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Abstract

This paper proposes a novel test of zero pricing errors for the linear factor pricing model
when the number of securities, IV, can be large relative to the time dimension, 7', of the
return series. The test is based on Student ¢ tests of individual securities and has a number of
advantages over the existing standardised Wald type tests. It allows for non-Gaussianity and
general forms of weakly cross correlated errors. It does not require estimation of an invertible
error covariance matrix, it is much faster to implement, and is valid even if N is much larger
than T. Monte Carlo evidence shows that the proposed test performs remarkably well even
when T = 60 and N = 5,000. The test is applied to monthly returns on securities in the
S&P 500 at the end of each month in real time, using rolling windows of size 60. Statistically
significant evidence against Sharpe-Lintner CAPM and Fama-French three factor models are
found mainly during the recent financial crisis. Also we find a significant negative correlation
between a twelve-months moving average p-values of the test and excess returns of long/short
equity strategies (relative to the return on S&P 500) over the period November 1994 to June
2015, suggesting that abnormal profits are earned during episodes of market inefficiencies.
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1 Introduction

This paper is concerned with testing for the presence of alpha in Linear Factor Pricing Models
(LFPM) such as the capital asset pricing model (CAPM) due to Sharpe (1964) and Lintner
(1965), or the Arbitrage Pricing Theory (APT) model due to Ross (1976), when the number
of securities, N, is quite large relative to the time dimension, 7', of the return series under
consideration. The Sharpe-Lintner CAPM model predicts that expected excess returns (mea-
sured relative to the risk-free rate) on any given security or a given portfolio of securities is
proportional to the expected excess return on the market portfolio, with the constant of the
proportionality, £, being security /portfolio specific.

There exists a large literature in empirical finance that tests various implications of Sharpe-
Lintner model. Cross sectional as well as time series tests have been proposed and applied in
many different contexts. Using time series regressions, Jensen (1968) was the first to propose
using standard t-statistics to test the null hypothesis that the intercept, «;, in the Ordinary
Least Squares (OLS) regression of the excess return of a given security, 4, on the excess return
of the market portfolio is zero.! The test can be applied to individual securities as well as to
portfolios.

However, when a large number of securities are under consideration, due to dependence of
the errors across securities in the LFPM regressions, the individual ¢-statistics are correlated
which makes controlling the overall size of the test problematic. Gibbons, Ross and Shaken
(1989, GRS) propose an exact multivariate version of the test which deals with this problem
if the CAPM regression errors are Gaussian and N < T'. This is the standard test used in the
literature, but its application has been confined to testing the market efficiency of a relatively
small number of portfolios, typically 20 — 30, using monthly returns observed over relatively
long time periods. The use of large T" as a way of ensuring that N < T, is also likely to
increase the possibility of structural breaks in the 3’s that could in turn adversely affect the
performance of the GRS test.

Recently, there has been a growing body of finance literature which uses individual security
returns rather than portfolio returns for the test of pricing errors. Ang, Liu and Schwarz (2016)
show that the smaller variation of beta estimates from creating portfolios may not lead to
smaller variation of cross-section regression estimates. Cremers, Halling and Weinbaum (2015)
examine the pricing of both aggregate jump and volatility risk based on individual stocks rather
than portfolios. Chorida, Goyal and Shanken (2015) advocate the use of individual securities
to investigate whether the source of expected return variation is from betas or security-specific
characteristics.

It is clearly desirable to develop tests of market efficiency that can deal with a large number
of securities over relatively short time periods so that the problem of time variations in ’s
is somewhat mitigated. It is also important that such tests are reasonably robust to non-
Gaussian errors, particularly as it is more likely that one would encounter non-normal errors
in the case of LFPM regressions for individual securities as compared to regressions estimated
on portfolios comprising a large number of securities.

Out of the two main assumptions that underlie the GRS test, the literature has focussed on
the implications of non-normal errors for the GRS test, and ways of allowing for non-normal
errors when testing a; = 0. Affleck-Graves and McDonald (1989) were amongst the first to
consider the robustness of the GRS test to non-normal errors who, using simulation techniques,
find that the size and power of GRS test can be adversely affected if the departure from non-
normality of the errors is serious, but conclude that the GRS test is ".. reasonably robust
with respect to typical levels of nonnormality." (p.889). More recently, Beaulieu, Dufour and

! Cross sectional tests of CAPM have been considered by Douglas (1968), Black, Jensen and Scholes (1972),
and Fama and Macbeth (1973), among others. An early review of the literature can be found in Jensen (1972),
and more recently in Fama and French (2004).



Khalaf (2007, BDK) and Gungor and Luger (2009, GL) have proposed tests of a; = 0 that
allow for non-normal errors, but retain the restriction N < T. BDK develop an exact test
which is applicable to a wide class of non-Gaussian error distributions, and use Monte Carlo
simulations to achieve the correct size for their test. Gungor and Luger (2009) propose two
distribution-free nonparametric sign tests in the case of single factor models that allow the
error distribution to be non-normal but require it to be cross-sectionally independent and
conditionally symmetrically distributed around zero.?

Our primary focus in this paper is on development of multivariate tests of Hy : o; = O,
fori=1,2,..., N, when N > T, whilst allowing for non-Gaussian and weakly cross-sectionally
correlated errors. The latter condition is required for consistent estimation of the error covari-
ance matrix, V, when N is large relative to T'. In the case of LFPM regressions with weakly
cross-sectionally correlated errors, consistent estimation of V can be achieved by adaptive
thresholding which sets to zero elements of the estimator of V that are below a given thresh-
old. Alternatively, feasible estimators of V can be obtained by Bayesian or classical shrinkage
procedures that scale down the off-diagonal elements of V relative to its diagonal elements.?
Fan, Liao and Mincheva (2011, 2013) consider consistent estimation of V in the context an
approximate factor model. They assume V is sparse and propose an adaptive thresholding
estimator of V, which they show to be positive definite with satisfactory small sample prop-
erties. Fan, Liao and Yao (2015) derive the conditions under which standardised Wald tests
of Hy can be asymptotically justified. Gagliardini, Ossola and Scaillet (2016) develop two-
pass regressions of individual stock returns, allowing time-varying risk premia, and propose
a standardised Wald test. Raponi, Robotti and Zaffaroni (2016) propose a test of pricing
error in cross-section regression for fixed number of time series observations. They use a bias-
corrected estimator of Shaken (1992) to standardise their test statistic. Gungor and Luger
(2016) propose simulation based approach for testing pricing errors. They claim that their test
procedure is robust against non-normality and cross-sectional dependence in errors. Amen-
gual and Repetto (2014) consider the standardised F-type test statistic based on principal
component estimation under both serial and cross-section correlation in errors.

In this paper we follow an alternative strategy where we develop a test statistic that
initially ignores the off-diagonal elements of V and base the test of Hy on the average of the ¢
tests of a; =0, over ¢ = 1,2,..., N. We then correct the standardized version of this average
statistic for the effects of non-zero off-diagonal elements. The correction involves consistently
estimating N~'Tr (RQ), where R = (pij) is the error correlation matrix. The estimation of
N—Tr (Rz) =N! Zf\i 1 Z;\le p?j is subject to the curse of dimensionality which we address
by using the multiple testing threshold estimator, R, recently proposed by Bailey, Pesaran
and Smith (2016). We show that consistent estimation of N~'T'r (R?) can be achieved under
more general specification of R as compared to tests that require consistent estimator of the
full matrix, R. We are able to establish that the resultant test is applicable more generally
and continues to be valid for a wider class of error covariances, and holds even if N rises
faster than 7. The proposed test is also corrected for small sample effects of non-Gaussian
errors, which is of particular importance in finance. We refer to this test as Jensen’s « test of
LFPM and denote it by J,. The test can also be viewed as a robust version of a standardised

?Bossaerts, Plot and Zame (2007) provide a novel GMM test of CAPM which does not require large T, but
is designed for the analysis of experimental data on a few risky assets held across a relatively large number of
subjects. It is interesting to see if their approach can be adapted to the analysis of historical observations of
the type considered in this paper.

3There exists a large literature in statistics and econometrics on estimation of high-dimensional covariance
matrices which use regularization techniques such as shrinkage, adaptive thresholding or other dimension-
reducing procedures that impose certain structures on the variance matrix such as sparsity, or factor structures.
See, for example, Wong, Carter and Kohn (2003), Ledoit and Wolf (2004), Huang, Liu, Pourahmadi, and Liu
(2006), Bickel and Levina (2008), Fan, Fan and Lv (2008), Cai and Liu (2011), Fan, Liao and Mincheva (2011,
2013), and Bailey, Pesaran and Smith (2016).



Wald test, in cases where the off-diagonal elements of V become relatively less important as
N — 00. The implementation of the J, test is also computationally less demanding, since it
does not involve estimation of an invertible high dimensional error covariance matrix.

Our assumption regarding the sparsity of V advances on Chamberlain’s (1983) approximate
factor model formulation of the asset model, where it is assumed that the largest eigenvalue of
V (or R) is uniformly bounded in N (Chamberlain, 1983, p.1307). We relax this assumption
and allow the maximum column sum matrix norm of R to rise with IV but at a rate slower
than /N, whilst controlling the overall sparsity of R by requiring N ~1Tr(R?) to be bounded
in N. In this way we are able to allow for two types of cross-sectional error dependence: one
due to the presence of weak common factors that are not sufficiently strong to be detectable
using standard estimation techniques, such as principal components; and another due to the
error dependence that arise from interactive and spill-over effects.

We establish that under the null hypothesis of a; = 0, the J, test is asymptotically
distributed as N (0, 1) for T and N — oo jointly, so long as N/T? — 0, my = |R||; = O (N%),
0<d,<1/2,and N~1Tr (RQ) is bounded in N. The test is also shown to have power against
alternatives that rises in N/27. The proofs are quite involved and in some parts rather tedious.
For the purpose of clarity we provide statements of the main theorems with the associated
assumptions in the paper, but relegate the mathematical details to an appendix.

Small sample properties of the J,, test are investigated using Monte Carlo experiments
designed specifically to match the correlations, volatilities, and other distributional features
(skewness and kurtosis) of the residuals of Fama-French three factor regressions of individual
securities in the Standard & Poor 500 (S&P 500) index. We consider the comparative test
results for the following eight sample size combinations, 7' = 60 and 100, and N = 50, 100, 200
and 500. The J, test performs well for all sample size combinations with size very close to
the chosen nominal value of 5%, and satisfactory power. Comparing the size and power of the
J,, test with the GRS test in the case of experiments with N = 50 < T' = 60, 100 for which
the GRS statistics can be computed, we find that the J, test has a higher power than the
GRS test in most experiments. This could be due to the non-normal errors adversely affecting
the GRS test, as reported by Affleck-Graves and McDonald (1989) and Affleck-Graves and
McDonald (1990). In addition, the J,, test outperforms the feasible versions of the standardised
Wald tests, replacing V with the recently developed estimators of large dimensional variance-
covariance matrix of Fan, Liao and Mincheva (2013, FLM) and Ledoit-Wolf (2004). The J,
test also outperforms the simulation-based Fiax test of Gungor and Luger (2016) that can be
implemented when N > T'. The F.x test is shown to be undersized substantially across the
various designs, and have lower power uniformly as compared to the J,, test. We also carried
out additional experiments that allow for time variations in betas as well as errors with a
mixture of weak factors and spatial autoregressive processes, using much larger values of IV,
namely N = 1,000, 2,000 and 5,000, whilst keeping T" at 60 and 100. We only considered
the J, test for these experiments, and found no major evidence of size distortions even for the
experiments with T'= 60 and N = 5,000.

Encouraged by the satisfactory performance of the Ja test, even in cases where N is much
larger than T', we applied the test to monthly returns on the securities in the Standard and
Poor (S&P) 500 index using rolling windows of size 60 over the period September 1989 to
June 2015. The survivorship bias problem is minimized by considering the sample of securities
included in the S&P 500 at the end of each month in real time. We report the J,, test statistics
for a single-factor and a three Fama-French factor model over the period 1989-2015, and find
statistically significant evidence against Sharpe-Lintner CAPM and Fama-French factor model
only during the recent financial crisis.

Finally, we examine if there exists any relationship between the p-values of J, test and
excess returns on long/short equity hedge funds (relative to the return on S&P 500). A priori
one would expect a reverse relationship between market efficiency and excess return of an



investment strategy, with excess returns being low during periods of market efficiency (high
p-values) and vice versa. In fact, we find a significant negative correlation between a twelve-
months moving average p-values of J,, test and excess returns of long/short equity strategies
over the period November 1994 to June 2015, suggesting that abnormal profits are earned
during episodes of market inefficiencies.

The outline of the rest of the paper is as follows. Section 2 sets out the panel data model
for the analysis of LFPM, and the GRS test. Section 3 proposes the J, test for large N
panels, derives its asymptotic distribution, and Section 4 summarises the main theoretical
results. Section 5 reports on small sample properties of .J,,, GRS, standardised Wald tests and
Gungor and Luger (2016) simulation based Fihax test, using Monte Carlo techniques. Section
6 presents the empirical application. Section 7 concludes. The proofs of main theorems are
provided in Appendix A, and the lemmas which are used for the proofs, as well as the additional
Monte Carlo evidence, are provided in an Online Supplement to this paper, that is available
on request.

Notations

We use K and ¢ to denote finite and small positive constants. If { f; };°, is any real sequence
and {g;};~, is a sequences of positive real numbers, then f; = O(g¢), if there exists a positive
finite constant K such that |f| /g < K for all t. f; = o(g¢) if fi/gt — 0 as t — oco. For a
N x N matrix A = (a;j), the minimum and maximum eigenvalues of matrix A is denoted by
Amin(A) and Apax(A), respectively, its trace by Tr(A), its maximum absolute column and row
sum matrix norms by ||All = sup; Z;VZI |laij|, and,||All; = sup;, Zi\; la;j|, respectively, its

Frobenius and spectral norms by ||Al|, = /Tr(A’A), and [|A] = Agn/fx(A’A), respectively.

For a N x 1 dimensional vector, o, ||af = (a’a)1/2.

2 Some preliminaries and the GRS test
Under Arbitrage Pricing Theory (APT) of Ross (1976), we have
Ry = vy + B+ BL(f; — pyg) + i, fori=1,2,... N;t=1,2,...,T, (1)

where, R;; is return on security ¢ during period ¢, fi = (fit, fot, ..., fmt)' is the m x 1 vector
of factors, B, = (8,1, Bja, -, Bim)’ 18 the associated vector of risk factors, and vy is zero-beta
expected return which under APT should be equal to the risk-free rate, A is the vector of
expected cross-sectional risk premium and p, = F (f;). Setting vy = ry + v, where 7 is the
risk-free rate, the return regressions can be written as

yit = o + Bif +ui, fori=1,2,.. N;t=1,2,...,T, (2)

where y;; = R;y — ¢, and
a; = v+ Bi(X — py). (3)

To ensure that the risk from common factors, f;, cannot be fully diversified we assume that
at least one of the factors is strong, in the sense that

N
sup Y _|Bis| = O(N), (4)
=1

and allow for the presence of common unobserved weak factors in the error term u;. Specifi-
cally we assume that

Uig = ViV + Ny, (5)



where vy is a kx 1 vector of unobserved common factors that are ITD(0,1;), v; = (Vi1s Vigs - Vi)
is the associated vector of factor loadings with bounded elements, sup; ; |7;s| < K. The factors
included in the error process are weak in the sense that their effects are not pervasive and
satisfy the condition

N
sup > 73, = O (N77) | with 0 < 6, < 1/2 (6)
5 =1

The idiosyncratic errors, n;;, are also allowed to be weakly cross correlated. Specifically, we
assume that 7, = (914, Mo -0y ng) = Quent, where €, = (eq1t,En,2t5 - En,Nt) s {Enit}

are II1D processes over ¢ and ¢, with means zero, unit variances, v, ey = E (&2 — 3, and
b

nit
sup; ¢ E(|€n,¢t|8+c) < K < oo, for some ¢ > 0. We denote the correlation matrix of n; by

R, = (pmj), and note that R, = Q,Q;. To ensure that u; = (u1t, uat, ..., uny)’ is weakly
cross-correlated we require that k, the number of weak factors, is finite, and that || Q|| < K
and ||Qy||; < K. The error specification in (5) is quite general and allows for common factors
as well as network and spatial error cross dependence, so long as the common factors are
sufficiently weak.

Different tests of LEFPM are proposed in the literature. Some researchers have focussed on
testing v = 0, which ensures that the zero-beta excess return is zero. Others have considered
testing the restrictions A = p g, which require that the risk-premia on factors coincide with
factor means.* In this paper we adopt a more direct approach and consider testing the joint
hypotheses

Hy:0;=0,i=1,2,...,N, (7)

allowing for the multiple testing nature of the null. In the context of the APT model, the test
of a; = 0 for all i can be interpreted as a test of the joint hypotheses that v = 0, and A = ;.

