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Abstract

This paper proposes a quasi maximum likelihood estimator for short T dynamic
fixed effects panel data models allowing for interactive time effects through a multi-
factor error structure. The proposed estimator is robust to the heterogeneity of the
initial values and common unobserved effects, whilst at the same time allowing for
standard fixed and time effects. It is applicable to both stationary and unit root cases.
Order conditions for identification of the number of interactive effects are established,
and conditions are derived under which the parameters are almost surely locally iden-
tified. It is shown that global identification is possible only when the model does not
contain lagged dependent variables. The QML estimator is proven to be consistent
and asymptotically normally distributed. A sequential multiple testing likelihood ratio
procedure is also proposed for estimation of the number of factors which is shown to be
consistent. Finite sample results obtained from Monte Carlo simulations show that the
proposed procedure for determining the number of factors performs very well and the
quasi ML estimator has small bias and RMSE, and correct empirical size even when
the number of factors is estimated. An empirical application, revisiting the growth
convergence literature is also provided.
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1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data
models where the time dimension (7") is short and fixed relative to the cross section dimension
(N), which is large. Such panels are usually referred to as micro panels, and often arise in
microeconometric applications. For example, many empirical applications based on survey
data such as the British Household Panel Surveys (BHPS) and the Panel Study in Income
Dynamics (PSID) are characterised by data covering relatively short time periods. Short
T panels also arise in the cross country empirical growth literature where data is typically
averaged over five to seven years to eliminate the business cycle effects. It is now quite
common to include dynamics in such studies in addition to individual and time fixed effects,
the former being particularly important to capture individual characteristics, and the latter
to control for common shocks and the influence of aggregate trends. Empirical applications of
dynamic panel data models with both individual and time effects using survey data include,
for example, the studies of Guariglia and Rossi (2002) and Prior (2010). In the context of
growth empirics these include Islam (1995), Caselli et al. (1996), and Aiginger and Falk
(2005) among others. Although such studies feature individual and time effects along with
dynamics, it is rare to find studies that allow for error cross section dependence as well. In
many empirical applications time dummies are used to deal with cross section dependence,
which is valid only if the time effect is homogeneous over the cross section units.

Both generalized method of moments (GMM) and likelihood approaches have been ad-
vanced to estimate such panel data models. See, for example, Anderson and Hsiao (1981),
Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998), Hsiao et
al. (2002), Binder et al. (2005) and Moral-Benito (2013). However, this literature assumes
that the errors are cross sectionally independent, which might not hold in many applications
where cross section units are subject to common unobserved effects, or possibly spatial or
network spillover effects. Ignoring cross section dependence can have important consequences
for conventional estimators of dynamic panels. Phillips and Sul (2007) study the impact of
cross section dependence, modelled as a factor structure, on the inconsistency of the pooled
least squares estimate of a short dynamic panel regression. Sarafidis and Robertson (2009)
investigate the properties of a number of standard widely used GMM estimators under cross
section dependence and show that such estimators are inconsistent.

In applications where the spatial patterns are important and can be characterised by
known spatial weight matrices, error cross section dependence is typically modelled as spatial
autoregressions and estimated jointly with the other parameters of the dynamic panel data
model. Such models with short 7" are considered, for example, by Elhorst (2005) and Su and
Yang (2015) for random effects as well as fixed effects specifications. In the latter case the
first-difference operator is applied to eliminate the fixed effects and then the transformed
likelihood approach of Hsiao et al. (2002) is used to deal with the initial value problem.
The treatment of the initial values in spatial dynamic panel data models poses additional
difficulties and requires further investigation. Jacobs et al. (2009) discuss GMM estimation of
dynamic fixed effect panel data models featuring spatially correlated errors and endogenous
interaction. See Lee and Yu (2010) for a review.



In addition to the spatial effects it is also likely that the error cross section dependence
could be a result of omitted unobserved common factor(s). This class of models has been
the subject of intensive research over the recent years and robust estimation procedures have
been advanced in the case of panels where NV and T are both large. See, for example, Pesaran
(2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios et al.
(2011). By comparison, less work has been done on estimation of short 7" dynamic panels
where error cross section dependence is due to unobserved common factors, also known as
interactive effects. An early contribution by MaCurdy (1982) features panel models with
an error structure that combines factor schemes with autoregressive-moving average models
estimated by maximum likelihood and used to analyse the error process associated with the
earnings of prime age males. Further recent related literature will be considered in the next
section. A recent survey of panel data models with error cross section dependence and short
T can be found in Sarafidis and Wansbeek (2012).

Motivated by the practices and requirements of the empirical literature, in this paper
we explicitly consider individual and time effects within a dynamic panel data model with
short T, allowing in addition for interactive effects. In the analysis of output and growth
convergence for example, accounting for interactive effects allows to capture the idea that
all economies have access, possibly with different degrees, to the same pool of technological
knowledge (Pesaran, 2007). Building on the work of Hsiao et al. (2002), we propose an
alternative quasi maximum likelihood (QML) approach applied to the panel data model af-
ter first-differencing. In this way, we account for heterogeneity of the initial values and the
common factors in an integrated framework. We establish order conditions for identification
of the number of interactive effects, and derive conditions under which the parameters are
almost surely locally identified. Global identification is possible only when the model does
not contain lagged dependent variables. The QML estimators are shown to be consistent
and asymptotically normally distributed both for stationary and unit root cases. Most im-
portantly, for the practical implementation of our approach we propose a sequential multiple
testing likelihood ratio (MTLR) procedure to estimate the number of interactive effects,
which delivers a consistent estimator of the true number of factors. The proposed method
can be readily extended to a panel VAR framework as in Binder et al. (2005). Monte
Carlo simulations are carried out to investigate the finite sample performance of the QML
estimator and the MTLR procedure, followed by an application of the approach to growth
convergence.

The rest of this paper is organised as follows. Section 2 reviews the recent related lit-
erature. Section 3 sets out the dynamic panel data model and its assumptions. Section 4
develops the quasi likelihood approach and derives a solution using an eigenvalue approach.
Identification of the number of factors and the parameters of the model are discussed in
Section 5. Section 6 establishes the consistency of the QML estimator and derives its as-
ymptotic distribution. Section 7 presents the sequential MTLR procedure for estimating
the number of factors. Section 8 describes the Monte Carlo experiments and provides finite
sample results on the performance of the sequential MTLR estimator for the number of
factors, and the proposed QML estimator. An empirical application to growth convergence
is provided in Section 9. The final section presents some concluding remarks. All technical
proofs are provided in the Appendix. Details of alternative GMM estimators used in the
Monte Carlo experiments together with additional Monte Carlo results are provided in an
online supplement.



Notations: Let w = (wy,wy,...,w,)" and A = (a;;) be an n x 1 vector and an n x n
matrix, respectively. Denote the Euclidean norm of w and the Frobenius norm of A by
|w| = (E?lef)lp and ||A|| = [TT(A’A)]I/Z respectively, and the largest and smallest
eigenvalue of A by A\e:(A) and Ay (A). 77 is a T x 1 vector of ones, 77 = (1,1, ...,1)".
If {y,} -, is any real sequence and {z,} -, is a sequence of positive real numbers, then
Yn = O(x,,) if there exists a positive finite constant Cy such that |y,|/z, < Cy for all n.
Yn = o(zy,) if fr/gn — 0 as n — oo. If {y,}. -, and {z,},, are both positive sequences of
real numbers, then y, = © (x,,) if there exists Ny > 1 and positive finite constants K and
K such that inf,,>n, (Yn/75) > Ko and sup,,> y, (yn/zn) < K. Positive, possibly large, fixed
constants will be denoted by K (and if needed by Ky, K; and so on) that could take different
values in different equations. Small positive constants will be denoted by €. Ey(.) denotes
expectations taken under the true probability measure. —, and %3 denote convergence in
probability and almost sure (a.s.) convergence, respectively. —, denotes convergence in
distribution for fixed T" and as N — oo.

2 Related Literature

There is a substantial literature on estimation of short 7' dynamic panels. Such models are
typically estimated using the generalized method of moments (GMM) applied to the first-
differenced version of panel data models. The GMM approach is quite general and has been
applied to a variety of dynamic panels. See, for example, Anderson and Hsiao (1981 and
1982), Holtz-Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt (1995), Arel-
lano and Bover (1995), and Blundell and Bond (1998). However, these papers primarily focus
on models with individual effects and when they consider time effects this is done assuming
they are homogeneous across the individual units. Short 7" dynamic panels with heteroge-
neous time effects modelled as multi-factor error processes are considered by Ahn, Lee and
Schmidt (2001,2013), and more recently by Bai (2013).! Ahn et al. (2001) consider a single
factor error structure and propose a quasi-differencing approach to eliminate the factor, and
then apply GMM to consistently estimate the parameters. The quasi-differencing transfor-
mation was originally proposed by Chamberlain (1984). Holtz-Eakin et al. (1988) implement
it in the context of a bivariate panel autoregression. Nauges and Thomas (2003) follow the
same approach in addition to prior first-differencing to eliminate the fixed effects, which they
consider separately from the single factor error structure they assume for the errors. Ahn et
al. (2013) extend their quasi-differencing approach to a multi-factor error structure. More
recently, Hayakawa (2012) proposes a GMM estimator based on the projection method while
Robertson and Sarafidis (2015) propose an instrumental variable estimation procedure that
introduces new parameters to represent the unobserved covariances between the instruments
and the unobserved factors. They show that the resulting estimator is asymptotically more
efficient than the GMM estimator based on quasi-differencing as it exploits extra restrictions
assumed. See also comments on this approach by Ahn (2015) and Hayakawa (2016).

As an alternative to GMM, Bai (2013) proposes a quasi-maximum likelihood approach
applied to the original dynamic panel data model without differencing, treating time effects
as free parameters, and without explicitly allowing for individual effects. To deal with

'Bai (2013) refers to models with multi-factor error structures as panels with interactive effects.



possible correlations between the factor loadings and the regressors Bai follows Mundlak
(1978) and Chamberlain (1982) and specifies linear relationships between the factor loadings
and the regressors to be estimated along with the other parameters. However, he continues
to assume that all factor loadings (including the ones associated with the individual effects)
are uncorrelated with the errors.

We also use a likelihood framework, but unlike Bai (2013) we allow for unrestricted
individual effects possibly correlated with the errors. Our procedure also differs from the
one suggested by Bai (2013) since we apply the maximum likelihood estimation to first-
differences with individual effects eliminated. Our proposed estimation method can be viewed
as a generalization of the transformed likelihood approach of Hsiao et al. (2002) where we
now allow for unobserved common effects through the use of a multi-factor error structure.
In this way we deal with error cross sectional dependence as well as the dependence of the
initial values on the model parameters. Finally, we propose a sequential multiple testing
likelihood procedure to consistently estimate the number of factors which is not considered
by Bai (2013).

3 A dynamic panel data model with interactive error
components

We begin with the following standard dynamic panel data model with time and fixed effects
Yit = VWin1 + B%u+a; + 6, +(y, fort=0,1,2,...,T,and i = 1,2, ..., N, (1)

where x;; is a k X 1 vector of regressors that vary both across i and ¢, |y| < K, Bisak x 1
vector of unknown coefficients, with ||3]| < K, and K denotes a finite positive constant. «a;
and J; denote unit-specific fixed effects and time effects, respectively. We consider 7" to be
fixed, and allow N — oo, under which the unit root case where |y| = 1 is also covered. It
is assumed that the observations {y;,x;, for t =0,1,...,7;i=1,2,..., N} are available for
estimation of v and 3, which are the parameters of interest.

Specification (1) is the standard short 7" dynamic panel data model used extensively in
the empirical literature assuming that the errors, (,,, are independently distributed across
1 and t. In this paper we contribute to this literature by allowing the errors to have the
following multi-factor structure

Gir = Mife + i, (2)
where mf; is an interactive effect with f; an m x 1 vector of unobserved common factors, n;
an m X 1 vector of associated factor loadings, and wu; denotes the remaining idiosyncratic
error term. The above specification contains a number of models considered in the literature
and reviewed in Section 2 above as special cases. It also provides a direct generalization of
Hsiao and Tahmiscioglu (2008) who consider estimation of (1) with /7D errors using the
transformed MLE procedure. The model considered by Ahn et al. (2013) allows for errors
to have the multi-factor error structure as in (2) but does not explicitly allow for time effects
in (1).

We propose an extension of the transformed MLE by treating the unknown factors as
fixed parameters to be estimated for each ¢, but following Ahn, Lee and Schmidt (2001,2013)
we assume the factor loadings to be random and distributed independently of the errors, u;,
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and the regressors, x;;. We also contribute to the analysis of identification of short 7" dynamic
models with a multiple factor error structure, and derive order conditions for identification
of m and the parameters of interest, v and 3. Initially, we develop our proposed estimation
method assuming that m is known, and consider the problem of consistent estimation of m
in Section 7.1.

We make the following assumptions:

Assumption 1 The idiosyncratic errors, u;, fort = 1,2, ..., N are distributed independently

across i and over t with zero means and constant variance, o2, such that 0 < 0? < K, and
4+-€

sup; ; E lug| " < K.

Assumption 2 The time effects, o, fort = 1,2,...,T, and the m x 1 vector of factors f;,
vary across t, so that Ady # 0 and g, = Af, # 0 at least for somet =2,....T, m < T, and
sup, [|g:|| < K.

Assumption 3 The regressors, Xy, for i = 1,2,..... N are distributed independently of
and m;, for all i,t, and t', and their first-differences, Ax;;, follow general linear stationary
lime series processes

AXit =cC; + Z\Iljei,t—ja fOTi = 1,2, ...,N, (3)

j=0

where c; and W; for j =0,1,... are k X 1 vector and k x k matrices of fized constants such
that ||c,|| < K, and 37, |®,]| < K. Further e; ~ I1D(0,1,), with sup;, E ||| < K.

Assumption 4 The unit specific fived effects, «;, fori = 1,2,..., N are allowed to be cor-
related with x;i, m;, and uj, for all i,j and t, and could be deterministic and uniformly
bounded, sup, |o;| < K, or stochastic and uniformly bounded, sup, F |o;| < K.

Assumption 5 The unobserved mx1 factor loadings, m;, fori =1,2,...., N are distributed
independently of w;i, and the common factor, f;, for alli, j andt, and are independently and
wdentically distributed across v with zero means, and a finite covariance matrix, namely,

where Q,, is an mxm symmetric positive definite matriz with ||Q,|| < K andsup; E ||n;||*" <

K.

The above assumptions are standard in the literature on short 7" dynamic panels. As-
sumption 2 is innocuous and requires time effects and the factors to be time-varying. Note
that the case where §; = 6 and/or f; = f for all ¢ is already covered by the presence of the
fixed-effects, ;. Assumption 3 requires the regressors to be strictly exogenous with respect
to (;. This can be relaxed by considering a vector autoregressive version of (1) and (2)
where z; = (yit,x},)" is modelled jointly as in Holtz-Eakin et al. (1988) and Binder et al.
(2005). While in practice the choice of strictly exogenous variables is typically driven by
economic theory and prior knowledge, tests for strict exogeneity are also available, see for
example Su et al. (2016). Regarding possible correlation between 7, and the regressors Ax;,
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this can be controlled for by using the methods of Mundlak (1978) and Chamberlain (1982).
Furthermore, while the composite error term, (;;, in (1) is cross-sectionally heteroskedastic
through the presence of the interactive effects, allowing explicitly for the same in the idio-
syncratic error, u;, of (2) can be pursued along the lines of Hayakawa and Pesaran (2015).
These authors extend the cross-sectionally independent homoskedastic idiosyncratic errors
of Hsiao et al. (2002) to the heterosketastic case. The above extensions are not considered
here as they are beyond the scope of the present focus of the paper. Assumption 4 permits
a very general specification of fixed effects, which is one of the main strengths of the pro-
posed method for empirical applications where little is known about the individual effects.
Assumption 5 is required for identification of the factors and the parameters.

Combining (1) and (2), and eliminating the individual effects by first-differencing we have

Ay = YAy 1 + B A%y + dp +gim; + Augy, for t =2,3,....,T; i=1,2,..., N, (5)
where d; = Ad; # 0 and g, = Af, # 0 for some t > 2, and
& =gm,; + Auy, for t =2,3,...,T. (6)

For the specification of Ay;; we make the following assumption about the initialization of

(5):

Assumption 6 Suppose that for each i, {Ay;} is started from time t = —S + 1, for some
S > 0, with the initial first differences, Ay; _s11, as random draws from a distribution such
that

E (Ayi,_g_;,_l |AXZ) =ag+ W/SAXZ', (7)

where Ax; = (AX}y, AXy, ..., AX}7)" is the kT x 1 vector of observations on the regressors,
as 18 a fived coefficient that allows for non-zero means, and wg is the kT x 1 wector of
coefficients, such that supg |as| < K, and supg ||7s| < K. Furthermore, let

@i = Ayi—se1 — £ (Ayi—s41 |Ax;) (8)
and suppose that w; ~ I1D(0,62), 0 < 0% < K, and sup; E |w;|*™ < K.

This assumption is not that restrictive and allows the initial values, y; —¢ and y; _g4+1 to
depend on the fixed effects, «;. Also it is redundant if |y| < 1 and S is sufficiently large, and
obviously does not apply if there are no regressors in (1). The main restriction here is the
assumed linearity of (7).

The following proposition summarises the result for Ay;;.

Proposition 1 Under Assumptions 1, 3 and 6
Ay = dy + ' Ax; + &4, fori=1,2,...,N, (9)

where dy and 7 are unknown parameters of dimensions 1 and kT, respectively, and £, is the
composite error defined by

i = &1M; + vit, (10)



where ||g1]| < K. The component v;; is distributed independently of Ax; and n, and satisfies
v ~ I1D(0,wo?), sup & lua |7 < K, (11)

for some small € > 0, and a fired K > 0, and

—02 fort=2
Cov (vi1, Auy) = { 0 §0rt— 3.4,....T ~ (12)

where 0 < Wpin < W < Whpax < 00, and Wpin aNd Wyax are fized constants.
Remark 1 In the case where |y| <1 and S — oo we have
Ay = dy + ' Ax; + &,
where &;11s defined by (10), with vy given by
v = Y A+ X,
=0
where

Xi=Y VB2, ;—F (Z VB AX; - |AXz’> :
j=0 Jj=0

Since Ax;, m;, and uy are independently distributed for all i, t and t', it then follows that
vy s distributed independently of m, and Ax;, with E (vy) =0, and

Var (vy1) = Var (Z ’YjAUi,lj> + Var (x;)

=0
= 12127 + Var (x;) > 0.
In the case of pure AR(1) panels, we have the further parametric restriction, Var (v;1) = %,
which if imposed can increase estimation efficiency.
Writing (5) and (9) in matrix notation we now have
Ay; = AW;p +§;, § = Gn,+ry, (13)

where Ay; = (Ayi, Ayig, ..., Ayip)', AW, is the T x (Tk + 1 + k + T) matrix given by

10 ...0Ax, 0 0
01 0 0 Axgz Ayzl
00 ... 1 0 AX;T Ayz’,Tfl

Y = (dl,ﬂ/7517’7>, with d = (d17d27 "'7dT),7 G/ = (g1>g27 "'7gT)7 r; = (UilaAuzQa -"7AuiT),;
- / -

and §; = (fnafa, T 7€iT) , and recall that &; = g’ﬂ?i + v, and §;; = gim + Auy, for

t=23,....T.



