−j
(
θ1, ρ1

)
ηx,T0+j ,

where CH−j
(
θ1, ρ1

)
=
∑H−j

i=0 Bi
(
θ1, ρ1

)
. Hence, since by assumption ηxt and εt are serially

uncorrelated and are distributed independently of each other, and considering that under H0,

µ̂T0,H = Op(T
−1/2), we have

V ar
(√

Hd̂H

)
= ω20q + ω20x + o(1),
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where

ω20q = s′

H−1 H∑
j=1

AH−j (Φ1) Σε(θ
1)A′H−j (Φ1)

 s,
Σε(θ

1) = E(εT+jεT+j) and (see also 4))

ω20x = σ2ηxs
′

H−1 H∑
j=1

CH−j
(
θ1, ρ1

)
CH−j

(
θ1, ρ1

)′ s.
Therefore, the policy ineffectiveness test statistic is given by

Td,H =

√
Hd̂H√

ω̂20q + ω̂20x

, (48)

where ω20q and ω
2
0x are estimated using pre-intervention sample as:

ω̂20q = s′

H−1
H∑
j=1

AH−j
(
Φ(θ̂0T )

)
Σε

(
θ̂0T

)
A′H−j

(
Φ(θ̂0T )

) s,
where

AH−j
(
Φ(θ̂0T )

)
= Ikz+1 + Φ(θ̂0T ) +

[
Φ(θ̂0T )

]2
+ ...+

[
Φ(θ̂0T )

]H−j
Σε

(
θ̂0T

)
= T−1

T0∑
t=M

εt

(
θ̂0T

)
ε′t

(
θ̂0T

)
,

εt

(
θ̂0T

)
= qt −Φ(θ̂0T )qt−1 −Ψx

(
θ̂0T

)
xt −Ψw

(
θ̂0T

)
wt,

ω̂20x = σ̂20,ηxs
′

H−1 H∑
j=1

(
ĈH−j Ĉ′H−j

) s, (49)

ĈH−j =
∑H−j

i=0 Bi
(
θ̂0T , ρ̂

0
T

)
, and σ̂20,ηx = T−1

∑T0
t=M

(
xt − ρ̂0Txt−1

)2. Under the null hypothesis
of policy ineffectiveness, and assuming that the underlying RE model is correctly specified and

the innovations εT0+h and ηx,T0+h for h = 1, 2, ...,H are normally distributed, then for a fixed

H and as T → ∞, we have Td,H →d N(0, 1). Notice that (48) differs from (26) in the explicit

inclusion of the estimated variance of the exogenous policy variable ω̂20x. In (26) the variance of

the endogenous policy variable was included in ω̂20q.

3.3 Power of the policy ineffectiveness test with exogenous variables

In the numerator of (48)

√
Hd̂H = H−1/2

H∑
h=1

(
µ̂qT0,h + µ̂wT0,h + µ̂xT0,h

)
+H−1/2

H∑
h=1

(
vqT0,h + vxT0,h

)
.
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the purely random component, H−1/2
H∑
h=1

(
vqT0,h + vxT0,h

)
, has a limiting distribution with mean

zero and a finite variance both under the null and the alternative hypotheses. Therefore, for

the test to be consistent the mean component of
√
Hd̂H must diverge to infinity with H. The

limiting behaviour of H−1/2
H∑
h=1

µ̂qT0,h, which relates to the internal dynamics of the DSGE model

is considered above in section (2.3) following (31). The terms H−1/2
H∑
h=1

µ̂wT0,h, and H
−1/2

H∑
h=1

µ̂xT0,h,

capture the effects of exogenous variables. Under H1 : θ1 6= θ0, we have

H−1/2
H∑
h=1

µ̂wT0,h = −H−1/2
H∑
h=1

h−1∑
j=0

s′
{

Φ̂j
0Ψ̂0,w −Φj

1Ψ1,w

}
wT0+h−j , (50)

where Ψ̂0,w = Ψw

(
θ̂0T

)
, Ψ1,w = Ψw

(
θ1
)
, Φ̂0 = Φ

(
θ̂0T

)
, and, Φ1 = Φ

(
θ1
)
. Also, setting

Ψ0,w = Ψw

(
θ0
)
we have

Φ̂j
0Ψ̂0,w −Φj

1Ψ1,w =
(
Φ̂j
0 −Φj

0

)
Ψ̂0,w + Φj

0

(
Ψ̂0,w −Ψ0,w

)
+ Φj

0Ψ0,w −Φj
1Ψ1,w, (51)

and we have

H−1/2
H∑
h=1

µ̂wT0,h = −H−1/2
H∑
h=1

h−1∑
j=0

s′
[(

Φ̂j
0 −Φj

0

)
Ψ̂0,w + Φj

0

(
Ψ̂0,w −Ψ0,w

)]
wT0+h−j

= −H−1/2
H∑
h=1

h−1∑
j=0

s′
(
Φj
0Ψ0,w −Φj

1Ψ1,w

)
wT0+h−j .

