A multiple testing approach to the regularisation of
large sample correlation matrices™

Natalia Bailey
Queen Mary, University of London

M. Hashem Pesaran
Department of Economics & USC Dornsife INET,
University of Southern California, USA, and Trinity College, Cambridge

L. Vanessa Smith
University of York

September 14, 2016

Abstract

This paper proposes a regularisation method for the estimation of large covariance
matrices that uses insights from the multiple testing (MT) literature. The approach
tests the statistical significance of individual pair-wise correlations and sets to zero
those elements that are not statistically significant, taking account of the multiple
testing nature of the problem. The effective p-values of the tests are set as a decreasing
function of N (the cross section dimension), the rate of which is governed by the
maximum degree of dependence of the underlying observations when their pair-wise
correlation is zero, and the relative expansion rates of N and T' (the time dimension).
In this respect, the method specifies the appropriate thresholding parameter to be
used under Gaussian and non-Gaussian settings. The MT estimator of the sample
correlation matrix is shown to be consistent in the spectral and Frobenius norms,
and in terms of support recovery, so long as the true covariance matrix is sparse.
The performance of the proposed MT estimator is compared to a number of other
estimators in the literature using Monte Carlo experiments. It is shown that the MT
estimator performs well and tends to outperform the other estimators, particularly
when N is larger than T
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1 Introduction

Improved estimation of covariance matrices is a problem that features prominently in a
number of areas of multivariate statistical analysis. In finance it arises in portfolio selection
and optimisation (Ledoit and Wolf (2003)), risk management (Fan et al. (2008)) and testing
of capital asset pricing models (Sentana (2009)). In global macro-econometric modelling
with many domestic and foreign channels of interactions, error covariance matrices must
be estimated for impulse response analysis and bootstrapping (Pesaran et al. (2004); Dees
et al. (2007)). In the area of bio-informatics, covariance matrices are required when inferring
gene association networks (Carroll (2003); Schéfer and Strimmer (2005)). Such matrices are
further encountered in fields including meteorology, climate research, spectroscopy, signal
processing and pattern recognition.

Importantly, the issue of consistently estimating the population covariance matrix, 3 =
(0i;), becomes particularly challenging when the number of variables, N, is larger than the
number of observations, T'. In this case, one way of obtaining a suitable estimator for X%
is to appropriately restrict the off-diagonal elements of its sample estimate denoted by 3.
Numerous methods have been developed to address this challenge, predominantly in the
statistics literature. See Pourahmadi (2011) for an extensive review and references therein.
Some approaches are regression-based and make use of suitable decompositions of 3 such as
the Cholesky decomposition (see Pourahmadi (1999), Pourahmadi (2000), Rothman et al.
(2010), Abadir et al. (2014), among others). Others include banding or tapering methods as
proposed, for example, by Bickel and Levina (2004), Bickel and Levina (2008b) and Wu and
Pourahmadi (2009), which assume that the variables under consideration follow a natural
ordering. Two popular regularisation techniques in the literature that do not make use of
any ordering assumptions are those of thresholding and shrinkage.

Thresholding involves setting off-diagonal elements of the sample covariance matrix that
are in absolute terms below certain threshold values to zero. This approach includes ‘uni-
versal’ thresholding put forward by El Karoui (2008) and Bickel and Levina (2008a), and
‘adaptive’ thresholding proposed by Cai and Liu (2011). Universal thresholding applies the
same thresholding parameter to all off-diagonal elements of the unconstrained sample co-
variance matrix, while adaptive thresholding allows the threshold value to vary across the
different off-diagonal elements of the matrix. Furthermore, the selected non-zero elements
of 3 can either be set to their sample estimates or can be adjusted downward. This relates
to the concepts of ‘hard” and ‘soft’ thresholding, respectively. The thresholding approach
traditionally assumes that the underlying (population) covariance matrix is sparse, where
sparseness is loosely defined as the presence of a sufficient number of zeros on each row
of ¥ such that it is absolute summable row (column)-wise, or more generally in the sense
defined by El Karoui (2008). However, Fan et al. (2011) and Fan et al. (2013) show that
such regularisation techniques can be applied even if the underlying population covariance
matrix is not sparse, so long as the non-sparseness is characterised by an approximate fac-
tor structure. The main challenge in applying this approach lies in the estimation of the
thresholding parameter, which is primarily calibrated by cross-validation.



In contrast to thresholding, the shrinkage approach reduces all sample estimates of the
covariance matrix towards zero element-wise. More formally, the shrinkage estimator of X is
defined as a weighted average of the sample covariance matrix and an invertible covariance
matrix estimator known as the shrinkage target - see Friedman (1989). A number of shrinkage
targets have been considered in the literature that take advantage of a priori knowledge of
the data characteristics under investigation. Examples of covariance matrix targets can be
found in Ledoit and Wolf (2003), Daniels and Kass (1999), Daniels and Kass (2001), Fan
et al. (2008), and Hoff (2009), among others. Ledoit and Wolf (2004) suggest a modified
shrinkage estimator that involves a linear combination of the unrestricted sample covariance
matrix with the identity matrix. This is recommended by the authors for more general
situations where no natural shrinking target exists. On the whole, shrinkage estimators tend
to be stable, but yield inconsistent estimates if the purpose of the analysis is the estimation
of the true and false positive rates of the underlying true sparse covariance matrix (the so
called ‘support recovery’ problem).

This paper considers an alternative approach using a multiple testing (MT') procedure,
possibly combined with cross validation, to set the thresholding parameter. A similar idea
has been suggested by El Karoui (2008) - p. 2748, who considers testing the N(N — 1)/2
null hypotheses that o;; = 0, for all ¢ # j, jointly. But no formal theory has been developed
in the literature for this purpose. In our application of this idea we focus on testing the
Y2612 for all 4 # j, which avoids the

w g
scaling problem associated with the use of ¢;;, and allows us to obtain a universal threshold

significance of the correlation coefficients, p;; = 0y;/0

for all + and j pairs. We use ideas from the multiple testing literature to control the rate
at which the spectral and Frobenius norms of the difference between the true correlation
matrix R = (p;;), and our proposed estimator of it, Ryt = (Pij), tends to zero, and will not
be particularly concerned with controlling the overall size of the joint N(N — 1)/2 tests of
pi; = 0, for all i # j. We establish that Rur converges to R in spectral norm at the rate of

O, (mﬁ), where my is the maximum number of non-zero elements in the off-diagonal rows

of R. This compares favourably with the corresponding O, (mN %) rate established

in the literature. Furthermore, it is shown that the spectral norm result holds even if N
rises faster than 7', with the expansion rate of N in terms of T' given by N = O (T®/%>7<), for
some small positive constant, €. Similarly, it is established that the M7 estimator converges

mNN
T

in Frobenius norm at the rate of O, This result holds even if the underlying

observations are non-Gaussian. To the best of our knowledge, the only work that addresses
the theoretical properties of the thresholding estimator for the Frobenius norm is Bickel

and Levina (2008a), who establish the rate of O, ( %‘)gw)) , assuming the observations

are Gaussian. We also establish conditions under which our proposed estimator consistently
recovers the support of the population covariance matrix under non-Gaussian observations,
and show that the true positive rate tends to zero with probability 1, and the false positive
rate and the false discovery rate tend to zero with probability 1, even if N tends to infinity



faster than T'. We provide conditions under which these results hold.

The performance of the MT estimator is investigated using a Monte Carlo simulation
study, and its properties are compared to a number of extant regularised estimators in
the literature. The simulation results show that the proposed multiple testing estimator is
robust to the typical choices of p used in the literature (10%, 5% and 1%), and performs
favourably compared to the other estimators, especially when N is large relative to T'. The
M'T procedure also dominates other regularised estimators when the focus of the analysis is
on support recovery.

The rest of the paper is organised as follows: Section 2 outlines some preliminaries,
introduces the MT procedure and derives its asymptotic properties. The small sample
properties of the MT estimator are investigated in Section 3. Concluding remarks are
provided in Section 4. Some of the technical proofs and additional material are provided in
Supplementary Appendices.

Notations

O (.) and o (.) denote the Big O and Little o notations, respectively. If { fy } v_, is any real
sequence and {gy }x_; is a sequence of positive real numbers, then fy = O(gy) if there exists
a positive finite constant K such that |fy| /gy < K for all N. fy = o(gn) if fn/gn — 0 as
N — o00. O,(.) and o,(.) are the equivalent orders in probability. If { fy }x_; and {gn } ., are
both positive sequences of real numbers, then fy = © (gy) if there exists Ny > 1 and positive
finite constants K, and K7, such that infy>n, (fv/gn) = Ko, and supysy, (fn/gn) < K.
The largest and the smallest eigenvalues of the N x N real symmetric matrix A = (a;;) are
denoted by Amax (A) and Amin (A) , respectively, its trace by tr (A) = S°N | ay;, its maximum

absolute column sum norm by [|A||; = maxi<j<y (Zf\; |aij|>, its maximum absolute row
sum norm by [|All_, = maxi<i<y (Z;V:1 |aij|>, its spectral radius by ¢ (A) = [Anax (A)],
its spectral (or operator) norm by ||Al|, .. = A/% (A’A), its Frobenius norm by ||A||, =

spec max
Vtr(A’A). Note that [|A|,,.. = 0(A). —, denotes convergence in probability, and —4
convergence in distribution. K, Ky, K1, C, 5, cs,cq,€9 and € are finite positive constants,

independent of N and T'. All asymptotics are carried out under N and T" — oo, jointly.

2 Regularising the sample correlation matrix: A mul-
tiple testing (MT) approach

Let {zy, i€ N, teT}, N C N, T C Z, be a double index process where x; is de-
fined on a suitable probability space (€2, F, P), and denote the covariance matrix of x;, =
(214, Tot, - .., Te) by

Var (z,) =2 = E [(z — p) (z — p)'] (1)
where F(x;) = p = (ly, flg, - - -, i)', and X is an N x N symmetric, positive definite real
matrix with (4, j) element, 0;;. We assume that x;; is independent over time, ¢. We consider



the regularisation of the sample covariance matrix estimator of 3, denoted by 3, with
elements

T
5-ij,T = T_l Z (Iit — Zi’z) (l’jt — i‘j) y fOI' l,j = 1, 2, e ,]\/v7 (2)
t=1
where Z; = T~ Y| x. To this end we assume that 3 is (exactly) sparse defined as follows.

Assumption 1 The population covariance matriz, 3 = (0;;), where Apin (2) > €9 > 0, is
sparse in the sense that my defined by

N
my =max » (07 0), (3)
<N
is bounded in N, where I(A) is an indicator function that takes the value of 1 if A holds and
zero otherwise. The remaining N(N — my — 1) non-diagonal elements of 3 are zero.

A comprehensive discussion of the concept of sparsity applied to X and alternative ways
of defining it are provided in El Karoui (2008) and Bickel and Levina (2008a). Definition 1
is a natural choice when considering concurrently the problems of regularisation of 3 and
support recovery of 3. We also make the following assumption about the bivariate moments
of (@i, zj1).

Assumption 2 The T observations {(xi1,x1), (Ti2, Tj2), . .., (i, zj7)} are independent draws
from a common bivariate distribution with mean p, = E(zy), || < K, variance o;; =
Var(zi), 0 < 04 < K, and correlation coefficient p;; = 0i;/./0:0,;, where |pij| < 1. Fur-
ther, E |yx|* < K < oo, for some positive integer s > 3, where vy = (Tt — ;)/\/Ti-
Specifically, the following moments exist

1(2,2) = E (o) 1i;(3,1) = E@hyi), 1i;(1,3) = E(yay,),
11;;(4,0) = E(yy), and p;;(0,4) = E(y},).

We follow the hard thresholding literature but, as noted above, we employ multiple
testing to decide on the threshold value. More specifically, we set to zero those elements of
R = (p;;) that are statistically insignificant and therefore determine the threshold value as
part of a multiple testing strategy. We apply the thresholding procedure explicitly to the
correlations rather than the covariances. This has the added advantage that one can use
a so-called ‘universal’ threshold rather than making entry-dependent adjustments, which in
turn need to be estimated when thresholding is applied to covariances. This feature is in line
with the method of Bickel and Levina (2008a) or El Karoui (2008) but shares the properties
of the adaptive thresholding estimator developed by Cai and Liu (2011).

Specifically, denote the sample correlation of x;; and z;;, computed over t = 1,2,...,T,
by

) . 04T
Pi; T = PjiT = — > (4)
V0,10 j5T



where 6;; 7 is defined by (2). For a given ¢ and j, it is well known that under Hy;; : 0,; = 0,
VT pijr is asymptotically distributed as N (0,1) for T" sufficiently large. This suggests using
T-'2¢~1 (1 — 2) as the threshold for {,?)iij
distribution of a standard normal variate, and p is the chosen nominal size of the test,
typically taken to be 1% or 5%. However, since there are in fact N (N — 1) /2 such tests and
N is large, then using the threshold 7-'/2®~! (1 — 2) for all N(N —1)/2 pairs of correlation
coefficients will yield inconsistent estimates of 3 and fail to recover its support.