It proves useful to stack the panel regressions in (2) by time series as well as by cross
section observations. Stacking by time series observations we have

yvi. = ot +FB; +u;, (8)

where Y. = (%’17 Yi2y eeey yiT),’ TT = (17 1) ceey 1)/7 F,: (fl) f?, ceey fT)7 and u; = (uily Uiy ey u’iT)/'
Stacking by cross-sectional observations we have

yi = a+ Bf; +uy, (9)

where y: = (yit, Y2t, -, ynt)', o = (a1, a2, ...,an)’, B = (81,8s, ..., By) and uy = (uig, vy, ..., unt)'.
For exact sample tests of LFPM, initially we assume that uy ~ ITDN (0, V), namely errors,

i, are Gaussian, have zero means, and are serially uncorrelated such that E (uitujt/) =0, for

all 4, j,and ¢ # t', with E (u,u}) =V, where V = (0y;) is an N X N symmetric positive definite

matrix. A non-Gaussian version of this assumption will be considered below. Starting with

Jensen’s (1968) test of individual «;’s, we note that the OLS estimator of «; given by

R MFTT
/
7: pu— . —_— 3 1
@i =Y <T’TMFTT> (10)

where Mp = Iy — F (F/ F)f1 F', is an efficient estimator despite the fact that V is not a
diagonal matrix. This result follows since (8) is a seemingly unrelated regression equation
(SURE) specification with the same set of regressors across all the N securities. It is also
easily seen that for alli=1,2,..., N,

MFTT

& = (i + BF + ) ( > — i+l (11)

/
TTMFTT

1See, for example, Shanken (1992).



where
C:MFTT/T/TMFTT. (12)

Writing the above set of estimates for all ¢ in matrix notations, we have
/
ujc
/
ujc
u)y c

tth

T .
where u} ¢ = > ioq Witct, and ¢ is the element of ¢. Hence

T
& = a—i—Zutct, (13)
t=1
where as before u; = (u1s, uas, ..., u Nt)/. Therefore, under the Gaussianity,

&-~N|la—V].
< TrMpTr )
Also in the case where T' > N +m + 1, an unbiased and invertible estimator of V is given by

(T_:;_I)V, where V is the sample covariance matrix estimator

N T
V=11 ZH 1), (14)

0y = (g, Uat, ..., Unt)', G is the OLS residual from the regression of y;; on an intercept and
f;.

Under the Gaussianity, @i; has a multivariate normal distribution with zero means, & and
1, are independently distributed, and hence using standard results from multivariate analysis
it follows that (see, for example, Theorem 5.2.2 in Anderson (2003)) the GRS statistic (see
p.1124 of GRS)

GRS =Wy = &avVla, (15)

T—N-m (T7h:Mp1r
N

is distributed ezactly as a non-central F' distribution with (7" — N — m) and N degrees of

. _N— T, . MpT _ . .
freedom, and the non-centrality parameter y2 = L ]]\\7, m ( L TF T) o'V~la, which is zero

under Hy: o = 0.0

As noted in the Introduction, the single most important limiting feature of the GRS and
other related tests proposed in the literature is the requirement that 7" must be larger than
N. To circumvent this limitation, in applications of the GRS test, individual securities are
grouped into (sub) portfolios and the GRS test is then typically applied to 20-30 portfolios
over relatively long time periods. However, it is clearly desirable to develop tests of a; = 0,
that can be applied to a very large number of individual securities over relatively short time
periods (to minimize the adverse effects of structural change in 3;’s) which inevitably lead to
cases where T' < N.

Even in cases where N < T, the power of the GRS test could be compromised since it
assumes V to be unrestricted, whilst in the context of approximate factor model advanced
in Chamberlain (1983), the errors are at most weakly correlated, which places restrictions on
the off-diagonal elements of V and its inverse. As we shall see below, a test that exploits

SNoting that (1 + Q7)™ = 77! (+4Mp7r), it is easily seen that (15) can be written as the
widely used expression of GRS statistic, T=3="(1 + FQ'f) '@V~ '&, where f = 7'/ f;, and
ﬁ == 71_1 Z;T:l(ftf?)(ftf?)/




restrictions implied by the weak cross-sectional correlation of the errors is likely to have much
better power properties than the GRS test that does not make use of such restrictions. It is
also important to bear in mind that being a multivariate I’ test, the power of the GRS test is
primarily driven by the time dimension, 7', whilst for the analysis of a large number of assets
or portfolios we need tests that have the correct size and are powerful for large N.

3 Large N tests of alpha in LFMP models

To develop large N tests of Hg : o = 0, we consider the following version of the GRS statistic,
as set out in (15),
W, = (t/Mp7r) &'V 14, (16)

where we have dropped the degrees of freedom adjustment term and replaced \Y% by its true
value. W, can be regarded as a Wald test statistic, and under Gaussianity and Hp : o = 0,
Wy ~ X?V' Since the mean and the variance of a X%V random variable is N and 2N, one could
consider a standardised Wald test statistic

(TITMFTT) &V-1la—-N
V2N

Under Gaussianity and Hy : o« =0, SW,, —4 N (0,1) as N — oo. To construct tests of large
N panels, a suitable estimator of V is required. But as was noted in the Introduction this is
possible only if we are prepared to impose some restrictions on the structure of V. In the case
of LFPM regressions where the errors are at most weakly cross-sectionally correlated, this can
be achieved by adaptive thresholding which sets to zero elements of V that are sufficiently
small, or by use of shrinkage type estimators that put a substantial amount of weight on the
diagonal elements of the shrinkage estimator of V.

Fan, Liao and Mincheva (2011, 2013) consider consistent estimation of V in the context of
an approximate factor model. They assume V is sparse and propose an adaptive thresholds
estimator, Vpogr, which they show to be positive definite with satisfactory small sample
properties. We refer to the feasible standardized Wald test statistic replacing V with V poET
as SWpopr test. Another candidate is the shrinkage estimator of V proposed by Ledoit-Wolf
(2004), which we denote by Vi, and refer to the associated standardised Wald statistic
as SWrw. Such "plug-in" approaches are subject to two important short comings. First,
even if V can be estimated consistently, the test might perform poorly in the case of non-
Gaussian errors. Notice that the standardisation of the Wald statistic is carried out assuming
Gaussianity. Further, consistent estimation of V in the Frobenius norm sense still requires
T to rise faster than N, and in practice threshold estimators of V are not guaranteed to be
invertible for finite samples where N >> T'.

SW, =

(17)

3.1 A J, test for large N securities

To avoid some of the above mentioned limitations of the plug-in procedure, we avoid using an
estimator of V altogether and base our proposed test on diagonal elements of V, namely the
N x N diagonal matrix, D = diag(o11,092, ..., 0nN), With 0 = E (uft), rather than the full
covariance matrix. Specifically, we consider the statistic

N ~92
Wy = (tpMprr) &D'é = (17 Mprr) > (0‘1 ) : (18)
; Oii
=1
and its feasible counterpart given by
/ N 2
. ’ Al -1 A TTMFTT Q;
Wy = (TTMFTT) aD, a= <UlT > ZE 1 <5u‘> , (19)



where 6;; = @} @, /T, and the degrees of freedom v =T —m — 1 is introduced to correct for
small sample bias of the test.5 The infeasible statistic, Wy, can also be written as

N
Wq= 21'27 (20)
=1
where
zi = &; (T MpTr) /04 (21)
It is then easily seen that
N
Wd = Z t?? (22)
i=1

where t; denotes the standard t-ratio of «; in the OLS regression of y;; on an intercept and f;,
namely
2 &2 (T MpT7)
! v 1T6 i
As with the panel testing strategy developed in Im et al. (2003), a standardized version of
W, defined by (19), can now be considered:

i i)

(23)

, (24)
Var (Wd>
where
NTE (W) = B (), (25)
N~'Var (Wd> =N "'Var <Z£V1 Z) =N'YN Var (8) + = Zl 9 ZZ ! Cov (t7,13) .
(26)

Under Gaussianity, the individual ¢; statistics are identically distributed as Student ¢ with v
degrees of freedom, and we have (assuming v =T —m — 1 > 4)

BE(2) = —— Var(®) = ( v )2 20v=1) (27)

' v —2 ’ v—2 v—4

Using (25), (26) and (27), the standardized statistic (24) can now be written as

Jo (63) = N WamB(Wa)]  NTPEL (- %) , (28)
Var (Wd) \/(032> 2(: L) ( + 02 )
where 0% = NTL N, ST Corr (8,43) (29)
and

2 42 2 42 2 2\11/2
Corr(t2,13) = Cov(t2,£2)/[Var(t})Var(t3)] /2.

To make the J, test operational, we need to provide a large N consistent estimator of 0%\,.
Second, we need to show that, despite the fact that J, test is standardised assuming ¢; has a
standard ¢ distribution, the test will continue to have satisfactory small sample performance
even if such an assumption does not hold due to the non-Gaussianity of the underlying errors.

®Only securities with &i; > 0 are included in W,.



More formally, in what follows we relax the Gaussianity assumption and assume that u; = Qey,
where Q is an N x N invertible matrix, e; = (14, €2¢, ..., nt), and {g;¢} is an I1D process over
¢ and ¢, with means zero and unit variances, and for some ¢ > 0, E (lsit\SJrC) exists, for all 7 and
t. Then E (wu}) =V = (0;;) = QQ’, and V is an N x N symmetric positive definite matrix,
with Apin (V) > ¢ > 0. We allow for cross-sectional error heteroskedasticity, but assume
that the errors are homoskedastic over time. This assumption can be relaxed by replacing
the assumption of error independence by a suitable martingale difference assumption. This
extension will not be attempted in this paper.

3.2 Sparsity conditions on error correlation matrix

As noted already, we advance on the literature by allowing V = (0;;) to be approzimately
sparse. Equivalently, we define sparsity in terms of the elements of the correlation matrix

1/2 1/2

R = (pij), where p;; = 0ij/0,] 0;; - We consider the following two conditions

o N _ ) .
mN—lrgniégjinj:l‘pij‘ = O(N°), with 0 < d, < 1/2, (30)

and

N N
Tr (R?) =) ) p};=O0(N). (31)

i=1 j=1

Under (30), my is allowed to rise with N, but at a slower rate than N /2 Strict sparsity
requires my to be bounded in N, which is often assumed in the literature on consistent
estimation of large covariance matrices. Conditions (30) and (31) allow for a general form of
weak correlations across the errors, including the familiar spatial or local dependence, and is
compatible with (30). For example, consider the case where condition (30) applies to the first
p rows of R (with p fixed), and the rest of the N —p rows of R are absolute summable, namely

N

> eyl = O(N5”>7fori:1,2,...,p,
7j=1

N

> oyl = O@),fori=p+1,p+2,..,N.
7j=1

Then, since ‘ pij‘Q < | ,oij|, it readily follows that

p N N N
Tr(R?) = > (Do ]+ DD s
i=1 \ j=1 i=p+1 j=1
p N N N
< DA el |+ D0 D eyl
i=1 \j=1 i=p+1j=1

< O(pN%) + (N —p)O(1) = O(N), for 0 < §, < 1/2.

Another important case covered by our sparsity assumption is when wu;; has the weak factor
structure given by (5), with the factor loadings, ;, satisfying (6). Denoting the correlation
matrix of the idiosyncratic errors, 1, = (114, Mgy, s ne) by Ry = (pw'j)’ and assuming that

IRyl < K, (32)



we have T'r (N _1R727) = O(1). It is now easily seen that conditions (30) and (31) are also
satisfied under this set up. Denoting the correlation matrix of uy = (uy, ugt, -..., unt)’ by
R = (pij) we have
/ On,ii9n,44 Y2
S5 Znutn.gg . 33
pij =¥iV; + ( p—— ) Pr.ij (33)

)1/2

- 1/2 . ki~ 11~
where 5; = ’)’z‘/(fn'/ =/ (Yivi + o)’ 7. Since |Pz’j| <> a1 sl h’js} + ‘pn,ij‘7 then

my = ”RH _maXZZ|’723| ”733|+maXZ|pTiU}

7j=1s=1
S k (Sup H/zs|> mzaxz H/js‘ + ||R7]||oo
1,5 j=1
N N
Since Supi,s ’:st| < Sup; s |’7is|7 and Supg Z |:Yjs‘ < Supg Z "Yjs‘ = O(N&Y)? and by assump-
i=1 i=1

tion [|Ryl|,, < K, the condition (30) is met if §, < d,. Also, (noting that sup; ; [7;s| < 1)

2
Vs h’js| + ‘pn,ij‘)

M=

N
N7'Tr (R*) < N- 122(
2 N N k
a m) NS S S iy VT (R2)

i=1 j=1 s=1

k N 2 k N 9
= N Z <Z |:st‘ H@s”) + oN—! Z (Z ’:st|> 4 N-1Tp (R727)
1 s=1

i=1 i=1

=

M= I
M= T
M-

IN

N 2
(k* +2k) N ! (supz |%‘s|> + N7 (R%) )
5 =1

Therefore, under conditions (6) and (32), N~'Tr (R?) is bounded in N if 0 < §, < 1/2.

Remark 1 Our assumption of approximate sparsity allows for a sufficiently high degree of
cross error correlations, which is important for the analysis of financial data, where it is not
guaranteed that inclusion of common factors in the return regressions will totally eliminate
weak error correlations due to spatial and/or within sector error correlations. It is important
that both factor and spatial type error correlations, representing strong and weak forms of
interdependencies, are taken into account when testing for alpha. By allowing the error term
to include weak factors, one only need to focus on identification of strong factors to be included
in fr, which can be achieved by using market factors or principal components of individual
returns.” The error associated with the estimation of strong factors is likely to be negligible
for N and T sufficiently large. In the present paper we abstract from such estimation errors
and condition our analysis on given values of f;.

"Note also that the consistency of the plug-in procedure proposed by Fan, Liao and Mincheva (2011, 2013)
also requires that strong common factors are removed before estimation of the error covariance matrix, V.
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3.3 Non-Gaussianity

For the discussion of the effects of Non-Gaussianity on J, test below, it is convenient to
introduce the following scaled error

€ = wir)a)]”, (34)

so that for each i, &;, has mean zero a unit variance. In the case where the errors are non-
Gaussian the skewness and excess kurtosis of u;, are given by v, = E(&) and Yo =
E (g;‘t) — 3, respectively, that could differ across i. Note that under non-Gaussian errors, t;
is no longer Student t distributed and E(t?) and V(t?) need not be the same across i, due
to the heterogeneity of v;; and 7,; over i. Using a slightly extended version of Laplace
approximation of moments of ratio of quadratic forms by Lieberman (1994), we are able to
derive the following approximations of E(t?) and Var(t?):®

E(#) = —=+0 (v?), (35)

v —

and

2 —
Var (1) = <U — 2> 2(51 — 41)) +0(v). (36)

Substituting (35) and (36) into (24) we have the following non-Gaussian version of J, (%),
defined by (28):
N2 <tz2 - 1;32) +0 (\/ N/U?’)
( v )2 2(v—1) +0 (v ) (1+92)
v—2 (v—14) N

where 0% is defined by (29). When the numerator of the .J, statistic is replaced by N~1/2 Zfil (2 -1),
which is the typical mean adjustment employed by Fan et al (2015) and Gagliardini et al.
(2016), for example, then the order of the asymptotic error of the numerator such test sta-
tistics becomes /N /v? as compared to \/N/v3 obtained for the J, test. This is one reason
why our proposed test performs better than the ones proposed in the literature, especially

Jo (0%) =

2
in cases where N >> T. The asymptotic error of using (1)32) 2((1}1}:41)) for Var(t?) under
9

non-Gaussianity in the J, test is O(v~!), which is small for sufficiently large v.
3.4 Allowing for error cross-sectional dependence

A second important difference between the J, test and the other tests proposed in the liter-
ature is the inclusion of §3 in the denominator of the test statistic to take account of error
correlations. As it will be shown more formally below, the limiting property of 9?\7 is governed
by the sparsity of V, and is given by!’

6% — (N = 1)p% — 0, (37)
as N and T — oo, so long as N/T? — 0, and 0 < §, < 1/2, where

2 B
2 N i—1 2
PN = m D im2 Zj:l Pij- (38)

8See Lemma 21 in the Online Supplement to the paper, which is available upon request.

% Small sample evidence on the efficacy of using N—Y/2 vazl (t? — ,Uf2) over N71/2 25\7:1 (tf — 1) is re-

ported in Table M3 of the Online Supplement, which is available upon request.
19(37) follows from Lemma 18 in the Online Supplement which is available on request.
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P%\/ is known as the average pair-wise squared correlation coefficient and plays a key role in
tests of error cross-sectional correlations in panel regressions. See, for example, Breusch and
Pagan (1980) and Pesaran, Ullah and Yamagata (2008). To see the relationship between 63
and the sparsity of V, we note that

2 i
NI (R?) = 14 =500, S0 = 1+ (N = 1) piy,

which in view of (37) justifies replacing 1+ 63, by N~'Tr (R2) for N and T sufficiently large
so long as N/T? — 0, and 0 < &, < 1/2. Therefore, ignoring 6% can lead to serious size-
distortions even for large N and T panels when the errors are cross-correlated and N~ 1T'r (RQ)
does not tend to zero, since the denominator of J, will be under-estimated. The size distortion
will be present even if we impose stronger sparsity conditions on V, for example, by requiring
my to be bounded in N. It is, therefore, important that 9?\, (or p%\,) is replaced by a suitable
estimator.
One possible way of estimating p?\, would be to use sample correlation coefficients, p;;,
defined as
ﬁij = &ij/a—z'li/Qa—jl'j/?? (39)
where 6;; = 71 Z?zl U;ttij¢, and 1y is the residuals from the OLS regression of y; on
G = (74, F). However, such an estimator is likely to perform poorly in cases where N is
large relative to T', and some form of thresholding is required, as discussed in the literature
on estimation of large covariance matrices.!’ Here we consider the application of the mul-
tiple testing (MT) approach to regularisation of large covariance matrices recently proposed
by Bailey Pesaran and Smith (2016, BPS). However, BPS establish their results for y;; — ¥;,
whilst we need to apply the thresholding approach to 4;:. Second BPS consider exact sparsity
conditions on the error covariance matrix, whilst we allow for a much more general sparsity
conditions. We extend BPS’s analysis to address both of these issues.'? The multiple testing
(MT) estimator of p;;, denoted by p;;, is given by

pij = iyl [[Vvbig| > ep(N)] (40)
where v =T —m — 1,
cp(N) = &1 <1 - fo(’N)> : (41)

p is the nominal p-value (0 < p < 1), and f(N) = N°, v = ¢4N¢, where ¢4 and § are finite
positive constants. Using (57), the multiple testing estimator of p?\, is given by
2 .
~2 _ N t—1 ~2
PNTE NN Dic2 21 Pij- (42)

Under the sparsity conditions (30) and (31), it can be shown that (N — 1) (Z)%\CT — p%) —p 0,
so long as N/T? — 0, as N and T — oo, jointly, and

0 > (1 —-0.5d) ¢, (43)
where o < 1 + ’72,57, , where V2,6, = E <E%,it) — 3, €yt 1s the ith element of the N x 1
error vector €, ; = Q;lnt, with 1, = (914, Mags s M) - The critical value function, ¢, (N),

"See, for example, Cai and Liu (2011), Fan et al. (2013), Bailey Pesaran and Smith (2016), among others.

