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Abstract
This paper proposes a quasi maximum likelihood estimator for short T dynamic

�xed e¤ects panel data models allowing for interactive time e¤ects through a multi-
factor error structure. The proposed estimator is robust to the heterogeneity of the
initial values and common unobserved e¤ects, whilst at the same time allowing for
standard �xed and time e¤ects. It is applicable to both stationary and unit root cases.
Order conditions for identi�cation of the number of interactive e¤ects are established,
and conditions are derived under which the parameters are almost surely locally iden-
ti�ed. It is shown that global identi�cation is possible only when the model does not
contain lagged dependent variables. The QML estimator is proven to be consistent
and asymptotically normally distributed. A sequential multiple testing likelihood ratio
procedure is also proposed for estimation of the number of factors which is shown to be
consistent. Finite sample results obtained from Monte Carlo simulations show that the
proposed procedure for determining the number of factors performs very well and the
quasi ML estimator has small bias and RMSE, and correct empirical size even when
the number of factors is estimated. An empirical application, revisiting the growth
convergence literature is also provided.
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1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data
models where the time dimension (T ) is short and �xed relative to the cross section dimension
(N), which is large. Such panels are usually referred to as micro panels, and often arise in
microeconometric applications. For example, many empirical applications based on survey
data such as the British Household Panel Surveys (BHPS) and the Panel Study in Income
Dynamics (PSID) are characterised by data covering relatively short time periods. Short
T panels also arise in the cross country empirical growth literature where data is typically
averaged over �ve to seven years to eliminate the business cycle e¤ects. It is now quite
common to include dynamics in such studies in addition to individual and time �xed e¤ects,
the former being particularly important to capture individual characteristics, and the latter
to control for common shocks and the in�uence of aggregate trends. Empirical applications of
dynamic panel data models with both individual and time e¤ects using survey data include,
for example, the studies of Guariglia and Rossi (2002) and Prior (2010). In the context of
growth empirics these include Islam (1995), Caselli et al. (1996), and Aiginger and Falk
(2005) among others. Although such studies feature individual and time e¤ects along with
dynamics, it is rare to �nd studies that allow for error cross section dependence as well. In
many empirical applications time dummies are used to deal with cross section dependence,
which is valid only if the time e¤ect is homogeneous over the cross section units.
Both generalized method of moments (GMM) and likelihood approaches have been ad-

vanced to estimate such panel data models. See, for example, Anderson and Hsiao (1981),
Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998), Hsiao et
al. (2002), Binder et al. (2005) and Moral-Benito (2013). However, this literature assumes
that the errors are cross sectionally independent, which might not hold in many applications
where cross section units are subject to common unobserved e¤ects, or possibly spatial or
network spillover e¤ects. Ignoring cross section dependence can have important consequences
for conventional estimators of dynamic panels. Phillips and Sul (2007) study the impact of
cross section dependence, modelled as a factor structure, on the inconsistency of the pooled
least squares estimate of a short dynamic panel regression. Sara�dis and Robertson (2009)
investigate the properties of a number of standard widely used GMM estimators under cross
section dependence and show that such estimators are inconsistent.
In applications where the spatial patterns are important and can be characterised by

known spatial weight matrices, error cross section dependence is typically modelled as spatial
autoregressions and estimated jointly with the other parameters of the dynamic panel data
model. Such models with short T are considered, for example, by Elhorst (2005) and Su and
Yang (2015) for random e¤ects as well as �xed e¤ects speci�cations. In the latter case the
�rst-di¤erence operator is applied to eliminate the �xed e¤ects and then the transformed
likelihood approach of Hsiao et al. (2002) is used to deal with the initial value problem.
The treatment of the initial values in spatial dynamic panel data models poses additional
di¢ culties and requires further investigation. Jacobs et al. (2009) discuss GMM estimation of
dynamic �xed e¤ect panel data models featuring spatially correlated errors and endogenous
interaction. See Lee and Yu (2010) for a review.
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In addition to the spatial e¤ects it is also likely that the error cross section dependence
could be a result of omitted unobserved common factor(s). This class of models has been
the subject of intensive research over the recent years and robust estimation procedures have
been advanced in the case of panels where N and T are both large. See, for example, Pesaran
(2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios et al.
(2011). By comparison, less work has been done on estimation of short T dynamic panels
where error cross section dependence is due to unobserved common factors, also known as
interactive e¤ects. An early contribution by MaCurdy (1982) features panel models with
an error structure that combines factor schemes with autoregressive-moving average models
estimated by maximum likelihood and used to analyse the error process associated with the
earnings of prime age males. Further recent related literature will be considered in the next
section. A recent survey of panel data models with error cross section dependence and short
T can be found in Sara�dis and Wansbeek (2012).
Motivated by the practices and requirements of the empirical literature, in this paper

we explicitly consider individual and time e¤ects within a dynamic panel data model with
short T; allowing in addition for interactive e¤ects. In the analysis of output and growth
convergence for example, accounting for interactive e¤ects allows to capture the idea that
all economies have access, possibly with di¤erent degrees, to the same pool of technological
knowledge (Pesaran, 2007). Building on the work of Hsiao et al. (2002), we propose an
alternative quasi maximum likelihood (QML) approach applied to the panel data model af-
ter �rst-di¤erencing. In this way, we account for heterogeneity of the initial values and the
common factors in an integrated framework. We establish order conditions for identi�cation
of the number of interactive e¤ects, and derive conditions under which the parameters are
almost surely locally identi�ed. Global identi�cation is possible only when the model does
not contain lagged dependent variables. The QML estimators are shown to be consistent
and asymptotically normally distributed both for stationary and unit root cases. Most im-
portantly, for the practical implementation of our approach we propose a sequential multiple
testing likelihood ratio (MTLR) procedure to estimate the number of interactive e¤ects,
which delivers a consistent estimator of the true number of factors. The proposed method
can be readily extended to a panel VAR framework as in Binder et al. (2005). Monte
Carlo simulations are carried out to investigate the �nite sample performance of the QML
estimator and the MTLR procedure, followed by an application of the approach to growth
convergence.
The rest of this paper is organised as follows. Section 2 reviews the recent related lit-

erature. Section 3 sets out the dynamic panel data model and its assumptions. Section 4
develops the quasi likelihood approach and derives a solution using an eigenvalue approach.
Identi�cation of the number of factors and the parameters of the model are discussed in
Section 5. Section 6 establishes the consistency of the QML estimator and derives its as-
ymptotic distribution. Section 7 presents the sequential MTLR procedure for estimating
the number of factors. Section 8 describes the Monte Carlo experiments and provides �nite
sample results on the performance of the sequential MTLR estimator for the number of
factors, and the proposed QML estimator. An empirical application to growth convergence
is provided in Section 9. The �nal section presents some concluding remarks. All technical
proofs are provided in the Appendix. Details of alternative GMM estimators used in the
Monte Carlo experiments together with additional Monte Carlo results are provided in an
online supplement.
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Notations: Let w = (w1; w2; :::; wn)
0 and A = (aij) be an n � 1 vector and an n � n

matrix, respectively. Denote the Euclidean norm of w and the Frobenius norm of A by
kwk = (�ni=1w

2
i )
1=2 and kAk = [Tr(A0A)]1=2 respectively, and the largest and smallest

eigenvalue of A by �max(A) and �min(A). � T is a T � 1 vector of ones, � T = (1; 1; :::; 1)0.
If fyng1n=1 is any real sequence and fxng

1
n=1 is a sequence of positive real numbers, then

yn = O(xn) if there exists a positive �nite constant C0 such that jynj =xn � C0 for all n.
yn = o(xn) if fn=gn ! 0 as n ! 1. If fyng1n=1 and fxng

1
n=1 are both positive sequences of

real numbers, then yn = 	 (xn) if there exists N0 � 1 and positive �nite constants K0 and
K1 such that infn�N0 (yn=xn) � K0 and supn�N0 (yn=xn) � K1. Positive, possibly large, �xed
constants will be denoted by K (and if needed by K0; K1 and so on) that could take di¤erent
values in di¤erent equations. Small positive constants will be denoted by �. E0(:) denotes
expectations taken under the true probability measure. !p and

a:s:! denote convergence in
probability and almost sure (a.s.) convergence, respectively. !d denotes convergence in
distribution for �xed T and as N !1.

2 Related Literature

There is a substantial literature on estimation of short T dynamic panels. Such models are
typically estimated using the generalized method of moments (GMM) applied to the �rst-
di¤erenced version of panel data models. The GMM approach is quite general and has been
applied to a variety of dynamic panels. See, for example, Anderson and Hsiao (1981 and
1982), Holtz-Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt (1995), Arel-
lano and Bover (1995), and Blundell and Bond (1998). However, these papers primarily focus
on models with individual e¤ects and when they consider time e¤ects this is done assuming
they are homogeneous across the individual units. Short T dynamic panels with heteroge-
neous time e¤ects modelled as multi-factor error processes are considered by Ahn, Lee and
Schmidt (2001,2013), and more recently by Bai (2013).1 Ahn et al. (2001) consider a single
factor error structure and propose a quasi-di¤erencing approach to eliminate the factor, and
then apply GMM to consistently estimate the parameters. The quasi-di¤erencing transfor-
mation was originally proposed by Chamberlain (1984). Holtz-Eakin et al. (1988) implement
it in the context of a bivariate panel autoregression. Nauges and Thomas (2003) follow the
same approach in addition to prior �rst-di¤erencing to eliminate the �xed e¤ects, which they
consider separately from the single factor error structure they assume for the errors. Ahn et
al. (2013) extend their quasi-di¤erencing approach to a multi-factor error structure. More
recently, Hayakawa (2012) proposes a GMM estimator based on the projection method while
Robertson and Sara�dis (2015) propose an instrumental variable estimation procedure that
introduces new parameters to represent the unobserved covariances between the instruments
and the unobserved factors. They show that the resulting estimator is asymptotically more
e¢ cient than the GMM estimator based on quasi-di¤erencing as it exploits extra restrictions
assumed. See also comments on this approach by Ahn (2015) and Hayakawa (2016).
As an alternative to GMM, Bai (2013) proposes a quasi-maximum likelihood approach

applied to the original dynamic panel data model without di¤erencing, treating time e¤ects
as free parameters, and without explicitly allowing for individual e¤ects. To deal with

1Bai (2013) refers to models with multi-factor error structures as panels with interactive e¤ects.
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possible correlations between the factor loadings and the regressors Bai follows Mundlak
(1978) and Chamberlain (1982) and speci�es linear relationships between the factor loadings
and the regressors to be estimated along with the other parameters. However, he continues
to assume that all factor loadings (including the ones associated with the individual e¤ects)
are uncorrelated with the errors.
We also use a likelihood framework, but unlike Bai (2013) we allow for unrestricted

individual e¤ects possibly correlated with the errors. Our procedure also di¤ers from the
one suggested by Bai (2013) since we apply the maximum likelihood estimation to �rst-
di¤erences with individual e¤ects eliminated. Our proposed estimation method can be viewed
as a generalization of the transformed likelihood approach of Hsiao et al. (2002) where we
now allow for unobserved common e¤ects through the use of a multi-factor error structure.
In this way we deal with error cross sectional dependence as well as the dependence of the
initial values on the model parameters. Finally, we propose a sequential multiple testing
likelihood procedure to consistently estimate the number of factors which is not considered
by Bai (2013).

3 A dynamic panel data model with interactive error
components

We begin with the following standard dynamic panel data model with time and �xed e¤ects

yit = 
yi;t�1 + �
0xit + �i + �t + � it; for t = 0; 1; 2; :::; T; and i = 1; 2; :::; N; (1)

where xit is a k � 1 vector of regressors that vary both across i and t, j
j � K, � is a k � 1
vector of unknown coe¢ cients, with k�k < K, and K denotes a �nite positive constant. �i
and �t denote unit-speci�c �xed e¤ects and time e¤ects, respectively. We consider T to be
�xed, and allow N ! 1, under which the unit root case where j
j = 1 is also covered. It
is assumed that the observations fyit;xit, for t = 0; 1; :::; T ; i = 1; 2; :::; Ng are available for
estimation of 
 and �, which are the parameters of interest.
Speci�cation (1) is the standard short T dynamic panel data model used extensively in

the empirical literature assuming that the errors, � it, are independently distributed across
i and t. In this paper we contribute to this literature by allowing the errors to have the
following multi-factor structure

� it = �
0
ift + uit; (2)

where �0ift is an interactive e¤ect with ft an m� 1 vector of unobserved common factors, �i
an m � 1 vector of associated factor loadings, and uit denotes the remaining idiosyncratic
error term. The above speci�cation contains a number of models considered in the literature
and reviewed in Section 2 above as special cases. It also provides a direct generalization of
Hsiao and Tahmiscioglu (2008) who consider estimation of (1) with IID errors using the
transformed MLE procedure. The model considered by Ahn et al. (2013) allows for errors
to have the multi-factor error structure as in (2) but does not explicitly allow for time e¤ects
in (1).
We propose an extension of the transformed MLE by treating the unknown factors as

�xed parameters to be estimated for each t, but following Ahn, Lee and Schmidt (2001,2013)
we assume the factor loadings to be random and distributed independently of the errors, uit;
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and the regressors, xit. We also contribute to the analysis of identi�cation of short T dynamic
models with a multiple factor error structure, and derive order conditions for identi�cation
of m and the parameters of interest, 
 and �. Initially, we develop our proposed estimation
method assuming that m is known, and consider the problem of consistent estimation of m
in Section 7.1.
We make the following assumptions:

Assumption 1 The idiosyncratic errors, uit, for i = 1; 2; :::; N are distributed independently
across i and over t with zero means and constant variance, �2, such that 0 < �2 < K, and
supi;tE juitj

4+� < K.

Assumption 2 The time e¤ects, �t, for t = 1; 2; :::; T , and the m � 1 vector of factors ft,
vary across t, so that ��t 6= 0 and gt = �ft 6= 0 at least for some t = 2; :::; T; m < T; and
supt kgtk < K.

Assumption 3 The regressors, xit, for i = 1; 2; ::::; N are distributed independently of uit0
and �i, for all i; t, and t

0, and their �rst-di¤erences, �xit, follow general linear stationary
time series processes

�xit = cx +
1X
j=0

	j"i;t�j; for i = 1; 2; :::; N; (3)

where cx and 	j for j = 0; 1; ::: are k � 1 vector and k � k matrices of �xed constants such
that kcxk < K, and

P1
j=0 k	jk < K. Further "it s IID(0; Ik), with supi;tE k"itk

4+� < K.

Assumption 4 The unit speci�c �xed e¤ects, �i, for i = 1; 2; :::; N are allowed to be cor-
related with xjt, �j, and ujt, for all i; j and t, and could be deterministic and uniformly
bounded, supi j�ij < K, or stochastic and uniformly bounded, supiE j�ij < K.

Assumption 5 The unobserved m�1 factor loadings, �i, for i = 1; 2; ::::; N are distributed
independently of ujt, and the common factor, ft, for all i, j and t; and are independently and
identically distributed across i with zero means, and a �nite covariance matrix, namely,

�i s IID(0;
�); (4)

where
� is anm�m symmetric positive de�nite matrix with k
�k < K and supiE k�ik
4+� <

K.

The above assumptions are standard in the literature on short T dynamic panels. As-
sumption 2 is innocuous and requires time e¤ects and the factors to be time-varying. Note
that the case where �t = � and/or ft = f for all t is already covered by the presence of the
�xed-e¤ects, �i. Assumption 3 requires the regressors to be strictly exogenous with respect
to � it. This can be relaxed by considering a vector autoregressive version of (1) and (2)
where zit = (yit;x

0
it)
0 is modelled jointly as in Holtz-Eakin et al. (1988) and Binder et al.

(2005). While in practice the choice of strictly exogenous variables is typically driven by
economic theory and prior knowledge, tests for strict exogeneity are also available, see for
example Su et al. (2016). Regarding possible correlation between �i and the regressors �xi;
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this can be controlled for by using the methods of Mundlak (1978) and Chamberlain (1982).
Furthermore, while the composite error term, � it; in (1) is cross-sectionally heteroskedastic
through the presence of the interactive e¤ects, allowing explicitly for the same in the idio-
syncratic error, uit; of (2) can be pursued along the lines of Hayakawa and Pesaran (2015).
These authors extend the cross-sectionally independent homoskedastic idiosyncratic errors
of Hsiao et al. (2002) to the heterosketastic case. The above extensions are not considered
here as they are beyond the scope of the present focus of the paper. Assumption 4 permits
a very general speci�cation of �xed e¤ects, which is one of the main strengths of the pro-
posed method for empirical applications where little is known about the individual e¤ects.
Assumption 5 is required for identi�cation of the factors and the parameters.
Combining (1) and (2), and eliminating the individual e¤ects by �rst-di¤erencing we have

�yit = 
�yi;t�1 + �
0�xit + dt + g

0
t�i +�uit, for t = 2; 3; ::::; T ; i = 1; 2; :::; N; (5)

where dt = ��t 6= 0 and gt = �ft 6= 0 for some t � 2, and

�it = g
0
t�i +�uit, for t = 2; 3; :::; T: (6)

For the speci�cation of �yi1 we make the following assumption about the initialization of
(5):

Assumption 6 Suppose that for each i, f�yitg is started from time t = �S + 1, for some
S > 0, with the initial �rst di¤erences, �yi;�S+1, as random draws from a distribution such
that

E (�yi;�S+1 j�xi ) = aS + �
0
S�xi; (7)

where �xi = (�x0i1;�x
0
i2; :::;�x

0
iT )

0 is the kT � 1 vector of observations on the regressors,
aS is a �xed coe¢ cient that allows for non-zero means, and �S is the kT � 1 vector of
coe¢ cients, such that supS jaSj < K, and supS k�Sk < K. Furthermore, let

$i = �yi;�S+1 � E (�yi;�S+1 j�xi ) ; (8)

and suppose that $i s IID(0;�2$), 0 < �2$ < K, and supiE j$ij4+� < K:

This assumption is not that restrictive and allows the initial values, yi;�S and yi;�S+1 to
depend on the �xed e¤ects, �i. Also it is redundant if j
j < 1 and S is su¢ ciently large, and
obviously does not apply if there are no regressors in (1). The main restriction here is the
assumed linearity of (7).
The following proposition summarises the result for �yi1:

Proposition 1 Under Assumptions 1, 3 and 6

�yi1 = d1 + �
0�xi + �i1; for i = 1; 2; :::; N; (9)

where d1 and � are unknown parameters of dimensions 1 and kT , respectively, and �i1 is the
composite error de�ned by

�i1 = ~g
0
1�i + vi1; (10)
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where k~g1k < K: The component vi1 is distributed independently of �xi and �i and satis�es

vi1 s IID(0; !�2); sup
i
E jvi1j4+� < K; (11)

for some small � > 0, and a �xed K > 0, and

Cov (vi1;�uit) =

�
��2 for t = 2
0 for t = 3; 4; :::; T

, (12)

where 0 < !min < ! < !max <1, and !min and !max are �xed constants.

Remark 1 In the case where j
j < 1 and S !1 we have

�yi1 = d1 + �
0�xi + �i1;

where �i1is de�ned by (10), with vi1 given by

vi1 =
1X
j=0


j�ui;1�j + �i;

where

�i =
1X
j=0


j�0�xi;1�j � E

 1X
j=0


j�0�xi;1�j j�xi

!
:

Since �xit, �i, and uit0 are independently distributed for all i, t and t
0, it then follows that

vi1 is distributed independently of �i and �xi, with E (vi1) = 0, and

V ar (vi1) = V ar

 1X
j=0


j�ui;1�j

!
+ V ar (�i)

=
2�2

1 + 

+ V ar (�i) > 0:

In the case of pure AR(1) panels, we have the further parametric restriction, V ar (vi1) = 2�2

1+

,

which if imposed can increase estimation e¢ ciency.

Writing (5) and (9) in matrix notation we now have

�yi = �Wi'+ �i; �i = G�i+ri; (13)

where �yi = (�yi1;�yi2; :::;�yiT )
0, �Wi is the T � (Tk + 1 + k + T ) matrix given by

�Wi =

0BBB@
1
0
...
0

0 : : : 0
1 : : : 0
... : : :

...
0 : : : 1

�x0i 0
0 �x0i2

...
0 �x0iT

0
�yi1
...

�yi;T�1

1CCCA ; (14)

' = (d0;�0;�0; 
)
0 with d = (d1; d2; :::; dT )

0; G0 = (~g1;g2; :::;gT ), ri = (vi1;�ui2; :::;�uiT )
0 ;

and �i =
�
~�i1; �i2; � � � ; �iT

�0
; and recall that ~�i1 = ~g01�i + vi1, and �it = g0t�i + �uit; for

t = 2; 3; :::; T .
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Proposition 2 Consider the composite random variable; �it, i = 1; 2; :::; N , for t = 1 de�ned
by (10), and for t = 2; 3; :::; T de�ned by (6). Then under Assumptions 1, 2, 3, 5, and 6,
the following moment conditions hold:

sup
i
E
�
j�itj

4+�� < K, for t = 1; 2; :::; T , (15)

and
sup
i;t
E
�
k�xitk4+�

�
< K. (16)

4 Quasi Maximum Likelihood Estimation

Consider the panel data model given by (13) and note that under Assumption 1, and using
(11) and (12), we have

E(rir
0
i) = �2
; (17)

where

E(rir
0
i) = �2

0BBBBBB@
! �1 0

�1 2
. . . 0
. . .
. . . 2 �1

0 �1 2

1CCCCCCA = �2
; (18)

and 
 = 
(!). Since j
j = 1+ T (! � 1) ; ! needs to satisfy ! > 1� 1
T
to ensure that 
 is

positive de�nite. Also, since �i and ri are independently distributed we have

V ar(�i) = E(�i�
0
i) = �2
+G
�G

0=�2 (
+QQ0) = �� ( ) (19)

where Q = (1=�)G
1=2
� , rank (Q) = m; and  = (!; �2; vec(Q)0)0. With this normalisation,

the quasi-log-likelihood of the transformed model (13) is given by

`N (�) = `N ('; ) = �
NT

2
ln (2�)� N

2
ln j�� ( )j �

1

2

NX
i=1

�0i(')�� ( )
�1 �i(') (20)

= �NT
2
ln (2�)� NT

2
ln(�2)� N

2
ln j
+QQ0j � 1

2�2

NX
i=1

�0i(') (
+QQ
0)
�1
�i(');

(21)

where
�i(') = �yi ��Wi'; (22)

and it is assumed that ' does not depend on  . For �xed m and T , the above log-likelihood
function depends on a �xed number of unknown parameters collected in the [T (m+k+1)+
k + 3]� 1 vector � = ('0; 0)0.
To obtain the QML estimator, since 
 is a positive de�nite matrix and QQ0 is rank

de�cient (recall that by assumption m < T ), we �rst note that

j
+QQ0j = j
j
��Im+Q0
�1Q

�� ;
8



and using the Woodbury matrix identity

(
+QQ0)
�1

= 
�1 �
�1Q(Im +Q
0
�1Q)�1Q0
�1 (23)

= 
�1 �
�1QA�1Q0
�1;

where A is a non-singular matrix de�ned by

A = Im +Q
0
�1Q: (24)

Using the above results in (21), and after some simpli�cation the quasi-log-likelihood function
can be written as

N�1`N (�) / �
T

2
ln(�2)�1

2
ln j
j�1

2
ln jAj� 1

2�2
�
Tr
�
BN


�1�� Tr
�
BN


�1QA�1Q0
�1
��
;

(25)
where j
j = 1 + T (! � 1), and

BN(') = N�1
NX
i=1

�i(')�
0
i('): (26)

If �i and uit are normally distributed, maximising (21) gives the maximum likelihood
estimator of �. If they are instead IID with mean zero and uit has �nite fourth moments,
maximising (21) gives the QMLE of � (White 1982). Detailed regularity conditions can be
found in Section 6.
For analytical convenience and identi�cation purposes, which will become clearer below,

we further de�ne P = 
�1=2QA�1=2. Note that since A and 
 are non-singular matrices,
then rank (P) = m, as well. Further, it is easily seen that

Im �P0P= Im �A�1=2Q0
�1QA�1=2;

and using Q0
�1Q = A�Im from (24), we have

A�1 = Im �P0P: (27)

Similarly,
Tr
�
BN


�1QA�1Q0
�1
�
= �2Tr [P0CN (�)P] ;

where
CN (�) = ��2
�1=2BN(')


�1=2; (28)

and � = ('0; !; �2)0:
Using the above results, the quasi-log-likelihood function given by (25) can now be written

as

N�1`N (�;P) / �
T

2
ln(�2)�1

2
ln [1 + T (! � 1)]+1

2
ln jIm �P0Pj�

1

2
fTr [CN (�)]� Tr [P0CN (�)P]g :

(29)
While as mentioned earlier the transformation from Q to P is carried out for analytical
convenience, P is still not identi�ed. It is easily seen that the value of `N (�;P) is invariant
to the orthonormal transformation of P. To see this consider the transformation ~P = P�,
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where � is an m � m orthonormal matrix such that �0�= Im. Then it is readily veri�ed
that N�1`N (�;P) = N�1`N

�
�; ~P

�
. Hence, P (or ~P) is identi�ed only up to an m �

m orthonormal rotation matrix. Let P = (p1;p2; :::;pm), where pt is the t
th column of P,

and pt is a T � 1 vector of unknown parameters. Since rank (P) = m, then P0P can be
diagonalised by an orthonormal transformation, and without loss of generality we can impose
the following m(m� 1)=2 orthogonality conditions

p0tps = 0, for all s 6= t = 1; 2; :::;m: (30)

Under these restrictions the quasi-log-likelihood function, (29), simpli�es to

N�1`N (�;P) / �
T

2
ln(�2)�1

2
ln [1 + T (! � 1)]+1

2

mX
t=1

ln (1� p0tpt)+
1

2

mX
t=1

p0tCN (�)pt�
1

2
Tr [CN (�)] :

(31)
Taking �rst derivatives with respect to pt and setting these derivatives to zero now yields

CN (�) p̂t �
�

1

1� p̂0tp̂t

�
p̂t = 0, for t = 1; 2; :::;m; (32)

where p̂t is the quasi-maximum likelihood estimator of pt (in terms of �). Therefore, p̂t is
the eigenvector of CN (�) associated with the �rst m largest non-zero eigenvalues of CN (�),
which we denote by �1 (�) > �2 (�) > :::: > �m (�) > 0. Note that CN (�) is a symmetric
positive de�nite matrix with all real eigenvalues �t (�) > 0; for t = 1; 2; :::; T . We also have

�t (�) =
1

1� p̂0tp̂t
; and p̂0tCN (�) p̂t = �t (�)� 1:

Hence, the concentrated quasi-log-likelihood function in terms of � can be written as

N�1`N (�;m) / �
T

2
ln(�2)�1

2
ln [1 + T (! � 1)]�1

2

mX
t=1

ln [�t (�)]+
1

2

mX
t=1

[�t (�)� 1]�
1

2

TX
t=1

�t (�) ;

(33)
where �t (�) is the tth eigenvalue of CN (�), given by (28). This concentrated quasi-log-
likelihood function can now be maximised with respect to � = ('0; !; �2)0. The QML esti-
mators, �̂t (�), can then be computed using the QML estimator of � and their corresponding
variance covariance matrix can be computed using the delta method.
With regard to the computation of p̂t it is important to bear in mind that standard

eigenvector routines provide eigenvectors that are typically orthonormalised. Whilst in the
above analysis, p̂1; p̂2; ::::; p̂m are orthogonal to each other, their length is not unity and is
given by

p̂0tp̂t = 1�
1

�t (�)
: (34)

5 Identi�cation conditions

We shall �rst derive necessary order conditions on m and T for identi�cation, and then
subject to these order conditions we derive additional conditions under which the parameters
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are locally identi�ed, and show that global identi�cation of short T panels with an error multi-
factor structure is possible only in the case of panels with strictly exogenous regressors.
We begin our investigation by considering the order condition for identi�cation of the

panel AR(1) model. Using (5) and (9), we note that in this case

�yit = dt + ~g
0
t�i + vit; for t = 1;

�yit � 
�yi;t�1 = dt + g
0
t�i +�uit, for t = 2; 3; ::::; T;

which can be written as

B (
)�yi = d+G�i+ri = d+ �i, for i = 1; 2; :::; N;

where d = (d1; :::; dT )
0 ; �yi and �i are as de�ned above, and

B (
) =

0BBB@
1 0 � � � 0
�
 1 � � � 0
...