, where @71 (+) is the inverse of the cumulative

A popular approach to the multiple testing problem is to control the overall size of
the n = N(N — 1)/2 tests jointly (known as family-wise error rate) rather than the size
of the individual tests. Let the family of null hypotheses of interest be Hyy, Hoa,. .., Hop,
and suppose we are provided with the corresponding test statistics, Zir, Zor, . .., Z,r, with
separate rejection rules given by (using a two-sided alternative)

Pr (|Zir| > CVir |Hoi) < pir,

where C'V;7 is some suitably chosen critical value of the test, and p;r is the observed p-value
for Hy;. Consider now the family-wise error rate (FWER) defined by

FWERT =Pr [U?:l (’Z1T| > CV;T ’HO’L )] ,

and suppose that we wish to control F'W E Ry to lie below a pre-determined value, p. One
could also consider other generalized error rates (see for example Abramovich et al. (2006)
or Romano et al. (2008)). Bonferroni (1935) provides a general solution, which holds for all
possible degrees of dependence across the separate tests. Using the union bound, we have

Pr(Uy (|Zir| > CVir [Ho)] < ) Pr(|Zir| > CVir |Ho:)

i1
n

< ZpiT-
i1

Hence to achieve FW ERy < p, it is sufficient to set p;r < p/n. Alternative multiple testing
procedures advanced in the literature that are less conservative than the Bonferroni procedure
can also be employed. One prominent example is the step-down procedure proposed by Holm
(1979) that, similar to the Bonferroni approach, does not impose any further restrictions on
the degree to which the underlying tests depend on each other. More recently, Romano and
Wolf (2005) proposed step-down methods that reduce the multiple testing procedure to the
problem of sequentially constructing critical values for single tests. Such extensions can be
readily considered but will not be pursued here.

In our application we scale p by a general function of N, which we denote by f(N) = csN?,
where ¢s and 0 are finite positive constants, and then derive conditions on ¢ which ensure
consistent support recovery and a suitable convergence rate of the error in estimation of
R = (p;;). In particular, we show that the choice of § depends on whether the pairs (i, y;1),
for all i # j display dependence when p;; = 0, and on the relative rate at which N and 7" rise.
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As will be shown in Section 2.1, when p;; = 0 for all 7 and j, i # j, the degree of dependence
is defined by the parameter ¢,,,, = sup;; (gpij) where p;; = F (y?tyf-t ‘pij = 0) > 0. In the
case when y;; and y;; are independent, then ¢, . = 1. In general, where the value of ¢, .. is
not known we propose to set d by cross validation.

More precisely, the multiple testing (M7T) estimator of R, denoted by Ry = (ﬁw) , is
given by

pii = il [|py| > T7%c,(N)], i=1,2,...,N—1, j=i+1,...,N, (5)

where

cp(N) = & (1 - szN)) . (6)

Finally, the MT estimator of 3 is now given by

ZMT _ Dl/QﬁMTﬁl/Q

where D = diag(é11.1,62.1,...,0NNn7). The MT procedure can also be applied to de-
factored observations following the de-factoring approach of Fan et al. (2011) and Fan et al.
(2013).

2.1 Theoretical properties of the MT estimator

Next we investigate the asymptotic properties of the M T estimator defined by (5). We begin
with the following proposition.

Proposition 1 Let y;; = (it — p1;)/\/Tii, where p; = E(xy), |u;| < K, and 0;; = Var(zy),
0 <oy < K, for all i and t, and suppose that Assumption 2 holds. Consider the sample
correlation coefficient defined by (4) which can also be expressed in terms of y; as

ZtT 1 (Yie — Ui) (Yje — U5)

ppp— . 7
S -0 S - 0] v
Then
Pz = E(pyr) =py+ Kmﬁpeij) +0(177), (8)
i = Var (pye) = 209 o (02 )
where
Kn(05) = =50, (1= +5 {303 b (4,0) + wy(0, 0] = 4 [ (3,1) + sy (1, 3)] + 20,5m5(2,2)}

(10)
K,(0;) = (1—P?j)2+i {0F; [ri;(4,0) + £i5(0,4)] — 4py; [Ki5(3,1) + kii(1,3)] + 2(2 + pf )k (2,2) }
(11)



Fv'z‘j(4a 0) = Mij<4a 0) 3#?3‘(27 0) = E(yft) -3,

K¢j<0a 4) = Mij(oa 4) — 3:“?]’(07 2) = E(?J?t) -3,

Fv'z‘j(?’a 1) = Mij(ga 1) - 3:uij(27 O)Mij(la 1) = E(y?tyjt) - 3pij7

kij(1,3) = #ij(la 3) — 3/%‘]'(07 Q)Mij(la 1) = E(Qity?t) - 30@',

Rij(2,2) = 105(2,2) = (2, 0)55(0,2) = 2055(1,1) = Eyiys) — 2pi5 — 1,

and 0;; = (p;5, 11:;(0,4) + 1;;(4,0), ;5(3, 1) + p;5(1,3), 1,;(2,2))". Furthermore, |K,,(0;;)| <
K, K,(0;) =limy_ [TVar (pyr)], and K,(8;;) < K.

All proofs are given in the Appendix with supporting Lemmas and technical details
provided in an online supplement.

Remark 1 From Gayen (1951) p.232 (eq (54)bis) it follows that K,(0;;) > 0 for all corre-
lation coefficients p;; = 0ij/\/040;, such that ‘pij‘ < 1. Further, in the case when p;; =0,
by (11),

pij = Ko(035 | pi; = 0) = E (Y, |pi = 0) >0, (12)
and by (10),

%’j = Km<9z'j |loij =0)=-05 [E (y?tyjt }pij = 0) +F (yitZ/JS't ‘pij = O)] . (13)

Note also that when y;; and y;; are independently distributed, then ¢;; = E (v2)E (yft) =1,

To establish probability bounds on p;; 7, following Bhattacharya and Ghosh (1978), we
set out conditions under which a formal Edgeworth expansion can be established for the
standardised correlation coefficient, z;; . But to simplify the exposition we introduce the
following general assumption first.

Assumption 3 The standardised correlation coefficients, z;;r = [ﬁMT - LK (})Z]Tﬂ I\ Var (pyr),
for alli and j (i # j) pairs admit the Edgeworth expansion

Pr(zijr < ayr |Pij) = Fijr(aijr|Pij) (14)

5—2
P(air) + ¢ (aijr) Z TG, (a7 |Py) + O (T_(S_l)/z)] ;

r=1

for some positive integer s > 3, where E (pijvT) and Var (biﬂ,) are respectively defined by (8)
and (9) of Proposition 1, ®(a;jr) and ¢ (a;;r) are the cumulative distribution and density
functions of the standard Normal (0, 1), respectively, and G, (aijr|Pi;), r = 1,2,...,s —
2, are polynomials in a;jr, whose coefficients depend on the parameters of the underlying
biwariate distribution of vy and xj, fort=1,2,...,T, which are denoted by P;;.



The forms of the polynomial functions G, (.|P;;), 7 = 1,2...., is the same for all 7 and
7 pairs, and only differ in terms of the parameters of the underlying bivariate distribution
of (24, xjt). The following proposition provides a set of sufficient conditions under which
Assumption 3 holds. Bhattacharya and Ghosh (1988) and Lahiri (2010) provide further
developments that allow some relaxations of these conditions.

Proposition 2 For a given i and j, let §;;, = (Yir, Yjt, v2, yjzt, Yityje)'s and suppose that &,
fort=1,2,...,T, are random draws from a common distribution, G;;(§), which is absolutely
continuous with non-zero density on subsets of R®. Suppose further that E |y2~,5|25 < o0, for
some positive integer s > 3. Then the Edgeworth expansion in (14) is formally valid.

Given Assumptions 1-3, first we establish the rate of convergence of the MT estimator
under the spectral (or operator) norm which implies convergence in eigenvalues and eigen-
vectors (see El Karoui (2008), and Bickel and Levina (2008b)).

Theorem 1 (Convergence under the spectral norm) Consider the sample correlation coeffi-
cient of xy and xj, defined by p,; (see (4)), and denote the associated population correla-
tion matriz by R = (p,;). Suppose that Assumptions 1, 2 and 3 hold. Let f(N) = ¢sN° and
T = cqN?, where cs,cq, and § are finite positive constants, and d > 2/3. Further, suppose
that there exist finite Ty and Ny such that for all T > Ty and N > Ny,

b
1—W>O, (15)

where 0 < p < 1. Consider values of § that satisfy condition
6 > (1= 0.5d) Py, (16)

where gy, = supy; E (y39% p;=0) >0, and yyr = (xi — 1;)/\/Tii (see Assumption 2).

Then
my
o™ 17
spec (ﬁ) ( )
where my is defined by (3), and Ry = (Pijr) = Pijol [|pijr| > T2, (N)], with ¢,(N) =

o1 <1—%) > 0.

Under the conditions of Theorem 1, and since by Assumptions 1 and 2, Ay, (R) > g9 > 0,

EHEMT—R

then the eigenvalues of ﬁMT are bounded away from zero with probability approaching 1,
and we have

~ 1
H (RMT> ~-R!

_ H (ﬁMT)l (R—Rur) R

~ ~1 -
< Amin (RMT> HR — Ryr

o)

8

spec spec

)\min (R> !

spec




Also see Appendix A of Fan et al. (2013) and proof of Lemma A.1 in Fan et al. (2011).
Similarly, we establish the rate of convergence of the M7 estimator under the Frobenius
norm.

Theorem 2 (Convergence under the Frobenius norm) Consider the sample correlation coef-
ficient of xi; and xj; defined by p;;r (see (4)), and denote the associated population correla-
tion matriz by R = (p;;). Suppose that Assumptions 1, 2 and 3 hold. Let f(N) = csN? and
T = c¢yN?, where cs,cq, and § are finite positive constants, and d > 2/3. Further, suppose
that there exist finite Ty and Ny such that for all T > Ty and N > Ny

p

l1——— >0, 18
2 (V) "

where 0 < p < 1. Consider values of § that satisfy the condition
6> (2 - d) Pmax: (19)

where @, = sup;; £ (yfty?t ‘pij = O) >0, yir = (xiu— ;) //0i (see Assumption 2). Further,
\/Tpmin - CP(N) — 0Q, (20)

,pi; 7 0) and c,(N) = o1 (1 — %) > (0. Then we have

£ R -], -0 (/5] )

where pi, = minij(‘pij

T

where my is defined by (3), and Ry = (Pijr) = Pijrl [|pijr| > T2, (N)].

Remark 2 In view of the conditions of Theorems 1 and 2, we note that (15) or (18) is
met for any 6 > 0. Further, conditions (16) and (19) imply that § should be set at a
sufficiently high level, determined by d (the relative expansion rates of N and T ), and ..
(the mazimum degree of dependence between y;; and y;; when pi; =0 ). Importantly, for a
given d and .., convergence under the spectral norm, (17), requires a lower § than under
the Frobenius norm, (21). Both norm results hold even if N rises faster than T, so long as
d > 2/3. In the case where N and T are of the same orders of magnitude (namely, d = 1),
and where y;; and y;; are independently distributed when p;; = 0 (namely, ¢,... = 1), then
the spectral norm result, (17), requires 6 > 1/2, and the Frobenius norm result, (21), requires
0 > 1. Finally, note that by allowing for ¢, .. to differ from unity our analysis applies to
non-Gaussian processes.

Remark 3 Condition (20) can be written as
L B0 AN [EM] [a)
Pmin = =p = = Nd T | In(N) | | NE |
Since imy_o c3(N)/In(N) = 26 (see Lemma 3), this final condition is satisfied for any
0 > 0, even if p,;, tends to zero with N so long as the rate at which p,;, tends to zero is

slower than In(N)/N<, for some d > 0. Note that for values of d < 1 we allow N to rise
much faster than T.




Remark 4 The orders of convergence in (17) and (21) are in line with the results in the
thresholding literature. See, for example, Theorem 1 of Cai and Liu (2011), - CL, and
Bickel and Levina (2008a) - BL, with ¢ = 0, that state the convergence rate using the

‘E—E = 0, (mN M), where X is the

spectral morm in terms of probability, e a

thresholded estimator of > using either the CL or BL approaches. Similarly, Theorem 2
of Bickel and Levina (2008a), with ¢ = 0, using the Frobenius norm under the Gaussianity

S-3| =0, (ymNEN ). I fact (17) and
‘ B Op< 7 n fact (17) an

(21) are improvements on the existing rates since the log (N) factor is absent in both cases.

The rate of O, ( m—zi") is achieved in the shrinkage literature as well, if the assumption of

sparseness 1s imposed. Here my also can be assumed to rise with N in which case the rate

assumption, obtains a convergence rate of

of convergence becomes slower. This compares with a rate of O, (\/N /T) for the sample

covariance (correlation) matriz - see Theorem 3.1 in Ledoit and Wolf (2004) - LW. Note
that LW use an unconventional definition for the Frobenius norm (see their Definition 1 p.
376).

