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S1 Extremum estimator for large N and 7T panels

In this appendix, we extend the extremum estimator to large N and 7' panels where the
errors are allowed to be serially correlated and heteroskedastic. Consider the network
W, = (wijy), for i,j = 1,2,..., N, where w;;; > 0, and W;Ty = 1, and denote the
outdegrees by d;;, and note that d; = (dyy, day, .., dny) = WiTy. Suppose that dy, for
1 = 1,2,..., N and t = 1,2,...,T, are generated according to the following exponent

specification
diy = kN%exp(vy), i=1,2,...,N; t =1,2,...,T, (S.1)

and assume that v, follows a covariance stationary process with absolutely summable
autocovariances, vy = Y o, @iSit—1, where ¢ ~ 11D (0,1) with finite fourth-order mo-
ments. Let v, (h) denote the h-order autocovariance of vy, 7v;(h) = E (VpVi4n) =
Zzoio ay;ip, for h = 0,1,2,.... Also note that J; are fixed constants in the range
0 < 9; <1 that satisfy the summability condition Zf\il 0; < K < 0o, and the following
constraint for each time period

N N
Z dit = T;th =N=k& Z N(Si eXp(Uit)' (82)
=1

=1

As with the case of short T panels considered in Section 7.2 of the paper, consider the
following estimator of ¢;

5 Ty Indy — (TN)™ 3 0 Indy,
P n v : (S.3)

and note that _

~ ’Ui—T_J

51—(512(_5 y
TN

where § = N1 Zf\il 0i, Uy =T71 Zthl Vi, and 0 = N1 Zf\;l v;. Also

(S.4)

-1
1
Var (v;) = 7 | (0) + 22 (1 — %) Y (h)] , fori=1,2,..., N, (S.5)
h=1
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and since Cov (0;,0;) = 0 for i # j we have
T-1 b

0423 (1-7)7 <h>] , (s
h=1

where 7y (h) = N~! Z]kvzl vi (h), h =0,1,2,.... Using (S.5) and (S.6) in (S.4) yields, for
all @ # 7,

1
V(IT (D) = W

Cov(6;,0;) = WOOU (0; —0,0; — D)

= (lnil7V)2 [Cov (v,05) + Var (0) — Cov (v;,0) — Cov (v, 0)]

= ﬁ {Vcw“ () - %Vw () — %var (@j)}

_ (lnN;NT {w) (0 =, (0)+ 2 (1 _ %) 5 () — 7, () =, (h)}},
and

~ 1 B B
Var <5z) = WV@T (0; — 0)
= G Ve (0 + Var (1) =2Co0 (v, 0)

— (ln—i\f)Q {(1 — N) Var (v;) + Var (@)}

= T ()

1 -— h
———— |7(0)+2 1— —
+(1nN)2NT 70+ < T

It follows that Var (&) can be estimated by

) - i (3]

h=1
1 R I .~
+(IUN)2NT 7 (0) + hZ:; <1 . E) ’Y(h)]
where
Y (h) = Zt_h+1;ztvzth
A(h) = Zkle&k (h)



and L
Uy =Indy —Ink — 9;In N, (S5.9)
as N — 0o, and L/T — 0, as T'— oco. The value of L is often set to 7"/3, which ensures
that L/T — 0, as T — oc.
The extremum estimator of ., = max (41, da, ..., 0y ) is given by
T 23:1 In digaxs — (TN) ™ Zthl Zjvzl Ind;

5 1
5max ln N ? (S O)

where dpax; is the largest value of d;; for period ¢. The asymptotic normality of 3max
can be established by applying standard central limit theorems for stationary processes
to v; — U, which leads to

Omax — Omax — 0
( )

vor ()]

To eliminate the nuisance parameter 9, the condition

5 (InN)VT = (i 5i> InNVT 0, (S.11)

—4 N(0,1), as N,T — oo jointly.