Noting that under Assumption 5a, ‖wT0+h−j‖ < K, the first term of the above is given by

−H−1/2
H∑
h=1

h−1∑
j=0

s′
[(

Φ̂j
0 −Φj

0

)
Ψ̂0,w + Φj

0

(
Ψ̂0,w −Ψ0,w

)]
wT0+h−j

= Op

(
H1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
and under H1 and the joint asymptotic condition 1 we have

H−1/2
H∑
h=1

µ̂wT0,h = −H−1/2
H∑
h=1

h−1∑
j=0

s′
{

Φj
0Ψ0,w −Φj

1Ψ1,w

}
wT0+h−j+Op

(
H1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
(52)

Now using the result in Lemma 1 we have

H−1/2
H∑
h=1

h−1∑
j=0

Φj
0Ψ0,wwT0+h−j = (Ikz+1 −Φ0)

−1Ψ0,w

H−1/2 H∑
j=1

wT0+j


− (Ikz+1 −Φ0)

−1

H−1/2 H∑
j=1

ΦH−j+1
0 Ψ0,wwT0+j

 .
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But considering that ‖Ψ0,w‖ and ‖wT+j‖ are bounded in H, and ‖Φ0‖ < 1 (under Assumption

2b), then we have∥∥∥∥∥∥H−1/2
H∑
j=1

ΦH−j+1
0 Ψ0,wwT0+j

∥∥∥∥∥∥ ≤ H−1/2
H∑
j=1

‖Φ0‖H−j+1 ‖Ψ0,w‖ ‖wT0+j‖

≤ K H−1/2
‖Φ0‖

(
1− ‖Φ0‖H

)
(1− ‖Φ0‖)

= O
(
H−1/2

)
Hence

H−1/2
H∑
h=1

µ̂wT0,h =
√
Hs′

[
(Ikz+1 −Φ1)

−1Ψ1,w − (Ikz+1−Φ0)
−1Ψ0,w

]
w̄T0,H (53)

+Op

(
H1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
.

Therefore, under H1 : θ1 6= θ0, the power of the test rises with
√
H if p limH→∞ w̄T0,H 6= 0, and

so long as H = κT ε, with ε ≤ 1/2, as T →∞.5 The power of the test also depends on the size of

the difference between the pre and post-intervention long-run effects of the exogenous variables.

Whereas with standard stationary DSGE models the tests based on the average policy effects,

d̂H , were not consistent, when there are also exogenous variables the tests are consistent.

4 Simulated policy analysis using a New Keynesian model

To illustrate the issues discussed above we calibrate a standard three equation New Keynesian

DSGE model, using parameter estimates from the literature. We assume that there is no para-

meter or specification uncertainty. We first consider a model where the variables are all measured

in deviations from their steady states. These are Rt, the interest rate, yt, log real output, and

πt, the inflation rate. The policy intervention takes place at time T0, with a post-intervention

sample, T0 + 1, T0 + 2, ..., T0 + H. We set out the model; examine the shock and policy impulse

response functions introduced in Section 2.1, and then examine the size and power of the tests

discussed in Section 2.3. In 4.4 we consider a second model where the inflation target is changed.

The first model, where the variables are deviations from steady state is

Rt = δRRt−1 + (1− δR)(ψππt + ψyyt) + uRt, (54)

yt = δyyt−1 + κE(yt+1 |It )− σ [Rt − E(πt+1 |It )] + uyt, (55)

πt = δππt−1 + βE(πt+1 |It ) + γyt + uπt, (56)

5The same consideration also apply to the policy variable, xt. In cases where
∣∣ρ1∣∣ < 1, the policy can only have

short term effects.
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which can be written more compactly as (1), and repeated here for convenience

A0qt= A1Et(qt+1 |It )+A2qt−1+ut,

where qt = (Rt, yt, πt)
′, ut = (uRt, uyt, uπt)

′, and

A0 =

 1 −(1− δr)ψy −(1− δr)ψπ
σ 1 0
0 −γ 1

 , A1 =

 0 0 0
0 κ σ
0 0 β

 , A2 =

 δR 0 0
0 δy 0
0 0 δπ

 .

(57)

We also assume that the structural shocks are orthogonal and have the following diagonal covari-

ance matrix

Σu =

 σ2uR 0 0
0 σ2uy 0

0 0 σ2uπ

 . (58)

As in Section 2.1, the solution of the model is given by (2):

qt= Φ(θ)qt−1 + Γ(θ)ut, (59)

suppressing the dependence on θ, for the moment, Φ, is the solution of A1Φ
2−A0Φ + A2 = 0

and Γ= (A0 − A1Φ)−1. The value of Φ can be solved by iterative back-substitution procedure

which involves iterating on an initial arbitrary choice of Φ say Φ(0) using the recursive relation

Φ(r) = [Ik−(A−10 A1)Φ(r−1)]
−1(A−10 A2). (60)

See Binder and Pesaran (1995) for further details. The iterative procedure is continued until

convergence using the criteria ‖ Φ(r) −Φ(r−1) ‖max≤ 10−6.

In the numerical calculations all unknown parameters are replaced by calibrated values from

the DSGE literature. Parameters of (56) are calibrated based on average estimates from eight

major economies as summarized in Table 5 of Dees et al (2009). The parameters of (55) and the

long run parameters of the Taylor rule, (54), are calibrated using the results in Dennis (2009).

The calibrated values of θ0 are summarized in Table 1 below. The standard deviations of the

errors were all set equal to 0.005, or half a percent per quarter, which is similar to the US values

found in Dees et al. (2009).

Table 1. Pre-intervention parameter values, θ0, used in the Monte Carlo Analysis
σ = 0.065 κ = 0.57 β = 0.65 γ = 0.045 ψπ = 1.5 ψy = 0.5

δy = 0.42 δπ = 0.34 δR = 0.7 σuπ = 0.005 σuy = 0.005 σuR = 0.005

The solution matrices for the pre-intervention parameters in (59) are given by:
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Φ(θ0) =

 0.65 0.13 0.20
−0.17 0.62 −0.05
−0.06 0.08 0.47

 , Γ(θ0) =

 0.93 0.31 0.60
−0.24 1.49 −0.15
−0.08 0.19 1.39

 . (61)

The solution is a VAR(1) and in each equation the coeffi cient of the autoregressive term is the

largest in absolute value and the persistence of inflation is lower than the persistence of output and

interest rates. We also note that even though the structural shocks are orthogonal the reduced

form shocks are correlated.