Remark 5 [t is interesting to note that application of the Bonferroni procedure to the prob-
lem of testing p;; = 0 for all i # j, is equivalent to setting f(N) = N(N — 1)/2. Our
theoretical results suggest that this can be too conservative if p;; = 0 implies y;; and y;; are
independent, but could be appropriate otherwise depending on the relative rate at which N
and T rise. In our Monte Carlo study we consider observations complying with ¢, = 1 and
Omax = 1.5, and experiment with § = {1,2}. We also present results where 0 is estimated by
cross validation over the range {1 —2.5}. We find that the simulation results conform closely
to our theoretical findings.

Consider now the issue of consistent support recovery of R (or 3), which is defined in
terms of true positive rate (TPR), false positive rate (FPR), and false discovery rate (FDR)
statistics. Consistent support recovery requires PR — 1, FPR — 0 and FFDR — 0, with
probability 1 as N and T — oo, and does not follow immediately from the results obtained
above on the convergence rates of different estimators of R. The problem is addressed in
the following theorem.

Theorem 3 (Support Recovery) Consider the true positive rate (TPR), the false positive
rate (FPR), and the false discovery rate (FDR) statistics defined by

Z?EZI(@]',T #0, and Pij #0)
TPR = Z#Z Ton Z0) (22)

Z'#ZI(Ibij,T # 0, and p;; = 0)
FrR = > > 1(pi; =0) 7 29)

i#]
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Zizj(ﬁij,T # 0, and Pij = 0)
FDR = Z; e : (24)

computed using the multiple testing estimator

pij,T IO’L]T’[ HPUT‘ >1T" 1/2 (N)] )

where p;; 1 is the pair-wise correlation coefficient defined by (4), c,(N) = o1 (1 — %) >
0,0 <p <1, c(N)— 00 as N — oo, and c,(N)/VT — 0 as N and T — oco. Let
f(N) =¢csN° and T = c4N?, where cs,cq, § and d are finite positive constants. Suppose also
that Assumptions 1, 2 and 8 hold, and that there exist Ny and Ty such that for N > Ny and
T > Ty,

VT pin = &(N) > 0,

where p, = minij(|pij| ,pi; 7 0) > 0. Then with probability tending to 1, TPR = 1, and
FPR =0, for any 6 > 0. If it is further assumed that for some small positive constant

€, o> (1 - 6)_1()0111&)(7 where ©max — SUP;; E (yzty]t ‘p%j = O) > 0 Yit = (13“5 Mz)/\/ Oii (566
Assumption 2), then with probability tending to 1, FDR = 0.

Remark 6 We note that

A(N) _ 2[ln(N) ~ In(p)]
T - Cde ’
and hence condition cp(N)/\/T — 0 is met for any finite d > 0. For a discussion of the
remaining condition /T Pmin —Cp(IN) > 0, see Remark 3. Hence, the support recovery results
i the above theorem hold even if N is much larger than T. It is also worth emphasizing that

condition § > (1 — €)Y, . is required for FDR to tend to zero, but not for the results on
TPR and FPR.

3 Monte Carlo simulations

We investigate the numerical properties of the proposed multiple testing (MT) estimator
using Monte Carlo simulations. We compare our estimator with a number of thresholding
and shrinkage estimators proposed in the literature, namely the thresholding estimators of
Bickel and Levina (2008a) - BL - and Cai and Liu (2011) - CL, and the shrinkage estimator of
LW. As mentioned earlier the thresholding methods of BL and CL require the computation
of a theoretical constant, C, that arises in the rate of their convergence. For this purpose,
cross-validation is typically employed which we use when implementing these estimators.
For the CL approach we also consider the theoretical value of C' = 2 derived by the authors
in the case of Gaussianity. A review of these estimators along with details of the associated
cross-validation procedure can be found in the Supplementary Appendix B.
We begin by generating the standardised variates, y;;, as

yt:Put,t:LQ,...,T,
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where y; = (Y1t Y2ty - - - Ynt)'s W = (ugg, sy, - .., uny)’, and P is the Cholesky factor asso-
ciated with the choice of the correlation matrix R = PP’. We consider two alternatives
for the errors, u;: (i) the benchmark Gaussian case where u;; ~ IIDN(0,1) for all ¢ and
t, and (ii) the case where u;; follows a multivariate t-distribution with v degrees of freedom

o\ 12
uit:<v ) ey, fori=1,2,... N,
2
Xv,t

where ¢;; ~ IIDN(0,1), and X\Q/,t is a chi-squared random variate with v > 4 degrees of
freedom, distributed independently of ¢;, for all ¢ and ¢. As sixth-order moments are required
by Assumption 2 we set v = 8 to ensure that E (y5) exists and ¢, < 2. Note that under
pi; =0, ;= E (yay% |pi; = 0) = (v—2)/(v—4), and with v = 8 we have ¢;; = ¢y, = 1.5.
Therefore, in the case where the standardised errors are multivariate t-distributed to ensure
that conditions of both Theorems 1 and 2 are met we set 6 = 2. (See also Remark 2

generated as

and Lemma 7 in the Supplementary Appendix A). One could further allow for fat-tailed
e+ shocks, say, though fat-tail shocks alone (e.g. generating u; as such) do not necessarily
result in ,; > 1 as shown in Lemma 8 of the Supplementary Appendix A. The same is true
for normal shocks under case (i) where E (yfty?t) = 1 whether P = Iy or not. In such cases
setting 6 = 1 is then sufficient for conditions of both Theorems 1 and 2 to be met, given the
(N, T') combinations considered. In order to verify and calibrate the values of § corresponding
to the alternative processes generating y;;, we also consider an estimated version 9. For this
purpose we use an analogous cross-validation procedure to CL over a specified range with
end points dpin = 1 and dpax = 2.5, and increments of 0.1 (see the Supplementary Appendix
B for further details).

Next, the non-standardised variates x; = (14,22, - . - ,I’Nt)/ are generated as
z, =a+~f + D2y, (25)
where D = diag(o11,092,...,0nN), @ = (a1,as,...,ay) and v = (Y1,72,-- -, Yn)"-

We report results for N = {30,100,200} and 7" = 100, for the baseline case where
v = 0and a = 0 in (25). The properties of the MT procedure when factors are included
in the data generating process are also investigated by drawing -, and a; as [IDN (1, 1) for
i=1,2,...,N, and generating f;, the common factor, as a stationary AR(1) process, but to
save space these results are made available upon request. Under both settings we focus on
the residuals from an OLS regression of x; on an intercept and a factor (if needed).

In accordance with our theoretical assumptions we consider two ezxactly sparse covariance
(correlation) matrices:

Monte Carlo design A: Following Cai and Liu (2011) we consider the banded matrix

> = (0'”) = diag(Al,AQ),

where A; = A+el /o, A = (aij)1<ij<n/2, Gij = (1—%)+ with € = max(—Apin(A),0)+0.01
to ensure that A is positive definite, and Ay = 4Iy/5. X is a two-block diagonal matrix,

A, is a banded and sparse covariance matrix, and A, is a diagonal matrix with 4 along the
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diagonal. Matrix P is obtained numerically by applying the Cholesky decomposition to the
correlation matrix, R = D™Y2XD~Y/2 = PP/, where the diagonal elements of D are given
by o =1+¢ fori=1,2,...,N/2and 03 =4, fori = N/2+1,N/2+1,... N.

Monte Carlo design B: We consider a covariance structure that explicitly controls for the
number of non-zero elements of the population correlation matrix. First we draw the N x 1
vector b = (by, by, ..., by) with elements generated as Uniform (0.7,0.9) for the first and
last N}, (< N) elements of b, where NV, = [N A }, and set the remaining middle elements of b
to zero. The resulting population correlation matrix R is defined by

R =1y + bt — diag (bb), (26)

for which vTp,; —cp(N) > 0 and p,,;, = min; (|pi;]+ pi; #0) > 0, in line with Theorem
3. The degree of sparseness of R is determined by the value of the parameter 3. We

are interested in weak cross-sectional dependence, so we focus on the case where 5 < 1/2
following Pesaran (2015), and set § = 0.25. Matrix P is then obtained by applying the
Cholesky decomposition to R defined by (26). Further, we set ¥ = D'?RD'?, where the
diagonal elements of D are given by o;; ~ IID (1/2+ x*(2)/4),i=1,2,..., N.

3.1 Finite sample positive definiteness

As with other thresholding approaches, multiple testing preserves the symmetry of R and is
invariant to the ordering of the variables but it does not ensure positive definiteness of the
estimated covariance matrix when N > T

A number of methods have been developed in the literature that produce sparse inverse
covariance matrix estimates which make use of a penalised likelihood (D’Aspremont et al.
(2008), Rothman et al. (2008), Rothman et al. (2009), Yuan and Lin (2007), and Peng et al.
(2009)) or convex optimisation techniques that apply suitable penalties such as a logarithmic
barrier term (Rothman (2012)), a positive definiteness constraint (Xue et al. (2012)), an
eigenvalue condition (Liu et al. (2013), Fryzlewicz (2013), Fan et al. (2013) - FLM). Most of
these approaches are rather complex and computationally extensive.

A simpler alternative, which conceptually relates to soft thresholding (such as smoothly
clipped absolute deviation by Fan and Li (2001) and adaptive lasso by Zou (2006)), is to
consider a convex linear combination of fiMT and a well-defined target matrix which is
known to result in a positive definite matrix. In what follows, we opt to set as benchmark
target the NV x N identity matrix, Iy, in line with one of the methods suggested by El Karoui
(2008). The advantage of doing so lies in the fact that the same support recovery achieved
by Ry is maintained and the diagonal elements of the resulting correlation matrix do not
deviate from unity. Given the similarity of this adjustment to the shrinking method, we dub
this step shrinkage on our multiple testing estimator (S-MT),

Rt (&) =&In+(1— §)EMT, (27)

with shrinkage parameter & € (&, 1], and &, being the minimum value of £ that produces a
non-singular Rg yr(€,) matrix. Alternative ways of computing the optimal weights on the
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two matrices can be entertained. We choose to calibrate, £, since opting to use &, in (27),
as suggested in El Karoui (2008), does not necessarily provide a well-conditioned estimate
of Rg.pr. Accordingly, we set £ by solving the following optimisation problem

~_1 2
*—arg min ||[R;'—R H 28
§ g§0+5§§§1 H 0 s-mr(§) P’ (28)
where € is a small positive constant, and Ry is a reference invertible correlation matrix.
Finally, we construct the corresponding covariance matrix as

~1/2 ~

Sonr (&)=D""Royr (&) D

1/2

Further details on the S-MT procedure, the optimisation of (28) and choice of reference
matrix Ry are available in the Supplementary Appendix C.

3.2 Alternative estimators and evaluation metrics

Using the earlier set up and the relevant adjustments to achieve positive definiteness of the
estimators of 3 where required, we obtain the following estimates of 3:

MT;: thresholding based on the M approach applied to the sample correlation matrix
(Z:MT) using 0=1 (EMT,l)

MT;: thresholding based on the M1 approach applied to the sample correlation matrix
(Z:MT) using 6 =2 (EMT’Q)

MTj: thresholding based on the MT" approach applied to the sample correlation matrix
(1) using cross-validated § (3 MTS)

BLg: BL thresholding on the sample covariance matrix using cross-validated C (= BLC)

C'Ly: CL thresholding on the sample covariance matrix using the theoretical value of
C=2(Zcr2) N

CLg: CL thresholding on the sample covariance matrix using cross-validated C' (£ #)

S-MT: supplementary shrinkage applied to M T} (f]s MT1)

S-MTs;: supplementary shrinkage applied to M T, (f]s MT2)

S-MTy: supplementary shrinkage applied to M T} (f] s-mT5)

BLg¢.: BL thresholding using the Fan et al. (2013) - FLM - cross-validation adjustment
procedure for estimating C' to ensure positive definiteness (f] B L,é*)

CLg.: CL thresholding using the FLM cross-validation adjustment procedure for esti-
mating C' to ensure positive definiteness (ic L.éw)

LWg: LW shrinkage on the sample covariance matrix (f] W)

In accordance with the theoretical results in Theorems 1 and 2 and in view of Remark
5, we consider three versions of the MT estimator depending on the choice of § = {1, 2, 5 } )
The BL4, CLy and CL 4 estimators apply the thresholding procedure without ensuring that
the resultant covariance estimators are invertible. The next six estimators yield invertible
covariance estimators. The S-MT estimators are obtained using the supplementary shrink-

age approach described in Section 3.1. BL4. and CL 4. estimators are obtained by applying

14



the additional FLM adjustments. The shrinkage estimator, LW, is invertible by construc-
tion. In the case of the MT estimators where regularisation is performed on the correlation
matrix, the associated covariance matrix is estimated as DY/ 2IN%MT]jl/ 2,

For both Monte Carlo designs A and B, we compute the spectral and Frobenius norms of
the deviations of each of the regularised covariance matrices from their respective population
3

|=-3

and HE—EDJH , (29)
spec

where ¥ is set to one of the following estimators {EMTl, EMTQ, f)MTé, ZBLC, ECL 2

ECLC, Zg MT1, 25 MT2, Bg 5o EBL’C*, ZCL o ELW }. The threshold values, 6 C and

C*,are obtained by cross-validation (see Supplementary Appendix B.3 for details). Both
norms are also computed for the difference between X7, the population inverse of ¥, and
the estimators {251MT1, EslMTz, EN]:MT57 ENJ;L Yot chL O ZLW }. Further, we investigate
the ability of the thresholding estimators to recover the support of the true covariance matrix
via the true positive rate (TPR) and false positive rate (FPR), as defined by (22) and (23),
respectively. The statistics TPR and FPR are not relevant to the shrinkage estimator LW

and will not be reported for this estimator.