N

has to hold as N and T" — o0, and given the summability condition it is sufficient that
the following condition on the relative expansion rates of N and T is satisfied

(In N) VT
N
as N, T — oo, jointly, which implies that when 7" takes moderate to large values, N needs

to be sufficiently large relative to T'. It is clear that N and T can rise at the same rate.
But by setting 7' = & (N?), it also follows that condition (S.12) can be rewritten as

W _ exp [ln(lnN) + (Gg - 1) 1nN] —0,

— 0, (S5.12)

as N — oo, which holds if and only if

In(InN) + (% — 1) InN < 0.

as N — oo. Therefore, (S.12) will be satisfied so long as ¢ < 2, which allows T to rise
faster than V.
Hence, the statistic for testing dmax = 0oy, Where 60 > 1/2, is given by

max’ max

_ O (S.13)

7 o)

and Dpax —a N(0,1), if InN)NVT — 0, as N,T — oo jointly, and L/T — 0, as

T — 0.

max

S3



S2 Monte Carlo supplement

S2.1 Experiments with exponentially decaying 9,

The observations on the outdegrees, d;;, are generated by the following exponent specifi-
cation

Indy =Ink+6;InN +wvy, 1=1,2,....N; t=1,2,....,T, (S.14)
where v;; ~ IIDN(0,1), and

1
= M >0, (S.15)
Ny N

such that d;; sum up to N across i for each t. We consider balanced panels and allow all
units to be weakly dominant. To ensure that § = N~ Zfil 0; — 0 at a sufficiently fast
rate, we assume that individual ;) decays exponentially, where the degree of dominance
of unit 7 is denoted by d;, and the associated ordered values are denoted by d(;), namely,
Omax = 0(1) = 02 = ... > 5(N).Sl In particular, we consider §;y = 0.9', for i = 1,2,..., N,
and combinations of N = 100, 300, 500, 1,000, and 450,000, and 7" = 1, 2,6, 10, and 20.
The number of replications is set to 2,000. We report the top four largest estimates of ¢,
denoted by o = 3(1) > 5(2) > 3(3) > 5(4), which are computed by (S.3). When T' > 1,
the variance of 3(1-) is estimated by

Var <5) - # <1 - %) : (S.16)

N T .
52 — Zizl thl Ugt
v N(T-1) "~

where

(S.17)

and 0 is given by (S.9).

We also carry out misspecification experiments by generating the outdegrees by (S.14)
with §; = 0.75° and 0.9, for i = 1,2,..., N, and comparing the performance of the
extremum estimator with that of the three power law estimators, namely, the Gabaix-
Ibragimov estimator (f;), the maximum likelihood estimator (3,,; ), and the Clauset,
Shalzi and Newman (2009, CSN) estimator (Bpgy).52 The sample sizes under considera-
tion are combinations of N = 100, 300, 500, 1,000, and 450, 000, and 7" =1 and 2.

Table S.1 summarizes the estimation results for the four largest values of 9, namely
0.9,0.9%,0.9%, and 0.9%. For other values of d(;), for i = 5,6,..., N, the estimates fall
below 1/2 and have no consequence for the shock diffusion within the network. These
results confirm the validity of our theoretical derivations for the case where the degrees
of dominance of units in a network decay exponentially.

Table S.2 reports the frequencies with which each of the top four dominant units are
selected across 2,000 Monte Carlo replications. The probability of correct identification

S1Note that the denominator of (S.15), N~! Zszl N converges to a finite positive constant.
S2See Section 7.1 of the paper for details.
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is lower, compared with the results for the experiments with a finite number of domi-
nant units (Table 2 in the paper). As expected, the more clustered are the degrees of
pervasiveness across units, the more difficult it is to differentiate one unit from another.

Finally, turning to Tables S.3 and S.4, we observe that the three power law estimators
all suffer from severe biases when the DGP follows the exponent specification, especially
when N is large.

S2.2 Experiments with unbalanced panels

The data generating process (DGP) is given by the exponent specification, (S.14), for
i=1,..,N,and t = T?,T° + 1,...., T}, (T} > T?). We generate an unbalanced panel
where the number of time series observations for unit 7, namely T; = T} — T? + 1, lies
between 2 and 4. To ensure that the most important dominant units are present across
the years, only units in the bottom 95 percentile of the distribution of § were subject
to missing observations. In the case of these units, we dropped the first and the last
observations with a 50% probability. This randomization process is repeated for all the
2,000 replications.

We consider networks with a finite number of dominant units, and a large number of
non-dominant units. Specifically,

e A.1. One strongly dominant unit: dymax = 01y = 1, with 63 = 0 for i = 2,3, ..., N.

e A2, Two strongly dominant units: 0max = (1) = d2) = 1, with d; = 0 for
1=3,4,...,N.

e A.3. One strongly dominant unit and one weakly dominant unit: dmax = 1) = 1
and 09y = 0.75, with d(;y = 0 for ¢ = 3,4, ..., N.