20ther thresholding estimators of V proposed in the literature can also be used. The efficacy of using the
estimator Z)?\,’T over other estimators in small samples is investigated and the results are summarised in Table
M2 in the Online Supplement (available on request).

13See Theorem 4 in Section 4 and its proof in Appendix A.
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depends on the nominal level of significance, p, and the choice of §, subject to condition (43).
The test results are unlikely to be sensitive to the choice of p, over the conventional values in
the range of 1 to 10 per cent.!* d determines the relative expansion rate of N and T. The
value of ¢ depends on the degree of dependence of the errors even if they are uncorrelated.
In the case where the errors, €, ¢, are Gaussian V2,6, =0 and ¢ < 1, and it is sufficient to set
d > d/2. However, in the non-Gaussian case, and given the evidence provided by Longin and
Solnik (2001) and Ang, Chen and Xing (2006) on the degree of nonlinear dependence of asset
returns, it is more prudent to set ¢ close to unity or even higher. In simulations and empirical
exercises to be reported below we set f (IN) = N — 1, which is equivalent to setting § = 1.19
Accordingly, we propose the following feasible version of the J, statistic

j NV (t? - 1132) | (44)

(v22) 2o [+ - )R]

where t; is the t-ratio for testing a; = 0, defined by (23), v =T — m — 1, and Z)?\/,T is given

by (42). The J,, test is robust to non-Gaussian errors and allows for a relatively high degree
of error cross-sectional dependence. In what follows we provide a formal statement of the
conditions under which J, tends to a normal distribution.

3.5 Swurviorship bias

Finally, it is important that the application of the J,, test is not subject to the survivorship
bias. The GRS type tests of alpha considers a relatively small number of portfolios over a
relatively large time periods to achieve sufficient power. By making use of portfolios rather
than individual securities the GRS test is less likely to suffer from survivorship bias. By
comparison tests such as the J,, test can suffer from the surviorship bias due to the fact that
they are applied to individual securities directly and obtain power from increases in N as well
as from T'. To deal with the survivorship bias we propose that the J,, test is applied recursively
to securities that have been trading for at least T' time periods (days or months) at any given
time ¢. The set of securities included in the J, test vary over time and dynamically takes
account of exit and entry of securities in the market. The number of securities, N, used in
the test at any point of time, 7, depends on the choice of T', and declines as T is increased. It
is clearly important that a balance is struck between T" and N.. Since the J,, test is applicable
even if NV is much larger than T, and given that the power of the J,, test rises both in N and
T, then it is advisable to set T such that min,(N;)/T? is sufficiently small, say around 0.1.
This procedure is followed in the empirical application discussed in Section 6 below, where we
set T'= 60 and end up with N, in the range [464,487], given min, (N, )/T? = 0.12.

4 Summary of the main theoretical results

In this section we provide the list of assumptions and a formal statement of the theorems for
the size and power of the proposed J,. First, we state the assumptions for establishing the
results.

Assumption 1: The m x 1 vector of common observed factors, f;, in the return regressions,
(2), are distributed independently of the errors, u;y for all 4, ¢ and ¢’. The number of

4Tn the Monte Carlo experiments reported below, we set p = 10%.
""The robustness of the J, test against non-Gaussian and nonlinear error dependence is investigated and
reported in Table 4 below. These results are generally supportive of setting § = 1.

13



factors, m, is fixed, and the factors can be strong in the sense that
N
Supz |B7,S’ = O(N(SB)’ 0< 55 <L (45)
¥ =1

and satisfy f/fi < K < oo, for all . The (m + 1) x (m + 1) matrix T-'G'G, with
G = (F, 1), is a positive definite matrix for all T', and as T' — oo, and 7/ Mp17 > 0,
where My = Iy — F (F'F) ' F.

Assumption 2: The errors, u;, in (2), have the following mixed weak-factor spatial repre-
sentation
Wip = Yive + 1y, fori =12, N;t=1,2,...,T, (46)

where v; = (V;1,Vi2s --» Vi) 18 @ k x 1 vector of factor loadings, v; = (vi¢, vay, ..., Uge) is
a k x 1 vector of unobserved common factors and 7,; are the idiosyncratic components.

(i) The unobserved factors vy, are serially independent and the k elements are independent
of each other, such that v; ~ I1D(0,1;), 7o, = E (v;lt) — 3, and sups+E (v?jc) < K,
for some ¢ > 0. The factor loadings, v, for s = 1,2,..., k, are bounded, sup; , [;s| < K,
and the factors, vy, are weak in the sense that

N
SHPZ 7isl = O (N‘”) , with 0 < 4., < 1/2. (47)
5 =1

(ii) For any i and j, the T pairs of realizations, {(1;1,7;1) » (M2, 752) > > (mi7sm;7) } » are in-
dependent draws from a common bivariate distribution with mean F (n,,) = 0, Var (n;,) =
on,iiy 0 < c <oy < K, and the covariance E (mtnﬁ) = 0ypij-

Assumption 3: Denoting the standardized errors by &;; = u;/ a;i/ 2, with o = 'y;’yi + oniis
then for any 7 and j, §;4, &4, f?t, szt, and §;,€ 4, for t = 1,2,..., T, are random draws from
a common distribution which is absolutely continuous with non-zero density on subsets
of R®.

Writing the error factor specification, (46), in matrix notation we have
u = FVt + U (48)

where w; = (u1g, Ua, -, une), T = (Y1,Y95 s YN) > and 7, = (014, Moz, -, M) - Under As-
sumption 2, and denoting E (n,n;) = V, = (04,i;), we have

E (up) =TT +V, =V = (0y5), with oy = ¥jv; + oy5- (49)
We now make the following further assumption.

Assumption 4: The covariance matrices V and V,, defined by (49) are N x N symmetric,
positive definite matrices with Amin (V) > Amin (V) > ¢,
et = (€1, €2, -y ENE) = Q 'u, and ent = (En,1t,En2t, ----,En,Nt)’ = Q;lnt, (50)

where Q and Q,, are the Cholesky factors of V and V,, respectively. Matrix Q, is row
and column bounded in the sense that

1Qyll < K, and [[Qqll; < K. (51)

{eit} and {ey,;t} are 11D processes over i and ¢, with means zero, unit variances, v, ., =
E (6%7“) — 3, and supi7tE(|8it|8+c) < K < o0, and supZ-7tE(|5n7it|8+c) < K < oo, for
some ¢ > 0.
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Remark 2 The above assumptions allow the returns on individual securities to be strongly
cross-sectionally correlated through the observed factors, fy, and allow for weak error cross-
correlations once the effects of strong factors are removed. Such residual interdependencies
could arise due to spatial or other network type spill-over effects not captured by the observed
common factors.

Remark 3 Under condition (51)
Vil < 1QnQy [l < 1Qull 1Qull, < K =0(1), (52)

nevertheless due to the weak factors we have

N
Vil = sup > lorigl = 0 (V%)
Joi=1

and allows the overall error variance matriz, V, to be approximately sparse, in contrast to
the literature that requires ||V, < K. The relazation of the sparsity condition on V is
particularly important in finance where security returns could be affected by weak unobserved
factors. Using principal components does not resolve the problem since, principal components
provide consistent estimates of the factors (up to a rotation matriz) only if the factors are
strong.

Remark 4 The high-order moment conditions in Assumption 4 allow us to relax the Gaus-
sianity assumption whilst at the same time ensuring that our test is applicable even if N is
much larger than T .

Remark 5 Assumptions 2(ii) and 3 ensure that the sample cross correlation coefficients of
the residuals, p;;, have an Edgeworth expansion which is needed for consistent estimation of
p%, defined by (38). For further details see Bailey et al (2016).

Our main theoretical results are set out in the following theorems. The proofs of these
theorems are provided in Appendix A, and necessary lemmas for the proofs are given in the
Online Supplement available upon request.

Theorem 1 Consider the return regressions, (2), and the statistic Zfil 22 defined by (20).
Suppose that Assumptions 1-4 hold, and N 'Tr (Rz) 18 bounded in N, where R = (pij),

pi; = E(§y€1), and &y = uit/a}ip 1s the standardized error of the return regression equation

(2). Then, under Hy : o; = 0, in (2) for all i,

N
gy = N~V/2 Z (zl2 - 1) —4 N(0,2w?), as N — oo and T — oo, jointly, (53)
i=1
where
2 . ~1 2 . 2
=1 N Tr(R%) =1 1 N -1
W= N (R = 1 i (V= L
with 5
2 N i—1 2
PNENNZD Dico 21 Pij- (54)

Theorem 2 Consider the regression model (2), and the statistics S°N 1 22 and SN, £2, which

=11 i=1"i’
are defined by (20) and (22), respectively. Suppose that Assumptions 1-4 hold. Then, under
the null hypothesis, Hy : a; = 0 for all 1,

N
SNt = N71/2Z (27 —t3) —=p 0,
=1
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as N — oo and T — oo jointly, so long as N/T? — 0, 0 < &, < 1/2, where 6, is defined by
(47).

Theorem 3 Consider the regression model (2), and suppose that Assumptions 1-4 hold. Then,
under Hy : a; = 0, for all 1,

N2 Zi\il (t? - 032>
J(22) 2 1 (v - 18]

s0 long as N/T? — 0, and 0 < 0y < 1/2, a8 N — oo and T — oo, jointly, where t;, p?\, and
0 are defined by (23), (54) and (47), respectively, with v =T —m — 1.

—q N (0,1), (55)

Ja (PN) =

Theorem 4 Let

ﬁ?V,T = N(NQ_) Zz 2 Z; 11 ~m’ (56)
where
I[[vopis| > ep(N)] (57)

E(&iéjt), & = uit/agi/Q is the standardized error of the return regression equation (2),
v=T—m—1, p;; is defined by (39)

cp(N) = &1 <1 - 2f](9N)> : (58)

p is the nominal p-value (0 <p < 1), and f(N) = NO and v = cgN, where cq and § are finite
positive constants. Suppose that Assumptions 1-4 hold and

E%‘:l ‘pij‘ = O(N).

Then

(N =1) (PR = PN) = 0,
if NJv?2 = O (N'*™2%) — 0, (or ifd > 1/2) as N and v — oo, and § > (1 — d/2)p, where
<1+ ‘72757] cand vy, =E (6 ) — 3 (Assumption 4).

n,it

Theorem 5 Consider the panel regression model (2) in asset returns, and suppose that As-
sumptions 1-4 hold. Consider the statistic

) N-1/2 Z (t2 1:2)
Jo = , (59)
v 2(v—1 ~
(v—2> \/((1;_4)) [1 +(N - 1)/7?\7,T]
where t; is given by (23), v =T —m — 1, [)?V?T is defined by (56), using the threshold c,(N)
given by (58), with p (0 <p < 1), f(N) = N, T = c4N?, where cq and § are finite positive

constants, 6 > (1 —0.5d) ¢, where ¢ < 1+ ‘72’67]’, and vy, = E (577 Zt) 3. Then, under
Hy : a; =0 for all 1,

Jo —a N (0,1), (60)
if N/T?> — 0, as N and T — oo, jointly.

For the power of the Ja test, we consider the local alternatives

Si

HOaiOéiZW,

with 0 <|g;| < oo, for all 4. (61)
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Theorem 6 Consider the panel regression model (2) in asset returns, and suppose that con-
ditions of Theorem 5 apply. Then, under the local alternatives, Hoo, defined by (61),

Jo—a N (62/v2,1), (62)

where ¢* = limy_,o0 % Zf\il §2/0ii.

Remark 7 This theorem establishes that the J, test is consistent (in the sense that its power
tends to unity), if #? > 0, which is satisfied if imy_,o0 (N_l Zfil gf) > 0. It is also interest-

ing to note that the power of the J, test increases uniformly with N and T, in contrast to the
power of the GRS test that rises with T', only. The J,, test has power even if le\il a? does not
increase with N, so long as N increases sufficiently slowly as compared to T. To see this, let
Zfil a?=0 (N5a), and note that under the local alternatives, (61), and setting T = O (Nd),

we have SN | a? = (N_1 SN c%) NY/2=d = O (N°%*), or <N_1 SN C?) = O (N%+d=1/2)
Hence, the proposed test will be consistent so long as 6o +d > 1/2. The case of 6o = 0 is of

particular interest since it does not require all securities under consideration to have non-zero
alphas for the test to have power.

5 Small sample evidence based on Monte Carlo experiments

We examine the finite sample property of the J,, test by Monte Carlo experiments, and compare
its performance to a number of existing tests. For comparison, we consider the GRS test
and the feasible versions of the standardised Wald tests, SWporpr and SWrw, which are
discussed in Section 3. We also consider the Fihax test recently proposed by Gungor and Luger
(2016, GL). They propose basing a test of Hy : @ = 0 on simulated distribution of Fipax =
maxi<i<nN Fj, where Fj is a standard F-statistic for testing o; = 0 in the OLS regression of
y;¢ on an intercept and f;. The simulations are carried out by residual resampling allowing
for cross-sectional correlations and cross-sectional heteroskedasticity using Wild bootstraps.
GL employ a bounds testing approach to allow for unconsidered nuisance parameters, which
could result in having inconclusive test outcomes.'6

Computational details of the above tests are given in Section M1.2 of the Online Supple-

ment available on request.

5.1 Monte Carlo designs and experiments

We consider the following data generating process (DGP)

m
Tit = 0y + Zﬁ&fft + Uit,i = 172> 7N7t = 172> "'7T7 (63)
/=1

and calibrate its parameters to closely match the main features of the time series observations
on individual returns and the three Fama-French factors (market factor, HML and SMB) used
in the literature on tests of market efficiency.!” The Monte Carlo (MC) design is also intended

16We also considered two distribution-free sign tests of a; = 0, proposed by Gungor and Luger (2009). These
tests, referred to as SS and WS tests, are valid for single factor models with errors that are conditionally sym-
metric around zero, but they do allow for non-normal errors, are relatively easy to compute, and are applicable
even when N > T'. The results of these simulations are reported in Table M4 of the Online Supplement. These
tests are also outperformed by the Jao test.

'"SMB stands for "small market capitalization minus big" and HML for "high book-to-market ratio minus
low". See Fama and French (1993), and Appendix C for further details and data sources.

17



to match the models used for the empirical applications that follow. Accordingly, we set m = 3
and generate the factors as

foo = 0.534+0.06f71—1+ v/ het (g, for £ =1, (Market factor),
foo = 0.19+40.19f0; 1+ /hy Cy, for £ =2, (HML),
foo = 0.1940.05fr1—1+ v/ het (yy, for £ =3, (SMB),

where ¢, ~ IIDN(0,1) and!®

hee = 0.89+40.85hgs—1 + 0.11¢7, ,, for £ =1, Market,
hee = 0.62+40.74hgy_1 +0.19¢7, ,, for £ =2, HML,
heg = 0.80+0.76hg;—1 +0.15(7, ,, for £ = 3,SMB.

The above processes are generated over the period t = —49, —48,....0, 1,2, ...., T with fy 50 =0
and hy 50 = 1 for £ =1,2,3. Observations ¢t = 1,2,...,T are used in the MC experiments.

To capture the main features of the individual asset returns and their cross correlations,
we generate the idiosyncratic errors, u; = (uy, ugt, ..., unt)’, according to u; = Qe,, where
e = (e1t,€9¢,..,ent), and Q = DY/2P with D = diag(c11,022, .y oNN), 04 = Var(ug),
and P being a Cholesky factor of correlation matrix of us, R, which is an N x N matrix
used to calibrate the cross correlation of returns. For each ¢, €;; is generated such that u;
exhibits skewness and kurtosis which is typical of individual security returns. To this end, R
is generated as

R =1y +bb - B? (64)

where b = (b, by, ....,by)’, and B = diag(b). The correlation matrix R also arises from the
single factor model, wi = v;v: + a}/ﬁmt, with v¢ ~ II1D(0,1), and n;, ~ IID(0,1), and

bi = v,/ aili/ 2, where o;; = ’y? + 0y4i- To generate different degrees of error cross-sectional
dependence, we draw the first and the last N, (< N) elements of b as Uniform(0.7,0.9),
and set the remaining middle elements to 0. We set N, = | N%|, where |A] is the largest
integer part of A. Using 4, our assumption my = o(N1/2) can be expressed by my = N%
with §, < 1/2. In our experiments, we consider the values of exponents ¢, = 1/4,1/2, and
3/5. The case of no error cross-sectional dependence is obtained when N, = 0, and the error
cross-sectional dependence is weak when ¢, < 1/2. The case of 6, = 3/5 is included to see
how the J, test performs when cross-sectional error correlations are higher than the threshold
value of 1/2 allowed by the theory. To save space, we omit reporting the results for the
case where §, = 0 as they are qualitatively similar to the case with §, = 1/4. The present
design focusses on the weak factor error correlations and assumes the idiosyncratic errors, n;,,
are cross-sectionally uncorrelated. A more general design that allows for both forms of error
correlations will be considered below.

Recently, Fan, Liao and Yao (2015; FLY) have derived the conditions under which the lim-
iting normal distribution of SWpogr will be asymptotically justified. Under their assumptions
the SWpogr test allows for N > T'. However, FLY’s assumptions are much more restrictive
than ours.!® For example, FLY do not cover cases where 1/4 < &, < 1/2. When 6, = 1/4,
FLY require that 7' = O (N In(N)"*), for some x > 2. Thus, when §, = 1/4, so long as T

8The estimates used in the generation of the factors and their volatilities are computed using monthly
observations over the period April 1973 - September 2011.