3.3 Robustness of MT to the choice of p-values

We begin by investigating the sensitivity of the MT estimator to the choice of the p-value,
p, and the scaling factor determined by ¢ used in the formulation of ¢,(N) defined by (6).
For this purpose we consider the typical significance levels used in the literature, namely

= {0.01,0.05,0.10}, & = {1,2}, and a cross-validated version of 8, denoted by . Tables 1a
and 1b summarise the spectral and Frobenius norm losses (averaged over 2000 replications)
for Monte Carlo designs A and B respectively, and for both distributional error assumptions
(Gaussian and multivariate ). First, we note that neither of the norms is much affected by
the choice of the p values when setting 6 = 1 or 2 in the scaling factor, irrespective of whether
the observations are drawn from a Gaussian or a multivariate ¢ distribution. Similar results
are also obtained using the cross validated version of §. Perhaps this is to be expected since
for N sufficiently large the effective p-value which is given by 2p/N° is very small and the
test outcomes are more likely to be robust to the choice of p values as compared to the choice
of 9. The results in Tables 1a and 1b also confirm our theoretical findings of Theorems 1 and
2 that in the case of Gaussian observations, where ¢, .. = 1, the scaling factor using § =1
is likely to perform better as compared to 6 = 2, but the reverse is true if the observations
are multivariate ¢ distributed and the scaling factor using § = 2 is to be preferred (see also
Remark 2).

It is also interesting that the performance of the MT procedure when using § is in line
with our theoretical findings. The estimates of ¢ are closer to unity in the case of experiments
with ¢, = 1, and are closer to 6 = 2 in the case of experiments with ¢, .. = 1.5. The
average estimates of 6 shown in Tables 1a and 1b are also indicative that a higher value of ¢
is required when observations are multivariate ¢ distributed. Finally, we note that the norm
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losses rise with N given that T is kept at 100 almost across the board in all the experiments.
Overall, the simulation results support using a sufficiently high value of § (say around 2) or
its estimate, §, obtained by cross validation.

3.4 Norm comparisons of M1, BL, CL, and LW estimators

In comparing our proposed estimators with those in the literature we consider a fewer num-
ber of Monte Carlo replications and report the results with norm losses averaged over 100
replications, given the use of the cross-validation procedure in the implementation of MT,
BL and CL thresholding. This Monte Carlo specification is in line with the simulation set
up of BL and CL. Our reported results are also in agreement with their findings.

Tables 2 and 3 summarise the results for the Monte Carlo designs A and B, respectively.
Based on the results of Section 3.3, we provide norm comparisons for the MT estimator using
the scaling factor where § = 2 and 4, and the conventional significance level of p = 0.05.
Initially, we consider the threshold estimators, the two versions of MT (M7, and MTj) and
CL (CLy and CLg) estimators, and BL without further adjustments to ensure invertibility.
First, we note that the MT and C'L estimators (both versions for each case) dominate the
BL estimator in every case, and for both designs. MT performs better than C'L, when
comparing the versions of the two estimators using their respective theoretical thresholding
values and their estimated equivalents. The outperformance of MT' is more evident as N
increases and when non-Gaussian observations are considered. The same is also true if we
compare MT and C'L estimators to the LW shrinkage estimator, although it could be argued
that it is more relevant to compare the invertible versions of the MT and C'L estimators
(namely ,EV]CLC*, ,EV:S_MT72 and f]s_ MT,S) with 3 Lw,- In such comparisons by Lw,, performs
relatively better, nevertheless, 3| LW is still dominated by > s-mr,2 and ) SMT5 with a few
exceptions in the case of design A and primarily when N = 30. However, no clear ordering
emerges when we compare 3 Lw, with ic Lo

3.5 Norm comparisons of inverse estimators

Although the theoretical focus of this paper has been on estimation of X rather than its
inverse, it is still of interest to see how well f);_lMTJ, f];_lMT’;;, f;;;é*, ENJ;—JC, and EAJZ;VE
estimate X!, assuming that X! is well defined. Table 4 provides average norm losses
for Monte Carlo design B whose ¥ is positive definite. X for design A is ill-conditioned
and will not be considered any further here. As can be seen from the results in Table 4,

~_1 ~—1 ~—1 =—1
both ¥g )/ and Xg yp 5 perform much better than ¥z, o and ¥ 4. for Gaussian and
~-1
multivariate {-distributed observations. In fact, the average spectral norms for ¥5; 4. and

i;ic include some sizeable outliers, especially for N < 100. However, the ranking of the
different estimators remains the same if we use the Frobenius norm which appears to be less
sensitive to the outliers. It is also worth noting that f];_lMTQ and f];_lM:n 5 perform better than
LWy, for all sample sizes and irrespective of whether the observations are drawn as Gaussian
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or multivariate ¢t. Finally, using 5 rather than § = 2 when implementing the MT method
improves the precision of the estimated inverse covariance matrix across all experiments.

3.6 Support recovery statistics

Table 5 reports the true positive and false positive rates (TPR and FPR) for the support
recovery of 3 using the multiple testing and thresholdlng estimators. In the comparison set
we include three versions of the MT estimator (E MT15 ) mT2 and > MT, 5)s > BL.C ECL 2, and

> or.c- Again we use 100 replications due to the use of cross-validation in the implementation
of MT, BL and CL thresholding. We include the MT estimators for choices of the scaling
factor where 6 = 1 and § = 2, computed at p = 0.05, to see if our theoretical result, namely
that for consistent support recovery only the linear scaling factor, where o = 1, is needed, is
borne out by the simulations. Further, we implement M7 using § to verify that the support
recovery results under MTj correspond more closely to those under M7y, in line with the
findings of Theorem 3. For consistent support recovery we would like to see F'PR values
near zero and T'PR values near unity. As can be seen from Table 5, the F'PR values of all
estimators are very close to zero, so any comparisons of different estimators must be based
on the TP R values. Comparing the results for > wmr,1 and > wmr,2 we find that as predicted by
the theory (Theorem 3 and Remark 6), 7P R values of ) M1 are closer to unity as compared
to the TPR values of 3. wmr,2. This is supported by the T'PR values of ) MT 88 well. Similar
results are obtained for the MT estimators for different choices of the p values. Table 6
provides results for p = {0.01,0.05,0.10}, and for 6 = {1, 2, 3} using 2,000 replications. In
this table it is further evident that, in line with the conclusions of Section 3.3, both the T PR
and the F'PR statistics are relatively robust to the choice of the p values irrespective of the
scaling factor, or whether the observations are drawn from a Gaussian or a multivariate ¢
distribution. This is especially true under design B, since for this specification we explicitly
control for the number of non-zero elements in X, that ensures the conditions of Theorem 3
are met.

Turning to a comparison with other estimators in Table 5, we find that the MT and
CL estimators perform substantially better than the BL estimator. Further, allowing for
dependence in the errors causes the support recovery performance of BLg4, CLy and CLg to
deteriorate noticeably while M1y, M1, and MT; remain remarkably stable. Finally, again
note that T'PR values are higher for design B. Overall, the estimators > MT,1 OT > MT do
best in recovering the support of 3 as compared to other estimators, although the results of
CL and MT for support recovery can be very close, which is in line with the comparative
analysis carried out in terms of the relative norm losses of these estimators.

3.7 Computational demands of the different thresholding methods

Table 7 reports the relative execution times of the different thresholding methods studied.
All times are relative to the time it takes to carry out the computations for the MT5 es-
timator. It took 0.010, 0.013, and 0.014 seconds to apply the MT method in Matlab to a
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sample of N = {30,100, 200}, respectively, and T" = 100 observations using a desktop pc.
The execution times of MT; and MT, are very similar and differ only slightly across the
experiments with different p-values. In contrast, the BLs and C'L thresholding approaches
are computationally much more demanding. Their computations took between about 12 and
485257 times (depending on N) longer than the MT, approach, for the same sample sizes
and computer hardware. The BLs method was less demanding than the C'L s method - it
took between about 12 and 584 times longer than the MT5 approach. Even C'Lo, which does
not require estimation of the threshold parameter, took up to 19 times longer than the M7T5
approach. Thus, compared with other thresholding methods, MT; and MT, procedures have
a clear computational advantage over the C'L and BL procedures. This is not a surprising
outcome, considering that M} and M7 do not involve cross validations. But we find sim-
ilar computational advantages for the M'T" procedure when we compare its cross-validated
version, MT5, with CLs. The execution times of MT}; were between 1278 and 482038 faster
than C'Ls. Turning to the relative execution times of MTj; and BL4, we find that BL4 is
somewhere between 24 and 2634 faster to compute than MTj. However, the computational
advantage of BLs over MTj procedure is to be weighed against the much more favourable
performance of MTj over C'Ls.

4 Concluding Remarks

This paper considers regularisation of large covariance matrices particularly when the cross
section dimension N of the data under consideration exceeds the time dimension 7. In this
case the sample covariance matrix, f), becomes ill-conditioned and is not a satisfactory
estimator of the population covariance.

A regularisation estimator is proposed which uses multiple testing to calibrate the thresh-
old value. It is shown that the resultant estimator has a convergence rate of (m T~V 2) under

/2 ynder the Frobenius norm, where 7T is the number of

the spectral norm and (myN/T)
observations, and my is bounded in N (the dimension of ), which provide slightly better
rates than the convergence rates established in the literature for other regularised covariance
matrix estimators. Our results derived under the spectral and Frobenius norms explicitly
relate the scaling function in the multiple testing problem to the possible dependence of the
underlying data when p;; = 0, for all ¢ and j, i # j, and the relative rate at which N and
T rise. These results are valid under both Gaussian and non-Gaussian assumptions. This
compliments the existing theoretical results in the literature for the Frobenius norm of the
thresholding estimator derived only under the assumption of Gaussianity. As compared to
the threshold estimators that use cross-validation, the MT' estimator is also computationally
simple and fast to implement.

The numerical properties of the proposed estimator are investigated using Monte Carlo
simulations. It is shown that the MT estimator performs well, and generally better than
the other estimators proposed in the literature. The simulations also show that in terms of
spectral and Frobenius norm losses, the MT' estimator is reasonably robust to the choice
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2f(N)
and 0 being finite positive constants, particularly when setting 6 = 2. For support recovery,

of p in the threshold criterion, |,5U’ > 771291 (1 — L), where f(N) = c;N°, with cs

better results are obtained if § = 1.
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Table la: Spectral and Frobenius norm losses for the MT" estimator using significance
levels p = {0.01,0.05,0.10} and scaling factors with § = {1, 2, 5}, for T'= 100

Monte Carlo design A

N\p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

u;;~ Gaussian

Spectral norm
30 1.70(0.49) 1.68(0.49) 1.71(0.49) 1.89(0.51) 1.79(0.50) 1.75(0.50)  1.71(0.49) 1.68(0.49) 1.69(0.49)
100 2.61(0.50) 2.51(0.50) 2.50(0.50)  3.11(0.50) 2.91(0.50) 2.84(0.50)  2.62(0.50) 2.52(0.50) 2.51(0.50)
200 3.04(0.48) 2.92(0.49) 2.89(0.49) 3.67(0.47) 3.46(0.47) 3.37(0.47)  3.05(0.48) 2.93(0.49) 2.90(0.49)
Frobenius norm
30 3.17(0.45) 3.14(0.50) 3.20(0.53)  3.49(0.42) 3.32(0.43) 3.26(0.43)  3.19(0.44) 3.13(0.48) 3.16(0.52)
100 6.67(0.45) 6.51(0.51) 6.60(0.55)  7.75(0.40) 7.34(0.41) 7.17(0.42)  6.70(0.45) 6.52(0.50) 6.57(0.54)
200 9.87(0.46) 9.60(0.53) 9.73(0.58) 11.76(0.40) 11.15(0.41) 10.89(0.42) 9.91(0.46) 9.62(0.52) 9.69(0.57)

u;:~ multivariate t{—distributed with 8 degrees of freedom

Spectral norm
30 2.26(1.08) 2.42(1.20) 2.55(1.26)  2.29(0.90) 2.24(0.99) 2.24(1.03) 2.23(0.95) 2.32(1.04) 2.39(1.08)
100 3.85(4.84) 4.20(5.28) 4.46(5.48) 3.78(3.78) 3.71(4.12) 3.71(4.27) 3.67(3.81) 3.83(4.11) 3.93(4.21)
200 4.49(3.46) 5.04(4.34) 5.44(4.77)  4.26(1.80) 4.20(2.21) 4.19(2.37)  4.20(2.43) 4.45(2.78) 4.57(2.94)
Frobenius norm
30 4.06(1.14) 4.35(1.32) 4.60(1.40)  4.12(0.90) 4.04(1.00) 4.03(1.06)  4.03(1.00) 4.19(0.13) 4.32(1.19)
100 8.88(5.17) 9.75(5.67) 10.49(5.87) 9.04(4.04) 8.80(4.40) 8.74(4.57)  8.65(4.16) 9.09(4.48) 9.41(4.59)
200 12.96(4.23) 14.50(5.41) 15.81(5.95) 13.25(2.10) 12.85(2.54) 12.71(2.76) 12.57(2.97) 13.25(3.48) 13.73(3.67)