Proposition 2 Consider the composite random variable, ;,, 1 = 1,2,..., N, fort =1 defined
by (10), and fort = 2,3,...,T defined by (6). Then under Assumptions 1, 2, 3, 5, and 6,
the following moment conditions hold:

sup B (|&,|*) < K, fort =1,2,..,T, (15)
and

sup E (|| Axy||") < K. (16)
it

4 Quasi Maximum Likelihood Estimation

Consider the panel data model given by (13) and note that under Assumption 1, and using
(11) and (12), we have

E(r;r}) = 0°Q, (17)
where
w -1 0
-1 2 . 0
E(r;r)) = o? =0’Q, (18)
2 —1
0 -1 2

and £ = Q(w). Since || =1+ T (w — 1), w needs to satisfy w > 1 — £ to ensure that € is
positive definite. Also, since 1, and r; are independently distributed we have

Var(§,) = E(§,£) = 0" + GQ,G'=0" (2 + QQ') = Z¢ () (19)

where Q = (1/0)(;9117/2, rank (Q) = m, and ¥ = (w, 02, vec(Q)’)’. With this normalisation,
the quasi-log-likelihood of the transformed model (13) is given by

N

(v (0) = (o) =30 n) — S n(Sc@) - L S E@T @) &lp)  (@0)
=1

NT NT N 1 & .
= — 5 @) - —-In(e*) - S |2+ QQ| - ;&2(90) (+QQ) " &i(p),
(21)
where
&i(p) = Ay — AW, (22)

and it is assumed that ¢ does not depend on 9. For fixed m and 7', the above log-likelihood
function depends on a fixed number of unknown parameters collected in the [T'(m+k+1) +
k + 3] x 1 vector 8 = (¢, ')

To obtain the QML estimator, since 2 is a positive definite matrix and QQ' is rank
deficient (recall that by assumption m < T'), we first note that

2+ QQ| =19/ |[I,+QQ'qQ,
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and using the Woodbury matrix identity

(@+QQ)" = o' -0'Ql, +Qe Q) Qe (23)
_ Qfl . Q*lQA—lngfl’

where A is a non-singular matrix defined by
A=1,+QQ'Q. (24)

Using the above results in (21), and after some simplification the quasi-log-likelihood function
can be written as

N0y (8) —g ln(02)—% In |Q|—% In |A|—% Tr (By2') — Tr (ByQ'QA'QQ )],
(25)
where [Q| =1+T (w—1), and
N
Br(p) = N7' ) &(9)€i(0). (26)

If m, and w; are normally distributed, maximising (21) gives the maximum likelihood
estimator of @. If they are instead IID with mean zero and u; has finite fourth moments,
maximising (21) gives the QMLE of 6 (White 1982). Detailed regularity conditions can be
found in Section 6.

For analytical convenience and identification purposes, which will become clearer below,
we further define P = Q~/2QA Y2, Note that since A and Q are non-singular matrices,
then rank (P) = m, as well. Further, it is easily seen that

I,—PP=1,—- A '2QQ'QA /2
and using Q'Q7'Q = A-I,, from (24), we have
A =1, -PP. (27)
Similarly,
Tr (BNQ'QAT'QQY) =o’Tr [P'Cy (¢) P,
where
Cy (¢) =0 Q*By(p)Q 12, (28)
and ¢ = (¢',w,0?)"
Using the above results, the quasi-log-likelihood function given by (25) can now be written
as

N0y (¢, P) —g ln(02)—% [l +7T (w-— 1)]+% In |L,, — P’P|—% (Tr[Cx (6)] = Tr [P'Cy () P]}.

(29)
While as mentioned earlier the transformation from Qto P is carried out for analytical
convenience, P is still not identified. It is easily seen that the value of /y (¢, P) is invariant
to the orthonormal transformation of P. To see this consider the transformation P = P=,

9



—/—

where = is an m X m orthonormal matrix such that Z'=Z=1,,. Then it is readily verified
that N"Yy (¢, P) = N Uy <¢,f’> Hence, P (or P) is identified only up to an m x

m orthonormal rotation matrix. Let P = (p;, p2, ..., Pm), Where p; is the ¢ column of P,
and p; is a T' x 1 vector of unknown parameters. Since rank (P) = m, then P’P can be
diagonalised by an orthonormal transformation, and without loss of generality we can impose
the following m(m — 1)/2 orthogonality conditions

pips =0, forall s #t=1,2,....m. (30)
Under these restrictions the quasi-log-likelihood function, (29), simplifies to

T

1 1 &
N~y (¢, P) x -5 1][1(0—2)_§ In[1+7T(w— 1)]+5 ;1 (1 —plip)+ ZptCN t——Tr [Cy (9)].

(31)
Taking first derivatives with respect to p; and setting these derivatives to zero now yields

1
C D — [ ——— =0, fort=1,2,.. 2
N(d))pt <1_pp)pt or ) Hy , M, (3)

where P, is the quasi-maximum likelihood estimator of p; (in terms of ¢). Therefore, p; is
the eigenvector of Cy (¢) associated with the first m largest non-zero eigenvalues of Cy (¢),
which we denote by A (¢) > A2 (¢p) > .... > A, (¢) > 0. Note that Cy (¢) is a symmetric
positive definite matrix with all real eigenvalues \; (¢p) > 0, for t = 1,2, ..., T. We also have

M(d) = —— . and P\Cu () Pr= A () — L.

1—pip:’

Hence, the concentrated quasi-log-likelihood function in terms of ¢ can be written as

zm: —1——ZAt

t=1
(33)
where \; (¢) is the t'" eigenvalue of Cy (¢), given by (28). This concentrated quasi-log-
likelihood function can now be maximised with respect to ¢ = (¢’,w,0?)’. The QML esti-
mators, i (¢), can then be computed using the QML estimator of ¢ and their corresponding
variance covariance matrix can be computed using the delta method.
With regard to the computation of p; it is important to bear in mind that standard
eigenvector routines provide eigenvectors that are typically orthonormalised. Whilst in the

N | —

N1y (i) o —g ln((ﬂ)_% Infl+ 7 (w— 1)]—% ; In [\ ()]+

above analysis, P1, P2, ...., P are orthogonal to each other, their length is not unity and is
given by
1
Al A
p;pr =1— : 34
o At () 3

5 Identification conditions

We shall first derive necessary order conditions on m and T for identification, and then
subject to these order conditions we derive additional conditions under which the parameters
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are locally identified, and show that global identification of short 7" panels with an error multi-
factor structure is possible only in the case of panels with strictly exogenous regressors.

We begin our investigation by considering the order condition for identification of the
panel AR(1) model. Using (5) and (9), we note that in this case

Ayit = dt + g;m + Vi, for t = 1,
Ay — YAYir1 = di +gm; + Auy, for t = 2,3, ..., T,

which can be written as
B((y)Ay,=d+Gn+r; =d+§;, fori=1,2,...., N,

where d = (dy, ...,dr)", Ay; and €, are as defined above, and

1 0 0
—y 1 0
B () - o (35)
0 —y 1
Note also that, |B (v)| =1, and
1 0 0 O
_ 1 .0
B'(y=| " _ , (36)
: . 0
vy v o1
and hence
Ayi=a+B™ ()&,
where
1 0 0 O dy dy
d dy +d.
a=B!(y)d= vl 0 D= 71. ’
: o0 : :
,.)/T—l ~y 1 dr ’}/Tildl + ’7T72d2 + ..+ 'YdT—l + dr

(37)
Since dis a T" x 1 unrestricted parameter vector, then a is also unrestricted, namely knowing
a does not help identify . Therefore, v can only be identified from the T'(7" + 1)/2 distinct
elements of Var(Ay;) which is given by

Var(Ay;) = B(y)"'Var(§)B'(y)™
= o"B(7) ' (2+QQ)B'(y) ' =2 (0,Q),
where 0 = (7,w,0?) . But since Q enters ¥ (9,Q) as A = QQ’ we need to consider the
unknown elements of the symmetric matrix A under different rank conditions. First it is

clear that if A has full rank, namely if rank(A) = T, then p is not identified. Hence, for
identification of @, we must have rank (A) = rank (Q) = m < T. When rank (Q) = m,
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Q is identified only up to an m x m non-singular transformation. However, the number of
non-redundant parameters of Q is given by mT — m(m — 1)/2 (see p. 507 of Hayashi et al.
(2007)). Hence, the order condition for identification of g and the non-redundant elements
of Q is given by

T(T+1)/2>3+Tm—m(m—1)/2. (38)

This order condition is satisfied if 7' > 3, for m = 0,1, 2, .., Myax Where my., is the largest
value of m that satisfies (38), that is mup.x = T'— 2. It is easily seen that the above condition
is not satisfied if m = T'— 1. The maximized log-likelihood values for the rank deficient
cases, m = 0,1, 2..., Muyay can be computed using (33).

Consider the more general case where the panel AR(1) model also contains exogenous
regressors, and note that the system of equations (13) can be written equivalently as

Ay;=a+Z;(y)6+B" (7)€, (39)

where a, B~ () and &, are as defined above, 8 = (7', 8'), Z; (y) = B! (y) Z;, and Z; is
the T' x (Tk + k) matrix of observations on the exogenous regressors defined by

Ax, 0
0 Axj,
Z;, = . ) (40)
0 Axj,

It is clear from (39) that a and 4, and hence d and §, are uniquely identified for a given value
of . But it is already established that ~ is identified from the covariance of B~ (v) &;, given
by 2 (0,Q) = ¢°B(7) "' (2 + QQ') B'(y) ", if the order condition (38) is met. Note that
¥ (o, Q) does not depend on d and §, and hence knowing d and § will not help identification
of 7. As a result, the order condition (38) continues to be sufficient for identification of the
parameters of the panel ARX(1) model.

To investigate necessary and sufficient conditions for identification of the parameters we
consider the average log-likelihood function defined by (20) which we write as,

T

I (6) = N7ty () = —5 0 (27) = 5 n[Be ()] — 5 D~ E0)Be () &4le0), (4)

where 0 = (¢, ¢, ¢ = (d,7",8,7) = N,7), ¥ = (w,06% ), and q refers to the
[mT — m(m — 1)/2] x 1 vector containing the non-reduntant elements of Q. Suppose that
A€O,, v€0O,, and Y € ©,, and denote the true values of A, v and 1) by Ag,7,, and
)y, respectively. Consider the set N (v,) defined as follows:

Definition 1 Let N.(v,) be a set in the closed neighbourhood of 7, defined by
Ne(vo) ={7€ ©5, =l <€},
for some small € > 0, where ©,, is a compact subset of R.

We now show that 8y = (), ¥5) = (X, 7o, Wh), where X = (d’,#’, 3') is identified on
O, = N.(7) X ©, x ©,. For this purpose, we require the following additional assumption.
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Assumption 7 (i) 0 € ©, = N.(7,) X O\ X Oy, where Oy = O;xO,x0Op5 and O, =
O, x0,x0,, B4, O,, O and O, are compact subsets of R™, R"~ R"?, and R", re-
spectively; O, and O, are compact subsets of R, where ng = 1T, n, = kT, ng = k,
and ng = Tm — m(m — 1)/2; 0y = (@b, ¥)) = (No, 70, %0) lies in the interior of ©,
(i) () =02 (2 + QQ'), and for some Cmax > Cmin > 0, Cmin < infyco, Amin [Ze(¥)] <
SUDyc@,, Amax [Ze(¥)] < Cmax, and (1ii) as N — oo

N
Ay () = %Z AW!Z, (1) AW, %3 A () uniformly in ©,, (42)

=1

where A (1) = limy_ o N"' SV F (AW, ()" AW,) is positive definite for all values
Of ’(/JG @w.

The first part of this assumption is standard and rules out parameter values on the
boundary of the parameter space, and since N.(7,) is a subset of ®., which is compact, it
also follows that ®, being the Cartesian product of compact sets, is itself compact, namely
O, € R", where ng =3+ T (k+ 1)+ k+Tm—m(m—1)/2. Note also that order condition
(38) is taken into account in setting ny. The eigenvalue conditions on X¢ (7p) in the second
part of the assumption are required for the proof of consistency results. This part of the
assumption also holds when the order condition is met and w > 1 — % Recall that under
the latter €2 is a positive definite matrix and Q is rank deficient, and under Assumption
10 < 0% < K. For v we need to distinguish between the case where S is fixed (namely
initialization is from a finite past) and when S — oo. Under the former it is only required
that || < K, which includes the unit root case (|y| = 1). Under the latter (when S — o0),
we must have |y| < 1. Consider now the third part of Assumption 7, and note that

sup I HAW;Z§ ()" AWZ‘H2 < HZS (‘/’)_1”2SQPE AW, |* < K,

where ||, (@b)*lH < K under condition (i) of Assumption 7, and sup, E [|[AW,||* < K
by Lemma 1. It is also easily seen that AW, are cross-sectionally independent under As-
sumptions 1, 3, and 5. This follows since Ax; are independent across ¢ by Assumption
3,and Ay being a function of Ax;; and ¢, (see (39)) are also cross-sectionally independent
noting that ¢, are cross-sectionally independent under 1 and 5. Hence, Ay (1) “3 A ()
for every ¥ € ®, (see, for example, Theorem 19.4 of Davidson (1994)). Under condition
(ii) of Assumption 7 it is trivial to see that this result also holds uniformly in @,. It is
important to note that condition (42) holds even if we allow for common effects in x;; by
relaxing Assumption 3 to allow for unobserved common factors so long as the factor loadings
are cross-sectionally independent. Such effects are allowed for in the Monte Carlo experi-
ments, see (52). Finally, the condition that A (1)) is a positive definite matrix is needed for
identification of ¢.
The main identification result is set out in the following proposition:

Proposition 3 Consider the model given by (1) and (2), with the associated log-likelihood
function for first-differences given by (20). Suppose that Assumptions 1-7, and the order
condition (88) hold. Then 0y is almost surely locally identified for values of vy sufficiently
close to vy,, as formalised by definition 1.
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Remark 2 In the absence of lagged dependent variables in (1), 8y is almost surely globally
identified. This can be easily seen from the proof of Proposition 8 in the Appendizx.

6 Asymptotic properties of the QML estimator

The analysis of consistency and asymptotic normality of the QML estimator, 6 = arg maxgce, {n (),
now follows by application of standard results from the literature. Almost sure local consis-

tency of 0 follows, for example, from a straightforward adaptation of Theorem 9.3.1 of David-

son (2000). Specifically: (i) ©, as a subset of @ is compact, (ii) setting Cy (0) = —20x (),

and C () = Ey[Cy ()], under Assumptions 1-7, and using (A.39) and (A.40) we have that

Cy (0) “> C (0) uniformly on ©, and (iii) 8, is the unique minimum of C'(#) on ©,, and

is an interior point of ®,, by assumption. Condition (iii) follows directly from condition (ii)

and Proposition 3 (see Theorem 9.3.4., Davidson (2000)). Therefore, all three conditions of
Theorem 9.3.1 of Davidson are satisfied and 8 %3 6, on the set ©..

The asymptotic distribution of @ is derived by taking a Taylor expansion of 2 N (0 =0

at @y and checking the asymptotic behaviour of the score function, Sy(0) = dzgg(o), and
Hessian matrix, Hy(6) = —882’59, I Ey [ZN 90)} = 0 and Hy(0) %3 H(6,) the asymptotic

normality of the QMLE will follow from the mean value theorem:
0 = V/Nsy(0) = VNsy(0o) — Hy(0)VN(O — 6,)

where 0 lies between 6 and 0.

Let Jn(0) = Ey |N ‘%N (e) aege(le ] be the variance-covariance matrix of the score vector.

We state the following theorem.

Theorem 1 Consider the dynamic panel data model given by (1) with interactive effects as
in (2). Suppose that Assumptions 1 to 7, the order condition (38) and Proposition 3 hold.
Denote the QML estimator of 8y by 8 = arg maxgee, {x (8), where Uy () is given by (41).
Then, 0 is almost surely locally consistent for 8y on O, for values of v sufficiently close to
Yo as formalised by definition 1, and

VN (B — 69) —4 N [0,H '(60)J (8,) H'(6,)] , (43)

where H(6y) = limy_, o, Ey [— azgéva(go)] and J (0) = limy_.o Ep [NBEN(GO) 8215_0;00] both as-

sumed to exist.

When &, (@,) is Gaussian VN(O — 0y) —4 N [0,H(0)] . A consistent estimator for
the variance in (43) can be obtained by substituting @ for 6, in the expressions for J ()
and H(6,).

7 Estimating the number of factors

There are a number of studies that provide information criteria for selecting the number of
factors including Bai and Ng (2002), Onatski (2009), Kapetanios (2010), Ahn and Horenstein
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(2013), among others. However, these are not applicable to short 7" panel data sets, and
require both N and T to be large. In the case of short 7" panels Ahn et al. (2013) estimate
the true number of factors, mg, within a GMM framework using information criteria as well as
the Sargan-Hansen misspecification statistic, in a sequential manner. To ensure consistency
of the selected number of factors, following Bauer et al. (1988) and Cragg and Donald (1997),
Ahn et, al. (2013) choose the significance level by such that by — 0 and —In(by)/N — 0
as N — oo. Using simulations they find that the sequential method could produce better
estimates if the significance level depends also on 7' (in addition to N), when the regressors
and individual effects are not highly correlated, but do not provide theoretical details on how
best to allow for T" as well as N in their selection procedure. In what follows we consider a
sequential likelihood ratio (LR) testing procedure, but adjust the critical values of the tests
to take account of the multiple testing nature of the procedure in terms of 7', as well as
adjusting the critical values of the tests in terms of N to ensure consistency of the selected
number of factors. We provide a formal theory that should be of general interest for the
analysis of short T factor models.

7.1 A sequential multiple testing likelihood ratio procedure for
estimating the number of factors

Our sequential multiple testing likelihood ratio (MTLR) procedure makes use of the like-
lihood ratio statistic and in effect involves sequentially performing a number of likelihood
ratio tests of the overidentifying restrictions on the model defined by (13). To see this, from
(38) it follows that the degree of freedom (DF) for the test is given by

DF = T(T +1)/2 — (3 + Tm — m(m — 1)/2), (44)

and depends on m and T. When m = my.. = T — 2, DF = 0 and therefore the panel
data model is exactly identified, and there are no free parameters (restrictions) to test. The
LR tests involving over-identifying restrictions are defined by tests of m = {0,1,2,..,7 — 3}
against myax = 1T — 2. Let 9m be the QML estimator of 8, assuming m unobserved common
factors, using the concentrated log-likelihood function given by (33) in terms of m and
¢ = (¢',w,0?)’", which we reproduce here for convenience, making the dependence of ¢ on
m explicit:

(@) o —o- (o] )—%muw(wm—ln—gzlwtw )

m

N T
RS TSEEES
J=1 t=1
where A (¢p,,) > X (¢,,) > ... > AIr(¢,,) > 0 are the eigenvalues of
Cy (,) = 020, "By(ep,,) > 2 Then the LR statistics for testing Ho: m = mg
against Hi: m = Mypyayx, for mg ={0,1,2,..,T — 3} and mpy.x =T — 2 > my, are given by
£RN (mma)omo) =2 |:€N (‘%mmaxammax) - gN <$m0;m0>] ) (45)

?Recall that By (¢p,,) is defined by (26), and hence Cy (¢,,) is a positive definite matrix.

15



where g?bm = argmaxg {y (¢,,;m). Under the assumption that &; in (13) is Gaussian, and
the panel data model is correctly specified with m = mg, then using standard asymptotic
results we have LR (Mmax, M0) —d X5, as N — oo for a fixed T, where DF is given by
(44) for the relevant choices of m = mya, and my. The following sequential testing procedure
can now be adopted to estimate m:

m = 0, if a test based on LRy (Mmax =T — 2,mg = 0) is not rejected.