9Tn addition to some regularity conditions, FLY require Assumption A.2. which defines their version of
"sparseness": Suppose N'/2 (log N)* = o(T) for some v > 2, and (i) min,, 20 |oi5| >> /(log N) /T; (ii) at
least one of the following cases holds: (a) Dy = 22?;2 Z;;i I(0ij #0) = O(N'?) and = O (m)
or; (b) Dy = O (N) and m% = O(1). Then they show that SWeorr —a4 N (0,1),as N,T — oo jointly (see
Proposition 4.2 of FLY).
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rises slightly faster than N, the SWpopr test is asymptotically justified. On the other hand,
Jy —q N(0,1) so long as v = O (N9) with d > 2/3 when &, = 1/4. Therefore, the J, test
is expected to provide better finite sample approximation than the SWpopr test, especially
when N is larger than 7" and /or when error cross-correlation is not very weak. The simulation
results that follow seem to support these theoretical insights.?’

To calibrate the variance, skewness and kurtosis of the simulated returns, we used estimated
values of these measures based on residuals of Fama-French regressions for each security over
the estimation windows 7 =September 1989,..., September 2011, using sample of sizes of
T = 60 months. Specifically, for each ¢ = 1,2,..., N; we run the Fama-French regressions
Tigrt — Tfrt = Qir + ﬁl,ir (Tm,‘rt - Tf,Tt) + BQ;ﬁ-SMBtT + 53iHMLtT + ﬂ’i,Tfa t=1, 27 ) 607 at
the end of each month 7 =September 1989,..., September 2011, and computed 6;; » = M2 r,

N A ~3/2 A A ~ 9 . A —1 60 /[~ = \S
Yiir = m3,i7’/m2,i7 and Jq;; = m4,iT/m2,z‘T — 3 with 7, = (60) t=1 (ui,ft _“if) )

and 4;, = (60)~! ?21 i 7t~ We ended up with 126,181 different values of -, Y1, , and
Y2,i,r estimated for around 476 securities over 265 different estimation windows. We discarded
estimates that lied below the 2.5% and above the 97.5% quantiles to avoid the calibrated values
being dominated by extreme outliers. The same procedure was applied to the estimated factor
loadings, Bgm. The means and medians of 6 7, Y1 ;5 Y2, and B&-J for ¢ =1,2,3, and their
2.5% and 97.5% quantiles are summarized in Table 1. As can be seen from these results there
is a considerable degree of heterogeneity in estimates of the factor loadings and in the measures
of deviations, skewness and kurtosis, across securities and sample periods. The details of the
procedure to generate the non-normal and cross-correlated errors are described in Appendix
B.

To estimate size of the tests, we set «; = 0 for all i. To investigate power, we generated c;
as a; ~ IIDN(0,1) for i = 1,2, ..., N, with N, = [N*|; a; =0 fori = Ny +1,Ny+2,..., N.
We considered the values A, = 0.8,0.9, 1.0, but the power ended up to be very high even for
Aq = 0.8. Therefore, we only report power estimates for A, = 0.80.

All combinations of 7" = 60,100 and N = 50,100,200, 500 (and 1,000, 2,000, 5,000 for
the J, test) are considered. All tests are conducted at a 5% significance level. Experiments
are based on R = 2,000 replications.

5.2 Size and power

Table 2 reports the size and power of the GRS, ja, SWporpr, SWrw and Fpax tests of
Gungor and Luger (2016), in the case of models with three factors, under various degrees of
cross-sectional error correlations, as measured by the exponent, 9.

First, consider Panel A of Table 2 which deals with the case where the errors are normally
distributed but cross-sectionally weakly dependent with 6, = 1/421 The GRS test when
applicable (namely when 7' > N) being an exact test, has the correct size. The empirical
size of the J, test is also very close to the 5% nominal level for all combinations of N and
T. Even when N = 500, the size of the J, test lies in the range 5.0% to 5.3% for different
values of T. In contrast the SWpopr test grossly over-rejects the null hypothesis, and the
degree of the over-rejection becomes more serious N increases for a given 1. For example,
when T = 60, increasing N from 50 to 500, the size of the SWpopr test rises from 18.3%
to 53.1%. In line with the discussion in Section 3.4, the size distortion is mitigated when T
increases. For T' = 60 and N = 50 the size is 18.3% but it falls to 12.1% when T" = 100
and N = 50. The size properties of the SWiyy test is very similar to those of the SWpopr
test. The size of the Fyax test tend to be substantially smaller than the nominal level for

20This may also explain why FLY test suffers from size-distortion as discussed by Bailey, Pesaran and Yam-
agata in Fan, Liao and Mincheva (2013), where N is allowed to increase with T fixed.

*n line with our theoretical findings (see Section 2), the results of cross-sectionally independent case (with
d, = 0) is qualitatively similar to the case where 6, = 1/4.
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all combinations of N and T (this is in line with the reported results in Gungor and Luger,
2016). The rejection frequencies range between 0.1% to 0.2%. Furthermore, inconclusive test
outcomes are observed more often, ranging between 2.7% and 4.6% of the outcomes.?> The
power of the .J, tests is substantially higher than that of the GRS test. For example, for
T = 60 and N = 50 the power of the GRS test is 15.0% as compared to 65.9% for the J,
test, although both tests have similar sizes (4.6% for the GRS test and 7.4% for the .J, test).
This is in line with our discussion at the end of Section 2, and reflects the fact that GRS
assumes an arbitrary degree of cross-sectional error correlations and thus relies on a large
time dimension to achieve a reasonably high power. In contrast, the power of the J,, test is
driven largely by the cross-sectional dimension. This can be seen clearly from the tabulated
results. Keeping N fixed at 50, and increasing 1" from 60 to 100 increases the power of the
GRS test from 15.0% to 69.2%, whilst the power of the J, test (for example) rises from 65.9%
to 87.4%. It is interesting that even in this case (with T’ much larger than N) the J, test still
has substantially higher power than the GRS test, with comparable type I errors. The power
comparison of the SWpopr and SWiy with other tests seem inappropriate, given their large
size-distortions. Having said this, it is perhaps remarkable that the power of the Jy test is
comparable to the unadjusted power of the SWporpr and SWry tests. The power of the
J,, test uniformly dominates that of the Finay test for all experiments. The low power of the
Finax test is partially explained by the large proportions of inconclusive results. For T' = 60,
between 29.3% and 45.5% of inconclusive results are observed for different N. For T = 100,
the proportion of inconclusive results tends to decline as N increases. For example, increasing
N from 50 to 500 lowers the frequencies of inconclusive results of the Fy,ax test from 39.0% to
29.1%.

Consider now the case where the errors are normally distributed and cross-sectionally
relatively strongly dependent. First let us discuss the results when ¢, = 1/2. The J test
seems quite robust to cross-sectional error correlations, with its size falling in the range 5.1%
t0 6.6%. The size of the J, test for N = 50 and T = 60 is 6.4%, and its power is 53.6%, which
still exceed the power of the GRS test, which is 20.7%. But, as expected, increasing T from 60
to 100 results in the power of the GRS test to rise to 84.9%, which marginally beat the power
of the J, test at 82.3%. As discussed earlier, the SWpogr test is not justified asymptotically
when 0, = 1/2. For N = 50, increasing T" from 60 to 100 does not improve the size distortion
of these tests, with sizes of 21.5% and 23.3%, respectively.

When 6, = 3/5 > 1/2, out of all the tests considered, only the GRS test is valid so long as
N < T, and indeed has the correct size in such cases. However, interestingly, the size of the
J,, test is also close to its nominal level (at 5.5%-7.2%) even for such a high value of d~. This
seems to be due to the inclusion of (N — 1) i)?V,T in the denominator of the .J, statistic.

We now consider the empirically most relevant case where the errors are non-normal as
well as being cross-sectionally correlated. The effects of non-normal errors on the tests are
documented in Panel B of Table 2. Consider first the case where the errors are non-normal and
cross-sectionally weakly correlated (0, = 1/4). We see that the size of the GRS test is hardly
affected by the types of departures from Gaussianity observed in the regression residuals.
The robustness of the GRS test to non-normal errors of the type encountered in practice has
also been documented by Affleck-Graves and McDonald (1989). As to be expected from the
theoretical discussions, the J, test is reasonably robust to non-Gaussian errors, and exhibit
only a very mild tendency of over-rejecting the null hypothesis, even for relatively large N. For
example, whenT' = 60, for N = 50, 100, 200, and 500, the sizes of the J,, test are 6.5%, 6.9%,
5.9%, and 6.6%, respectively. The over-rejection of the SWpopr test tends to be somewhat
magnified by non-normality. The effects of non-normality upon the size of the SWry is less

22The frequencies of inconclusive outcomes for the Fiax test for different combinations of N and T are
reported in Table M1 of the Online Supplement.
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obvious. The size of the Fy.x test is again much smaller than the nominal level, but on average
slightly higher than that under normal errors. For example, the average of the size of the Fl,ax
test for all the combinations of (N, T') is 0.14% under normal errors, but that under non-normal
errors it is 0.25%. Also, on average the incidence of inconclusive outcomes for the Fi.x test
is slightly higher under non-normal errors. For example, the average of the frequencies of
the inconclusive outcomes for all the combinations of (N,T) is 3.7% under normal errors,
but increases to 4.3% under non-normal. Under non-normal errors, the J, test continues to
maintain its power superiority over the GRS and the Fiax tests. When 6, = 1/2 and 3/5
the size of the J, test is reasonably controlled and lies in the range 6.0%-7.9%. The power
comparisons discussed for the weakly cross-sectionally uncorrelated case (6, = 1/4) also carry
over to the present set of experiments with the much higher degrees of error cross-sectional
correlations (6 = 1/2 and 3/5).

We also carried out additional experiments with much larger values of N, namely N =
1,000, 2,000 and 5,000, whilst keeping T' at 60 and 100. We only considered the ja test for
these experiments, as it is unlikely that other tests considered, given their relatively poor
performance for values of N < 500, would perform better than the J, test. The results are
summarised in Table 3. As can be seen, the size is satisfactorily controlled with good power
properties, only showing moderate over-rejection under non-Gaussianity for 7' = 60, and for
relatively strong error cross correlations. For example, for N = 5,000, when T" = 60 with
non-normal errors, the size of the .J, test for 0y =1/4,1/2 and 3/5 are 7.8%, 9.5% and 9.3%,
whereas, by increasing T' to 100, for N = 5,000 the size of the test drops to 7.1%, 5.9% and
7.1%, respectively.

Finally, we investigated the robustness of the J,, test against possible nonlinear dependence
across security returns, discussed in the literature by Longin and Solnik (2001), and Ang, Chen
and Xing (2006), among others. In the presence of nonlinear dependence, correlation of higher

order moments of errors, such as Corr (u?t, u?’t)u could be non-zero even when u;; and u;; are

uncorrelated. Table 4 summarises the size and power of the .J, test when the regression errors
follow multivariate ¢ distribution. Under this design N*¢ securities’ squared errors are cross-
correlated, while the errors themselves are uncorrelated, which give rise to ¢ < 2.5. As can
be seen, the J,, test continues to perform well, giving the correct size and high power, across
all of the MC designs.

5.3 Experiments with mixed factor-spatial error processes

So far we have considered error processes with a weak common factor structure but with
cross-sectionally independent idiosyncratic errors. As we discussed in sub-section 3.2, our
test, including estimators of the cross-correlation measure (N — 1) p?\,, continues to apply
when the eigenvalues of variance matrix of idiosyncratic errors are bounded. Accordingly, we
further investigate finite sample behaviour of the J, test under the DGPs identical to those
considered for Table 2, except that spatial autoregressive component is incorporated into
the error generating process. Specifically, the error correlation matrix is now given by R =
D, '>VD;"?, where D, = diag (c5;), V = (05;), V=~ + Iy — p.W) ' (Iy — p. W)}
with v = (71,72, YN, 0,0, ...,0)/, v; for i < N, = | N%| are drawn from uniform(0.7,0.9)
distributionand v; = 0 for ¢ = Ny + 1,N, + 2,...., N, p_ is spatial coefficient such that
0<|p.| <1, W = (wy,wo,.., wy) with 7/yw; = 1 and its diagonal elements being all zero.
Observe that when N, = 0, errors possess pure spatial autoregressive processes, and when
p. = 0, the DGP becomes identical to that for the results reported earlier (in Tables 2 and 3).
We have chosen the value p, = 0.5,0.8 and a rook form for W = (w;;), namely, all elements
in W are zero except wi11; = wj—1; = 0.5 for ¢ = 1,2,..., N — 2 and j = 3,4..., N, with
w2 = wny,N—1 = 1. To investigate the importance of allowing for error correlations in the
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construction of the J, test we also consider a version the test that does not control for error
cross-correlations. This version is denoted by J,(0), and obtained by setting p%, = 0in J,(p3),
defined by (55). Table 5 reports the results for p. = 0.5, both with and without the weak factor
component. In the latter case v = 0, and error cross-correlations are only due to the spatial
autregressive effects. As can be seen from the Panel A of the table, under Gaussianity, the
size of the J, test is well controlled, with slight over-rejection when T = 60, which disappears
when T is increased to 100. This result holds for all the values of N considered, including
N = 5,000. In contrast, the J,(0) test over-rejects the null hypothesis, around 10%, for all
the combinations of N and 7. This confirms that using the MT estimator of p3; does a good
job at correcting the bias of the J, test for the spatial error correlations. The over-rejection
of the test becomes more pronounced when the errors are non-Gaussian (see Panel B), but
the size distortion becomes rather small for 7" = 100, even if N > 1,000. The results are
very similar when the errors have a mixed spatial-factor models. When ¢, = 1/4 and 1/2,
there is no noticeable difference in the results from the case with v = 0 for both Gaussian and
non-Gaussian errors. When 6, = 3/5, as to be expected, we observe moderate size distortions,
especially when T' = 60 and N > 1000. The J,, test continues to show good power performance
for both types of error processes and for different values of §,. As noted earlier, there is some
loss of power d, is increased. But the extent of the power loss is much smaller than those
reported in Table 2.3

5.4 Experiments with time varying betas

We also investigated the robustness of the proposed test to random time variations in 3;. In
the case where betas are time-varying (2) can be written as

yit = it + Bty + wir, (65)

where oy = v + Bj(X — py). Suppose that time variations in 3; can be modelled by the
following random coefficient model?*

Bi = Bi + vit, (66)

where E (8;;) = 8;, and vy = (U1, Vit -, Um7it)l ~ 11D (0,8, ;) over i and t, and distrib-
uted independently of u;p and f for all ¢, j,¢,t', and s. Using (66) we now have

yir = a; + Bif + 1y, (67)

where 11;; = v;tf't + ug, and t:t = f; — py + A. Suppose that f; is a stationary process with
mean py and variance {2¢. Then for each i, ;¢ is serially independent with zero means and
constant unconditional variances, namely

. . Gii = Ovii + 04 for i = j
E (1) =0, E (W) =< Cfor i £ i

where 04, = E (f't’vitv;tf't) = NQ i A+Tr (27Q,,4). Hence,
Pij
1+ (Guii/o)l 2 L+ (0 i /o))

?3The results for p. = 0.8 are qualitatively similar to the results for p, = 0.5, which are summarised in Table
M5 in the Online Supplement (available upon request).

2 This set up is sufficiently general and accommodates a wide class of random coefficient models considered
in the literature, but it rules out persistent and systematic time variations in betas. In practice, as with
the empirical application discussed in Section 6 below, one can deal with such persistent time variations by
considering tests of LFPM over relatively short time periods, which requires the test to apply in cases where
N is much larger than 7.

Corr (ﬁit)ﬁjt) = bz] = 1/2° for i 7é ja (68)
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and it readily follows that } p”‘ < ‘pij , and the presence of random variations in betas in fact
reduces the degree of error cross sectional dependence. Therefore, the composite errors, 1,
implied by the time-varying betas satisfy the sparsity conditions (30) and (31). However, the
theoretical analysis become further complicated due to the fact that i;; are now conditionally

heteroskedastic, namely Var (ﬁit f't) = i{ﬂmzf} + ;. Nevertheless, our preliminary analysis
suggests that the proposed test continues to be applicable in this case so long as f; is stationary
with bounded support and the in-sample mean of f; is sufficiently small. A formal proof of
this conjecture is beyond the scope of the present paper. But in support of our conjecture we
provide additional Monte Carlo evidence in Table 6, where we present finite sample behaviour
of the J, test under the DGPs identical to those considered for Table 5, except that betas
are now generated to be time varying. Specifically, we generated betas as [y, = Bp; + Veit
with vy ~ ITDN (0,1), and set yir = ;i + Soo_; Besefor + wit, @ = 1,2, N3t = 1,2, .., T.
The results summarized in Table 6 are qualitatively similar to those in Table 5, suggesting
that allowing for random time variations in betas do not adversely impact the small sample
properties of the J,, test, and if anything tend to correct the slight over-rejection of the test in
the case of models with time-invariant betas, most likely due to the fact that random-variations
in betas reduce the degree of error cross-correlations.

6 Empirical Application

6.1 Data description

We consider the application of our proposed J, test to the securities in the Standard &
Poor 500 (S&P 500) index of large cap U.S. equities market. Since the index is primarily
intended as a leading indicator of U.S. equities, the composition of the index is monitored by
Standard and Poor to ensure the widest possible overall market representation while reducing
the index turnover to a minimum. Changes to the composition of the index are governed by
published guidelines. In particular, a security is included if its market capitalization currently
exceeds US$ 5.3 billion, is financially viable and at least 50% of their equity is publicly floated.
Companies that substantially violate one or more of the criteria for index inclusion, or are
involved in merger, acquisition or significant restructuring are replaced by other companies.

