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Supplementary Appendix A

Technical Lemmas

A.1 Statement of technical lemmas

We begin by stating a few technical lemmas that are needed for the proof of the main results.

Lemma 1 Consider the sample correlation coe¢ cient, �̂ij;T , de�ned by (4) and suppose that
Assumptions 2 and 3 hold. Then

lim
aij;T!�1

n
e
1��
2
a2ij;T [Fij;T (aij;T jPij )� �(aij;T )]

o
= 0; (A.1)

for some small positive �.

Lemma 2 Suppose that z s N(0; 1), then

E [zI(L � z � U)] = � (L)� �(U); (A.2)

and
E
�
z2I(L � z � U)

�
= [� (U)� � (L)] + L�(L)� U�(U): (A.3)

Also for L < 0, and U > 0, we have

E [jzj I(L � z � U)] = 2�(0)� � (L)� �(U); (A.4)

and hence E (jzj) = 2�(0) =
p
2=�:

Lemma 3 Consider the critical value function1

cp(N) = �
�1
�
1� p

2f(N)

�
,

where ��1 (:) is the inverse function of the cumulative standard normal distribution, 0 < p <
1, f(N) = c�N

�; where c� and � are �nite positive constants, and suppose there exists �nite
N0 such that for all N > N0

1� p

2f(N)
> 0; (A.5)

Then:

(a) cp(N) = O
�
[ln (N)]1=2

�
,

(b) exp
�
�{c2p (N) =2

�
= 	

�
N��{�, and

(c) if � > 1={, then N exp
�
�{c2p (N) =2

�
! 0 as N !1,

where 0 < { � 1.
1We would like to thank George Kapetanios for his help with the proof of (b) and (c) of this Lemma.
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Lemma 4 Consider the standardised sample correlation coe¢ cient zij;T =
[�̂ij;T�E(�̂ij;T )]q

V ar(�̂ij;T )
,

where �̂ij;T is de�ned by (4) and E
�
�̂ij;T

�
and V ar

�
�̂ij;T

�
> 0 are given by (8) and (9),

respectively. Suppose that cp(N) = ��1
�
1� p

2f(N)

�
, and condition (A.5) holds. Then for all

i and j, there exist N0 and T0 such that for N > N0 and T > T0

lim
T!1

E

�
zsij;T

�
I

����̂ij;T �� � cp(N)p
T

���
= lim

T!1
E
�
zsij;T I (Lij;T � zij;T � Uij;T )

�
= lim

T!1
E [zsI (Lij;T � z � Uij;T )] ; (A.6)

and

lim
T!1

E

�
jzij;T js

�
I

����̂ij;T �� � cp(N)p
T

���
= lim

T!1
E [jzjs I (Lij;T � z � Uij;T )] ; (A.7)

for s = 0; 1; 2; : : : ; where

Uij;T =
cp(N)�

p
TE

�
�̂ij;T

�r
V ar

�p
T �̂ij;T

� , Lij;T =
�cp(N)�

p
TE

�
�̂ij;T

�r
V ar

�p
T �̂ij;T

� (A.8)

and z s N(0; 1).

Lemma 5 Consider the cumulative distribution function of a standard normal variate, de-
�ned by

�(x) = (2�)�1=2
R x
�1e

�u2

2 du:

Then for x > 0

�(�x) = 1� �(x) � 1

2
exp(�x

2

2
): (A.9)

Lemma 6 Consider the sample correlation coe¢ cient, �̂ij;T , de�ned by (4) and suppose that
Assumptions 2 and 3 hold, then there exists N0 and T0 such that for all N > N0 and T > T0

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� � Ke
� 1��

2

c2p(N)

'ij [1 + o(1)] (A.10)

where 'ij = E
�
y2ity

2
jt

���ij = 0�, and � is a small positive constant.2 Further, if
���ij�� >

cp(N)=
p
T we have

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
� Ke

�1
2

T

�
j�ijj� cp(N)p

T

�2
Kv (�ij) [1 + o(1)] ; (A.11)

where Kv(�ij) is given by (11),

cp(N) = �
�1
�
1� p

2f(N)

�
> 0; (A.12)

0 < p < 1, f(N) = c�N
�; where c� and � are �nite positive constants, and

ln f(N)=T ! 0; as N and T !1: (A.13)
2To simplify the notation we have dropped explicit reference to Pij ; the underlying bivariate distribution

of the observations.
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Lemma 7 Consider the data generating process

yt = Put;

where yt and ut are N � 1 vectors of random variables, and P is an N �N matrix of �xed
constants, such that PP0 = R, where R is a correlation matrix. Suppose that ut follows a
multivariate t-distribution with v degrees of freedom generated as

ut =

�
v � 2
�2v;t

�1=2
"t,

where "t = ("1t; "2t; : : : ; "Nt)0 s IIDN(0; IN), and �
2
v;t is a chi-squared random variate with

v > 4 degrees of freedom distributed independently of "t. Then we have that

�ij(2; 2) = E(y2ity
2
jt) =

(v � 2)
�
(p0ipi)

2 + (p0ipj)
2�

(v � 4) ;

where p0i is the i
th row of P. In the case where P = IN , E(y2ity

2
jt) = (v � 2)=(v � 4) and

E(y2ityjt) = E(y2jtyit) = 0:

Lemma 8 Fat-tailed shocks do not necessarily generate E(y2ity
2
jt) > 1.