We consider four separate policy interventions, in which each of the parameters of the Taylor

rule are changed one at a time, leaving the other parameters unchanged. Intervention 1A increases

the interest rate persistence in the Taylor Rule, δR, from 0.7 to 0.9. Intervention 1B reduces δR

from 0.7 to 0.25. Intervention 1C increases the inflation coeffi cient in the Taylor rule, ψπ, from

1.5 to 2.5. Intervention 1D increases the output coeffi cient in the Taylor rule, ψy, from 0.5 to 1.

The values of θ1 that are changed under alternative policy interventions are given in Table 2.

Table 2: Policy interventions
Interventions∗ θ0 θ1

1A δR = 0.7 δR = 0.9
1B δR = 0.7 δR = 0.25
1C ψπ = 1.5 ψπ = 2.5
1D ψy = 0.5 ψy = 1.0

* The other elements of θ1 are kept at their pre-intervention values.

4.1 Shock Impulse Response Functions

As noted above, a shock impulse response function, SIRF, gives the time profile for a shock to one

of the structural errors assuming that the parameters are constant. For example the monetary

policy shock impulse response function represents the effects of a one standard error shock to uRt,

the error in the Taylor rule, and is given by:

SIRFR(h, θ0, σuR) = σuR
[
Φ
(
θ0
)]h

Γ(θ0)eR, (62)

where eR= (1, 0, 0)′. For a linear model this SIRF is independent of the value of qT0 , the state of

the economy at the time of the shock. In terms of the SIRF analysis the behaviour of the model

is very standard. As Figure 1 shows a contractionary monetary policy shock raises interest rates

and reduces output and inflation, with output falling by more than inflation.
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Figure 1: Shock impulse response functions for interest rates, Rt, output, yt, and

inflation πt

1a. Monetary Policy Shock

1b. Demand Shock

1c. Supply Shock

A positive demand shock increases all three variables; output by the most, then interest rates,

and then inflation. A negative supply shock, increases inflation, the interest rate rises to offset
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the higher inflation, but not by as much as inflation and output falls. The impact effects of the

monetary policy shock are given by the first column of Γ(θ0) defined by (61), while the impact

effects of the demand and supply shocks are given by its second and third columns.

4.2 Policy Impulse Response Functions

The policy impulse response function, PIRF, gives the response of the system over time to a

permanent change in the policy parameter(s) and, for a particular variable identified by the

selection vector, s, is given by (5), repeated here for convenience:

PIRF (h, θ1, θ0,qT0) = s′
[[

Φ
(
θ1
)]h − [Φ (θ0)]h]qT0 . (63)

As noted above, the PIRF requires knowledge of the parameters before and after the intervention

and, as can be seen from (15) and (31) above, it is the PIRF which largely determines the power

of the test to determine whether the mean effect of the policy is different from zero.

Unlike SIRFs, the PIRFs and the policy ineffectiveness tests depend on the chose of initial

states, qT0 , at the time of the policy change. It is therefore important that the choice of qT0reflects

a sensible combination of values of interest rate, inflation and output. One possible approach is

to set qT0 equal to the impact effects of SIRFs. For example, one could set qT0 to qR,T0 =

σuRΓ(θ0)eR, which is the impact effect of a monetary policy shock as given by (62) for h = 0.

Similarly, for the demand and supply shocks qT0 can be set to qy,T0 = σu yΓ(θ0)ey and qπ,T0 =

σuπΓ(θ0)eπ, respectively, where ey = (0, 1, 0)′ and eπ = (0, 0, 1)′.6 Considering values of the

initial states, qT0 , that correspond to impact effects of structural shocks seems sensible given

the focus of the literature on SIRFs. One could also consider multiples of the effects of such

shocks as representing different degrees of deviations from equilibrium. The power of the policy

ineffectiveness test will then be an increasing function of the extent to which, at the time of the

policy change, the economy has deviated from the equilibrium.

Figure 2 shows PIRFs for the effects of changing the degree of persistence (or the interest rate

smoothing) associated with the Taylor rule, Figure 2a shows the effect of intervention 1A and

Figure 2b of 1B. These are the only policy changes which have much effect. This is consistent

with the theoretical results that it is the dynamics that are central to policy having mean effects.

We set the initial states at qR,T0 = σuRΓ(θ0)eR, the values of the variables that result from

the monetary policy shock on impact. Intervention 1A increases the degree of persistence from

δR = 0.7, to δR = 0.9. This causes the interest rate to rise and output and inflation to fall initially,

with a maximum effect after about three periods before returning to zero. Intervention 1B reduces

the degree of persistence from δR = 0.7, to δR = 0.25. This has the opposite effect causing the

6As noted above these values are given by the columns of Γ(θ0) defined by (61).
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interest rate to fall, by more than it rose in case 1A, and output and inflation to rise by rather less

than they fell under case 1A. The initial effects are the same as the values of
[
Φ
(
θ1
)
−Φ

(
θ0
)]
for

the two cases. When the degree of persistence is low as in intervention 1B, the variables return to

zero much faster, making the mean effect of policy much smaller. As we shall see, this is reflected

in the power of the policy ineffectiveness tests to be discussed below.

Figure 2: Policy Impulse Response Functions: qR,T0 = σuRΓ(θ0)eR.