In order to take account for the change to the composition of the index over time, we
compiled returns on all the 500 securities that constitute the S&P 500 index each month
over the period January 1984 to June 2015. The monthly return of security ¢ for month ¢ is
computed as 7 = 100(Pjt — Pi¢—1)/Pit—1 + DYjt/12, where Py is the end of the month price
of the security and DYj; is the per cent per annum dividend yield on the security. Note that
index i depends on the month of which the security i is a constituent of S&P 500, 7, say,
which is suppressed for notational simplicity.

The time series data on the safe rate of return, and the market factors are obtained from
Ken French’s data library web page. The one-month US treasury bill rate is chosen as the
risk-free rate (), the value-weight return on all NYSE, AMEX, and NASDAQ stocks (from
CRSP) is used as a proxy for market return (r,,), the average return on the three small
portfolios minus the average return on the three big portfolios (SM B;), and the average
return on two value portfolios minus the average return on two growth portfolio (HM L;).
SMB and HML are based on the stocks listed on the NYSE, AMEX and NASDAQ. All data
are measured in percent per month. See Appendix C for further details.

6.2 Month end test results (September 1989 - June 2015)

Encouraged by the satisfactory performance of the J,, test, even in cases where N is much
larger than T', we apply the J, test that allows for non-Gaussian and cross-correlated errors to
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all securities in the S&P 500 index at the end of each month spanning the period September
1989 to June 2015.%° In this way we minimize the possibility of survivorship bias since the
sample of securities considered at the end of each month is decided in real time. As far as
the choice of T' is concerned, to reduce the impact of possible persistence or systematic time
variations in betas, we select a relatively short time period of 60 months. Recall that the
experimental results reported above show that our test is robust to random time variations in
betas. Accordingly, we estimated the CAPM regressions

Tirt — Tfrt = Qi + Bir (Tm,’rt - Tf,*rt) + 7:Lz',’rt: (69)
and the Fama-French (FF) three factor regressions,
it = Tt = Qir + By e et = 7p.00) + BoipSM By + By HM Ly +iire,— (70)

fort = 1,2,...,60, i = 1,2,..., N;, and the month ends, 7 =September 1989,.....June 2015.
All securities in the S&P 500 index are included except those with less than sixty months of
observations and/or with five consecutive zeros in the middle of sample periods.

Table 7 reports summary statistics for p-values of the J,, test, cross-sectional averages
of measures of departure from non-normality and average pair-wise correlations of residuals
from CAPM and FF regressions of securities in the S&P 500 index using five year estimation
windows (sixty months) at the end of the months of September 1989 to June 2015. The results
confirm important departures from normality in the residuals. The extent of the departures are
particularly pronounced in the case of kurtosis measures where v, = 0 is rejected in 26-29% of
the samples under consideration. Three measures of average pair-wise correlations of residuals
are reported in the last columns of the table, which indicate minor degrees of cross-sectional
correlations. The residuals from FF regressions tend to be cross-sectionally less correlated
than those of CAPM regressions. The p-values range from 0 to 1, with a mean and median of
0.52 and 0.63 for the CAPM model, and 0.46 and 0.50 for the FF model, suggesting important
time variations in the degree of market efficiency.

Figure 1 provides plots of the evolution of p-values of the J,, test based on CAPM and FF
regressions at the end of the months of September 1989 to June 2015. The months at which the
null of market efficiency is rejected at the 5% level based on both CAPM and FF regressions
are August 1998, November 1998-February 1999, August 2007-March 2009 and November
2013-June 2015 (the last data point). The period around August 1998 and December 1998-
February 1999 coincide with the Russian financial crisis (during August -September 1998) and
the subsequent collapse of Long-Term Capital Management. The period August 2007-March
2009 matches the recent global financial crisis. November 2013-June 2015 corresponds to series
of exogenous economic and financial shocks - unrest around Russian, started by the Ukraine
crisis, then the negative oil price shock started around June 2014. In general, the J test
tends to result in rejection of the null of market efficiency, in the Sharpe-Lintner sense, during
periods of major financial disruptions.

6.3 Long/short equity returns and p-values of the J, test

As the test results in Figure 1 clearly show important variations in the p-values of the J,, test
over time, it would be interesting to see if such variations are related to the performance of
trading strategies. There are many trading strategies that are designed to exploit non-zero
a’s in selection of securities. A prominent example is the long/short equity strategy where
securities are ordered by their predicted returns, from the most positive to the most negative.

?5In all the empirical applications T < N, and the GRS test can not be computed. We have also decided to
exclude other tests discussed in the Monte Carlo Section on the grounds of their substantial size distortion of
the null and/or low power.
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The investor then goes long on securities with positive predicted returns and goes short on
securities with negative return predictions. There are many variations in the way that this
strategy is implemented which need not concern us here. What we are interested in is to see if
there are any relationships between the return on long/short (L/S) strategies and the evidence
of market inefficiency as measured by estimated p-values. In time periods where o; = 0 for all
i, the L/S strategy is unlikely to perform better than the market return, and could do even
worse if one allows for transaction costs and management fees. But we would expect a higher
return on the L/S strategies relative to the market if there are positive and negative alphas
that the investor can identify and exploit. Therefore, a priori we would expect an inverse
relationship between p-values and returns on L/S strategies relative to the market.

For return on L/S strategies we used Credit Suisse Long/Short Equity Hedge Fund Index
that are available monthly from December 1993. This is a subset of the Credit Suisse Hedge
Fund Index and provides the aggregate performance of long/short equity funds, and as such is
not subject to a selection bias. We denote the monthly return on this index by 7; and consider
the relationship between 75; = 74, — ¢, where 74 is the return on S&P 500 index, and monthly
p-values of the Ja tests, which we denote by #;.2% The p-values needed for this purpose are
already reported in Figure 1. Given the considerable volatility of return data, in Figures 2
and 3 we plot twelve-month moving averages of returns and p-values computed as 7,;(12)
= 1—12 Zjl-lzo Thi—j, and 4(12) = % Zjl-l:o 7ty—j, respectively. Figure 2 depicts the relationship
for p-values computed using the CAPM regressions, and Figure 3 shows the relationship for
the p-values computed using the FF regressions. There is a significant negative relationship
between the p-values and the excess returns. The value of sample correlation between 7, (12)
and CAPM p-value is -0.28 (s.e. 0.061), giving a t-ratio of -4.6, strongly rejecting the null of
zero-correlation.?” The value of sample correlation between 7,;(12) and FF p-value is almost
identical, giving -0.27 (s.e. 0.061) and a t-ratio of -4.4.

7 Conclusion

In this paper we propose a simple test of Linear Factor Pricing Models (LFPM), the A test,
when the number of securities, N, is large relative to the time dimension, 7', of the return
series. It is shown that the J, test is more robust against error cross-sectional correlation
than the standardised Wald tests based on an adaptive thresholding estimators of V, which is
considered by Fan, Liao and Yao (2015). It allows N to be much larger than T', as compared
to alternative tests proposed in the literature. The proposed test also allows for a wide class of
error dependencies including mixed weak-factor spatial autoregressive processes, and is shown
to be robust to random time-variations in betas.

Using Monte Carlo experiments, designed specifically to match the correlations, volatilities,
and other distributional features of the residuals of Fama-French three factor regressions of
individual securities in the Standard & Poor 500 index, we show that the proposed J, test
performs well even when N is much larger than T, and outperform other existing tests such
as the tests of Fan et al (2015) and Gungor and Luger (2016) test. Also in cases where N < T
and the standard F test due to GRS can be computed, we still find that the J,, test has a
much higher power, especially when T is relatively small.

Application of the J, test to all securities in the S&P 500 index with 60 months of return
data at the end of each month over the period September 1989 - June 2015 clearly illustrates the
utility of the proposed test. Statistically significant evidence against Sharpe-Lintner CAPM
and Fama-French three factor models is found during periods of financial crisis and market
disruptions. Furthermore, a significant negative correlation is found between a twelve-month

20Gee Appendix C for further details and the source of the L/S equity hedge fund returns.
?"The standard error of the sample correlation py is computed as [(1 — pZ)/(T — 2)]'/2.
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moving average p-values of the J,, test and excess returns of long/short equity strategies over
the period November 1994 to June 2015.

Table 1: Summary statistics of the estimates used in the Monte Carlo
simulations

This table reports the summary statistics for estimated (’s, variance, skewness and kurtosis measures
of residuals from Fama-French (FF) three factor regressions, estimated for all securities in the S&P 500
index with at least sixty months of return data using rolling estimation windows of sixty months, over
the period September 1989 to September 2011. BiT is estimated using the F'F regressions: 7; 74— 7 7t =
&ir + By ir (Pmrt = Tprt) + Boin SMByr + By HM Lyy + @i 74, for i = 1,2,...,N;, and ¢t = 1,2, ..., 60,
where N, denotes the number of securities available at the estimation windows 7 = September 1989,...,
September 2011. 64, = M2ir Y147 = mgw/mg/i and Yq ;, = m4,ir/m§,” — 3, which are computed
using the FF residuals, where i, ;; = (60)71 ?21 (ﬁmt —@-,T)S and 4, , = (60)71 Z?il U; rt, for
s = 2,3,4. All securities in the S&P 500 index are included except those with less than sixty months of
observations and/or with five consecutive zeros in the middle of sample periods. Under normal errors
we set 1 ; =75, = 0.

Mean Median 2.5% Quantile 97.5% Quantile

Giir 65.60 4472 12.81 249.89
Ai. 018 014 -0.89 1.46
Hpir 100 0.38 -0.71 6.74
Brir 110 051 0.24 2.26
Byir 010  0.04 -0.91 1.47
Byir 020  0.24 -1.55 1.72
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Table 2: Size and power of GRS, ja, SWporr, SWrw and Fp.x tests

This table summarises the size and power of GRS, Jo, SWporr, SWrw and Fua tests of a; =
0, for ¢+ = 1,2,..., N, in the case of three-factor models. The observations are generated as y;; =
a; + 23:1 Beifer + wie, @ = 1,2, ,Nit = 1,2, ., T, for = pigp + prefei—1 + Vhee Copr hee = e +
pinehei—1 + poneCii—1s Coo ~ IIDN(0,1), t = —49,...,T with fy,_50 = 0 and hy_50 = 0, £ = 1,2, 3,
pre = 0.53,0.19,0.19, py, = 0.06,0.19,0.05, py, = 0.89,0.62,0.80, pyp = 0.85,0.74,0.76, pop, =
0.11,0.19,0.15, for £ = 1,2, 3, respectively. For the size of the test, o; = 0 for all 4, and for the power of
the test, a; ~ IIDN(0,1) for i = 1,2, ..., N, with N, = |[N*« |, A\, = 0.8, otherwise a; = 0, where | 4]
is the largest integer part of A. The idiosyncratic errors, uy = (uys, uat, ..., unt)’, are generated as uy =
Qg,, where g, = (14, €2, ...,en¢)’, and Q = D'?P with D = diag(o11,022,-..,0nNN)', 04 = Var (oy),
and P being a Cholesky factor of correlation matrix of u;, R = Iy +bb’—B?2, which is an N x N matrix
used to calibrate the cross correlation of returns, where b = (by, ba, ...., by, B = diag(b). The first
and the last N, (< N) elements of b are generated as Uniform(0.7,0.9), and the remaining middle
elements are set to 0. We set N, = |[N°|. We consider the values §, = 1/4,1/2 and 3/5. For the
case of non-normal errors, u;; are generated following steps 1-4 of the procedure in Appendix B, using
skewness and kurtosis measures, v, ; and 7, ;. o2, V1,05 V2,; and By, for £ =1,2,3, are randomly drawn
from their respective empirical distributions, see Subsection 5.1 and Appendix B for details. GRS is
the F test due to Gibbons et al. (1989) which is distributed as Fn 7—n_m, and is applicable when
T > N +m+ 1. N/A signifies that the GRS statistic can not be computed. Jy is the propose large N
test which is robust to non-Gaussian errors and cross-sectional correlations; SWpogpr and SWry are

the tests based on the POET estimator of Fan et al. (2013), V;lo g1, and Ledoit-Wolf (2004) shrinkage

estimator, VZ;V, as estimates of V™' in (17). Fiax is the bounds test of Gungor and Luger (2016),
with frequencies of inconclusive test outcomes reported in Table M1 in the Online Supplement available
on request. Values of the ja, SWpoger and SWpy test statistics are compared to a positive one-sided
critical value of the standard normal distribution. All tests are conducted at the 5% significance level.
Experiments are based on 2,000 replications.

Panel A: Normal Errors

5, =1/4 5y =1/2 5, =3/5
(T,N) 50 100 200 500 50 100 200 500 50 100 200 500
Size: «; = 0 for all ¢

GRS 60 46 N/A N/A N/A 53 N/A N/A N/A 54 N/A N/A N/A
100 58 N/A N/A N/A 53 N/A N/A N/A 55 N/A N/A N/A

A 60 74 53 6.0 5.0 64 59 56 6.1 6.0 5.5 6.7 7.2
100 6.6 5.2 5.5 5.3 6.1 6.6 5.1 5.3 6.7 6.3 5.6 5.8

SWpoeT 60 18.3 26.2 34.0 53.1 21.5 25.0 304 48.6 21.4 23.1 30.6 45.2
100 12.1 143 204 30.3 23.3 187 209 275 28.9 20.8 24.8 29.0

SWrw 60 177 23.3 339 56.5 22.3 329 46.8 67.6 28.5 50.7 75.0 93.0
100 12.7 16.7 21.6 31.3 16.9 24.1 37.3 50.8 21.6 439 76.1 94.0

Flax 60 0.2 0.1 0.2 0.1 0.3 0.1 0.3 0.2 0.1 0.1 0.1 0.1
100 0.2 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.2 0.1 0.2

Power: a; ~ [IDN(0,1) for i = 1,2,..., N, with N, = [N*=], A\, = 0.8, otherwise a; = 0

GRS 60 15,0 N/A N/A N/A 20.7 N/A N/A N/A 242 N/A N/A N/A
100 69.2 N/A N/A N/A 849 N/A N/A N/A 876 N/A N/A N/A

A 60 65.9 80.2 93.2 98.8 53.6 67.2 84.1 96.4 422 539 66.3 82.1
100 874 974 99.9 100.0 82.3 93.7 98.7 100.0 72.2 864 95.0 99.6

SWpogT 60 81.9 952 99.3 100.0 80.3 91.1 98.6 99.9 775 883 97.0 99.9
100 93.5 99.3 100.0 100.0 97.3 98.9 99.9 100.0 95.8 97.9 99.8 100.0
SWrw 60 68.8 82.7 93.5 99.7 774 89.7 96.7 99.7 86.1 96.4 99.9 100.0
100 86.2 95.1 99.5 100.0 94.3 98.5 99.8 100.0 96.8 99.8 100.0 100.0

Frax 60 11.5 12,5 176 22.2 12,5 15.1 16.6 22.7 11.6 13.8 17.8 243
100 295 413 514 674 32.2 415 514 664 30.4 40.9 519 66.2
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Table 2 —Continued

Panel B: Non-normal Errors

5, =1/4 5y =1/2 5y =3/5
(TN) 50 100 200 500 50 100 200 500 50 100 200 500
Size: «; = 0 for all ¢

GRS 60 55 N/A N/A N/A 54 N/A N/A N/A 52 N/A N/A N/A
100 44 N/A N/A N/A 54 N/A N/A N/A 53 N/A N/A N/A

A 60 6.5 6.9 5.9 6.6 60 69 65 6.3 63 7.9 6.4 7.6
100 56 6.7 6.4 7.2 66 62 7.0 7.8 78 7.3 6.7 6.9

SWpoeT 60 18.7 272 378 56.8 21.6 26.5 34.1 51.6 22.8 275 32.2 48.0
100 11.7 172 21.6 334 30.7 20.5 228 31.7 30.6 21.3 23.8 31.2

SWrw 60 175 23.2 33.2 56.0 21.2 34.8 472 69.3 279 492 772 934
100 121 17.2 21.6 31.0 156 26.3 37.3 53.3 21.4 43.6 78.1 94.6

Flax 60 0.3 0.2 0.4 0.2 0.2 0.4 0.1 0.1 0.2 0.2 0.2 0.1
100 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.1

Power: a; ~ [IDN(0,1) fori = 1,2,..., N, with N, = |[N*=|, A, = 0.8, otherwise a; = 0

GRS 60 157 N/A N/A N/A 19.0 N/A N/A N/A 23.1 N/A N/A N/A
100 709 N/A N/A N/A 837 N/A N/A N/A 883 N/A N/A N/A

A 60 68.4 824 93.6 99.5 54.2 69.2 84.4 97.6 42.6 57.1 66.7 84.6
100 88.7 96.7 99.8 100.0 82.2 93.3 99.0 100.0 734 86.0 95.3 99.7
SWpogTr 60 83.8 952 99.4 100.0 80.3 92.1 98.7 999 74.7 89.1 97.6 100.0
100 93.6 99.4 100.0 100.0 96.7 98.5 99.9 100.0 93.9 98.2 99.9 100.0
SWrw 60 70.4 819 93.8 99.7 774 904 97.1  99.9 84.9 96.1 99.7 100.0
100 87.0 94.8 99.0 99.9 93.6 98.6 99.8 100.0 97.3 99.7 100.0 100.0

Frax 60 12,1 13.8 19.0 239 12.0 15.2 18.8 23.7 122 13.1 183 234
100 31.8 414 51.6 67.7 30.9 40.2 53.0 685 30.3 40.6 51.8 64.8

Table 3: Size and power of the J, test for N = 1,000, 2,000 and 5,000 in the case of
models with three factors

This table summarises the size and power of the J,, test in the case of models with three factors with
focus on large values of N. The data is generated as described in the notes to Table 2.