. . . . . .
...

0 � � � �
 1

1CCCA : (35)

Note also that, jB (
)j=1, and

B�1 (
) =

0BBB@
1 0 0 0


 1
. . . 0

...
. . . . . . 0


T�1 � � � 
 1

1CCCA ; (36)

and hence
�yi = a+B

�1 (
) �i;

where

a = B�1 (
)d =

0BBB@
1 0 0 0


 1
. . . 0

...
. . . . . . 0


T�1 � � � 
 1

1CCCA
0BBB@

d1
d2
...
dT

1CCCA =

0BBB@
d1


d1 + d2
...


T�1d1 + 
T�2d2 + ::::+ 
dT�1 + dT

1CCCA :

(37)
Since d is a T �1 unrestricted parameter vector, then a is also unrestricted, namely knowing
a does not help identify 
. Therefore, 
 can only be identi�ed from the T (T + 1)=2 distinct
elements of V ar(�yi) which is given by

V ar(�yi) = B(
)�1V ar(�i)B
0(
)�1

= �2B(
)�1 (
+QQ0)B0(
)�1 = � (%;Q) ;

where % = (
; !; �2)
0
: But since Q enters � (%;Q) as A = QQ0 we need to consider the

unknown elements of the symmetric matrix A under di¤erent rank conditions. First it is
clear that if A has full rank, namely if rank(A) = T , then % is not identi�ed. Hence, for
identi�cation of %; we must have rank (A) = rank (Q) = m < T . When rank (Q) = m,
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Q is identi�ed only up to an m �m non-singular transformation. However, the number of
non-redundant parameters of Q is given by mT �m(m� 1)=2 (see p. 507 of Hayashi et al.
(2007)). Hence, the order condition for identi�cation of % and the non-redundant elements
of Q is given by

T (T + 1)=2 � 3 + Tm�m(m� 1)=2: (38)

This order condition is satis�ed if T � 3; for m = 0; 1; 2; ::;mmax where mmax is the largest
value of m that satis�es (38), that is mmax = T �2. It is easily seen that the above condition
is not satis�ed if m = T � 1. The maximized log-likelihood values for the rank de�cient
cases, m = 0; 1; 2:::;mmax can be computed using (33).
Consider the more general case where the panel AR(1) model also contains exogenous

regressors, and note that the system of equations (13) can be written equivalently as

�yi = a+ ~Zi (
) � +B
�1 (
) �i; (39)

where a; B�1 (
) and �i are as de�ned above, � = (�
0;�0)0, ~Zi (
) = B�1 (
)Zi, and Zi is

the T � (Tk + k) matrix of observations on the exogenous regressors de�ned by

Zi =

0BBB@
�x0i 0
0 �x0i2
...

...
0 �x0iT

1CCCA : (40)

It is clear from (39) that a and �, and hence d and �, are uniquely identi�ed for a given value
of 
. But it is already established that 
 is identi�ed from the covariance of B�1 (
) �i, given
by � (%;Q) = �2B(
)�1 (
+QQ0)B0(
)�1, if the order condition (38) is met. Note that
� (%;Q) does not depend on d and �, and hence knowing d and � will not help identi�cation
of 
. As a result, the order condition (38) continues to be su¢ cient for identi�cation of the
parameters of the panel ARX(1) model.
To investigate necessary and su¢ cient conditions for identi�cation of the parameters we

consider the average log-likelihood function de�ned by (20) which we write as,

�̀
N (�) = N�1`N ('; ) = �

T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

NX
i=1

�0i(')�� ( )
�1 �i('); (41)

where � =('0; 0)0, ' = (d0;�0;�0; 
)
0
= (�0; 
)

0
;  = (!; �2;q0)

0, and q refers to the
[mT �m(m� 1)=2] � 1 vector containing the non-reduntant elements of Q. Suppose that
� 2 ��, 
 2 �
, and  2 � , and denote the true values of �; 
 and  by �0; 
0, and
 0, respectively. Consider the set N�(
0) de�ned as follows:

De�nition 1 Let N�(
0) be a set in the closed neighbourhood of 
0 de�ned by

N�(
0) = f
2 �
; j
�
0j � �g ;

for some small � > 0; where �
 is a compact subset of R.

We now show that �0 = ('00; 
0
0)
0 = (�00; 
0; 

0
0)
0, where � =(d0;�0;�0)0 is identi�ed on

�� = N�(
0)��� �� . For this purpose, we require the following additional assumption.
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Assumption 7 (i) � 2 �� = N�(
0) � �� � � ; where �� = �d������ and � =
�!�����q, �d, ��, �� and �q are compact subsets of Rnd, Rn� , Rn� , and Rnq , re-
spectively; �! and �� are compact subsets of R; where nd = T , n� = kT , n� = k,
and nq = Tm � m(m � 1)=2; �0 = ('00; 

0
0)
0 = (�00; 
0; 

0
0)
0 lies in the interior of ��

(ii) ��( ) =�
2 (
+QQ0), and for some cmax > cmin > 0, cmin � inf 2� �min [��( )] <

sup 2� �max [��( )] � cmax, and (iii) as N !1

AN ( ) =
1

N

NX
i=1

�W0
i�� ( )

�1�Wi
a:s:! A ( ) uniformly in � , (42)

where A ( ) = limN!1N
�1PN

i=1E
�
�W0

i�� ( )
�1�Wi

�
is positive de�nite for all values

of  2 � .

The �rst part of this assumption is standard and rules out parameter values on the
boundary of the parameter space, and since N�(
0) is a subset of �
 which is compact, it
also follows that �� being the Cartesian product of compact sets, is itself compact, namely
�� 2 Rn� , where n� = 3+ T (k+1)+ k+ Tm�m(m� 1)=2. Note also that order condition
(38) is taken into account in setting n�. The eigenvalue conditions on �� ( ) in the second
part of the assumption are required for the proof of consistency results. This part of the
assumption also holds when the order condition is met and ! > 1 � 1

T
. Recall that under

the latter 
 is a positive de�nite matrix and Q is rank de�cient, and under Assumption
1 0 < �2 < K. For 
 we need to distinguish between the case where S is �xed (namely
initialization is from a �nite past) and when S ! 1. Under the former it is only required
that j
j < K; which includes the unit root case (j
j = 1). Under the latter (when S !1) ,
we must have j
j < 1. Consider now the third part of Assumption 7, and note that

sup
i
E


�W0

i�� ( )
�1�Wi



2 < 

�� ( )
�1

2 sup

i
E k�Wik4 < K;

where


�� ( )

�1

 < K under condition (ii) of Assumption 7, and supiE k�Wik4 < K
by Lemma 1. It is also easily seen that �Wi are cross-sectionally independent under As-
sumptions 1, 3, and 5. This follows since �xit are independent across i by Assumption
3, and �yit being a function of �xit and �it (see (39)) are also cross-sectionally independent
noting that �it are cross-sectionally independent under 1 and 5. Hence, AN ( )

a:s:! A ( )
for every  2 � (see, for example, Theorem 19.4 of Davidson (1994)). Under condition
(ii) of Assumption 7 it is trivial to see that this result also holds uniformly in � . It is
important to note that condition (42) holds even if we allow for common e¤ects in xit by
relaxing Assumption 3 to allow for unobserved common factors so long as the factor loadings
are cross-sectionally independent. Such e¤ects are allowed for in the Monte Carlo experi-
ments, see (52). Finally, the condition that A ( ) is a positive de�nite matrix is needed for
identi�cation of '.
The main identi�cation result is set out in the following proposition:

Proposition 3 Consider the model given by (1) and (2), with the associated log-likelihood
function for �rst-di¤erences given by (20). Suppose that Assumptions 1-7, and the order
condition (38) hold. Then �0 is almost surely locally identi�ed for values of 
 su¢ ciently
close to 
0, as formalised by de�nition 1.
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Remark 2 In the absence of lagged dependent variables in (1), �0 is almost surely globally
identi�ed. This can be easily seen from the proof of Proposition 3 in the Appendix.

6 Asymptotic properties of the QML estimator

The analysis of consistency and asymptotic normality of the QML estimator, �̂ =argmax�2�� �̀N (�),
now follows by application of standard results from the literature. Almost sure local consis-
tency of �̂ follows, for example, from a straightforward adaptation of Theorem 9.3.1 of David-
son (2000). Speci�cally: (i) �� as a subset of � is compact, (ii) setting �CN (�) = �2�̀N (�),
and �C (�) = E0[ �CN (�)], under Assumptions 1-7, and using (A.39) and (A.40) we have that
�CN (�)

a:s:! �C (�) uniformly on �� and (iii) �0 is the unique minimum of �C (�) on ��, and
is an interior point of ��, by assumption. Condition (iii) follows directly from condition (ii)
and Proposition 3 (see Theorem 9.3.4., Davidson (2000)). Therefore, all three conditions of
Theorem 9.3.1 of Davidson are satis�ed and �̂ a:s:! �0 on the set ��.
The asymptotic distribution of �̂ is derived by taking a Taylor expansion of @

�̀
N (�̂)
@�

= 0

at �0 and checking the asymptotic behaviour of the score function, �sN(�) =
@ �̀N (�)
@�

; and

Hessian matrix, HN(�) = �@2 �̀N (�)
@�@�0 . If E0

h
�̀
N (�0)
@�

i
= 0 and HN(��)

a:s:! H(�0) the asymptotic
normality of the QMLE will follow from the mean value theorem:

0 =
p
N�sN(�̂) =

p
N�sN(�0)�HN(��)

p
N(�̂ � �0)

where �� lies between �̂ and �0.
Let JN(�) = E0

h
N @ �̀N (�)

@�
@ �̀N (�)
@�0

i
be the variance-covariance matrix of the score vector.

We state the following theorem.

Theorem 1 Consider the dynamic panel data model given by (1) with interactive e¤ects as
in (2). Suppose that Assumptions 1 to 7, the order condition (38) and Proposition 3 hold.
Denote the QML estimator of �0 by �̂ =argmax�2�� �̀N (�), where �̀N (�) is given by (41).
Then, �̂ is almost surely locally consistent for �0 on �� for values of 
 su¢ ciently close to

0 as formalised by de�nition 1, and

p
N(�̂ � �0)!d N

�
0;H�1(�0)J (�0)H

�1(�0)
�
; (43)

where H(�0) = limN!1E0

h
�@2 �̀N (�0)

@�@�0

i
and J (�0) = limN!1E0

h
N @ �̀N (�0)

@�
@ �̀N (�0)
@�0

i
; both as-

sumed to exist.

When �i ('0) is Gaussian
p
N(�̂ � �0) !d N [0;H

�1(�0)] : A consistent estimator for
the variance in (43) can be obtained by substituting �̂ for �0 in the expressions for J (�0)
and H(�0).

7 Estimating the number of factors

There are a number of studies that provide information criteria for selecting the number of
factors including Bai and Ng (2002), Onatski (2009), Kapetanios (2010), Ahn and Horenstein
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(2013), among others. However, these are not applicable to short T panel data sets, and
require both N and T to be large. In the case of short T panels Ahn et al. (2013) estimate
the true number of factors,m0; within a GMM framework using information criteria as well as
the Sargan-Hansen misspeci�cation statistic, in a sequential manner. To ensure consistency
of the selected number of factors, following Bauer et al. (1988) and Cragg and Donald (1997),
Ahn et, al. (2013) choose the signi�cance level bN such that bN ! 0 and � ln(bN)=N ! 0
as N ! 1. Using simulations they �nd that the sequential method could produce better
estimates if the signi�cance level depends also on T (in addition to N), when the regressors
and individual e¤ects are not highly correlated, but do not provide theoretical details on how
best to allow for T as well as N in their selection procedure. In what follows we consider a
sequential likelihood ratio (LR) testing procedure, but adjust the critical values of the tests
to take account of the multiple testing nature of the procedure in terms of T , as well as
adjusting the critical values of the tests in terms of N to ensure consistency of the selected
number of factors. We provide a formal theory that should be of general interest for the
analysis of short T factor models.

7.1 A sequential multiple testing likelihood ratio procedure for
estimating the number of factors

Our sequential multiple testing likelihood ratio (MTLR) procedure makes use of the like-
lihood ratio statistic and in e¤ect involves sequentially performing a number of likelihood
ratio tests of the overidentifying restrictions on the model de�ned by (13). To see this, from
(38) it follows that the degree of freedom (DF) for the test is given by

DF = T (T + 1)=2� (3 + Tm�m(m� 1)=2); (44)

and depends on m and T . When m = mmax = T � 2, DF = 0 and therefore the panel
data model is exactly identi�ed, and there are no free parameters (restrictions) to test. The
LR tests involving over-identifying restrictions are de�ned by tests of m = f0; 1; 2; ::; T � 3g
against mmax = T �2. Let �̂m be the QML estimator of �, assuming m unobserved common
factors, using the concentrated log-likelihood function given by (33) in terms of m and
� = ('0; !; �2)0; which we reproduce here for convenience, making the dependence of � on
m explicit:

`N (�m;m) / �TN
2
ln(�2m)�

N

2
ln [1 + T (!m � 1)]�

N

2

mX
t=1

ln [�t (�m)]

+
N

2

mX
j=1

[�t (�m)� 1]�
N

2

TX
t=1

�t (�m) ;

where �1 (�m) > �2 (�m) > :::: > �T (�m) > 0 are the eigenvalues of
CN (�m) = ��2


�1=2
m BN('m)


�1=2
m .2 Then the LR statistics for testing H0: m = m0

against H1: m = mmax, for m0 = f0; 1; 2; ::; T � 3g and mmax = T � 2 > m0; are given by

LRN (mmax;m0) = 2
h
`N

�
�̂mmax

;mmax

�
� `N

�
�̂m0

;m0

�i
; (45)

2Recall that BN ('m) is de�ned by (26), and hence CN (�m) is a positive de�nite matrix.
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where �̂m = argmax�m `N (�m;m). Under the assumption that �i in (13) is Gaussian, and
the panel data model is correctly speci�ed with m = m0, then using standard asymptotic
results we have LRN (mmax;m0) !d �

2
DF , as N ! 1 for a �xed T , where DF is given by

(44) for the relevant choices ofm = mmax andm0. The following sequential testing procedure
can now be adopted to estimate m:

m̂ = 0, if a test based on LRN (mmax = T � 2;m0 = 0) is not rejected.

m̂ = 1, if a test based on LRN (mmax = T � 2;m0 = 0) is rejected,

AND a test based on LRN (mmax = T � 2;m0 = 1) is not rejected.

m̂ = 2, if a test based on LRN (mmax = T � 2;m0 = 0) and LRN (mmax = T � 2;m0 = 1)

are both rejected AND a test based on LRN (mmax = T � 2;m0 = 2) is not rejected.

This sequential procedure is continued until m0 = T � 3. Since T � 2 separate tests are
carried out, to control the overall size of the sequential testing procedure we need to adjust
the size of the underlying individual tests. As the true number of factors,m0; is unknown and
could be T � 2, in what follows we assume the sequential procedure involves T � 2 separate
tests, although in some applications we might end up stopping the sequential procedure
having carried out a fewer number of tests than T � 2. Let the null hypotheses of interest
be HT�2;0; HT�2;1; :::; HT�2;T�3; and write the T � 2 LR tests as

Pr (LRN (mmax = T � 2;m0 = t� 1) > CVN;T�2;t�1 jHT�2;t�1 ) � pN;T�2;t�1; for t = 1; 2; :::; T�2;

where CVN;T�2;t�1 is the critical value for the test of HT�2;t�1, and pN;T�2;t�1 is the realized
p-value for HT�2;t�1. The overall size of the test is now given by the family-wise error rate
(FWER) de�ned by

FWERN = Pr
�
[T�2t=1 (LRN (mmax = T � 2;m0 = t� 1) > CVN;T�2;t�1 jHT�2;t�1 )

�
:

Suppose that we wish to control FWERN to lie below a pre-determined value, �. An exact
solution to this problem depends on the nature of the dependence across the underlying
tests, which is generally di¢ cult to obtain. But one could derive bounds on FWERN using,
for example, the Bonferroni (1936) or Holm (1979) procedures. Both of these procedures are
valid for all possible degrees of dependence across the individual tests, and as a result tend
to be conservative in the sense that the actual size will be lower than the overall target size
of �. Using Boole�s inequality (also known as the union bound) we have

Pr
�
[T�2t=1 [LRN (mmax = T � 2;m0 = t� 1) > CVN;T�2;t�1 jHT�2;t�1 ]

	
�

T�2X
t=1

Pr (LRN (mmax = T � 2;m0 = t� 1) > CVN;T�2;t�1 jHT�2;t�1 )

�
T�2X
t=1

pN;T�2;t�1:

Hence, to obtain FWERN � �, it is su¢ cient to set pN;T�2;t�1 � �=(T � 2). The individual
critical values, CVN;T�2;t�1 are based on the asymptotic critical values (as N ! 1) of the
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�2 distribution, namely �2DF [�= (T � 2)], where �=(T � 2) is the right-tail probability of the
individual tests.
The above sequential MTLR procedure ensures that limN!1 FWERN � �, but this by

itself does not guarantee that m0 , the true value of m, will be estimated consistently. This
is a well known problem in the sequential testing literature. To achieve consistency we need
to allow � to decline with N at a suitable rate as will be shown in what follows.
Under non-normal errors the LR statistic de�ned by (45) need not be chi-squared distrib-

uted. This follows from known results for the likelihood ratio statistic under misspeci�cation.
See, for example, Foutz and Srivastava (1977) who show that under misspeci�cation the LR
statistic behaves asymptotically as a linear combination of independent chi-squared variates.
This is also in line with results in Satorra and Bentler (1994) and Yuan and Bentler (2007)
for standard factor models. Following this literature we conjecture that under non-Gaussian
errors the null distribution of LRN (mmax;m0) can also be asymptotically approximated as
a linear combination of independent chi-squared variates. Simulation results reported in the
online supplement con�rm that LRN (mmax;m0) is oversized when using chi-square critical
values in this case. However, even under non-normal errors, the above sequential procedure
using critical values of the chi-square distribution can still consistently estimate the true
number of factors as shown in the following proposition and associated theorem.

Proposition 4 Suppose under the null hypothesisH0 the LR test statistic LRN is distributed
as
Pk

i=1wi�
2
i (1), where the weights w1 � w2 � ::: � wk > 0 are �nite constants, and �2i (1)

for i = 1; 2; :::; k are independently distributed central chi-squared variates with 1 degree of
freedom. Further suppose that under the alternative hypothesis H1 LRN is distributed asPk

i=1wi�
2
i (1; �

2
i;N); where �

2
i (1; �

2
i;N) for i = 1; 2; :::; k are independently distributed non-

central chi-squared variates with 1 degree of freedom and non-centrality parameter, �2i;N ,
i = 1; 2; :::; k. Denote the non-centrality parameter of the test under H1 by �2N =

Pk
i=1 �

2
i;N .

Suppose k is a �nite integer, and �2N = O(N). Denote type I and II errors of the test by �N
and �N , respectively, and the critical value of the test by c

2
N(k). Under Assumptions 1-7 if

c2N (k)!1 and �2N !1 as N !1 such that c2N (k) =�
2
N ! 0; then both �N and �N ! 0:

Remark 3 The standard chi-squared test is included in the above proposition as a special
case by setting wi = 1, for all i.

Remark 4 Clearly, the conditions of Proposition 4 are met if �N = p=f(N), where f(N) =
N �, with � a �nite non-zero constant. Further, using (A.47) from the proof of Proposition 1
in the Appendix we have

c2N(k)

�2N
�
2��2min ln

�
k
�N

�
�2N

=
2w1k ln

�
kN�

p

�
�2N

= O

�
� ln(N)

�2N

�
; (46)

and since by assumption �2N = O(N) it follows that c2N(k)=�
2
N ! 0 as required.

Remark 5 When �N is set as �N = p=N �, the parameter p (0 < p < 1) can be viewed as
the nominal size of the test. Then �N ! 0 if lnN=�2N ! 0, which is satis�ed in the standard
case where �2N = O(N). The Neyman-Pearson case is obtained if we set � = 0. The case of
� > 0 relates to the Cherno¤ test procedure that aims at minimizing Pr(H0)�N +Pr(H1)�N ,
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where 0 < Pr(H0) < 1 and 0 < Pr(H1) < 1 are prior probabilities of H0 and H1, respectively.
When N is �nite the solution to this problem depends on the prior probabilities. But in the
case of chi-squared tests, we have Pr(H0)�N +Pr(H1)�N ! 0 as N !1, irrespective of the
prior probabilities Pr(H0) and Pr(H1), so long as �N = p=N � for � > 0 and p > 0.

Remark 6 In �nite samples the choice of p and � can matter, though for moderate values
of N the choice of p is likely to be of second order importance. In the simulation results that
follow we set � = 1 and p = 5%.

Theorem 2 Let m̂ be the number of factors obtained using the sequential likelihood ratio
procedure based on the statistic LRN (mmax;m0) given by (45) for which Proposition 4 holds.
Then Pr(m̂ = m0)! 1:

From Proposition 4 and Theorem 2 it follows that m̂ obtained using the sequential MTLR
procedure described above is a consistent estimator of the true number of factors m0. In line
with the above discussion in the ensuing Monte Carlo results when performing the sequential
MTLR procedure we use �N =

� p
(T�2)N� ; where � is some positive constant such that condition

(46) holds approximately.

8 Monte Carlo design and results

In this section, we investigate the �nite sample properties of the proposed estimator using
Monte Carlo (MC) simulations. We begin by presenting the MC designs that we shall be
employing for the pure AR(1) panels and dynamic panels with regressors.