A.2 Proofs of lemmas for the MT estimator

Proof of Lemma 1. Under (14), and noting that

e
1��
2
a2ij;T� (aij;T ) = e

1��
2
a2ij;T (2�)�1=2 exp

�
�1
2
a2ij;T

�
= (2�)�1=2 exp

�
� �
2
a2ij;T

�
;

we have

e
1��
2
a2ij;T [Fij;T (aij;T jPij )� �(aij;T )] = (2�)�1=2 exp

�
� �
2
a2ij;T

�
�
"
s�2X
r=1

T�r=2Gr (aij;T jPij ) +O
�
T�(s�1)=2

�#
;

and the desired result follows since Gr (aij;T jPij ), r = 1; 2; : : : ; s�2, are polynomials in aij;T ,
and noting that arij;T exp

�
� �
2
a2ij;T

�
! 0 as aij;T ! �1, for all r � 1. This result holds for

a �xed T , and as T !1:

Proof of Lemma 2. Denote the density of the standard normal distribution by �(z) =
(2�)�1=2e�(1=2)z

2
, then

E [zI(L � z � U)] =

Z U

L

z(2�)�1=2e�(1=2)z
2

dz = [��(z)]UL = � (L)� �(U):

Similarly, to prove (A.3) note that E [z2I(L � z � U)] =
R U
L
z2�(z)dz. Hence, integrating

by parts, we haveZ U

L

z2�(z)dz = [�z�(z)]UL +
Z U

L

�(z)dz = [� (U)� � (L)] + L�(L)� U�(U);

3



as required. Finally, to prove (A.4) note that since L < 0 and U > 0 and given the symmetry
of the density function, �(z) = �(�z), then

E [jzj I(L � z � U)] =

Z U

L

jzj�(z)dz

=

Z 0

L

jzj�(z)dz +
Z U

0

jzj�(z)dz =
Z �L

0

z�(z)dz +

Z U

0

z�(z)dz

= [�(0)� �(�L)] + [�(0)� �(U)]

= 2�(0)� �(L)� �(U);

as required.

Proof of Lemma 3. First note that

��1 (z) =
p
2 erf�1(2z � 1); z 2 (0; 1);

where �(x) is cumulative distribution function of a standard normal variate, and erf(x) is
the error function de�ned by

erf(x) =
2p
�

R x
0
e�u

2

du: (A.14)

Consider now the inverse complementary error function erfc�1(x) given by

erf c�1(1� x) = erf�1(x):

Using results in Chiani et al. (2003) on p.842, we have

erf c�1(x) �
p
� ln(x):

Applying the above results to cp(N) we have

cp(N) = ��1
�
1� p

2f(N)

�
=

p
2 erf�1

�
2

�
1� p

2f(N)

�
� 1
�

=
p
2 erf�1

�
1� p

f(N)

�
=
p
2 erf c�1

�
p

f(N)

�
�

p
2

s
� ln

�
p

f(N)

�
=
p
2 [ln f(N)� ln(p)]:

Therefore, for f(N) = c�N
� we have

c2p(N) � 2 [� ln(N)� ln(p)] = O [ln(N)] ;

which establishes result (a). It follows straightforwardly that ln f(N)
T

! 0; as N and T !1,
and given that p is �xed, then cp(N)=

p
T is bounded in N and T , and cp(N)=

p
T ! 0; as

N and T !1, since cp(N)=
p
T �

p
2 [ln f(N)� ln(p)] =T ! 0, as N and T !1:
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Further, by Proposition 24 of Dominici (2003) we have that

lim
N!1

cp(N)=LW

8><>: 1

2�
h�
1� p

2f(N)

�
� 1
i2
9>=>;
1=2

= 1,

where LW denotes the LambertW function which satis�es limN!1 LW (N)= fln(N)� ln [ln(N)]g =
1 as N !1. We note that limN!1 ln(N)= fln(N)� ln [ln(N)]g = 1 as N !1. So

lim
N!1

LW

�
1

2�[(1� p
2f(N))�1]

2

�1=2
n
2 ln

�p
2f(N)p
�p

�o1=2 = 1.

