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S1 Extremum estimator for large N and T panels

In this appendix, we extend the extremum estimator to large N and T panels where the
errors are allowed to be serially correlated and heteroskedastic. Consider the network
Wt = (wij;t), for i; j = 1; 2; :::; N , where wij;t � 0, and Wt�N = 1, and denote the
outdegrees by dit, and note that dt = (d1t; d2t; ::; dNt)

0 = W0
t�N . Suppose that dit, for

i = 1; 2; :::; N and t = 1; 2; :::; T , are generated according to the following exponent
speci�cation

dit = �N �i exp(�it); i = 1; 2; :::; N ; t = 1; 2; :::; T; (S.1)

and assume that �it follows a covariance stationary process with absolutely summable
autocovariances, �it =

P1
l=0 ail& i;t�l, where & it � IID (0; 1) with �nite fourth-order mo-

ments. Let i (h) denote the h-order autocovariance of vit, i (h) = E (�it�i;t+h) =P1
l=0 ailai;l+jhj, for h = 0; 1; 2; :::: Also note that �i are �xed constants in the range

0 � �i � 1 that satisfy the summability condition
PN

i=1 �i < K < 1, and the following
constraint for each time period

NX
i=1

dit = �
0
Ndt = N = �

NX
i=1

N �i exp(�it): (S.2)

As with the case of short T panels considered in Section 7.2 of the paper, consider the
following estimator of �i

�̂i =
T�1

PT
t=1 ln dit � (TN)

�1PT
t=1

PN
j=1 ln djt

lnN
; (S.3)

and note that
�̂i � �i = �� +

��i � ��
lnN

; (S.4)

where �� = N�1PN
i=1 �i; ��i = T�1

PT
t=1 �it, and �� = N�1PN

i=1 ��i. Also

V ar (��i) =
1

T

"
i (0) + 2

T�1X
h=1

�
1� h

T

�
i (h)

#
; for i = 1; 2; :::; N; (S.5)
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and since Cov (��i; ��j) = 0 for i 6= j we have

V ar (��) =
1

NT

"
� (0) + 2

T�1X
h=1

�
1� h

T

�
� (h)

#
; (S.6)

where � (h) = N�1PN
k=1 k (h), h = 0; 1; 2; :::. Using (S.5) and (S.6) in (S.4) yields, for

all i 6= j;

Cov(�̂i; �̂j) =
1

(lnN)2
Cov (��i � ��; ��j � ��)

=
1

(lnN)2
[Cov (��i; ��j) + V ar (��)� Cov (��i; ��)� Cov (��j; ��)]

=
1

(lnN)2

�
V ar (��)� 1

N
V ar (��i)�

1

N
V ar (��j)

�
=

1

(lnN)2NT

(
� (0)� i (0)� j (0) + 2

T�1X
h=1

�
1� h

T

��
� (h)� i (h)� j (h)

�)
;

and

V ar
�
�̂i

�
=

1

(lnN)2
V ar (��i � ��)

=
1

(lnN)2
[V ar (��i) + V ar (��)� 2Cov (��i; ��)]

=
1

(lnN)2

��
1� 2

N

�
V ar (��i) + V ar (��)

�
=

1

(lnN)2 T

�
1� 2

N

�"
i (0) + 2

T�1X
h=1

�
1� h

T

�
i (h)

#

+
1

(lnN)2NT

"
� (0) + 2

T�1X
h=1

�
1� h

T

�
� (h)

#
: (S.7)

It follows that V ar
�
�̂i

�
can be estimated by

dV ar ��̂i� =
1

(lnN)2 T

�
1� 2

N

�"
̂i (0) + 2

LX
h=1

�
1� h

L

�
̂i (h)

#
(S.8)

+
1

(lnN)2NT

"
�̂ (0) + 2

LX
h=1

�
1� h

L

�
�̂ (h)

#
;

where

̂i (h) =

PT
t=h+1 �̂it�̂i;t�h

T
;

�̂ (h) =

PN
k=1 ̂k (h)