8.1 Monte Carlo design

8.1.1 The AR(1) model

The observations on yit are generated assuming m unobserved factors as

yit = �i + ���t + 
yi;t�1 + � it; for i = 1; 2; :::; N ; t = �S + 1;�S + 2; ::; 0; 1; :::; T;
� it = �0ift + uit;

with the idiosyncratic errors generated as uit � IIDN (0; �2) under Gaussian errors, and
uit � IID �p

12
(�26 � 6) under non-Gaussian errors, where �26 is a chi-square variate with six

degrees of freedom. In the case where j
j < 1, we start the process with

yi;�S+1 =
�i
1� 


+
S�1X
j=0


j� i;�j;

and set S = 50 to reduce the impact of the initial values on the sample period used in the
analysis, which we take to be t = 0; 1; :::; T . In the unit root case we initially generate the
�rst-di¤erences and then cumulate them to obtain yit starting from some arbitrary values
for yi0, i = 1; 2; :::; N . The �rst-di¤erences are generated as

�yi1 = ����1 +�� i1
�yit = ����t + 
�yi;t�1 +�� it; t = 2; 3; :::; T;
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where the process is initalised at �yi0 = 0; with 
 = 1.3

For both the stationary and unit root cases, after �rst-di¤erencing we end up with T
observations that are used in estimation. The factor loadings are generated as

�`i � IIDN (0; �2�`); ` = 1; 2; :::;m; (47)

and the unobserved common factors, f`t, as

f`t = �f`f`;t�1+
q
1� �2f`"f`t, "f`t � IIDN (0; 1), for ` = 1; 2; :::;m; t = �S+1; :::;�1; 0; 1; ::; T;

(48)
with �f` = 0:9, and without loss of generality we set f`;�S = 0 with S = 50 throughout. The
resultant f`t values are re-scaled such that T�1

PT
t=1 f

2
`t = 1, for all `. Speci�cally we impose

the following normalisations on the common factors

T�1
PT

t=1 f`t = 0; T
�1PT

t=1 f
2
`t = 1, and T

�1PT
t=1 f`0tf`t = 0 , for ` 6= `0: (49)

We generate the time e¤ects as �t = 1
2
(t2 � t) which are further normalised so that

T�1
PT

t=1 �t = 0, T
�1PT

t=1 �
2
t = 1, and T

�1PT
t=1 �tf`t = 0, for all `. (50)

The �xed e¤ects, �i, are generated as

�i = b1�ui + b2vi;

where �ui = T�1
PT

t=1 uit, and vi � IIDN (0; 1). b1 and b2 are �xed constants to be set later.
This set up ensures that the �xed e¤ects are correlated with the idiosyncratic errors when
b1 6= 0. The values of the remaining parameters are set as

�� = 2�, �
2
�` = �2=m; for all `:

Finally, as shown in Section A.3 of the Appendix, the average �t of the panel AR(1) model
is determined by 
 and does not depend on �2 = V ar(uit), and hence we set �2 = 1. For
the key parameter of the model, 
, we consider a medium and a high value, namely 
 = 0:4
and 0:8; as well as 
 = 1:
We report simulation results for the autoregressive parameter 
 for the following com-

binations of sample sizes, T = f5; 10g and N = f100; 300; 500g. Speci�cally, we report the
bias and root mean square error (RMSE). In addition, we present size and power estimates.
Power is presented for 
 = f0:30; 0:70; 0:96g for the null values of 
 = f0:4; 0:8; 1:0g. All
tests are carried out at the 5% signi�cance level and all experiments are replicated 2,000
times, unless otherwise stated.

8.1.2 The ARX(1) model

The observations on yit for the panel ARX(1) model are generated assuming k = 1 (one
exogenous regressor) and m unobserved factors as

yit = �i + ���t + 
yi;t�1 + �xit + � it; for i = 1; 2; :::; N ; t = �S + 1;�S + 2; ::; 0; 1; :::; T;
� it = �0ift + uit; (51)

3Any value for �yi0 could be used and the results would not be a¤ected since the value of �yi0 gets
absorbed in the intercept term of the underlying DGP.
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with the idiosyncratic errors, the time e¤ects and factors and associated loadings generated
as for the AR(1) model. The values of �2 and �2�` are set below to ensure a certain degree of
average �t for the panel regression in (51). For the case j
j < 1, we initialize the DGP with

yi;�S+1 =
�i
1� 


+ �

S�1X
j=0


jxi;�j +

S�1X
j=0


j� i;�j;

where as before we set S = 50 and discard the �rst 49 observations. As for the AR(1) model,
in the unit root case we begin with generating the �rst-di¤erences and then cumulate them
to obtain yit from some arbitrary values for yi0. The �rst-di¤erences are generated as

�yi1 = ����1 + ��xi1 +�� i1
�yit = ����t + 
�yi;t�1 + ��xit +�� it; t = 2; 3; :::; T;

with �yi0 = 0 and 
 = 1. In both cases the observations t = 0 through T are used for
estimation, thus ending up with T observations for estimation after �rst-di¤erencing.
The regressor, xit, is generated as

xit = �i + #
0
ift + �xit; ; �xit = �x�xi;t�1 +

p
1� �2x"it; (52)

for t = �S+1; :::; 0; 1; :::; T , with �xi;�S = 0, j�xj < 1; �i � IIDN (0; 1), #i = (#1i; #2i; :::; #mi)0;
and "it � IIDN (0; 1): We set �x = 0:8. The factor loadings, #i; in the xit process are gen-
erated as

#`i � IIDN (�#`; �2#`); for ` = 1; 2; :::;m: (53)

The �xed e¤ects, �i, are generated as

�i = b0�xi + b1�ui + b2vi;

where �xi = T�1
PT

t=1 xit, �ui = T�1
PT

t=1 uit, vi � IIDN (0; 1) and b0, b1, b2 are �xed
constants to be de�ned later. This set up ensures that the �xed e¤ects are correlated both
with the regressors and the idiosyncratic errors when b0 6= 0 and b1 6= 0.
We calibrate the rest of the parameters to ensure a given average measure of �t, as de�ned

by the average R2 derived in Section A.3 of the Appendix. In this way we ensure that the
�t of the underlying model does not change with m, the number of factors. Using (51) and
(52), for the case where j
j < 1 we have

R2y =
�2V ar(�xit) + 
2

h
�2� +

Pm
`=1

�
N�1PN

i=1 c
2
`i

�
+ �2

i
�2V ar(�xit) + �2� +

Pm
`=1

�
N�1PN

i=1 c
2
`i

�
+ �2

;

where c`i = �#`i + �`i. Also, in view of (52) we have V ar(�xit) = 1. Hence

R2y =
�2 +

�
�2� +N�1PN

i=1 c
2
i + �2

�

2

�2 + �2� +N�1PN
i=1 c

2
i + �2

;

20



where c2i =
Pm

`=1 c
2
`i. But

N�1PN
i=1 c

2
i =

Pm
`=1

�
N�1PN

i=1 c
2
`i

�
=
Pm

`=1N
�1PN

i=1 (�#`i + �`i)
2

= �2
Pm

`=1

�
N�1PN

i=1 #
2
`i

�
+
Pm

`=1

�
N�1PN

i=1 �
2
`i

�
+2�

Pm
`=1

�
N�1PN

i=1 �`i#`i

�
;

and for N su¢ ciently large and noting that #`i and �`i are generated independently, we have
(see (47) and (53))

N�1PN
i=1 #

2
`i !p V ar (#`i) + [E (#`i)]

2 = �2#` + �2#`;

N�1PN
i=1 �

2
`i !p V ar (�`i) + [E (�`i)]

2 = �2�`;

and since E (�`i) = 0, we also have N
�1PN

i=1 �`i#`i !p 0: Hence

N�1PN
i=1 c

2
i !p �

2Pm
`=1

�
�2#` + �2#`

�
+
Pm

`=1 �
2
�`:

Using the above results and setting � = 1 we obtain

R2y � 
2 =
1� 
2

1 + �2� +
Pm

`=1 (�
2
#` + �2#`) +

Pm
`=1 �

2
�` + �2

:

We control the value of R2y � 
2 to be the same for all values of m. To this end, the value of
the remaining parameters are set as

�� = 2�, �
2
�` = �2#` = �2=m; �#` = �=

p
m, for all `; (54)

and we obtain R2y � 
2 = (1� 
2) =(1 + 8�2), from which it follows that

�2 =
1�R2y

8
�
R2y � 
2

� :
For m = 0, �2 = (1�R2y)=5

�
R2y � 
2

�
.

In the unit root case, using results in Section A.3 of the Appendix together with the
above we have

R2�y =
�2

�2 + �2� +
Pm

`=1

�
N�1PN

i=1 c
2
`i

�
+ �2

=
1

1 + �2� +
Pm

`=1 (�
2
#` + �2#`) +

Pm
`=1 �

2
�` + �2

:

As in the stationary case we control the value of R2�y to be the same for all values of m.
Using (54) this leads to

�2 =
1�R2�y
8R2�y

for m 6= 0 and �2 =
1�R2�y
5R2�y

for m = 0:
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The parameter �2 is set such that R2y = 0:8 and R
2
�y = 0:4; for all values of m: In line

with the above derivations we set � = 1 and for 
 we consider the values 
 = f0:4; 0:8; 1:0g.
We consider the same combinations of T and N as in the AR(1) case, namely T = f5; 10g

and N = f100; 300; 500g and report simulation results for the same set of statistics, for both

 and �, including size and power. Power is presented for 
 = f0:38, 0:78g and � = 0:98
for the null values of 
 = f0:4; 0:8g and � = 1; and for 
 = 0:98 and � = 0:95 for the null
values of 
 = 1 and � = 1. As previously, all tests are carried out at the 5% signi�cance
level and all experiments are replicated 2,000 times, unless otherwise stated. The standard
errors used for inference are based on the same formulas as those used in the AR(1) case
with all derivatives computed numerically.

8.2 Monte Carlo results

We begin by reporting on the performance of the sequential multiple testing LR (MTLR)
procedure for selecting the true number of factors. We consider the performance of the QML
estimator when the number of factors is estimated using the MTLR procedure as well as
when the number of factors is set to its true value, m0. For this set of experiments the �xed
e¤ects are allowed to be correlated with the errors, and with the regressors in the panel
ARX case. In the above Monte Carlo designs this corresponds to setting b1 = b2 = 1, with
the additional b0 parameter set to 1 for the ARX(1) model. We conclude this section by
presenting results for the QML estimator together with the GMM quasi-di¤erence (QD) and
�rst-di¤erence (FD) estimators of ALS, when the number of factors is assumed to be known.
In this set of experiments the �xed e¤ects are not correlated with the errors, as this would
render the GMM estimators inconsistent. This corresponds to setting b1 = 0 and b2 = 1;
with the additional b0 parameter set to 1 for the ARX(1) model. However, �xed e¤ects are
allowed to be correlated with the regressors in the case of the ARX(1) design.
Results for the unit root case provided in Section S.5 of the online supplement in Tables

S11-S19, show that the sequential MTLR procedure works very well even in the unit root
case. The performance is very similar to the stationary case with j
j < 1, and indeed, the
probability of selecting the true number of factors exceeds 95% in most cases even under
non-Gaussianity. Furthermore, for the AR(1) model both the bias and RMSE are su¢ ciently
small and the empirical size is close to the nominal level regardless of whether the number of
factors is estimated or not, and the error term is Gaussian or not. Similar results are found
for the ARX(1) model for which the bias and RMSE are small and inference is accurate with
reasonably high power regardless of whether the number of factors is estimated or not, and
the error term is Gaussian or not.

8.2.1 Selection of the number of common factors

Tables 1 and 2 provide results on the performance of the sequential MTLR procedure for
the AR(1) and the ARX(1) models, respectively. Speci�cally they report the number of
times, in percent, that the estimated number of factors, m̂; based on the sequential MTLR
procedure outlined in Section 7.1 is equal to the true number of factors m0: The sequential
MTLR procedure is implemented using the LRN (mmax;m0) statistic for testing m = m0 =
f0; 1; 2; ::; T � 3g against m = mmax = T � 2, with signi�cance level �N = 50 p

(T�2)N and
p = 0:05; using the critical values of the chi-square distribution with degrees of freedom
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given by (44). Results are reported for the case of both Gaussian and non-Gaussian errors.
The tables show that the estimator m̂ performs very well. Even for the case where N = 100;
the true number of factors is estimated quite precisely. We also �nd that as N gets larger,
the probability of selecting the true number of factors approaches 100%, which supports the
consistency of the proposed procedure.

Table 1: Empirical frequency of correctly selecting the true number of factors,
m0, using the sequential MTLR procedure in the case of the AR(1) model

N T = 5 T = 10
m0 = 0 m0 = 1 m0 = 2 m0 = 0 m0 = 1 m0 = 2

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian


 = 0:4
100 99.2 95.8 98.8 95.7 98.3 97.6 99.3 95.8 99.0 95.1 99.5 96.9
300 99.8 97.9 99.7 98.4 100.0 99.1 99.9 97.6 99.8 98.5 100.0 99.5
500 99.9 97.7 100.0 98.6 99.9 99.4 99.9 98.9 99.9 99.0 100.0 99.3
1; 000 99.9 98.9 100.0 99.4 100.0 99.5 100.0 99.3 100.0 99.6 99.9 99.8

 = 0:8
100 98.9 96.1 99.0 94.9 98.6 96.9 99.2 96.0 99.1 96.3 99.6 96.1
300 99.8 97.0 99.5 98.3 99.7 99.0 99.8 97.6 99.9 99.0 100.0 98.9
500 99.9 97.7 99.9 98.2 99.6 98.9 100.0 97.9 99.7 99.3 100.0 98.8
1; 000 99.9 98.7 100.0 99.2 99.9 99.1 100.0 99.2 100.0 99.5 100.0 99.5

Note: yit is generated as yit = �i + ���t + 
yi;t�1 + �it; �it = �0ift + uit, for i = 1; 2; :::; N ; t = �49; 48; :::0; 1; :::; T;
with yi;�49 =

�i
1�
 +

P49
j=0 


j�i;�j : The idiosyncratic errors are generated as uit � IIDN (0; �2) under Gaussianity and
uit � IID �p

12
(�26�6) under non-Gaussianity where �26 is a chi-square variate with 6 degrees of freedom and �2 = 1. The �xed

e¤ects are generated as �i = �ui+ vi; where �ui = T�1
PT
t=1 uit and vi � IIDN (0; 1). The remaining parameters are generated

as described in Section 8.1.1. Each ft is generated once and the same f 0ts are used throughout the replications. The �rst 49
observations are discarded. m̂ is the estimated number of factors computed using the sequential MTLR procedure described in
Section 7.1 with �N = 50 p

(T�2)N and p = 0:05. All experiments are based on 1; 000 replications..

Table 2: Empirical frequency of correctly selecting the true number of factors,
m0, using the sequential MTLR procedure in the case of the ARX(1) model
N T = 5 T = 10

m0 = 0 m0 = 1 m0 = 2 m0 = 0 m0 = 1 m0 = 2

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian


 = 0:4
100 98.8 93.7 98.6 95.9 97.5 96.9 99.1 94.4 99.3 95.2 99.0 94.9
300 99.5 97.3 99.4 98.2 99.6 99.1 99.7 97.7 99.7 98.6 99.6 98.4
500 99.9 99.0 99.7 99.0 99.8 99.1 100.0 98.3 100.0 98.7 100.0 99.4
1; 000 99.7 99.0 100.0 99.1 99.9 99.5 100.0 99.6 99.8 99.8 100.0 99.2

 = 0:8
100 98.4 94.8 98.4 96.7 98.1 96.8 98.3 93.9 99.2 93.7 99.1 95.2
300 99.9 97.6 99.6 97.9 99.6 99.3 99.8 98.1 99.9 98.1 99.9 98.1
500 99.9 98.3 99.9 99.2 99.9 99.6 99.8 99.0 100.0 99.1 99.9 98.9
1; 000 99.7 99.0 99.9 99.3 99.9 99.7 99.9 99.1 99.9 99.7 100.0 99.5

Note: yit is generated as yit = �i + ���t + 
yi;t�1 + �xit + �it; �it = �
0
ift + uit for i = 1; 2; :::; N ; t = �49; 48; :::0; 1; :::; T; with

yi;�49 =
�i
1�
 +�

P49
j=0 


jxi;�j+
P49
j=0 


j�i;�j ; and � = 1: The idiosyncratic errors are generated as uit � IIDN(0; �2) under

Gaussianity and uit � IID �p
12
(�26 � 6) under non-Gaussianity where �26 is a chi-square variate with 6 degrees of freedom and

�2 = (1�R2y)=8
�
R2y � 
2

�
with R2y = 0:8. The �xed e¤ects, �i, are generated as �i = �xi + �ui + vi; where �xi = T�1

PT
t=1 xit,

�ui = T�1
PT
t=1 uit and vi � IIDN (0; 1). The remaining parameters are generated as described in Section 8.1.2. When m0 = 0;

�it = uit and �2 = (1�R2y)=5
�
R2y � 
2

�
. See also the notes to Table 1.

8.2.2 Performance of the QML estimator

The previous Monte Carlo simulation results reveal that the sequential MTLR procedure
performs very well in selecting the true number of unobserved factors. We next consider the
performance of the proposed estimator when the number of factors is estimated based on this
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procedure. The results for the case where the number of factors is known are also included
for comparison. Results are reported for the case of non-Gaussian errors. The corresponding
results for Gaussian errors are provided in the online supplement.

AR(1) For this case the bias and RMSE, both multiplied by 100, are reported in Table 3,
with Table 4 providing associated empirical size and power for the QML estimates of 
. The
number of factors, when estimated, is computed based on the sequential MTLR procedure
described in Section 7.1 with the signi�cance level �N = 50

p
(T�2)N and p = 0:05. The results

show that the e¤ects of estimating the number of factors is negligible in all cases. The biases,
RMSEs, sizes and powers with the true and estimated number of factors are very similar.
The overall performance of the bias and RMSE is favourable except for the case where
T = 5, N = 100 and 
 = 0:8: In this case, the bias and RMSE are relatively large. However,
the results improve with N , as predicted by the asymptotic theory. Similarly, we �nd that
the test size and power are satisfactory expect when T is small and 
 relatively large. For
example, in the case of experiments with T = 5 and 
 = 0:8 there is some evidence of size
distortion when N � 500, although the size distortion reduces as N and T are increased.
See Table A1 in the Appendix where we also provide results for N = 1; 000 and 2; 000:

Table 3: Bias(�100) and RMSE(�100) of 
 for the AR(1) model, using the
estimated number of factors, m̂, and the true number, m0

N T = 5 T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)

 = 0:4
100 0.47 -0.14 -0.63 -1.55 9.26 9.36 13.19 14.64 -0.13 -0.12 -0.11 -0.29 4.30 4.39 4.31 4.54
300 0.18 0.00 -0.21 -0.50 4.89 5.00 7.02 7.93 -0.02 -0.05 -0.08 -0.13 2.37 2.35 2.56 2.54
500 0.13 -0.10 -0.15 -0.17 3.68 3.91 5.22 5.39 -0.05 -0.05 0.00 -0.03 1.83 1.83 1.90 1.91


 = 0:8
100 0.35 -0.68 -12.14 -13.51 12.42 14.98 30.09 31.68 0.54 0.44 0.47 0.08 6.19 6.67 6.85 7.11
300 1.30 1.21 -2.00 -2.67 9.47 10.27 16.04 16.85 0.17 0.03 0.10 0.01 3.34 3.55 3.75 3.72
500 1.45 1.22 -0.35 -0.39 8.12 8.40 12.13 12.47 0.03 0.05 0.06 0.00 2.35 2.53 2.60 2.67

Note: m̂ is estimated using the sequential MTLR procedure described in Section 7.1 with �N = 50 p
(T�2)N and p = 0:05;


 is the coe¢ cient of the lagged dependent variable given in (1) in the absence of the xit regressors. All experiments are
based on 2,000 replications. See also the notes to Table 1.

Table 4: Size(%) and power(%) of 
 for the AR(1) model, using the estimated
number of factors, m̂; and the true number, m0

N T = 5 T = 10
Size Power Size Power

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)
H0: 
 = 0:4 H1: 
 = 0:3 H0: 
 = 0:4 H1: 
 = 0:3

100 6.1 6.2 5.6 5.7 27.3 26.9 15.2 17.3 6.7 6.2 4.4 5.0 68.7 65.7 61.0 60.7
300 5.5 4.6 4.7 5.7 55.9 54.9 32.7 32.6 5.1 5.2 5.0 4.6 98.6 98.2 97.8 97.4
500 4.9 4.8 4.2 4.9 74.5 76.1 48.2 46.8 5.0 4.5 4.4 4.7 99.9 99.9 99.9 100.0

H0: 
 = 0:8 H1: 
 = 0:7 H0: 
 = 0:8 H1: 
 = 0:7
100 23.3 21.8 26.0 28.5 24.2 25.1 28.2 30.8 11.6 11.3 9.3 9.4 54.5 53.1 42.1 44.5
300 19.0 19.3 15.8 14.7 32.4 30.2 21.6 20.2 5.8 5.7 5.2 5.1 85.0 85.3 78.7 77.1
500 16.9 18.4 11.7 12.4 36.3 39.6 21.3 22.9 5.0 5.2 4.0 4.5 96.1 95.6 93.0 92.6

See the notes to Table 3.

ARX(1) Simulation results for the ARX(1) model are provided in Tables 5 and 6. Similar
results as in the AR(1) model are found for the ARX(1). Comparing the bias and RMSE
values of the 
 and � estimators for the case of the true and estimated number of factors,
these appear to be very similar and are also very small. With regard to size and power,
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unlike the AR(1) model, the empirical sizes are close to the nominal level in all cases and
power is reasonably high even when the number of factors is estimated.

Table 5: Bias(�100) and RMSE(�100) of 
 and � for the ARX(1) model,
using the estimated number of factors, m̂, and the true number, m0

N T = 5 T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)

; 
 = 0:4
100 0.03 -0.04 -0.04 0.00 1.44 1.47 1.54 1.58 -0.03 -0.01 -0.04 -0.01 0.82 0.80 0.88 0.85
300 -0.03 -0.01 0.04 -0.02 0.84 0.83 0.90 0.91 -0.01 0.00 0.01 -0.01 0.46 0.45 0.49 0.49
500 0.01 -0.01 -0.02 0.01 0.65 0.64 0.66 0.69 0.00 0.00 0.00 -0.01 0.36 0.36 0.38 0.38

�
100 -0.08 0.04 0.06 -0.06 1.91 1.90 2.03 2.09 0.05 -0.01 0.02 0.02 1.12 1.15 1.18 1.20
300 -0.02 0.02 -0.05 0.07 1.05 1.07 1.17 1.15 0.02 0.01 0.00 0.00 0.65 0.65 0.69 0.69
500 0.00 0.00 0.02 -0.01 0.83 0.84 0.88 0.90 0.01 0.00 0.00 0.02 0.51 0.50 0.54 0.54


; 
 = 0:8
100 0.07 -0.04 0.02 0.02 1.88 1.99 1.89 1.94 -0.04 -0.05 -0.03 -0.01 0.83 0.84 0.85 0.86
300 -0.05 -0.02 0.03 -0.01 1.09 1.10 1.08 1.08 -0.01 0.01 0.02 -0.02 0.47 0.47 0.48 0.48
500 0.01 -0.02 -0.03 0.01 0.84 0.84 0.81 0.84 -0.01 -0.01 -0.01 0.00 0.36 0.36 0.36 0.37

�
100 -0.13 -0.03 0.07 -0.06 3.47 3.47 3.58 3.64 0.07 -0.05 0.01 0.12 1.98 2.00 2.00 2.14
300 -0.05 -0.03 -0.05 0.12 1.93 1.98 2.05 2.00 0.02 0.01 0.00 0.02 1.14 1.17 1.19 1.16
500 0.01 0.00 0.02 -0.01 1.52 1.49 1.57 1.57 0.01 0.00 0.00 0.01 0.90 0.88 0.92 0.92

Note: m̂ is estimated using the sequential MTLR procedure described in Section 7.1 with �N = 50 p
(T�2)N and p = 0:05; 


and � are the coe¢ cients of the lagged dependent variable and the xit regressor given in (1). All experiments are based on
2,000 replications. See also the notes to Table 2.

Table 6: Size(%) and power(%) of 
 and � for the ARX(1) model, using the
estimated number of factors, m̂, and the true number, m0

N T = 5 T = 10
Size Power Size Power

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)

 H0: 
 = 0:40 H1: 
 = 0:38 H0: 
 = 0:40 H1: 
 = 0:38
100 5.3 6.4 5.6 7.4 29.4 30.7 27.9 27.0 6.3 5.7 6.2 6.1 73.3 71.1 67.1 67.2
300 5.6 5.4 6.1 6.0 68.5 67.4 60.7 62.8 5.5 4.3 5.5 5.4 99.3 99.3 98.3 98.2
500 5.9 4.5 5.0 5.7 86.6 87.8 85.1 82.4 5.4 5.3 4.9 5.0 100.0 100.0 100.0 100.0

� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 6.1 6.5 6.6 6.5 21.2 20.5 18.0 19.5 5.0 5.7 5.5 5.6 42.0 43.7 39.6 39.1
300 4.6 4.7 5.1 5.5 45.9 46.2 43.8 39.8 5.1 4.9 5.2 5.6 86.0 86.0 82.5 83.8
500 5.2 4.6 5.2 4.9 66.5 67.3 60.4 62.2 5.3 4.6 5.9 6.7 97.5 98.3 96.1 95.7


 H0: 
 = 0:80 H1: 
 = 0:78 H0: 
 = 0:80 H1: 
 = 0:38
100 5.5 7.0 5.7 6.9 20.0 22.7 20.2 21.4 6.5 6.4 7.2 6.0 69.0 69.9 69.2 67.1
300 5.8 5.2 5.6 5.2 48.8 46.2 47.1 48.9 5.7 5.1 5.7 5.3 99.3 98.6 98.4 98.6
500 4.8 5.0 5.2 5.6 66.1 67.9 70.4 66.7 5.0 4.9 5.0 5.1 100.0 100.0 99.9 99.9

� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 6.1 6.2 6.9 6.1 10.9 10.7 10.0 11.2 4.9 5.5 5.5 6.6 15.9 18.7 16.3 16.1
300 4.7 4.7 5.7 5.2 18.0 17.5 19.2 14.9 4.7 5.5 5.4 4.7 41.6 40.7 40.4 38.5
500 5.3 4.1 5.0 6.0 26.2 25.6 24.4 25.3 5.9 5.1 5.5 5.6 61.8 60.5 59.8 58.8

See the notes to Table 5.