Hence, for any 0 < { � 1,

lim
N!1

exp
�
�{c2p(N)=2

�
exp

24�{
�h
2 ln

�p
2f(N)p
�p

�i1=2�2
2

35 = lim
N!1

exp
�
�{c2p(N)=2

�
[f (N)]�{ �{p2{2�{

= 1 as N !1;

and substituting N � for f (N) yields,

lim
N!1

exp
�
�{c2p (N) =2

�
N��{ ! 2{

�{p2{
. (A.15)

It follows from (A.15) that exp
�
�{c2p (N) =2

�
= 	

�
N��{�, as required. This completes

the proof of result (b). Finally, it readily follows from (b) that N exp
�
�{c2p (N) =2

�
=

	
�
N1��{�, and therefore N exp ��{c2p (N) =2� ! 0 when � > 1={, as desired. This com-

pletes the proof of the last result (c).

Proof of Lemma 4. We �rst note that since V ar
�
�̂ij;T

�
> 0

I

����̂ij;T �� � cp(N)p
T

�
= I

�
�cp(N)p

T
� �̂ij;T �

cp(N)p
T

�

= I

0@ �cp(N)p
T
� E

�
�̂ij;T

�q
V ar

�
�̂ij;T

� �
�̂ij;T � E

�
�̂ij;T

�q
V ar

�
�̂ij;T

� �
cp(N)p

T
� E

�
�̂ij;T

�q
V ar

�
�̂ij;T

�
1A

= I (Lij;T � zij;T � Uij;T ) : (A.16)

Also, since �̂ij;T is a correlation coe¢ cient,
���̂ij;T �� < 1, and for a �nite T > T0, V ar

�
�̂ij;T

�
> 0,

then

jzij;T j <
���̂ij;T ��+ ��E ��̂ij;T ���q

V ar
�
�̂ij;T

� < 2 sup
i;j

0@ 1q
V ar

�
�̂ij;T

�
1A < K:
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Hence all moments of zij;T exist for T �nite. Furthermore, it is well known that zij;T !d

N(0; 1) as T !1. Therefore, all moments of zij;T exist for all values of T > T0, and by the
second limit-theorem (see, for example, Rao and Kendall (1950) on p. 228)

E
�
zsij;T

�
! E (zs) ; as T !1, for all s = 1; 2; : : : :

Furthermore, since I (Lij;T � zij;T � Uij;T ) = I
����̂ij;T �� � cp(N)p

T

�
� cp(N)=

p
T , and under

condition (A.5), cp(N)=
p
T is bounded (see Lemma 3). Then for all N > N0 we must also

have

lim
T!1

E

�
zsij;T I

����̂ij;T �� � cp(N)p
T

��
= lim

T!1
E [zsI (Lij;T � z � Uij;T )] ;

as required. Results in (A.7) follow similarly.

Proof of Lemma 5. Using results in Chiani et al. (2003) - eq. (5), we have

erf c(x) =
2p
�

R1
x
e�u

2

du � exp(�x2); (A.17)

where erf c(x) is the complement of the erf(x) function de�ned by (A.14). But

1� �(x) = (2�)�1=2
R1
x
e�

u2

2 du =
1

2
erf c

�
xp
2

�
;

and using (A.17) we have

1� �(x) = 1

2
erf c

�
xp
2

�
� 1

2
exp

"
�
�
xp
2

�2#
=
1

2
exp

�
�x

2

2

�
:

Proof of Lemma 6. We �rst note that

Pr
����pT �̂ij;T ��� � cp(N)

�
= Pr

�
�cp(N) �

p
T �̂ij;T � cp(N)

�

= Pr

0BB@Lij �
p
T
�
�̂ij;T � E

�
�̂ij;T

��r
V ar

�p
T �̂ij;T

� � Uij

1CCA ;

where

Uij =
cp(N)�

p
TE

�
�̂ij;T

�r
V ar

�p
T �̂ij;T

� , Lij =
�cp(N)�

p
TE

�
�̂ij;T

�r
V ar

�p
T �̂ij;T

� : (A.18)

Using (8) and (9), we also note that under �ij = 0,

E
�
�̂ij;T

���ij = 0� =
 ij
T
+O

�
T�2

�
;

V ar
�
�̂ij;T

���ij = 0� =
'ij
T
+O

�
T�2

�
;

6



where  ij and 'ij are given by (13) and (12) respectively, and

Pr
����pT �̂ij;T ��� � cp(N)

���ij = 0� = Fij;T [Uij;T (0)]� Fij;T [Lij;T (0)]

where

Uij;T (0) =
cp(N)�

 ijp
T
+O

�
T�3=2

�q
'ij +O (T�1)

; Lij;T (0) =
�cp(N)�

 ijp
T
+O

�
T�3=2

�q
'ij +O (T�1)

: (A.19)

Hence,

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� = 1� Fij;T [Uij;T (0)] + Fij;T [Lij;T (0)] : (A.20)

Setting aij;T = Uij;T (0) we have that (recall by assumption supij
�� ij�� < K)

a2ij;T =
c2p(N)

'ij
+O

�
cp(N)p

T

�
+O

�
T�1

�
:

By Lemma 3, cp(N)=
p
T = o(1), as N and T !1, and hence

a2ij;T =
c2p(N)