2a. Intervention 1A : δR = 0.7, to δR = 0.9

2b. Intervention 1B : δR = 0.7, to δR = 0.25

4.3 Policy Ineffectiveness tests

The test performance was evaluated using the calibrated values of θ0 ignoring estimation error

and for various settings of the initial states, qT0 . Values of qT0+h, h = 1, 2, ...,H, for horizons

H = 8, and H = 24. are generated from (59) assuming u
(b)
t ∼ IIDN(0,Σu), where Σu is given
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in (58) for b = 1, 2, .., 2000, replications.7 For replication b the policy effects are simulated as

d̂
(b)
T0+h

= q
(b)
T0+h

−
[
Φ
(
θ0
)]h

qT0 , (64)

for h = 1, 2, ...,H. The policy mean effect is calculated as

d̂
(b)

H =
1

H

H∑
h=1

d̂
(b)
T0+h

,

and the test statistic as

T (b)d,H =

√
Hd̂

(b)

H

ω̂0q
,

where

ω̂20q =

H−1
H∑
j=1

AH−j
(
Φ(θ0)

)
Σε

(
θ0
)
A′H−j

(
Φ(θ0)

) ,

AH−j
(
Φ(θ0)

)
= Ikz+1 + Φ(θ0) +

[
Φ(θ0)

]2
+ ...+

[
Φ(θ0)

]H−j
.

Table 3 shows the size and power of the policy ineffectiveness tests against four alternative

policy interventions, two evaluation horizons and three initial states. The size was calculated

when q
(b)
T0+h

was generated using θ0, the power was calculated when q
(b)
T0+h

was generated using

one of the four alternative policy interventions which change θ0 to θ1A, ..., θ1D, as set out in Table

2. The initial states are given in different rows of the Table. The rows labelled qR,T0 give the

rejection frequencies for the initial state corresponding to the effects of a one standard deviation

monetary policy shock, ; the rows labelled qy,T0 a demand shock and and the rows labelled qπ,T0

a a supply shock.

The size seems very well controlled. The power is highest for intervention, 1A, where the

degree of persistence of the Taylor rule increases from δR = 0.7, to δR = 0.9, confirming what was

apparent from the PIRFs. However, even in this case the power is not high. At H = 8 the highest

power is 20% for testing the effect on yt and using the initial state, qR,T0 or qπ,T0 . At H = 24

the highest power is 25% for testing the effect on yt. The test has little power against the other

three types of interventions.8 Whereas the test has power against the increase in persistence of

the Taylor rule it has less power against the reduction in the persistence of the Taylor rule for

output and inflation because the variables return to zero quickly. The test has little power against

changes in the coeffi cients of inflation and output in the Taylor rule because they have relatively

little effect on the other variables on impact.

7More specifically, q
(b)
T0+h

= Φ(θ)q
(b)
T0+h−1 + Γ(θ)u

(b)
T0+h

, for h = 1, 2, ..., H, with q
(b)
T0
= qT0 .

8Similar outcomes are also reported by Rudebusch (2005) who, in the context of the Lucas Critique, shows that
the apparent policy invariance of reduced forms is consistent with the magnitude of historical policy shifts and the
relative insensitivity of the reduced forms of plausible forward looking macroeconomic specifications to policy shifts.
However, here we use formal tests based on structural models.
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Table 3: Size, θ0, and power of policy ineffectiveness tests

against 4 alternatives θ1A, θ1B, θ1C , θ1D ; horizons H = 8, 24; 3 initial states

Size (θ0) Power (θ1A) Power (θ1B) Power (θ1C) Power (θ1D)

R y π R y π R y π R y π R y π

H = 8

qR,T0 0.05 0.05 0.05 0.03 0.20 0.13 0.13 0.04 0.08 0.11 0.06 0.03 0.07 0.02 0.07
qy,T0 0.04 0.05 0.05 0.03 0.18 0.12 0.11 0.04 0.07 0.10 0.06 0.03 0.07 0.01 0.06
qπ,T0 0.05 0.04 0.05 0.04 0.20 0.12 0.12 0.04 0.08 0.12 0.05 0.03 0.07 0.02 0.06

H = 24

qR,T0 0.05 0.05 0.05 0.04 0.25 0.17 0.11 0.04 0.09 0.10 0.06 0.02 0.07 0.02 0.07
qy,T0 0.05 0.06 0.05 0.04 0.25 0.16 0.11 0.03 0.09 0.10 0.05 0.02 0.07 0.01 0.06
qπ,T0 0.05 0.04 0.05 0.04 0.24 0.18 0.12 0.04 0.09 0.10 0.07 0.02 0.07 0.02 0.06

Notes: The rows labelled qR,T0 set the initial state qT0 = σuRΓ(θ0)eR. Similarly for qy,T0 = σuyΓ(θ
0)ey, and

qπ,T0 = σuπΓ(θ0)eπ. The alternative hypotheses are set out in Table 2.

Figure 3 shows the rejection frequency for intervention 1A, increasing the degree of interest

rate smoothing, against the impact of a k standard deviation monetary policy shock, qR,T0 . The

rejection frequencies increase with the deviation of the initial value from zero and are roughly

symmetric for positive and negative values. The rejection frequencies are highest for output,

intermediate for inflation and lowest for interest rates. The graphs were similar but with lower

rejection frequencies when the initial states are set to multiples of demand and supply shocks.

Figure 3. Rejection frequencies for intervention 1A (increasing δR from 0.7 to 0.9)

with the initial states at k standard deviations of qR,T0, and H = 8 quarters
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These simulations confirm the theoretical results. The size of the test is correct. The effect of

the policy intervention depends on the dynamics, reductions in the degree of persistence reduce

the effect of changing the policy parameters. The power of the test depends on the state of the

economy at the time of the policy intervention. In our example, the test has some power against

increases in the persistence of the Taylor rule, but not against the other policy changes considered.