Cross validated values of §

N\p 0.01 0.05 0.10
u;;~ Gaussian

30 1.08(0.11) 1.10(0.12) 1.12(0.13)
100 1.04(0.06) 1.05(0.07) 1.06(0.08)
200 1.03(0.05) 1.03(0.06) 1.04(0.06)
u;;~ multivariate ¢t—distr. with 8 dof
30 1.13(0.18) 1.19(0.22) 1.25(0.25)
100 1.12(0.18) 1.18(0.22) 1.23(0.25)
200 1.15(0.20) 1.20(0.23) 1.24(0.25)

Note: The MT approach is implemented using 6 = 1, 6 = 2, and 3, computed using cross-validation.
Norm losses and estimates of §, J, are averages over 2,000 replications. Simulation standard deviations are
given in parentheses.
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Table 1b: Spectral and Frobenius norm losses for the MT estimator using significance
levels p = {0.01,0.05,0.10} and scaling factors with § = {1, 2, 5}, for T'= 100

0=1

Monte Carlo design B
0 =2

5

N\p

0.01 0.05 0.10

0.01 0.05 0.10

0.01 0.05 0.10

u;;~ Gaussian

30
100
200

30
100
200

Spectral norm

0.48(0.16) 0.50(0.16) 0.53(0.16)
0.75(0.34) 0.76(0.32) 0.78(0.31)
0.71(0.22) 0.74(0.20) 0.77(0.20)
Frobenius norm

0.87(0.17) 0.91(0.18) 0.97(0.19)
1.56(0.24) 1.66(0.24) 1.77(0.24)
2.16(0.18) 2.32(0.20) 2.50(0.21)

0.50(0.20) 0.49(0.18) 0.48(0.17)
0.89(0.43) 0.81(0.39) 0.79(0.37)
0.85(0.33) 0.78(0.28) 0.75(0.26)

0.89(0.20) 0.87(0.17) 0.86(0.17)
1.67(0.34) 1.60(0.29) 1.58(0.27)
2.25(0.24) 2.19(0.21) 2.16(0.20)

0.48(0.17) 0.49(0.16) 0.49(0.16)
0.76(0.35) 0.76(0.34) 0.76(0.34)
0.72(0.24) 0.72(0.22) 0.72(0.22)

0.86(0.17) 0.88(0.17) 0.88(0.17)
1.56(0.25) 1.58(0.24) 1.58(0.25)
2.15(0.18) 2.18(0.19) 2.18(0.20)

u;:~ multivariate t—distributed with 8 degrees of freedom

30
100
200

30
100
200

Spectral norm

0.70(0.39) 0.78(0.43) 0.84(0.45)
1.16(0.97) 1.32(1.10) 1.42(1.18)
1.36(1.73) 1.65(2.05) 1.83(2.20)
Frobenius norm

1.23(0.42) 1.40(0.48) 1.53(0.51)
2.39(1.12) 2.90(1.31) 3.25(1.40)
3.57(2.13) 4.52(2.54) 5.18(2.72)

0.67(0.33) 0.67(0.35) 0.67(0.37)
1.15(0.75) 1.11(0.80) 1.10(0.83)
1.14(1.03) 1.13(1.21) 1.14(1.28)

1.15(0.35) 1.16(0.38) 1.17(0.39)
2.17(0.77) 2.15(0.86) 2.16(0.90)
2.97(1.21) 2.98(1.43) 3.01(1.53)

0.67(0.33) 0.68(0.35) 0.68(0.36)
1.10(0.72) 1.10(0.77) 1.11(0.80)
1.16(1.06) 1.19(1.20) 1.20(1.27)

1.17(0.36) 1.19(0.38) 1.20(0.39)
2.17(0.76) 2.22(0.85) 2.24(0.89)
3.06(1.27) 3.17(1.48) 3.21(1.57)

N\p

Cross validated values of

0.01 0.05 0.10

u;;~ (Gaussian

30
100
200

1.27(0.27) 1.46(0.35) 1.61(0.36)
1.25(0.24) 1.43(0.31) 1.56(0.32)
1.23(0.22) 1.36(0.26) 1.49(0.27)

u;;~ multivariate ¢t—distr. with 8 dof

30
100
200

1.45(0.38) 1.72(0.39) 1.87(0.35)
1.59(0.41) 1.76(0.40) 1.85(0.37)
1.68(0.44) 1.78(0.41) 1.85(0.39)

The MT approach is implemented using § = 1, § = 2, and 37 computed using cross-validation. Norm
losses and estimates of §, d, are averages over 2,000 replications. Simulation standard deviations are given

in parentheses.
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Table 2: Spectral and Frobenius norm losses for different regularised covariance matrix
estimators (7" = 100) -

Monte Carlo design A

N =30 N =100 N =200
Norms Norms Norms
Spectral ~ Frobenius Spectral  Frobenius  Spectral  Frobenius
u;;~ Gaussian

Error matrices (X — X)
MT, 1.85(0.53) 3.38(0.40) 2.83(0.50) 7.29(0.42) 3.45(0.43) 11.17(0.38)
MT; 1.75(0.55) 3.21(0.49) 2.44(0.50) 6.48(0.50) 2.95(0.45) 9.65(0.48)
BLC, 5.30(2.16) 7.61(1.23) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.26(0.13)
CLs 1.87(0.55) 3.39(0.44) 2.99(0.49) 7.57(0.44) 3.79(0.47) 11.88(0.42)
CLp 1.82(0.58) 3.33(0.56) 2.54(0.50) 6.82(0.51) 3.02(0.46) 10.22(0.59)
S-MT, 3.36(0.78) 4.45(0.63) 5.83(0.34) 10.95(0.47) 6.47(0.21) 16.64(0.35)
S-MT; 2.67(0.81) 3.85(0.65) 5.08(0.40) 9.70(0.51) 5.79(0.27) 14.91(0.46)
BLp.  7.09(0.10) 8.62(0.09) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.25(0.10)
CLg.  7.05(0.16) 8.58(0.12) 8.71(0.07) 16.85(0.11) 8.94(0.04) 24.23(0.09)
LW 2.99(0.47) 6.49(0.29) 5.20(0.34) 16.70(0.19) 6.28(0.20) 26.84(0.14)

u;;~ multivariate {— distributed with 8 degrees of freedom

Error matrices (X — 3)
MT, 2.17(0.72) 4.02(0.88) 3.44(0.98) 8.52(1.17) 4.00(0.83) 12.79(1.66)
MT; 2.27(0.88) 4.20(1.11) 3.59(1.39) 8.76(1.65) 4.32(1.53) 13.28(2.83)
BL4 6.90(0.82) 8.75(0.55) 8.74(0.10) 17.26(0.30) 9.00(0.42) 24.93(1.02)
CLy,  2.55(0.93) 4.53(1.00) 4.63(1.11) 10.35(1.48) 5.92(0.81) 16.43(1.74)
CLa 2.27(0.76) 4.24(0.94) 3.85(1.51) 9.44(2.33) 5.04(2.04) 15.65(4.71)
S-MT, 3.28(0.80) 4.76(0.77) 5.84(0.45) 11.47(0.62) 6.48(0.32) 17.27(0.71)
S-MT; 2.86(0.92) 4.51(0.97) 5.30(0.52) 10.76(0.77) 6.00(0.39) 16.36(1.04)
BLp.  7.06(0.13) 8.84(0.30) 8.74(0.10) 17.25(0.31) 8.95(0.08) 24.84(0.55)
CLp.  7.01(0.16) 8.77(0.30) 8.73(0.11) 17.23(0.29) 8.94(0.08) 24.77(0.53)
LWy 3.35(0.51) 7.35(0.50) 5.67(0.46) 18.04(0.45) 6.60(0.43) 28.18(0.53)

Note: Norm losses are averages over 100 replications. Simulation standard deviations are given in

parentheses. O = {ZMT% EMTé’ ZBL G 2C’L 2 ECL o 2S MT,2, ES-MT,(S’ EBL7C*7 ECLC ) 2LVV }
Yure, EMT(;, 25 M2 and ES MT5 are computed using p = 0.05. (M1, S-MT3) and (MTy, S-MTj)

are thresholding based on multiple testing with critical value ®~ (1 — %), where f(N) = N? and

f(N) =N 3, respectively, with ) being estimated by cross-validation. BL is Bickel and Levina universal
thresholding, C'L is Cai and Liu adaptive thresholding, > MT,2 and > MT Are based on MT3 and MTj.

25 MT,2 and ES MT.$ apply supplementary shrinkage to 2MT2 and 2MT67 EBL & and ZCL ¢ are based
on C which is obtained by cross-validation, > pr.c- and > or.¢~ employ the further adjustment to the cross-

validation coefficient, C*, proposed by Fan et al. (2013), ECL’Q is CL’s estimator with C' = 2 (the theoretical
value of (). 3! Lwy, is Ledoit and Wolf’s shrinkage estimator applied to the sample covariance matrix.
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Table 3: Spectral and Frobenius norm losses for different regularised covariance matrix
estimators (7" = 100) - Monte Carlo design B
N =30 N =100 N =200
Norms Norms Norms
Spectral  Frobenius Spectral Frobenius Spectral Frobenius

u;;~ Gaussian

Error matrices (X — )

M1y 0.49(0.18) 0.89(0.19) 0.87(0.37) 1.63(0.28) 0.73(0.24) 2.15(0.19
MT; 0.48(0.14) 0.89(0.16) 0.79(0.31) 1.57(0.23) 0.67(0.18) 2.15(0.17
BLe 0.91(0.50) 1.35(0.43) 1.40(0.95) 2.25(0.78) 2.53(0.55) 3.49(0.32
CLy 0.49(0.17) 0.90(0.18) 1.00(0.48) 1.77(0.44) 0.90(0.37) 2.30(0.30

S-MT; 0.66(0.23) 1.07(0.18) 1.45(0.44) 2.08(0.29) 1.12(0.30) 2.38(0.19
BLp.  1.19(0.46) 1.63(0.40) 3.32(0.20) 3.90(0.14) 2.73(0.11) 3.61(0.08
CLp.  1.08(0.46) 1.53(0.46) 3.34(0.15) 3.92(0.06) 2.73(0.10) 3.61(0.08
LW, 1.05(0.13) 2.07(0.10) 2.95(0.26) 4.47(0.09) 2.46(0.06) 6.01(0.03

u;~ multivariate {—distributed with 8 degrees of freedom

(0.19) (0.37) (0.28) (0.24) (0.19)

(0.14) (0.16) (0.31) (0.23) (0.18) (0.17)

(0.50) (0.43) (0.95) (0.78) (0.55) (0.32)

(0.17) (0.18) (0.48) (0.44) (0.37) (0.30)

CLy  0.49(0.15) 0.92(0.17) 0.83(0.31) 1.71(0.28) 1.14(0.83) 2.54(0.58)
S-MT, 0.68(0.27) 1.08(0.21) 1.53(0.53) 2.16(0.38) 1.23(0.41) 2.44(0.26)
(0.23) (0.18) (0.44) (0.29) (0.30) (0.19)

(0.46) (0.40) (0.20) (0.14) (0.11) (0.08)

(0.46) ( § (0.15) (0.06) (0.10) ( ;

Error matrices (X — 3)