'ij
+ o(1): (A.21)

Therefore, in view of (A.1) established in Lemma 1 and (A.21), we have (for some small
positive �)

Fij;T [Uij;T (0)] = � [Uij;T (0)] +Ke
� 1��

2

c2p(N)

'ij [1 + o(1)] ;

Fij;T [Lij;T (0)] = � [Lij;T (0)] +Ke
� 1��

2

c2p(N)

'ij [1 + o(1)] :

Substituting the above results in (A.20) yields

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� = 1� � [Uij;T (0)] + � [Lij;T (0)]

+Ke
� 1��

2

c2p(N)

'ij [1 + o(1)] ;

or

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� = � [�Uij;T (0)] + � [Lij;T (0)] (A.22)

+Ke
� 1��

2

c2p(N)

'ij [1 + o(1)] :

Since by assumption
�� ij�� < K, and cp(N) is an increasing function of N then there must

exist N0 and T0 such that for values of N > N0 and T > T0

�Uij;T (0) =
�cp(N) +

 ijp
T
+O

�
T�3=2

�q
'ij +O (T�1)

< 0, (A.23)
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and

Lij;T (0) =
�cp(N)�

 ijp
T
+O

�
T�3=2

�q
'ij +O (T�1)

< 0; (A.24)

and by Lemma 5 we have

� [�Uij;T (0)] �
1

2
exp

8><>:�
h
cp(N)�

 ijp
T
+O

�
T�3=2

�i2
2
�
'ij +O (T�1)

�
9>=>;

=
1

2
e
� 1
2

c2p(N)

'ij

�
1 +O

�
cp(N)p

T

�
+O

�
T�1

��
(A.25)

=
1

2
e
� 1
2

c2p(N)

'ij [1 + o(1)] :

Similarly,

� [Lij;T (0)] �
1

2
e
� 1
2

c2p(N)

'ij [1 + o(1)] : (A.26)

Substituting the above results in (A.22) now yields

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� �
"
e
� 1
2

c2p(N)

'ij +Ke
� 1��

2

c2p(N)

'ij

#
[1 + o(1)] ;

or3

Pr
����pT �̂ij;T ��� > cp(N)

���ij = 0� � Ke
� 1��

2

c2p(N)

'ij [1 + o(1)] ;

as required.
Consider now the case where �ij 6= 0 and note that

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
= Fij;T

�
Uij;T (�ij)

�
� Fij;T

�
Lij;T (�ij)

�
; (A.27)

where

Uij;T (�ij) =
cp(N)�

p
T�ij �

Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

; (A.28)

Lij;T (�ij) =
�cp(N)�

p
T�ij �

Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

; (A.29)

jKm(�ij)j < K; and 0 < Kv(�ij) < K. Suppose that �ij > 0. Then
p
T�ij + cp(N)!1 andp

T�ij � cp(N) ! 1, as N and T ! 1 (recall that cp(N)=
p
T ! 0 with N and T ! 1).

3Note that "
e
� 1
2

c2p(N)

'ij

#
=

"
e
� 1��

2

c2p(N)

'ij

#
= e

� �
2

c2p(N)

'ij ! 0, as c2p(N)!1.
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Again using (A.28) and (A.29) for aij;T in (A.1) we have

Fij;T
�
Uij;T (�ij)

�
= �

�
Uij;T (�ij)

�
+Ke

�1
2

[cp(N)�
p
T�ij]

2

Kv (�ij) [1 + o(1)] ;

Fij;T
�
Lij;T (�ij)

�
= �

�
Lij;T (�ij)

�
+Ke

�1
2

[cp(N)+
p
T�ij]

2

Kv (�ij) [1 + o(1)] :

Hence

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
= �

�
Uij;T (�ij)

�
� �

�
Lij;T (�ij)

�
+Ke

�1
2

[cp(N)�
p
T�ij]

2

Kv(�ij) [1 + o(1)]

+Ke
�1
2

[cp(N)+
p
T�ij]

2

Kv(�ij) [1 + o(1)] :

Further, since �
�
Lij;T (�ij)

�
� 0; then

�
��
Uij;T (�ij)

��
� �

��
Lij;T (�ij)

��
� �

 
cp(N)�

p
T�ij �

Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

!
:

Also, there exists N0 and T0 such that for �ij > 0, and all N > N0 and T > T0, we have
(using Lemma 5)

�

 
cp(N)�

p
T�ij �

Km (�ij)p
T

+O
�
T�3=2

�p
Kv(�ij) +O (T�1)

!
� 1

2
e
�1
2

[cp(N)�
p
T�ij]

2

Kv(�ij) [1 + o(1)] ;

and hence

Pr
����pT �̂ij;T ��� < cp(N)j�ij > 0

�
� Ke

�1
2

[cp(N)�
p
T�ij]

2

Kv(�ij) [1 + o(1)] :