The estimates of 9; are computed using

o Tz‘il Z;ZTO Ind; — N7! Zz]il (T;l ZZET.O In dit)
51' - . In N : 5 (818)

and their variances (when 7" > 1) are estimated by

.2
— A g 1 1
% (&) - T (= _ , $.19
“ (In N)? (E NT) (8.19)
where -
N —1 i A
52 _ Zi:1 (T: = 1) Zt:TiO U?t
v N )

and 0 is given by (S.9).

The results are presented in Table S.5. It can be seen that the extremum estimator
continues to perform well. Note, however, that in the case of unbalanced panels, we need
to assume that the outdegrees of the units with the highest degrees of dominance are
observed for at least two time periods.
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S2.3 Experiments with heteroskedastic and serially correlated
errors

The DGP is given by
Indy =Ink+6;InN+wvy, i=1,2,....N; t=1,2,....,T, (S.20)

where the idiosyncratic errors, v;;, are generated as

vy = oiey, fori=1,2.... N;t=12..T, (S.21)
1 3
o? = 3 + 1% where z; ~ IID [x*(2)]

€it = Peifit-1t+t4/1— pimit, for t = —49,...,0,1,..., T,

61'7,50 = O, nth[[DN<O71)7
pe; ~ IIDU(0.05,0.95),

where o? are generated following Bailey et al. (2016) such that all 62 are bounded away
from zero and N~' N 62 — 2, as N — oc.

To ensure that N

K Z N% exp(vy) = N,

=1

for N sufficiently large, k is set to

1
KR =
N-1N Néiexp [AVar (vi)]

: (S.22)

where Var (vy) = o?.

Under (S.20) we consider Experiments A.1-A.3, which are described in Section S2.2,
and all experiments are replicated 2, 000 times for combinations of N = 500, 1, 000, 2, 000,
5,000, and 10,000, and 7" = 50, 100, 200, and 500. The values of d;, p,; and o? are fixed
across replications. The test statistic is computed by (S.13), where L = T'/3.

The results are summarized in Table S.6. As can be seen the bias of the extremum
estimator is very small and its RMSE declines with N and/or T as predicted by the
theory. The empirical sizes are close to the 5% nominal size if both N and T are large,
and if N is large enough relative to 7', which is in line with condition (S.12). The test
based on (S.13) has a high power, which improves with both N and 7.
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Table S.2: Frequencies with which each of the top four dominant units are selected under
Exponent DGP with exponentially decaying d;

Empirical frequency (percent)
T\N 100 300 500 1,000 450,000

1 40.40 4840 51.85 56.15 78.05
2 54.00 60.65 64.00 68.00 87.65
6 72.20 80.20 83.30 86.50  97.85
10 79.60 85.85 88.25 90.85 99.80

20 89.95 94.85 9585 97.25  99.95
52 = 0.9 =0.81

1 23.10 27.15 29.15 31.25  54.95
2 31.55 3820 41.60 46.00 73.20
6 48.05 59.00 63.65 69.15 94.20
10 5945 69.95 75.15 80.40 98.95

20 7820 87.60 89.70 92.90  99.90
d(3 = 0.9° = 0.729

1 14.80 18.85 21.80 25.25  48.30
2 21.90 28.55 31.75 35.35 65.45
6 40.40 50.80 55.15 61.00 90.90
10 5495 6540 7095 76.50 97.70

20  73.20 83.50 86.75 90.75  99.95
84 = 0.9 = 0.6561

1 10.90 14.50 17.05 18.80 41.80
2 17.75 23.85 2590 28.80 59.80
6 37.30 47.50 51.55 56.55  87.80
10 50.80 60.65 65.55 71.30 95.75

20 68.00 78.00 82.30 87.15 99.85

Notes: This table complements Table S.1 and reports the frequencies with which each of the top four
dominant units are selected across 2, 000 replications. The DGP is given by (S.14), where the true
values of § are generated as d(; = 0.9%, for i = 1,2,..., N. See also the notes to Table S.1.
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Table S.3: Estimates of the shape parameter, 3, of the power law and inverse of the
exponent, dyax, under Exponent DGP with exponentially decaying d;), where ;) = 0.9°

(8=1/0.9=1.11)

)