0, =1/4 0, =1/2 d,=3/5
(T,N) 1,000 2,000 5,000 1,000 2,000 5,000 1,000 2,000 5,000
Panel A: Normal Errors

Size: «; = 0 for all 4

T =60 5.9 5.3 6.3 5.9 6.2 6.3 6.5 7.0 8.1

T =100 4.8 4.8 4.3 7.3 6.4 6.8 7.0 7.0 7.2
Power: a; ~ IIDN(0,1) for i = 1,2, ..., Ny, with N, = [ N*= |, A\, = 0.8, otherwise a; = 0
T=60 100.0 100.0 100.0 99.2 100.0 100.0 92.6 98.5 100.0

T =100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Panel B: Non-normal Errors

Size: «; = 0 for all 4

T =60 6.3 7.6 7.8 7.7 8.4 9.5 7.5 8.6 9.3
T =100 4.8 6.0 7.1 6.9 7.0 5.9 81 7.0 7.1
Power: a; ~ IIDN(0,1) for i = 1,2, ..., N, with N, = [ N*= |, A\, = 0.8, otherwise a; = 0
T=60 100.0 100.0 100.0 99.6 100.0 100.0 94.6  98.6 99.9

T =100 100.0 100.0 100.0 100.0  100.0 100.0 100.0 100.0 100.0
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Table 4: Size of the J, test when u?, and u?t are correlated for the pair (i,j) of p;; = 0 with multivariate t-distributed errors

This table summarises the size and power of J,. test when the errors follow multivariate ¢ distribution with g degrees of freedom, and €2, and E?t are correlated
even when €;; and ej; are uncorrelated. Specifically, the data is generated as described in the notes to Table 2 except that only the first N, = [N 8]
errors are cross-correlated, where |A] is the largest integer part of A, and e;; ~ IID ty/+\/(9/g —2) for i = 1,2,..., N — N, and all ¢t with N, = |[N*<|,
git ~ +/(g—2)/ xitzit, where z; ~ IIDN(0,1) and X;t is a chi-squared random variate with g degrees of freedom, distributed independently of z; for

i=N-—N.+1,..,N and all t. We set g = 8, which yields E (&},) —3 = 1.5 so that ¢ <1+ |y, | = 2.5, and use f (N) = N —1 (or § = 1). See also the notes

to Table 2.
6, =1/4 6, =1/2 6, =3/5
(T,N) 50 100 200 500 1,000 2,000 5,000 50 100 200 500 1,000 2,000 5,000 50 100 200 500 1,000 2,000 5,000
Panel A: A\, =1/2
Size: «; = 0 for all 4
60 54 59 6.7 49 5.1 5.4 6.0 6.9 58 4.7 6.3 5.9 5.9 5.2 6.8 52 6.3 4.6 6.6 6.6 7.4
100 6.5 52 53 5.4 5.5 4.6 5.2 58 6.0 5.3 5.0 5.7 6.0 5.4 57 57 6.1 5.7 6.3 5.5 6.2
Power: o; ~ IIDN(0,1) for i = 1,2, ..., N, with N, = |[N*«], A, = 0.8, otherwise a; = 0
60 66.3 81.8 92.7 99.6 100.0 100.0 100.0 58.8 75.0 89.2 98.3 99.9 100.0 100.0 52.7 67.0 80.3 93.1 98.7 99.8 100.0
100 89.3 97.1 99.7 100.0 100.0 100.0 100.0 85.9 96.5 99.7 100.0 100.0 100.0 100.0 81.4 92.2 98.1 100.0 100.0 100.0 100.0
Panel B: A, =3/5
Size: «; = 0 for all 4
60 56 56 6.1 4.7 4.9 4.8 5.5 6.2 59 55 5.2 5.4 5.4 5.7 6.2 65 64 5.6 6.5 6.1 6.8
100 54 52 59 5.9 4.9 4.7 5.2 6.1 54 6.1 5.4 6.2 5.3 5.6 58 6.0 5.6 5.7 6.0 6.0 6.3
Power: a; ~ IIDN(0,1) for i = 1,2, ..., N, with N, = [N« ], \, = 0.8, otherwise a; = 0
60 66.0 81.0 93.8 99.5 100.0 100.0 100.0 61.5 72.8 88.6 98.3 99.9 100.0 100.0 53.1 67.8 79.3 94.1 984 99.9 100.0
100 88.7 97.8 99.6 100.0 100.0 100.0 100.0 85.1 96.4 99.4 100.0 100.0 100.0 100.0 80.4 92.4 98.1 99.9 100.0 100.0 100.0
Panel C: A, =4/5
Size: «; = 0 for all 4
60 52 6.1 5.8 6.8 5.8 7.7 9.1 6.0 66 5.2 6.3 6.3 7.0 7.9 6.6 66 6.1 6.3 6.1 6.8 6.9
100 6.6 49 59 5.3 6.3 6.1 7.4 6.8 66 7.0 4.8 6.2 6.4 6.2 73 6.9 5.3 5.7 6.2 6.8 6.7
Power: a; ~ IIDN(0,1) for i = 1,2, ..., N, with N, = |[N*«], \, = 0.8, otherwise a; = 0
60 67.1 81.3 91.6 98.8 99.9 100.0 100.0 60.1 745 88.1 974 99.8 100.0 100.0 53.3 66.0 78.9 93.8 98.2 99.7 100.0
100 88.6 97.3 99.7 100.0 100.0 100.0 100.0 84.6 959 99.4 100.0 100.0 100.0 100.0 80.8 92.3 98.1 100.0 100.0 100.0 100.0
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Table 5: Size and power of J,, test with mixed spatial-factor models with the
value of spatial parameter p. = 0.5

Data is generated using the same set up as in Table 2, except that an spatial autoregressive component
is added to the error generating process. Specifically, the error correlation matrix is given by R =

D, '*VD, /2 where D, = diag (03;), V = (04;), V. =77+ (Iy — p.W) " (Iy — p.W') " with v =
/

(71,72,...,"/1\,7,0,0,...,0) , v; for i < N, = [N°| are drawn from uniform(0.7,0.9) distribution and
v; = 0fori = Ny+1,N,+2,...., N, p, is spatial coefficient such that 0 < [p_| < 1, W'= (w, wa, ..., Wn)
with 7yw; = 1 and its diagonal elements being all zero. Observe that when N, = 0, errors possess
pure spatial autoregressive processes, and when p, = 0 the DGP becomes identical to that for the
results reported in Table 2. We have chosen the value p, = 0.5 and a rook form for W = (w;;), namely,
all elements in W' are zero except wit1,; = wj_1,; = 0.5 fori=1,2,..., N —2 and j = 3,4..., N, with
w12 = wn,N—1 = 1. For the purpose of comparison to jm we also provide results for J,(0) test defined
by (55) with p% = 0, which does not control for error cross-correlations, evaluated at. Panel A of the
table reports size and power of J, and J, (0) tests with normal errors, and Panel B reports size and
power with non-normal errors. All tests are conducted at the 5% significance level. Experiments are
based on 2,000 replications. See also the notes to Table 2.

Panel A: Normal Errors with p, = 0.5

Size Power
(TN) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (v = 0)

Ja 60 68 72 76 77 80 6.7 89 55.6 721 87.0 976 99.7 100.0 100.0
100 68 68 61 59 58 58 5.1 82.0 944 99.0 100.0 100.0 100.0 100.0
J.(0) 60 10.1 105 10.5 11.1 10.8 89 10.6 63.9 784 914 983 99.8 100.0 100.0
100 109 107 96 99 94 9.0 9.7 88.1 96.6 99.4 100.0 100.0 100.0 100.0

Mixed spatial-factor models (., = 1/4)
Jo 60 59 56 62 6.3 6.5 7.0 7.9 57.6 70.0 86.0 97.8 99.5 100.0 100.0
100 64 64 68 67 48 58 59 82.6 93.6 99.1 100.0 100.0 100.0 100.0
J.(0) 60 95 97 98 93 92 95 93 66.4 77.6 89.6 98.6 99.7 100.0 100.0
100 105 121 109 104 89 96 99 87.5 96.2 99.6 100.0 100.0 100.0 100.0

Mixed spatial-factor models (4., = 1/2)
Ja 60 69 70 73 75 68 72 70 55.1 70.6 86.4 96.7 99.7 99.9 100.0
100 6.3 6.5 67 7.1 54 6.9 6.2 82.3 93.9 99.1 100.0 100.0 100.0 100.0
J.(0) 60 109 11.1 10.5 10.7 104 10.0 9.1 65.1 79.2 90.7 98.0 99.8 100.0 100.0
100 10.5 10.7 11.0 115 94 11.5 10.6 88.1 96.2 99.6 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 3/5)
Ja 60 68 75 62 84 88 9.7 98 53.5 T71.1 849 964 99.7 100.0 100.0
100 63 67 68 68 60 73 86 82.5 92.8 985 100.0 100.0 100.0 100.0
Ja (0) 60 10.8 12.2 10.1 12.1 11.8 124 11.6 63.7 79.0 899 97.8 99.9 100.0 100.0
100 11.0 11.3 11.2 11.0 10.8 11.2 122 89.3 96.0 99.4 100.0 100.0 100.0 100.0
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Table 5 —Continued

Panel B: Non-normal Errors with p, = 0.5

Size Power
(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (y = 0)

Ja 60 78 72 78 87 88 9.1 10.1 58.9 72.6 834 975 99.7 100.0 100.0
100 72 68 69 64 6.3 7.2 7.3 82.2 931 99.1 99.9 100.0 100.0 100.0
Jo(0) 60 119 111 11.7 122 11.8 12.0 124 68.0 79.0 923 98.6 99.9 100.0 100.0
100 10.8 109 12.2 10.2 10.6 11.9 11.6 87.7 96.1 99.3 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/4)
Jo 60 75 68 81 73 82 86 10.1 579 724 874 97.8 99.5 100.0 100.0
100 6.9 65 7.2 54 77 7.8 6.8 82.5 93.8 98.9 100.0 100.0 100.0 100.0
Jo(0) 60 112 98 121 9.8 11.2 11.8 13.3 66.5 79.3 914 98.6 99.6 100.0 100.0
100 10.6 109 12.0 9.5 11.8 115 11.1 86.9 96.2 99.4 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/2)
Ja 60 75 79 81 85 82 94 112 55.8 T71.7 8.9 970 99.6 99.9 100.0
100 79 71 82 67 65 76 73 80.0 94.2 98.7 100.0 100.0 100.0 100.0
Ja(0) 60 114 123 125 120 11.8 13.0 13.5 65.5 79.6 90.8 982 99.8 100.0 100.0
100 11.6 11.2 123 11.6 11.2 127 12.1 85.6 96.7 99.3 100.0 100.0 100.0 100.0

Mixed spatial-factor models (4., = 3/5)
Jo 60 70 70 75 83 103 95 125 53.9 715 856 964 99.5 100.0 100.0
100 6.7 75 73 65 84 77 86 81.3 92.0 98.7 100.0 100.0 100.0 100.0
Jo(0) 60 115 117 11.2 129 135 125 14.8 64.9 789 90.3 983 99.6 100.0 100.0
100 12.0 12.2 131 11.0 13.7 12.8 13.5 87.8 96.1 99.3 100.0 100.0 100.0 100.0
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Table 6: Size and power of J, test with time-varying beta and mixed
spatial-factor model (spatial parameter p. = 0.5)

The data generating process is y;; = aiJrZ?:l Boisfer tuwip, t =12, Nt =1,2,...;T, Bpsy = Bo; +V0it
with v ~ IIDN (0,1), which are drawn independently over ¢ = 1,2,3, ¢ and ¢. See Table 5 and the
notes to Table 2 for further details.

Panel A: Normal Errors

Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (v = 0)

60 6.0 58 6.1 63 47 46 4.1 51.0 64.6 80.3 93.3 988 99.5 99.8

100 5.8 55 45 35 34 2.9 2.2 78.0 90.4 97.8 99.9 100.0 100.0 100.0
Mixed spatial-factor models (9., = 1/4)

60 54 52 55 46 4.0 4.6 3.1 50.1 64.0 785 93.5 985 99.8 99.8

100 5.8 54 50 49 29 29 21 77.0 89.8 98.0 99.9 100.0 100.0 100.0
Mixed spatial-factor models (., = 1/2)

60 6.4 6.0 55 57 47 43 39 50.0 624 793 924 983 99.6 100.0

100 5.8 50 59 55 38 3.7 31 77.1 899 974 99.9 100.0 100.0 100.0
Mixed spatial-factor models (4., = 3/5)

60 6.1 68 55 62 56 60 55 473 63.7 771 91.8 98.3 99.6 100.0
100 5.8 54 58 48 4.2 4.7 3.7 77.6 88.7 97.1 99.9 100.0 100.0 100.0
Panel B: Non-normal Errors

Pure spatial models (v = 0)
60 71 62 6.1 64 52 58 4.7 52.7 65.6 80.3 94.1 984 99.6 100.0
100 5.9 5.7 58 44 38 39 28 777 904 979 99.9 100.0 100.0 100.0
Mixed spatial-factor models (., = 1/4)
60 6.5 5.1 6.1 54 57 45 4.2 51.3 64.1 80.1 93,5 981 99.8 100.0
100 5.8 56 6.1 4.0 49 4.2 2.6 76.7 90.1 97.5 99.9 100.0 100.0 100.0
Mixed spatial-factor models (., = 1/2)
60 6.5 6.5 6.9 6.7 53 5.8 5.3 488 64.0 783 919 979 99.5 100.0
100 6.6 63 59 48 42 46 3.0 73.8 90.5 97.2 99.8 100.0 100.0 100.0
Mixed spatial-factor models (4., = 3/5)
60 6.2 69 57 57 82 62 6.2 473 642 776 924 974 99.1 999
100 6.2 68 63 48 56 47 38 76.2 88.5 96.8 100.0 100.0 100.0 100.0
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Table 7: Summary Statistics of p-values, departure from non-normality and
average pair-wise correlations of residuals

This table provides summary statistics for p-values of the J, tests applied to residuals from CAPM
and FF regressions of securities in the S&P 500 index using rolling sixty months estimation win-
dows over the period from September 1989 to June 2015. The table also reports cross-sectional av-
erages of measures of departure from non-normality and average pair-wise correlations of the resid-
uals. Results reported in panel A of the table refer to CAPM regression residuals, r; -+ — 77+ =
Qir + 317” (Pe,rt — Tfrt) + Uire, for ¢ = 1,2,...,60, and ¢ = 1,2, ..., N, and the months ending in

7 =September 1989,..., June 2015. 7,, = Ny N7 4, for £ = 1,2, 5, = 1y, /17 and

60 s

Yoir = M4 ”/mz i — 3 with M, = (60)~" ¢—1 U5 4. Skewness statistic for testing v, ,, = 0 is

SKir = TH: ir/3 ~ x1, and the Kurtosis statistic for testmg Yo,ir = 0is KRir = T'y2 /24 ~ X3
Jarque and Bera (1987) statistic for testing v, ;; = Yo, = 0 is SKi; + KRir ~ x3. Rejection
frequency refers to the proportlon of normahty tests reJected out of the N, tests carrled at the

end of each month, 7. p, = Z Z] i1 Prijs D2 NT = N(N 5 Z Zj HlpT ;; With
Priy = W0y /(0 0;,)Y2(0 J_Tﬁj_T)l/Q, Qi = (Qir1,Qir2en,Uirr), and p2 y o is the MT esti-
mator defined by (56). Results reported in panel B of the table refer to FF regression residuals:
Tiet = Trt = Qir + By ir (Pmrt = Tpirt) + BoinSMByr + Ba HM Lyr + i 7, for t = 1,2,...,60, and
1 =1,2,...,N;, and the month ending in 7 =September 1989,..., June 2015.

Average skewness

& oxcoss lurtosis Rejection frequency Average pair-wise
for normality tests at T correlations
measures
N p_Viﬂue Y1r Yar Y160 =0 Yor =0 Tir : 0 Pr ﬁi N, T ﬁ'i N, T
of Jo Y2,ir =0
Panel A: CAPM regressions
Mean 479 0.52 0.20 1.20 0.24 0.29 0.32 0.02 0.03 0.01
Median 480 0.63 0.19 1.16 0.24 0.28 0.31 0.01  0.03 0.01
Min 464 0.00 -0.01 0.38 0.13 0.12 0.15 0.01  0.02 0.00
Max 487 1.00 0.37 2.16 0.35 0.46 0.47 0.08 0.05 0.02
stand. dev. 5.9 0.38 0.09 0.46 0.06 0.09 0.08 0.03 0.01 0.00
Panel B: Fama-French regressions

Mean 479 0.46 0.19 1.06 0.22 0.26 0.28 0.01  0.03 0.00
Median 480 0.50 0.20 1.02 0.23 0.25 0.28 0.01  0.03 0.00
Min 464 0.00 0.02 0.38 0.12 0.11 0.14 0.00 0.02 0.00
Max 487 0.98 0.34 191 0.31 0.40 0.42 0.03 0.03 0.01
stand. dev. 5.9 0.33 0.09 0.37 0.05 0.07 0.07 0.01  0.00 0.00
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Figure 1: Plots of p-value of the J, test

This figure presents plots of the evolution of p-values of the J,, test based on CAPM and FF regressions
of securities in the S&P 500 index using five year estimation windows (sixty months) at the end of the
months from September 1989 to June 2015. Reported plots are the p-values of the Ja test, which are

computed using CAPM regressions Tirt — Tt = Qir + B” (P, 7t — Tf7t) + G- and FF three factor
regressions, r; ;¢ —7Tfr¢ = a“.—i—ﬂl ir (Pmre — 75, Tt)—l—BQ ”SMBtT%—ﬁSZHMLtT—i—uZ -, fort =1,2,...,60,
and 1 = 1,2, ..., N, of the month ends estimation windows 7 =September 1989,..., June 2015.
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Figure 2: Plots of Hedge Fund Index relative to S&P 500 returns and p-values of
the J, test based on CAPM regressions

This figure presents monthly rate of returns of Credit Suisse Core Long/Short Equity Hedge Fund
Index relative to S&P 500 returns, and p-values of the Jy test applied to CAPM regressions over
the period November 1994 to June 2015. The long/short return variable, 7,:(12), is computed as
The(12) = 1—12 2}1:0 Thit—j, Where Ty = The — 74, The is the return on Credit Suisse Core Long/Short
Equity Hedge Fund Index, and r; is the return on S&P 500 index. #.(12)

is the p-values of the J, test at the end of month 7, computed using CAPM regressions estimated on

1 11 4 ~
13 2 j—o Tr—j, Where 7,

rolling samples of sixty months. See the notes to Table 7 for details of CAPM regressions.
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Figure 3: Plots of Hedge Fund Index relative to S&P 500 returns and p-values of
the J, test based on FF regressions

This figure presents monthly rate of return of Credit Suisse Core Long/Short Equity Hedge Fund
Index relative to S&P 500 return, and p-value of the Jo test based on Fama-French regressions over
the period November 1994 to June 2015. See the notes to Figure 2, and the notes to Table 7 for details
of Fama-French regressions.
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Appendices

Appendix A: Proofs of the theorems

In this appendix we provide proofs of the theorems set out in Section 4 of the paper. These proofs make use of
Lemmas which are provided, together with their proofs, in an Online Supplement available on request.
For further clarity and convenience we summarize some repeatedly used notations below:

Mg = (my) =Ir = Pg, Pa =G (G'G) "G, G = (F,77), v =Tr(Mg) =T —m — 1, (A1)
Mp = (mpu)=1Ir —F (FF) 'F, Hr = hh' = (hihy) (A.2)
withh = (h) = M7, wr =Tr(Hr) =h'h = o MpTr,

where F is a T x m matrix, and 77 = (1,1, ...,1)" is a T x 1 vector of ones. Also, before providing a proof of
Theorem 1, we state a theorem due to Kelejian and Prucha (2001) which is used to establish it.