A similar result can also be obtained for �ij < 0, yielding the overall result

Pr
����pT �̂ij;T ��� < cp(N)j�ij 6= 0

�
� Ke

�1
2

T

�
j�ijj� cp(N)p

T

�2
Kv(�ij) [1 + o(1)] :

Proof of Lemma 7. We �rst note that

E

�
1

�2v;t

�
=

1

v� 2 , V ar
�
1

�2v;t

�
=

2

(v� 2)2 (v� 4)

E

�
1

�2v;t

�2
=

2

(v� 2)2 (v� 4)
+

�
1

v� 2

�2
=

v� 2
(v� 2)2 (v� 4)

: (A.30)

Then

E (utu
0
t) = E

��
v� 2
�2v

�
"t"

0
t

�
= E

�
v� 2
�2v;t

�
E ("t"

0
t) = IN ;
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and
E(yt) = 0, E (yty0t) = PP

0 = R:

It is clear that yit has mean zero and a unit variance. Denote the ith row of P by p0i and

note that yit = p0iut =
�
v�2
�2v ;t

�1=2
p0i"t, and hence

�ij(2; 2) = E(y2ity
2
jt) = E

"�
v� 2
�2v;t

�2
(p0i"t)

2 �
p0j"t

�2#
;

and since "t and �2v;t are distributed independently using (A.30) we have

E(y2ity
2
jt) =

(v� 2)3

(v� 2)2 (v� 4)
E [("0tAi"t) ("

0
tAj"t)] ;

where Ai = pip
0
i. But since "t s N(0; IN), using results in Magnus (1978) we have

E [("0tAi"t) ("
0
tAj"t)] = tr (pip

0
i) tr

�
pjp

0
j

�
+ tr

�
pip

0
ipjp

0
j

�
= (p0ipi)

2
+ (p0ipj)

2
:

Hence

E(y2ity
2
jt) =

(v� 2)
�
(p0ipi)

2 + (p0ipj)
2�

(v� 4) :

WhenP is an identity matrix then p0ipi = 1 and p
0
ipj = 0, and henceE(y

2
ity

2
jt) = (v�2)=(v�4).

Also

E(y2ityjt) = E

"�
v� 2
�2v;t

�3=2#
E
�
("0tAi"t)p

0
j"t
�
= 0.

Proof of Lemma 8. Consider the data generating process yt = Put where the elements
of ut = (u1t; u2t; : : : ; uNt)

0, uit, are generated as a standardized independent chi-squared
distribution with vi degrees of freedom, namely

uit =
�2it(vi)� vip

2vi
, for all i and t:

Then it is clear that E(uit) = 0, E(u2it) = 1; and also E(u2itu
2
jt) = E(u2it)E(u

2
jt) = 1, and

E(utu
0
t) = IN . Let p

0
i be the i

th row of P and note that

E (yityjt) = p0iE (utu
0
t)pj = p

0
ipj = �ij

p0ipi =
NX
r=1

p2ir = 1:

Also

E
�
y2ity

2
jt

�
= E

�
(p0iutu

0
tpi)

�
p0jutu

0
tpj
��

=
X
r

X
r0

X
s

X
s0

pirpir0pjspjs0E(urtur0tustus0t):

10



But

E(urtur0tustus0t) = 0 if r 6= r0 or s 6= s0

= E(u2rtu
2
st) = 1 if r = r0 and s = s0,

and hence

E
�
y2ity

2
jt

�
=
X
r

X
s

p2irp
2
js =

 
NX
r=1

p2ir

!2
= 1:

Therefore, fat-tailed shocks do not necessarily generate �ij(2; 2) = E
�
y2ity

2
jt

�
> 1.

Supplementary Appendix B

An overview of key regularisation techniques

Here we provide an overview of three main covariance estimators proposed in the literature
which we use in our Monte Carlo experiments for comparative analysis, namely the thresh-
olding methods of Bickel and Levina (2008), and Cai and Liu (2011), and the shrinkage
approach of Ledoit and Wolf (2004).

B.1 Bickel-Levina (BL) thresholding

The method developed by Bickel and Levina (2008) - BL - employs �universal�thresholding
of the sample covariance matrix �̂ = (�̂ij) ; i; j = 1; 2; : : : ; N . Under this approach � is
required to be sparse as they de�ne on p. 2580. The BL thresholding estimator is given by

e�BL;C =

 
�̂ijI

"
j�̂ijj � C

r
log (N)

T

#!
; i = 1; 2; : : : ; N � 1; j = i+1; i+2; : : : ; N (B.31)

where I (:) is an indicator function and C is a positive constant which is unknown. The
choice of thresholding function - I (:) - implies that (B.31) implements �hard�thresholding.