However, the effects of all these policy changes are transitory, none have any effect on the steady

states. We now consider interventions that change the steady states.

4.4 Inflation targeting as a policy change

As an example of a policy intervention that changes the steady states, consider an inflation

targeting regime when the policy maker changes the target rate of inflation which we denote

by π∗. We assume the announcement of the change in the inflation target is credible and fully

understood.9 To represent this intervention in the New Keynesian example, where the variables

are measured as deviations from steady state, we need to re-write the inflation and interest rate

deviations in terms of their realized values which we denote by π̊t and R̊t, namely π̊t = πt + π∗

and R̊t = Rt − (r + π∗), where π∗ is the target rate of inflation, and r denotes the steady state

value of the real interest rate. In terms of the realized values of inflation and interest rates, π̊t

and R̊t, and deviations yt, for the output gap, we have

R̊t = (1− δR) [r + (1− ψπ)π∗] + δRR̊t−1 + (1− δR)(ψππ̊t + ψyyt) + uRt

yt = −σr + δyyt−1 + κE(yt+1 |It )− σ
[
R̊t − E(̊πt+1 |It )

]
+ uyt

π̊t = (1− δπ − β)π∗ + δππ̊t−1 + βE(̊πt+1 |It ) + γyt + uπt.

and setting q̊t = (R̊t, yt, π̊t)
′, we obtain

A0̊qt = A1Et(̊qt+1) + A2̊qt−1 + A3st + ut,

which corresponds to the RE model (32) with exogenous variables, with st replaced by 1, and

A3 =

 (1− δR) [r + (1− ψπ)π∗]
−σr

(1− δπ − β)π∗

 .

The other matrices, A0, A1, and A2, are given as before by (57). The solution in terms of q̊t is

given by

q̊t = [I3 −Φ(θ)] q̊∗ + Φ(θ)̊qt−1 + Γ(θ)ut,

9Kulish and Pagan (2014) consider a change in inflation target when there is both perfect and imperfect credi-
bility.
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where q̊∗ = (r+ π∗, 0, π∗)′, and Φ(θ) and Γ(θ) are defined as before. This solution can be viewed

as an example of the model with policy invariant variables discussed in Section 3 where in the

solution (36), Ψx (θ) xt is set to zero and Ψw (θ) wt is set to [I3 −Φ(θ)] q̊∗.

Suppose now that the policy intervention at time T0 took the form of changing the inflation

target from π0∗ to π
1
∗. In this case the policy effects are given by (39) with Ψw (θ) wt replaced by

[I3 −Φ(θ)] q̊∗, namely

d̂T0+h = s′̊qT0+h − s′
[
Φ
(
θ̂0T

)]h
q̊T0 − s′

h−1∑
j=0

[
Φ
(
θ̂0T

)]j [
I3 −Φ

(
θ̂0T

)]
q̊0∗,

where q̊0∗ = (r + π0∗, 0, π
0
∗)
′

d̂T0+h = s′̊qT0+h − s′
[
Φ
(
θ̂0T

)]h
q̊T0 − s′

{
I3 −

[
Φ
(
θ̂0T

)]h}
q̊0∗, (65)

The policy ineffectiveness test is given by (48), noting that there are no policy exogenous variables,

xt, in this example. In the case where only the inflation target is changed the power of the test

rises with
√
Hs′

(̊
q1∗ − q̊0∗

)
=
√
H
(
π1∗ − π0∗

)
(1, 0, 1)′s, and tends to unity in the case of inflation

and the nominal interest rate, as to be expected, and has no power as H → ∞, if real output

deviations, yt, are considered. Nevertheless, the change in the inflation target does have short

run effects on real output. This is reflected in the policy impulse response function and the test

outcomes. The policy impulse response function when only the inflation target is changed is given

by

PIRF (h, π1∗ − π0∗, θ) =
(
π1∗ − π0∗

){
I3 − [Φ (θ)]h

} 1
0
1

 , for h = 1, 2, ...,H. (66)

It is clear that in the limit as H →∞, the PIRF tends to
(
π1∗ − π0∗

)
(1, 0, 1)′, which also confirms

that in the NK model only nominal values are affected in the long run by changes in the inflation

target.

The short run impacts of changes in the inflation target can be illustrated using the para-

metrization given above. For this purpose we consider two scenarios, a reduction of π0∗ from 2%

to 1% per quarter and an increase of π0∗ from 1% to 2% per quarter. The increase in the target

inflation is interesting in the context of the Japanese experience. Initially we do not change any

of the other policy parameters, which are kept at the baseline values listed in Table 1. Figure

4a gives the responses to the reduction and 4b to the increase in the inflation target. In the case

of a reduction, inflation falls more than the interest rate, raising the real interest rate on impact

to 0.44% and thus depressing output. The real interest rate and output return to zero, leaving

the nominal interest rate and inflation rate at the new target 1% lower after about seven quar-

ters. When the target rate of inflation is increased the effects are reversed: inflation jumps more
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than interest rates, the real interest rate falls on impact to -0.44%, temporarily raising output.

Although the two cases are symmetrical numerically, they are not symmetrical in welfare terms,

since the output loss associated with the reduction in inflation is something that one would wish

to avoid.