N
;
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and
�̂it = ln dit �dln�� �̂i lnN; (S.9)

as N !1, and L=T ! 0; as T !1. The value of L is often set to T 1=3, which ensures
that L=T ! 0, as T !1:
The extremum estimator of �max = max (�1; �2; :::; �N) is given by

�̂max =
T�1

PT
t=1 ln dmax;t � (TN)

�1PT
t=1

PN
j=1 ln djt

lnN
; (S.10)

where dmax;t is the largest value of dit for period t. The asymptotic normality of �̂max
can be established by applying standard central limit theorems for stationary processes
to ��i � ��, which leads to�

�̂max � �max � ��
�

h
V ar

�
�̂max

�i1=2 !d N(0; 1), as N; T !1 jointly.

To eliminate the nuisance parameter ��, the condition

�� (lnN)
p
T =

 
NX
i=1

�i

!
(lnN)

p
T

N
! 0; (S.11)

has to hold as N and T ! 1; and given the summability condition it is su¢ cient that
the following condition on the relative expansion rates of N and T is satis�ed

(lnN)
p
T

N
! 0; (S.12)

as N; T !1, jointly, which implies that when T takes moderate to large values, N needs
to be su¢ ciently large relative to T . It is clear that N and T can rise at the same rate.
But by setting T = 	

�
N�
�
, it also follows that condition (S.12) can be rewritten as

(lnN)
p
T

N
= exp

�
ln (lnN) +

�
�

2
� 1
�
lnN

�
! 0;

as N !1; which holds if and only if

ln (lnN) +

�
�

2
� 1
�
lnN < 0:

as N ! 1. Therefore, (S.12) will be satis�ed so long as � < 2, which allows T to rise
faster than N .
Hence, the statistic for testing �max = �0max, where �

0
max > 1=2, is given by

Dmax =

�
�̂max � �0max

�
hdV ar ��̂max�i1=2 ; (S.13)

and Dmax !d N(0; 1); if (lnN)N�1
p
T ! 0; as N; T ! 1 jointly, and L=T ! 0; as

T !1.
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S2 Monte Carlo supplement

S2.1 Experiments with exponentially decaying �(i)
The observations on the outdegrees, dit, are generated by the following exponent speci�-
cation

ln dit = ln�+ �i lnN + �it; i = 1; 2; :::; N ; t = 1; 2; :::; T; (S.14)

where �it � IIDN(0; 1), and

� =
exp

�
�1
2

�
N�1PN

i=1N
�i
> 0; (S.15)

such that dit sum up to N across i for each t. We consider balanced panels and allow all
units to be weakly dominant. To ensure that �� = N�1PN

i=1 �i ! 0 at a su¢ ciently fast
rate, we assume that individual �(i) decays exponentially, where the degree of dominance
of unit i is denoted by �i, and the associated ordered values are denoted by �(i), namely,
�max = �(1) � �(2) � ::: � �(N):

S1 In particular, we consider �(i) = 0:9i, for i = 1; 2; :::; N ,
and combinations of N = 100; 300; 500; 1; 000, and 450; 000; and T = 1; 2; 6; 10; and 20.
The number of replications is set to 2; 000. We report the top four largest estimates of �;
denoted by �̂max = �̂(1) � �̂(2) � �̂(3) � �̂(4); which are computed by (S.3). When T > 1,
the variance of �̂(i) is estimated by

dV ar ��̂i� = �̂2�
(lnN)2 T

�
1� 1

N

�
; (S.16)

where

�̂2� =

PN
i=1

PT
t=1 �̂

2
it

N (T � 1) ; (S.17)

and �̂it is given by (S.9).
We also carry out misspeci�cation experiments by generating the outdegrees by (S.14)

with �(i) = 0:75i and 0:9i, for i = 1; 2; :::; N; and comparing the performance of the
extremum estimator with that of the three power law estimators, namely, the Gabaix-
Ibragimov estimator (�̂GI), the maximum likelihood estimator (�̂MLE), and the Clauset,
Shalzi and Newman (2009, CSN) estimator (�̂CSN).