MT,  0.64(0.24) 1.12(0.24) 1.05(0.45) 2.13(0.49) 1.29(2.32) 3.15(2.66)
MT;  0.66(0.25) 1.15(0.26) 1.03(0.42) 2.17(0.53) 1.30(1.90) 3.29(2.22)
BLs  1.36(0.40) 1.84(0.35) 2.70(0.94) 3.58(0.74) 2.70(0.29) 4.08(0.67)
CL,  0.71(0.29) 1.21(0.30) 1.69(0.70) 2.73(0.70) 1.62(0.57) 3.31(0.65)
CLs  0.80(0.39) 1.33(0.39) 2.03(1.08) 3.07(0.90) 2.19(0.78) 3.72(0.62)
S-MT, 0.69(0.26) 1.18(0.23) 1.41(0.57) 2.36(0.47) 1.32(0.79) 3.02(0.87)
S-MT; 0.69(0.25) 1.19(0.22) 1.36(0.49) 2.34(0.42) 1.30(0.78) 3.10(0.87)
BLg.  1.49(0.26) 1.98(0.21) 3.33(0.24) 4.07(0.18) 2.77(0.37) 4.04(0.56)
CLp.  1.26(0.40) 1.79(0.40) 3.35(0.17) 4.08(0.14) 2.73(0.14) 4.01(0.42)
LW, 1.13(0.15) 2.25(0.11) 3.14(0.21) 4.68(0.11) 2.52(0.08) 6.18(0.13)

See the note to Table 2.
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Table 4: Spectral and Frobenius norm losses for the inverses of different regularised
covariance matrix estimators for Monte Carlo design B - 7" = 100

N =30 N =100 N =200
Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral  Frobenius

=T
Error matrices (371-3 )

u;:~ Gaussian

S-MT 4.44(1.23) 2.66(0.32) 15.81(2.63) 5.90(0.45)  14.24(2.37)  5.50(0.38)
S-MT; 4.36(1.22) 2.64(0.31) 15.25(2.78) 5.80(0.48)  13.36(2.47)  5.39(0.37)
BLg.  3.8%x10%(2.4x10%) 19.56(58.88) 1.2x10%(1.1x10%) 12.16(33.25) 41.07(143.74) 7.66(3.17)
CLg.  1.9%10%(1.7x10%) 10.92(42.39)  51.99(241.39) 8.16(4.23)  28.45(24.37) 7.35(1.11)
LWy, 11.03(0.58) 4.26(0.09) 31.04(0.64) 8.62(0.06)  31.81(0.21)  9.40(0.05)
u;:~ multivariate t—distributed with 8 degrees of freedom
S-MT, 3.45(1.61) 2.44(0.39) 12.78(3.13) 5.55(0.55)  11.57(4.17)  5.58(0.66)
S-MT; 3.43(1.63) 2.45(0.40) 12.37(3.27) 5.51(0.59)  11.28(3.97)  5.65(0.67)
BLg.  157.26(1.0x10%)  6.11(11.28)  349.35(3.1x10%)  9.80(17.03)  28.58(22.06) 7.77(1.04)
CLg 85.82(546.85) 5.53(7.84)  517.27(4.8x10%) 10.07(21.25) 25.61(3.55)  7.54(0.50)
LWs, 12.08(1.19) 4.48(0.20) 31.78(1.32) 8.74(0.23)  32.06(1.00)  9.50(0.33)

o1 =1 ~—1 ——1 ~—1 o1
Note: ¥ = {Xg yr2, Bs.mrs 2BL,¢=» Ser,é= 2w, |- See also the note to Table 2.

Table 5: Support recovery statistics for different multiple testing and thresholding
estimators - 7" = 100
Monte Carlo design A Monte Carlo design B
N MTy MT, MT; BLs CLy CLs N MTy, MT, MT; BLy CLy CLg
u;;~ Gaussian

30 TPR 0.80 0.71 0.79 0.29 0.72 0.78 30 TPR 1.00 0.98 1.00 0.64 0.98 1.00

FPR 0.00 0.00 0.00 0.04 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

100 TPR 0.69 0.57 0.69 0.00 0.56 0.68 100 TPR 1.00 0.98 1.00 0.80 0.94 0.99

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

200 TPR 0.66 0.53 0.66 0.00 0.50 0.65 200 TPR 1.00 0.96 0.99 0.11 0.88 0.78

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

u;;~ multivariate t—distributed with 8 degrees of freedom

30 TPR 0.80 0.72 0.79 0.03 0.62 0.74 30 TPR 1.00 0.98 0.99 0.26 0.89 0.82

FPR 0.01 0.00 0.00 0.00 0.00 0.00 FPR 0.01 0.00 0.00 0.00 0.00 0.00

100 TPR 0.69 0.58 0.67 0.00 0.43 0.57 100 TPR 1.00 0.97 0.98 0.27 0.70 0.57

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

200 TPR 0.66 0.53 0.64 0.00 0.35 0.47 200 TPR 0.99 0.93 0.95 0.05 0.57 0.30

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00
Note: TPR is the true positive rate and FPR is the false positive rate defined by (22) and (23), respec-
tively. MT estimators are computed with p = 0.05. For a description of other estimators see the note to

Table 2. The TPR and FPR numbers are averages over 100 replications
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Table 7: Relative execution times of different thresholding methods
T =100
N=30 N=100 N =200
MT5  1.000 1.000 1.000
MT;  0.996 0.971 1.017
MT; 3584 497.4 3219
BLs  11.53 106.3 584.8
CLy 1.924 5.629 19.12
CLg 1314 63481 485257

Note: All times are relative to the MT5 estimator.
See Table 2 for a note on the thresholding methods.

Appendix: Mathematical proofs of theorems for the MT
estimator

The lemmas referred to in this Appendix are described and proved in the Supplementary
Appendix A, which will be available online.

Proof of Proposition 1.  The results for £ (ﬁij’T) and Var (,bijj) are established in
Gayen (1951) using a bivariate Edgeworth expansion approach. This confirms earlier findings
obtained by Tschuprow (1925) (English Translation, 1939) who shows that results (8) and (9)
hold for any law of dependence between z;; and z;;. See, in particular, p. 228 and equations
(53) and (54) in Gayen (1951). Using (9) and (11) we have limy_o [TVar (py;1)] = K.(055)-
Finally, the boundedness of | K, (0;;)| and K,(8;;) follows directly from the assumption that
the sixth-order moment of y;; exists for all i and ¢. The existence of the other moments,
E(yly;:) and E (yfty?t), follows by application of Holder’s and Cauchy—Schwarz inequalities
as given below:

E@22| < [EQwil )" [E (ual ) < K
and

3/4
Bl < Bl < [E(uel]" [E (153)]

= [E(waH]" [E (5] = E(lyal®) < K.

Proof of Proposition 2. For a given i and j, set & = (Yit,Yjt Uii» Vor YitWjt) =
(&4, 01y - -+, Esy)'s where yy = (2 — ;) / /4. To simplify the notations we are dropping the
subscripts ij. Define

T
= _ - = = N/
Er =T 1Z€t = (51T7§2T7‘--a§5T) )
t=1
and note that p;; , the sample correlation coefficient of x;; and z;;, can be written as
. = Esr — Eirar
pijr = H (&) = - o N1/Z , \ /2
(§3T €1T) <§4T - sz)
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where &7 > STT, and &,p > EET See also Bhattacharya and Ghosh (1978) - p. 424.
It is also easily seen that p, = E&;) = (0,0,1,1,p;), and H (p;) = p;;, and hence
VT [H (ET) —H (Hg)] = VT (ﬁij’T — pz-j) and Theorem 2 of Bhattacharya and Ghosh
(1978) can be applied to p;; r. Note that as required by this theorem, §,, for t =1,2,...,T
are random draws from a common distribution with non-zero density, the elements of &, are
continuously differentiable functions of y; = (vit, y;:)', H (§) is continuous and differentiable

in &, and all derivatives of H (§) are continuous in a neighbourhood of puz; 1, £, a5+ - -, €5y
are linearly independent, and F |£,,|” < oo, for k =1,2,...,5, and for some positive integer
s>3.m

In what follows we suppress subscript MT' from R for notational convenience.
Proof of Theorem 1. Consider the spectral norm,
o =M (R R) (R )| = (R )| = (R )]
and note that (see Horn and Johnson (1985) on p.297)

e (- )] < ] = g S|

1<i<N F

Hﬁ—R

Also
Ibij,T — Py = (bij,T - pij) I <‘ﬁngT‘ > Cp(N)) — Pij [1 -1 (‘ﬁf%T‘ > Cp<N>)] .
Hence,
|pz’j,T - pij‘ < ‘(f)ij,T - pij>[ (‘ﬁbij,T‘ > Cp(N)M +
and

%: ‘ﬁij,T — :Oij‘ < ZJ: ‘(f)ij,T — pij)1 (‘ﬁpij,T‘ > Cp(N)> ‘+§

Pij [[ (‘ﬁpr‘ > Cp(N)) - 1”

Pij [_I (‘ﬁﬁ’LJT‘ < Cp<N>>} ‘ :
For any given ¢, where ¢+ = 1,2,..., NV, and taking expectations, we obtain

+

J

E (Zj; |/bij,T - pij}) < FE _E (pz’j,T - pij)[ (‘\/T%T‘ > Cp(N>>‘

Bl

ol ([VTyr| < 6(N) ]] , (30)

or

> E (‘lbij,T - pij}) <A + B +C;,
j
where

A = Y E :|pij|] (‘ﬁlbng‘ < ¢,(N) |pij 7+ 0)} )

3:pi;70

B; = 27& E ‘(ﬁij,T —pij) (‘ﬁi)ijf‘ > ¢p(N) |pij # O)H ;
Jspi70 -

G = > FE i ﬁij,T‘ I (’ﬁf)ng‘ > Cp<N) ‘pij = O)] .

Jpi;=0
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Consider now the orders of these three terms A;, B;, and C; in turn, starting with A;. We
have p,;, = min;; (‘pij ,pi; #0) and p,,,, = max;; (}pij| ,pi; 7 0) such that p,.. < 1. Then
uniformly over all 4,

A < mNpmaxsupE[ (‘fpzn‘<cp )Ipij%oﬂ

1
= mNpmaxsupPr [ <‘ﬁpij,T) S Cp N) |pz] 7é 0>:| )

and using (A.11) of Lemma 6 when |p,;| > ¢,(N)/VT, we have

iT{”” ”%”]2
A < psp Ke? RO (14 o(1)]

)

ep(N)12
iT{f’min_ p\/f }
< MNPrax SUP Ke P @00 [1 4 o(1)] .
ij
Recalling that sup;; K,(0,;) < K and that my is bounded in N, it then readily follows that

A; is of order O(eT) or O(e~N"). Therefore, A; is uniformly bounded for all i and N, and
tends to zero as N — oo.

Consider now B; and note that since p;; 7 = wyjr2ijr + p;jr (to simplify the notation we
use wijT and p,; 1 for Var (ﬁij,T) and (ﬁmT), respectively) we have the following inequality,

B; < B;1 + B;a, where

B = Z E [lwij,TZij7T| I (’ﬁme‘ > ¢p(N) ‘pij # O)] ;
J:pi; 70

Bi2 - Z E [‘pUT pzy|] (‘\/_IOUT‘ > CP )|pz_7 ;é 0>i| .
J:Pij 7

Using (8) and (9),

K, (85 _
WijT = % + O (T 3/2) s (31)
Km 01 _
PijT — Pij = j(v J) +0 (T 2) . (32)

Hence (noting that my is bounded in N and T, and w;;r > 0), B;1 becomes

Bin < > wirE [|Zij,T|[ (‘\/Tﬁzﬂ‘ > ¢(N) |py; # O)]

JsPij #0

= T1/2

ij
But, sup;; £ (|zi;,r]) = 2¢ (0) = \/2/7 by Lemma 2, sup,; K,,(8;;) < K, and

7ll_I}I;OE’ [‘ZMT‘SI <‘ﬁbij,T‘ S Cp(N) }pz] 7é 0>:|
= lim E [|z|sl (‘ﬁpm < ¢p(N) |py; # 0)] (33)

T—o0
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for s =0,1,2,..., by Lemma 4, where z ~ N(0,1) and
p(N) = VTE (Pijr) —¢(N) = VTE (Pij.r)
\/Var (\/Tﬁij,T> \/VW (ﬁﬁij,T>

Finally, since ¢,(N) is an increasing function of NV, then there exists Ny and 7} such that for
all N > Ny and T' > Tp, U;jr > 0 and L;jr < 0, we have (by Lemma 2, for s = 1),

E|z| I (Lijr < 2 < Uyr)] = 2¢(0) — ¢ (Lijr) — o(Usjr)-

Hence, (33) is bounded, as T — oo. It readily follows that B;; is of order O(Z
for all 7.

Similarly, since £ [I <‘\/T,bij,T‘ > ¢p(N) | pij # 0)} < 1, we have

Liim =

15, T

Uijr =

Y

%), uniformly

By = ‘pij,T_pij‘E[] (‘\/T@]T’ >CP(N)’pij7é0>]

J7Piﬂé0

< e[ ro ] -0 ().

uniformly for all i. Overall, therefore, B; = O(Z%).

Consider now C; and note that C; < C;; + C;2, where

Ch = > F [\Wz‘j,TZijﬂ I (‘ﬁf)ij,T) > ¢p(N) |pi; = 0)] ,

J:pi;=0

Co = > E [‘PZJT‘ I <‘fngT‘ > ¢ )‘pz’j = 0)] .