T=1 T=2
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BG I)
cut-off value
10% 1.06 0.92 0.95 1.04 2.34 1.08 0.93 0.96 1.05 2.34
(0.48) (0.24) (0.19) (0.15)  (0.02) (0.34) (0.17) (0.14) (0.11)  (0.01)
20% 0.99 1.00 1.06 1.19 2.09 1.01 1.01 1.07 1.19 2.09
(0.31) (0.18) (0.15) (0.12)  (0.01) (0.23) (0.13) (0.11) (0.08) (0.01)
30% 0.98 1.04 1.12 1.25 1.90 0.99 1.05 1.12 1.25 1.90
(0.25) (0.16)  (0.13) (0.10)  (0.01) (0.18) (0.11) (0.09) (0.07)  (0.01)
Assumed Maximum Likelihood Estimation <B ML E)
cut-off value
10% 1.13 1.10 1.22 1.44 2.11 1.05 1.07 1.21 1.42 2.11
(0.36)  (0.20) (0.17) (0.14)  (0.01) (0.23) (0.14) (0.12) (0.10)  (0.01)
20% 1.04 1.18 1.29 1.45 1.79 1.01 1.16 1.28 1.44 1.79
(0.23) (0.15) (0.13) (0.10)  (0.01) (0.16) (0.11) (0.09) (0.07)  (0.00)
30% 1.01 1.16 1.25 1.36 1.57 0.98 1.15 1.25 1.36 1.57
(0.18) (0.12) (0.10) (0.08)  (0.00) (0.13) (0.09) (0.07) (0.06)  (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 49% 39% 36% 30% 1% 46% 38% 35% 28% 1%
0.96 1.13 1.24 1.40 2.82 0.95 1.12 1.23 1.40 2.84
(0.15)  (0.11) (0.10) (0.08)  (0.04) (0.11) (0.08) (0.07) (0.06)  (0.03)
Inverse of dyax
1.09 1.06 1.06 1.07 1.10 1.16 1.11 1.10 1.10 1.11
(N/A) (N/A) (N/A) (N/A) (N/A) (0.21) (0.15) (0.14) (0.12)  (0.07)
Notes: The DGP is given by (S.14). The true values of 0 are generated as §(;) = 0.9%, fori=1,2,..,N

where §(;) denotes the i'" largest 6. The true value of 3 is 8 = 1/0.9 = 1.11. 36‘[ denotes the

Gabaix-Ibragimov estimate, 3 v E denotes the maximum likelihood estimate, Bc gn denotes the

feasible maximum likelihood estimate developed in Clauset et al. (2009). dax is the exponent estimate

computed by (S.10). The standard error for the inverse of dyax is computed by the delta method.

(N/A) indicates that the standard error of dmay cannot be computed when 7' = 1.
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Table S.4: Estimates of the shape parameter, , of the power law and inverse of the
exponent, dmax, under Exponent DGP with exponentially decaying d;), where d;) = 0.75’

(8 =1/0.75 = 1.33)

T = T =
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000
Assumed Log-log regression (BG 1)
cut-off value
10% 1.36 1.39 1.47 1.60 2.39 1.34 1.39 1.47 1.60 2.39
(0.61) (0.36) (0.29) (0.23)  (0.02) (0.42) (0.25) (0.21) (0.16)  (0.01)
20% 1.34 1.45 1.54 1.66 2.11 1.34 1.46 1.54 1.67 2.11
(0.42) (0.27) (0.22) (0.17) (0.01) (0.30) (0.19) (0.15) (0.12) (0.01)
30% 1.31 1.45 1.52 1.63 1.91 1.32 1.45 1.53 1.63 1.91
(0.34) (0.22) (0.18) (0.13) (0.01) (0.24) (0.15) (0.13) (0.09) (0.01)
Assumed Maximum Likelihood Estimation (BMLE)
cut-off value
10% 1.61 1.67 1.75 1.86 2.11 1.48 1.63 1.72 1.85 2.11
(0.51) (0.30) (0.25) (0.19) (0.01) (0.33) (0.21) (0.17) (0.13) (0.01)
20% 1.46 1.56 1.61 1.68 1.79 1.40 1.54 1.60 1.67 1.79
(0.33) (0.20) (0.16) (0.12) (0.01) (0.22) (0.14) (0.11) (0.08) (0.00)
30% 1.35 1.43 1.47 1.51 1.58 1.31 1.42 1.46 1.50 1.58
(0.25)  (0.15) (0.12) (0.09) (0.00) (0.17)  (0.11) (0.08) (0.06) (0.00)
Estimated Feasible MLE (BCSN)
cut-off value 41% 29% 24% 18% 1% 35% 25% 21% 16% 1%
1.31 1.52 1.62 1.78 2.83 1.33 1.53 1.64 1.80 2.87
(0.23) (0.18) (0.16) (0.14) (0.04) (0.17)  (0.13) (0.12) (0.11) (0.03)
Inverse of gmax
1.32 1.33 1.33 1.34 1.34 1.39 1.36 1.36 1.35 1.34
(N/A) (N/A) (N/A) (N/A) (N/A) (0.30) (0.23) (0.21) (0.19) (0.10)