S2 The sample sizes under considera-
tion are combinations of N = 100; 300; 500; 1; 000; and 450; 000; and T = 1 and 2.
Table S.1 summarizes the estimation results for the four largest values of �, namely

0:9; 0:92; 0:93, and 0:94. For other values of �(i), for i = 5; 6; :::; N , the estimates fall
below 1=2 and have no consequence for the shock di¤usion within the network. These
results con�rm the validity of our theoretical derivations for the case where the degrees
of dominance of units in a network decay exponentially.
Table S.2 reports the frequencies with which each of the top four dominant units are

selected across 2; 000 Monte Carlo replications. The probability of correct identi�cation

S1Note that the denominator of (S.15), N�1PN
i=1N

�i , converges to a �nite positive constant.
S2See Section 7.1 of the paper for details.
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is lower, compared with the results for the experiments with a �nite number of domi-
nant units (Table 2 in the paper). As expected, the more clustered are the degrees of
pervasiveness across units, the more di¢ cult it is to di¤erentiate one unit from another.
Finally, turning to Tables S.3 and S.4, we observe that the three power law estimators

all su¤er from severe biases when the DGP follows the exponent speci�cation, especially
when N is large.

S2.2 Experiments with unbalanced panels

The data generating process (DGP) is given by the exponent speci�cation, (S.14), for
i = 1; :::; N; and t = T 0i ; T

0
i + 1; :::; T

1
i , (T

1
i � T 0i ). We generate an unbalanced panel

where the number of time series observations for unit i, namely Ti = T 1i � T 0i + 1; lies
between 2 and 4. To ensure that the most important dominant units are present across
the years, only units in the bottom 95th percentile of the distribution of � were subject
to missing observations. In the case of these units, we dropped the �rst and the last
observations with a 50% probability. This randomization process is repeated for all the
2; 000 replications.
We consider networks with a �nite number of dominant units, and a large number of

non-dominant units. Speci�cally,

� A.1. One strongly dominant unit: �max = �(1) = 1; with �(i) = 0 for i = 2; 3; :::; N:

� A.2. Two strongly dominant units: �max = �(1) = �(2) = 1; with �(i) = 0 for
i = 3; 4; :::; N:

� A.3. One strongly dominant unit and one weakly dominant unit: �max = �(1) = 1
and �(2) = 0:75, with �(i) = 0 for i = 3; 4; :::; N .

The estimates of �i are computed using

�̂i =
T�1i

PT 1i
t=T 0i

ln dit �N�1PN
i=1

�
T�1i

PT 1i
t=T 0i

ln dit

�
lnN

; (S.18)

and their variances (when T > 1) are estimated by

dV ar ��̂i� = �̂2�
(lnN)2

�
1

Ti
� 1

NTi

�
; (S.19)

where

�̂2� =

PN
i=1 (Ti � 1)

�1PT 1i
t=T 0i

�̂2it

N
;

and �̂it is given by (S.9).
The results are presented in Table S.5. It can be seen that the extremum estimator

continues to perform well. Note, however, that in the case of unbalanced panels, we need
to assume that the outdegrees of the units with the highest degrees of dominance are
observed for at least two time periods.
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S2.3 Experiments with heteroskedastic and serially correlated
errors

The DGP is given by

ln dit = ln�+ �i lnN + �it; i = 1; 2; :::; N ; t = 1; 2; :::; T; (S.20)

where the idiosyncratic errors, �it, are generated as

�it = �ieit; for i = 1; 2; :::; N ; t = 1; 2; :::; T; (S.21)

�2i =
1

2
+
3

4
zi; where zi � IID

�
�2 (2)

�
;

eit = �e;iei;t�1 +
q
1� �2e;i�it; for t = �49; :::; 0; 1; :::; T;

ei;�50 = 0; �it � IIDN (0; 1) ;

�e;i � IIDU(0:05; 0:95);

where �2i are generated following Bailey et al. (2016) such that all �
2
i are bounded away

from zero and N�1PN
i=1 �

2
i ! 2; as N !1.