Figure 4: Policy impulse response functions for changes in target rates of inflation

4a. Reduction of π0∗ = 2% to π1∗ = 1% per quarter

4b. Increase of π0∗ = 1% to π1∗ = 2% per quarter

In the case where there is both a change in the steady state and a change in the policy rule

parameters, the policy impulse response functions are given by

PIRF (h, π1∗, θ
1, π0∗, θ

0) =
[[

Φ
(
θ1
)]h − [Φ (θ0)]h] q̊T0 +

{
I3 −

[
Φ
(
θ1
)]h}

q̊1∗ −
{

I3 −
[
Φ
(
θ0
)]h}

q̊0∗,

=
{[

Φ
(
θ1
)]h − [Φ (θ0)]h} (̊qT0 − q̊0∗

)
+
[
I3 −Φ

(
θ1
)]h (̊

q1∗ − q̊0∗
)
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where

q̊0∗ =

 r + π0∗
0
π0∗

 , q̊1∗ − q̊0∗ =
(
π1∗ − π0∗

) 1
0
1

 .

More specifically, for a unit MP shock at the point of intervention, we set q̊T0 = q0∗+σuRΓ(θ̂0T )eR,

and hence

PIRF (h, π1∗, θ
1, π0∗, θ

0) = σuR

{[
Φ
(
θ1
)]h − [Φ (θ0)]h}Γ(θ0)eR (67)

+
(
π1∗ − π0∗

) [
I3 −Φ

(
θ1
)]h 1

0
1

 .

which reduces to (66) when only the inflation target is changed. Similar expressions can be

obtained when the initial state is set to values of q̊ that arise on impact from demand or supply

shocks.

We now consider combining the change in the inflation target with changes in the degree of

inflation smoothing. Figure 5a presents the effects of simultaneously reducing the inflation target

from 2% to 1% and increasing the inflation smoothing parameter, δR, from 0.7 to 0.9, intervention

1A above, with the initial state set to q̊R,T0 . This intervention causes inflation to drop sharply,

overshooting its steady state of 1%, hitting 1.55% after about 4 quarters. The real interest rate

rises to 1.25%, depressing output, before the variables return to their steady state. Figure 5b

shows that increasing the target rate of inflation has similar but the opposite effects. Comparing

the reduction in the target rate of inflation in Figure 5a with that in Figure 4a, the increased

interest rate smoothing has resulted in a much larger loss of output. Whereas in Figure 4a the

maximum loss of output was 0.3% per quarter, in figure 5a the maximum loss was 1.1%, in both

cases around quarter 3.
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Figure 5: Policy impulse response functions for changes in target rates of inflation

plus increased interest rate smoothing

Intervention 1A : δR from 0.7 to 0.9, initial state q̊R,T0

5a. Reduction of π0∗ = 2% to π1∗ = 1% per quarter

5b. Increase of π0∗ = 1% to π1∗ = 2% per quarter

Figure 6 shows the results when the change in inflation target is combined with reduced

interest rate smoothing. For a credible reduction in the inflation target and very little interest

rate smoothing, the interest rate and the inflation rate reduce by almost exactly the same amount

and output hardly falls. With a credible increase in the inflation target and reduced interest rate

smoothing, inflation increases more than interest rates and the lower real interest rates provides

a boost to output. While the results are specific to this parameterisation and the assumption of

credibility, it seems likely that less interest rate smoothing is optimal when reducing the target rate
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of inflation, as in Figure 6a, since this causes less output loss, and more interest rate smoothing

seems more appropriate when increasing the target rate of inflation, as in the Japanese case, since

this provides a bigger boost to output.

Figure 6: Policy impulse response functions for changes in target rates of inflation

plus reduced interest rate smoothing

Intervention 1B : δR from 0.7 to 0.25, initial state q̊R,T0

6a. Reduction of π0∗ = 2% to π1∗ = 1% per quarter

6b. Increase of π0∗ = 1% to π1∗ = 2% per quarter

We now consider the effect on size and power of the policy ineffectiveness test in detecting the

effects of changes in the target rate of inflation on inflation, output deviations and the interest
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rate. We only consider the case where the inflation target is reduced from 2% to 1% per quarter,

the results for an increase were almost identical. We consider two interventions. In the first, called

θ1E , the interest rate smoothing parameter is left unchanged at δR = 0.7, in the second, called

θ1F , δR is increased to 0.9 at the same time as the reduction in the inflation target is announced.

If the target rate is reduced without any other policy changes, the power of the tests based on the

nominal interest rate and the inflation rate are quite high and rise substantially as the horizon

of the test is increased from H = 8 to 24 quarters. In contrast, and as to be expected noting

the PIRFs depicted in Figure 4, the test has little power for output, since the effect of a change

in the inflation target on the real output is small and transitory. Under intervention θ1F , when

there is both a change in the inflation target and an increase in interest rate smoothing, the power

of the test based on inflation outcomes is increased, but for interest rates the power is reduced

relative to the case θ1E , since the increased smoothing means that interest rates do not change as

much. The increased smoothing causes a larger movement in real interest rates as noted above

and this causes a greater effect on output hence a higher power in detecting the effects of the

policy change on realized values of output deviations. Whereas for interest rates and inflation,

the power increases as the horizon is extended, for output deviations, which is moving back to its

steady state value of zero, the power falls as the horizon is extended.