Notes: The DGP is given by (S.14). The true values of § are generated as ¢(;) = 0.75%, fori = 1,2,..., N,
where §(;) denotes the ith largest §. The true value of 3 is f = 1/0.75 = 1.33. See the notes to Table S.3.

S10



Table S.5: Bias, RMSE, size and power of the extremum estimator for the dominant units
under Exponent DGP for unbalanced panels

Experiment A.1: One strongly A.2: Two strongly A.3: One strongly and
dominant unit dominant units one weakly dominant units
Omax = 1 d1) =0 =1 d1) =1, 002 =0.75
N 5(1) =1 5(2) =1 5(1) =1 5(2) =0.75
Bias 100 -1.25 3.87 -8.41 -1.64 -2.40
(x100) 300 -0.52 4.08 -5.83 -0.65 -0.94
500 -0.38 3.95 -5.15 -0.45 -0.64
1,000 -0.26 3.71 -4.47 -0.30 -0.41
450,000 -0.08 2.08 -2.27 -0.08 -0.10
RMSE 100 10.74 9.64 12.22 10.34 10.72
(x100) 300 8.65 8.27 9.25 8.46 8.71
500 7.94 7.69 8.37 7.81 8.03
1,000 7.14 7.01 7.43 7.06 7.24
450,000 3.79 3.78 3.88 3.79 3.87
Size 100 5.10 3.40 7.25 3.95 4.40
(x100) 300 4.55 3.85 5.55 3.80 4.55
500 4.25 4.15 5.20 3.90 4.60
1,000 4.15 4.05 4.65 3.75 4.30
450,000 4.25 4.40 4.55 4.25 4.70
Power 100 13.00 20.35 2.30 11.30 71.85
(x100) 300 18.80 33.30 3.75 18.00 83.90
500 22.65 38.85 5.35 22.10 88.80
1,000 26.50 45.65 7.20 26.10 94.35
450,000 73.75 93.10 53.80 73.75 100.00

Notes: The unbalanced panels are generated with Ty,.x = 4. For each Monte Carlo replication, the top
5% of the units in terms of the true degree of dominance do not have missing observations, whereas the
rest will have missing data for the first and the last periods with a 50% probability. The DGP is given
by (S.14). For Experiment A.1, there is one strongly dominant unit and the rest are non-dominant:
Omax = 1, with ;) = 0 for 4 = 2,3, ..., N. For Experiment A.2, there are two strongly dominant units
and the rest are non-dominant: (1) = d(2y = 1, with §;) = 0 for ¢ = 3,4,..., N. For Experiment A.3,
there are one strongly dominant unit and one weakly dominant unit, and the rest are non-dominant:
01y = 1 and d(3) = 0.75, with ;) = 0 for i = 3,4,..., N. §(;) denotes the it" largest 6, i.e.,

Omax = (1) = 0(2) > d(3) > ..., which are estimated by (S.18), and the standard errors of S(i) are
computed by (S.19). The power is calculated at 0.9 if true value is 1, and at 1 if true value is 0.75. The
number of replications is 2, 000.
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Table S.6: Bias, RMSE, size and power of the extremum estimator for the dominant units
under Exponent DGP with heteroskedastic and serially corrleated errors