To ensure that

�
NX
i=1

N �i exp(�it) = N;

for N su¢ ciently large, � is set to

� =
1

N�1PN
i=1N

�i exp
�
1
2
V ar (�it)

� ; (S.22)

where V ar (�it) = �2i :
Under (S.20) we consider Experiments A.1-A.3, which are described in Section S2.2,

and all experiments are replicated 2; 000 times for combinations of N = 500; 1; 000; 2; 000;
5; 000; and 10; 000; and T = 50; 100; 200; and 500. The values of �i; �e;i and �

2
i are �xed

across replications. The test statistic is computed by (S.13), where L = T 1=3:
The results are summarized in Table S.6. As can be seen the bias of the extremum

estimator is very small and its RMSE declines with N and/or T as predicted by the
theory. The empirical sizes are close to the 5% nominal size if both N and T are large,
and if N is large enough relative to T , which is in line with condition (S.12). The test
based on (S.13) has a high power, which improves with both N and T:
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Table S.2: Frequencies with which each of the top four dominant units are selected under
Exponent DGP with exponentially decaying �(i)

Empirical frequency (percent)
TnN 100 300 500 1,000 450,000

�(1) = 0:9

1 40.40 48.40 51.85 56.15 78.05
2 54.00 60.65 64.00 68.00 87.65
6 72.20 80.20 83.30 86.50 97.85
10 79.60 85.85 88.25 90.85 99.80
20 89.95 94.85 95.85 97.25 99.95

�(2) = 0:9
2 = 0:81

1 23.10 27.15 29.15 31.25 54.95
2 31.55 38.20 41.60 46.00 73.20
6 48.05 59.00 63.65 69.15 94.20
10 59.45 69.95 75.15 80.40 98.95
20 78.20 87.60 89.70 92.90 99.90

�(3) = 0:9
3 = 0:729

1 14.80 18.85 21.80 25.25 48.30
2 21.90 28.55 31.75 35.35 65.45
6 40.40 50.80 55.15 61.00 90.90
10 54.95 65.40 70.95 76.50 97.70
20 73.20 83.50 86.75 90.75 99.95

�(4) = 0:9
4 = 0:6561

1 10.90 14.50 17.05 18.80 41.80
2 17.75 23.85 25.90 28.80 59.80
6 37.30 47.50 51.55 56.55 87.80
10 50.80 60.65 65.55 71.30 95.75
20 68.00 78.00 82.30 87.15 99.85

Notes: This table complements Table S.1 and reports the frequencies with which each of the top four
dominant units are selected across 2; 000 replications. The DGP is given by (S.14), where the true
values of � are generated as �(i) = 0:9i, for i = 1; 2; :::; N . See also the notes to Table S.1.
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Table S.3: Estimates of the shape parameter, �, of the power law and inverse of the
exponent, �max, under Exponent DGP with exponentially decaying �(i), where �(i) = 0:9i

(� = 1=0:9 = 1:11)

T = 1 T = 2
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
�b�GI�

cut-o¤ value
10% 1.06 0.92 0.95 1.04 2.34 1.08 0.93 0.96 1.05 2.34

(0.48) (0.24) (0.19) (0.15) (0.02) (0.34) (0.17) (0.14) (0.11) (0.01)
20% 0.99 1.00 1.06 1.19 2.09 1.01 1.01 1.07 1.19 2.09

(0.31) (0.18) (0.15) (0.12) (0.01) (0.23) (0.13) (0.11) (0.08) (0.01)
30% 0.98 1.04 1.12 1.25 1.90 0.99 1.05 1.12 1.25 1.90

(0.25) (0.16) (0.13) (0.10) (0.01) (0.18) (0.11) (0.09) (0.07) (0.01)

Assumed Maximum Likelihood Estimation
�b�MLE

�
cut-o¤ value

10% 1.13 1.10 1.22 1.44 2.11 1.05 1.07 1.21 1.42 2.11
(0.36) (0.20) (0.17) (0.14) (0.01) (0.23) (0.14) (0.12) (0.10) (0.01)

20% 1.04 1.18 1.29 1.45 1.79 1.01 1.16 1.28 1.44 1.79
(0.23) (0.15) (0.13) (0.10) (0.01) (0.16) (0.11) (0.09) (0.07) (0.00)