Jpi;=0

Starting with C;o, first we note that

Cia = Z E[|P13T‘I(’\/_PWT‘ > cp( )‘pij:O)]

JP

Bl (] > )]

j pz]

(N —my —1) sup [ (65) |p; = supE [ (‘\/_Pm:r‘ > ¢(N) |py; = O)] ’

<
T ij

and F [I <‘\/T,bij,T‘ > ¢p(N) | pij = ﬂ < 1. Using (32) and (A.10) of Lemma 6 (and eval-

uating these expressions under p;; = 0) we have

(N = 1 = 1) [y + O(T)] _spehi)

Co <K T 2 emax [140(1)],

where ¢, = sup,; (¢;;) > 0 with ¢,; defined by (12), and t),,,, = sup;; (WUD with 1,
defined by (13). Strictly speaking, j;;(3,1) and j;;(1,3) in the above expression are also
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defined under p;; = 0, but since ¢;; do not enter the asymptotic results this is not made
explicit to simplify the notation. Then, we have

2
led)i 1_c ca(N)

Cia < K1€IH<T 2 emax [140(1)],

or

1—e ) InN |:Cf27n(N) _ 2(17d)90max

Cir < K1€_<2%ax R e ] [1+o(1)],

where K3 > 0. Therefore, so long as limy_ ¢2(N)/In(N) > %, where € is a small
positive constant, then C;; — 0 as N — oo, uniformly for all :. But, from Lemma 3 we
have that limy_. ¢;(N)/In(N) = 26. Hence, Cis — 0, as N — oo, uniformly for all i, if
§ > 0=,

Finally, consider C;; and note that using (31) we have (since w;;r > 0),

Co = 2 B [’Wij,TZij,Tll (‘\/Ti%j,:r‘ > ¢p(N) |pi; = 0)]
j»PijZO
= X OwiJ,TE [Izij,ﬂ I (‘\/Tﬁm,:r‘ > ¢y(N) |py; = 0)]
DPij=
N — -1
< ( my —1) {sup Ki/z(Oij)]
8 Sg'p [ 23571 <‘ 'Oij,T‘ > cp(N) |pij = 0)} + e

Since K./ 2(02‘]‘) is bounded, it is then sufficient to find conditions under which

N
lim ?E [ﬁ|ZUT| I (’\/T,%T‘ > ¢,(N) | pi; = 0)} = 0, uniformly in all 7 and j.

T,N—oo

To this end using Lemma 4, first we note that
Jim B VT |zl I ([VTy2| > 6(N) [0, =0))]
< ¢p(N) |pij = 0)}

= lim FE \/T|z| — VT |2| I (Lijr(0) < 2 < Uijr(0) |p;; = 0) |, for all i and j,

T,N—oo
T,N—o0
where z ~ N (0, 1) and
Vi -
(N) 4 %4+ O (1)

Uij,T<0) - ) (34)
i + O(T-1)
and .
—ep(N) + 22 4 O (132
Lyat0) = 2 S} (35)
Yy T O(T1)
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We also note that, since ¢;; > 0 and c,(/N) is an increasing function of N, then there exists
Ny and Tj such that for all N > Ny and T > Tp, U;;7(0) > 0 and L;;r(0) < 0. Hence, by
(A.4) in Lemma 2 we have

E VT 2| = VT |2| I (Lijr(0) < 7(0) | pi; = )]
= VT {26(0) — 2¢(0) + ¢ [Li;~(0)] + 6 [U; T(O)]}
= VT{¢[Lijz(0)] + ¢ Uy (0)]} .

But
\/Td) [Lijr(0)] = (Qﬂ)*l/Z 05 1(1)~0.5L%, 1(0 )7

and noting that ¢,(N)/vT — 0 as N and T — oo, then it readily follows that

] N 1/ ) In cdf\c’lfd +0.51n(cgN4)—0.5 P( )+ (1)
Wi, 7 Cm VTS Lyr0)] = lim [ ()
62
< K hm {e_gri:(N |: f,n(x) : 0055d (lpmaxj| +O(1)}
- N—oo '

Recall that ¢,,,, > 0, and from Lemma 3, limy_o ¢;(N)/In(N) = 24. Hence,

N
yim o (2m)" VT [Lijr(0)] = 0
so long as § > (1 —0.5d) ¢ It is also easily seen that under the same condition,
My 7o (270) 2 VT [Uijr(0)] = 0. Finally, note that we consider the remainder term
of C;; which is O (N’T’Q}Yfl) = O (N'73%/2) and tends to zero for d > 2/3. Hence, C;y — 0,
as N and 7' — oo, uniformly for all 4, if § > (1 — 0.5d) .., and d > 2/3.

Collecting the results for the orders of convergence of A;, B;, and C; given above, overall
we obtain a convergence rate of order O(775) uniformly for all i, where i = 1,2,..., N.
Finally, (17) follows as required. m

Y

Proof of Theorem 2. Consider the squared Frobenius norm,

Hﬁ B RH? = Z Z(i)ij,T - pij)2,

1#]
and recall that
pisr — Pij = (Pijr — pig) T (‘ﬁﬁzjf‘ > Cp(N>> — Pij [1 -1 (‘ﬁﬁmcp‘ > Cp(N>>] :
Hence
(ir—0a)" = (=) T ([VTpia| > eo0)) +0 [1 =1 ([VTiia| > o))
—2p;; (f)z‘j,T - pij) I (‘ﬁﬁng > Cp<N>> [1 —1I <‘\/T15UT‘ > Cp(N)ﬂ .

However,

I <‘\/Tf)ng‘ > Cp(N)) [1 -1 (‘\/T@ZJT‘ > Cp(N)>] =0,

31



and
2
[1 -1 (‘ﬁf)ng‘ > Cp(N))] =1-1 (’ﬁﬁmT‘ > Cp<N)> :
Therefore, we have
Z#Z (ﬁz‘j,T - pz’j)2 = Z;éZ (bij,T - pij)2 I <‘ﬁf)ng) > Cp(N)>
1#£] v}
+2 0% (1= 1 ([VThyr| > 6())]
i#]
= Z}) (Pijr — pij)2 I (‘ﬁ:bij,T‘ > Cp(N)>
i#j
+ S Y (VT2 | < 6(V),
i#]
which can be decomposed as

Z;E (ijr —piy) =D+ E+F, (36)
7]

where

D = ¥ p?jE [I (’ﬁbij‘j”‘ < ¢p(N) ‘pij # O)] )

i#7.1570

& = XX FE [(ﬁUyT —py) 1 (‘ﬁfbiﬂ‘ > &p(N) |py; # 0)] ’
17,0370

F = XX FE [Ib?j,T[ (‘ﬁme‘ > ¢p(N) |pi; = 0)] '
i#5,p;;=0

Consider now the orders of the above three terms in turn, starting with D. We have
Pmin = Min,; (|,0@-j| s Pij #* O) and p, .. = max;; (|pij| s PDij #+ 0) such that p,.. < 1. Then

D < pi. NmysupFE [I (‘\/Tﬁiﬂ,‘ < ¢p(N)|py; # O)]
J

= p?nameN sup PI' (’ﬁﬁmT’ S Cp(N) ’IO” ;é 0) ,

v

and using (A.11) of Lemma 6 when |p,;| > ¢,(N)/V/T, we have
_cpuv)]?

i [ e
K@ [1 4 o(1)]

_71
D < phaNmysupKe?
ij
_1T|:Pmin_£\/;r)}2
< pl..Nmy sup Ke? =9 @)~ [1 4 o(1)].
ij

Recalling that sup,; K,(6;;) < K (including the case when p,; = 0), my is bounded in N

and L\/g) — 0, as T — oo, it readily follows that D is of order O(Ne ™ d). Therefore, D
tends to zero as N — oo.
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Consider now &. Recalling that p;; = wijrzijr + p;jr we have the following decompo-
sition of £, £ = & + & + 2&3, where

&
&

&

Again, using (8)

PHITEL [zz»,Tf (VT2 | > @) oy #0)]
Z (or =) B[ ([VT5] > ) Iy #0)].
z%:p%o (Pijr = pij) wisr B [Zij,Tf (‘\/T %,T‘ > ¢y(N) |py; # 0)] :
and (9),
whp = K”f”) +0(T7?), (37)
(i = )" = Ké}fﬁ) +0(17%), (38)
(Pijr = pij) wigir Kq}/Q(g;gfm(e” )10 (T°2). (39)

Hence (noting that my is bounded in N and T')

& = i#]zg.;(]w?j,TE [Z?j,T—, ()ﬁme‘ > Cp(N) ‘pij # O)]
< Nl K (0 B (22 E |22 00 (|VThy:r| < cp(N 9,
= T SIZ;P »(0ij) S%P{ (Zij,T) - [Zij,T ( Pijr| = cp(IV) }pij £ 0)] } +
Since sup;; K,(0;;) < K and E ( Zi; T) = 1, then it suffices to show that

B[t (

fors=0,1,2,...,

Uij,T =

\/_pz]T’

(V) } pij # 0)} is bounded. We have

qlggoE[wT (‘V—pm(<cp )\pij%())]
- (V] 20l £0)

by Lemma 4, where z ~ N (0, 1) and
p(N) = VTE (ngT) —¢p(N) = VTE (%T)
\/V(IT’ (ﬁi)ij,T> \/V(IT (ﬁi)ij,T>

y Ly T —

Then, since ¢,(N) is an increasing function of N, there exists Ny and 7j such that for all
N > Ny and T > Ty, U;jr > 0 and L;;r < 0, we have (by Lemma 2, for s = 2),

E [Z2[ (LmT <z< Uij,T)] - CI)<U1J7 )

or

1-— E [ZQI (Lij,T S z S Uij,T)] = (I)(—Uiij) + (I)(Liij) —

O(Lijr) + Lijrod (Lijr) — Uijrd(Usjr),

Lijr¢ (Lijr) + Uijro(Uijr),
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By symmetry ®(U;;r) = ®(—U;;r) and by Lemma 6,

[Cp(l\’)—\/Tm‘j]2

[ ]
< ge? TEEIT L+ o(1)],
so that . ,
egNd| =L
%q)(Uij,T) < KO- 2s[upfxv<;j) | 1+ o(1)]. (40)

Recall that d > 2/3, p,,;,, > 0,0 < sup,; K,(0;;) < K, and ¢py(N)/VT — 0as N and T — oo.
Distinguish between cases where d > 1, and 2/3 < d < 1. Under the former both terms in
the exponent of the exponential function on the right hand side of (40) are negative, and it
readily follows that Z£®(U;;r) — 0, as N and T — oo. In the case where 2/3 < d < 1, we
write (40) as

cp(N)

) (20 )

2sup;; Kv (91‘7)

chd 2(1—d) sup;; K\"(eij)

ZB(Uyr) < Ke 1+ o(1)]. (41)

Again, since c,(N)/VT — 0 as T — 00, ppi, > 0, 0 < sup;; K,(0;;) < K, and 2/3 < d < 1,

-2
it follows that [%/g) - pmin] [2(1 — d)sup,; K,(8;;)] is bounded in N, and there exists Ny

-2
such that for all N > Ny, and 2/3 < d < 1, ¢4N?/In(N) > [M — pmin} [2(1 — d)sup,; K,(8;)].

VT

Therefore, the exponent of the exponential function on the right hand side of (41) is negative
for all N > Ny, and hence £®(U;;r) — 0, as N and T' — oo, even if 2/3 < d < 1 (namely
the case where N rises faster than T'). Similar results follow for 2®(L;; ). Further,

( \/_E (ng T)

Lijr¢ (Lijr) = (2m) V2 05
\/ \/_ng T
£ cp(N) 2
B m O T Lf”min
\/_ |: Pmin — + ( ) (271_)71/2 ng,WJrO(l)

\/Supij Kv(aij) +0 (1)

2
[
\/T min
~05— e,y to)

< K\/Te

where sup;; K, (6;;) < K and ”( ) is also bounded since %/JTY) — 0 as T'— oo. Then,

N _o5 L VT i g
TLz‘j,Taﬁ (Lijr) < KN' %% sup; Ko@) o)

[CP(N) P ]2 d 2(1-0.5d) Kv(845)

\/T min N sup; 4 v

~\ Ssup Ke (0] supy; 7 (01]) In N InN {Cp(N) _p] ] +0( )
Ke \/T min ,
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As before, for d > 2/3, we have ¥ L;; ¢ (Lijr) — 0, as N and T — oo. Similarly for
Uijrd(Usjr)-
Overall, limy 700 % {1—-E[2?I (Liyjr <2z <Ujr)|} = 0. Hence, it readily follows that

& is at most O (mng), as N, T — oo.