Lemma 1 (Central Limit Theorem for Linear Quadratic Forms) Consider the following linear quadratic form
N N N
Qn =€ Ac+be = Z Z aijeig; + Z bie;
i=1 j=1 i=1

where {e;, 1 =1,2,..., N} are real valued random variables, and a;; and b; denote real valued coefficients of
the quadratic and linear forms. Suppose the following assumptions hold: Assumption KP1: e;, for i =
1,2,..., N, have zero means and are independently distributed across i. Assumption KP2: A is symmetric
and sup; Zjvzl laij| < K. Also NP SN [b;[2750 < K for some g9 > 0. Assumption KP3: sup; Ele;|***° < K
for some €0 > 0. Then, assuming that N™*Var (Qn) > ¢ for some ¢ > 0,

Qv — E(Qn) —4 N(0,1).
Var (Qn)
Proof. See Kelejian and Prucha (2001, Theorem 1, p. 227). m

Proof of Theorem 1. Noting that Hr = hh’, where h = (h1, ha, ..., hT)' = M 77, we can write
Z? = wgl'ﬁ;Hng

with wr = T'TMFTT. Then,

N N
; 2 =wr'! ; §HrE, = wr' (Z; utht)' D! (Z; uihe)

where D, = diag(o11,022,...,0nn). Using (48)

N N
NTUEY 2= wp' Y NTVPEHE,
i=1

i=1

- [V ] 2[5 v

= anr + 2bnr + N (A.3)
where
ant = wplNTY? (Z; htv;r’) D! (Z; htl"vt) ,
byr = wplNTV? (Z; htvgr’) D! (Z; htnt) _and

ent = wp N2 (Zil htn;) D’ (Zil htnt) . (A.4)

Consider the first term, ayr, and note that

1 T T _
wp N2 thl Zml hihv,I'D, 'T'v,

N
wr N2 Zthl Zil heh <; ﬁgvtv;%) ,

aNT
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where

~ Vi Vi
Vi = = : (A.5)
Vi /Yt o
Equivalently, letting dr = w;1/2 Zle hyve, and noting that for any conformable real symmetric positive

semi-definite matrices A and B, Tr (AB) < Tr (A) Amax (B) (this result is repeatedly used below), we have
—1/2 al ~7 —172 7T —1/2 7T ! —1/2 al ~1 /o~
ant = N Z% (wT 21:1 htvt) (wT thl htvt) =N ;%deT%
( e Z&’%) max (drdy) < ( e Zﬁ’%) (drdr).

But since h: are given constants such that Zthl h? = wr, and by assumption v¢ is I7D(0,1;), it then readily
follows that d’-dr —, 1, and hence

IA

N
ant = Op <N1/2 Z,‘?{L/‘?z> .
1=1

Also, it is clear from (A.5) that |9,,| <1 and |9,,| < |v;sl, and

N k k N
N7V A, ‘”222 DY (Z m—g)
i=1 i=1 s=1 s=1 \i=1
/ S / -
—1/2 71 2
N ; <Z 715 > = Sgp; |’Y7.s| )

and hence by Assumption 2, N~1/2 ZZ Vi =0 (N‘SW_l/Q), and overall ayr = Oy, (N‘;W_l/Q). Similarly,

wpt N2 (ZtT: htvzf") D! (ZtT: ht"h)

w_lN_l/2 Zt 12 hih 74vtI‘ D_lnr
w’lN 1/22 Z » hih Z ( 77172) Five
1/2( 71/22 htv;) |: v Zz 1Zt 1htryZ ( 7711;2):|
- 3
- 1/2[ T S b (de) ((7/)]

IN

bnT

i

Since by Assumption, 7,, and v¢ (and hence dr) are independently distributed, it follows that E(bny7) = 0.
Consider now Var (byr), and note that for given values of -y, we have (recall that n,, is independent over ¢ and

iy hi = wr)

_ 77177r
Var (bvt) = N- wTIZt 1ZT 121 IZ E (drd7) ¥ ]E<U;/;;1/_z>
i g
_ On,ij
wi S ST (0 (ard) 5 >(4,,;’1,_2)
(2 77
_ On,ij
- Y G 7 ()

i Vg

Also E (drdy) = B [ (wp* ST, heve) (wr'? S0, hevi ) | = T, and

_ N N o, On,ij
Var (bNT) =N lziil Zj:l (7:73) ( 1/;] ]1/2> .

i 2]
Further
Tnjij | _ o045 _ |Py.15] <louis|
172 _1/2 ; ; . i > [Pnigl-
it Yjj \/(’71'71‘ + on,ii) (rYj’Yj + Un,jj) \/(M + 1) ( ER 1)
On,ii On,jj
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Therefore, (recalling that sup; ”yjs‘ < K, and |3,;5| < |7isl)

N N N N .
Var (byr) < N7 Zi:l Zj:1 775 ons] < NTF Zz‘:l Zj:1 Zs:l sl [35:]10,1]
< sup |’yjs} [N ! Zszl Zi:l 951 (ijl |p7].,ij|>:|
1,8
_ k N N
< KN! 23:1 Z¢:1 17is] (ijl |Pn,ij|) :

But by condition (51) in Assumption 4 and ¢,,4; > ¢ > 0 imply sup; PO !pn,ij| < K (also see (52)), and by (47)
we have sup, Zf\;l |v:s] = O (N‘s”). Then it follows that Var (bnr) = O (N‘L*fl)7 and byt = O (N‘;“//z*l/Q).

Therefore, byt is dominated by anr and using these results in (A.3) we have

N2 i 2= wp NV (30 e ) Dt (S0 hem,) + 0, (N2, (A.6)

=1

Now using (50) we can express the above as

N
T T
N7V = N (30 e @) D (30 hiQuena) + 0, (NPTV2).
i=1

where e, ~ I1D(0,1Iy). After some re-arrangement of the terms we now obtain

N
T T
NS ) = Nt (0 kel ) (@51 Q) (301 heene) +0p (N2
=1
avr = NV2[xpAxr —Tr(A)] + N2 [Tr(A) - N + 0, (N‘SV_I/Q) . (A7)

where

T
xr=wp/? Y hiegs, and A = Q;D,'Q,. (A.8)

First consider the deterministic component of gy, and using (49) and under Assumption 4 we have
R =TT +D;"?Q,Q,D,"?, (A.9)
where T' = (7,74, ...,77x) - Then
N ~ ~
Tr(R)=N = Zi:l Y7 +Tr(A).

But, as before,

o (FF) = 27 Am=Y > 4 (A.10)

k N N 5
< 22 Dl skswd o bl =0 (N ”) :
Hence
N=Y2[Tr(A) — N] = O (N‘;”’l/Z) ,
and (A.7) can be written as
gt = 2nT + O (N‘s”’lﬂ) +0, (N6”’1/2) : (A.11)

where _ _

anr = N Y2xp Axy, with A = A—N"'Tr (A)Iy. (A.12)

We now apply the Central Limit Theorem for Linear Quadratic Forms due to Kelejian and Prucha (2001, KP)
to znT, which is reproduced for convenience as Lemma 1 above. We first establish the conditions required by
KP’s theorem (see Lemma 1). To this end we first note that E (x7) = 0, and

Vara) = B [(S, ) (55w |
Y R ) < In

Denote the i*" element of xr by x;r and note that it is given by x; 7 = w;l/Z Zthl hienit = w;l/Zh'eW-7

. . —1/2
where €5, = (€n,i1 €ni2, ...,sn,iT)’, with an abuse of the notation. Then z;r = wp / s%yiMF‘rT, and miT =
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w;le'miHFen,i, hence, for a given T, the elements of x7 have zero means, a unit variance and are independently
distributed as required by KP’s theorem. Using results on the moments of quadratic forms it is also easily
established that E(z¢;) = w’E (z—:;],iHan,i)S =15+ O(v™!) < K uniformly over i (see Lemma 11), and

hence condition KP1 of the KP theorem (Lemma 1) is met. Consider now matrix A defined by (A.12) and
note that it is symmetric and we have

|A|_<la-N"Tr ()|, < Al + N T (A)

and using (A.8)

IN

|A|_ < llQ)p ']+ N T (Q;D; Q)
1 - ! —
(F()) 1Qull, 1Qalle + N 7' (Q}, Q1) Amax (D)

(o) 1l 1l + V77 (@Q)]

But under condition (51) and noting that o;; > ¢ > 0, then

A

N ~
. = Slz}p Z]’:l |aij| < K,
and condition KP2 of Lemma 1 is met. To establish condition KP3, we note that
Tr (A) =0, Tr (AQ) =Tr (A%) — N} [Tr (A)).
Using (A.9), let B = D, '/?Q,Q,D,"/?, and note that

Tr(R?) = Tr (B?) + Tr {(1”“1”“)2] + 2Ty (f"Bf‘) . (A.13)
Also
Tr (f"Bf‘) <Tr (f’f) Amax (B)
and in view of (51) we have

1

min; (o;

)\max (B) = )\max (Qi}Dngn) S H (Q:]D;IQ”])Hl S ( )) ”QTIHl HQ"?H

and hence (using (A.10)):
Tr (f"Bf‘) =0 (N‘Sv) . (A.14)
Also (recalling that |,,| < |v,4])

v (BF) = o (X7 ) = 2 e
DD DANCAARED S 125, DIAID DN
< Z IZS, 1Zi 1Zj:1 Was| [Vgs] 1Yasr | 7560
<supz m) _o(N”w)A (A.15)

Hence, using (A.14) and (A.15) in (A.13) we have

IN

Tr (B?) = Tr(R%) + 0 (N*7) .
Also in view of (A.8)
Tr (B?) = 7r [D,*Q,Q,D,"*D,*Q,Q,D, | = Tr [(Q,D,'Q,)’| = Tr (4%).

To summarize

Tr(A) = VN + 0 (Név) , and Tr (A%) = Tr(R%) + O (NZ‘S”) ,

Tr (Az)

which also yield

Tr (A% = N~'[Tr(A))
Tr(R?) + O (NQ‘SV) N [\/N+ 0 (N‘SV)]Q

Tr(R%) + O (N%v) +0 (N”v*l) ~1.
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Therefore,
N~'Tr (A2) = N"'Tr(R*) + 0 (N“v—l) , (A.16)

which is bounded in N under the assumptions that N~ *Tr (R2) is bounded in N and 0 < §, < 1/2. Further-
more, it is readily seen that

N N
N7'Tr (R?) = N7' Y > " p2 =14 (N —1)p}.

i=1 i=1
Finally, using (A.12)
- - 2
Var (znt) = N YVar (x'TAxT) =N'E [(x'TAxT) ] .

Consider

~ 9 T T 5 2
(X/TAXT) = w;Q (Z Z htht/e;,tAen,t/>
T T _ ~
= ’LU;Q Z Z Z Z htht’hrhr’ (a'lr;,tAan,t’) (E'In,TAEn,r’) .

t=1¢'=1r=1r'=1

Since, by assumption, &, are serially independent, then using the results on moments of the quadratic forms,
we have

2 N N N N
/ e ~ ~
E |:(€7,,tA€n,t> ] = E E E E @ijaijr E (€n,it€n,5t€n,itEn,5't)

i=1 j=14i'=1;'=1
N 2 N N
-2 - - -
= 2., Zam + Zaii +2 Z Zaijaﬁ,
i i i=1 j=1

4

where v, . = E(e},i+) — 3, and by assumption "yz% < K. Also

K [(s;,tﬁsn,t) (eln,rAen,r)] = [Tr (A)]z for ¢t # r.

Forr=t#t =1/,

E [(e;,“&en’t/) (e;’tAe,,ﬂt/)] = E [(a;,t/Aen,t) (5{,7,,51&677’,5/)]

- E (e;,,t,AAen,t,) — Tr(A2).

Similarly, for r' =t # ¢ = r, we have E [(5%7,&1&8”7,5/) e;,,tlﬁen,t)] = Tr(A?). Using these results

(
wiE {(x’TAxTﬂ — (i hf) Yore, iaZ + <i aii>2 +2iia“aﬁ
)

2 ~ ~
But (S0, Sy hih?) = (S h2) s S dw = Tr(A) = 0, DX, 1, diags = Tr(A?), and we have

N N £l ? -
Var (zyr) = N'E |:(X/TAXT) } = 72Y€nw;2 (Nl Z &?l) <Z h?) + 2wz? <Z h?) N~'Tr(A?),
i=1 t=1

and, further noting that Zthl h? = wr, then

T 4
~ V2,e, = ht N
Var (znt) = 2N 'Tr(A%) + M (Nl Z d?i) )

w
T i=1

and using (A.16)

T 4
72,5 Z = ht N
Var (zn1) = 2N_1TT(R2) + M (N—l | +o (N%”_l) 7

2
w
T i=1
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where by assumption N~ 1Tr (R2) is bounded in N. Also, using (S.15) in Lemma 8, 23:1 h{ = O(T), and

M <N1 XN:EL?Z) Kw (v7r(A%)

<
T
< Bivore®y) o (T_IN%W_I) —O0(T™ ) +0 (T—1N25v—1) .
T
Therefore
Var (zx7) = 2N 'Tr(R?) + O(T" 1) + O (N%”’l) . (A.17)

which is bounded for any N and T, so long as N~ 'Tr (Rz) is bounded in N, and 0 < §5 < 1/2. Also using
(A.11), and under the same conditions, and as N and 7" — oo, in any order,

N}%QOo Var (gnr) = 2w* > 0,

as required. This result also ensures that condition KP3 of Lemma 1 is satisfied and therefore, we also have
gyt —a N(0,2w?), as N and T — oo, in any order. m

Proof of Theorem 2. We have

SNT:N1/2§:[25 (1— jA )} (A.18)

T, Oig

where 27 = ¢HpE,/wr, with £, = uz;/ab/2 being the standardised error of the return equation (2) and
wr = TpMpTr, and &;; = 0} @; /T. Write X; = 0,,'6; and note that by assumption o;; > 0, and by
construction only securities with &;; > ¢ > 0 are included in the J, test, so that

N
1
_ Ar—1/2 2
Sy =N ; |:zi <1 - f)} ; (A.19)
where X; = £&Mg€,; /v, with v = T —m — 1 and Mg = (myy), defined by (A.1). Also, by (35), E (t]) =
E (zf/XZ) =v/(v—-2)+0 (v73/2) for each i, and by Lemma 11 E (27) = E (§;Hp€,; /wr) = wy'Tr (Hp) = 1,

for all . Thus, we have
E(Snt) =0 (\/N/Uz) . (A.20)
Next, for all ¢ = 1,2,..., N we have X; > 0, and (A.19) can be written as

N 2
_ ~1/2 2 _ 1-2X3)
SNt = N ;zl [(1—X,)+T
= Si~nT + So,NT,
where
N
Sinr = N"'? 223 (1-X3), (A.21)
i=1
and N
2 2
_ aAr—1/2 Zi (1 *Xi)
SonTt =N ; —x (A.22)

But since X; > ¢ > 0, and 22 (1 — X;)?> > 0, then
N
|So.nr| ST INTVEY T2 (1- X0)?,

=1

and
E|Sanr| < ¢ 'NY2sup E [2F (1 - X3)7]. (A.23)

But
E 2] (1 - X;)?]