30% 1.01 1.16 1.25 1.36 1.57 0.98 1.15 1.25 1.36 1.57
(0.18) (0.12) (0.10) (0.08) (0.00) (0.13) (0.09) (0.07) (0.06) (0.00)

Estimated Feasible MLE
�b�CSN�

cut-o¤ value 49% 39% 36% 30% 1% 46% 38% 35% 28% 1%
0.96 1.13 1.24 1.40 2.82 0.95 1.12 1.23 1.40 2.84
(0.15) (0.11) (0.10) (0.08) (0.04) (0.11) (0.08) (0.07) (0.06) (0.03)

Inverse of b�max
1.09 1.06 1.06 1.07 1.10 1.16 1.11 1.10 1.10 1.11
(N/A) (N/A) (N/A) (N/A) (N/A) (0.21) (0.15) (0.14) (0.12) (0.07)

Notes: The DGP is given by (S.14). The true values of � are generated as �(i) = 0:9i; for i = 1; 2; :::; N ,
where �(i) denotes the ith largest �. The true value of � is � = 1=0:9 = 1:11. �̂GI denotes the

Gabaix-Ibragimov estimate, b�MLE denotes the maximum likelihood estimate, �̂CSN denotes the
feasible maximum likelihood estimate developed in Clauset et al. (2009). �̂max is the exponent estimate
computed by (S.10). The standard error for the inverse of �̂max is computed by the delta method.
(N/A) indicates that the standard error of �̂max cannot be computed when T = 1.
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Table S.4: Estimates of the shape parameter, �, of the power law and inverse of the
exponent, �max, under Exponent DGP with exponentially decaying �(i), where �(i) = 0:75i

(� = 1=0:75 = 1:33)

T = 1 T = 2
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
�b�GI�

cut-o¤ value
10% 1.36 1.39 1.47 1.60 2.39 1.34 1.39 1.47 1.60 2.39

(0.61) (0.36) (0.29) (0.23) (0.02) (0.42) (0.25) (0.21) (0.16) (0.01)
20% 1.34 1.45 1.54 1.66 2.11 1.34 1.46 1.54 1.67 2.11

(0.42) (0.27) (0.22) (0.17) (0.01) (0.30) (0.19) (0.15) (0.12) (0.01)
30% 1.31 1.45 1.52 1.63 1.91 1.32 1.45 1.53 1.63 1.91

(0.34) (0.22) (0.18) (0.13) (0.01) (0.24) (0.15) (0.13) (0.09) (0.01)

Assumed Maximum Likelihood Estimation
�b�MLE

�
cut-o¤ value

10% 1.61 1.67 1.75 1.86 2.11 1.48 1.63 1.72 1.85 2.11
(0.51) (0.30) (0.25) (0.19) (0.01) (0.33) (0.21) (0.17) (0.13) (0.01)

20% 1.46 1.56 1.61 1.68 1.79 1.40 1.54 1.60 1.67 1.79
(0.33) (0.20) (0.16) (0.12) (0.01) (0.22) (0.14) (0.11) (0.08) (0.00)

30% 1.35 1.43 1.47 1.51 1.58 1.31 1.42 1.46 1.50 1.58
(0.25) (0.15) (0.12) (0.09) (0.00) (0.17) (0.11) (0.08) (0.06) (0.00)

Estimated Feasible MLE
�b�CSN�

cut-o¤ value 41% 29% 24% 18% 1% 35% 25% 21% 16% 1%
1.31 1.52 1.62 1.78 2.83 1.33 1.53 1.64 1.80 2.87
(0.23) (0.18) (0.16) (0.14) (0.04) (0.17) (0.13) (0.12) (0.11) (0.03)

Inverse of b�max
1.32 1.33 1.33 1.34 1.34 1.39 1.36 1.36 1.35 1.34
(N/A) (N/A) (N/A) (N/A) (N/A) (0.30) (0.23) (0.21) (0.19) (0.10)