Table 4: Size and power of policy ineffectiveness tests against reducing the inflation

target only (θ1E) and when inflation target reduction is accompanied by a rise in

interest rate smoothing (θ1F )- Horizons H = 8, 24; 3 initial states (̊qT0)

Size (θ0) Power (θ1E) Power (θ1F )

R y π R y π R y π

Initial states H = 8

q̊R,T0 0.05 0.05 0.05 0.29 0.07 0.72 0.13 0.39 0.90
q̊y,T0 0.06 0.05 0.06 0.26 0.07 0.68 0.17 0.33 0.86
q̊π,T0 0.05 0.06 0.06 0.28 0.06 0.70 0.16 0.35 0.88

H = 24

q̊R,T0 0.06 0.04 0.05 0.73 0.07 0.99 0.65 0.30 0.98
q̊y,T0 0.05 0.06 0.05 0.73 0.05 0.99 0.70 0.28 0.98
q̊π,T0 0.05 0.05 0.05 0.71 0.05 0.99 0.68 0.29 0.99

Notes: See notes to Table 3. Alternative hypothesis θ1E assumes that the inflation target is reduced from

π0∗ = 2% to π1∗ = 1% per quarter. Alternative hypothesis θ1F combines the reduction of the inflation target from

π0∗ = 2% to π1∗ = 1% per quarter with a higher degree of interest rate smoothing, raising δR from 0.7 to 0.9.

5 Conclusion

In this paper we have derived tests for the null hypothesis of the ineffectiveness of a policy

intervention, defined as a change in the parameters of a policy rule. We consider tests conducted
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using full structural models both of the standard form, where all the variables including the policy

variable are endogenous, as well as where the system is augmented with exogenous variables,

including, perhaps, exogenous policy variables. The augmented system allows us to consider

policy interventions that change steady states, such as changes in the inflation target.

The tests are based on the average differences, over a given policy evaluation horizon, between

the post-intervention realizations of the target variable and the associated counterfactual outcomes

based on the parameters estimated using data before the policy intervention. The Lucas Critique

is not an issue since the counterfactual, given by the predictions from the model estimated on

pre-intervention data, will embody pre-intervention parameters, while the actual post-intervention

outcomes will embody any effect of the change in policy, the change in parameters and the conse-

quent change in expectations. The tests do not require knowing the post-intervention parameters.

We derive the asymptotic distribution of the policy ineffectiveness tests under alternative

assumptions concerning the type of model, the future error processes and the pre and post-

intervention sample sizes. The power of the proposed tests depends on the size of the parameter

change, the dynamics of the system, the state of the economy at the time of the intervention, the

size of the policy evaluation horizon and whether the model contains policy invariant exogenous

variables. However, the power of the policy ineffectiveness tests are likely to be low unless the

underlying DSGE model contains exogenous variables, or equivalently the policy changes the

steady states.

The size and power of the proposed tests are investigated by simulations using a standard

three equation New Keynesian DSGE model. These simulations are in accord with the theoretical

results. The size of the test is correct, and the tests have power against increases in the persistence

of the Taylor rule, but little power against increases in the responses of interest rates to inflation

and output. The test does have power against policy interventions that change steady states, such

as changes in the target rate of inflation which has a permanent effect on inflation and interest

rates but only a transitory effect on output, which eventually returns to its steady state.

The focus of this paper has been on the mean effects of policy changes. But, as mentioned at

the end of Section 2.1, the volatility effects of policy change are also of interest. In that simple

case, where there are no dynamics and no exogenous variables, the variance of qt changes following

the policy intervention from Σε(θ
0) = Γ(θ0)ΣuΓ(θ0)′ to Σε(θ

1) = Γ(θ1)ΣuΓ(θ1)′, assuming that

Σu remains constant. However, in many cases, such as the Great Moderation, the central issue is

whether the reduction in the variance of output growth is due to good policy (changes in policy

parameters θp) or good luck (reductions in ‖Σu‖). The same issues arise when there is dynamics.

In the case where the model include exogenous variables, the variance of qt can be derived from

the RE solution for qt given by equation (36). In this case there is an extra contribution to
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the change in the variance of qt after the policy intervention that comes from any change in

the variance of the non-policy exogenous variables. An interesting subject for future research

is the decomposition of the change in the variance of qt into components due to the change in

policy parameters, the change in non-policy innovation variances and the change in the variance

of the exogenous variables. Unlike the policy ineffectiveness test, such a decomposition requires

estimating the parameters of a full structural model before as well as after the intervention.

Appendix: Statement and Proof of Lemmas

Lemma 1 Let A be a k×k matrix and xT+h−j a k×1 vector, and suppose that Ik−A is invertible,

then

H−1
H∑
h=1

h−1∑
j=0

AjxT+h−j = H−1
H∑
j=1

(
Ik+A + ...+ AH−j)xT+j

= H−1 (Ik−A)−1
H∑
j=1

(
Ik −AH−j+1)xT+j

= (Ik−A)−1

H−1 H∑
j=1

xT+j

− (Ik−A)−1

H−1 H∑
j=1

AH−j+1xT+j

 .

Proof. The result follows by direct manipulation of the terms.

Lemma 2 Suppose that the k × k matrices A and B have bounded spectral norms ‖A‖ ≤ λ and

‖B‖ ≤ λ, for some fixed positive constant λ. Then∥∥∥Ah −Bh
∥∥∥ ≤ hλh−1 ‖A−B‖ , for h = 1, 2, .... (68)

Proof. We establish this result by backward induction. It is clear that it holds for h = 1. For

h = 2, using the identity

A2 −B2 = A(A−B) + (A−B)B,

the result for h = 2 follows

∥∥A2 −B2
∥∥ ≤ (‖A‖+ ‖B‖) ‖A−B‖ = 2λ ‖A−B‖ .