8.2.3 QML and GMM results

Next we present simulation results comparing our QML estimator with the GMM estimator
of ALS in the case of non-Gaussian errors. Corresponding results for the case of Gaussian
errors are available in the online supplement. For this set of experiments the number of
factors during estimation is set to the true number of factors. The GMM estimators include
the quasi-di¤erence and �rst- di¤erence ALS one step and two step estimators denoted by
QD1, QD2, FD1 and FD2, respectively, computed as detailed in Section S.3 of the online
supplement. Recall that for these results the individual �xed e¤ects are not correlated with
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the errors, only with the regressor in the case of the ARX(1) model. The results for the
AR(1) model are summarised in Tables 7 and 8, and for the ARX(1) model are summarised
in Tables 9 and 10.

AR(1) From Table 7, we �nd that the QML estimator performs (sometimes substantially)
better than the GMM estimators in terms of bias and RMSE.4 This is particularly evident
for 
 = 0:8: When 
 = 0:8; the GMM estimators, especially FD1 and FD2, perform very
poorly due to weak instruments whereas the QML estimator has small bias and RMSE.
With regard to size and power shown in Table 8, the GMM estimators have substantial size
distortions while the QML estimator has empirical sizes close to the nominal value except
for the case with 
 = 0:8 and N = 100, as in Table 3.

Table 7: Bias(�100) and RMSE(�100) of 
 for the QML and GMM estimators
in the case of the AR(1) model, using the true number of factors, m0

N T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

QML GMM QML GMM QML GMM QML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

m0 1 2

 = 0:4
100 -0.25 11.28 14.82 -34.26 -23.66 4.03 36.77 36.08 35.68 25.81 -0.08 49.13 49.08 -24.60 -23.11 4.43 52.52 53.20 56.20 49.08
300 0.05 -0.58 4.86 -18.35 -7.62 2.43 24.26 22.88 19.52 9.40 -0.01 48.90 48.03 -13.13 -12.50 2.52 52.57 52.60 43.70 35.49
500 -0.03 -1.73 3.18 -12.92 -4.15 1.85 19.57 18.62 14.00 5.74 -0.02 47.35 46.34 -7.83 -8.47 1.96 51.75 51.70 37.19 29.68

 = 0:8
100 0.33 12.15 12.09 -70.73 -62.84 6.10 21.40 22.05 72.22 65.63 0.56 17.61 17.60 -70.87 -67.90 7.01 18.87 18.84 90.22 87.55
300 0.32 10.06 10.85 -51.42 -35.05 3.55 19.88 19.35 52.57 37.34 0.14 17.36 17.22 -50.84 -43.89 3.79 18.53 18.46 71.89 64.92
500 0.00 8.40 9.54 -42.67 -24.92 2.41 19.00 18.01 43.70 26.93 0.10 16.83 16.91 -43.55 -35.47 2.83 18.41 18.23 64.29 56.47

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-di¤erence and �rst- di¤erence ALS one step and two step estimators
respectively computed as described in Section S.3 of the supplementary material. All experiments are based on 2,000 replications.
See also the notes to Tables 1 and 3.

Table 8: Size(%) and power(%) of 
 for the QML and GMM estimators in the
case of the AR(1) model, using the true number of factors, m0

N T = 10
Size Power Size Power

QML GMM QML GMM QML GMM QML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

m0 1 2

 H0: 
 = 0:40 H1: 
 = 0:34 H0: 
 = 0:40 H1: 
 = 0:34
100 5.9 64.7 73.1 89.2 89.9 34.1 78.0 85.9 96.6 97.7 5.5 86.4 87.7 29.0 41.7 29.3 85.6 87.4 29.9 43.3
300 5.7 46.5 38.9 72.6 48.3 70.3 71.7 70.1 92.4 86.7 4.5 83.8 84.9 20.1 32.5 65.6 83.6 85.1 19.6 32.4
500 6.0 38.2 26.6 59.5 29.8 90.8 72.3 72.1 90.1 83.4 5.3 80.4 81.5 15.1 27.9 86.9 80.1 82.0 14.9 28.4

 H0: 
 = 0:80 H1: 
 = 0:74 H0: 
 = 0:80 H1: 
 = 0:74
100 10.9 93.6 96.7 99.6 99.8 32.0 95.1 97.6 99.8 100.0 10.3 96.5 97.2 51.1 64.6 26.2 94.6 96.6 53.3 73.7
300 6.5 88.0 89.9 98.4 96.2 51.6 92.1 92.9 99.2 99.1 4.8 95.0 95.7 36.4 47.7 44.6 93.9 95.3 36.9 62.2
500 4.6 83.2 82.8 97.3 91.6 71.8 88.8 88.6 99.3 98.2 5.1 93.0 94.0 31.0 43.2 59.8 91.5 93.7 31.8 60.6

See the notes to Table 7.

4The case of T = 5 is not reported for the AR(1) model because the number of unknown parameters
exceeds that of the moment conditions.
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ARX(1) Compared to the pure AR(1) case, the performance of all the estimators is im-
proved for the ARX(1) model as shown in Table 9. This is especially so for FD1 and FD2.
However, in terms of relative performance, the QML estimator still outperforms the GMM
estimators with regard to bias and RMSE. With regard to size and power, reported in Table
10, the QML estimator has empirical sizes close to the nominal level for all combinations
including N = 100 and 
 = 0:8 for which some size distortions were reported for the pure
AR(1) case. For the GMM estimators, the performance crucially depends on 
; m0 ; N and
T; and there is no GMM estimator that performs well for all combinations, which is in con-
trast to the QML estimator that performs well for all cases considered. For instance, when
T = 5; QD1 and FD1 tend to have correct empirical sizes except for 
 = 0:8: However, they
tend to have large size distortions when T is increased to T = 10 for m0 = 1. QD2 and FD2
tend to have larger size distortions than QD1 and FD1.5

5Since both QD2 and FD2 are nonlinear GMM estimators, it is not straightforward to apply the Wind-
meijer (2005) correction.
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Table 9: Bias(�100) and RMSE(�100) of 
 and � for the QML and GMM
estimators in the case of the ARX(1) model, using the true number of factors,

m0
N T = 5 T = 10

Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)
QML GMM QML GMM QML GMM QML GMM

QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
m0 1

; 
 = 0:4
100 0.03 0.38 0.08 0.08 0.14 1.44 3.20 2.72 4.04 2.89 -0.03 10.54 10.46 -2.46 -2.12 0.82 21.05 20.96 3.33 2.90
300 -0.03 0.43 0.12 0.03 0.06 0.84 1.41 1.34 2.34 1.61 -0.01 1.92 1.67 -0.87 -0.37 0.46 8.00 7.66 1.83 0.82
500 0.01 0.50 0.17 0.04 0.06 0.65 1.13 1.03 1.96 1.28 0.00 0.81 0.57 -0.56 -0.17 0.36 3.51 3.20 1.26 0.54
�
100 -0.08 -0.19 -0.04 -0.06 -0.08 1.91 2.70 2.32 4.54 3.28 0.05 -9.23 -9.13 -0.68 -0.53 1.12 20.30 20.11 3.91 3.38
300 -0.02 -0.11 -0.04 0.13 0.06 1.05 1.31 1.32 2.46 1.79 0.02 -1.40 -1.29 -0.10 0.04 0.65 7.90 7.29 2.71 1.13
500 0.00 -0.12 -0.03 0.16 0.06 0.83 1.03 1.02 2.12 1.46 0.01 -0.39 -0.30 0.03 0.05 0.51 3.46 3.04 2.14 0.74

; 
 = 0:8
100 0.07 8.56 7.19 -0.58 -0.43 1.88 10.14 9.32 5.49 4.58 -0.04 12.52 12.45 -5.83 -5.05 0.83 12.55 12.48 6.55 5.73
300 -0.05 8.30 5.24 -0.04 -0.07 1.09 9.62 7.61 3.02 2.42 -0.01 12.28 11.79 -2.04 -0.81 0.47 12.29 11.80 3.11 1.26
500 0.01 8.63 4.87 0.07 0.03 0.84 9.72 7.18 2.39 1.88 -0.01 12.23 11.65 -1.20 -0.34 0.36 12.24 11.66 2.02 0.73
�
100 -0.13 -1.87 -0.41 -0.52 -0.35 3.47 6.97 5.31 7.83 6.36 0.07 -14.40 -13.87 -4.45 -3.82 1.98 15.70 15.20 9.78 8.50
300 -0.05 -0.26 -0.05 -0.13 -0.04 1.93 3.16 2.81 4.25 3.37 0.02 -12.45 -8.73 -1.22 -0.39 1.14 12.99 9.37 5.72 2.39
500 0.01 -0.03 0.02 -0.14 -0.03 1.52 2.24 2.12 3.32 2.59 0.01 -12.00 -7.62 -0.46 -0.07 0.90 12.33 8.05 4.50 1.48
m0 2

; 
 = 0:4
100 -0.04 0.19 0.12 -2.08 -1.69 1.54 4.17 3.67 7.19 6.71 -0.04 -0.30 -0.22 -1.21 -0.97 0.88 5.20 5.06 4.58 3.43
300 0.04 0.03 -0.04 -0.56 -0.41 0.90 1.67 1.65 3.73 3.33 0.01 -0.33 -0.17 -0.28 -0.10 0.49 1.64 1.16 4.90 1.41
500 -0.02 -0.11 -0.16 -0.21 -0.16 0.66 1.27 1.27 2.60 2.25 0.00 -0.25 -0.11 0.09 0.00 0.38 1.21 0.64 3.60 0.91
�
100 0.06 -0.06 0.16 -2.21 -1.95 2.03 3.27 3.23 12.44 12.42 0.02 0.23 0.19 -0.04 -0.01 1.18 4.65 4.43 5.21 4.01
300 -0.05 -0.07 0.01 -0.38 -0.15 1.17 1.80 1.80 6.30 5.94 0.00 0.26 0.14 0.21 0.03 0.69 1.31 1.05 4.43 1.47
500 0.02 0.04 0.11 -0.24 -0.04 0.88 1.37 1.33 4.57 4.21 0.00 0.15 0.05 -0.04 0.00 0.54 1.05 0.79 3.49 1.07

; 
 = 0:8
100 0.02 7.75 5.63 -18.67 -18.03 1.89 9.59 8.30 32.53 33.10 -0.03 -0.67 -0.57 -3.62 -2.92 0.85 3.76 3.64 6.94 5.38
300 0.03 4.54 2.68 -7.99 -7.75 1.08 7.19 5.66 18.74 19.62 0.02 -1.10 -0.74 -1.42 -0.70 0.48 1.47 1.15 4.44 1.83
500 -0.03 2.67 1.55 -4.05 -3.90 0.81 5.67 4.31 13.15 13.79 -0.01 -0.93 -0.57 -0.77 -0.34 0.36 1.24 0.88 3.72 1.05
�
100 0.07 0.04 0.50 -21.24 -20.71 3.58 7.26 6.89 38.94 39.69 0.01 0.63 0.60 -0.94 -0.62 2.00 3.79 3.59 9.92 7.64
300 -0.05 0.50 0.12 -10.05 -9.48 2.05 3.98 3.48 23.11 23.68 0.00 0.57 0.34 -0.05 -0.03 1.19 2.00 1.73 6.11 2.69
500 0.02 0.50 0.16 -5.35 -4.82 1.57 2.99 2.57 16.65 16.97 0.00 0.42 0.22 -0.29 0.01 0.92 1.64 1.35 5.21 1.81

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-di¤erence and �rst- di¤erence ALS one step and two step estimators
respectively computed as described in Section S.3 of the supplementary material. All experiments are based on 2,000 replications.
See also the notes to Tables 2 and 5.
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Table 10: Size(%) and power(%) of 
 and � for the QML and GMM estimators
in the case of the ARX(1) model, using the true number of factors, m0

N T = 5 T = 10
Size Power Size Power

QML GMM QML GMM QML GMM QML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

m0 1

 H0: 
 = 0:40 H1: 
 = 0:38 H0: 
 = 0:40 H1: 
 = 0:38
100 5.3 6.8 15.4 4.7 13.8 29.5 14.3 30.0 9.2 22.6 6.3 31.0 88.0 28.1 83.2 73.1 33.2 88.1 68.3 98.2
300 5.6 7.0 11.1 4.5 8.4 68.5 24.8 42.6 16.8 30.2 5.5 17.2 47.3 13.1 25.5 99.3 28.0 78.1 74.4 98.2
500 5.9 7.8 9.5 4.3 7.2 86.6 32.0 55.6 24.3 43.1 5.4 16.5 38.3 9.9 15.6 100.0 35.8 88.5 85.0 99.9
� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 6.1 5.9 15.0 3.8 12.9 21.2 17.1 29.7 8.3 21.4 5.0 28.5 86.0 6.6 73.7 42.0 33.2 88.5 14.4 80.6
300 4.6 4.6 9.8 4.6 6.8 46.0 34.6 45.4 12.5 25.3 5.1 10.9 36.4 5.2 27.0 86.0 30.1 80.7 14.9 74.7
500 5.2 4.7 8.9 4.2 7.5 66.5 53.9 62.1 18.1 34.9 5.2 9.1 26.5 4.5 15.8 97.5 43.6 91.7 18.0 89.0

 H0: 
 = 0:80 H1: 
 = 0:78 H0: 
 = 0:80 H1: 
 = 0:78
100 5.5 77.3 71.6 5.8 14.0 20.0 78.8 73.4 9.2 20.6 6.6 100.0 100.0 54.9 95.4 68.8 100.0 100.0 78.0 99.2
300 5.8 76.1 56.3 5.0 8.5 48.8 79.0 56.6 10.8 20.9 5.7 100.0 100.0 21.0 41.0 99.3 100.0 100.0 59.7 96.9
500 4.8 78.6 54.1 4.0 7.6 66.1 80.9 55.4 13.7 25.6 5.0 100.0 100.0 13.3 21.3 100.0 100.0 100.0 59.1 98.8
� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 6.1 11.2 17.2 4.9 13.4 10.9 14.9 20.4 6.3 16.9 5.0 85.1 98.3 15.5 80.2 15.8 90.5 99.4 20.8 84.0
300 4.7 6.6 12.3 5.3 8.9 18.1 12.6 20.9 7.7 15.0 4.6 98.5 97.4 7.7 32.3 41.5 99.9 99.3 13.0 54.1
500 5.3 4.7 10.1 3.8 7.5 26.2 14.7 24.6 9.4 16.5 5.9 100.0 99.0 5.9 18.7 61.9 100.0 99.9 12.0 54.5
m0 2

 H0: 
 = 0:40 H1: 
 = 0:38 H0: 
 = 0:40 H1: 
 = 0:38
100 5.6 5.7 11.6 7.8 13.1 27.9 11.5 21.0 13.2 19.1 6.2 11.9 58.2 8.8 60.1 67.0 51.1 90.8 28.3 80.9
300 6.1 5.1 8.8 5.3 7.8 60.7 21.5 31.9 14.6 26.0 5.5 6.9 19.4 5.5 25.9 98.3 76.1 95.2 23.6 83.9
500 5.0 4.3 7.8 4.8 6.5 85.1 38.2 49.5 20.2 35.6 4.9 7.5 16.5 5.3 20.4 100.0 87.1 98.7 22.8 92.3
� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 6.5 5.2 11.6 6.1 10.6 18.0 10.6 19.4 8.3 15.7 5.5 6.9 52.2 8.4 61.1 39.5 12.2 58.9 11.0 66.5
300 5.1 5.0 8.5 4.5 7.1 43.9 21.3 29.2 9.6 18.0 5.2 4.9 20.3 4.9 24.8 82.6 28.0 68.4 11.0 62.6
500 5.2 4.7 7.9 4.5 7.4 60.5 30.9 38.0 14.3 25.2 5.9 5.0 16.4 4.3 18.7 96.0 45.5 85.0 11.5 77.7

 H0: 
 = 0:80 H1: 
 = 0:78 H0: 
 = 0:80 H1: 
 = 0:78
100 5.7 73.4 55.8 31.8 36.5 20.2 73.9 57.1 34.9 38.7 7.1 24.6 70.5 21.2 75.5 69.3 68.2 94.7 37.6 89.3
300 5.6 45.4 30.8 20.5 22.7 47.1 49.0 40.3 24.4 32.2 5.7 20.9 35.2 8.9 36.2 98.4 89.6 97.1 25.0 87.5
500 5.2 30.5 22.7 14.5 14.6 70.4 43.3 40.4 20.4 31.7 5.0 25.2 30.8 6.7 27.8 99.9 95.9 99.4 20.2 94.1
� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 7.0 8.1 15.9 27.9 32.4 10.0 9.8 17.6 29.7 34.2 5.5 6.5 48.7 9.3 65.6 16.2 7.1 50.5 10.6 68.1
300 5.6 8.9 11.3 20.7 22.5 19.3 10.9 17.7 22.7 27.1 5.4 5.2 18.3 6.5 28.7 40.4 9.4 36.0 8.7 43.8
500 5.0 8.2 10.2 14.6 15.4 24.4 13.9 20.9 17.0 21.5 5.5 6.2 16.9 5.3 21.6 59.7 15.3 47.2 8.0 46.9

See the notes to Table 9.

9 An empirical application to growth convergence

In what follows, we apply the proposed QML approach to estimate panel growth regres-
sions and evaluate unconditional convergence in economic growth across countries in the
global economy. A number of studies have used basic cross section growth regressions for
this purpose such as, for example, Barro (1991) and Mankiw et al. (1992), who examine a
sample of 98 countries over the period 1960-1985, and Sala-i-Martin (1996) who considers
110 countries over the period 1960-1990, among others. The use of the basic cross section
growth regression has received important criticisms by Islam (1995), Caselli et al. (1996)
and by Lee et al. (1997,1998). Islam (1995) and Caselli et al. (1996) advocate and imple-
ment dynamic panel regressions including individual and time e¤ects for studying growth
convergence using �ve-yearly averages of growth rates as a way of abstracting from business
cycle e¤ects. In particular, Caselli et al. (1996) use �rst-di¤erenced GMM estimators to
deal with the �xed e¤ects, but do not allow for interactive e¤ects and implicitly assume that
errors across countries are independent, which is unlikely to hold particularly considering
the rapid increase in world trade and international �nancial linkages.
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We estimate panel growth regressions using the log-level of real output at �ve year in-
tervals, and the corresponding growth rate averaged over the same intervals, extending from
1960 to 2014. The last observation for the �ve year intervals is based on four years. The data
is compiled from the latest version of the Penn World Tables by Heston, Summers and Aten
(2012) and Feenstra et al. (2015). Output is measured by real GDP per capita constructed
as the ratio of output-side real GDP at chained PPPs (in mil.2011US$) and population (in
millions). We �rst estimate the number of factors using the proposed sequential MTLR pro-
cedure. Having selected the number of factors we then estimate two sets of panel regressions,
one in the "level" of output per capita, and another in the "growth" rates, namely

Levels: yit = 
yi;t�1 + �i + �t + �
0
ift + uit; for t = 1; 2; :::; T; (55)

Growth Rates: �yit = 
��yi;t�1 + ��i + �
0
�if�t +�uit, for t = 2; :::; T , (56)

for i = 1; 2; :::; N , where yit is the natural logarithm of real GDP per capita. Note the 
 and

� are related but are not the same. For the levels regression yit is measured at �ve year
intervals, while for the growth rates regression yit is measured as averages over �ve yearly
intervals. We also report regression results for the case of no factors, for comparison. Note
that the growth regression is not a �rst-di¤erenced version of the level regression and has its
own �xed and interactive time e¤ects.
The QML estimates for the panel growth regressions, together with standard errors in

parentheses, are presented in Table 18. The top panel of this table reports results for the
level of the series, equation (55), and the bottom panel gives the results for the growth rates,
equation (56). Starting with the top panel, the results show that the coe¢ cients of the
lagged dependent variable for the �ve year intervals have the correct signs. The estimated
coe¢ cient of the lagged dependent variable, 
̂; for the level series without interactive e¤ects,
that is for m = 0, is equal to 0.967. Interestingly, this value is very close to that found by
Lee et al. (1998) for their dynamic panel growth regressions including individual and time
e¤ects using the Summers-Heston data set over the period 1965-1989 with N = 102: This
implies a speed of convergence of 0.007 based on the deterministic version of the Solow
growth model where 
 = exp(���) with � the speed of convergence and � the time interval.
Using the sequential MTLR procedure to select the number of factors yields m̂ = 4. The
corresponding estimated value of 
̂ now equals 0.918 with an implied speed of convergence
of 0.017, which is much more plausible. These results show that inclusion of the unobserved
factors in the level regression, (55), leads to a decrease in the persistence of 
̂ and therefore
an increase in the speed of convergence. Similar results are obtained for the growth rates
regression summarised at the bottom panel of Table 18, where 
̂� drops from 0.288 form = 0
to 0.150 for m̂ = 3, selected by the sequential MTLR procedure. These estimation results
also con�rm that persistence in the growth rates is rather small, irrespective of whether
unobserved factors are allowed in the analysis. It is also of interest that the estimates of 
�
obtained with m = 0 are closer to the time series estimates obtained for individual countries
that do not allow for possible common global e¤ects.
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Table 11: QML estimates of the panel growth AR(1) regressions over the
period 1960-2014


̂ !̂ d̂2 d̂3 d̂4 d̂5 d̂6 d̂7 d̂8 d̂9 d̂10 d̂11 d̂12 �̂2

Levels: yit (T = 11; N = 111)

m = 0
0.967
(0.039)

1.140
(0.109)

0.142
(0.016)

0.027
(0.019)

-0.018
(0.019)

-0.049
(0.028)

-0.069
(0.026)

0.046
(0.029)

0.016
(0.020)

0.060
(0.031)

0.039
(0.021)

0.002
(0.030)

-0.036
(0.023)

0.040

m̂ = 4
0.918
(0.124)

1.310
(0.352)

0.142
(0.017)

0.034
(0.023)

-0.011
(0.026)

-0.042
(0.033)

-0.065
(0.024)

0.046
(0.027)

0.019
(0.022)

0.063
(0.032)

0.045
(0.026)

0.010
(0.035)

-0.028
(0.029)

0.017

Growth Rates: �yit (T = 10; N = 111)

m = 0
0.288
(0.064)

1.259
(0.128)

0.004
(0.004)

-0.006
(0.004)

-0.009
(0.006)

-0.011
(0.006)

0.013
(0.007)

0.000
(0.005)

0.011
(0.006)

0.004
(0.005)

-0.003
(0.006)

-0.002
(0.006) - 0.002

m̂ = 3
0.150
(0.118)

1.706
(0.259)

0.004
(0.004)

-0.005
(0.004)

-0.010
(0.006)

-0.013
(0.005)

0.011
(0.007)

0.002
(0.005)

0.011
(0.006)

0.005
(0.005)

-0.002
(0.006)

-0.002
(0.006) - 0.001

Note: T is the e¤ective number of observations used in estimation and the �gures in parentheses are standard errors. yit
and �yit are the natural logarithm of per capita GDP at �ve year intervals and the growth rate averaged over �ve year
intervals, respectively. m̂ is the estimated number of factors using the sequential MTLR procedure described in Section 7.1
with �N = 50 p

(T�2)N and p = 0:05.