Notes: The DGP is given by (S.14). The true values of � are generated as �(i) = 0:75i; for i = 1; 2; :::; N ,
where �(i) denotes the ith largest �. The true value of � is � = 1=0:75 = 1:33. See the notes to Table S.3.
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Table S.5: Bias, RMSE, size and power of the extremum estimator for the dominant units
under Exponent DGP for unbalanced panels

Experiment A.1: One strongly A.2: Two strongly A.3: One strongly and
dominant unit dominant units one weakly dominant units
�max = 1 �(1) = �(2) = 1 �(1) = 1, �(2) = 0:75

N �(1) = 1 �(2) = 1 �(1) = 1 �(2) = 0:75

Bias 100 -1.25 3.87 -8.41 -1.64 -2.40
(�100) 300 -0.52 4.08 -5.83 -0.65 -0.94

500 -0.38 3.95 -5.15 -0.45 -0.64
1,000 -0.26 3.71 -4.47 -0.30 -0.41

450,000 -0.08 2.08 -2.27 -0.08 -0.10
RMSE 100 10.74 9.64 12.22 10.34 10.72
(�100) 300 8.65 8.27 9.25 8.46 8.71

500 7.94 7.69 8.37 7.81 8.03
1,000 7.14 7.01 7.43 7.06 7.24

450,000 3.79 3.78 3.88 3.79 3.87
Size 100 5.10 3.40 7.25 3.95 4.40
(�100) 300 4.55 3.85 5.55 3.80 4.55

500 4.25 4.15 5.20 3.90 4.60
1,000 4.15 4.05 4.65 3.75 4.30

450,000 4.25 4.40 4.55 4.25 4.70
Power 100 13.00 20.35 2.30 11.30 71.85
(�100) 300 18.80 33.30 3.75 18.00 83.90

500 22.65 38.85 5.35 22.10 88.80
1,000 26.50 45.65 7.20 26.10 94.35

450,000 73.75 93.10 53.80 73.75 100.00

Notes: The unbalanced panels are generated with Tmax = 4. For each Monte Carlo replication, the top
5% of the units in terms of the true degree of dominance do not have missing observations, whereas the
rest will have missing data for the �rst and the last periods with a 50% probability. The DGP is given
by (S.14). For Experiment A.1, there is one strongly dominant unit and the rest are non-dominant:
�max = 1; with �(i) = 0 for i = 2; 3; :::; N . For Experiment A.2, there are two strongly dominant units
and the rest are non-dominant: �(1) = �(2) = 1; with �(i) = 0 for i = 3; 4; :::; N . For Experiment A.3,
there are one strongly dominant unit and one weakly dominant unit, and the rest are non-dominant:
�(1) = 1 and �(2) = 0:75, with �(i) = 0 for i = 3; 4; :::; N . �(i) denotes the ith largest �, i.e.,
�max = �(1) � �(2) � �(3) � :::, which are estimated by (S.18), and the standard errors of �̂(i) are
computed by (S.19). The power is calculated at 0:9 if true value is 1, and at 1 if true value is 0:75. The
number of replications is 2; 000:
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Table S.6: Bias, RMSE, size and power of the extremum estimator for the dominant units
under Exponent DGP with heteroskedastic and serially corrleated errors

Bias(�100) RMSE(�100) Size(�100) Power(�100)
NnT 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

Experiment A.1: One strongly dominant unit, �max = 1

500 -0.20 -0.18 -0.19 -0.19 3.92 2.77 1.95 1.23 10.15 8.05 6.90 5.45 76.15 95.55 99.95 100.00
1,000 -0.09 -0.08 -0.09 -0.09 3.52 2.48 1.74 1.10 9.85 7.85 6.90 5.70 84.70 98.35 100.00 100.00
2,000 -0.04 -0.03 -0.04 -0.04 3.20 2.25 1.58 1.00 9.70 7.80 6.60 5.60 90.90 99.55 100.00 100.00
5,000 -0.02 0.00 -0.01 -0.01 2.86 2.01 1.41 0.89 9.95 7.65 6.45 5.60 95.25 100.00 100.00 100.00
10,000 -0.01 0.01 0.00 0.00 2.64 1.86 1.31 0.82 10.10 7.70 6.55 5.50 97.40 100.00 100.00 100.00