The consistency rate of the BL estimator is mN

q
log(N)
T

under the spectral norm of the error

matrix
�e�BL;C ��

�
. The potential computational burden in the implementation of this

approach is the estimation of the thresholding parameter, C. This is usually calibrated
by a separate cross-validation (CV) procedure. The quality of the performance of the BL
estimator is rooted in the speci�cation chosen for the implementation of CV.4 Details of the
BL cross-validation procedure are given in Section B.3.
As argued by BL, thresholding maintains the symmetry of �̂ but does not ensure positive

de�niteness of e�BL;Ĉ in �nite samples. BL show that their threshold estimator is positive
de�nite if 


e�BL;C � e�BL;0





spec

� � and �min (�) > �; (B.32)

4Fang et al. (2013) provide useful guidelines regarding the speci�cation of various parameters used in
cross-validation through an extensive simulation study.
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where k:kspec is the spectral or operator norm and � is a small positive constant. This

condition is not met unless T is su¢ ciently large relative to N . �Universal�thresholding on �̂
performs best when the units xit; i = 1; 2; : : : ; N; t = 1; 2; : : : ; T are assumed homoskedastic
(i.e. �11 = �22 = : : : = �NN).

B.2 Cai and Liu (CL) thresholding

Cai and Liu (2011) - CL - proposed an improved version of the BL approach by incorporating
the unit speci�c variances in their �adaptive� thresholding procedure. In this way, unlike
�universal�thresholding on �̂, their estimator is robust to heteroscedasticity. Speci�cally,
the thresholding estimator e�CL;C is de�ned ase�CL;C =

�
�̂ijs� ij [j�̂ijj � � ij]

�
; i = 1; 2; : : : ; N � 1; j = i+ 1; i+ 2; : : : ; N (B.33)

where � ij > 0 is an entry-dependent adaptive threshold such that � ij =
q
�̂ij!T ;with �̂ij =

T�1
PT

i=1(xitxjt � �̂ij)
2 and !T = C

p
log (N) =T ; for some constant C > 0. CL implement

their approach using the general thresholding function s� (:) rather than I (:), but point out
that all their theoretical results continue to hold for the hard thresholding estimator. The
consistency rate of the CL estimator is C0mN

p
log (N) =T under the spectral norm of the

error matrix
�e�CL;C ��

�
. The parameter C can be �xed to a constant implied by theory

(C = 2 in CL) or chosen via cross-validation. Details of the CL cross-validation procedure
are provided in Section B.3.
As with the BL estimator, thresholding in itself does not ensure positive de�niteness ofe�CL;Ĉ : In light of condition (B.32), Fan et al. (2013) - FLM - extend the CL approach and

propose setting a lower bound on the cross-validation grid when searching for C such that
the minimum eigenvalue of their threshold estimator is positive, �min

�e�FLM;Ĉ

�
> 0. This

idea originated from Fryzlewicz (2013). Further details of this procedure can be found in
Section B.3. We apply this extension to both BL and CL procedures (see Section B.3 for
the relevant expressions).

B.3 Cross-validation

We perform a grid search for the choice of C over a speci�ed range: C = fc : Cmin � c � Cmaxg.

In the BL procedure, we set Cmin =

����minij �̂ij

����q T
logN

and Cmax =

����maxij �̂ij

����q T
logN

and im-

pose increments of (Cmax�Cmin)
N

. In CL cross-validation, we set Cmin = 0 and Cmax = 4;
and impose increments of c=N . In MT cross-validation set �min = 1 and �max = 2:5 and
impose either �xed increments of 0:1 or N -dependent increments of 1=N . In each point of
this range, c; we use xit; i = 1; 2; : : : ; N; t = 1; 2; : : : ; T and select the N � 1 column vectors
xt = (x1t; x2t; : : : ; xNt)

0 ; t = 1; 2; : : : ; T which we randomly reshu­ e over the t-dimension.

This gives rise to a new set of N � 1 column vectors x(s)t =
�
x
(s)
1t ; x

(s)
2t ; : : : ; x

(s)
Nt

�0
for the �rst

shu­ e s = 1. We repeat this reshu­ ing S times in total where we set S = 50: We consider
this to be su¢ ciently large (FLM suggested S = 20 while BL recommended S = 100 - see

also Fang et al. (2013)). In each shu­ e s = 1; 2; : : : ; S, we divide x(s) =
�
x
(s)
1 ;x

(s)
2 ; : : : ;x

(s)
T

�
12



into two subsamples of size N �T1 and N �T2; where T2 = T �T1: A theoretically �justi�ed�
split suggested in BL is given by T1 = T

�
1� 1

log(T )

�
and T2 = T

log(T )
. In our simulation study

we set T1 = 2T
3
and T2 = T

3
. Let �̂

(s)

1 =
�
�̂
(s)
1;ij

�
; with elements �̂(s)1;ij = T�11

PT1
t=1 x

(s)
it x

(s)
jt ;

and �̂
(s)

2 =
�
�̂
(s)
2;ij

�
with elements �̂(s)2;ij = T�12

PT
t=T1+1

x
(s)
it x

(s)
jt ; i; j = 1; 2; : : : ; N; denote the

sample covariance matrices generated using T1 and T2 respectively, for each split s. We

threshold �̂
(s)