More generally, we have the identity

Ah −Bh = Ah(A−B) + (A−B)Bh + A(Ah−2 −Bh−2)B.
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Now suppose now that (68) holds for h− 2, and using the above note that∥∥∥Ah −Bh
∥∥∥ ≤ ∥∥∥Ah−1

∥∥∥ ‖A−B‖+ ‖A−B‖
∥∥∥Bh−1

∥∥∥+ ‖A‖
∥∥∥Ah−2 −Bh−2

∥∥∥ ‖B‖
≤ ‖A‖h−1 ‖A−B‖+ ‖A−B‖ ‖B‖h−1 + ‖A‖

∥∥∥Ah−2 −Bh−2
∥∥∥ ‖B‖

≤ 2λh−1 ‖A−B‖+ λ2
∥∥∥Ah−2 −Bh−2

∥∥∥
≤ 2λh−1 ‖A−B‖+ λ2

[
(h− 2)λh−3 ‖A−B‖

]
≤ hλh−1 ‖A−B‖ .

Hence, if (68) holds for h − 2, then it must also hold for h. But since we have established that

(68) holds for h = 1 and h = 2, then it must hold for any h.

Lemma 3 Consider the k × k matrix A(θ) = (aij(θ)), where k is a finite integer and aij(θ),

for all i, j = 1, 2, .., k, are continuously differentiable real-valued functions of the p × 1 vector of

parameters, θ ∈ Θ. Suppose that aij(θ) has finite first order derivatives at all points in Θ, and

assume that θ̂T is a
√
T consistent estimator of θ0. Then∥∥∥A(θ̂T )−A(θ0)

∥∥∥ ≤ aT ∥∥∥θ̂T − θ0∥∥∥ , (69)∥∥∥A(θ̂T )
∥∥∥ ≤ ∥∥A(θ0)

∥∥+ aT

∥∥∥θ̂T − θ0∥∥∥ , (70)

where aT =
∥∥∂A

(
θ̄T
)
/∂θ′

∥∥ is bounded in T , and elements of θ̄T∈ Θ lie on the line segment

joining θ0 and θ̂T

Proof. Consider the mean-value expansions

aij

(
θ̂T

)
− aij

(
θ0
)

=
∂aij

(
θ̄T
)

∂θ′

(
θ̂T − θ0

)
, for i, j = 1, 2, ..., k,

where elements of θ̄T lie on the line segment joining θ0 and θ̂T . Given that θ̂T is consistent for

θ0, it must also be that θ̄T →p θ
0, as T →∞. Collecting all the k2 terms we have

A(θ̂T )−A(θ0) =

(
∂A

(
θ̄T
)

∂θ′

)[
Ik ⊗

(
θ̂T − θ0

)]
,

where ⊗ denotes the Kronecker matrix product. Hence∥∥∥A(θ̂T )−A(θ0)
∥∥∥ ≤ ∥∥∥∥∥∂A

(
θ̄T
)

∂θ′

∥∥∥∥∥∥∥∥θ̂T − θ0∥∥∥ ,
∥∥∥A(θ̂T )

∥∥∥ =

∥∥∥∥∥A(θ0) +

(
∂A

(
θ̄T
)

∂θ′

)[
Ik ⊗

(
θ̂T − θ0

)]∥∥∥∥∥ ≤ ∥∥A(θ0)
∥∥+

∥∥∥∥∥∂A
(
θ̄T
)

∂θ′

∥∥∥∥∥∥∥∥θ̂T − θ0∥∥∥ .
The results (69) and (70) now follow since θ̄T →p θ

0, and by assumption the derivatives ∂aij
(
θ0
)
/∂θ′

exist and are bounded in T .
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Lemma 4 Suppose that λT = λ+ T−1/2aT , aT > 0 and bounded in T , λT 6= 1, H = κT ε, where

ε ≤ 1/2, 0 < λ < 1, and κ is a positive fixed constant. Then

H∑
h=1

hλh−1T =
1

(1− λ)2
+Op

(
T−1/2

)
+Op

(
HλH

)
, (71)

and
H∑
h=1

h−1∑
j=0

jλj−1T =
1

(1− λ)2

(
H − 1 + λ

1− λ

)
+Op

(
T−1/2

)
+Op

(
HλH

)
. (72)

Proof. We first note that

H∑
h=1

hλh−1T =
∂

∂λT

(
H∑
h=1

λhT

)

=
1− λHT

(1− λT )2
− HλHT

(1− λT )
, (73)

Also since λT = λ+Op
(
T−1/2

)
H∑
h=1

hλh−1T =
1

(1− λ)2
+Op

(
T−1/2

)
+Op

(
HλHT

)
. (74)

But,

λHT =
(
λ+ T−1/2aT

)H
= λH

(
1 +

T−1/2aT
λ

)H
= Op

(
λHedTH/

√
T
)
, (75)

where dT = aT /λ, which is also bounded in T . Finally, H/
√
T = T 1−ε/2 and for ε ≤ 1/2, edTH/

√
T

will be bounded in T . Using this result in (74) yields (71), as desired. Similarly,

H∑
h=1

h−1∑
j=0

jλj−1T =
H∑
h=1

[(
1− λhT

)
− h(1− λT )λh−1T

(1− λT )2

]

=
1

(1− λT )2

[
H∑
h=1

[(
1− λhT

)
− h(1− λT )λh−1T

]]

=
1

(1− λT )2

[
H −

H∑
h=1

λhT − (1− λT )

H∑
h=1

hλh−1T

]
.

Using (73) we have

H∑
h=1

h−1∑
j=0

jλj−1T =
1

(1− λT )2

{
H − λT − λH+1T

1− λT
− (1− λT )

[
1− λHT

(1− λT )2
− HλHT

(1− λT )

]}
.

Now using (75) and recalling that λT = λ+Op
(
T−1/2

)
, we obtain (72).
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