Experiment A.2: Two strongly dominant units, �(1) = �(2) = 1

�(1) = 1
500 1.53 0.92 0.53 0.20 3.11 2.11 1.47 0.87 7.80 5.50 5.05 2.85 98.25 100.00 100.00 100.00
1,000 1.54 0.99 0.64 0.34 2.88 1.97 1.38 0.83 8.25 5.75 5.70 3.60 99.60 100.00 100.00 100.00
2,000 1.48 0.99 0.66 0.39 2.66 1.83 1.29 0.79 8.85 6.35 5.85 4.70 99.85 100.00 100.00 100.00
5,000 1.37 0.93 0.64 0.40 2.40 1.66 1.18 0.73 9.25 6.65 6.50 5.40 100.00 100.00 100.00 100.00
10,000 1.28 0.88 0.61 0.39 2.23 1.55 1.10 0.69 9.35 6.70 6.65 5.70 100.00 100.00 100.00 100.00

�(2) = 1
500 -2.30 -1.70 -1.31 -0.96 3.57 2.55 1.90 1.29 12.05 10.10 10.55 13.15 73.35 94.60 99.90 100.00
1,000 -1.90 -1.36 -1.02 -0.70 3.10 2.18 1.60 1.05 10.60 8.70 8.70 8.65 83.60 98.15 100.00 100.00
2,000 -1.65 -1.15 -0.85 -0.56 2.77 1.93 1.40 0.90 10.30 7.80 7.70 7.10 90.35 99.55 100.00 100.00
5,000 -1.42 -0.98 -0.71 -0.45 2.44 1.69 1.22 0.77 9.95 6.95 7.00 5.90 95.25 100.00 100.00 100.00
10,000 -1.30 -0.89 -0.64 -0.40 2.25 1.55 1.12 0.70 9.80 7.10 6.75 5.80 97.40 100.00 100.00 100.00

Experiment A.3: One strongly dominant unit and one weakly dominant unit, �(1) = 1, �(2) = 0:75

�(1) = 1
500 -0.35 -0.33 -0.34 -0.34 3.93 2.78 1.97 1.26 10.45 8.20 7.55 6.30 75.05 94.75 99.90 100.00
1,000 -0.17 -0.15 -0.16 -0.17 3.53 2.49 1.75 1.11 9.95 8.25 6.80 5.65 84.50 98.15 100.00 100.00
2,000 -0.08 -0.07 -0.08 -0.08 3.20 2.25 1.58 1.00 9.85 8.00 6.55 5.70 90.75 99.55 100.00 100.00
5,000 -0.03 -0.02 -0.03 -0.03 2.86 2.01 1.41 0.89 9.95 7.70 6.50 5.45 95.25 100.00 100.00 100.00
10,000 -0.01 0.00 -0.01 -0.01 2.64 1.86 1.31 0.82 10.15 7.70 6.50 5.55 97.40 100.00 100.00 100.00

�(2) = 0:75
500 -0.31 -0.34 -0.35 -0.32 2.63 1.77 1.34 0.86 9.40 6.55 8.05 8.30 99.95 100.00 100.00 100.00
1,000 -0.14 -0.16 -0.17 -0.15 2.34 1.56 1.17 0.73 8.85 6.15 7.45 6.35 100.00 100.00 100.00 100.00
2,000 -0.02 -0.08 -0.08 -0.06 2.22 1.41 1.06 0.66 9.15 6.00 7.05 5.95 99.80 100.00 100.00 100.00
5,000 0.00 -0.03 -0.03 -0.01 1.90 1.26 0.94 0.58 9.10 5.90 6.90 5.80 100.00 100.00 100.00 100.00
10,000 0.03 -0.01 -0.02 0.00 1.84 1.16 0.87 0.54 9.10 6.05 6.80 5.90 99.90 100.00 100.00 100.00

Notes: The DGP is given by (S.20), where the errors are generated by (S.21). �max = �(1) and �(2) are
estimated by (S.3), and the standard errors are computed by (S.8). See also the notes to Table S.5.
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