~

m = 1, if a test based on LRy (Mmax =T — 2, mg = 0) is rejected,
AND a test based on LRy (Mmax =T — 2,mg = 1) is not rejected.

m = 2,if a test based on LRy (Mmax =71 —2,mg =0) and LRy (Mpax =1 — 2,mp = 1)
are both rejected AND a test based on LRy (mmax = T — 2, mo = 2) is not rejected.

This sequential procedure is continued until my = 7' — 3. Since T" — 2 separate tests are
carried out, to control the overall size of the sequential testing procedure we need to adjust
the size of the underlying individual tests. As the true number of factors, mg, is unknown and
could be T'— 2, in what follows we assume the sequential procedure involves 7" — 2 separate
tests, although in some applications we might end up stopping the sequential procedure
having carried out a fewer number of tests than T — 2. Let the null hypotheses of interest
be Hr_o0, Hr_21, ..., Hr_o 73, and write the 7' — 2 LR tests as

Pr(LRN (Mmax =T —2,mog=t—1) > CVNr_oi1|Hr—2t-1) < pnr-24-1, fort =1,2,..., T2,

where C'Viy 121 is the critical value for the test of Hy_5; 1, and pyr_2,—1 is the realized
p-value for Hy_5, 1. The overall size of the test is now given by the family-wise error rate
(FWER) defined by

FWERN = Pr [UZ;]Q ([,RN (mmax =T - 2, mo = t— 1) > CVN,T—2,t—1 |HT—2,t—1 )} .

Suppose that we wish to control F'W ERy to lie below a pre-determined value, oe. An exact
solution to this problem depends on the nature of the dependence across the underlying
tests, which is generally difficult to obtain. But one could derive bounds on F'W E Ry using,
for example, the Bonferroni (1936) or Holm (1979) procedures. Both of these procedures are
valid for all possible degrees of dependence across the individual tests, and as a result tend
to be conservative in the sense that the actual size will be lower than the overall target size
of . Using Boole’s inequality (also known as the union bound) we have

Pr{U 7 LRy (Mumax =T —2,mg =t —1) > CVyr_2 1 |Hr_2:-1]}
T—2
Z Pr (ERN (mmax =T — 2, mo = t— 1) > CVN,T—?,t—l |HT—2,t—1)

t=1

T2
< E DN, T—2t-1-
=1

Hence, to obtain FWERy < «, it is sufficient to set pyr_2:-1 < /(T —2). The individual
critical values, C'Viyr_2;_1 are based on the asymptotic critical values (as N — o0) of the

IN
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x? distribution, namely x% [a/ (T — 2)], where a/(T — 2) is the right-tail probability of the
individual tests.

The above sequential MTLR procedure ensures that limy_.. FWERy < «, but this by
itself does not guarantee that mo, the true value of m, will be estimated consistently. This
is a well known problem in the sequential testing literature. To achieve consistency we need
to allow a to decline with NV at a suitable rate as will be shown in what follows.

Under non-normal errors the LR statistic defined by (45) need not be chi-squared distrib-
uted. This follows from known results for the likelihood ratio statistic under misspecification.
See, for example, Foutz and Srivastava (1977) who show that under misspecification the LR
statistic behaves asymptotically as a linear combination of independent chi-squared variates.
This is also in line with results in Satorra and Bentler (1994) and Yuan and Bentler (2007)
for standard factor models. Following this literature we conjecture that under non-Gaussian
errors the null distribution of LR x (Mmax, Mo) can also be asymptotically approximated as
a linear combination of independent chi-squared variates. Simulation results reported in the
online supplement confirm that LRy (Mmax, Mmo) is oversized when using chi-square critical
values in this case. However, even under non-normal errors, the above sequential procedure
using critical values of the chi-square distribution can still consistently estimate the true
number of factors as shown in the following proposition and associated theorem.

Proposition 4 Suppose under the null hypothesis Hy the LR test statistic LRy is distributed
as S wix3(1), where the weights wy > wy > ... > wy > 0 are finite constants, and x2(1)
fori =1,2,.... k are independently distributed central chi-squared variates with 1 degree of
freedom. Further suppose that under the alternative hypothesis Hy LRy is distributed as
S w3 (1,12 y), where X3(1,p2y) for i = 1,2,..., k are independently distributed non-
central chi-squared variates with 1 degree of freedom and mon-centrality parameter, uf’ N
i=1,2,....k. Denote the non-centrality parameter of the test under Hy by u% = Zle ,u%N.
Suppose k is a finite integer, and u3i = O(N). Denote type I and II errors of the test by ay
and 3y, respectively, and the critical value of the test by ci (k). Under Assumptions 1-7 if
% (k) — oo and p3, — oo as N — oo such that ¢, (k) /u% — 0, then both ay and By — 0.

Remark 3 The standard chi-squared test is included in the above proposition as a special
case by setting w; = 1, for all 1.

Remark 4 Clearly, the conditions of Proposition 4 are met if oy = p/f(N), where f(N) =
N°, with & a finite non-zero constant. Further, using (A.47) from the proof of Proposition 1
in the Appendiz we have

> (46)

_9 5
2. (k) 20 i, In (%) B 2wy k In (%) o ((51n(N))
HNn HNn 1 7

< =
. i
and since by assumption pi = O(N) it follows that A (k)/ui — 0 as required.
Remark 5 When ay is set as ay = p/N°, the parameter p (0 < p < 1) can be viewed as
the nominal size of the test. Then By — 0 if In N/u4 — 0, which is satisfied in the standard

case where u3, = O(N). The Neyman-Pearson case is obtained if we set § = 0. The case of
d > 0 relates to the Chernoff test procedure that aims at minimizing Pr(Ho)an + Pr(Hy)By,
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where 0 < Pr(Hy) < 1 and 0 < Pr(Hy) < 1 are prior probabilities of Hy and Hy, respectively.
When N is finite the solution to this problem depends on the prior probabilities. But in the
case of chi-squared tests, we have Pr(Hy)ay +Pr(Hy)By — 0 as N — oo, irrespective of the
prior probabilities Pr(Hy) and Pr(Hy), so long as ay = p/N° for § >0 and p > 0.

Remark 6 In finite samples the choice of p and 6 can matter, though for moderate values
of N the choice of p is likely to be of second order importance. In the simulation results that
follow we set 6 =1 and p = 5%.

Theorem 2 Let m be the number of factors obtained using the sequential likelihood ratio
procedure based on the statistic LR N (Mmax, Mo) given by (45) for which Proposition 4 holds.
Then Pr(m = mg) — 1.

From Proposition 4 and Theorem 2 it follows that m obtained using the sequential MTLR
procedure described above is a consistent estimator of the true number of factors mg. In line
with the above discussion in the ensuing Monte Carlo results when performing the sequential
MTLR procedure we use ay = %, where k is some positive constant such that condition
(46) holds approximately.

8 Monte Carlo design and results

In this section, we investigate the finite sample properties of the proposed estimator using
Monte Carlo (MC) simulations. We begin by presenting the MC designs that we shall be
employing for the pure AR(1) panels and dynamic panels with regressors.

8.1 Monte Carlo design
8.1.1 The AR(1) model

The observations on y;; are generated assuming m unobserved factors as
Yie = 0+ g0t +YYir—1 +Cy, fori=1,2 .. Nit=-5+1,-5+2,.,0,1,...7T,
Cie = mMife + ua,
with the idiosyncratic errors generated as u;; ~ ITDN(0,0?) under Gaussian errors, and

it ~ I1D 7 (x§ — 6) under non-Gaussian errors, where x§ is a chi-square variate with six
degrees of freedom. In the case where |y| < 1, we start the process with

S—1
a; .
Yi—s41 = T—— + ZIVJCi,—ja
1—7 =

and set S = 50 to reduce the impact of the initial values on the sample period used in the
analysis, which we take to be t = 0,1,...,T. In the unit root case we initially generate the
first-differences and then cumulate them to obtain y;; starting from some arbitrary values
for y;0, 2 = 1,2, ..., N. The first-differences are generated as

Ayan = psAdy + Al
Ayy = psAd +vAyir1 + Aly, t=2,3,....T,
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where the process is initalised at Ay = 0, with v = 1.3
For both the stationary and unit root cases, after first-differencing we end up with T’
observations that are used in estimation. The factor loadings are generated as

N ~ IIDN(0,02,), £ =1,2,...,m, (47)

and the unobserved common factors, f;, as

fgt = pﬂfg,tfl—i-\ /1 — p?zgfét; Efer ™~ IIDN(O, ].), for ¢ = 1, 2, ...,m;t = —S+1, cory —1, 0, ]., ey T,
(48)
with pg, = 0.9, and without loss of generality we set f, s = 0 with S = 50 throughout. The

resultant fy values are re-scaled such that 7! Zle f2 =1, for all £. Specifically we impose
the following normalisations on the common factors

TS =0, TS 2 =1, and TP S0 foufu =0, for ¢ £0.  (49)
We generate the time effects as §; = £ (¢ — ¢) which are further normalised so that
T 6, =0, T 3 62 =1,and T7* 3., 6, fu = 0, for all £, (50)
The fixed effects, «;, are generated as
a; = bit; + bavy,

where @; = T7! Zthl wit, and v; ~ ITDN(0,1). by and by are fixed constants to be set later.
This set up ensures that the fixed effects are correlated with the idiosyncratic errors when
by # 0. The values of the remaining parameters are set as

s = 20, 025 = 0%/m, for all .

Finally, as shown in Section A.3 of the Appendix, the average fit of the panel AR(1) model
is determined by v and does not depend on o = Var(u;), and hence we set o = 1. For
the key parameter of the model, v, we consider a medium and a high value, namely v = 0.4
and 0.8, as well as v = 1.

We report simulation results for the autoregressive parameter  for the following com-
binations of sample sizes, T' = {5,10} and N = {100, 300,500}. Specifically, we report the
bias and root mean square error (RMSE). In addition, we present size and power estimates.
Power is presented for v = {0.30,0.70,0.96} for the null values of v = {0.4,0.8,1.0}. All
tests are carried out at the 5% significance level and all experiments are replicated 2,000
times, unless otherwise stated.

8.1.2 The ARX(1) model

The observations on y;; for the panel ARX(1) model are generated assuming k£ = 1 (one
exogenous regressor) and m unobserved factors as

Yie = 04+ /11(5515 + YW1 + 5&7@5 -+ Cit? for i = 1,2, ..., N;t =-S5+ 1, —-S + 2,..,0,1, ...,T,
Co = Mifi + (51)

3 Any value for Ay;o could be used and the results would not be affected since the value of Ay gets
absorbed in the intercept term of the underlying DGP.
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with the idiosyncratic errors, the time effects and factors and associated loadings generated
as for the AR(1) model. The values of 0 and o7, are set below to ensure a certain degree of
average fit for the panel regression in (51). For the case |y| < 1, we initialize the DGP with

5-1 5-1
a; . .
Yi,—5+1 = 1_ + 5 27]%,—3‘ + ZWJ i,—j>
v j=0 j=0

where as before we set S = 50 and discard the first 49 observations. As for the AR(1) model,
in the unit root case we begin with generating the first-differences and then cumulate them
to obtain y; from some arbitrary values for ;0. The first-differences are generated as

Ayin = psAd + BAxiy + A,
Ay = psAd +vAY 11 + BATy + Ay, t=2,3,...,T,

with Ay,o = 0 and v = 1. In both cases the observations ¢ = 0 through 7" are used for
estimation, thus ending up with 7" observations for estimation after first-differencing.
The regressor, x;;, is generated as

Ty = Wy + I%ft + Tit, Tt = Pyplir—1 + /1 — p2€it, (52)

fort = —S—|—1, ...,0, 1, ...,T, Withi’i’,S = O, ’pz’ < 1, i ~ I[DN(O, 1), ’19z = (1911',1921', --~779mi)/7
and e;; ~ [IDN(0,1). We set p, = 0.8. The factor loadings, ¥;, in the x;; process are gen-

erated as
Ve ~ IIDN (g, 0%,), for £ =1,2,....m. (53)

The fixed effects, «;, are generated as
o; = bofi + blﬂi + bg’Ui,

where 7, = T7! Zthl Tig, U; = Tt Zthl wit, v; ~ ITDN(0,1) and by, by, by are fixed
constants to be defined later. This set up ensures that the fixed effects are correlated both
with the regressors and the idiosyncratic errors when by # 0 and b; # 0.

We calibrate the rest of the parameters to ensure a given average measure of fit, as defined
by the average R? derived in Section A.3 of the Appendix. In this way we ensure that the
fit of the underlying model does not change with m, the number of factors. Using (51) and
(52), for the case where |y| < 1 we have

B2 52‘/@7‘(551‘1&) + 72 [Ng + 27;:1 <N71 Zz]il Cz) + 02}
BQVC”"(@%) + Ng + ZT:l (N_l Zi\il C?z) + o2

Y

where ¢y = 04 + 1. Also, in view of (52) we have Var(z;) = 1. Hence

, P (BN G )y
Ry: 2 2 AN 2 2
B+ s+ N1Y " 4o

I
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2 _\m 2
where ¢ = ), ¢j;. But

NS E = S (N R ) = T N (80 + )
= By (N k) - X (V)
+24 Z;nﬂ (N_l sz\il Wﬂ%i) )

and for N sufficiently large and noting that v; and 7, are generated independently, we have
(see (47) and (53))

N7 Z'f\il U —p Var (Vg) + [E (79&')]2 = 050 + Higs
NS ng = Var (ng) + [E (ng))? = Uie,
and since F (1) = 0, we also have N=' 3> 7,9, —, 0. Hence
— N m m
N~ Zi:l C? —p 62 24:1 (012% + M?%) + 24:1 025.

Using the above results and setting § = 1 we obtain

R2—72: 1_72 .
Y L pa3 + 3000 (09 + 1) + 2200 ‘7727£+‘72

We control the value of Ri — 2 to be the same for all values of m. To this end, the value of
the remaining parameters are set as

ps = 20, 0727@:012%202/7”7 fige = 0 /+/m, for all £, (54)
and we obtain R, —~* = (1 —~?%) /(1 + 8¢?), from which it follows that

2
1-Ry

For m =0, 0® = (1 — R2)/5 (R2 — ).
In the unit root case, using results in Section A.3 of the Appendix together with the
above we have

62
5%+ :“g + D (N_l Zz]il C?z) + 02
1
1+ ,ug + (012% + :“12%) + D e ‘7727£ +o?

As in the stationary case we control the value of Rsz to be the same for all values of m.
Using (54) this leads to

1 — R% - R
02:—2Ayform7é0anda2:—2m/form:
814, SRy,
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The parameter o2 is set such that Ri = 0.8 and RQAy = 0.4, for all values of m. In line
with the above derivations we set § = 1 and for v we consider the values v = {0.4,0.8,1.0}.

We consider the same combinations of 7" and N as in the AR(1) case, namely 7" = {5, 10}
and N = {100, 300, 500} and report simulation results for the same set of statistics, for both
v and f3, including size and power. Power is presented for v = {0.38, 0.78} and 5 = 0.98
for the null values of v = {0.4,0.8} and 3 = 1, and for v = 0.98 and 5 = 0.95 for the null
values of v = 1 and § = 1. As previously, all tests are carried out at the 5% significance
level and all experiments are replicated 2,000 times, unless otherwise stated. The standard
errors used for inference are based on the same formulas as those used in the AR(1) case
with all derivatives computed numerically.

8.2 Monte Carlo results

We begin by reporting on the performance of the sequential multiple testing LR (MTLR)
procedure for selecting the true number of factors. We consider the performance of the QML
estimator when the number of factors is estimated using the MTLR procedure as well as
when the number of factors is set to its true value, mq. For this set of experiments the fixed
effects are allowed to be correlated with the errors, and with the regressors in the panel
ARX case. In the above Monte Carlo designs this corresponds to setting b; = by = 1, with
the additional by parameter set to 1 for the ARX(1) model. We conclude this section by
presenting results for the QML estimator together with the GMM quasi-difference (QD) and
first-difference (FD) estimators of ALS, when the number of factors is assumed to be known.
In this set of experiments the fixed effects are not correlated with the errors, as this would
render the GMM estimators inconsistent. This corresponds to setting by = 0 and by = 1,
with the additional by parameter set to 1 for the ARX(1) model. However, fixed effects are
allowed to be correlated with the regressors in the case of the ARX(1) design.

Results for the unit root case provided in Section S.5 of the online supplement in Tables
S11-S19, show that the sequential MTLR procedure works very well even in the unit root
case. The performance is very similar to the stationary case with |y| < 1, and indeed, the
probability of selecting the true number of factors exceeds 95% in most cases even under
non-Gaussianity. Furthermore, for the AR(1) model both the bias and RMSE are sufficiently
small and the empirical size is close to the nominal level regardless of whether the number of
factors is estimated or not, and the error term is Gaussian or not. Similar results are found
for the ARX(1) model for which the bias and RMSE are small and inference is accurate with
reasonably high power regardless of whether the number of factors is estimated or not, and
the error term is Gaussian or not.

8.2.1 Selection of the number of common factors

Tables 1 and 2 provide results on the performance of the sequential MTLR procedure for

the AR(1) and the ARX(1) models, respectively. Specifically they report the number of

times, in percent, that the estimated number of factors, m, based on the sequential MTLR

procedure outlined in Section 7.1 is equal to the true number of factors mg. The sequential

MTLR procedure is implemented using the LRy (Mmax, o) statistic for testing m = mg =
p

{0,1,2,..,T — 3} against m = muya, = T — 2, with significance level ay = 50715 and

p = 0.05, using the critical values of the chi-square distribution with degrees of freedom
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given by (44). Results are reported for the case of both Gaussian and non-Gaussian errors.
The tables show that the estimator m performs very well. Even for the case where N = 100,
the true number of factors is estimated quite precisely. We also find that as N gets larger,
the probability of selecting the true number of factors approaches 100%, which supports the
consistency of the proposed procedure.

Table 1: Empirical frequency of correctly selecting the true number of factors,
myg, using the sequential MTLR procedure in the case of the AR(1) model

N T=5 T=10
mg =0 mo =1 mo = 2 mo =10 mo = 1 mo = 2
Gaussian D07 | Gaussian 207 Gaussian 0™ Gaussian 207 Gaussian 0% Gaussian 0%
Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian
v = 04
100 99.2 95.8 98.8 95.7 98.3 97.6 99.3 95.8 99.0 95.1 99.5 96.9
300 99.8 97.9 99.7 98.4 100.0 99.1 99.9 97.6 99.8 98.5 100.0 99.5
500 99.9 97.7 100.0 98.6 99.9 99.4 99.9 98.9 99.9 99.0 100.0 99.3
1,000 99.9 98.9 100.0 99.4 100.0 99.5 100.0 99.3 100.0 99.6 99.9 99.8
v = 0.8
100 98.9 96.1 99.0 94.9 98.6 96.9 99.2 96.0 99.1 96.3 99.6 96.1
300 99.8 97.0 99.5 98.3 99.7 99.0 99.8 97.6 99.9 99.0 100.0 98.9
500 99.9 97.7 99.9 98.2 99.6 98.9 100.0 97.9 99.7 99.3 100.0 98.8
1,000 99.9 98.7 100.0 99.2 99.9 99.1 100.0 99.2 100.0 99.5 100.0 99.5
Note: ;¢ is generated as y;x = o + psdt + YYi,t—1 + Cits Cix = n;ft + wui¢, for i = 1,2,...,N;t = —49,48,...0,1,..., T,
with y; —49 = lof,y + 2?9:0 'yj(:i,_]-. The idiosyncratic errors are generated as wj;z ~ ITDN(0,02) under Gaussianity and
Uip ~ IIDL(Xg —6) under non-Gaussianity where x?; is a chi-square variate with 6 degrees of freedom and 02 = 1. The fixed

Vi2
effects are generated as o = @; + v;, where @; = 71 23:1 u;t and v; ~ IIDN(0,1). The remaining parameters are generated
as described in Section 8.1.1. Each f; is generated once and the same f/s are used throughout the replications. The first 49
observations are discarded. 7 is the estimated number of factors computed using the sequential MTLR procedure described in

Section 7.1 with ay = 50ﬁ and p = 0.05. All experiments are based on 1,000 replications.