10 Conclusion

This paper proposes a quasi maximum likelihood estimator for short dynamic panel data
models with unobserved multiple common factors, where individual and time �xed e¤ects
are also explicitly included. This provides a natural extension of Hsiao, Pesaran, and Tah-
miscioglu (2002) to panel data models with a multi-factor error structure. Our contribution
can also be viewed as extending the standard dynamic panel data models with �xed and
time e¤ects, routinely used in the empirical literature, to allow for error cross sectional de-
pendence through interactive time e¤ects. We have also contributed to the literature on
short T factor models where identi�cation and estimation of the number of unobserved fac-
tors has proved to be challenging. In this regard, our proposed sequential multiple testing
likelihood ratio (MTLR) procedure can be particularly relevant to the analysis of short T
factor models. Monte Carlo results provide small sample evidence in support of the pro-
posed QML estimator and show that the sequential MTLR procedure performs very well in
selecting the number of unobserved factors. The same is also true for the performance of
the QML estimators in terms of bias, RMSE and empirical size, and power. An empirical
application to growth convergence using the most recent Penn World Tables suggests that
allowing for interactive e¤ects leads to estimates with a higher speed of convergence than
previously indicated in the literature.
Although we allow the error variances to vary across units through the di¤erences in factor

loadings, it is assumed that the unit speci�c errors are cross sectionally homoskedastic, which
is rather restrictive. However, our theoretical derivations can be readily adapted to cover the
heteroskedastic error case, as was done in the recent paper by Hayakawa and Pesaran (2015)
for models without unobserved common factors. It would also be interesting to extend the
analysis to panel VAR models with interactive e¤ects.
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Appendix

A.1 Lemmas and their proofs

Lemma 1 Consider the T � 1 vector of composite errors �i = (�i1; �i2; :::�iT )
0, where �i1 is

de�ned by (10) and �it, for t = 2; 3; :::; T are de�ned by (6). Suppose that the conditions of
Proposition 2 hold and T is �xed. Then

sup
i
E k�ik

4 < K <1; (A.1)

sup
i
E kZik4 < K, sup

i
E k�yik4 < K, and sup

i
E k�Wik4 < K <1: (A.2)

Proof. To obtain (A.1) note that

k�ik
4 = k�i�0ik

2
= Tr (�i�

0
i�i�

0
i) = (�

0
i�i)

2
=

 
TX
t=1

�2it

!2
:

Then by Minkowski�s inequality we have

E k�ik
4 = E

 
TX
t=1

�2it

!2
�
 

TX
t=1

�
E
�
�4it
��1=2!2

;

and since supiE(j�itj
4+�) < K for t = 1; 2; :::; T from result (15) of Proposition 2; result

(A.1) follows noting that T is �xed. To establish (A.2), note that �Wi = (IT ;Zi;�eyi;�1) =
(IT ;Zi;L�yi), where �eyi;�1 = (0;�yi1; :::;�yi;T�1); Zi and �yi are given by (40) and (39),
and

L =

0BBBBB@
0 0 � � � � � � 0
1 0 � � � � � � 0
... 1 0 � � � ...
...
...
. . . . . .

...
0 0 � � � 1 0

1CCCCCA ; (A.3)

with kLk < 1. It is now easily seen that k�Wik2 � T +kZik2+k�yik2, and by Minkowski�s
inequality we obtain�

E k�Wik4
�1=2 � T +

�
E kZik4

�1=2
+
�
E k�yik4

�1=2
:

Also kZik2 = k�xi1k2 + 2
PT

t=2 k�xitk
2, and since by result (16) of Proposition 2

supi;tE
�
k�xitk4+�

�
< K, it then follows that supiE kZik

4 < K. Similarly, using (39),
we have

k�yik � kak+


B�1 (
)

 k�k kZik+ 

B�1 (
)

 k�ik ;

and by assumption kak < K, k�k < K, and kB�1 (
)k < K. Also by result (15) of
Proposition 2 supi;tE j�itj

4+� < K; and it is already established that supiE kZik
4 < K.

Hence, �
E k�yik4

�1=4 � kak+ 

B�1 (
)

 k�k �E kZik4�1=4 + 

B�1 (
)

 �E k�ik4�1=4 ;
and it follows that supiE k�yik

4 < K, as required.
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Lemma 2 Consider the model given by (13) and let

�i (') = �yi ��Wi'; �� ( ) = E [�i (') �
0
i (')] :

De�ne
di( ;'0) = �W

0
i�� ( )

�1 �i ('0) ; (A.4)

and suppose that Assumptions 1-6 and Assumption 7(i)-(ii) hold. Then

E0 [di( ;'0)] = b ( ;'0) = [0;0;�� ( ; 0)]
0 ; (A.5)

where
� ( ; 0) = Tr f[�� ( )��� ( 0)]C ( ;
0)g (A.6)

and

C ( ;
0) = �� ( )
�1

0BBBBB@
0 0 � � � 0 0
1 0 � � � 0 0
...

...
. . .

...
...


T�30 
T�40 � � � 0 0

T�20 
T�30 � � � 1 0

1CCCCCA : (A.7)

Furthermore
E0 [di( 0;'0)] = 0, for i = 1; 2; :::; N; (A.8)

bN ( ;'0) =
1

N

NX
i=1

di( ;'0)
a:s:! b ( ;'0) = [0;0;�� ( ; 0)]

0 ; (A.9)

bN ( 0;'0) =
1

N

NX
i=1

�W0
i�� ( 0)

�1 �i ('0)
a:s:! 0; (A.10)

and

�N;� ( 0) =
1

N

NX
i=1

�i ('0) �i ('0)
0 a:s:! �� ( 0) : (A.11)

Proof. Under (13),
�i ('0) = �yi ��Wi'0 = G0�0i+r0i; (A.12)

where G0;�0i, and r0i denote the values of G; �i and ri evaluated at  =  0. It is
now easily seen that E0 [�i ('0)] = 0, and V ar [�i ('0)] = E0 [�i ('0) �

0
i ('0)] = �� ( 0).

Also under Assumptions 1-6, �i (') = G�i+ri are independently distributed over i for all
values of � 2 ��, and �xit is independently distributed from uit and �i. Partition �Wi as
�Wi = (IT ;Zi;�eyi;�1), where IT is the identity matrix of order T ,

Zi =

0BBB@
�x0i 0
0 �x0i2
...

...
0 �x0iT

1CCCA ; �eyi;�1 =
0BBB@

0
�yi1
...

�yi;T�1

1CCCA ;
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and note that �eyi;�1 = L�yi, where L is given by (A.3). Also, using (39) and evaluating it
at � = �0we have

�yi = B (
0)
�1 (Zi�0 + d0) +B (
0)

�1 �i ('0) ; (A.13)

where � = (�0;�0)0, and B (
) is de�ned by (35). Consider now (A.4), and note that

di( ;'0) =�W
0
i�� ( )

�1 �i ('0) =

0@ �� ( )
�1 �i ('0)

Z0i�� ( )
�1 �i ('0)

�y0iL
0�� ( )

�1 �i ('0)

1A =

0@ d1i ( ;'0)
d2i ( ;'0)
d3i ( ;'0)

1A :

(A.14)
Further, using (A.13), write d3i ( ;'0) as

d3i ( ;'0) =
�
B (
0)

�1 (Zi�0 + d0) +B (
0)
�1 �i ('0)

�0
L0�� ( )

�1 �i ('0) (A.15)

= (Zi�0 + d0)
0B (
0)

0�1 L0�� ( )
�1 �i ('0) + �

0
i ('0)B (
0)

0�1 L0�� ( )
�1 �i ('0) :

It is now easily seen that since E0 [�i ('0)] = 0 and Zi is distributed independently from
�i ('0) ; then

E0 [d1i ( ;'0)] = 0, and E0 [d2i ( ;'0)] = 0, for all i; (A.16)

and

E0 [d3i ( ;'0)] = E0
�
�0i ('0)B (
0)

0�1 L0�� ( )
�1 �i ('0)

�
= Tr

�
B (
0)

0�1 L0�� ( )
�1E0 [�i ('0) �

0
i ('0)]

	
= Tr

�
�� ( 0)�� ( )

�1 LB (
0)
�1� :

Also, using (36) and (A.3), we have

LB (
0)
�1 =

0BBBBB@
0 0 � � � 0 0
1 0 � � � 0 0
...

...
. . .

...
...


T�30 
T�40 � � � 0 0

T�20 
T�30 � � � 1 0

1CCCCCA :

Hence, Tr
�
LB (
0)

�1� = 0, and E0 [d3i ( ;'0)] can be written as
E0 [d3i ( ;'0)] = �Tr f[�� ( )��� ( 0)]C ( ;
0)g = �� ( ; 0) ; (A.17)

where C ( ;
0) = �� ( )
�1 LB (
0)

�1. Using (A.17) and (A.16) now yields (A.5), as re-
quired. Result (A.8) then follows immediately, noting that E0 [d3i ( 0;'0)] =
Tr
�
�� ( 0)�� ( 0)

�1 LB (
0)
�1� = Tr

�
LB (
0)

�1� = 0. To establish (A.9), we �rst note
that �i ('0), for i = 1; 2; :::; N are independently distributed, and therefore conditional on
Zi, di( ;'0) are also independently distributed across i. Hence to show that bN ( ;'0) =
1
N

PN
i=1 di( ;'0) converges almost surely to limN!1

1
N

PN
i=1E0 [di( ;'0)] ; it is su¢ cient

to show that supiE0 kdi( ;'0)k
2 < K. Consider each of the three terms of di( ;'0) in

turn. First, from result (A.1) and Liapunov�s inequality we have that E k�ik
2 < K < 1

and noting that by assumption 7(ii) �� ( )
�1 is positive de�nite for all  2 � , then

sup
i
E0 kd1i( ;'0)k

2 �


�� ( )

�1

2 sup
i
E0 k�i ('0)k

2 < K: (A.18)
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Similarly, using in addition result (A.2) we have

sup
i
E0 kd2i( ;'0)k

2 � sup
i
E kZik2



�� ( )
�1

2 sup

i
E0 k�i ('0)k

2 < K. (A.19)

Finally, applying the Minkowski inequality to (A.15) we have�
E0 kd3i( ;'0)k

2�1=2 �
h
E0


(Zi�0 + d0)0B (
0)0�1 L0�� ( )

�1 �i ('0)


2i1=2

+
h
E0


�0i ('0)B (
0)0�1 L0�� ( )

�1 �i ('0)


2i1=2 ;

E0


(Zi�0 + d0)0B (
0)0�1 L0�� ( )

�1 �i ('0)


2 � E0 kZi�0 + d0k2



B (
0)0�1 L0�� ( )
�1

2

�E0 k�i ('0)k
2 ;

E0


�0i ('0)B (
0)0�1 L0�� ( 0)

�1 �i ('0)


2 �



B (
0)0�1 L0�� ( )
�1

2E0 k�i ('0)k4 :

But


B (
0)0�1 L0�� ( )

�1

2 � 

�� ( )
�1

2 kLk2 

B (
0)�1

2, and it is easily seen that

kLk � 1; and


B (
0)�1

 �PT

t=1 j
0j
t�1 < K. Also, by results of Lemma 1, supiE0 k�i ('0)k

4 <

K; and


�� ( )

�1

 < K, by assumption. Further, E0 kZi�0 + d0k2 � k�0k2E kZik2+kd0k2
which is uniformly bounded under results (A.2) of Lemma 1, noting that �0 and d0 are
de�ned on a compact set and are bounded as well. Therefore, supiE0 kd3i( ;'0)k

2 < K.
Now using this result together with (A.18) and (A.19) in (A.14) we have

sup
i
E0 kdi( ;'0)k

2=sup
i
E0


�W0

i�� ( )
�1 �i ('0)



2 < K;

which establishes that di( ;'0) is uniformly L2-bounded, besides being cross-sectionally
independent. Hence,

bN ( ;'0) = N�1
NX
i=1

di( ;'0)
a:s:! lim

N!1
N�1

NX
i=1

E0 [di( ;'0)] = [0;0;�� ( ; 0)]
0 ;

which establishes (A.9). Result (A.10) follows from the above by setting  =  0 and noting
from (A.8) that E0 [di( 0;'0)] = 0. Finally, since supiE0 k�i ('0) �0i ('0)k

2
< K, for a

�nite T (see result (A.1) of Lemma 1), and by assumption �i ('0) �
0
i ('0) are distributed

independently over i, then

�N;� ( 0) =
1

N

NX
i=1

�i ('0) �i ('0)
0 a:s:! lim

N!1

1

N

NX
i=1

E0
�
�i ('0) �i ('0)

0� ;
and result (A.11) follows, since E0 [�i ('0) �

0
i ('0)] = �� ( 0).

Lemma 3 Consider the average log-likelihood function

�̀
N (�) = �̀N ('; ) = �

T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

NX
i=1

�i (')
0�� ( )

�1 �i (') (A.20)
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�̀
N (�) = N�1`N (�) and `N (�) is de�ned by (20). Then under Assumptions 1-7 we have

�̀
N (�0)

a:s:! �T
2
ln (2�)� 1

2
log j�� ( 0)j �

T

2
; (A.21)

and

�̀
N (�)

a:s:! �T
2
ln (2�)� 1

2
ln j�� ( )j �

1

2
Tr
�
�� ( )

�1�� ( 0)
�

(A.22)

�1
2
('�'0)

0A ( ) ('�'0)� (
 � 
0)� ( ; 0) ;

where � ( ; 0) is de�ned by (A.6). Also

�̀
N (�0)� �̀N (�)

a:s:! lim
N!1

E0
�
�̀
N (�0)� �̀N (�)

�
� 0; (A.23)

where

lim
N!1

E0
�
�̀
N (�0)� �̀N (�)

�
=

1

2
Tr
�
�� ( )

�1�� ( 0)
�
� 1
2
log (j�� ( 0)j = j�� ( )j)�

T

2

+
1

2
('�'0)

0A ( ) ('�'0) + (
 � 
0)� ( ; 0) : (A.24)

Proof. Result (A.21) follows by evaluating (A.20) under � = �0, and using (A.11) from
Lemma 2. To establish (A.22) we �rst note that for any � 2 ��, �i (') = �i ('0) �
�Wi ('�'0), and using this result in (A.20) we have

�̀
N (�) = �T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

� PN
i=1 [�i ('0)��Wi ('�'0)]

0�� ( )
�1

� [�i ('0)��Wi ('�'0)]

�

= �T
2
ln (2�)� 1

2
ln j�� ( )j �

1

2

264 Tr
�
�� ( )

�1
h
1
N

PN
i=1 �i ('0) �i ('0)

0
i�

�2 ('�'0)
0 bN ( ;'0)

+ ('�'0)
0AN ( ) ('�'0)

375 ;
(A.25)

where

AN ( ) =
1

N

NX
i=1

�W0
i�� ( )

�1�Wi; bN ( ;'0) =
1

N

NX
i=1

di( ;'0); (A.26)

and di( ;'0) = �W0
i�� ( )

�1 �i ('0), as de�ned by (A.4). Result (A.22) follows using
(A.9) and (A.11) from Lemma 2 in (A.25) evaluated at �0 and �, respectively. Results
(A.23) and (A.24) follow from the sure convergence property of (A.21) and (A.22), and the
Kullback�Leibler type information inequality.

Lemma 4 Consider the average log-likelihood function de�ned by (41) and (22):

�̀
N (�) = �T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

NX
i=1

�0i(')�� ( )
�1 �i(');

�i(') = �yi ��Wi';
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and suppose that Assumptions 1 to 6 and Assumption 7(i)-(ii) hold. Denote the average
score function by �sN (�) = @ �̀N (�) =@�. Then

�sN (�0)
a:s! 0; (A.27)

p
N�sN (�0)!d N [0;J (�0)] ; (A.28)

where

J (�0) = lim
N!1

1

N

NX
i=1

E [!i (�0)!
0
i (�0)] ; (A.29)

!i (�0) =

�
�W0

i�� ( 0)
�1 �i('0)

�i (�0)

�
; (A.30)

with the jth element of �i (�0) given by

�ij (�0) =
1

2
�0i('0)�� ( 0)

�1 @�� ( 0)

@ j
�� ( 0)

�1 �i('0)�
1

2
Tr

�
�� ( 0)

�1 @�� ( 0)

@ j

�
:

(A.31)
A consistent estimator of J (�0) is given by

Ĵ
�
�̂
�
=
1

N

NX
i=1

!i

�
�̂
�
!0i

�
�̂
�
; (A.32)

where �̂ = argmax�2�� �̀N (�).

Proof. Let �sN (�) =
�
�s0N;'(�);�s

0
N; (�)

�0
;  =

�
 1;  2; ::::;  n 

�0
, where n = dim( ) =

1 + Tm�m(m� 1)=2, and note that

�sN;'(�) =
@ �̀N (�)

@'
=
1

N

NX
i=1

�W0
i�� ( )

�1 �i(');

�sN; j(�) =
@ �̀N (�)

@ j
= �1

2

@ ln j�� ( )j
@ j

+
1

2N

NX
i=1

�0i(')�� ( )
�1 @�� ( )

@ j
�� ( )

�1 �i(');

for j = 1; 2; :::; n . Using (A.4), and result (A.10) of Lemma 2, it then readily follows that

�sN;'(�0) =
1

N

NX
i=1

di (�0)
a:s! 0; (A.33)

Also

E0

�
�0i('0)�� ( 0)

�1 @�� ( 0)

@ j
�� ( 0)

�1 �i('0)

�
= Tr

�
�� ( 0)

�1 @�� ( 0)

@ j

�
;

and using well know results on the partial derivatives of the determinants we have (see, for
example, Magnus and Neudecker (1988, p.151)).

@ ln j�� ( 0)j
@ j

= Tr

�
�� ( 0)

�1 @�� ( 0)

@ j

�
;
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and hence �sN; (�) can be written alternatively as

�sN; j(�0) =
@ �̀N (�0)

@ j
=
1

N

NX
i=1

�ij:

where

�ij (�0) =
1

2
�0i('0)�� ( 0)

�1 @�� ( 0)

@ j
�� ( 0)

�1 �i('0)�
1

2
Tr

�
�� ( 0)

�1 @�� ( 0)

@ j

�
:

(A.34)
Therefore,

�sN(�0) =

�
�sN;'(�0)
�sN; (�0)

�
=

�
1
N

PN
i=1 di(�0)

1
N

PN
i=1 �i(�0)

�
;

where �i (�0) =
�
�i1 (�0) ; �i2 (�0) ; :::; �i;n (�0)

�0
.

sup
i
E k�i (�0)k2 = sup

i
E (� 0i (�0)�i (�0)) =

n X
j=1

sup
i
E
�
�2ij (�0)

�
� n sup

i;j
E j�ij (�0)j2 ;

and application of Minkowski�s inequality to (A.34) yields

sup
i
E j�ij (�0)j2 �

1

4

"

�� ( 0)
�1

2 



@�� ( 0)

@ j





�sup
i
E k�i('0)k

4

�1=2
+ jCj

#2
;

where C = Tr
h
�� ( 0)

�1 @��( 0)
@ j

i
: But under Assumption 7(ii) and noting that n is �nite,

we also have



@��( 0)@ j




 < K, and


�� ( 0)

�1

 < K, and from result (A.1) supiE k�i('0)k
4 <

K. Therefore, supiE k�i (�0)k
2 < K. Also recall that �i('0) are independently distributed

over i, which implies that �i are also independently distributed across i. Therefore, �i
have zero means (by construction), are independently distributed over i and have bounded
second-order moments, which ensure that �sN; (�0)

a:s! 0, and together with (A.33) yields
�sN(�0)

a:s! 0, as required. Consider now the limiting distribution of
p
N�sN(�0) and note that

p
N�sN(�0) =

� p
N�sN;'(�0)p
N�sN; (�0)

�
=

1p
N

� PN
i=1 di(�0)PN
i=1 �i (�0)

�
=

1p
N

NX
i=1

!i (�0) ;

where!i (�0) =
�
d0i(�0);�

0
i (�0)

�0
, and it is already established that!i (�0) are independently

distributed over i, have zero means and bounded second-order moments. Therefore, by
the Liapounov central limit theorem and the Cramér-Wold device we have6

p
N�sN(�0) !d

N [0;J (�0)] ;where J (�0) is given by (A.29), as required. Consistency of Ĵ
�
�̂
�
for J (�0)

follows from consistency of �̂ for �0, and the independence of !i (�0) over i.

6See, for example, Theorem 5.10 in White (1984).
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A.2 Proofs of Propositions and Theorems

Proof of Proposition 1. Using (5), and starting from some arbitrary initial state,
�yi;�S+1, we obtain the following expression

�yi1 = 
S�yi;�S+1 +
S�1X
j=0


j�0�xi;1�j + ~d1 + ~g
0
1�i +

S�1X
j=0


j�ui;1�j; (A.35)

where ~d1 =
PS�1

j=0 

jd1�j, and ~g1 =

PS�1
j=0 


jg1�j. Under Assumptions 3 and 6 and following
the procedure in Hsiao et al. (2012), we have

E

 

S�yi;�S+1 +

S�1X
j=0


j�0�xi;1�j j�xi

!
= a+ �0�xi; (A.36)

where the �xed parameters a and � are functions of aS; �S, 
 and �. Let

�i = 
S�yi;�S+1 +
S�1X
j=0


j�0�xi;1�j � E

 

S�yi;�S+1 +

S�1X
j=0


j�0�xi;1�j j�xi

!
; (A.37)

where by construction �i is a martingale di¤erence process. Also in view of Assumptions 3
and 6 and by application of the Minkowski inequality to both sides of �i we have supi j�ij

4+� <
K.7 Hence, using (A.36) and (A.37) in (A.35) we have

�yi1 = d1 + �
0�xi + ~g

0
1�i + vi1;

where d1 = a+ ~d1, and

vi1 =
S�1X
j=0


j�ui;1�j + �i: (A.38)

It now readily follows that vi1 s IID(0; !�2), where !�2 = V ar (vi1), and vi1 is distributed
independently of �xi and �i. Again by application of the Minkowski inequality to (A.38)
we also have that supi jvi1j

4+� < K, as required. Further, under Assumptions 3 and 6,
supi V ar (�i) < K and as a result 0 < !min < ! < !max <1, where !min and !max are �xed
constants. Finally, it is easily established that

Cov (vi1;�uit) = ��2, for t = 2
= 0, for t = 3; 4; :::; T ,

as required.

Proof of Proposition 2. Result (15) follows by applying Minkowski�s inequality to the
elements of �i = (�i1; �i2; � � � ; �iT )

0. Speci�cally, for t = 2; 3; :::; T; �it = g
0
t�i +�uit and we

7Note that under Assumption 3 supi;tE k�xitk
4+�

< K, which also follows from application of the
Minkowski inequality for in�nite sums to (3).

39



have �
E j�itj

4+�� 1
4+� =

�
E jg0t�i +�uitj

4+�
� 1
4+�

�
�
E jg0t�ij

4+�
� 1
4+�
+
�
E j�uitj4+�

� 1
4+�

� kgtk
�
E k�ik

4+�� 1
4+� +

�
E j�uitj4+�

� 1
4+� :

Under Assumptions 1, 2 and 5 supt kgtk < K; supiE k�ik
4+� < K and supi;tE j�uitj

4+� :
Similarly for t = 1; where �i1 = ~g01�i + vi1 and for which it holds under the assumptions

of Proposition 1 that kg1k < K and supiE jvi1j
4+� < K. Hence,

�
E j�itj

4+�� 1
4+� � K, for

t = 1; 2; :::; T and (15) follows as required. To establish condition (16), using (3) we �rst
note that

k�xitk � kcxk+
1X
j=0

k	jk k"i;t�jk ;

and by the Minkowski inequality for in�nite sums we have

(E k�xitkp)1=p � kcxk+
1X
j=0

k	jk (E k"i;t�jkp)1=p ;

for any p � 1. Set p = 4+�, and note that under Assumption 3, kcxk < K, supi;tE k"itk
4+� <

K; and
P1

j=0 k	jk < K. Therefore,
�
E k�xitk4+�

�1=(4+�) � K, and (16) follows as required.

Proof of Proposition 3.
Recall that � =('0; 0)0, and ' = (�0;
)0, and using (41) note that

�̀
N (�; 
; ) = �

T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

NX
i=1

�0i(�;
)�� ( )
�1 �i(�;
):

Using results (A.23) and (A.24)) in Lemma 3 we have

�̀
N (�0; 
0; 0)� �̀N (�;
; )

a:s:! lim
N!1

E0
�
�̀
N (�0; 
0; 0)� �̀N (�;
; )

�
� 0; (A.39)

2 lim
N!1

E0
�
�̀
N (�0; 
0; 0)� �̀N (�;
; )

�
= � ( ; 0)+('�'0)

0A ( ) ('�'0)+2 (
 � 
0)�( ; 0);

(A.40)
where

� ( ; 0) = Tr
�
�� ( )

�1�� ( 0)
�
� ln (j�� ( 0)j = j�� ( )j)� T; (A.41)

and
� ( ; 0) = Tr

�
[�� ( )��� ( 0)]�� ( )

�1 LB (
0)
�1	 ; (A.42)

with B (
0)
�1 given by (36) evaluated at 
0; L is a matrix lag operator de�ned by (A.3)

and A ( ) is de�ned by (42). Denote the eigenvalues of �� ( 0) and �� ( ) by �0t and �t
(t = 1; 2; :::; T ); respectively (note that �0t > 0 and �t > 0) and write � ( ; 0) as

� ( ; 0) =

TX
t=1

[(�0t=�t)� ln (�0t=�t)� 1] :
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Also note that (�0t=�t)� ln (�0t=�t)�1 � 0 with the equality holding if and only if �0t = �t,
for all t, or equivalently if and only if  =  0.