Similarly, since £ [I <‘\/T,bij,T‘ > ¢p(N) | pij # O)} < 1, we have

& = S (pijr— pij)2E [I (‘ﬁi’ng’ > cp(N) |py; # 0)}

i#jvﬂiﬂéo
Kgl(e’b ) -3 NmN
Finally,
E = S0 (pyr—piy) wijrE [zij,T[ (’ﬁi)ij,T‘ > cp(N) ‘pij i 0)]
i?éj,PiﬂéO
= >0 (pz'j,T - Pij) wijrk [Zij,T — zijrl (‘\/sz’j,T‘ < ¢p(N) ‘pij # O)]
i#jupiﬂ’fo
= _‘; Z;éo (pij,T - pij) wirl |:Zij,TI (‘ﬁﬁng) < Cp(N) |pij 4 0)} . (42)
1D Pij

Also, from Lemma 4
7llIIl E [Zij,TI (‘ﬁﬁij,T‘ S Cp(N) ‘p” 7£ O):| = 711Hl E [ZI (Lij,T S z S Uij,T }plj 7é 0)] s

and from Lemma 2

E 2] (Lijr < 2 < Uyr|py; #0)] = ¢

_Cb ) (43)

which is bounded in N and T. Since VT, — cp(N) — 0o as N and T — oo, then it
is easily seen that limy n_,0o £ [z[ (Lijj’ <z<Ujr }sz + 0)] = 0. Hence, using (39) and
noting that Ki/Q(Hij)Km(Hij) is bounded in 7" and d > 2/3, we have

NmN
& < Ki%;p;o ‘ (:Oij,T - pij) wij:T| =0 ( T3/2 ) :

Overall, therefore, £ = O (N 2 )

T
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Consider now the following decomposition of F, in (36):

= 25 5l (V] >0 0]

T [t (V] 9 1)
i#4,pi=
+‘¢Z Zop?j’TE [I Oﬁﬁiﬂ‘ > p(N) |y = )]
K3 -77plj:

5 Spraur st (V| 091, =0)

1#7,p;;=0

= fl‘i‘fQ"—fg.

Starting with the simpler terms, first we note that

Fo = XX pAoE {I (‘ﬁi)iﬂ‘ > 6p(N) [pi; = 0)]

i#jvﬂij =0

< N(N—mN—m{S“p"f Mi(;? [Py = 0] +0 (1" 3)}supE[ (‘\/_pﬂjmp N) | =0)].

and sup;; [I (‘\/Tﬁij > (N |pl] 0)} < 1. Using (8) and (A.10) of Lemma 6 (and

evaluating these expressions under p;; = 0) we have

NN = my = 1) [0 £ O(T™Y)] 1echm

]:2 S K T2 e 2 Pmax [1 +0<1)]
or
 2(N)
F, < K&~ Pmax [1+ 0(1)]
_ 1—e¢ In N CP<N>_4(17d)Wmax
— Ke <2<Pmax) |: In N 1—e :| [1 + 0(1)] ,

where K > 0. But from Lemma 3 we have that limy_.. c;(N)/In(N) = 24. Hence, F; — 0

as N — oo, so long as 0 > %fmx, where € is a small positive constant.
Similarly,

Fs = 20 pijawirE |:Zij,T[ (‘\/Tﬁijj’ > ¢,(N) ‘pij = O)]

i7#7,p;;=0
= - ZZPU,TWU,TE [Zij,TI (‘\/Tﬁng‘ < (N }ng = )]
1#5,p;;=0
N(N — -1
< M= =D oy [jyy] + 0 (1) sup [y + 0 (1)
1J i

ij
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But using Lemma 4, Lemma 2 and (43) and evaluating the relevant expressions under p;; = 0,
we have

lim VTE [zij,TI ((\/Tf)ij,T‘ < c,(N) |p,; = 0)]

T,N—o0
N T,}\ifriloo VTE [21 (Lijr < 2 < Uy |pyy = 0)]
= VT8 (O] = Jm VT Uz O]

where U;;r(0) and L;;7(0) are given by (34) and (35), respectively. As in the proof of
Theorem 1, we have limy 700 VT'¢ [Lij7(0)] = 0 = limy 100 VTé [Usjr(0)], such that

VT$[Li;r(0)] = (2m) /2 05WD-05LE, 7(0),
Noting that ¢,(N)/ VT —0as N and T — 00, it readily follows that

2(N)

N : —d)In 5dln N—0.5-2"" 1,

N, T—o0 N—oo

< K lim < e?¢max

N—oo

2
[V
———" |: lpnN 72(271'5d)¢maxi| +0(1)}

Recall that ¢,,,, = sup;;(¢,;;) and ¢;; = E (yftyf.t |pl-j =0) > 0 by (12). Hence

N, T—o0

lim (%) (2m) VT (L2 (0)] = 0,

so long as § > (2 — 1.5d) ¢ It is also easily seen that under the same condition,
limpy 700 (%)2 (27r)1/2 VT [Ui;r(0)] = 0. Therefore, 73 — 0, as N and T" — oc.
Finally, considering F; we note that

e i%ﬁ?ow?ij [Z%’T] <‘\/Tp iJ:T’ > (V) |pij = O)]
- #%i;)w?ﬂE {220 [V =T (Lijr < zijr < U |pi; =0)]}
¢ MO¥-ma- sup {% +0 (%)}
X SEPE {250 [1 =1 (Lijr < zijr < Ui |pi; =0)] }- (44)
But using Lemma 4
lim E{z}; [1 =1 (Lyr < 20 < Uy |py; = 0)]} (45)

= TIEQOE {z*[1 =1 (Lijr < zijr < Uijr |Pij =0)]},
and then by Lemma 2
E {22 [1 -1 (Lij,T S Zij, T S Uij,T ’,0” == 0)}} =1-F [2’2[ (Lij,T S z S Uij,T ‘p” == O)]
= 1 {2 [U;jr(0)] = ®[Lijr(0)] + Lijr(0)¢(Lijr(0)) — Usjr(0)¢ [Usjr(0)]}
= @ [-Usyr(0)] + @ [Lijr(0)] + Uijr(0)¢ [Uijr(0)] — Lijr(0)¢ [Lijr(0)]
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where Uj7(0) and Lj(0) are given by (34) and (35), respectively. Since |¢;;| < K, then

there exist Ny and Tj such that for N > Ny and T > Ty, ¢,(N) — \/% > (, and using Lemma
5 (also see (A.25) and (A.26) of Lemma 6), we have

E {22 [1 -1 (Lij,T <z<Uyjr |pij = 0)” < Giij + G2y,

where , ,
o cp(N)+%+o(T*3/2) o cp(N)—%+o(T*3/2)
gl = 1 2 \/wij+O(T—1 + 16 2 \/Soij+O(T—1)
2 2 ’
and
Yij —3/2\ 72
—3/2 -1 CP(NH\/TJrO(T )
gg - CP(N) (T / ) e 2 [ \/Wij+o(T71)
72.7

Yy T O(T1)

B | ep)— J o(T=3/2
—cp(N) + 22 + 0 (17%72) 2[ ol q
(&

\/WZ]+O (T-1)
it O(T1)

Then, for &= gl ij we have

N, T—o0 T N—oo

2
< K ].lm {e_wlrr;g])\:){lg((lifv))(2d)§0max:|+o(1)}

62
lim N Giij = K lim [e; I;(;J'V)Hz_d)lnNJrO(l)]

N—oo

Since ¢p., = sup;;(w;;) > 0, then NTQ G1,; tends to zero if 6 > (2 — d)
NTQ gg’i]‘ we have

Omax- Similarly, for

Vi —3/2 2
NZ2¢y(N) N2 bij 0 N2T-3/2 1 t:p(N)+7%+o(T )
—N2 Goii = VT < > e 2 { \/wﬁo(:r—l)
l 7lj

@i +O(T71)

i 2
_NQCp(N) + + 19, <N2T 3/2) 1 cp(N)f%jLo(T—:s/z)
_ T Tf . p) \/wij-«—O(T*l)

Vi T O(T1)

Y

or

2 —1In(N) | cp(N) In(cp(N))
ﬂ g2 .. < Ke{ ¥max [QIn(N) ~Pmax <2 d+ In(N) >:|+0(1)}
T 32 —

—In(N) (N) In(cp(N))
—i—Ke{ Pmax [Z{)nm) ‘Pmax<2*d+ In(N) ) t+o(1)
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But In [¢,(N)] = In[O(In(N)] and In(c,(N))/In(N) — 0, as N — oo, and N?z Gaij — 0, s0
long as § > (2 — d) p.c- Hence, using the above results in (44) we have F; — 0 as N and
T — oo.

Collecting the results for the orders of convergence of Fi, F,, and F3 given above, and
those of D and &, overall we obtain a convergence rate of order O(myN/T'), and (21) follows
as desired. m

Proof of Theorem 3. Consider first the F'P R statistic given by (23) which can be written
equivalently as

Yo 1 <)\/T%T‘ > cp(N)|py; = 0)

i#]

FPR=|FPR| = (46)

N(N —myN — 1)
Note that the elements of F'PR are either 0 or 1 and so |FPR| = FPR.
Taking the expectation of (46) we have

Z ZPY (‘\/T%T’ > cp(N)|pi; = 0)
E|FPR| = -2 .

But using (A.10) Lemma 6 we have

2
1—e Cp(N)

KY Ye 2 #i [1+0(1)]
i#]
N(N — MmN — 1)
1—c cp(N)

2 max [1+ 0(1)] (47)

E|FPR| <

< Ke

where ¢, = sup,;; ¢;; < K, by Assumption 2. Hence, F'|[FPR| — 0 as N and T' — o0,
noting that ¢;(N) — oo, and ¢,,,, > 0. Further, by the Markov inequality applied to |F PR]
we have that

E(|[FPR|) K _1-<5%™
N S VA

P(|FPR| >n) < e % emax [140(1)],

n n
for some 7 > 0. Therefore, Nl%m P(|FPR| > n) = 0, and the required result is established.

This holds irrespective of the order by which N and T" — oc.
Consider now the T'PR statistic given by (22) and note that

> 2 1(pi; # 0, and p;; # 0)

i#j
TPR =
Z ZI(PU‘ # 0)
i#£]
Hence _
Z ZI(PU =0, and p;; # 0)
X=1-TPR="7

NmN
Since | X| = X, then

S5 Pr (VT | < 6(W)lpy #0)

i#]

Elx]=BX) = < sup Pr <‘ﬁf)z‘j$‘ < &(N)lpy; # 0) -
ij

NmN
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and using the Markov inequality, P(|X| > n) < ﬁ for some 1 > 0, we have
1
P(TPR=1]>7) < swpPr (‘ﬁplﬂj < cp(N)|py; # 0) ,
]

and
1
lim P(TPR—1]>7) <~ lim supPr(‘\/Tf)W‘<c,,(N)|pij7éo>. (48)

N, T—o0 7 N, T—oco 4j

However, using (A.27), (A.28) and (A.29) of Lemma 6 we have
Pr (|VThy| < ca(N)loy #0)
Fon (Cp(N) ~VTpy; — Km\/(gij) +0 (T_3/2))
VE(0:5)+ 0 (T1)
g (00t
’ VE.(0;) + O -1)

Suppose that p;; > 0, then as N and T' — o0, ¢,(N) — \/Tp,;j — —oo and —¢,(N) — \/Tp,;j —
—o0, and since Fj; r (+) is a cumulative distribution function we must have

lim Pr (|VTpy,0| < p(N)lpy; #0) = Fyjr(~00) = Fyir(~00) =0 =0 =0.

N, T—o0

Similarly if p;; < 0, then ¢,(N) — \/Tpij — 400 and —¢,(N) — \/Tpl-j — +00, and we have

lim Pr(|VThyr| < cp(N)|py; # o) Fiyr(+00) — Fyyp(+o0) =1 —1=0.

N, T—o0 (

Hence, more generally limy 7, Pr (’\/TﬁUT‘ < cp(N)|pi; # O) =0, if ¢,(N) = VT ‘sz‘ —
;i #0).

—o0, for all p;; # 0, or equivalently if VT poin—Cp(N) — 00, where p,;, = min;; (o351,

But V)
JT ._CN—ﬁ( % )
Pmin p( ) Pmin \/T
and VTp,,, — ¢p(N) — 00, as N and T' — o0, since by assumption there exists Ny and Tp
such that for all N > Ny and T > Ty, prin > ¢»(N)/VT, and ¢,(N)/v/T — 0. The latter is
ensured since by assumption In f(N)/T — 0 (see Lemma 3). Using these results in (48) it
now follows that limy 7. P(|TPR — 1| > n) — 0, as required.
Finally, consider the F'DR statistic defined by (24), and note that

N—mN—

FDR:< 1)FPR

my

Now using (47) we have (recall that my > 0 is bounded in N)

E|FDR| < K Née 2 #max [1+0(1)]

—(1—6)In N
_ ke %wnf;xN[f;(N) “mﬂmo(l)}

However, by Lemma 3, limy_.oc ¢;(N)/In(N) = 24, and limy .o [@ - 2“0%] =26 — Zmex) >

In N 1—e 1—e
0, since by assumption § > %. Hence, limy ., E' |FDR| = 0, as required. =
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