Table 2: Empirical frequency of correctly selecting the true number of factors,
myg, using the sequential MTLR procedure in the case of the ARX(1) model

N T=5 T =10
mg =0 mo =1 mo = 2 mo =20 mo =1 mo = 2
Gaussian 0™ Gaussian 0™ Gaussian 07 Gaussian 0% Gaussian 0" Gaussian 207
Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian
v = 04
100 98.8 93.7 98.6 95.9 97.5 96.9 99.1 94.4 99.3 95.2 99.0 94.9
300 99.5 97.3 99.4 98.2 99.6 99.1 99.7 97.7 99.7 98.6 99.6 98.4
500 99.9 99.0 99.7 99.0 99.8 99.1 100.0 98.3 100.0 98.7 100.0 99.4
1,000 99.7 99.0 100.0 99.1 99.9 99.5 100.0 99.6 99.8 99.8 100.0 99.2
v = 0.8
100 98.4 94.8 98.4 96.7 98.1 96.8 98.3 93.9 99.2 93.7 99.1 95.2
300 99.9 97.6 99.6 97.9 99.6 99.3 99.8 98.1 99.9 98.1 99.9 98.1
500 99.9 98.3 99.9 99.2 99.9 99.6 99.8 99.0 100.0 99.1 99.9 98.9
1,000  99.7 99.0 99.9 99.3 99.9 99.7 99.9 99.1 99.9 99.7 100.0 99.5

Note: y;¢ is generated as y;¢ = o + pgdt +Yyi,t—1 + BTit + Cips Cip = ngft +ugp for i =1,2,..., N;t = —49,48,...0,1, ..., T, with
Yi,—49 = 1‘1”7 +BZ?9:O Vi, _; +Z?io ’ij@_j, and B = 1. The idiosyncratic errors are generated as u;s ~ ITDN(0,?) under
Gaussianity and wu;¢ ~ IID

Vi
o?=(1- RZ)/S (RZ - 72) with R§ = 0.8. The fixed effects, oy, are generated as a; = &; + U; + v;, where Z; = T~1 Zz;l Tit,
;=T th:1 u;t and v; ~ ITDN'(0,1). The remaining parameters are generated as described in Section 8.1.2. When mg = 0,
Cip = uit and 02 = (1 — R%)/5 (Ri —2). See also the notes to Table 1.

(xé — 6) under non-Gaussianity where X% is a chi-square variate with 6 degrees of freedom and

8.2.2 Performance of the QML estimator

The previous Monte Carlo simulation results reveal that the sequential MTLR procedure
performs very well in selecting the true number of unobserved factors. We next consider the
performance of the proposed estimator when the number of factors is estimated based on this
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procedure. The results for the case where the number of factors is known are also included
for comparison. Results are reported for the case of non-Gaussian errors. The corresponding
results for Gaussian errors are provided in the online supplement.

AR(1) For this case the bias and RMSE, both multiplied by 100, are reported in Table 3,
with Table 4 providing associated empirical size and power for the QML estimates of . The
number of factors, when estimated, is computed based on the sequential MTLR procedure
described in Section 7.1 with the significance level ay = 5015+ = ) ~ and p = 0.05. The results
show that the effects of estimating the number of factors is negligible in all cases. The biases,
RMSEs, sizes and powers with the true and estimated number of factors are very similar.
The overall performance of the bias and RMSE is favourable except for the case where
T =5, N =100 and v = 0.8. In this case, the bias and RMSE are relatively large. However,
the results improve with IV, as predicted by the asymptotic theory. Similarly, we find that
the test size and power are satisfactory expect when 7' is small and v relatively large. For
example, in the case of experiments with 7" = 5 and 7 = 0.8 there is some evidence of size
distortion when N < 500, although the size distortion reduces as N and 7' are increased.
See Table Al in the Appendix where we also provide results for N = 1,000 and 2, 000.

Table 3: Bias(x100) and RMSE(x100) of v for the AR(1) model, using the
estimated number of factors, m, and the true number, m,

N T=5 T =10
Bias (x 100) RMSE (x100) Bias (x100) RMSE (x100)
(m%@(i) @D h,1) (2,2) (72) (L1 (h1) (2,2) (h,2) (LI (R 1) (2,2) (M,2) (1,1) (1) (2,2) (/,2)
v=0.

100 0.47 -0.14 -0.63 -1.55 9.26 9.36 13.19 14.64 -0.13 -0.12 -0.11 -0.29 4.30 4.39 4.31 4.54
300 0.18 0.00 -0.21 -0.50 4.89 5.00 7.02 793 -0.02 -0.05 -0.08 -0.13 237 2.35 256 2.54
500 0.13 -0.10 -0.15 -0.17 3.68 3.91 5.22 539 -0.05 -0.05 0.00 -0.03 1.83 1.83 1.90 1.91

v=0.8

100 0.35 -0.68 -12.14 -13.51 12.42 14.98 30.09 31.68 0.54 0.44 0.47 0.08 6.19 6.67 6.85 7.11
300 1.30 1.21 -2.00 -2.67 9.47 10.27 16.04 16.85 0.17 0.03 0.10 0.01 3.34 3.55 3.75 3.72
500 1.45 1.22 -0.35 -0.39 812 840 12.13 1247 0.03 0.05 0.06 0.00 235 2.53 2.60 2.67

Note: 7 is estimated using the sequential MTLR procedure described in Section 7.1 with ay = 50m and p = 0.05;

v is the coefficient of the lagged dependent variable given in (1) in the absence of the x;; regressors. All experiments are
based on 2,000 replications. See also the notes to Table 1.

Table 4: Size(%) and power(%) of v for the AR(1) model, using the estimated
number of factors, m, and the true number, m,

N T=5 T =10
Size Power Size Power
(m,mo) TLT) D) (2 w2 (LD D) 2 w3 LD D &2 w2 LD D (22 m2)
Hop: v=04 Hi: v=0.3 Hp: v=0.4 Hi: v=0.3

100 6.1 6.2 5.6 5.7 27.3 269 152 17.3 6.7 6.2 4.4 5.0 68.7 65.7 61.0 60.7
300 5.5 4.6 4.7 5.7 55.9 54.9 32.7 32.6 5.1 5.2 5.0 4.6 98.6 98.2 97.8 974
500 4.9 4.8 4.2 4.9 74.5 76.1 48.2 46.8 5.0 4.5 4.4 4.7 99.9 99.9 99.9 100.0

Hp: v=0.8 Hi: v=0.7 Hp: v=10.8 Hi: v=0.7

100 23.3  21.8 26.0 28.5 242 25,1 282 30.8 11.6  11.3 9.3 9.4 54.5 53.1 42.1 445
300 19.0 193 15.8 14.7 324 30.2 216 20.2 5.8 5.7 5.2 5.1 85.0 853 787 77.1
500 16.9 184 11.7 124 36.3 39.6 21.3 229 5.0 5.2 4.0 4.5 96.1 95.6 93.0 92.6

See the notes to Table 3.

ARX(1) Simulation results for the ARX(1) model are provided in Tables 5 and 6. Similar
results as in the AR(1) model are found for the ARX(1). Comparing the bias and RMSE
values of the v and [ estimators for the case of the true and estimated number of factors,
these appear to be very similar and are also very small. With regard to size and power,
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unlike the AR(1) model, the empirical sizes are close to the nominal level in all cases and
power is reasonably high even when the number of factors is estimated.

Table 5: Bias(x100) and RMSE(x100) of v and /3 for the ARX(1) model,

using the estimated number of factors, m, and the true number, m,
N T=5 T=10
Bias (x100) RMSE (x100) Bias (x100) RMSE (x100)

(m,mo) LD (D) (2,2 (m2) (LD (D) (2.2) (2 (LD D) (2.2 (m2) LD (i) (2.2) (m,2)
7, v=04

100 003 -0.04 -0.04 000 144 147 154 158 -0.03 -0.01 -0.04 -0.01 082 080 088 055
300 -0.03 -0.01 0.04 -0.02 0.84 083 090 091 -001 000 001 -0.01 046 045 049 0.49
500  0.01 -0.01 -0.02 0.0l 065 064 0.66 069 000 000 000 -0.01 036 036 038 0.38
B

100 008 004 006 -0.06 101 190 2.03 209 005 -0.01I 002 002 112 115 118 1.20
300 -0.02 0.02 -0.05 007 1.05 1.07 117 1.15 002 001 0.00 0.00 0.65 0.65 0.69 0.69
500  0.00 0.00 0.02 -0.01 083 084 088 090 001 000 000 002 051 050 054 0.54
7, ¥=038

100 007 -0.04 002 002 18% 199 1.89 194 -0.04 -0.05 -0.03 -0.01 083 084 085 0.86
300 -0.05 -0.02 0.03 -0.01 1.09 1.0 1.08 1.08 -0.01 0.01 0.02 -0.02 047 047 048 0.48
500  0.01 -0.02 -0.03 001 084 084 081 084 -001 -0.01 -0.01 000 036 036 036 037
B

100 -0.13 -0.03 007 -0.06 347 347 358 3.64 007 -0.05 001 012 198 200 2.00 2.4
300 -0.05 -0.03 -0.05 0.2 1.93 1.98 205 200 002 001 000 002 1.14 117 119 1.16
500  0.01 0.00 002 -0.01 152 149 157 157 0.01 000 000 001 090 088 092 0.92

Note: m is estimated using the sequential MTLR procedure described in Section 7.1 with any = 50 and p = 0.05; v

P
(T—2)N
and B are the coefficients of the lagged dependent variable and the x;; regressor given in (1). All experiments are based on

2,000 replications. See also the notes to Table 2.

Table 6: Size(%) and power(%) of v and /3 for the ARX(1) model, using the
estimated number of factors, m, and the true number, m,

N T=5 T=10
Size Power Size Power
(m,mo) LT D) %2 3 (LD D (22 ) (LD D %2 ) (LD ) 53 2
¥ Hp: v=0.40 Hyi: v=0.38 Hp: v=0.40 Hyi: v=0.38
100 5.3 6.4 5.6 7.4 29.4  30.7 27.9 27.0 6.3 5.7 6.2 6.1 73.3 71.1 67.1 67.2

300 5.6 5.4 6.1 6.0 68.5 674 60.7 62.8 5.5 4.3 5.5 5.4 99.3  99.3 983 98.2
500 5.9 4.5 5.0 5.7 86.6 87.8 85.1 82.4 5.4 5.3 4.9 5.0 100.0 100.0 100.0 100.0

B Ho: B=1 H: B=0.08 Ho: B=1 1 B=0.98

100 6.1 6.5 6.6 6.5 21.2 20.5 18.0 19.5 5.0 5.7 5.5 5.6 42.0 43.7 39.6 39.1
300 4.6 4.7 5.1 5.5 45.9 46.2 43.8 398 5.1 4.9 5.2 5.6 86.0 86.0 82.5 83.8
500 5.2 4.6 5.2 4.9 66.5 67.3 604 62.2 5.3 4.6 5.9 6.7 97.5 983 96.1 95.7

¥ Hp: v=0.80 Hyi: v=0.78 Hp: v=0.80 Hyi: v=0.38

100 5.5 7.0 5.7 6.9 20.0 227 202 214 6.5 6.4 7.2 6.0 69.0 69.9 69.2 67.1
300 5.8 5.2 5.6 5.2 48.8 46.2 47.1 489 5.7 5.1 5.7 5.3 99.3 98.6 98.4 98.6
500 4.8 5.0 5.2 5.6 66.1 67.9 704 66.7 5.0 4.9 5.0 5.1 100.0 100.0 99.9 99.9

B Ho: B=1 H: B=0.08 Ho: B=1 1 B=0.098

100 6.1 6.2 6.9 6.1 10.9 10.7 10.0 11.2 4.9 5.5 5.5 6.6 159 18.7 16.3 16.1
300 4.7 4.7 5.7 5.2 18.0 175 19.2 149 4.7 5.5 5.4 4.7 41.6 40.7 40.4 385
500 5.3 4.1 5.0 6.0 26.2 25.6 244 253 5.9 5.1 5.5 5.6 61.8 60.5 59.8 58.8

See the notes to Table 5.

8.2.3 QML and GMM results

Next we present simulation results comparing our QML estimator with the GMM estimator
of ALS in the case of non-Gaussian errors. Corresponding results for the case of Gaussian
errors are available in the online supplement. For this set of experiments the number of
factors during estimation is set to the true number of factors. The GMM estimators include
the quasi-difference and first- difference ALS one step and two step estimators denoted by
QD1, QD2, FD1 and FD2, respectively, computed as detailed in Section S.3 of the online
supplement. Recall that for these results the individual fixed effects are not correlated with
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the errors, only with the regressor in the case of the ARX(1) model. The results for the
AR(1) model are summarised in Tables 7 and 8, and for the ARX(1) model are summarised
in Tables 9 and 10.

AR(1) From Table 7, we find that the QML estimator performs (sometimes substantially)
better than the GMM estimators in terms of bias and RMSE.* This is particularly evident
for v = 0.8. When v = 0.8, the GMM estimators, especially FD1 and FD2, perform very
poorly due to weak instruments whereas the QML estimator has small bias and RMSE.
With regard to size and power shown in Table 8, the GMM estimators have substantial size
distortions while the QML estimator has empirical sizes close to the nominal value except
for the case with v = 0.8 and N = 100, as in Table 3.

Table 7: Bias(x100) and RMSE(x100) of v for the QML and GMM estimators
in the case of the AR(1) model, using the true number of factors, m,

N

T

=10

Bias (x100)

RMSE (x100)

Bias (x100)

RMSE (x100)

QML

GMM

QD1 QD2

FD1

FD2

QML

GMM
QD1 QD2 FD1 FD2

QML

GM

QD1 QD2

M
FD1

QML
FD2

GMM
QD1 QD2 FD1

FD2

mo 1

2

v=0.4

100 -0.25
300 0.05
500 -0.03

11.28 14.82
-0.58 4.86
-1.73  3.18

-34.26
-18.35
-12.92

-23.66
-7.62
-4.15

4.03
2.43
1.85

36.77
24.26
19.57

36.08
22.88
18.62

35.68 25.81
19.52  9.40
14.00 5.74

-0.08 49.13 49.08 -24.60
-0.01 48.90 48.03 -13.13
-0.02 47.35 46.34

-7.83

-23.11 4.43
-12.50 2.52
-8.47 1.96

52.52
52.57
51.75

53.20
52.60
51.70

56.20
43.70
37.19

49.08
35.49
29.68

v=0.8

100 0.33
300 0.32
500 0.00

12.15 12.09
10.06 10.85
8.40 9.54

-70.73
-51.42
-42.67

-62.84
-35.05
-24.92

6.10
3.55
2.41

21.40
19.88
19.00

22.05
19.35
18.01

72.22 65.63
52.57 37.34
43.70 26.93

0.56 17.61 17.60 -70.87
0.14 17.36 17.22 -50.84
0.10 16.83 16.91 -43.55

-67.90 7.01
-43.89 3.79
-35.47 2.83

18.87
18.53
18.41

18.84
18.46
18.23

90.22
71.89
64.29

87.55
64.92
56.47

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first- difference ALS one step

and two step estimators

respectively computed as described in Section S.3 of the supplementary material. All experiments are based on 2,000 replications.
See also the notes to Tables 1 and 3.

Table 8: Size(%) and power(%) of v for the QML and GMM estimators in the
case of the AR(1) model, using the true number of factors, m,

N

T =10

Size

Power

Size

Power

QML

GMM

QD1 QD2

FD1

FD2

QML

GMM

QD1 QD2 FD1 FD2

QML
QD1

GMM
QD2 FD1

FD2

QML

GMM
QD1 QD2 FD1

FD2

mo 1

2

v Hp: v=0.40

Hi: v=0.34

Ho: v = 0.40

Hi: 7 =034

100 5.9
300 5.7
500 6.0

64.7 73.1
46.5 38.9
38.2 26.6

89.2
72.6
59.5

89.9
48.3
29.8

34.1 78.0 85.9
70.3 71.7 70.1
90.8 723 721

96.6 97.7
92.4 86.7
90.1 83.4

5.5 86.4
4.5 838
5.3 80.4

87.7 29.0
84.9 20.1
81.5 15.1

41.7
32.5
27.9

29.3 85.6 874
65.6 83.6 85.1
86.9 80.1

82.0

29.9
19.6
14.9

43.3
32.4
28.4

v Hp: v=0.80

Hi: 7 =0.74

Ho: 7 = 0.80

Hi: 7 =0.74

100 10.9
300 6.5
500 4.6

93.6 96.7
88.0 89.9
83.2 82.8

99.6
98.4
97.3

99.8
96.2
91.6

32.0 95.1
51.6 92.1 929
71.8 88.8 88.6

97.6

99.8 100.0
99.2 99.1
99.3 98.2

10.3  96.5
4.8 95.0
5.1 93.0

97.2 51.1
95.7 36.4
94.0 31.0

64.6
47.7
43.2

26.2 94.6 96.6
446 939 95.3
59.8 91.5 93.7

53.3
36.9
31.8

73.7
62.2
60.6

See the notes to Table 7.