8 Therefore, � ( ; 0) � 0, with equality
holding if and only if  =  0. Furthermore, since by Assumption 7 (iii) A ( ) is a positive
de�nite matrix, then

('�'0)
0A ( ) ('�'0) � �min [A ( )] ('�'0)

0 ('�'0) ;

where �min [A ( )] > 0. It is clear that the �rst two terms of (A.40) can not be negative, but
the same is not true of the third term, (
 � 
0)�( ; 0), and therefore, global identi�cation
of 
0 can not be guaranteed. Consider now the almost sure probability limit of �̀N ('0; 0)�
�̀
N ('; ) on the set �� = N�(
0) � �' � � ; for some small positive �; where N�(
0) is
de�ned by 1. We now establish that there exists � > 0 for which this limit can be zero if
and only if � = �0. To see this consider the �rst and the third terms of (A.40) together, and
note that � ( ; 0) + 2 (
 � 
0)�( ; 0) = 0 if  =  0. In such a case

2 lim
N!1

E0
�
�̀
N ('0; 0)� �̀N ('; 0)

�
� 1

2
�min [A ( 0)] ('�'0)

0 ('�'0) ;

and �̀N ('0; 0)� �̀N ('; 0)
a:s:! 0, if and only if �min [A ( 0)] ('�'0)

0 ('�'0) = 0, which
implies ' = '0, as required since by assumption �min [A ( 0)] > 0. Consider now the case
where  6=  0, and note that � ( ; 0) > 0, and j�( ; 0)j > 0, and therefore on �� we
have

j(
 � 
0)�( ; 0)j � j(
 � 
0)j j�( ; 0)j < � j�( ; 0)j :
Also note that under Assumptions 1, 2 and 5, k�� ( )k < K for all  2 � ; and it is readily
seen that j�( ; 0)j < K. Hence, on �� there must exist � > 0, such that � ( ; 0) +
2 (
 � 
0)�( ; 0) � 0, and hence

2 lim
N!1

E0
�
�̀
N ('0; 0)� �̀N ('; )

�
� 1

2
�min [A ( )] ('�'0)

0 ('�'0) :

Once again since by assumption �min [A ( )] > 0 for all values of  2 � , then on �� there
exists � > 0 such that ' = '0, and hence  =  0, almost surely.

Proof of Theorem 1. For the proof of consistency it su¢ ces to show here that under the
assumptions of the theorem, �CN (�) = �2�̀N (�)

a:s:! �C (�) uniformly on �� (see Section 6).
From results in Lemma 3 (see (A.23) and (A.24)) it follows that �CN (�) = �2�̀N (�)

a:s:! �C (�)
for every � 2 ��, where

�CN (�) = �CN ('; ) = T ln (2�) + ln j�� ( )j+
1

N

NX
i=1

�i (')
0�� ( )

�1 �i (')

and

�C (�) = �C ('; ) = � ( ; 0) + ('�'0)
0A ( ) ('�'0) + 2 (
 � 
0)�( ; 0) + C ( 0) ;

8Note that for any x > 0, ln (x) � x� 1. Here x = �0t=�t > 0.
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and the term C ( 0) does not depend on �. Since under our assumptions �̀N (�) is continuous
in �, this pointwise result holds uniformly on �� by the uniform law of large numbers, so
long as the dominance condition

E sup
�2��

���0i(')�� ( )
�1 �i(') + T ln (2�) + ln j�� ( )j

�� <1
holds; see for example Theorem 23 of Pötscher and Prucha (2001). Since T is �nite, it is
su¢ cient to show that

E sup
�2��

���0i(')�� ( )
�1 �i(') + ln j�� ( )j

�� <1:

We have

E sup
�2��

���0i(')�� ( )
�1 �i(') + ln j�� ( )j

�� � E sup
�2��

���0i(')�� ( )
�1 �i(')

��+ sup
 2� 

jln j�� ( )jj :

Starting with the second term and using Assumption 7(ii) and the property that for any
positive de�nite real n� n matrix A; ln jAj � Tr(A)� n;

sup
 2� 

jln j�� ( )jj � sup
 2� 

Tr[�� ( )]� T

� sup
 2� 

�PT
t=1 �t[�� ( )]

�
� T

� T sup
 2� 

(�max[�� ( )])� T

� T (cmax � 1) <1:

For the �rst term, de�ning �' = N�(
0)���, we have

E sup
�2��

���0i(')�� ( )
�1 �i(')

�� � E sup
�2��

��Tr[�i(')�0i(')�� ( )
�1]
��

� E sup
�2��

�
�max[�� ( )

�1] k�i(')k
2	

� E sup
 2� 

�max[�� ( )
�1]E sup

'2�'
k�i(')k

2

� E

�
inf
 2� 

�min[�� ( )]

��1
E sup

'2�'
k�i(')k

2

� 1

cmin
E sup

'2�'
k�i(')k

2 :

Further

E sup
'2�'

k�i(')k
2 = E sup

'2�'
k�yi ��Wi'k2

� E k�yik2 + E k�Wik2 sup
'2�'

k'k2 :

But given that �� is a compact set sup'2�' k'k
2 is bounded. Furthermore, from re-

sult (A.2) of Lemma (1) and Liapunov�s inequality we have that E k�yik2 < K < 1
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and E k�Wik2 < K < 1: Since c�1min is bounded by Assumption 7(ii) it follows that
E sup�2��

���0i(')�� ( )
�1 �i(')

�� <1 and hence the dominance condition holds.
To establish asymptotic normality of �̂, by application of the mean value theorem to

�̀
N (�) around � = �0, we �rst note that

�̀
N (�)� �̀N (�0) = (� � �0)0�sN(�0)�

1

2
(� � �0)0HN(��) (� � �0) ; (A.43)

where �sN(�) = @ �̀N (�) =@�,HN(�) = �@2 �̀N (�) =@�@�0, and �� lies on a line segment joining
� and �0. By result (A.27) of Lemma 4, and combining (A.39) and (A.40) we have

�sN(�0)
a:s:! 0;

2
�
�̀
N (�0)� �̀N (�)

� a:s:! � ( ; 0) + ('�'0)
0A ( ) ('�'0) + 2 (
 � 
0)�( ; 0):

Hence, in view of (A.43) we must also have

(� � �0)0HN(��) (� � �0)
a:s:! � ( ; 0) + ('�'0)

0A ( ) ('�'0) + 2 (
 � 
0)�( ; 0):
(A.44)

But it has aleardy been established by Proposition 3 that on�� the right hand side of (A.44)
can be equal to zero if and only if � = �0, and hence we must also have

HN(��)
a:s:! H(�0); (A.45)

whereH(�0)must be a positive de�nite matrix given byH(�0) = limN!1E0
�
�@2 �̀N (�0) =@�@�0

�
.

Applying the mean value theorem to �sN(�̂) around �̂ = �0 we have

0 =
p
N�sN(�̂) =

p
N�sN(�0)�HN(��)

p
N(�̂ � �0)

where �� lies on a line segment joining �̂ and �0. Then,

p
N(�̂ � �0) = H�1

N (
��)
hp

N�sN(�0)
i
:

Since �� lies between �̂ and �0 and �̂ is almost surely locally consistent for �0 on the set ��

so is ��; and as in (A.45) above HN(��)
a:s:! H(�0). In addition, using result (A.28) of Lemma

4, we have
p
N�sN (�0)!d N [0;J (�0)], where J (�0) is given by (A.29). Hence

p
N(�̂ � �0)!d N (0;V�) :

where V� has the familiar sandwich form

V� = H
�1(�0)J (�0)H

�1(�0):

Proof of Proposition 4. Consider the type I error of the test and note that

�N = Pr
�
XN > c2N(k) jH0

�
= Pr

 
kX
i=1

wiz
2
i > c2N(k)

!
;
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where zi s IIDN(0; 1). Now using Lemma A1 of the theory supplement to Chudik et al.
(2018) we have

�N = Pr

 
kX
i=1

wiz
2
i > c2N(k)

!
�

kX
i=1

Pr
�
wiz

2
i > k�1c2N(k)

�
:

Therefore, since wi > 0

�N �
kX
i=1

Pr
�
z2i > (kwi)

�1 c2N(k)
�
� k sup

i
Pr
�
z2i > �2i c

2
N(k)

�
; (A.46)

where �2i = (kwi)
�1 > 0. But since zi s N(0; 1), then

Pr
�
z2i > �2i c

2
N(k)

�
= 1� Pr (��i jcN(k)j � zi � �i jcN(k)j)
= 2� (��i jcN(k)j) :

Using this result in (A.46) we have

�N � 2k sup
i
� (��i jcN(k)j) = 2k� (��min jcN(k)j) = 2k [1� � (�min jcN(k)j)] ;

where �2min = k�1 infiw
�1
i = k�1w�11 > 0. Hence

� (�min jcN(k)j) � 1�
�N
2k
;

and
�N � 2k [1� � (�min jcN(k)j)] = 2k� (��min jcN(k)j) :

Since �min jcN(k)j > 0, then by (A.1) in Lemma 1 of Bailey et al. (2017, BPS)

� (��min jcN(k)j) � (1=2) exp
�
�1
2
�2minc

2
N(k)

�
;

and it follows that

�N � k exp

�
�1
2
�2minc

2
N(k)

�
= k exp

�
�c

2
N(k)

2kw1

�
;

which ensures that as N !1; �N ! 0 so long as c2N(k)!1.
Also due to the monotonicity property of �(:), we have (for �N su¢ ciently small)

�min jcN(k)j � ��1
�
1� �N

2k

�
;

or
c2N (k) � ��2min

h
��1

�
1� �N

2k

�i2
:

But by Lemma 3 of BPS we haveh
��1

�
1� �N

2k

�i2
� 2 ln

�
k

�N

�
;
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and

c2N(k) � 2��2min ln
�
k

�N

�
= 2w1k ln

�
k

�N

�
: (A.47)

Consider now the type II error of the test and note that

�N = Pr
�
XN � c2N (k) jH1

�
= Pr

 
kX
i=1

wi�
2
i (1; �

2
i;N) � c2N (k)

!

= Pr

 
kX
i=1

wi
�
zi � �i;N

�2 � c2N (k)

!
:

Since w1 = maxi(wi), then

kX
i=1

wi
�
zi � �i;N

�2 � w1

kX
i=1

�
zi � �i;N

�2
;

and hence

�N = Pr

 
kX
i=1

wi
�
zi � �i;N

�2 � c2N (k)

!
� Pr

 
w1

kX
i=1

�
zi � �i;N

�2 � c2N (k)

!

= Pr

 
kX
i=1

�
zi � �i;N

�2 � c2N (k)

w1

!

= Pr

�
�2(k; �2N) �

c2N (k)

w1

�
;

where �2(k; �2N) is a non-central chi-squared random variable with k degrees of freedom
and non-centrality parameter, �2N =

Pk
i=1 �

2
i;N . To obtain the rate at which �N tends to

zero with N , we use the normal approximation proposed by Sankaran (1959) for non-central
chi-square distributions given by9

�N � Pr
�
�2(k; �2N) �

c2N (k)

w1

�
t �

0BBB@
�

c2N (k)

w1(k+�2N)

�hN
� f1 + hNAN [hN � 1� 0:5(2� hN)ANBN)]g

hN
p
2AN(1 + 0:5ANBN)

1CCCA ;

where

hN = 1� 2
3

(k + �2N) (k + 3�
2
N)

(k + 2�2N)
2 ;

AN =
k + 2�2N

(k + �2N)
2 , BN = (hN � 1)(1� 3hN):

Since, k are w1 are �xed in N , then AN = 	(��2N ), hN = 1=2 +O(��2N ), BN = 1=4 +O(�
�2
N )

and it readily follows that as N !1; �N ! 0 if c2N (k) =�
2
N ! 0 as cN (k) and �N !1.

9Also see Patnaik (1949) and Abdel Aty (1964) for other approximations.
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Proof of Theorem 2. Consider the event fm̂ > m0g where m0 is the true number of
factors. For this event to be true it must be the case that for some t 2 f1; 2; :::; T � 2g, at a
certain stage in the sequential estimation the null hypothesis of the true number of factors
is rejected. That is,

Pr(m̂ > m0) � P (9t; m0 is rejected jHT�2;t�1 )

�
T�2X
t=1

Pr(LRN(T � 2; t� 1) > c2N;T�2;t�1(k) jHT�2;t�1 );

where c2N;T�2;t�1(k) denotes the critical value of the test. For any given t and from Proposition
4 for the type I error of the test we have that as N !1

�N = Pr(LRN(T � 2; t� 1) > c2N;T�2;t�1(k) jHT�2;t�1 )

= Pr

 
kX
i=1

wiz
2
i > c2N;T�2;t�1(k)

!
! 0;

so long as c2N;T�2;t�1(k)!1, where zi s IIDN(0; 1) from which it follows that

Pr(m̂ > m0) � (T � 2) max
1�t�T�2

P
�
LRN(T � 2; t� 1) > c2N;T�2;t�1 (k) jHT�2;t�1

�
! 0:

(A.48)
Next consider the event fm̂ < m0g: We have that

Pr(m̂ < m0) = Pr

�
max

1�t�T�2
LRN(T � 2; t� 1) � c2N;T�2;t�1 (k) jHT�2;t�1 is false

�
�

T�2X
t=1

Pr
�
LRN (T � 2; t� 1) � c2N;T�2;t�1 (k) jHT�2;t�1 is false

�
: (A.49)

From Proposition 4 for the type II error of the test we have that as N !1

�N = Pr
�
LRN (T � 2; t� 1) � c2N;T�2;t�1 (k) jHT�2;t�1 is false

�
= Pr

 
kX
i=1

wi�
2
i (1; �

2
i;N) � c2N;T�2;t�1(k)

!
! 0:

But from (A.49), it readily follows that since �N ! 0 as N ! 1; Pr(m̂ < m0) ! 0 which
together with (A.48) establishes the desired result.

A.3 Derivation of R2

Consider the panel data model

yit = 
yi;t�1 + �xit + �i + ���t + � it; � it = +�
0
ift + uit;

xit = �i + #
0
ift + �xit; �xit = �x�xi;t�1 +

p
1� �2x"it;
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where ft = (f1t; f2t; :::; fmt)
0, �0i = (�1i; �2i; :::; �mi)

0, #i = (#1i; #2i; :::; #mi)
0, j
j < 1 and

j�xj < 1. To simplify the derivations and without loss of generality we assume that the time
e¤ects, �t and ft are generated with zero means, unit variances and are mutually orthogonal,
and ensure that their sample draws over t = 1; 2; :::; T satisfy the following restrictions

T�1
PT

t=1 f`t = 0; T�1
PT

t=1 f
2
`t = 1, T

�1PT
t=1 f`tf`0t = 0, for ` 6= `0: (A.50)

T�1
PT

t=1 �t = 0; T�1
PT

t=1 �
2
t = 1, T

�1PT
t=1 �tf`t = 0, for all ` . (A.51)

Due to the dependence of xit and � it on the same unobserved factors, the regressors and
the errors of the above regression are correlated. Following Pesaran and Smith (1994) we
base the measurement of R2 on the following reduced form regressions

yit = ~�i + 
yi;t�1 + ��xit + �� it, �� it = ���t + c
0
ift + uit; (A.52)

where
~�i = �i + ��i and ci = �#i + �i: (A.53)

It is clear that in (A.52) the regressors, �xit, and the errors, �� it; are uncorrelated and standard
formula for R2 can be used. But to deal with the heterogeneity across the di¤erent equations
in the panel we use the following average measure of �t

R2y = 1�
N�1PN

i=1 V ar(
�� it)

N�1PN
i=1 V ar(yit)

:

Using the above results, and noting that uit and "it are uncorrelated with �t and ft, then for
each unit i we have

V ar(�� it) = �2�V ar (�t) + c
0
iV ar(ft)ci + �2;

V ar(yit) =
�2V ar(�xit) + V ar(�� it)

1� 
2
:

Under the scaling conditions in (A.50) and (A.51)

R2y =
�2V ar(�xit) + 
2

h
�2� +

Pm
`=1

�
N�1PN

i=1 c
2
`i

�
+ �2

i
�2V ar(�xit) + �2� +

Pm
`=1

�
N�1PN

i=1 c
2
`i

�
+ �2

:

It is easily seen that R2y � 
2 with the equality holding only if � = 0, namely when an AR(1)
speci�cation is considered.
For the unit root case we consider the following average measure of �t

R2�y = 1�
N�1PN

i=1 V ar(
�� it)

N�1PN
i=1 V ar(�yit)

;

where when 
 = 1 (see (A.52) and (A.53))

�yit = ~�i + ��xit + �� it;

47



with ~�i; �xit and �� it de�ned as in the case of 
 = 1 in Section 8.1.2. Then

R2�y = 1� N�1PN
i=1 V ar(

�� it)

�2N�1PN
i=1 V ar(�xit) +N�1PN

i=1 V ar(
�� it)

=
�2V ar(�xit)

�2V ar(�xit) + �2� +
Pm

`=1

�
N�1PN

i=1 c
2
`i

�
+ �2

:

A.4 Monte Carlo results for the QML estimator (T =
5; 
 = 0:8 )

Table A1 below presents results for the case of T = 5 and 
 = 0:8 for the bias, RMSE, size
and power of the AR(1) model, including values of N larger than 500, for both Gaussian and
non-Gaussian errors. These results show that while over-rejections are observed for smaller
sample sizes, size is restored very close to its nominal value as N increases to 2; 000.

Table A1: Bias(�100), RMSE(�100), size(%) and power(%) of 
 for the AR(1)
model for (T = 5; 
 = 0:8), using the estimated number of factors, m̂; and the true
number, m0

N Gaussian non-Gaussian
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)

 = 0:8

100 0.85 0.27 -9.11 -9.67 12.14 12.94 27.50 27.77 0.35 -0.68 -12.14 -13.51 12.42 14.98 30.09 31.68
300 1.21 1.54 -0.67 -0.62 9.46 9.45 14.92 15.06 1.30 1.21 -2.00 -2.67 9.47 10.27 16.04 16.85
500 1.31 1.11 1.03 1.07 7.94 7.93 11.26 11.07 1.45 1.22 -0.35 -0.39 8.12 8.40 12.13 12.47
1; 000 0.82 1.31 1.06 1.28 5.94 6.48 8.22 8.19 1.03 0.70 0.75 0.36 6.54 6.44 8.56 9.01
2; 000 0.65 0.36 0.65 0.90 4.38 4.21 5.92 6.30 0.44 0.72 0.54 0.39 4.42 4.88 6.39 6.65

Size Power Size Power
(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)

H0: 
 = 0:8 H1: 
 = 0:7 H0: 
 = 0:8 H1: 
 = 0:7
100 6.8 8.4 17.9 16.7 21.7 21.8 25.4 24.4 23.3 21.8 26.0 28.5 24.2 25.1 28.2 30.8
300 13.4 12.2 9.4 9.9 34.0 30.2 21.1 21.4 19.0 19.3 15.8 14.7 32.4 30.2 21.6 20.2
500 12.1 11.6 9.4 9.3 39.1 41.5 22.8 22.9 16.9 18.4 11.7 12.4 36.3 39.6 21.3 22.9
1; 000 10.0 10.8 9.2 8.6 56.5 53.9 34.5 33.9 14.2 13.3 10.1 11.3 52.9 54.4 30.5 31.9
2; 000 6.2 6.3 6.9 7.6 74.2 77.9 51.0 50.9 8.5 8.9 7.5 7.3 74.4 72.1 46.3 46.6

See the notes to Table 3, and Table S3 in the online supplement.
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S.1 Size results for the individual likelihood ratio tests

Tables S1 and S2 below provide size results for testing the individual hypotheses H0 : m =
m0 = f0; 1; 2; :::; T �3g against H1 : m = mmax = T �2 at the 5% signi�cance level using the
likelihood ratio statistic LRN (mmax;m0) : This statistic is compared to the critical values of
the �2 distribution with degrees of freedomDF = T (T+1)=2�(3+Tm�m(m�1)=2), where
m is equal to its value under the null. Table S2 contains results for the case of Gaussian
errors and Table S2 for non-Gaussian errors based on 1,000 replications. Additional results
for alternative values of T; N; 
 and � = 1 are available upon request.

Table S1. Size(%) of the individual likelihood ratio tests
under Gaussian errors

Hmmax;m0 T = 5 T = 10
DF AR(1) ARX(1) DF AR(1) ARX(1)


 = 0:4; � = 1; N = 1; 000
H3;0 12 5.5 7.3 H8;0 52 5.4 7.0
H3;1 7 5.3 5.7 H8;1 42 4.1 4.8
H3;2 3 4.9 5.4 H8;2 33 4.2 6.8

H8;3 25 6.2 5.6
H8;4 18 5.4 7.5
H8;5 12 5.3 5.9
H8;6 7 3.4 7.4
H8;7 3 4.5 7.4

Note: Hmmax;m0 denotes the hypotheses H0 : m = m0 = f0; 1; 2; :::; T � 3g
against H1 : m = mmax = T � 2: The likelihood ratio statistic is computed
as LRN (mmax;m0) = 2

h
`N

�
�̂mmax ;mmax

�
� `N

�
�̂m0 ;m0

�i
using the like-

lihood expression given by (1). All tests are conducted at the 5% signi�cance
level. For the data generating process see the notes to Tables 1 and 2.

Table S2. Size(%) of individual likelihood ratio tests under non-Gaussian errors
Hm0mmax T = 5

DF AR(1) ARX(1)

 = 0:4; � = 1; N = 1; 000
H3;0 12 17.6 16.3
H3;1 7 13.5 11.8
H3;2 3 9.2 10.1
See the notes to Table S1.

S.2 Monte Carlo results for the ML estimator

The QML estimator reduces to the ML estimator when the errors are generated from a
normal distribution as described in the Monte Carlo designs of Sections 8.1.1 and 8.1.2. Here
results are presented on the performance of the ML estimator when the number of factors
is estimated using the sequential multiple testing likelihood ratio (MTLR) procedure, and
when it is known. For these experiments the �xed e¤ects are allowed to be correlated with
the errors, and for the ARX(1) model with the regressors as well. In the Monte Carlo designs
of HPS this corresponds to b1 = b2 = 1 with the additional b0 parameter set to 1 for the
ARX(1) model.10

10For the starting values in the optimization routine used to compute the (Q)ML estimators, we use �ini =
(
ini; !ini; �

2
ini;�

0
ini)

0 where �ini =
�
d1;ini;�

0
ini;�

0
ini;d

0
ini

�0
with 
ini � U [�0:999; 0:999], !ini � U [1; 2],

�2ini � U [0:1; 2:1] and �j;ini � U [�1; 1] where �j;ini is the jth element of �ini. In addition ! needs to satisfy
! > (T � 1)=T since j
j = 1+T (!� 1) > 0: Speci�cally, we use �ve such sets of random starting values and
choose the largest among the maximum of the log-likelihood values as the estimate of the (Q)ML estimator.
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S.2.1 AR(1)

Simulation results for the AR(1) model are provided in Tables S3-S4. These tables report
the bias and RMSE, both multiplied by 100, as well as empirical size and power for the
estimator of 
, when the number of factors is estimated and when it is known. The results
show that the estimator of 
 performs best in terms of RMSE for the true number of factors.
However, the di¤erences observed between the true number of factors and the estimated
number m̂ become minor as N increases. With regard to accuracy of inference, similar to
the non-Gaussian case, empirical sizes are close to the nominal level of 0:05 except for the
cases where T = f5; 10g and 
 = 0:8; for which over-rejections are observed, whether or not
the true number of factors is used. As to be expected size distortions decline with T and N .
For example, when T = 10 we observe size distortions only for N = 100 and not when larger
values of N are considered. For T = 5 we need N to be larger than 500 for size distortions
to disappear. See Table A1 in the Appendix which includes additional results for the bias,
RMSE, size and power of the AR(1) model for the larger values of N , namely 1; 000 and
2; 000, for both Gaussian and non-Gaussian errors.

Table S3. Bias(�100) and RMSE(�100) of 
 for the AR(1) model, using the estimated
number of factors, m̂, and the true number, m0

N T = 5 T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)

 = 0:4
100 0.31 0.43 -0.04 -0.40 8.60 9.49 12.37 13.19 -0.12 0.01 -0.10 -0.26 4.04 4.10 4.37 4.44
300 -0.18 -0.01 -0.02 -0.08 4.77 4.63 6.43 6.64 -0.01 -0.02 -0.09 -0.02 2.30 2.26 2.50 2.49
500 -0.02 -0.02 -0.01 0.02 3.66 3.71 4.91 5.47 -0.03 -0.07 -0.05 -0.08 1.78 1.84 1.87 1.87


 = 0:8
100 0.85 0.27 -9.11 -9.67 12.14 12.94 27.50 27.77 0.42 0.57 0.54 0.60 5.99 6.06 7.00 6.90
300 1.21 1.54 -0.67 -0.62 9.46 9.45 14.92 15.06 0.16 0.10 0.08 0.24 3.07 3.17 3.68 3.77
500 1.31 1.11 1.03 1.07 7.94 7.93 11.26 11.07 0.04 0.01 0.05 -0.02 2.28 2.32 2.59 2.52

Note: yit is generated as yit = �i + ���t + 
yi;t�1 + �it; �it = �0ift + uit with the idiosyncratic errors generated as uit �
IIDN (0; �2) and �2 = 1; for i = 1; 2; :::; N ; t = �49; 48; :::0; 1; :::; T; with yi;�50 = �i

1�
 +
P49
j=0 


j�i;�j : The �xed e¤ects,

�i, are generated as �i = �ui + vi; where �ui = T�1
PT
t=1 uit and vi � IIDN (0; 1). The remaining parameters are generated

as described in Section 8.1.1. Each ft is generated once and the same f 0ts are used throughout the replications. The �rst 50
observations are discarded. m̂ is the estimated number of factors computed using the sequential MTLR procedure described in
Section 7.1 with �N = 50 p

(T�2)N and p = 0:05. All experiments are based on 2; 000 replications.