E(2}X]) = 2E (27 X;) + E (27)
= v wr B [(§HFE) (EMat,)’] - 207 wr B [(EHEE,) (6Mat,)] + 1.
Now using results from Lemma 11 we have
EB[(&HFE,) (6McE;)] = wvwr +0(v),
B [(¢Hrg) (€Mat)’

v2wr + O(vwr),
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which yields
1
E [z? (1- X¢)2] =0 (;) , uniformly across i. (A.24)
Using this result in (A.23) we obtain
VN )

E|S2,nr| < ¢ INY? squ [zf (1- Xi)2] =0 (T

and by Markov inequality we have Sz n7 —p 0, so long as ]V/T2 — 0. Therefore, to establish Syr —p 0, it is
sufficient to show that Si,y7 —p 0. By Lemma 17 we have

N N
NTVES 2 (X —1) = N2 S22 (X — 1) + 0, (N‘;”’l/Z) :
i=1 i=1

where 27 ; = niHpn,/ (wroy,i) > 0, Xy = 0}Man;/ (voy,i;) > 0. Using results on the moments of quadratic
forms, by Lemma 15, we have

al Z thtt N
N71/2 Z B [272]71 (Xn»i - 1)] = L 724,577N71/2 Z ~';47,i€7
i=1

vw
T i=1 £=1

< K by assumption), Gn,ie = qn,ig/a;’/; with ¢n,:¢ being such that

where v, = E(ey,i) — 3 (and ‘72,67;

Q. = (gn,it), Qy defined by (50). But as 0 < my < 1 (Mg = (myr)) by Lemma 8, v wp! 327 h¥my <
R T Zthl hi = v as Zz;l hi = wr, and also that 0 < Zé\;l Grie <1, as Zévzl @i = 1 (since

N 2
ZZ:I Qn,if = U”Iyii)v and ’72,57,‘ S Ka we have

N-1/2 ZN:E (22 (X —1)] =0 (\/ﬁ/u) :

Furthermore,
- 1
Var N7 223” S 1)] - N Z Var [231 (X —1)]
i=1 .
1
7 2 0o [#5 (X = 1), 25,5 (Xa = 1)
i

We first note that
Var [22, (Xp: —1)] = B [28 (X — 1)%] = {E [22, (X0 — )]}
As has shown above,
E [z (Xpi—1)] =0 (v)
uniformly over i. Next consider
E [zn: (Xui = 1)°] = B [2,X}] = 2B [z, X0a] + E [2.] (A.25)

But, using results on the moments of quadratic forms, by Lemma 11, we have

Elz,]=3+0 (™), E[z:Xp:] =3+0 (v") and E [z, X2,] =3+0 (v'), (A.26)
uniformly over i. Substituting (A.26) into (A.25) we have

E [z (Xpi =1 =0 (v71),

therefore,
Var [zf” (Xpi—1)] =0 (1)71)

uniformly over ¢. We conclude that
1 _
N Z Var [2'72,1 (Xpi—1]=0( 1) .
Secondly, by Lemma 16,

1 _
N > Cov [z (Xpi— 1),z (Xny — )] =0 (T7") + O(N/T?).
i#j
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In sum, under Assumptions 1-4, Sy7 —, 0, so long as 0 < 6, < 1/2, N/T? — 0 as N and T — oo, jointly. m

Proof of Theorem 3. Under Assumptions 1-4, using Theorem 2 we have N~/2 3N (22 — ¢2) /[2 (1 + (N — 1)p%)]Y? —,
0 with 27 defined by (20), so long as (N — 1)p3, = O(1), N/T? — 0, and 0 < §, < 1/2, as N and T — oo,

jointly. Under these conditions, (by Lemma 4) it implies that N~/2 N (1&22 - UEQ) /12 (14 (N = 1)p3)]"/?

has the same limit distribution as N=*/23"Y (22 — 1) /[2 (1 + (N — 1)p%)]*/?, which is shown to be standard

2
normal by Theorem 1 and the desired result now follows, observing that lim,_, (UZQ) 2(;’_*41) =2.m

Proof of Theorem 4. Let ¢y = % i, (7, — pi;), and note that

U = 5 S (B + i) (s — i)
and since |p,;| <1 and |p;;| < 1, it also follows that
el < 25 iy — o] (A.27)
Further, letting I;; = I [|v/vp;;]| > ¢»(IN)], we have
Pij = Pij = Pijlis — pi; = [Pij = E (pig)] * Lij + [E (bi;) — pis] x Tij — pyy (1 = Iij)
and hence
Eldyrl < % ZzI'\fj=1 E( pij — E (f’ij)} X Iij) + % Zﬁ,vj:l ‘E (f)i]-) - Pij‘ E (L)

2
+ﬁ Zgjzl |pij|E(1_Iij)- (A.28)

Now using (39) we note that
u; Mgu;.
(u} Mou,.)'"? (w) Meuy.)

ﬁij = 1/2°

where @1;, = Mgu;.. Also, since Mg is an (T x T') idempotent matrix of rank v = T'— m — 1, there exists an
orthogonal T' x T transformation matrix L (LL’ = Ir), defined by

I, 0
LMcL' = Y ) A.29
¢ ( 0 0 ) (A.29)

Hence, setting
¢ =05 Ly, (A.30)

pi; can be written equivalently in terms of the first v elements of ¢; = (C;1, (5 -+ (i) as (see Lemma 19)
> i—1 Gt
v ~2\1/2 v .2\1/27
(o C) (2= GG

where C;, = S0 _ lir&;yr, and Ly is the (t,') element of L. Also as shown in Lemma 19, for each i, ¢;,’s are
independently distributed over ¢, and

E(Czt) = 0, F (C?t) =1L F (Citht) = Pij>

ﬁz‘j =

Hij<4v 0) = E(Cjt) =3, Kij (07 4) = E(Cblt) -3,
kij(3,1) = E(C?t(jt) - 3/)1‘]’7 Kij(1,3) = E(Cngit) - 3P¢j7
kij(2,2) = E(C?t(?t) - 2pij -1
Furthermore, by Lemma 19
E(py) = py+2L4+0(v7), (A.31)
Var (f’ij) = b;j +0 (0_2) , (A.32)

where

1 1
aij = =5 pi(1 = p;) + 3 {304 K15 (4,0) + £ (0,4)] — 4 [kij (3, 1) + riz(1,3)] + 2p:45(2,2) }
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and
1
bij = (1—p3)% + 1 {0, [Ki5(4,0) + £4;(0,4)] — 4p,; [4;(3, 1) + ks (1,3)] + 2(2 + pi, )k (2,2) } -

Hence, using (A.31), ’E (,blj) - pij’ < Llai;|+0 (v72), and we have the following bound on the second term
of (A.28):

1 " 1 -2
N Zi,j:l |E (pij) - pij| E (L) < oN Ei,j::l lai;| + O (NU ) :

Furthermore, since k;; are bounded, and by assumption Zle:l ’pi]-’ = O(N), we have

1
Ny Leii=1 |ai]
11 31
S §m i,j=1 ’pz]’ | p7,1| +3 8 N i,j=1 ‘plj‘ |Ii2] 4 0) +K1J(O 4)‘
11
+Zm Q= 1‘“11(3 1) + ka5 (1, 3)|+ ii= 1|ng||’fw (2,2)|
11 -
= 1N m.zl |k (3,1) + Kis (1,3)] + O(v ) (A.33)
Also
1
m i,j= 1|H‘U(3 1)+K’1J(1 3)‘
1 6
< ~No Z?fj:l |E(C?tht) + E(CitC?t” T No Zz]'\,fjﬂ 3
1 _
= &y S [B(CCG) + E(CCGol + 0™,
and as established in Lemma 20 (see (S.80) ) we have

e SN B G0 + B = 0 (N w0,

which if used in (A.33) yields

1 _ _ _
5 T |aij\:o(v LN 1)+O(v b,

and overall for the second term of (A.28) we have
2 N - - _ _
v SN |E (piy) — pig| E(Iiy) = O(v N L0 40 (Nv7?) (A.34)

which tends to zero if §, < 1/2, and N/v? — 0, as N and v — oo, jointly. To deal with the first and third
terms of (A.28) we need to distinguish between values of |pij| that are strictly away from zero, namely those
values that satisfy the condition |pij| > Poin > 0, and those values that are zero or very close to zero. Note
that since by assumption Zﬁ\fj:l |P¢j| = O(N), then it is not possible for all values of |P¢j| to be strictly away
from zero. To formalize the notation of ’pij’ as being close to zero, we suppose that there exist integers Ny

1/2¢,(N). The non-zero values are defined by

and vo such that for all values of N > Ny and v > vo, |P¢j| <wv~
|pis] > 072
T — 0.2% Given this categorization consider now the third term of (A.28) and note that

ST e T B0 1)

¢p(N). In our analysis this is a natural categorization of |P¢j|7 since vil/ch(N) — 0, as NV and

1,7=1
2 v
JFN Zi,j:lE [(1 —1Lij)

Then following a similar line of proof as in Lemma 6 of BPS (2016, supplement) we have (for some small € > 0)

2 _
N Z’f\szl |pij| E(l-1I;) < |Pij| <T 1/2CP(N):|

105 > P > T~ 2p(W) ]

—(1=e) 3 (V)

E[(1= 1) |loy| <v e ()] < Ke 7 L+ o(1)],
and
E[(1= 1) |log] > o en(N)] = Pr[[Vony| < (W) [Ioy] > v e (V)]
[ e
< Ke? bij [1+0(1)].

*See result (a) in Lemma 3 of BPS (2016, supplement).
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Hence,

—(1— 6,2 N)
2 v 2¢p(N) n (o) 3
N Zum e EA=1y) s TG0E Sm Ke 2t L+ o()]
P 2
I
+ iyl 5 [1+4 o(1)]
2
—(1—¢) W)
< 2Cp(N)NK642 w5 (@) [1+ o(1)]

NG

oy o=

+KNe®  mu(ta) 14 o(1)],
where @,; = bi;j(p;; = 0) = E(C?tC?t ‘pij = 0). Finally, consider the first term of (A.28) and write it as

2 . . 2 -
N S B by — B ()] % 1] = N S/ Var(p)E (|zi] x L),

where zi; = [p;; — E(p;;)] /\/Var (p;;), and Var (p,;) is given by (A.32). Also E (|zi| x Iij) = E(|zi;]) —
E[|zi5] (1 — I;;)], and using results in Lemma 4 of BPS (2016, supplement) we have

2 . R
N e B [|piy = E (piy)| % Lis]

2 max;; bi; 1
N |:ﬁ + O (U ):| X

IN

Once again we need to distinguish between cases where ’pij} < T~Y2¢,(N) and ‘pij| > Prin > 0. We do not
require to know how many cases fall in one or the other category. Overall (noting that ¢,(N)/y/v — 0) we have

7\/@ +0 (v_l)} X

2 N 5 .
~§ L=t Blloy — B (py)| x 1] < KN [ 7o
-1 ci(N) -1 wpZ,
I A A — —min__ 1 1)].
|:6Xp < 2 max;; @ij texp 2 maXsi; bij [ + O( )]
Overall we require the following condition for 1y, —5 O:
_ 2(N
Ney(W) (=1 o)\ (A.35)
NG 2 max;; ¢,
Note that since max;; b;; < K, then
Ncey(N -1 2
Mexp —2 UPmin — 0, as N and v — oo.
ﬁ 2 maXsi; bij
A sufficient condition for (A.35) to hold is given by d > (1 — d/2) max;; ¢,;. This follows since (with v = N%)
Ney(N) (=1 &(N) —1 AW
— _— = — ————— + (1 —d/2)1log(N) +1 N
S on (S ) = e + (1 d/2) og(N) + log [ey (V)]

c2(N)

max;; Pij

— (1 —d/2)log(N) — log [cp(N)]
log(N)

D=

But imy oo ¢5(N)/ log(N) = 25, and log [c,(N)] / log(N) — 0. Hence, condition (A.35) is met if (§/ max;; ©ij)—
(1—d/2) > 0, or equivalently if § > (1 — d/2)¢, where ¢ = max;; p,;. But using (S.79) established in Lemma
20, and setting -y, = 0, for all 4, and o,,;; = 0, for all i # 7, to ensure that p,; = 0, for all i # j, we have

T
N
o 2 .2 P 4 1 12 2 -1 -1
wi; = B (G |pij =0)= V2,6 <§ ltr) (E oy it T4j qn,ieqn,je) + 04 055 On,ii0n,55,
r=1

where Iy, is the (¢, 7) element of the T'x T orthonormal matrix L defined by (A.29), gy,i¢ is such that Q. = (gy,i¢),
2
Q, defined by (50). Also, [oy,ii/0u| <1, 3,_, I, < (Zil lf,.) <1, 30 Grie = Yoiey Gvie/onyi = 1, and

N 4 \1/2 N4 \1/2
< (24:1 q”’”) (22:1 q”’ﬂ) s 1

N o 1 12 2 . N 2 2
oq it 95 niiedn,je ) = o= Tniedn,je
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, as required. m

Hence, sup;; p;; <1+ '72,5,7

Proof of Theorem 5. By Theorem 3, Ju (p%) —a N(0,1) so long as N/T? — 0, and 0 < §, < 1/2, as
N — oo and T — oo, jointly, where Jo (p3) and 6, are defined by (55) and (47), respectively. Since Theorem
4 ensures that Jo — Jo(p}) —p 0, as (N — 1) (pX.r — px) —p 0 when d > 2/3, as N and v — oo, and

d > (1—d/2)p, where ¢ < 1+ "yzgn ‘, under these conditions, J, has the same limit distribution as Jo (p?\,) (by
Lemma 4), which establishes the result. m

Proof of Theorem 6. The steps in the proof are similar to the ones in deriving the limiting distribution
of J, under the null hypothesis. First, Lemma 22 provides the proof of the result, under Assumptions 1-4,
and under the local alternatives (61), N—1/2 Zivzl (27, — 1) —a N(¢°,2w°), as N — oo and T — oo, jointly,
where 27, defined by (S.97), w® = 1 + limy—oo (N — 1)p%, p is defined by (54). Also, by Lemma 23 we have
N2V (274 —t7) = 0p (1). Finally Ja — Ja = 0p (1), since the consistency result of the MT estimator
ﬁ?\,’T given by Theorem 4 will not be affected by the introduction of local alternatives, as the MT estimator is
obtained based on the regression residuals of the alternative model. This completes the proof of Theorem 6. m

Appendix B: Generating non-Gaussian errors

S . . .
To generate non-normal correlated errors, ugt ), with given skewness and kurtosis, we use the following procedure

(see Section M1.1 in Online Supplement for full details). For each replication, r,

1. We generate N random draws 051), 'ygrz and fygz, i=1,2,..., N, as described in Section M1.1 and set

mgrz) = [ EZ)] fygrl), and mf:g = [ E:)] (ygﬁ) + 3) .

(r
1>

2. We then set mi’% =0 and m."5 =1, and derive S%Z and m iz as

m) = Q%) 'm{”, & = Q) k"

53_ (3) ) )

where , m} = (m{} ;,m3,,..m{} v), Q%) = QVeQWeQM, m{? = (m{),ms), ...m{y),
R = (K0 R, k), QU = Q(”@Q(’")@Q(”@Q“) and £ = (57, k$7, . kY with k) =
mgi ; — 3 and KL(T) E{Z) - O'?Z-(T), Q=DM 1/2p" , with D) = diag(agq),a;g), . Ug\;) ) and P
being a Cholesky factor of correlation matrix R(. The correlation matrix, R, is defined by (64). The
operator ® denotes the Hadamard or element-wise multiplication.
3. Following Fleishman (1978), we then generate €+, t = 1,2,...,T as (suppressing the superscript r for
notational convenience)
it = i + bivit + civi 4+ divd, i =1,2, ..., N,
where vy ~ ITDN(0, 1) and the coefficients a;, b;, ¢; and d; are determined so that E(e;) = 0, E(¢%) = 1,
E(¢3,) = me 3, and E(e}) — 3 = ke;. This involves solving the following system of equations for a;, b;, ¢;
and d;:
a; +c¢; =0,
b2 + 6bid; + 27 + 15d7 =1,
2¢; (b7 + 24bid; + 105d; + 2) = me 3.4,
24[bid; + Z (1 + b7 + 28bid;) + d? (12 + 48bid; + 141¢} + 225d7)] = key.

4. Finally, we set u(r) = Z;V ) qg) (r)7 where q( ) is the (i,7) element of Q™ and s(r) is the 7" draw from

the DGP in step 3 above.

Appendix C: Data sources and their descriptions

We downloaded price and dividend data on all 500 securities included in the S&P 500 index at close of
each month from September 1989 to June 2015 (inclusive) using Datastream.’® For example, the code
LS&PCOMP1210 will give the 500 constituents of S&P 500 index as of December 2010.To construct our security
return data, the security price (P) and dividend yield (DY) are obtained from Datastream, as specified the

29We could only download data for 499 securities on September 30, 2008, and it is confirmed on Standard &
Poor’s website that the S&P 500 index on this day was based on 499 securities.
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table below. We adopted the following rules in selecting individual securities for inclusion in our analysis. At
the end of each month under consideration, we downloaded historical return series on all 500 securities included
in the S&P 500 index at the time. We then dropped all securities with less than 60 months of observations
and/or with five consecutive zeros in the middle of sample periods.

Variable Description Source (Code)
P, Price of security ¢ at the market close of the last day of Datastream (LS&PCOMP, P)
the month (¢), adjusted for subsequent capital actions.
Dividend per share as a percentage of the share price
DYy based on an anticipated annual dividend and excludes Datastream (LS&PCOMP, DY)
special or once-off dividends.
P, S&P 500 price index at close of the final day of the month (¢). | Datastream (S&PCOMP, PI)
Datastream (S&PCOMP, DY,
DY, ‘Dividend yield’ on S&P 500 as a percentage of P;. up to Oct. 2012, S&PCOMZ,
DY, Nov. 2012 onwards)
SMB, Average return in per cent on the three small portfolios Ken French’s data library
minus the average return on the three big portfolios. (up to Jan. 2016)
HML, Average return in per cent on two value portfolios minus Ken French’s data library
the average return on two growth portfolios. (up to Jan. 2016)
Monthly return of security ¢ in month ¢ in per cent,
Tit Datastream
computed as 100(P;y — Pit—1)/Pi,t—1 + DYi /12.
One-month US treasury bill rate in per cent in month ¢ Ken French’s data library
e as the risk-free asset return from Ibbotson Associates. (up to Jan. 2016)
Value-weight return on all NYSE, AMEX, and NASDAQ Ken French’s data library
e stocks (from CRSP) in per cent. (up to Jan. 2016)
Monthly return of S&P 500 portfolio at month ¢
T Datastream
in per cent, computed as 100(P; — Pi—1)/Pi—1 + DY;/12.
Monthly rate of return of Dow Jones Credit Suisse Core Credit Suisse (ROR), up to May
" Long/Short Equity Hedge Fund (the end of the month) 2016 http://www.hedgeindex.com
Tht Tht — Tt.
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