4The case of T = 5 is not reported for the AR(1) model because the number of unknown parameters
exceeds that of the moment conditions.
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ARX(1) Compared to the pure AR(1) case, the performance of all the estimators is im-
proved for the ARX(1) model as shown in Table 9. This is especially so for FD1 and FD2.
However, in terms of relative performance, the QML estimator still outperforms the GMM
estimators with regard to bias and RMSE. With regard to size and power, reported in Table
10, the QML estimator has empirical sizes close to the nominal level for all combinations
including N = 100 and v = 0.8 for which some size distortions were reported for the pure
AR(1) case. For the GMM estimators, the performance crucially depends on 7, m,, N and
T, and there is no GMM estimator that performs well for all combinations, which is in con-
trast to the QML estimator that performs well for all cases considered. For instance, when
T =5, QD1 and FD1 tend to have correct empirical sizes except for v = 0.8. However, they
tend to have large size distortions when 7' is increased to 1" = 10 for mg = 1. QD2 and FD2
tend to have larger size distortions than QD1 and FD1.5

®Since both QD2 and FD2 are nonlinear GMM estimators, it is not straightforward to apply the Wind-
meijer (2005) correction.
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Table 9: Bias(x100) and RMSE(x100) of v and / for the QML and GMM

estimators in the case of the ARX(1) model, using the true number of factors,

mo

N T=5 T =10

Bias (x100) RMSE (x100) Bias (x100) RMSE (x100)

QML GMM QML GMM QML GMM QML GMM

QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
mo 1
’7)7:0'4
100 0.03 0.38 0.08 0.08 0.14 1.44 3.20 2.72 4.04 289 -0.03 10.54 10.46 -2.46 -2.12 _ 0.82 21.05 20.96 3.33 2.90
300 -0.03 0.43 0.12 0.03 0.06 084 1.41 1.34 234 161 -0.01 1.92 1.67 -0.87 -0.37 0.46 8.00 7.66 1.83 0.82
500 0.01 0.50 0.17 0.04 006 065 1.13 1.03 1.96 1.28 0.00 0.81 0.57 -0.56 -0.17  0.36 3.51 3.20 1.26 0.54
[E]
100 -0.08 -0.19 -0.04 -0.06 -0.08 ~1.91 2.70 2.32 4.54 328 005 -9.23 -9.13 -0.68 -0.53  1.12 20.30 20.11 3.91 3.38
300 -0.02 -0.11 -0.04 0.13 0.06 1.05 1.31 1.32 246 1.79 0.02 -1.40 -1.29 -0.10 0.04 0.65 7.90 7.29 2.71 1.13
500 0.00 -0.12 -0.03 0.16 0.06 083 1.03 1.02 2.12 1.46 0.01 -0.39 -0.30 0.03 0.05 0.51 3.46 3.04 2.14 0.74
Y, 7 =038
100 0.07 8.56 7.19 -0.58 -0.43 ~ 1.88 10.14 9.32 549 4.58 -0.04 1252 12.45 -5.83 -5.056  0.83 12.55 12.48 6.55 5.73
300 -0.05 8.30 5.24 -0.04 -0.07 1.09 9.62 7.61 3.02 242 -0.01 12.28 11.79 -2.04 -0.81  0.47 12.29 11.80 3.11 1.26
500 0.01 8.63 4.87 007 003 084 972 7.18 239 1.88 -0.01 12.23 11.65 -1.20 -0.34  0.36 12.24 11.66 2.02 0.73
[E]
100 -0.13 -1.87 -0.41 -0.52 -0.35  3.47 6.97 5.31 7.83 6.36 0.07 -14.40 -13.87 -4.45 -3.82 ~ 1.98 15.70 15.20 9.78 8.50
300 -0.05 -0.26 -0.05 -0.13 -0.04 1.93 3.16 2.81 4.25 3.37 0.02 -12.45 -8.73 -1.22 -0.39  1.14 12,99 9.37 5.72 2.39
500 0.01 -0.03 0.02 -0.14 -0.03 1.52 224 2.12 3.32 259 0.01 -12.00 -7.62 -0.46 -0.07  0.90 12.33 8.05 4.50 1.48
mo 2
v, y=04
100 -0.04 0.19 0.12 -2.08 -1.69 1.54 4.17 3.67 7.19 6.71 -0.04 -0.30 -0.22 -1.21 -0.97 ~0.88 5.20 5.06 4.58 3.43
300 0.04 0.03 -0.04 -0.56 -0.41 090 1.67 1.65 3.73 3.33 0.01 -0.33 -0.17 -0.28 -0.10  0.49 1.64 1.16 4.90 1.41
500 -0.02 -0.11 -0.16 -0.21 -0.16 0.66 1.27 1.27 2.60 2.25 0.00 -0.25 -0.11 0.09 0.00 0.38 1.21 0.64 3.60 0.91
€]
100 0.06 -0.06 0.16 -2.21 -1.95 ~ 2.03 3.27 3.23 12.44 12.42 ~0.02 0.23 0.19 -0.04 -0.01 ~1.18 4.65 4.43 5.21 4.01
300 -0.05 -0.07 0.01 -0.38 -0.15 1.17 1.80 1.80 6.30 5.94 0.00 0.26 0.14 0.21 0.03 0.69 1.31 1.05 4.43 1.47
500 0.02 0.04 0.11 -0.24 -0.04 088 1.37 1.33 4.57 4.21  0.00 0.15 0.05 -0.04 0.00 0.54 1.05 0.79 3.49 1.07
Y, ¥=0.38
100 0.02 7.75 5.63 -18.67 -18.03 ~1.89 9.59 8.30 32.53 33.10 -0.03 -0.67 -0.57 -3.62 -2.92 ~ 0.85 3.76 3.64 6.94 5.38
300 0.03 4.54 2.68 -7.99 -7.75 1.08 7.19 5.66 18.74 19.62  0.02 -1.10 -0.74 -1.42 -0.70  0.48 1.47 1.15 4.44 1.83
500 -0.03 2.67 1.55 -4.05 -390 081 567 4.31 13.15 13.79 -0.01 -0.93 -0.57 -0.77 -0.34  0.36 1.24 0.88 3.72 1.05
€]
100 0.07 0.04 0.50 -21.24 -20.71 ~ 3.58 7.26 6.89 38.94 39.69 0.01 0.63 060 -0.94 -0.62 ~2.00 3.79 3.59 9.92 7.64
300 -0.05 0.50 0.12 -10.05 -9.48 2.05 3.98 3.48 23.11 23.68 0.00 0.57 0.34 -0.05 -0.03  1.19 2.00 1.73 6.11 2.69
500 0.02 0.50 0.16 -5.35 -4.82 1.57 299 2.57 16.65 16.97 0.00 0.42 0.22 -029 0.01 0.92 1.64 1.35 5.21 1.81

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference
respectively computed as described in Section S.3 of the supplementary material. All experiments are based on 2,000 replications.
See also the notes to Tables 2 and 5.
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Table 10: Size(%) and power(%) of v and 8 for the QML and GMM estimators
in the case of the ARX(1) model, using the true number of factors, m,

N T=5 T =10
Size Power Size Power
QML GMM QML GMM QML GMM QML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

mo 1
oY Hp: v=0.40 Hi: v=0.38 Hp: v=0.40 Hi: v=0.38
100 5.3 6.8 154 4.7 138 29.5 143 30.0 9.2 226 6.3 31.0 88.0 28.1 83.2 73.1 33.2 88.1 683 98.2
300 56 7.0 11.1 45 8.4 68.5 24.8 42.6 16.8 30.2 55 17.2 473 13.1 25.5 99.3 28.0 781 74.4 98.2
500 59 7.8 95 43 7.2 86.6 32.0 55.6 24.3 43.1 54 16.5 383 9.9 156 100.0 35.8 88.5 85.0 99.9
B Hp: B=1 Hi: B=0.98 Hp: B=1 Hi: B =0.98
100 6.1 59 15.0 3.8 129 21.2 171 297 83 214 5.0 285 86.0 6.6 73.7 42.0 332 885 14.4 80.6
300 46 46 9.8 46 6.8 46.0 34.6 45.4 12.5 25.3 51 109 364 5.2 27.0 86.0 30.1 80.7 14.9 74.7
500 5.2 47 89 42 75 66.5 53.9 62.1 18.1 34.9 5.2 9.1 265 4.5 15.8 97.5 43.6 91.7 18.0 89.0
¥ Hp: v=0.80 Hi: v=0.78 Hp: v=0.80 Hqi: v=0.78
100 5.5 773 716 5.8 14.0 20.0 788 734 9.2 20.6 6.6 100.0 100.0 54.9 954 68.8 100.0 100.0 78.0 99.2
300 5.8 76.1 56.3 5.0 8.5 48.8 79.0 56.6 10.8 20.9 5.7 100.0 100.0 21.0 41.0 99.3 100.0 100.0 59.7 96.9
500 4.8 78.6 54.1 4.0 7.6 66.1 80.9 55.4 13.7 25.6 5.0 100.0 100.0 13.3 21.3  100.0 100.0 100.0 59.1 98.8
B Hp: B=1 Hi: B =0.98 Hp: B=1 Hi: B =0.98
100 6.1 11.2 172 49 134 10.9 149 204 6.3 16.9 5.0 85.1 98.3 15.5 80.2 15.8 90.5 99.4 20.8 84.0
300 4.7 6.6 12.3 53 8.9 18.1 12.6 209 7.7 15.0 4.6 985 974 7.7 323 41.5  99.9 99.3 13.0 54.1
500 5.3 4.7 10.1 38 7.5 26.2 14.7 246 94 16.5 5.9 100.0 99.0 5.9 18.7 61.9 100.0 99.9 12.0 54.5
mo 2
¥ Hp: v=0.40 Hyi: v=0.38 Hp: v=0.40 Hy: v=0.38
100 5.6 5.7 11.6 7.8 13.1 27.9 11.5 21.0 13.2 19.1 6.2 11.9 582 8.8 60.1 67.0 5I.1 90.8 28.3 80.9
300 6.1 51 88 53 7.8 60.7 21.5 319 14.6 26.0 5.5 6.9 194 55 259 98.3 76.1 95.2 23.6 83.9
500 5.0 43 7.8 48 6.5 85.1 38.2 49.5 20.2 35.6 4.9 7.5 165 53 204 100.0 87.1 98.7 22.8 92.3
B Ho: =1 Hi: 5=0.98 Ho: B=1 Hi: 5=0.98
100 6.5 5.2 11.6 6.1 10.6 18.0 10.6 194 8.3 15.7 5.5 6.9 522 84 61.1 39.5 12.2 589 11.0 66.5
300 5.1 50 85 45 7.1 439 21.3 29.2 9.6 18.0 5.2 4.9 203 49 2438 82.6 28.0 684 11.0 62.6
500 5.2 47 79 45 74 60.5 309 38.0 14.3 25.2 5.9 5.0 16.4 4.3 18.7 96.0 45.5 85.0 11.5 77.7
¥ Hp: v=0.80 Hyi: v=0.78 Hp: v=0.80 Hy: v=0.78
100 5.7 73.4 55.8 31.8 36.5 20.2 739 57.1 349 38.7 7.1 246 705 21.2 755 69.3 68.2 94.7 37.6 89.3
300 5.6 454 30.8 20.5 22.7 47.1 49.0 40.3 244 32.2 5.7 209 352 89 36.2 98.4 89.6 97.1 25.0 87.5
500 5.2 30.5 22.7 14.5 14.6 70.4 43.3 404 204 31.7 5.0 252 30.8 6.7 27.8 99.9 959 994 20.2 94.1
B Ho: =1 Hi: 5=0.98 Ho: B=1 Hi: 5=0.98
100 7.0 81 159 279 324 10.0 9.8 17.6 29.7 34.2 5.5 6.5 48.7 9.3 65.6 16.2 7.1 50.5 10.6 68.1
300 5.6 89 11.3 20.7 225 19.3 109 17.7 22,7 27.1 5.4 5.2 183 6.5 28.7 404 94 36.0 8.7 438
500 5.0 8.2 10.2 14.6 154 244 139 209 17.0 21.5 5.5 6.2 16.9 5.3 21.6 59.7 153 47.2 8.0 46.9

See the notes to Table 9.

9 An empirical application to growth convergence

In what follows, we apply the proposed QML approach to estimate panel growth regres-
sions and evaluate unconditional convergence in economic growth across countries in the
global economy. A number of studies have used basic cross section growth regressions for
this purpose such as, for example, Barro (1991) and Mankiw et al. (1992), who examine a
sample of 98 countries over the period 1960-1985, and Sala-i-Martin (1996) who considers
110 countries over the period 1960-1990, among others. The use of the basic cross section
growth regression has received important criticisms by Islam (1995), Caselli et al. (1996)
and by Lee et al. (1997,1998). Islam (1995) and Caselli et al. (1996) advocate and imple-
ment dynamic panel regressions including individual and time effects for studying growth
convergence using five-yearly averages of growth rates as a way of abstracting from business
cycle effects. In particular, Caselli et al. (1996) use first-differenced GMM estimators to
deal with the fixed effects, but do not allow for interactive effects and implicitly assume that
errors across countries are independent, which is unlikely to hold particularly considering
the rapid increase in world trade and international financial linkages.
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We estimate panel growth regressions using the log-level of real output at five year in-
tervals, and the corresponding growth rate averaged over the same intervals, extending from
1960 to 2014. The last observation for the five year intervals is based on four years. The data
is compiled from the latest version of the Penn World Tables by Heston, Summers and Aten
(2012) and Feenstra et al. (2015). Output is measured by real GDP per capita constructed
as the ratio of output-side real GDP at chained PPPs (in mil.2011US$) and population (in
millions). We first estimate the number of factors using the proposed sequential MTLR, pro-
cedure. Having selected the number of factors we then estimate two sets of panel regressions,
one in the "level" of output per capita, and another in the "growth" rates, namely

Levels: Vit = VYir-1 + @i + 0 + mify + uy, for t =1,2,...,T, (55)
Growth Rates: Ayt = YA AYi -1 + ani + Nafar + Ay, for t =2,...,T, (56)

fori =1,2,..., N, where y;; is the natural logarithm of real GDP per capita. Note the v and
v are related but are not the same. For the levels regression y;; is measured at five year
intervals, while for the growth rates regression y;; is measured as averages over five yearly
intervals. We also report regression results for the case of no factors, for comparison. Note
that the growth regression is not a first-differenced version of the level regression and has its
own fixed and interactive time effects.

The QML estimates for the panel growth regressions, together with standard errors in
parentheses, are presented in Table 18. The top panel of this table reports results for the
level of the series, equation (55), and the bottom panel gives the results for the growth rates,
equation (56). Starting with the top panel, the results show that the coefficients of the
lagged dependent variable for the five year intervals have the correct signs. The estimated
coefficient of the lagged dependent variable, 7, for the level series without interactive effects,
that is for m = 0, is equal to 0.967. Interestingly, this value is very close to that found by
Lee et al. (1998) for their dynamic panel growth regressions including individual and time
effects using the Summers-Heston data set over the period 1965-1989 with N = 102. This
implies a speed of convergence of 0.007 based on the deterministic version of the Solow
growth model where v = exp(—p7) with p the speed of convergence and 7 the time interval.
Using the sequential MTLR procedure to select the number of factors yields m = 4. The
corresponding estimated value of 4 now equals 0.918 with an implied speed of convergence
of 0.017, which is much more plausible. These results show that inclusion of the unobserved
factors in the level regression, (55), leads to a decrease in the persistence of 4 and therefore
an increase in the speed of convergence. Similar results are obtained for the growth rates
regression summarised at the bottom panel of Table 18, where 4, drops from 0.288 for m = 0
to 0.150 for m = 3, selected by the sequential MTLR procedure. These estimation results
also confirm that persistence in the growth rates is rather small, irrespective of whether
unobserved factors are allowed in the analysis. It is also of interest that the estimates of v
obtained with m = 0 are closer to the time series estimates obtained for individual countries
that do not allow for possible common global effects.
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Table 11: QML estimates of the panel growth AR(1) regressions over the
period 1960-2014

0 W do d3 dy ds ds dr ds dg d1o d11 di2 52

Levels: y;¢ (T =11, N = 111)

0.967 1.140 0.142 0.027  -0.018 -0.049 -0.069 0.046 0.016 0.060 0.039 0.002 -0.036

m=0"039) (0.109) (0.016) (0.019) (0.019) (0.028) (0.026) (0.029) (0.020) (0.031) (0.021) (0.030) (0.023) 0040

=4 0.918 1.310 0.142 0.034 -0.011 -0.042 -0.065 0.046 0.019 0.063 0.045 0.010  -0.028 0.017
(0.124) (0.352) (0.017) (0.023) (0.026) (0.033) (0.024) (0.027) (0.022) (0.032) (0.026) (0.035) (0.029) -

Growth Rates: Ay;; (T'=10, N = 111)

m=0 0.288 1.259 0.004 -0.006 -0.009 -0.011 0.013 0.000 0.011  0.004 -0.003  -0.002 0.002
(0.064) (0.128) (0.004) (0.004) (0.006) (0.006) (0.007) (0.005) (0.006) (0.005) (0.006) (0.006) :

=3 0.150 1.706  0.004 -0.005 -0.010 -0.013 0.011 0.002 0.011 0.005 -0.002 -0.002 0.001

(0.118) (0.259) (0.004) (0.004) (0.006) (0.005) (0.007) (0.005) (0.006) (0.005) (0.006) (0.006)

Note: T is the effective number of observations used in estimation and the figures in parentheses are standard errors. y;¢
and Ay;¢ are the natural logarithm of per capita GDP at five year intervals and the growth rate averaged over five year
intervals, respectively. 7 is the estimated number of factors using the sequential MTLR procedure described in Section 7.1

with ay = 50ﬁ and p = 0.05.

10 Conclusion

This paper proposes a quasi maximum likelihood estimator for short dynamic panel data
models with unobserved multiple common factors, where individual and time fixed effects
are also explicitly included. This provides a natural extension of Hsiao, Pesaran, and Tah-
miscioglu (2002) to panel data models with a multi-factor error structure. Our contribution
can also be viewed as extending the standard dynamic panel data models with fixed and
time effects, routinely used in the empirical literature, to allow for error cross sectional de-
pendence through interactive time effects. We have also contributed to the literature on
short T" factor models where identification and estimation of the number of unobserved fac-
tors has proved to be challenging. In this regard, our proposed sequential multiple testing
likelihood ratio (MTLR) procedure can be particularly relevant to the analysis of short T
factor models. Monte Carlo results provide small sample evidence in support of the pro-
posed QML estimator and show that the sequential MTLR procedure performs very well in
selecting the number of unobserved factors. The same is also true for the performance of
the QML estimators in terms of bias, RMSE and empirical size, and power. An empirical
application to growth convergence using the most recent Penn World Tables suggests that
allowing for interactive effects leads to estimates with a higher speed of convergence than
previously indicated in the literature.

Although we allow the error variances to vary across units through the differences in factor
loadings, it is assumed that the unit specific errors are cross sectionally homoskedastic, which
is rather restrictive. However, our theoretical derivations can be readily adapted to cover the
heteroskedastic error case, as was done in the recent paper by Hayakawa and Pesaran (2015)
for models without unobserved common factors. It would also be interesting to extend the
analysis to panel VAR models with interactive effects.
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Appendix

A.1 Lemmas and their proofs

Lemma 1 Consider the T x 1 vector of composite errors & = (&1, &5, --Eip) 5 where &, is
defined by (10) and &, fort = 2,3,...,T are defined by (6). Suppose that the conditions of
Proposition 2 hold and T s fixed. Then

sup ||| < K < oo, (A1)
sup E || Zi|* < K, sup E ||Ay,||* < K, and sup E |[AW,|* < K < . (A.2)

Proof. To obtain (A.1) note that

T 2
€11 = |1€:€017 = Tr (£,€:€,6) = (€€, = (Zfi) .