Table S4. Size(%) and power(%) of 
 for the AR(1) model, using the estimated number of
factors, m̂; and the true number, m0

N T = 5 T = 10
Size Power Size Power

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)
H0: 
 = 0:4 H1: 
 = 0:3 H0: 
 = 0:4 H1: 
 = 0:3

100 4.8 4.1 5.0 5.6 25.3 25.7 16.6 17.4 5.1 5.4 5.7 5.7 69.5 69.2 64.6 67.5
300 5.6 4.5 5.0 5.1 58.4 57.8 35.4 35.9 4.4 5.0 4.9 4.9 99.4 99.3 98.5 98.5
500 5.5 4.3 4.6 5.1 78.7 78.3 52.6 51.1 4.4 5.9 4.7 4.5 100.0 100.0 100.0 100.0

H0: 
 = 0:8 H1: 
 = 0:7 H0: 
 = 0:8 H1: 
 = 0:7
100 6.8 8.4 17.9 16.7 21.7 21.8 25.4 24.4 8.8 9.2 10.2 9.5 54.6 54.3 49.0 47.3
300 13.4 12.2 9.4 9.9 34.0 30.2 21.1 21.4 4.0 4.7 5.2 5.1 86.9 87.9 82.0 81.4
500 12.1 11.6 9.4 9.3 39.1 41.5 22.8 22.9 4.1 4.4 4.0 4.2 97.1 96.9 95.5 95.5

See the notes to Table S3.
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S.2.2 ARX(1)

Simulation results for the ARX(1) model are provided in Tables S5-S6. Similar results as in
the AR(1) model are found for the ARX(1) model. Comparing the bias and RMSE values
of the 
 and � estimators for the case of the true and estimated number of factors, these
appear to be very similar and are also very small. With regard to size and power, unlike
the AR(1) model, the empirical sizes are close to the nominal level in all cases and power is
reasonably high even when the number of factors is estimated.

Table S5. Bias(�100) and RMSE(�100) of 
 and � for the ARX(1) model, using the
estimated number of factors, m̂, and the true number, m0

N T = 5 T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)

; 
 = 0:4
100 0.03 -0.04 -0.02 -0.04 1.46 1.46 1.60 1.57 -0.02 -0.02 0.00 -0.03 0.81 0.81 0.84 0.85
300 0.02 -0.01 -0.03 0.03 0.82 0.83 0.90 0.90 0.02 -0.01 0.00 -0.01 0.45 0.46 0.47 0.48
500 0.02 -0.01 0.00 -0.03 0.63 0.64 0.67 0.68 0.00 0.01 -0.01 0.00 0.35 0.35 0.38 0.38

�
100 -0.03 -0.02 -0.02 0.08 1.90 1.84 2.03 2.06 -0.02 0.06 -0.02 0.01 1.14 1.14 1.21 1.20
300 -0.02 0.00 0.01 0.02 1.07 1.11 1.18 1.14 -0.01 -0.01 0.01 0.01 0.67 0.66 0.67 0.71
500 0.00 -0.02 -0.02 -0.01 0.83 0.82 0.87 0.90 -0.02 0.00 0.02 0.00 0.50 0.50 0.51 0.52


; 
 = 0:8
100 0.05 -0.04 0.02 -0.06 1.90 1.91 1.88 1.88 -0.02 0.00 0.00 -0.02 0.82 0.84 0.82 0.82
300 0.01 0.01 -0.05 0.03 1.07 1.08 1.07 1.06 0.02 0.00 -0.01 0.00 0.46 0.49 0.46 0.47
500 0.03 0.01 0.02 -0.04 0.80 0.83 0.81 0.80 0.00 0.01 -0.01 0.00 0.36 0.36 0.37 0.38

�
100 -0.04 0.08 -0.03 0.09 3.48 3.27 3.55 3.56 -0.04 -0.04 -0.02 0.11 2.02 2.02 2.09 2.01
300 -0.03 0.03 0.01 0.07 1.98 2.02 2.05 2.01 0.00 0.02 0.02 0.01 1.18 1.16 1.16 1.16
500 0.02 -0.03 -0.03 -0.03 1.52 1.52 1.54 1.57 -0.03 0.00 0.04 -0.01 0.88 0.86 0.88 0.90

Note: yit is generated as yit = �i + ���t + 
yi;t�1 + �xit + �it; �it = �0ift + uit with the idiosyncratic errors generated
as uit � IIDN(0; �2) and �2 = (1 � R2y)=8

�
R2y � 
2

�
with R2y = 0:8; for i = 1; 2; :::; N ; t = �49; 48; :::0; 1; :::; T; with

yi;�50 =
�i
1�
 + �

P49
j=0 


jxi;�j +
P49
j=0 


j�i;�j ; and � = 1. The �xed e¤ects, �i, are generated as �i = �xi + �ui + vi;

where �xi = T�1
PT
t=1 xit, �ui = T�1

PT
t=1 uit and vi � IIDN (0; 1). The remaining parameters are generated as described in

Section 8.1.2. Each ft is generated once and the same f 0ts are used throughout the replications. The �rst 50 observations are
discarded. m̂ is the estimated number of factors computed using the sequential MTLR procedure described in Section 7.1 with
�N = 50 p

(T�2)N and p = 0:05. All experiments are based on 2,000 replications.

Table S6. Size(%) and power(%) of 
 and � for the ARX(1) model, using the estimated
number of factors, m̂, and the true number, m0

N T = 5 T = 10
Size Power Size Power

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)

 H0: 
 = 0:40 H1: 
 = 0:38 H0: 
 = 0:40 H1: 
 = 0:38
100 5.3 5.2 6.0 5.8 29.9 30.8 27.9 27.9 5.2 5.6 5.4 5.6 71.1 68.0 67.1 68.0
300 4.8 4.2 6.1 6.2 67.1 68.5 62.8 61.6 4.7 5.0 4.8 5.0 99.3 98.8 98.8 98.8
500 4.9 4.7 5.3 4.6 87.5 88.1 84.8 84.8 5.1 5.1 6.0 5.1 100.0 100.0 100.0 100.0

� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 5.0 4.8 5.8 6.0 19.6 18.4 17.3 15.9 5.6 5.4 5.7 5.4 44.2 39.7 40.7 39.7
300 5.1 6.0 5.8 5.5 45.8 46.2 42.4 39.8 5.6 5.6 4.8 5.6 86.6 81.6 83.4 81.6
500 4.8 5.2 4.7 5.1 66.0 67.9 62.5 61.3 4.9 5.1 4.4 4.9 97.9 97.8 96.2 96.9


 H0: 
 = 0:80 H1: 
 = 0:78 H0: 
 = 0:80 H1: 
 = 0:38
100 6.0 5.4 5.8 5.5 19.0 20.7 20.4 22.5 4.1 5.7 5.2 5.7 70.0 70.2 69.3 70.2
300 5.1 4.7 5.7 5.4 46.2 46.4 49.2 47.6 4.5 5.1 4.5 5.1 98.9 98.5 99.3 98.5
500 3.8 5.3 4.5 3.9 65.9 66.4 67.4 71.6 4.5 4.6 5.9 5.1 100.0 99.9 100.0 99.9

� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 5.2 3.8 5.6 5.5 9.4 8.3 9.3 8.9 5.6 4.9 5.8 4.9 18.2 15.2 17.4 15.2
300 5.4 5.5 5.7 5.5 17.0 18.0 16.1 15.5 5.7 5.2 4.5 5.2 42.3 40.5 39.6 40.5
500 4.9 4.5 5.0 4.4 25.7 26.3 24.5 26.7 5.3 4.3 3.9 4.8 63.8 61.8 57.9 59.9

See the notes to Table S5.
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S.3 The GMM approach

Let us consider a GMM approach to estimate the dynamic panel data model with interactive
e¤ects:

yit = �i +w
0
it� + �

0
ift + "it; (i = 1; 2; :::; N ; t = 1; 2; :::; T ) (S.1)

where wit = (yi;t�1;x
0
it)
0; � = (
;�0)0; �i = (�1i; :::; �mi)

0 and ft = (f1t; :::; fmt)0 are (m � 1)
vectors and "it are cross-sectionally and temporally uncorrelated. The individual speci�c
e¤ects �i are allowed to be correlated with xit, while xit is assumed to be strictly or weakly
exogenous. A similar model is considered in Ahn et al. (2013), but there are two di¤erences.
The �rst is that the model under consideration is a dynamic model whereas Ahn et al. (2013)
considers a static model. This di¤erence does not cause a serious problem in implementing
GMM estimation: minor corrections when selecting the instruments su¢ ce. The second
di¤erence is that the current model contains time-invariant �xed e¤ects �i whereas the model
considered in Ahn et al. (2013) does not. Thus the method by Ahn et al. (2013) cannot be
applied directly in this case. Hence, we consider two approaches to use the method proposed
by Ahn et al. (2013). The �rst approach is to regard the time-invariant �xed e¤ects as an
additional factor to be estimated. The second approach is to take the �rst-di¤erences prior
to applying the quasi-di¤erence approach by Ahn et al. (2013), which is similar to Nauges
and Thomas (2003). In the following, we describe each approach.

S.3.1 Approach 1: Quasi-di¤erencing

By incorporating �i into �
0
ift in (S.1), we have the following alternative expression

yit = w
0
it� +

e�0ieft + "it;

where ~�i = (�i; �1i; :::; �mi)0 and ~ft = (1; f1t; :::; fmt)0. The model in matrix notation can be
written as

yi =Wi� + eFe�i + "i; (S.2)

where yi = (yi1; :::; yiT )
0; Wi = (wi1; :::;wiT )

0; "i = ("i1; :::; "iT )
0 and eF = (ef1; :::;efT )0 is a

T � ~m matrix. De�ne e	 = eF�F�1 where �F = (efT� ~m+1; :::;efT )0. To separately identify eF
from e�i; ~m2 restrictions are imposed on the factors such that eF = (	0; I ~m)

0 where 	 is a
(T � ~m)� ~m matrix of unrestricted parameters obtained as the �rst T � ~m rows of e	. Let
HQ= (IT� ~m;�	)

0; so that H0
Q
eF = (IT� ~m;�	)(	0; I ~m)

0 = 0(T� ~m)� ~m: Then, pre-multiplying
equation (S.2) by H0

Q removes the unobservable e¤ects so that

H0
Qyi = H

0
QWi� +H

0
Q"i;

or

_yi = _Wi� +	�yi �	 �Wi� + _"i �	�"i (S.3)

= _Wi�+(IT� ~m 
 �y0i) vec(	)�
�
vec( �Wi)

0 
 IT� ~m
�
vec(�0 
	) + _"i �	�"i;

where _yi = (yi1; :::; yi;T� ~m)0; �yi = (yi;T� ~m+1; :::; yiT )0; _Wi = (wi1; :::;wi;T� ~m)
0; �Wi = (wi;T� ~m+1; :::;wiT )

0;
	0= (�1; :::;�T� ~m), _"i = ("i1; :::; "i;T� ~m)

0; and �"i = ("i;T� ~m+1; :::; "iT )0:
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The tth equation is given by

yit = �
0wit + 

0
t�yi � 0t �Wi� + vit; (i = 1; :::; N ; t = 1; :::; T � ~m); (S.4)

where vit = ("it��0t�"i). Since xit is strictly exogenous, a large number of moment conditions
are available. However, since using many instruments causes a large �nite sample bias, we
consider (k+1)(T � ~m)(T � ~m+1)=2+k(T � ~m) ~m moment conditions given by E[zitvit] = 0;
for t = 1; :::; T � ~m; where zit = (yi0; :::; yi;t�1;x

0
i1; :::;x

0
it;x

0
i;T� ~m+1; :::;x

0
iT )

0. In addition to
the commonly used instruments (yi0; :::; yi;t�1;x0i1; :::;x

0
it); we also use x

0
i;T� ~m+1; :::;x

0
iT as

instruments since they are included in the regressor �W: In matrix notation the moment
conditions can be written as E [Z0ivi(�)] = 0; where Zi = diag(z0i1; :::; z

0
i;T� ~m), vi(�) =

(vi1; :::; vi;T� ~m)
0 and � = (�0; 0)0 with  = vec(	):

Then the one-step and two-step GMM estimators are given respectively by

�̂QD1 = argmin
�

 
1

N

NX
i=1

vi(�)
0Zi

! 
1

N

NX
i=1

Z0iZi

!�1 
1

N

NX
i=1

Z0ivi(�)

!
; (S.5)

and

�̂QD2 = argmin
�

 
1

N

NX
i=1

vi(�)
0Zi

! 
1

N

NX
i=1

Z0ivi(�̂QD1)vi(�̂QD1)
0Zi

!�1 
1

N

NX
i=1

Z0ivi(�)

!
:

(S.6)
The asymptotic covariance matrix of the above estimators is given, respectively, by

V ar(�̂QD1) = N�1
�
Ĝ0
QD1Ŵ

�1ĜQD1

��1
Ĝ0
QD1Ŵ

�1
̂QD1Ŵ
�1ĜQD1

�
Ĝ0
QD1Ŵ

�1ĜQD1

��1
(S.7)

V ar(�̂QD2) = N�1
�
Ĝ0
QD2
̂

�1
QD2ĜQD2

��1
; (S.8)

where Ĝj= @�g(�̂j)=@�
0 for j = QD1; QD2, with gi(�̂j) = Z0ivi(�̂j) and �g(�̂j) = N�1PN

i=1 gi(�̂j);

Ŵ =N�1PN
i=1 Z

0
iZi; and 
̂j=N

�1PN
i=1 gi(�̂j)gi(�̂j)

0: The derivatives involved in Ĝj are
computed numerically.

S.3.2 Approach 2: Quasi-di¤erencing after �rst-di¤erencing

Taking the �rst-di¤erences of model (S.1) to remove �i we have

�yit = �w
0
it� + �

0
i�ft +�"it; (i = 1; 2; :::; N ; t = 2; 3; :::; T )

where�wit = (�yi;t�1;�x
0
it)
0; � = (
;�0)0; and�ft = ft�ft�1. The model in matrix notation

can be written as
�yi = �Wi� +�F�i +�"i; (S.9)

where �yi = (�yi2; :::;�yiT )0; �Wi = (�wi2; :::;�wiT )
0; �"i = (�"i2; :::;�"iT )

0 and �F =
(�f2; :::;�fT )

0 is a (T � 1)�mmatrix. De�ne e� = �F ��F��1 where�F = (�fT�m+1; :::;�fT )0.
To separately identify �F from �i; m

2 restrictions are imposed on the factors such that
�F = (�0; Im)

0 where� is a (T�1�m)�mmatrix of unrestricted parameters obtained as the
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�rst T�1�m rows of e�. LetHD= (IT�1�m;��)
0; so thatH0

D�F = (IT�1�m;��)(�0; Im)0 =
0(T�1�m)�m: Then, pre-multiplying equation (S.9) by H0

D removes the unobservable e¤ects
so that

H0
D�yi = H

0
D�Wi� +H

0
D�"i;

or

� _yi = � _Wi� +���yi ��� �Wi� + _"i ����"i
= � _Wi�+(IT�1�m 
��y0i) vec(�)�

�
vec(� �Wi)

0 
 IT�1�m
�
vec(�0 
�) + � _"i ����"i;

where� _yi = (�yi2; :::;�yi;T�m)0;��yi = (�yi;T�m+1; :::;�yiT )0;� _Wi = (�wi2; :::;�wi;T�m)
0;

� �Wi = (�wi;T�m+1; :::;�wiT )
0; �0= (�2; :::;�T�m), � _"i = (�"i2; :::;�"i;T�m)

0; and ��"i =
(�"i;T�m+1; :::;�"iT )

0:
The tth equation is given by

�yit = �
0�wit + �

0
t��yi � �0t� �Wi� +�vit; (i = 1; :::; N ; t = 2; :::; T �m); (S.10)

where �vit = (�"it � �0t��"i). Since xit is strictly exogenous, a large number of mo-
ment conditions are available. However, since using many instruments causes a large �-
nite sample bias, we consider (k + 1)(T � 1 � m)(T � m)=2 + k(T � 1 � m)m + k(T �
1 � m) moment conditions given by E[zit�vit] = 0; for t = 2; :::; T � m; where zit =
(yi0; :::; yi;t�1;x

0
i0;x

0
i1:::;x

0
it;x

0
i;T�m+1; :::;x

0
iT )

0. In addition to the commonly used instruments
(yi0; :::; yi;t�1;x

0
i0; :::;x

0
it); we also use x

0
i;T�m+1; :::;x

0
iT as instruments since they are included

in the regressor � �W: Also, compared to the quasi-di¤erence approach, we additionally
use xi0 as instruments. This is because without xi0; the local identi�cation assumption
is not satis�ed for the linear GMM estimator which is used as the starting value to ob-
tain nonlinear GMM estimators. In matrix notation the moment conditions can be written
as E [Z0i�vi(�)] = 0; where Zi = diag(z0i2; :::; z

0
i;T�m), �vi(�) = (�vi2; :::;�vi;T�m)

0 and
� = (�0;�0)0 with � = vec(�):
Then the one-step and two-step GMM estimators are given respectively by

�̂FD1 = argmin
�

 
1

N

NX
i=1

�vi(�)
0Zi

! 
1

N

NX
i=1

Z0iZi

!�1 
1

N

NX
i=1

Z0i�vi(�)

!
; (S.11)

and

�̂FD2 = argmin
�

 
1

N

NX
i=1

�vi(�)
0Zi

! 
1

N

NX
i=1

Z0i�vi(�̂FD1)�vi(�̂FD1)
0Zi

!�1 
1

N

NX
i=1

Z0i�vi(�)

!
:

(S.12)
The asymptotic covariance matrix of the above estimators is given, respectively, by

V ar(�̂FD1) = N�1
�
Ĝ0
FD1Ŵ

�1ĜFD1

��1
Ĝ0
FD1Ŵ

�1
̂FD1Ŵ
�1ĜFD1

�
Ĝ0
FD1Ŵ

�1ĜFD1

��1
(S.13)

V ar(�̂FD2) = N�1
�
Ĝ0
FD2
̂

�1
FD2ĜFD2

��1
; (S.14)

where Ĝj= @�g(�̂j)=@�
0 for j = FD1; FD2, with gi(�̂j) = Z0i�vi(�̂j) and �g(�̂j) = N�1PN

i=1 gi(�̂j);

Ŵ =N�1PN
i=1 Z

0
iZi; and 
̂j=N

�1PN
i=1 gi(�̂j)gi(�̂j)

0: The derivatives involved in Ĝj are
computed numerically.
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S.3.3 Starting values

For the computation of the above nonlinear GMM estimators, starting values are required.
We use the linear GMM estimator by Hayakawa (2012) as the starting value. This can reduce
the computational time compared with the case where several random starting values are
used.
To de�ne the linear GMM estimator, let us de�ne L1 = L2 = 1 for ~m = 1; and

L1 = (I ~m;0 ~m) and L2 = (0 ~m; I ~m) for ~m > 1: Also, de�ne �yi = (yi;T� ~m; yi;T� ~m+1; ::; yiT )
0 =

(yi;T� ~m; �y
0
i)
0 : Then, noting that �Wi =

�
�yi;�1; �Xit

�
where �yi;�1=(yi;T� ~m; yi;T� ~m+1; ::; yiT�1)

0,
�yi = L2�yi and �yi;�1 = L1�yi; we have

_yi = _Wi� +	�yi �	 �Wi� + _"i �	�"i
= _Wi� +	L2�yi �	

�

L1�yi + �Xi�

�
+ _"i �	�"i

= _Wi� +	 (L2 � 
L1) �yi �	�Xi� + vi

= _Wi� +��yi �	�Xi� + vi

= _Wi�+(IT� ~m 
 �y0i) vec(�0)�
�
vec(�Xi)

0 
 IT� ~m
�
vec(�0 
	) + vi

= eXi� + vi

where � = 	 (L2 � 
L1) ; Xi =
�
_Wi; (IT� ~m 
 �y0i) ;�

�
vec(�Xi)

0 
 IT� ~m
��

and � =�
�0; vec(�0)0; vec(�0 
	)0

�0
= (�01;�

0
2;�

0
3)
0 with �1 = �;�2 = vec(�0); �3 = vec(�0 
	):

We consider this particular model rather than the original model (S.3) because perfect mul-
ticollinearity between �yi and �Wi occurs in (S.3) when ~m > 1: Since this is a linear model in
� with moment conditions E [Z0ivi(�)] = 0; a closed form solution is obtained as

�̂ =

24 1
N

NX
i=1

eX0
iZi

! 
1

N

NX
i=1

Z0iZi

!�1 
1

N

NX
i=1

Z0i
eXi

!35�1

�

24 1
N

NX
i=1

eX0
iZi

! 
1

N

NX
i=1

Z0iZi

!�1 
1

N

NX
i=1

Z0i _yi

!35 :
Hence, �̂1 and �̂2 are consistent estimates of � and vec(�0), respectively. To recover 	 from
the estimate of �, since

vec (�0)=vec
�
(L2 � 
L1)

0	0� = �IT� ~m 
 (L2 � 
L1)
0� vec (	0) = Avec (	0) ;

vec (	0) is obtained as vec (	0) = (A0A)�1A0vec (�0) : In the computation of the nonlinear
GMM estimators, estimates of � and vec (	0) are obtained from �̂1 and �̂2 and are used as
the starting values of the numerical optimization.
The same procedure can be used in approach 2 by replacing the yi�s andWi�s with their

�rst di¤erences.

S.3.4 The AR(1) model

Estimation of the AR(1) model is exactly the same as above after removing all x�s from
both the model and instruments. However, for the starting value, we cannot use the linear
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estimator since the number of moment conditions is always smaller than that of the unknown
reduced form parameters. Hence in the Monte Carlo simulations for this case we use random
starting values. Speci�cally, we use


ini � U (�1; 1) ;  j;ini � U (�2; 2) ; (j = 1; :::; (T � ~m) ~m)

for approach 1 and


ini � U (�1; 1) ;  j;ini � U (�2; 2) ; (j = 1; :::; (T � 1�m)m)

for approach 2.

S.4 Monte Carlo results for the ML and GMM esti-
mators

Tables S7-S10 present results on the bias, RMSE, size and power for the ML and the GMM
quasi-di¤erence (QD) and �rst-di¤erence (FD) estimators of ALS, when the number of factors
is assumed to be known and the errors in the Monte Carlo designs of HPS are generated as
normal. In these experiments the �xed e¤ects are not correlated with the errors, only with
the regressors for the ARX(1) model, as this would render the GMM estimators inconsistent.
This is equivalent to setting b1 = 0 and b2 = 1; with the additional b0 parameter set to 1
for the ARX(1) model in the Monte Carlo designs of Sections 8.1.1 and 8.1.2. The GMM
estimators are computed as shown in Section S.3. Results for the AR(1) model are presented
in Tables S7 and S8 and in Tables S9 and S10 for the ARX(1) model.

Table S7. Bias(�100) and RMSE(�100) of 
 for the QML and GMM estimators in the
case of the AR(1) model, using the true number of factors, m0

N T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

ML GMM ML GMM ML GMM ML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

m0 1 2

 = 0:4
100 0.42 11.41 15.04 -34.15 -22.96 3.96 36.97 36.10 35.50 25.05 -0.21 49.58 49.44 -26.63 -24.84 4.21 52.74 53.24 58.14 50.26
300 -0.07 -0.88 4.37 -18.33 -7.55 2.35 24.01 22.50 19.41 9.28 -0.08 48.33 47.33 -12.64 -12.08 2.44 52.21 52.23 43.45 34.81
500 -0.02 -0.87 3.98 -13.00 -4.10 1.79 20.31 19.49 14.13 5.79 -0.02 46.85 45.83 -7.61 -8.42 1.85 51.43 51.44 36.93 28.96

 = 0:8
100 0.69 13.17 13.18 -70.69 -62.14 6.12 20.93 21.64 72.10 64.84 0.30 17.60 17.51 -71.91 -68.08 6.63 18.61 18.64 90.92 87.27
300 0.11 9.27 9.93 -51.59 -34.78 3.19 20.13 19.68 52.68 37.01 0.10 17.48 17.40 -49.83 -42.84 3.53 18.52 18.42 71.04 63.46
500 0.08 8.26 9.46 -42.71 -24.51 2.34 19.05 18.04 43.86 26.77 0.06 16.75 16.74 -41.85 -34.15 2.54 18.44 18.27 63.02 55.19

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-di¤erence and �rst- di¤erence ALS one step and two step estimators
respectively computed as described in Section S.3. All experiments are based on 2,000 replications. See also the notes to Table
S3.
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Table S8. Size(%) and power(%) of 
 for the QML and GMM estimators in the case of the
AR(1) model, using the true number of factors, m0

N T = 10
Size Power Size Power

ML GMM ML GMM ML GMM ML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

m0 1 2

 H0: 
 = 0:40 H1: 
 = 0:34 H0: 
 = 0:40 H1: 
 = 0:34
100 5.3 65.3 71.3 89.4 88.7 31.7 78.1 84.0 96.6 97.1 5.0 86.4 88.1 30.6 42.9 30.1 86.0 88.0 31.6 45.9
300 5.4 44.9 36.2 73.1 46.2 74.2 71.6 70.1 92.5 85.4 4.9 82.9 83.4 19.7 32.7 70.1 82.7 83.2 19.4 32.3
500 5.3 38.5 28.2 60.8 27.6 91.6 72.2 70.3 89.6 82.1 3.2 79.4 81.0 14.8 25.5 89.4 79.3 81.5 14.3 28.4

 H0: 
 = 0:80 H1: 
 = 0:74 H0: 
 = 0:80 H1: 
 = 0:74
100 9.0 93.8 96.4 98.9 99.7 31.1 95.0 97.0 99.1 100.0 8.3 95.6 96.9 51.8 65.0 27.5 94.0 96.2 54.0 73.4
300 5.1 87.3 88.8 98.4 95.8 53.9 91.5 92.9 99.5 99.0 4.6 95.4 95.8 35.7 48.2 47.1 93.9 95.4 37.5 61.2
500 4.6 84.4 83.0 96.8 88.5 72.9 89.5 88.3 98.9 97.1 3.7 93.0 93.8 29.4 41.9 64.9 91.3 93.8 30.5 59.7

See the notes to Table S7.