1 as in (B.31), (B.33) or (5) using I (:) as the thresholding function, where for
CL both �̂ij and !T are adjusted to

�̂
(s)

1;ij =
1

T1

PT1
t=1(x

(s)
it x

(s)
jt � �̂

(s)
1;ij)

2;

and

!T1 (c) = c

s
log (N)

T1
:

Then (B.33) becomes e�(s)1 (c) =
�
�̂
(s)
1;ijI

h����̂(s)1;ij��� � �
(s)
1;ij (c)

i�
;

for each c; where

�
(s)
1;ij (c) =

q
�̂
(s)

1;ij!T1 (c) > 0;

and �̂
(s)

1;ij and !T1 (c) are de�ned above.
The following expression is computed for BL, CL or MT,

Ĝ (c) =
1

S

SX
s=1




e�(s)
1 (c)� e�(s)

2




2
F
; (B.34)

for each c and
Ĉ = arg min

Cmin�c�Cmax
Ĝ (c) : (B.35)

If several values of c attain the minimum of (B.35), then Ĉ is chosen to be the smallest
one. The �nal estimator of the covariance matrix is then given by e�Ĉ . The thresholding
approach does not necessarily ensure that the resultant estimate, e�Ĉ , is positive de�nite.
To ensure that the threshold estimator is positive de�nite Fan et al. (2013) propose setting

a lower bound on the cross-validation grid for the search of C such that �min
�e�Ĉ

�
> 0 - see

Fryzlewicz (2013). Therefore, for BL and CL we modify (B.35) so that

Ĉ� = arg min
Cpd+��c�Cmax

Ĝ (c) ; (B.36)

where Cpd is the lowest c such that �min
�e�Cpd

�
> 0 and � is a small positive constant. We do

not conduct thresholding on the diagonal elements of the covariance matrices which remain
in tact.
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B.4 Ledoit and Wolf (LW) shrinkage

Ledoit and Wolf (2004) - LW - considered a shrinkage estimator for regularisation which is
based on a linear combination of the sample covariance matrix, �̂, and an identity matrix
IN , and provide formulae for the appropriate weights. The LW shrinkage is expressed as

�̂LW = �̂1IN + �̂2�̂; (B.37)

with the estimated weights given by

�̂1 = mT b
2
T=d

2
T , �̂2 = a2T=d

2
T

where

mT = N�1 tr
�
�̂
�
; d2T = N�1 tr

�
�̂
2
�
�m2

T ;

a2T = d2T � b2T ; b
2
T = min(

�b2T ; d
2
T );

and

�b2T =
1

NT 2

TX
t=1




 _xt _x0t � �̂


2
F
=

1

NT 2

TX
t=1

tr [( _xt _x
0
t) ( _xt _x

0
t)]�

2

NT 2

TX
t=1

tr
�
_x0t�̂ _xt

�
+
1

NT
tr
�
�̂
2
�
;

and noting that
PT

t=1 tr
�
_x0t�̂ _xt

�
=
PT

t=1 tr
�
�̂
PT

t=1 _xt _x
0
t

�
= T

PT
t=1 tr

�
�̂
2
�
, we have

�b2T =
1

NT 2

TX
t=1

 
NX
i=1

_x2it

!2
� 1

NT
tr
�
�̂
2
�
;

with _xt = ( _x1t; _x2t; : : : ; _xNt)
0 and _xit = (xit � �xi).5

�̂LW is positive de�nite by construction. Thus, the inverse �̂
�1
LW exists and is well

conditioned.

Supplementary Appendix C

Shrinkage on MT estimator (S-MT)

Recall the shrinkage on the multiple testing estimator (S-MT ) expression displayed in Sec-
tion 3.1, eRS-MT (�) = �IN + (1� �)eRMT ;

where the N � N identity matrix IN is set as benchmark target, the shrinkage parameter
is denoted by � 2 (�0; 1]; and �0 is the minimum value of � that produces a non-singulareRS-MT (�0)matrix. Note that shrinkage is deliberately implemented on the correlation matrixeRMT rather than on e�MT . In this way we ensure that no shrinkage is applied to the variances.