Then by Minkowski’s inequality we have

Ell&|' = B (Z fi)z < (Z I (g;a)]”?)2,

t=1
and since sup, F(|¢;,|") < K for t = 1,2,...,T from result (15) of Proposition 2, result
(A.1) follows noting that 7" is fixed. To establish (A.2), note that AW, = (I, Z;, Ay; 1) =
(IT, Zl‘, LAyz), where A?i,—l = (0, Ayila ceey Ayi,T—1>7 Zz and Ayz are giVGIl by (40) and (39),

and

00 - --- 0
10 -+ - 0

L= 1 0 - |, (A.3)
00 -+ 1 0

with | L|| < 1. It is now easily seen that ||AW;||*> < T+/Z]|* + | Ay||*, and by Minkowski’s
inequality we obtain
1/2 1/2 1/2

(BIAWY) " < T+ (ElZ:)l") " + (ElAy") ™
Also ||Zi|]> = ||Axal® + 231, ||Axy|?, and since by result (16) of Proposition 2
sup; ; B/ (||Axit||4+€) < K, it then follows that sup; E||Z]|* < K. Similarly, using (39),
we have

1Ayl < llall + B~ ([ I8l 1Z:l + [[B (][ 1€

and by assumption |ja]| < K, ||§] < K, and |B7!(y)|| < K. Also by result (15) of
Proposition 2 sup,, & €,]7 < K, and it is already established that sup; E||Z||* < K.
Hence,

(E Ayl )" < Ja + B~ )| 18] (B 12"

+ B ()] (Elle)™,

and it follows that sup, F || Ay;|* < K, as required. m
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Lemma 2 Consider the model given by (13) and let

£ (@) = Ayi = AW, T () = E[€; (0) & ()] -

Define
di(¢, ¢y) = AW (7#)71 & (po) ; (A4)
and suppose that Assumptions 1-6 and Assumption 7(i)-(ii) hold. Then
EO [dz(@b,cpo)] = b(’lp;QOO) = [0707_’% (¢7¢0)]/’ (A5)
where
k() = Tr{[Z¢ () — B¢ (¥o)] C (¥:70)} (A.6)
and
0 o --- 00
1 o --- 00
CWr) =)' | - |, (A7)
Yo P vt 000
Wl 1
Furthermore
EO [dz(,lzb[]?SOO)] :07 fOTi: 1a27"'7N7 (A8)
1 & :
by (.00) = 5 D dilt. ) 5 b (9, 00) = [0,0, =5 (,3)]", (A-9)
i=1
1 X
by (1o, g) = N Z AW 3 (dfo)_l & (py) = 0, (A.10)
i=1
and
1 & ) as.
Y () = N Zfi (0) & (Po) = B (o) - (A.11)
i=1
Proof. Under (13),
& (po) = Ayi — AW, 0y = Gong;+Toi, (A.12)

where Gg,n;, and ry; denote the values of G, m, and r; evaluated at ¥ = v, It is
now easily seen that Ey [€; (po)] = 0, and Var[€; (p,)] = Eo[€; (vo) & (p0)] = X ().
Also under Assumptions 1-6, &, (¢) = Gn,+r; are independently distributed over i for all
values of 8 € ®., and Ax;; is independently distributed from wu; and m,;. Partition AW, as
AW, = (Ir,Z;, Ay, 1), where I is the identity matrix of order 7',

Ax, 0 0
0 AX! A i
Zz’ - . . 2 ’ AS’},—1 - ?1 )
0 AX;T Ayi,T—l
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and note that Ay; ; = LAy;, where L is given by (A.3). Also, using (39) and evaluating it
at @ = 0y we have

Ayi =B () (Zido +do) + B (7) ' & (o) (A-13)
where § = (', 3)', and B (v) is defined by (35). Consider now (A.4), and note that
, . ). ("b)il 151 (o) di; (¥, )
di(¢, ) = AW; S (¥) & (w0) = Zi%e (¢) & (#0) = | dai (¥, o)
AyL'Se () & (00) dsi (9. py)

(A.14)

Further, using (A.13), write ds; (¥, ¢,) as

dzi (Y, p9) = [B (’Yo)_l (Ziéo+do) + B (’Yo)_l & (800)]/1‘/25 (¢)_1 & (o) (A.15)
= (Zido + dO)/ B (70)171 LIEE (770)71 & (po) + 5; (po) B (70>/71 les ('4’)71 & (¢0) -

It is now easily seen that since Eq [€; (¢,)] = 0 and Z; is distributed independently from

&i (o) , then
Eo[dy; (¥, ¢y)] = 0, and Ey [dy; (¥, )] = 0, for all i, (A.16)

and

Eo [dsi (1, 00)] = Eo [5; (p0) B (70)171 L,EE (":b)il & (‘Po)}
Tr {B (70),_1 LS, (¢)—1 Eo [€; (v0) & (‘Po)]}
= T[S (o) Se () LB ()] -
Also, using (36) and (A.3), we have

0 0 0 0

1 0 - 00

LB (70)71 = : : A
Y% © Y 210

Hence, T [LB (’yo)*l] =0, and Ey [d3; (¥, ¢,)] can be written as

Eo [dsi (9, o)l = =T {[3 (¥) — 3 (%0)] C (¥,70)} = = (¥, %) , (A.17)

where C (1h,7,) = Z¢ (1) ' LB (7,)"". Using (A.17) and (A.16) now yields (A.5), as re-
quired. Result (A.8) then follows immediately, noting that FEp[ds; (g, 90)] =
Tr [Ze () B (1,) ' LB (%)71} =Tr [LB (70)71] = 0. To establish (A.9), we first note
that &, (¢y), for i = 1,2,..., N are independently distributed, and therefore conditional on
Zi, d;(v, ¢,) are also independently distributed across i. Hence to show that by (1, ;) =
¥ LS ¥ di(%, p,) converges almost surely to limy .o + ¥ SN Eo[di(v, )], it is sufficient
to show that sup; Ey ||di(1, ¢,)||> < K. Consider each of the three terms of d;(1,,) in
turn. First, from result (A.1) and Llapunov s inequality we have that E||&,|° < K < o
and noting that by assumption 7(ii) 3, (z,b)_ is positive definite for all ¢ € ©,,, then

—112
sup Eo [|dii (4, o)[I” < [|Ze () || sup Eo [1€; (00)I” < K. (A.18)
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Similarly, using in addition result (A.2) we have
12
sup By [[dai(3p, @o)|I” < sup B | Zil* [ Se () || sup Eo lI€; (o) * < K. (A.19)

Finally, applying the Minkowski inequality to (A.15) we have

1/2

/ 1— /
[EO ||d32('¢, (PO)||2] S [EO H(Zz50 + dO) B (70) ' L 2 || ]1 :

R B 1/2
+ [Bo € (60) B (20) " L' () 1& wH“’] 7
I < EollZado + ol ||B (v9) ' L'Se () '
X Eo 1€, (o)1

=15/ -1/)2
< B (ro) L (30) Y|P Eo 1€ (00)]1" -

Ey ||(Zz'50 +do)'B (70>,_1 L'% (’ﬁ)_l & (¥o)

IN

- _ 2
Eo [[€ (o) B (70) " 1'% (30) " &, (0]
But HB(%)'_1 L'%, (¢)_IH2 < || (zb)_lH2 L7 HB(’yO)_lHQ, and it is easily seen that
IL|| <1,and ||B (70)71H < )"t < K. Also, by results of Lemma 1, sup, Ey [|€; (¢o)]|* <
K, and ||Z¢ (1) '|| < K, by assumption. Further, Ey|[|Z;80 + do||* < ||8o/|* E | Zs]|* + ||do]”
which is uniformly bounded under results (A.2) of Lemma 1, noting that dp and dy are

defined on a compact set and are bounded as well. Therefore, sup; E ||dsi(1, @,)|* < K.
Now using this result together with (A.18) and (A.19) in (A.14) we have

I

sup Eo [|di (1, @) |* =sup Ey || AW S (4) 7 €, ()| < K,

which establishes that d;(v, ¢,) is uniformly L,-bounded, besides being cross-sectionally
independent. Hence,

N
by (. 00) = N7' Y di(3, ) “5 lim N~ ZEO (%, 0,)] = 0,0, —k (¥, 1)],
i=1

which establishes (A.9). Result (A.10) follows from the above by setting ¢ = 1), and noting
from (A.8) that Ey[d;(v,,p0)] = 0. Finally, since sup, Eq ||€; (¢o) & (@o)|” < K, for a
finite T (see result (A.1) of Lemma 1), and by assumption &, (¢,) &’ (¢p,) are distributed
independently over ¢, then

Swe (o) = 1 D& (00) & (i) 5 Jim ZEO & (20)].

and result (A.11) follows, since Fy [€; () & (¥0)] = Z¢ (). m

Lemma 3 Consider the average log-likelihood function

Iy () = I (p,9) = — 5 In(2m) — L[S ()] — 5 D" & () B () &, () (A.20)
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In(0) = N"Yx (0) and {y (0) is defined by (20). Then under Assumptions 1-7 we have

Ly (80) ™% — I (2m) — 3 log [ S ()| — (A.21)
and
- a.s. T 1 1 -1
0 (0) ™ D (2m) — D[S - ST (B @) M Bewn)] (A2
3 (0~ 00 A () (9 — 90) — (v~ 70) 5 (b, 3h0),
where k (Y, 1) is defined by (A.6). Also
In (8) — Iy (0) = Jim o [On (80) — Cn (6)] >0, (A.23)
where
_ i _ 1 . 1 T
T E [Ty (00) — 0 0)] = ST [Se(a6)™ B ()] — 2 o (e (4ol /3 () —

1 (e — o) A () (9 — o) + (7 — 70) £ (W, 35y) . (A.24)

[\

Proof. Result (A.21) follows by evaluating (A.20) under 6 = 6, and using (A.11) from
Lemma 2. To establish (A.22) we first note that for any 8 € O, &, (¢) = &, (¢y) —
AW, (¢ — ¢,), and using this result in (A.20) we have

ZN(O) = —gln<2ﬂ')—%ln‘2§(¢) _ﬁ{zl [5

o) — AW, (¢ — )] Ze (1)~ ]
(¢ ) AW, (¢ — )]

T I L[ (B [FEL e e g ]
= —gh@m)-gh(E @) -3 ~2(¢ = #0) b (¢, ¢0) )
+ (¢ — o) AN (¥) (¢ — ¥0)

(¢
x [&;
)

(A.25)

where

N N
Av () = 1 AW (1) AW, by (3, 00) = %Z Wop)).  (A26)

i=1

and d;(v, p,) = AW!E¢ (¥) "€, (p,), as defined by (A.4). Result (A.22) follows using
(A.9) and (A.11) from Lemma 2 in (A.25) evaluated at 6, and 6, respectively. Results
(A.23) and (A.24) follow from the sure convergence property of (A.21) and (A.22), and the
Kullback—Leibler type information inequality. =

Lemma 4 Consider the average log-likelihood function defined by (41) and (22):

i T 1 1 -
(0) = —5n(en) = i lB ()]~ 5 D€ () )
€(p) = Ayi— AW,
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and suppose that Assumptions 1 to 6 and Assumption 7(i)-(ii) hold. Denote the average
score function by Sy (0) = 0ly (0) /00. Then

sy (8) 250, (A.27)
VNsy (89) —4 N [0,3(6)], (A.28)
where

J(6y) _ngréo—ZE w; (0p) W' (00)] (A.29)

with the j™ element of v; (0y) given by

1, _, 0% _ 1 _, 0%

vij (0o) = §€¢<‘P0)2€ (o) ' %Eg (o) ! &i(po) — §TT [25 (o) ' 5—1/(};#02 : |
A.31

A consistent estimator of J (6y) is given by

3(8) - 3 Y ()1 (0). am

where O = arg maxgee, Ly (0).

/
Proof. Let Sy (6) = (Sy.,(0),8x,(0)), ¥ = @1,1/;2,....,1/;%) , where 1y, = dim(e) =
1+ Tm —m(m —1)/2, and note that

7 N
Snol6) = S50 - LS AW (1) € (o)
dly (6 oln|x N L, 0% .
s (@) = 220 JOME Ol LS geme T ) o)

for j =1,2,...,ny. Using (A.4), and result (A.10) of Lemma 2, it then readily follows that
Sn.o(00) = Zd CHEX) (A.33)

Also
—1 03¢ () 1 9% ()
&pj 87/13‘ 7

and using well know results on the partial derivatives of the determinants we have (see, for
example, Magnus and Neudecker (1988, p.151)).

Oln |X¢ (¢o)|
o,

En | €/(00)Se (aby) S () sxsoo)] T {Eg ()

=Tr {Zs ()" M] :

0,
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and hence Sy 4(0) can be written alternatively as

7 N
S, (00) = agg—zfo) N % Vi
J i=1
where
1 _ @Z _ 1 B 62
vij (60) = 552(9"0)26 () ' %EE (o) ' &i(wo) — §T7” [Eé (1) ' —51/(}%) )
J J
(A.34)

Therefore, )
w00 (5io) ) = (

where V; (90) = (Vﬂ (90) ,Vig (00) g eeey Viv"w (00))/

7

ny
sup E ||v; (80)]> = sup E (v (60) v; (60)) ZsupE vy (680)) < ny supE v (00)]7,
2 2 j 1

and application of Minkowski’s inequality to (A.34) yields

826 ":bo)

1/2 2
o B vy 00 < 7 |15 () (supE st«po)n‘*) Lol

where C' = T'r [Eg (1hy) " 825(%)} . But under Assumption 7(ii) and noting that n,, is finite,

9y
we also have HZE—%) < K, and ||= (7,[)0)71” < K, and from result (A.1) sup; E ||€;(eo)||”

K. Therefore, sup; E ||v; (8,)||> < K. Also recall that &;(g,) are independently distributed
over 7, which implies that v; are also independently distributed across i¢. Therefore, v;
have zero means (by construction), are independently distributed over i and have bounded
second-order moments, which ensure that Sy.,(6y) =3 0, and together with (A.33) yields
sn(00) 23 0, as required. Consider now the limiting distribution of v/ N5y (6,) and note that

oo = (Ve ) = (Envian ) - w g

where w; (6y) = (d}(6,), V] (00))I, and it is already established that w; (6y) are independently
distributed over i, have zero means and bounded second-order moments. Therefore, by
the Liapounov central limit theorem and the Cramér-Wold device we have® v/ N5y (6q) —4

N[0,J (8,)] ,where J (0,) is given by (A.29), as required. Consistency of J (9) for J (0)

follows from consistency of @ for 8y, and the independence of w; (8,) over i. m

6See, for example, Theorem 5.10 in White (1984).
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A.2 Proofs of Propositions and Theorems

Proof of Proposition 1.  Using (5), and starting from some arbitrary initial state,
Ay, _st1, we obtain the following expression

5-1 5-1
Ay = ’YSAyi,sz + Z VB AXii—j + di + gim; + Z v A, (A.35)
=0 =0

where d; = Zf;ol ydy_j, and g = Zf;ol 79g1_;. Under Assumptions 3 and 6 and following
the procedure in Hsiao et al. (2012), we have

S-1
E (ysAy@_SH + Z v B Ax; 1 |Axi> =a+ 7 Ax;, (A.36)
=0
where the fixed parameters a and 7 are functions of ag, g, v and 3. Let

S—-1 S5—1
Xi = VSA%,—SH + Z 'Yj/BlAXi,l—j —FE <VSA%,—S+1 + ZVjﬁ/AXi,l—j |AXi) , (A37)

j=0 7=0

where by construction y, is a martingale difference process. Also in view of Assumptions 3

and 6 and by application of the Minkowski inequality to both sides of x; we have sup, | x; |4+E <
K. Hence, using (A.36) and (A.37) in (A.35) we have
Ayy = dy + ' Ax; + g1n; + v,
where d; = a + d~1, and o
Vi1 = z_:fyjAui,lfj + Xi- (A.38)
=0

It now readily follows that v;; ~ I1D(0,wo?), where wo? = Var (v;1), and v;; is distributed
independently of Ax; and n,. Again by application of the Minkowski inequality to (A.38)
we also have that sup, |1}i1|4Jre < K, as required. Further, under Assumptions 3 and 6,
sup,; Var (x;) < K and as a result 0 < wpin < W < Whpax < 00, where wii, and wpay are fixed
constants. Finally, it is easily established that

Cov (vi1, Auy) = —o?, fort =2
— 0, fort=34,..T,

as required. m

Proof of Proposition 2. Result (15) follows by applying Minkowski’s inequality to the
elements of &, = (&;1,&, -+ , &) . Specifically, for t = 2,3, ..., T, &, = gin, + Au;; and we

"Note that under Assumption 3 supi’tEHAxitH4+€ < K, which also follows from application of the
Minkowski inequality for infinite sums to (3).
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have
1 o\ ite
(Blel™)™ = (Elgimi +Au**)"
— 1
<E |g£nz|4+€> 4+e€ + (E |Au1t|4+€) 44-€

1 1
< lgell (B llms|*7) 5 + (B A7) 7.

IN

Under Assumptions 1, 2 and 5 sup, lg:ll < K, sup; E||n;||*™ < K and sup, ; I/ | A€

Similarly for t = 1, where &;; = g}m,; + vi1 and for which it holds under the assumptions

of Proposition 1 that ||g;|| < K and sup; E |v;y|*** < K. Hence, (E\fit]“e)m < K, for
t =1,2,...,T and (15) follows as required. To establish condition (16), using (3) we first
note that

o0
1A% < lleall + > 1150 lleiss1l
=0
and by the Minkowski inequality for infinite sums we have

1 1
(B A% )7 < lleall + > 1] (B e |7,
=0
for any p > 1. Set p = 4+¢, and note that under Assumption 3, ||c,|| < K, sup;, llew]| T <
K, and ) 77 [|®,]| < K. Therefore, (E ||sz-t||4+5) 1t < K, and (16) follows as required.

]
Proof of Proposition 3.
Recall that 8 = (¢',1’)’, and ¢ = (X',7)’, and using (41) note that

Iy 7, 9) = —5 () — 5 (2 ()] - 50 S €N Ze () 6(A).
Using results (A.23) and (A.24)) in Lemma 3 we have
ZN (A()?’YO:"?DO) - EN( Y5 ¢) as hm EU [KN ()‘07707,’7[)0) ( Vs ¢)] (A39)
2 lim Ej [y (Ao, 70, %0) = v (A7, 9)] = X (¥, %)+ — o) A () (0 — ) +2 (7 = 70) k(1. %by).
(A.40)
where
X (9. 40) = Tr [Z () Be (90)] — In (1B (vo)| / [Ze ()]) — T, (A.41)
and

K (1, 1pg) = Tr {[Be (¥) — Be ()] Ze (v) LB (79) '}, (A.42)

with B (v,) " given by (36) evaluated at ~y,, L is a matrix lag operator defined by (A.3)
and A (1) is defined by (42). Denote the eigenvalues of X (1p,) and X¢ () by Ao; and A
(t=1,2,...,T), respectively (note that A\o; > 0 and \; > 0) and write x (¢, 1) as

X (¥, v) = Z (Aot/Ae) —In (Aor/Ae) — 1]
t=1
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Also note that (Ag;/A\¢) —In (Ag;/Ar) — 1 > 0 with the equality holding if and only if Aoy = Ay,
for all ¢, or equivalently if and only if ¥ = 4),.% Therefore, x (1,1,) > 0, with equality
holding if and only if 1) = 1,. Furthermore, since by Assumption 7 (iii) A () is a positive
definite matrix, then

(@ —20) A (%) (9 — ©0) > Amin [A (¥)] (0 — o) (0 — ©0)

where Apin [A (19)] > 0. It is clear that the first two terms of (A.40) can not be negative, but
the same is not true of the third term, (v — v,) k(¢ ¥,), and therefore, global identification
of 7, can not be guaranteed. Consider now the almost sure probability limit of £y (¢, %) —
I (p,1) on the set O, = N (vy) x O, x Oy, for some small positive €, where N, (v,) is
defined by 1. We now establish that there exists ¢ > 0 for which this limit can be zero if
and only if @ = 0. To see this consider the first and the third terms of (A.40) together, and

note that x (1, 9,) + 2 (v — v,) (v, ) = 0 if ¢ = 7). In such a case

2 lim By [Ty (00, 60) — v (9, %0)] 2 3 huin [ (80)] (6 = 0) (9~ 00).

and Uy (g, o) = €n (0, %) = 0, if and only if Awin [A (39)] (¢ — o)’ (¢ — o) = 0, which
implies ¢ = ¢, as required since by assumption Ay, [A (¢,)] > 0. Consider now the case

where ¥ # 1), and note that x (1,1,) > 0, and |x(1p, 1) > 0, and therefore on ©, we

have
[(v = 70) K, o) | < (v — 7o)l [K (20, o) | < €|r(ah,2bg)] -

Also note that under Assumptions 1, 2 and 5, [|3¢ (¢)|| < K for all ¢ € ©,,, and it is readily
seen that |k(v,1,)| < K. Hence, on O, there must exist ¢ > 0, such that y (¥, v,) +

2 (v = 70) i(th, 1bg) = 0, and hence

2 lim Ey [ (@0, o) = In (0, %)] = 5 hmin [A (4)] (¢ = #0)' (¢ = #0) -

l\DI»—t

Once again since by assumption Ay [A (v0)] > 0 for all values of ¥ € ©,,, then on ©, there
exists € > 0 such that ¢ = ¢, and hence ¥ = 1, almost surely. =

Proof of Theorem 1. For the proof of consistency it suffices to show here that under the
assumptions of the theorem, Cy () = —20y (8) > C (0) uniformly on O, (see Section 6).
From results in Lemma 3 (see (A.23) and (A.24)) it follows that Cy () = —2{x (8) > C ()
for every 8 € ©,, where

v (0) = s () = T (20) + B (W) + 3 D€, (0 B (0) 6. 0)

and

C(0) =C(p,%) = x (¥, %) + (¢ — @o) A () (¢ — o) +2 (v — 7o) KW, ) + C (),

8Note that for any = > 0, In (z) <z — 1. Here = \g;/A; > 0.
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and the term C (1p,) does not depend on 6. Since under our assumptions £ (8) is continuous
in @, this pointwise result holds uniformly on ®. by the uniform law of large numbers, so
long as the dominance condition

E sup ‘E (zb)_l &(p)+ Tln(2m) + In| X (zp)H < 00

€O,

holds; see for example Theorem 23 of Pétscher and Prucha (2001). Since 7' is finite, it is
sufficient to show that

Eeseup 1€(9)Ze ()7 &) + In[Se ()] < oo
We have
E sup [€1(0)Ze () &) + In B ()] < F sup [€1(0) 2 () €60+ sup [ln S ()]

Starting with the second term and using Assumption 7(ii) and the property that for any
positive definite real n x n matrix A, In|A| < Tr(A) —n,

sup [In | ()|] < sup Tr[E ()] T
PEBy, PEBOy,

sup (S0, M[Ze (9)]) - T

$EB,

S Twseugp ()\maX[EE (1/))]> -T

< T(emax — 1) < 0.