Bias(x100) RMSE(x100) Size(x100) Power(x100)
N\T 50 100 200 500 [ 50 100 200 500 [ 50 100 200 500 50 100 200 500
Experiment A.1: One strongly dominant unit, d.c = 1
500 -0.20  -0.18 -0.19 -0.19 | 3.92 277 195 1.23 | 10.15 8.05 6.90 5.45 76.15 95.55 99.95 100.00
1,000 -0.09 -0.08 -0.09 -0.09 | 3.52 248 1.74 1.10 9.85 7.85 6.90 5.70 84.70 98.35 100.00  100.00
2,000 -0.04 -0.03 -0.04 -0.04 | 3.20 2.25 1.58 1.00 9.70 7.80 6.60 5.60 90.90 99.55 100.00  100.00
5,000 -0.02 0.00 -0.01 -0.01 | 2.86 2.01 1.41 0.89 9.95 7.65 6.45 5.60 95.25 100.00  100.00  100.00
10,000 -0.01 0.01 0.00 0.00 264 1.86 1.31 0.82 | 10.10 7.70 6.55 5.50 97.40 100.00  100.00  100.00
Experiment A.2: Two strongly dominant units, §(1) = d2) =1
500 1.53 0.92 0.53 0.20 3.11 211 147  0.87 7.80 5.50 5.05 2.85 98.25 100.00 100.00 100.00
1,000 1.54 0.99 0.64 0.34 288 197 1.38 0.83 8.25 5.75 5.70 3.60 99.60 100.00  100.00  100.00
2,000 1.48 0.99 0.66 0.39 266 1.83 1.29 0.79 8.85 6.35 5.85 4.70 99.85 100.00  100.00  100.00
5,000 1.37 0.93 0.64 0.40 240 1.66 1.18 0.73 9.25 6.65 6.50 5.40 100.00  100.00 100.00 100.00
10,000 1.28 0.88 0.61 0.39 2.23 1.55 1.10 0.69 9.35 6.70 6.65 5.70 100.00  100.00  100.00  100.00
(5(2) = 1
500 -2.30  -1.70 -1.31 -0.96 | 3.57 2.55 190 1.29 | 12.05 10.10 10.55 13.15 73.35 94.60 99.90 100.00
1,000 -1.90 -1.36 -1.02 -0.70 | 3.10 2.18 1.60 1.05 | 10.60 8.70 8.70 8.65 83.60 98.15 100.00  100.00
2,000 -1.65 -1.15 -0.85 -0.56 | 2.77 1.93 1.40 0.90 | 10.30 7.80 7.70 7.10 90.35 99.55 100.00  100.00
5,000 -1.42  -098 -0.71 -0.45 | 244 1.69 1.22 0.77 9.95 6.95 7.00 5.90 95.25 100.00  100.00  100.00
10,000 -1.30 -0.89 -0.64 -0.40 | 2.25 1.55 1.12 0.70 9.80 7.10 6.75 5.80 97.40 100.00 100.00  100.00
Experiment A.3: One strongly dominant unit and one weakly dominant unit, (1) = 1, d(2) = 0.75
5(1) = 1
500 -0.35  -0.33 -0.34 -0.34 | 3.93 278 197 1.26 | 10.45 8.20 7.55 6.30 75.05 94.75 99.90 100.00
1,000 -0.17 -0.15 -0.16 -0.17 | 3.53 249 1.75 1.11 9.95 8.25 6.80 5.65 84.50 98.15 100.00  100.00
2,000 -0.08 -0.07 -0.08 -0.08 | 3.20 2.25 1.58 1.00 9.85 8.00 6.55 5.70 90.75 99.55 100.00  100.00
5,000 -0.03 -0.02 -0.03 -0.03 | 286 2.01 1.41 0.89 9.95 7.70 6.50 5.45 95.25 100.00  100.00  100.00
10,000 -0.01 0.00 -0.01 -0.01 | 264 1.86 1.31 0.82 | 10.15 7.70 6.50 5.55 97.40 100.00 100.00 100.00
d2) = 0.75
500 -0.31  -0.34 -0.35 -0.32 | 2.63 1.77 1.34 0.86 9.40 6.55 8.05 8.30 99.95 100.00 100.00  100.00
1,000 -0.14 -0.16 -0.17 -0.15 | 2.34 156 1.17 0.73 8.85 6.15 7.45 6.35 100.00  100.00  100.00  100.00
2,000 -0.02 -0.08 -0.08 -0.06 | 2.22 1.41 1.06 0.66 9.15 6.00 7.05 5.95 99.80 100.00  100.00  100.00
5,000 0.00 -0.03 -0.03 -0.01 | 1.90 1.26 0.94 0.58 9.10 5.90 6.90 5.80 100.00  100.00 100.00  100.00
10,000 0.03 -0.01 -0.02 0.00 1.84 1.16 0.87 0.54 9.10 6.05 6.80 5.90 99.90 100.00  100.00  100.00
Notes: The DGP is given by (S.20), where the errors are generated by (S.21). dmax = (1) and d(o) are

estimated by (S.3), and the standard errors are computed by (S.8). See also the notes to Table S.5.
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