5Note that LW scale the Frobenius norm by 1=N , and use kAk2F = tr(A
0A)=N . See De�nition 1 of Ledoit

and Wolf (2004) (p. 376). Here we use the standard notation for this norm.
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Further, shrinkage is applied to the non-zero elements of eRMT , and as a result the shrinkage
estimator, eRS-MT , also consistently recovers the support of R, since it has the same support
recovery property as eRMT . With regard to the calibration of the shrinkage parameter, �, we
solve the following optimisation problem

�� = arg min
�0+����1




R�1
0 �eR�1

S-MT (�)



2
F
;

where � is a small positive constant, and R0 is a reference invertible correlation matrix. Let
A = R�1

0 and B (�) = eR�1
S-MT (�). Note that since R0 and eRS-MT are symmetric


R�1

0 �eR�1
S-MT (�)




2
F
= tr

�
A2
�
� 2 tr[AB (�)] + tr[B2 (�)]:

The �rst order condition for the above optimisation problem is given by

@



R�1

0 �eR�1
S-MT (�)




2
F

@�
= �2 tr

�
A
@B (�)

@�

�
+ 2 tr

�
B (�)

@B (�)

@�

�
;

where

@B (�)

@�
= �eR�1

S-MT (�)
�
IN � ~RMT

� eR�1
S-MT (�)

= �B (�)
�
IN � ~RMT

�
B (�) :

Hence, �� is obtained as the solution of

f(�) = � tr
h
(A�B (�))B (�)

�
IN � eRMT

�
B (�)

i
= 0;

where f(�) is an analytic di¤erentiable function of � for values of � close to unity, such that
B (�) exists.
The resulting eRS-MT (�

�) is guaranteed to be positive de�nite since

�min

h eRS-MT (�)
i
= ��min (IN) + (1� �)�min

�eRMT

�
> 0;

for any � 2 [�0; 1], where �0 = max
�
���min(eRMT )
1��min(eRMT )

; 0

�
.

C.1 Derivation of S-MT shrinkage parameter

We need to solve f(�) = 0 for �� such that f(��) = 0 for a given choice of R0.6

Abstracting from the subscripts, note that

f(1) = � tr
h�
R�1�IN

� �
IN � eR�i ;

6The code for computing R0 of our choice is available upon request (see Section C.2).
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or

f(1) = � tr
h
�R�1 eR+R�1�IN + eRi

= tr
�
R�1 eR�� tr

�
R�1� ;

which is generally non-zero. Also, � = 0 is ruled out, since eRS-MT (0) = eR need not be
non-singular.
Thus we need to assess whether f(�) = 0 has a solution in the range �0 < � < 1, where

�0 is the minimum value of � such that eRS-MT (�0) is non-singular. First, we can compute �0
by implementing naive shrinkage as an initial estimate:

eRS-MT (�0) = �0IN + (1� �0)eR:
The shrinkage parameter �0 2 [0; 1] is given by

�0 = max

0@ �� �min

�eR�
1� �min

�eR� ; 0
1A ;

where in our simulation study we set � = 0:01. Here, �min (A) stands for the minimum

eigenvalue of matrix A. If eR is already positive de�nite and �min

�eR� > 0, then �0 is

automatically set to zero. Conversely, if �min
�eR� � 0, then �0 is set to the smallest possible

value that ensures positivity of �min
�eRS-MT (�0)

�
.

Second, we implement the optimisation procedure. In our simulation study we employ a
grid search for �� = f� : �0 + � � � � 1g with increments of 0:005. The �nal �� is given by

�� = argmin
�
[f(�)]2 :

C.2 Speci�cation of reference matrix R0

Implementation of the above procedure requires the use of a suitable reference matrix R0.
Our experimentations suggested that the shrinkage estimator of Ledoit and Wolf (2004) -
LW - applied to the correlation matrix is likely to work well in practice, and is to be recom-
mended. Schäfer and Strimmer (2005) consider LW shrinkage on the correlation matrix. In
our application we also take account of the small sample bias of the correlation coe¢ cients
in what follows. We set as reference matrix R0 the shrinkage estimator of LW applied to the
sample correlation matrix:

R̂0 = �IN + (1� �)R̂;

with shrinkage parameter � 2 [0; 1]; and R̂ = (�̂ij). The optimal value of the shrinkage
parameter that minimizes the expectation of the squared Frobenius norm of the error of
estimating R by R̂0:

E



R̂0 �R




2
F
=
PP
i6=j

E
�
�̂ij � �ij

�2
+ �2

PP
i6=j

E
�
�̂2ij
�
� 2�

PP
i6=j

E
�
�̂ij
�
�̂ij � �ij

��
; (C.38)
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is given by

�� =

PP
i6=j

E
�
�̂ij
�
�̂ij � �ij

��
PP
i6=j

E
�
�̂2ij
� = 1�

PP
i6=j

E
�
�̂ij�ij

�
PP
i6=j

E
�
�̂2ij
� ; (C.39)

with

�̂
�
= 1�

PP
i6=j

�̂ij

h
�̂ij �

�̂ij(1��̂2ij)
2T

i
1
T

PP
i6=j

(1� �̂2ij)
2 +

PP
i6=j

h
�̂ij �

�̂ij(1��̂2ij)
2T

i2 :
Note that limT!1(�̂

�
) = 0 for any N . However, in small samples values of �̂

�
can be obtained

that fall outside the range [0; 1]. To avoid such cases, if �̂
�
< 0 then �̂

�
is set to 0, and if

�̂
�
> 1 it is set to 1, or �̂

��
= max(0;min(1; �̂

�
)).
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