IA

For the first term, defining ®,, = N(,) X ©,, we have

B sup 1€(@)Be () &) < E sup | Tr[€( ¢)€2(¢)25(¢)_1]|
< Esup {max[Ze ()7 1&(0)]7}
[USCH
< E sup Amax[Ze () ) sup [[€()]
’Lﬁeed, <p€®(p
-1
- E(wmf Amm[zgw) E sup ||&:(0)]?
€0y pEB,

IN

E sup [|€ ()]’

Cmin €@,

Further
E sup [&(p)|* = E sup ||Ay; — AW,
pEB®, PEB,
< E|Ayi|* + E[|AW|* sup o]

p€EB,

But given that ©. is a compact set sup,ce, le|l® is bounded. Furthermore, from re-
sult (A.2) of Lemma (1) and Liapunov’s inequality we have that E ||Ay;|> < K < oo
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and E ||AW I? < K < oo. Since ¢, is bounded by Assumption 7(ii) it follows that
Esupyee, |&i(@) e ()~ Sl(go)| < oo and hence the dominance condition holds.

_ To establish asymptotic normality of 9, by application of the mean value theorem to
ln (@) around 0 = 0, we first note that

Ty (6) — I (60) = (6.~ 6,)'5(60) — 5 (0.~ 00 Hn(8) (0 —0), (A4

where Sy (0) = 0ly (0) /00, Hy(0) = —0(y (0) /0000', and 0 lies on a line segment joining
0 and 6. By result (A.27) of Lemma 4, and combining (A.39) and (A.40) we have

.S.
— ()7

— N (9)] =X (P, o) + (o — SOO)IA () (= o) +2 (v — 70) K(¥, o).

Hence, in view of (A.43) we must also have

(6 — 60) Hy(8) (6 — 00) => X (¥, %) + (¢ — o) A () (¢ = o) + 2 (v = %) (¥, o).
(A.44)
But it has aleardy been established by Proposition 3 that on ©, the right hand side of (A.44)
can be equal to zero if and only if @ = 8, and hence we must also have

9]
=z
D
N
o

Hy(0) 22 H(6,), (A.45)

where H(6) must be a positive definite matrix given by H(6) = limy_. Eo [—0%*( (6,) /0000'].
Applying the mean value theorem to (@) around 8 = 6, we have

0 = vV Nsn(0) = VNsy(8,) — Hy(0)VN(6 — 6,)
where 8 lies on a line segment joining @ and 0. Then,

VN@® - 8,) = H (8) [\/NsN(oo)] .

Sincevé lies between 6 and 0 and Q is almost surely locally consistent for 8y on the set @,
so is 0, and as in (A.45) above Hy(8) “> H(0y). In addition, using result (A.28) of Lemma
4, we have v/ N8y (0y) —4 N [0,J (60)], where J (6) is given by (A.29). Hence

VN(B — 60) —a N (0, V).
where Vy has the familiar sandwich form
Vo =H1(60)J (8,) H*(6,).

|
Proof of Proposition 4. Consider the type I error of the test and note that

ay =Pr (Xy > (k) |Ho) = (Zwlz > A (k >,
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where z; ~ ITDN(0,1). Now using Lemma A1l of the theory supplement to Chudik et al.

(2018) we have

k k
ay = Pr (Z Wz > c%(k:)) < ZPr (wizi > k' ex (k).

i=1 i=1
Therefore, since w; > 0

k
ay < ZPr (27 > (kw;) ™" (k) < k sup Pr (2 > 07c(k)),
i=1

where 62 = (kw;)”" > 0. But since z; ~ N(0,1), then
Pr (27 > 073 (k)) = 1—Pr(—b6;|en(k)| < 2 < 0; |en(k)))
Using this result in (A.46) we have

ay < 2k Slzl_p(b (_Qz |CN(k)|> =2k <_8min |CN(]€)’) =2k [1 - <9min |CN(k)|)] )

where 02, = k~linf;w; ! = k7w > 0. Hence

min

anN
. <1 N
D (Omin len(F)]) <1 ok

and
an < 2k[1 — @ (O len(k)])] = 2kP (—Opmin |en (k)]) -

Since Oy |cn (k)| > 0, then by (A.1) in Lemma 1 of Bailey et al. (2017, BPS)

(=B D) < (1/2) exp |~ 300

and it follows that

1 —2 u
ay < kexp |:_§01?ninc?\7<k:):| = kexp {_ 02]\];501)} ’

which ensures that as N — oo, ay — 0 so long as ¢ (k) — oc.

Also due to the monotonicity property of ®(.), we have (for ay sufficiently small)

Oin |on ()] < @1 (1 _ g—fg) ,

or
_ _ an\1?
&) < o7 (1-5p)]
But by Lemma 3 of BPS we have

o (1= 2] <om (1),
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and

(k) <202 In (ﬁ) = 2w kIn (i) : (A.47)

aN
Consider now the type II error of the test and note that

By = Pr(xy <c(k)|H))=Pr <Z wix 3

= Pr (Z w; (Zz — Mi,N)2 < c?v (k‘)) .

=1

Since wy = max;(w;), then

and hence

By = Pr (Z w; (2 — i) < & (k)) < Pr <w1 > (5= mw) < <k>>

where x%(k, %) is a non-central chi-squared random variable with k degrees of freedom
and non-centrality parameter, y3% = Zle ,uz?’ ~- To obtain the rate at which 3, tends to
zero with N, we use the normal approximation proposed by Sankaran (1959) for non-central
chi-square distributions given by

hN
X (k) _ 1 _
2 (k)> . (wl(k+m> {1+ hyAy by — 1= 0.5(2 — hy)AyBy)]}
- hav2AN (14 0.5AyBy)

wq

By < Pr <X2(k‘, 1) <

where

L 2(k 4 pR) (K + 3uR)

h =
: 3 (k+23)
k+2u3
N

Since, k are w; are fixed in N, then Ay = S(uy?), hy = 1/2+O0(uy?), By = 1/44+ O(uy?)
and it readily follows that as N — oo, By — 0 if ¢4 (k) /ud — 0 as ey (k) and py — co. m

9 Also see Patnaik (1949) and Abdel Aty (1964) for other approximations.
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Proof of Theorem 2. Consider the event {1 > mg} where mg is the true number of
factors. For this event to be true it must be the case that for some t € {1,2,...,T — 2}, at a
certain stage in the sequential estimation the null hypothesis of the true number of factors
is rejected. That is,

Pr(m > mg) < P(3t, my is rejected |Hr_94—1)

T-2
< Y PrLRN(T =2t = 1) > Qpgy (k) [Hroay1),
t=1

where C?\,?T_%_l (k) denotes the critical value of the test. For any given ¢ and from Proposition
4 for the type I error of the test we have that as N — oo

ay = Pr(CRN(T —2,t —1) >y g, (k) [Hr_2-1)
k
= Pr (Z w7} > C?\/,T2,t1(k)> — 0,
=1

so long as ¢} p_y,_1 (k) — 00, where z; ~ IIDN(0,1) from which it follows that

Pr(m > mg) < (T'—2) max P (LRy(T —2,t—1) > N p_oyq (k)| Hp_op1) — 0.

1<t<T—2
(A.48)
Next consider the event {m < mg}. We have that

Pr(m < mg)=Pr ( max LRy(T —2,t —1) < Rp_gyy (k) [Hrgy-1 is false)

1<t<T -2

!

-2
< Pr(LRy (T —2,t = 1) < Rp_gyy (k) [Hp_g4-1 is false) . (A.49)

t=1

From Proposition 4 for the type II error of the test we have that as N — oo

By = Pr(LRy(T—2,t—1) < Apgyy (k)| Hp_oy1 is false)

k
= Pr (Z wiX?(laM?,N) < C?V,T—2,t—1(k)> — 0.

i=1

But from (A.49), it readily follows that since Sy — 0 as N — oo, Pr(m < mg) — 0 which
together with (A.48) establishes the desired result. m

A.3 Derivation of R?

Consider the panel data model
Yit = Vi1 + Bip + i + p500 + Gy Cip = +Mife + way,

T = p; + 8 + Ty, Ty = PoZit—1 + /1 — pieu,
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where £; = (fir, fors oo frnt)s M = (M1 Mais ooy Moni)'s ¥ = (P14, D24y ooy Uni)’y |¥| < 1 and
|p.| < 1. To simplify the derivations and without loss of generality we assume that the time
effects, 0; and f; are generated with zero means, unit variances and are mutually orthogonal,
and ensure that their sample draws over t = 1,2, ..., T satisfy the following restrictions

T 'S fe = 0, T 'S fa=1 TS, fafe=0,for ¢ #0. (A.50)
TS0 = 0, Ty 6 =01T 'S 6fu=0,forall. (A.51)
Due to the dependence of x;; and (;, on the same unobserved factors, the regressors and

the errors of the above regression are correlated. Following Pesaran and Smith (1994) we
base the measurement of R? on the following reduced form regressions

Yit = O + VYir—1 + BLit + éit, 5it = p150; + Cfp + we, (A.52)
where
&; = a; + pp; and ¢; = 59, +n,. (A.53)

It is clear that in (A.52) the regressors, &;;, and the errors, Z’ i+, are uncorrelated and standard
formula for R? can be used. But to deal with the heterogeneity across the different equations
in the panel we use the following average measure of fit

R2—1_ N Var(éit)'
! N 2511 Var(yi)

Using the above results, and noting that u;; and ¢, are uncorrelated with ¢, and f;, then for
each unit ¢ we have

Var(y) = p3Var (8,) + c;Var(f)e; + o°,

2Var(ty) + Var C.
Var(ya) = ) (11&172 (Ca)

Under the scaling conditions in (A.50) and (A.51)

B2 52‘/@7‘(551‘1&) + 72 [Ng + ZZl <N71 Zfil C?z) + 02}
BQVar(fit) + uZ+ Y (N—l Zf\il ci) + o2 '

Y

It is easily seen that R} > +* with the equality holding only if § = 0, namely when an AR(1)
specification is considered.
For the unit root case we consider the following average measure of fit

_ N Zf\il Va?"(éit)
N1 Zi\; Var(Ayi) 7

R, =1

where when v = 1 (see (A.52) and (A.53))

Ay = & + BTy + Zit’
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with &;, T;; and zit defined as in the case of ¥ =1 in Section 8.1.2. Then

9

1— N~ Zz]\il Var(Ci)
BN Zz]il Var(Zy)+ N1 Zf\il Vm’(éit)
B*Var(Zy)
FPVar(en) + 18+ X0y (N2, &) + 02

2
Ry,

A.4 Monte Carlo results for the QML estimator (7 =
5,v7=0.8)

Table A1l below presents results for the case of 7= 5 and v = 0.8 for the bias, RMSE, size
and power of the AR(1) model, including values of N larger than 500, for both Gaussian and
non-Gaussian errors. These results show that while over-rejections are observed for smaller
sample sizes, size is restored very close to its nominal value as N increases to 2, 000.

Table A1l: Bias(x100), RMSE(x100), size(%) and power(%) of 7 for the AR(1)
model for (T = 5,7 = 0.8), using the estimated number of factors, m, and the true
number, m,

N Gaussian non-Gaussian
Bias (x100) RMSE (x100) Bias (x100) RMSE (x100)
(mymo) (L) (1) (2,2) (72 (LD (mD) (22 m2) (LD D (223 (m2 (LD (D (22 (m2)
v=0.8
100 0.85 0.27 -9.11 -9.67 12.14 12.94 27.50 27.77 0.35 -0.68 -12.14 -13.51 12.42 14.98 30.09 31.68
300 1.21 1.54 -0.67 -0.62 9.46 9.45 14.92 15.06 1.30 1.21 -2.00 -2.67 9.47 10.27 16.04 16.85
500 1.31 1.11 1.03 1.07 794 793 11.26 11.07 1.45 1.22  -0.35 -0.39 8.12 840 12.13 12.47
1,000 0.82 1.31 1.06 1.28 594 6.48 8.22 8.19 1.03 0.70 0.75 0.36 6.54 6.44 8.56 9.01
2,000 0.65 0.36 0.65 0.90 438 4.21 592 6.30 0.44 0.72 0.54 0.39 442 488 6.39 6.65
Size Power Size Power
(m,mo) (1,1) (i,1) (2,2) (m,2) (L,1) (m,1) (2,2) (m,2) (1,1) (»1) (2,2) (m,2) (L,1) (1) (2,2) (7,2)
Hp: v=10.8 Hi: v=0.7 Hp: v=0.8 Hi: v=0.7
100 6.8 8.4 179  16.7 21.7 21.8 254 244 23.3 218 26.0 28.5 242 251 282 308
300 13.4  12.2 9.4 9.9 34.0 30.2 21.1 214 19.0 19.3 15.8 14.7 324 30.2 21.6 202
500 12.1 11.6 9.4 9.3 39.1 415 22.8 229 16.9 18.4 11.7 12.4 36.3 39.6 21.3 229
1,000 10.0 10.8 9.2 8.6 56.5 53.9 34.5 33.9 14.2  13.3  10.1 11.3 52.9 54.4 30.5 31.9
2,000 6.2 6.3 6.9 7.6 742 779 51.0 50.9 8.5 8.9 7.5 7.3 744 721 46.3 46.6

See the notes to Table 3, and Table S3 in the online supplement.
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S.1 Size results for the individual likelihood ratio tests

Tables S1 and S2 below provide size results for testing the individual hypotheses Hy : m =
mo =40,1,2,..., T —3} against Hy : m = myax = T —2 at the 5% significance level using the
likelihood ratio statistic LRy (Mmax, o) - This statistic is compared to the critical values of
the x? distribution with degrees of freedom DF = T(T+1)/2—(3+Tm—m(m—1)/2), where
m is equal to its value under the null. Table S2 contains results for the case of Gaussian
errors and Table S2 for non-Gaussian errors based on 1,000 replications. Additional results
for alternative values of T, N, v and § = 1 are available upon request.

Table S1. Size(%) of the individual likelihood ratio tests
uanglr5 Gaussian errors

H"Lmax mo = T =10
DF AR() ARX(D) DF AR(1) ARX(D)
¥ =04, F=1, N =1,000
Hso 12 55 73 Hso 52 54 70
Hs ) 7 53 5.7 Hgi 42 41 48
Hs o 349 5.4 Hgo 33 42 6.8
Hgs 25 6.2 5.6
Hsa 18 5.4 7.5
Hgs 12 53 5.9
Hsg 7 3.4 74
Hs7z 3 45 7.4

Note: Himppax mo denotes the hypotheses Ho : m = mo = {0,1,2,...,7 — 3}
against H1 : m = mmax = T — 2. The likelihood ratio statistic is computed
as LRN (Mmax, o) = 2 [ZN <émmax;mmax) — N (@mo;mo)] using the like-
lihood expression given by (1). All tests are conducted at the 5% significance
level. For the data generating process see the notes to Tables 1 and 2.

Table S2. Size(%) of individual likelihood ratio tests under non-Gaussian errors
Hmo'mmax T=5
DF AR(1) ARX(1)
7=04,8=1, N =1,000
M50 12 176 163
Hsp 7 135 118
Hs> 3 92 101
See the notes to Table ST.

S.2 Monte Carlo results for the ML estimator

The QML estimator reduces to the ML estimator when the errors are generated from a
normal distribution as described in the Monte Carlo designs of Sections 8.1.1 and 8.1.2. Here
results are presented on the performance of the ML estimator when the number of factors
is estimated using the sequential multiple testing likelihood ratio (MTLR) procedure, and
when it is known. For these experiments the fixed effects are allowed to be correlated with
the errors, and for the ARX(1) model with the regressors as well. In the Monte Carlo designs
of HPS this corresponds to b; = by = 1 with the additional by parameter set to 1 for the
ARX(1) model.!

10For the starting values in the optimization routine used to compute the (Q)ML estimators, we use 6;,; =
o

(Yinis Winis Tinis Pini)’ Where ¢y, = (dl,miaWi'mwagmadgm) with 7,; ~ U[-0.999,0.999], win; ~ U[L,2],

03, ~ U[0.1,2.1] and ¢, ;,,; ~ U[—1,1] where ¢, ;,; is the jth element of ¢;,,;. In addition w needs to satisfy

w > (T —1)/T since || = 1+ T (w—1) > 0. Specifically, we use five such sets of random starting values and

choose the largest among the maximum of the log-likelihood values as the estimate of the (Q)ML estimator.



S.2.1 AR(1)

Simulation results for the AR(1) model are provided in Tables S3-S4. These tables report
the bias and RMSE, both multiplied by 100, as well as empirical size and power for the
estimator of v, when the number of factors is estimated and when it is known. The results
show that the estimator of v performs best in terms of RMSE for the true number of factors.
However, the differences observed between the true number of factors and the estimated
number m become minor as N increases. With regard to accuracy of inference, similar to
the non-Gaussian case, empirical sizes are close to the nominal level of 0.05 except for the
cases where T' = {5,10} and v = 0.8, for which over-rejections are observed, whether or not
the true number of factors is used. As to be expected size distortions decline with 7" and N.
For example, when T' = 10 we observe size distortions only for N = 100 and not when larger
values of N are considered. For T" =5 we need N to be larger than 500 for size distortions
to disappear. See Table Al in the Appendix which includes additional results for the bias,
RMSE, size and power of the AR(1) model for the larger values of N, namely 1,000 and
2,000, for both Gaussian and non-Gaussian errors.