Table S9. Bias(�100) and RMSE(�100) of 
 and � for the QML and GMM estimators in
the case of the ARX(1) model, using the true number of factors, m0

N T = 5 T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

ML GMM ML GMM ML GMM ML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

m0 1

; 
 = 0:4
100 0.03 0.36 0.13 0.08 0.12 1.46 3.13 3.09 4.05 2.76 -0.02 10.21 10.12 -2.43 -2.09 0.81 20.64 20.55 3.22 2.82
300 0.02 0.48 0.16 -0.01 0.04 0.82 1.37 1.30 2.44 1.60 0.02 2.14 1.88 -0.85 -0.35 0.45 8.46 8.11 1.89 0.83
500 0.02 0.49 0.16 0.05 0.05 0.63 1.11 1.02 1.88 1.21 0.00 0.95 0.71 -0.55 -0.16 0.35 4.28 3.98 1.82 0.53
�
100 -0.03 -0.04 0.00 0.20 0.08 1.90 2.40 2.38 4.45 3.21 -0.02 -8.93 -8.85 -0.67 -0.52 1.14 20.01 19.84 4.14 3.55
300 -0.02 -0.13 -0.03 0.18 0.06 1.07 1.37 1.35 2.80 1.87 -0.01 -1.60 -1.46 -0.08 0.05 0.67 8.22 7.60 3.12 1.19
500 0.00 -0.14 -0.04 0.09 0.03 0.83 1.03 1.00 2.06 1.42 -0.02 -0.50 -0.45 -0.09 -0.01 0.50 4.30 3.81 2.56 0.75

; 
 = 0:8
100 0.05 8.62 7.12 -0.47 -0.37 1.90 10.17 9.26 5.11 4.28 -0.02 12.47 12.40 -5.74 -4.98 0.82 12.50 12.43 7.20 6.23
300 0.01 8.50 5.57 -0.03 -0.10 1.07 9.71 7.82 2.98 2.39 0.02 12.29 11.80 -1.95 -0.78 0.46 12.30 11.81 3.04 1.30
500 0.03 8.56 5.03 0.06 0.02 0.80 9.68 7.28 2.30 1.84 0.00 12.23 11.66 -1.27 -0.35 0.36 12.23 11.66 2.07 0.73
�
100 -0.04 -1.75 -0.37 -0.27 -0.08 3.48 7.17 5.70 7.47 6.17 -0.04 -14.16 -13.64 -4.46 -3.83 2.02 15.35 14.84 10.31 8.90
300 -0.03 -0.29 0.03 -0.15 -0.07 1.98 3.31 2.90 4.40 3.41 0.00 -12.45 -8.75 -1.06 -0.32 1.18 12.94 9.35 5.90 2.49
500 0.02 -0.06 0.02 -0.22 -0.09 1.52 2.31 2.08 3.28 2.64 -0.03 -11.92 -7.64 -0.71 -0.18 0.88 12.22 8.02 4.47 1.46
m0 2

; 
 = 0:4
100 -0.02 0.51 0.34 -1.91 -1.61 1.60 4.87 3.98 7.42 7.13 0.00 -0.58 -0.46 -1.27 -0.98 0.84 4.34 4.24 5.28 3.85
300 -0.03 0.01 -0.09 -0.63 -0.49 0.90 1.80 1.67 3.78 3.43 0.00 -0.35 -0.16 -0.25 -0.08 0.47 1.83 1.55 4.27 1.45
500 0.00 -0.10 -0.11 -0.30 -0.24 0.67 1.25 1.25 2.49 2.13 -0.01 -0.27 -0.10 0.10 0.01 0.38 1.13 0.89 4.34 0.96
�
100 -0.02 -0.12 -0.03 -2.15 -1.83 2.03 3.18 3.26 13.32 13.41 -0.02 0.26 0.17 0.09 0.06 1.21 4.39 4.23 5.24 4.01
300 0.01 0.02 0.12 -0.59 -0.36 1.18 1.77 1.76 6.89 6.43 0.01 0.22 0.13 0.02 0.02 0.67 1.53 1.08 3.81 1.53
500 -0.02 0.04 0.07 -0.11 0.00 0.87 1.35 1.31 3.78 3.41 0.02 0.17 0.08 0.07 0.03 0.51 1.06 0.80 3.23 1.02

; 
 = 0:8
100 0.02 7.87 5.78 -17.82 -17.32 1.88 9.54 8.29 31.56 32.49 0.00 -0.61 -0.48 -3.66 -2.86 0.82 3.91 3.81 7.26 5.48
300 -0.05 4.49 2.58 -7.65 -7.24 1.07 7.13 5.59 18.26 19.05 -0.01 -1.16 -0.79 -1.37 -0.69 0.46 1.59 1.25 4.41 1.79
500 0.02 2.82 1.54 -3.32 -3.07 0.81 5.71 4.16 11.75 12.11 -0.01 -0.95 -0.59 -0.86 -0.38 0.37 1.22 0.89 3.51 1.11
�
100 -0.03 0.26 0.56 -19.87 -19.61 3.55 6.93 6.93 37.22 38.28 -0.22 0.63 0.52 -0.77 -0.55 2.09 3.99 3.80 10.32 7.96
300 0.01 0.70 0.37 -9.45 -8.59 2.05 3.92 3.47 22.59 22.89 0.02 0.58 0.36 -0.38 -0.03 1.16 2.09 1.75 6.93 2.90
500 -0.03 0.53 0.17 -4.34 -3.85 1.54 2.90 2.42 14.59 14.59 0.04 0.45 0.26 -0.08 0.04 0.88 1.60 1.34 5.17 1.83

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-di¤erence and �rst- di¤erence ALS one step and two step estimators
respectively computed as described in Section S.3. All experiments are based on 2,000 replications. See also the notes to Table
S5.

9



Table S10. Size(%) and power(%) of 
 and � for the QML and GMM estimators in the
case of the ARX(1) model, using the true number of factors, m0

N T = 5 T = 10
Size Power Size Power
ML GMM ML GMM ML GMM ML GMM

QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
m0 1

 H0: 
 = 0:40 H1: 
 = 0:38 H0: 
 = 0:40 H1: 
 = 0:38
100 5.3 6.1 14.8 3.6 12.4 29.9 14.1 30.6 8.2 19.7 5.2 31.5 87.8 28.3 82.8 71.2 33.5 87.4 69.7 97.7
300 4.8 6.6 9.6 3.8 7.2 67.1 22.5 39.9 16.5 29.7 4.7 16.8 45.5 12.6 26.2 99.3 27.0 77.7 73.6 97.4
500 4.9 6.9 8.5 3.9 6.3 87.5 31.3 55.4 23.1 41.2 5.1 16.5 37.5 10.1 14.3 100.0 34.3 88.7 84.0 99.6
� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 5.0 6.0 15.1 4.2 11.1 19.6 15.3 28.3 7.3 19.4 5.6 27.5 84.6 7.8 75.1 44.1 33.0 88.5 13.2 81.1
300 5.1 5.9 10.6 4.9 7.9 45.9 36.9 44.8 11.9 24.3 5.6 10.6 35.3 5.0 27.2 86.6 30.4 81.1 15.1 73.6
500 4.9 5.0 8.8 4.3 7.4 66.0 54.9 61.6 17.3 33.0 4.9 9.0 27.4 4.7 15.9 97.9 43.3 91.5 20.2 90.1

 H0: 
 = 0:80 H1: 
 = 0:78 H0: 
 = 0:80 H1: 
 = 0:78
100 6.0 76.5 69.2 4.7 13.0 19.0 77.5 70.8 8.4 19.5 4.1 100.0 100.0 55.4 95.5 70.0 100.0 100.0 77.6 99.2
300 5.1 76.7 57.1 4.0 7.9 46.2 78.3 58.1 10.4 20.2 4.5 100.0 100.0 20.2 41.0 98.9 100.0 100.0 58.3 95.9
500 3.8 77.5 54.7 3.9 7.4 65.9 79.5 54.4 12.8 23.1 4.5 100.0 100.0 13.7 21.4 100.0 100.0 100.0 59.5 98.9
� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 5.2 12.4 18.8 4.4 13.6 9.4 15.7 21.6 5.8 15.9 5.6 85.4 98.5 15.3 80.0 18.2 91.1 99.4 21.3 82.7
300 5.4 7.5 12.4 4.5 8.3 17.0 12.8 18.9 7.8 14.4 5.7 99.0 97.5 7.6 33.3 42.3 99.8 99.7 12.3 53.4
500 4.9 5.3 9.6 4.6 8.2 25.7 14.5 23.6 9.4 17.0 5.3 99.9 98.8 6.3 18.0 63.8 100.0 99.9 12.7 56.0
m0 2

 H0: 
 = 0:40 H1: 
 = 0:38 H0: 
 = 0:40 H1: 
 = 0:38
100 6.0 5.5 12.6 7.7 11.7 27.9 10.8 19.8 12.1 19.1 5.4 12.7 55.6 9.5 57.4 67.1 51.8 89.4 27.8 80.7
300 6.1 4.0 9.3 4.9 8.1 62.8 23.5 33.9 15.0 25.2 4.8 8.2 20.0 6.1 27.4 98.8 77.0 94.2 23.3 82.3
500 5.3 3.8 7.9 4.9 7.2 84.8 38.8 47.3 20.9 37.2 6.0 7.4 15.9 5.4 20.1 100.0 88.3 98.1 22.0 92.7
� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 5.8 4.8 12.6 5.9 11.0 17.3 10.7 21.6 8.0 15.0 5.7 7.9 49.4 9.2 62.2 40.7 12.8 60.5 12.8 66.7
300 5.8 4.6 8.9 5.0 6.5 42.4 20.1 26.0 10.0 16.9 4.8 5.7 19.3 6.0 28.5 83.4 29.0 68.4 13.7 62.2
500 4.7 4.3 7.2 3.3 5.9 62.5 29.6 38.6 11.9 23.6 4.5 5.3 15.5 5.4 18.9 96.2 44.1 84.8 12.9 76.6

 H0: 
 = 0:80 H1: 
 = 0:78 H0: 
 = 0:80 H1: 
 = 0:78
100 5.8 74.5 56.0 29.7 34.5 20.4 74.1 57.2 31.9 37.2 5.2 27.4 68.5 22.6 76.5 69.2 68.7 94.6 38.9 89.1
300 5.7 44.5 30.5 20.8 20.6 49.2 49.6 40.8 24.4 29.3 4.5 24.4 37.1 9.0 38.9 99.3 90.4 97.1 25.3 86.6
500 4.5 29.9 19.5 12.6 13.5 67.4 42.5 37.0 19.0 30.7 5.9 25.4 32.1 6.0 29.3 100.0 96.3 99.1 22.0 93.4
� H0: � = 1 H1: � = 0:98 H0: � = 1 H1: � = 0:98
100 5.6 7.1 16.4 26.7 31.4 9.3 8.1 18.1 28.1 33.9 5.8 7.4 48.7 10.7 65.7 17.3 8.2 51.7 12.1 67.2
300 5.7 7.7 12.0 19.4 19.7 16.1 10.0 14.8 21.0 24.0 4.4 5.6 17.7 7.6 31.5 39.6 10.6 34.5 10.1 45.0
500 5.0 6.8 8.8 12.9 12.9 24.5 12.2 19.8 15.2 19.1 3.9 5.6 14.0 5.7 21.5 57.9 15.2 45.0 8.3 46.4

See the notes to Table S9.

S.5 Monte Carlo results for the unit root case (
 = 1)

S.5.1 Performance of the sequential multiple testing likelihood ra-
tio procedure

Table S11 provides results on the performance of the sequential MTLR procedure in the
unit root case, for the AR(1) and the ARX(1) models, respectively. Speci�cally they report
the number of times, in percent, that the estimated number of factors, m̂; based on the
sequential MTLR procedure outlined in Section 7.1 is equal to the true number of factors
m0: The sequential MTLR procedure is implemented using the LRN (mmax;m0) statistic for
testing m = m0 = f0; 1; 2; ::; T � 3g against m = mmax = T � 2, with signi�cance level
�N = 50 p

(T�2)N and p = 0:05; using the critical values of the chi-square distribution with
degrees of freedom given by (44). Results are reported for the case of both Gaussian and
non-Gaussian errors. The tables show that the sequential MTLR procedure works very well
even for the unit root case. The performance is very similar to the stationary case with
j
j < 1, and indeed, the probability of selecting the true number of factors exceeds 95% in
most cases even under non-Gaussianity.
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Table S11. Empirical frequency of correctly selecting the true number of factors, m0, using
the sequential MTLR procedure in the unit root case (
 = 1)

N T = 5 T = 10
m0 = 0 m0 = 1 m0 = 2 m0 = 0 m0 = 1 m0 = 2

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

Gaussian
non-
Gaussian

AR(1)
100 99.0 96.2 99.2 96.7 97.4 94.7 99.7 95.7 99.0 95.9 99.5 96.6
300 99.7 97.5 99.5 98.1 97.7 97.2 100.0 98.6 99.8 98.9 99.8 99.6
500 99.8 98.9 100.0 98.9 98.3 97.6 100.0 98.7 99.9 99.4 100.0 99.5
1; 000 99.9 98.9 99.9 99.8 99.1 97.9 100.0 99.2 99.9 99.5 100.0 99.7
ARX(1)
100 98.8 94.5 98.7 95.1 98.5 96.1 99.4 93.5 98.6 94.9 99.1 95.1
300 99.4 97.7 99.5 98.5 99.7 99.1 99.6 97.5 99.7 98.8 99.7 99.0
500 99.7 97.9 99.6 98.1 99.6 98.7 100.0 98.2 100.0 98.7 99.9 99.3
1; 000 100.0 99.4 100.0 99.6 99.9 99.6 100.0 99.2 99.9 99.3 100.0 99.3
Note: The �rst-di¤erences are initially generated and then cumulated to obtain yit starting from any arbitrary value for yi0. For
the AR(1) case �yit is generated as �yit = ����t+
�yi;t�1+��it; for i = 1; 2; :::; N ; t = 2; :::; T; with �yi1 = ����1+��i1
where the process is initalised at �yi0 = 0, 
 = 1 and �it = �0ift + uit. The idiosyncratic errors are generated as uit �
IIDN (0; �2) under Gaussianity and uit � IID �p

12
(�26 � 6) under non-Gaussianity where �26 is a chi-square variate with 6

degrees of freedom, and �2 = 1. The remaining parameters are generated as described in Section 8.1.1. For the ARX(1) case
�yit is generated as �yit = ����t+
�yi;t�1+��xit+��it; for i = 1; 2; :::; N ; t = 2; :::; T; with �yi1 = ����1+��i1 where
the process is initalised at �yi0 = 0, 
 = 1 and �it = �

0
ift + uit. The idiosyncratic errors, uit; are generated as in the AR(1)

case with �2 = (1 � R2�y)=8R
2
�y and R

2
�y = 0:4. The remaining parameters are generated as described in Section 8.1.2. For

m0 = 0; �it collapses to uit in the above set-ups, and the rest follows accordingly, with �
2 = (1 � R2�y)=5R

2
�y in the case of

the ARX(1) model. Each ft is generated once and the same f 0ts are used throughout the replications. The �rst observation is
discarded. m̂ is the estimated number of factors computed using the sequential MTLR procedure described in Section 7.1 with
�N = 50 p

(T�2)N and p = 0:05. All experiments are based on 1,000 replications.

S.5.1.1 Performance of the (Q)ML estimator

The next set of results concern the performance of the proposed estimator when the number
of factors is estimated based on the sequential MTLR procedure. The results for the case
where the number of factors is known are also included for comparison. Results are reported
for the case of Gaussian and non-Gaussian errors.

AR(1) Simulation results for the AR(1) model are provided in Tables S12 and S13. These
tables report the bias and RMSE, both multiplied by 100, as well as empirical size and
power for the QML estimates of 
. The number of factors, when estimated, is computed
based on the sequential MTLR procedure described in Section 7.1 with the signi�cance level
�N = 50

p
(T�2)N and p = 0:05. The results show that both the bias and RMSE are su¢ ciently

small and the empirical size is close to the nominal level regardless of whether the number
of factors is estimated or not, and the error term is Gaussian or not.

Table S12. Bias(�100) and RMSE(�100) of 
 for the AR(1) model, using the estimated
number of factors, m̂, and the true number, m0; (
 = 1)

N T = 5 T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)
Gaussian

100 0.02 -0.54 -2.13 -3.46 3.31 7.08 10.66 15.90 0.01 0.00 0.02 -0.07 1.20 1.47 1.23 2.21
300 0.01 0.02 -1.04 -1.23 2.05 2.05 7.79 8.16 0.02 0.00 0.01 0.00 0.71 0.69 0.70 0.69
500 0.01 0.01 -0.98 -0.91 1.64 1.82 7.22 7.32 0.01 0.00 0.02 -0.01 0.54 0.53 0.55 0.55

non-Gaussian
100 -0.04 -0.95 -2.88 -4.71 3.35 8.57 12.30 18.02 -0.01 -0.14 0.05 -0.17 1.19 2.20 1.25 3.13
300 0.03 -0.35 -0.98 -1.99 2.17 4.99 7.64 11.32 -0.02 -0.01 0.02 -0.02 0.70 0.97 0.69 1.05
500 0.07 -0.23 -0.73 -1.37 1.65 4.64 6.64 9.51 -0.01 -0.01 0.03 -0.06 0.50 0.66 0.52 1.50

Note: m̂ is estimated using the sequential MTLR procedure described in Section 7.1 with �N = 50 p
(T�2)N and p = 0:05;


 is the coe¢ cient of the lagged dependent variable given in (1) in the absence of the xit regressors. All experiments are
based on 2,000 replications. See also the notes to Table S11.
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Table S13. Size(%) and power(%) of 
 for the AR(1) model, using the estimated number of
factors, m̂; and the true number, m0 (
 = 1)

N T = 5 T = 10
Size Power Size Power

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)
Gaussian

H0: 
 = 1 H1: 
 = 0:96 H0: 
 = 1 H1: 
 = 0:96
100 3.2 3.7 5.7 6.6 22.6 23.7 23.2 23.2 4.9 4.1 4.7 4.9 90.4 90.3 88.4 88.4
300 5.1 4.8 6.4 6.1 50.6 49.9 44.1 44.5 6.2 5.0 5.3 4.5 100.0 100.0 100.0 100.0
500 5.8 5.6 6.1 5.4 69.9 70.3 62.7 61.3 5.8 5.4 5.7 4.8 100.0 100.0 100.0 100.0

non-Gaussian
H0: 
 = 1 H1: 
 = 0:96 H0: 
 = 1 H1: 
 = 0:96

100 3.4 5.1 5.8 7.2 23.5 24.7 22.0 22.9 5.8 5.5 6.2 6.4 90.1 87.5 86.2 85.2
300 5.2 4.7 4.6 6.0 49.6 50.0 40.9 42.6 5.5 4.6 4.7 5.3 100.0 99.7 99.9 99.5
500 4.8 5.2 5.9 5.1 66.5 67.6 55.1 55.5 4.2 5.7 4.2 5.8 100.0 99.9 100.0 99.8

See the notes to Table S12.

ARX(1) Simulation results for the ARX(1) model are provided in Tables S14 and S15.
Similar results as in the AR(1) model are found for the ARX(1). The bias and RMSE are
small and inference is accurate with reasonably high power regardless of whether the number
of factors is estimated or not, and the error term is Gaussian or not.

Table S14. Bias(�100) and RMSE(�100) of 
 and � for the ARX(1) model, using the
estimated number of factors, m̂, and the true number, m0 (
 = 1)

N T = 5 T = 10
Bias (�100) RMSE (�100) Bias (�100) RMSE (�100)

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)
Gaussian


; 
 = 1
100 0.05 0.01 0.04 0.04 1.55 1.53 1.52 1.47 0.00 0.00 0.01 0.03 0.45 0.47 0.47 0.48
300 0.03 -0.01 -0.02 0.04 0.88 0.89 0.84 0.83 0.01 0.00 0.00 0.01 0.25 0.26 0.26 0.26
500 0.03 -0.02 0.02 -0.03 0.67 0.67 0.63 0.63 0.00 0.01 0.00 0.00 0.20 0.20 0.21 0.21

�
100 -0.06 -0.12 -0.05 0.09 3.83 3.88 3.87 3.88 -0.07 0.04 -0.04 -0.09 2.18 2.19 2.26 2.30
300 -0.04 0.08 0.02 0.07 2.17 2.20 2.24 2.20 0.00 0.00 0.01 -0.06 1.27 1.22 1.25 1.26
500 0.01 -0.06 -0.03 -0.03 1.68 1.68 1.68 1.71 -0.04 0.00 0.03 0.01 0.95 0.94 0.95 0.98

non-Gaussian

; 
 = 1
100 0.06 0.07 0.02 0.03 1.60 1.55 1.47 1.48 -0.03 0.01 -0.01 0.00 0.46 0.47 0.47 0.47
300 -0.02 -0.02 0.04 -0.02 0.88 0.91 0.86 0.84 0.00 0.01 0.01 0.00 0.26 0.26 0.26 0.27
500 0.01 0.00 -0.02 0.01 0.70 0.69 0.65 0.64 0.00 0.01 0.00 0.00 0.20 0.20 0.21 0.20

�
100 -0.18 0.01 0.07 -0.13 3.83 3.74 3.89 4.02 0.08 -0.03 0.00 0.00 2.14 2.19 2.16 2.21
300 -0.05 0.07 -0.07 0.14 2.12 2.21 2.23 2.18 0.02 0.00 0.01 0.01 1.22 1.27 1.28 1.29
500 0.01 0.01 0.03 -0.01 1.66 1.63 1.71 1.71 0.00 -0.04 -0.01 0.01 0.97 0.97 1.00 0.98

Note: m̂ is estimated using the sequential MTLR procedure described in Section 7.1 with �N = 50 p
(T�2)N and p = 0:05; 


and � are the coe¢ cients of the lagged dependent variable and the xit regressor given in (1). All experiments are based on
2,000 replications. See also the notes to Table S11.
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Table S15. Size(%) and power(%) of 
 and � for the ARX(1) model, using the estimated
number of factors, m̂, and the true number, m0 (
 = 1)

N T = 5 T = 10
Size Power Size Power

(m;m0) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2) (1; 1) (m̂; 1) (2; 2) (m̂; 2)
Gaussian


 H0: 
 = 1 H1: 
 = 0:98 H0: 
 = 1 H1: 
 = 0:98
100 5.2 5.5 6.4 5.4 26.0 26.2 29.7 30.7 4.4 5.7 5.9 6.1 99.3 98.8 98.6 98.6
300 4.9 5.5 6.4 5.4 61.7 63.3 68.2 67.0 3.7 5.2 4.5 5.0 100.0 100.0 99.9 99.9
500 4.7 4.8 5.0 4.8 82.2 84.3 87.2 88.0 5.4 4.6 5.6 6.2 100.0 100.0 100.0 100.0

� H0: � = 1 H1: � = 0:95 H0: � = 1 H1: � = 0:95
100 5.4 5.5 5.6 5.4 27.3 28.9 25.8 25.0 5.6 5.4 6.2 6.4 65.3 64.1 62.7 64.2
300 5.3 5.5 5.6 5.3 64.5 60.4 61.7 61.4 5.6 4.7 4.8 5.2 97.5 97.5 97.4 97.7
500 4.9 5.6 4.6 5.2 83.9 83.4 84.0 82.7 5.4 5.0 4.1 5.7 99.8 99.7 99.7 99.9

non-Gaussian

 H0: 
 = 1 H1: 
 = 0:98 H0: 
 = 1 H1: 
 = 0:98
100 6.6 5.6 6.0 6.0 26.7 25.7 31.1 30.0 6.0 6.9 5.6 6.0 97.8 97.0 97.3 97.4
300 5.0 5.6 5.6 5.4 62.8 61.8 64.5 67.6 4.7 4.4 4.4 4.8 99.1 98.8 99.2 99.1
500 5.9 5.1 5.3 5.0 81.5 79.8 87.2 85.6 4.9 3.9 5.2 4.6 98.9 98.9 99.3 98.9

� H0: � = 1 H1: � = 0:95 H0: � = 1 H1: � = 0:95
100 6.3 5.1 7.2 6.8 28.8 26.0 25.4 28.4 5.1 5.7 5.1 5.2 61.8 62.1 60.7 59.9
300 4.5 5.7 5.3 4.5 64.4 57.6 62.1 58.7 3.9 4.9 4.5 5.0 93.7 93.3 93.9 92.9
500 5.1 4.1 4.8 5.5 84.5 78.0 82.7 79.4 4.8 4.6 4.5 4.1 97.3 96.1 96.1 95.3

See the notes to Table S14.
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