Table S3. Bias(x100) and RMSE(x100) of v for the AR(1) model, using the estimated

number of factors, m, and the true number, mg
N T=5 T =10
Bias (x100) RMSE (x100) Bias (x100) RMSE (x100)

(m,mo) LD D) 22 w2 LD D) 22 m2) LD D &2 md LD ) 32 m2)
v=0.4

100 031 043 -0.04 -040 860 9.49 12.37 13.19 -0.12 001 -0.10 026 404 410 437 4.44
300 -0.18 -0.01 -0.02 -0.08 477 463 643 6.64 -0.01 -0.02 -0.09 -0.02 230 226 250 2.49
500  -0.02 -0.02 -0.01 0.02 3.66 3.71 491 547 -0.03 -0.07 -0.05 -0.08 178 184 187 1.87
v=0.8

100 085 027 -9.11 -9.67 12.14 12.94 27.50 27.77 042 057 054 060 599 6.06 7.00 6.90
300 1.21 1.54 -0.67 -0.62 9.46 945 1492 1506 0.16 0.10 0.08 024 3.07 3.17 3.68 3.77
500 131 1.1 1.03 1.07 7.94 7.93 11.26 11.07 004 001 005 -0.02 228 232 259 252

Note: y;; is generated as yjr = oy + psds + VYi,e—1 + Cip> Ci¢ = Mife + uge with the idiosyncratic errors generated as w;; ~

IIDN(0,0%) and ¢2 =1, for i = 1,2,...,N;t = —49,48,...0,1, ..., T, with y; _50 = 10’7'% + E?io ’ngz‘yiju The fixed effects,

«;, are generated as a; = 4; + v;, where 4; = 71 Zthl uit and v; ~ IIDN(0,1). The remaining parameters are generated
as described in Section 8.1.1. Each f; is generated once and the same f/s are used throughout the replications. The first 50
observations are discarded. m is the estimated number of factors computed using the sequential MTLR procedure described in
Section 7.1 with ay = BOW and p = 0.05. All experiments are based on 2,000 replications.

Table S4. Size(%) and power(%) of v for the AR(1) model, using the estimated number of
factors, m, and the true number, mq

N T=5 T =10
Size Power Size Power
(m,mo) LT D) (22 3 (LD D (22 w3 (LD D) %2 ) (LD ) 53 2
Hp: v=04 Hyi: v=10.3 Hp: v=04 Hy: v=0.3
100 4.8 4.1 5.0 5.6 25.3 25,7 16.6 17.4 5.1 5.4 5.7 5.7 69.5 69.2 64.6 67.5
300 5.6 4.5 5.0 5.1 58.4 57.8 354 35.9 4.4 5.0 4.9 4.9 99.4 99.3 985 98.5
500 5.5 4.3 4.6 5.1 78.7 783 52.6 51.1 4.4 5.9 4.7 4.5 100.0 100.0 100.0 100.0
Hp: v=10.8 Hy: v=0.7 Hp: v=10.8 Hy: v=0.7
100 6.8 8.4 17.9 16.7 21.7 21.8 254 244 8.8 9.2 10.2 9.5 54.6 54.3 49.0 47.3
300 13.4  12.2 9.4 9.9 34.0 30.2 21.1 214 4.0 4.7 5.2 5.1 86.9 879 82.0 814

500 121 11.6 9.4 9.3 39.1 415 228 229 4.1 4.4 4.0 4.2 97.1  96.9 95.5 95.5

See the notes to Table S3.



S.2.2 ARX(1)

Simulation results for the ARX(1) model are provided in Tables S5-S6. Similar results as in
the AR(1) model are found for the ARX(1) model. Comparing the bias and RMSE values
of the v and [ estimators for the case of the true and estimated number of factors, these
appear to be very similar and are also very small. With regard to size and power, unlike
the AR(1) model, the empirical sizes are close to the nominal level in all cases and power is
reasonably high even when the number of factors is estimated.

Table S5. Bias(x100) and RMSE(x100) of v and S for the ARX(1) model, using the

estimated number of factors, m, and the true number, my
N T=5 T =10
Bias (x 100) RMSE (x 100) Bias (x 100) RMSE (x100)

(m,mo) LT) (m,1) (2,2) (m,2) (L,1) (m,1) (2,2) (Mm,2) (L,1) (m,1) (2,2) (m,2) (L1) (m1) (2,2) (m,2)
7,7 =04

100 0.03 -0.04 -0.02 -0.04 146 146 1.60 1.57 -0.02 -0.02 000 -0.03 081 081 084 0385

300 0.02 -0.01 -0.03 0.03 082 083 090 090 002 -0.0l 0.00 -0.01 045 046 0.47 0.48

500  0.02 -0.01 0.00 -0.03 063 0.64 0.67 068 000 001 -0.01 000 035 035 038 0.38

B

100 -0.03 -0.02 -0.02 0.08 1.90 1.84 203 2.06 -0.02 0.6 -0.02 0.0 1.14 1.14 1.21 1.20
300 -0.02 0.00 0.01 0.02 107 111 1.8 1.14 -0.01 -0.01 0.01 0.01 0.67 0.66 0.67 0.71
500 0.00 -0.02 -0.02 -0.01 0.83 0.82 0.87 090 -0.02 0.00 0.02 000 050 0.50 0.51 0.52
v v=08

100 0.05 -0.04 0.02 -0.06 1.90 191 1.88 1.88 -0.02 0.00 0.00 -0.02 0.82 084 0.82 0.82
300 0.01 0.01 -0.05 0.03 1.07 1.08 1.07 1.06 0.02 0.00 -0.01 0.00 0.46 0.49 0.46 0.47
500 0.03 0.01 0.02 -0.04 080 0.83 0.81 080 000 0.01 -001 000 036 0.36 0.37 0.38

B

100 -0.04 0.08 -0.03 0.09 3.48 327 3,55 356 -0.04 -0.04 -0.02 0.11 2.02  2.02 209 201
300 -0.03 0.03 0.01 0.07 1.98 2.02 2.05 2.01 0.00 0.02 0.02 0.01 1.18 1.16 1.16 1.16
500 0.02 -0.03 -0.03 -0.03 1.52 1.52 1.54 1.57 -0.03 0.00 0.04 -0.01 088 0.86 0.88 0.90

Note: y;¢ is generated as yiz = oy + pusdt + Vi, e—1 + Bxit + (e Cop = n;ft + u;¢ with the idiosyncratic errors generated
as uiy ~ IIDN(0,0?) and 02 = (1 — R2)/8(R2 —~?) with RZ = 0.8, for i = 1,2,..,N;t = —49,48,..0,1,...,T, with
Yi,—50 = % + BZ?&O Y, _j + Z?io 'ngi,—j’ and B8 = 1. The fixed effects, «;, are generated as o; = T; + u; + v;,
where z; = T~1 ZzT:1 Tip, Uy =T 1 Zz;l uit and v; ~ ITDN(0,1). The remaining parameters are generated as described in
Section 8.1.2. Each f; is generated once and the same f/s are used throughout the replications. The first 50 observations are
discarded. 7i is the estimated number of factors computed using the sequential MTLR procedure described in Section 7.1 with

an = 50ﬁ and p = 0.05. All experiments are based on 2,000 replications.

Table S6. Size(%) and power(%) of v and g for the ARX(1) model, using the estimated
number of factors, m, and the true number, mq

N T=5 T =10
Size Power Size Power
(mymo) (LT) (M, 1) (2,2) (m,2) (LT (1) (2,2) (m,2) (L1 (1) (2,2) (m,2) (1,1) (1) (2,2) (h,2)
¥ Hp: v=0.40 Hi: v=0.38 Hp: v=0.40 Hi: v=0.38

100 5.3 5.2 6.0 5.8 29.9 30.8 279 279 5.2 5.6 5.4 5.6 71.1  68.0 67.1 68.0
300 4.8 4.2 6.1 6.2 67.1 68.5 62.8 61.6 4.7 5.0 4.8 5.0 99.3 98.8 98.8 98.8
500 4.9 4.7 5.3 4.6 87.5 88.1 84.8 84.8 5.1 5.1 6.0 5.1 100.0 100.0 100.0 100.0

B Ho: B=1 Hi B=008 Ho: B=1 Hi: =008

100 5.0 4.8 5.8 6.0 19.6 184 173 15.9 5.6 5.4 5.7 5.4 44.2 39.7  40.7  39.7
300 5.1 6.0 5.8 5.5 45.8 46.2 424 398 5.6 5.6 4.8 5.6 86.6 81.6 83.4 81.6
500 4.8 5.2 4.7 5.1 66.0 67.9 62.5 61.3 4.9 5.1 4.4 4.9 97.9 978 96.2 96.9

¥ Hp: v=0.80 Hyi: v=0.78 Hp: v=0.80 Hi: v=0.38

100 6.0 5.4 5.8 5.5 19.0  20.7 204 225 4.1 5.7 5.2 5.7 70.0 70.2 69.3 70.2
300 5.1 4.7 5.7 5.4 46.2  46.4 49.2 476 4.5 5.1 4.5 5.1 98.9 985 993 985
500 3.8 5.3 4.5 3.9 65.9 66.4 67.4 T71.6 4.5 4.6 5.9 5.1 100.0 99.9 100.0 99.9

B Ho: B=1 Hi: =008 Ho: B=1 Hi: =008

100 5.2 3.8 5.6 5.5 9.4 8.3 9.3 8.9 5.6 4.9 5.8 4.9 182 152 174 152
300 5.4 5.5 5.7 5.5 17.0 18.0 16.1 15.5 5.7 5.2 4.5 5.2 42.3 405 39.6 40.5
500 4.9 4.5 5.0 4.4 25.7 26.3 245 26.7 5.3 4.3 3.9 4.8 63.8 61.8 579 59.9

See the notes to Table S5.



S.3 The GMM approach

Let us consider a GMM approach to estimate the dynamic panel data model with interactive
effects:
yzt:az—l—wit&%—}\;ft—i—élt, (221,2,,N,t:1,2,7T) (Sl)

where w;; = (yi4-1,%},)', 6 = 7,8, Ai = iy ooy Ama)’ and £, = (frg, ..., frme)' are (m x 1)
vectors and ¢; are cross-sectionally and temporally uncorrelated. The individual specific
effects A\; are allowed to be correlated with x;;, while x;; is assumed to be strictly or weakly
exogenous. A similar model is considered in Ahn et al. (2013), but there are two differences.
The first is that the model under consideration is a dynamic model whereas Ahn et al. (2013)
considers a static model. This difference does not cause a serious problem in implementing
GMM estimation: minor corrections when selecting the instruments suffice. The second
difference is that the current model contains time-invariant fixed effects «; whereas the model
considered in Ahn et al. (2013) does not. Thus the method by Ahn et al. (2013) cannot be
applied directly in this case. Hence, we consider two approaches to use the method proposed
by Ahn et al. (2013). The first approach is to regard the time-invariant fixed effects as an
additional factor to be estimated. The second approach is to take the first-differences prior
to applying the quasi-difference approach by Ahn et al. (2013), which is similar to Nauges
and Thomas (2003). In the following, we describe each approach.

S.3.1 Approach 1: Quasi-differencing

By incorporating a; into Alf; in (S.1), we have the following alternative expression
~f~
Vit = Wi, 0 + XN + e,

where \; = (ciy Mgy ooy Ami)" and f, = (1, fity -, fne)'- The model in matrix notation can be
written as

yi=Wid +FX +¢, (S5.2)

where y; = (Yi1, -, Yir), Wi = (Wi, ..., Wir)', € = (gi1, ..., i) and F = (?1,...,%})’ is a

T x m matrix. Define ¥ = FF~! where F = (fr_ms1, ..., fr). To separately identify F
from Xi, 7?2 restrictions are imposed on the factors such that F = (U’ 1;) where ¥ is a
(T — ) x 7 matrix of unrestricted parameters obtained as the first 7' — /i rows of W. Let
Ho= (I,_.,—¥)’, so that H’QIN?‘ = (Lp_;y =) (¥, 1) = O(r—_m)xm- Then, pre-multiplying
equation (S.2) by Hf, removes the unobservable effects so that

or

vi = W,6+ 0§, — OW,6 +¢&; — W&, (S.3)

= Wb+ (Ir_p @ §)) vec(¥) — <vec(Wi)' ® IT—m> vec(§' @ W) + &; — WE,,

where ¥i = (Yit, oo Yir—in)'s §i = Wit —sini 1y oo Yir)'s Wi = (Wit oy Wir—)'s Wy = (Wir_g1, oy Wir)

lI’/: (01, ceey OT_ﬁ.L), éz = (Eila ---7€i,T—7h)/7 and Ez = (5i,T—ﬁ1+1> ceey 5iT>/-
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The " equation is given by
Yit :5,W1t+¢;yz—’lpng(5+vzt, (Z: 1,,N,t: 1,,T—T7’L>, (84)

where vy = (g4 — Ogéi). Since x;; is strictly exogenous, a large number of moment conditions
are available. However, since using many instruments causes a large finite sample bias, we
consider (k+1)(T —m)(T —m+1)/24 k(T —m)m moment conditions given by E|z;v;] = 0,
fort = 1,...,T —m, where z;; = (Yio, -, Yit—1, X1 -+ Xips Xi 115 -+ Xp) - In addition to
the commonly used instruments (yio, .-, Yii—1,Xj1, -+, Xjt), We also use Xz 1,..., Xjp as
instruments since they are included in the regressor W. In matrix notation the moment
conditions can be written as E [Ziv;(0)] = 0, where Z; = diag(zi,...,z;r_z), vi(0) =
(Vit, - Vi)' and O = (8, 4") with @ = vec(P).
Then the one-step and two-step GMM estimators are given respectively by

1Y 1 & T X
01 — in [ — Nz =S z7Z —N"7Z'v.(0 .
- (L w0s) (15oan) (1) o

and

N N -1 N
h . 1 / 1 / 0 h / 1 /
0QD2 = argemm (N Z V1(0) Zz) (N Z Zivi(HQm)vi(OQDl) Z,L> <N Z Zlvz(e)) .
i=1 i=1 i=1
(.6)

The asymptotic covariance matrix of the above estimators is given, respectively, by

-1

- -1 4 ~ ~ ~ ~ ~ ~ ~
var(eQm):N*( o W™ GQDl) Gl W Q00 W' G (GbmW*lGQm)

-~ ~ - -1
Var(@gps) = N7 ( Ho2Clohs GQm) ,
) =

where G ;= 8g( 1)/00' for j = QD1, QD2 with g:(0,) = Z'v,(6;) and g(8,) = N ZZ L 2i(0)),
W =N"'S"" Z/Z;, and =N~ g,(8,)g:(8;). The derivatives mvolved in G; are
computed numerically.

S.3.2 Approach 2: Quasi-differencing after first-differencing

Taking the first-differences of model (S.1) to remove «; we have
Ayit = AW;t(S + A;Aft + Agit; ('L = ]_7 2, ceny N,t = 27 3, ,T)

where Aw;; = (Ayi 1, A%,), 8 = (v,8), and Af, = f,—f, ;. The model in matrix notation
can be written as

where Ay; = (Ayig, ..., Ayir)'s, AW, = (Awya, ..., Awip), Ag; = (Aejy, ..., Agip) and AF =
(Afy, ..., Afp) isa (T — 1)xm matrix. Define ® = AF (ﬁ)fl where AF = (Afr_ i1, ..., Afp).
To separately identify AF from \;, m? restrictions are imposed on the factors such that
AF = (®',1,,) where ® is a (T'—1—m) xm matrix of unrestricted parameters obtained as the
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first T—1—m rows of ®. Let Hp= I, ,.,—®) sothat HYAF = (I, ,  —®)(®'1,) =
O(r—1-m)xm- Then, pre-multiplying equation (S.9) by H/, removes the unobservable effects
so that

H/DAYi = HIDAwi(S + HIDAEi,

or
Ay, = AW,0+ ®Ay, — BPAW,S + &, — DAE;
= AW,5+ (Ir_1_m @ AY)) vec(P) — <vec(AWi)' ® IT717m> vec(d' @ ®) + Aé; — PAE,

Where ASI’L = (Ayi27 ceey Ayi,Tfm)/y Ayz = (Ayi,Tferl; ceey AyiT)la AWZ = (AWQ, couy AWi,Tfm)c
AWZ = (Awi,T—m—i-la ...,AWZ'T),7 ‘ﬁ,: (¢2, "'7¢Tfm)7 A€Z = (Agig, ~-'>A€i,T—m)/> and A&'Z =
(Agi,Tferla e A&T)'-

The t'* equation is given by

where Avy = (Agy — @AE;). Since x;; is strictly exogenous, a large number of mo-
ment conditions are available. However, since using many instruments causes a large fi-
nite sample bias, we consider (k + 1)(T'— 1 —m)(T — m)/2 + k(T — 1 — m)m + k(T —
1 — m) moment conditions given by E[z;Avy] = 0, for t = 2,..,T — m, where z; =
(Yi0s -+ Yit—15 X5 Xig s Xigs Xy 15 -+ Xgp)'- In addition to the commonly used instruments
(Yi0s -+ Yii—1, Xjg5 -+, Xiz), We also use Xj 11, -, Xgp as instruments since they are included
in the regressor AW. Also, compared to the quasi-difference approach, we additionally
use X;o as instruments. This is because without x;y, the local identification assumption
is not satisfied for the linear GMM estimator which is used as the starting value to ob-
tain nonlinear GMM estimators. In matrix notation the moment conditions can be written
as E'[Z;Av;(0)] = 0, where Z; = diag(z}y, ..., Z; 1 ), Avi(0) = (Av, ..., Avir_,)" and
= (&', ¢") with ¢ = vec(®).
Then the one-step and two-step GMM estimators are given respectively by

N -1 N
Opp1 = arg min < Z Av,;(0 ) (% Z Z;ZZ) (% Z Z;Avi(0)> : (S.11)
i=1 i=1

and

N N -1 N
; . / 1 ' A (8 B N7 1N~ 7Av
Orp2 = argemln (N ; AVz’(e) Zz) (N ZZ1 ZiAVz(eFD1>AVz(0FD1) Zz) <N 121 ZiAVz(e)) .
(S.12)

The asymptotic covariance matrix of the above estimators is given, respectively, by
—1

" ~ ~ ~ -1 4 ~ ~ ~ ~ ~ - ~
V(ZT(HFDl) = N_l <G/FD1W_1GFD1> G;;Dlw_lﬂpplw_lepl <G;—~D1W_1GFD1>

(S.13)
~ ~ N -1
VG?"(OFDQ) <G/FD Q;‘ GFD2> y (814)
where G ;= ag( ;)00 for j = FDl FD2, with g(6;) = Z{Avi(8;) and g(6;) = N~' Y1, £:(6,),

W =N~ 1 ZZ \ZZ;, and Q -1 ZZ . 2i(0;)g;(8;)". The derivatives involved in G; are
computed numerically.



S.3.3 Starting values

For the computation of the above nonlinear GMM estimators, starting values are required.
We use the linear GMM estimator by Hayakawa (2012) as the starting value. This can reduce
the computational time compared with the case where several random starting values are
used.

To define the linear GMM estimator, let us define L; = Ly = 1 for m = 1, and
L1 = (Ifn,Om) and LQ = (Ofn,Im) for m > 1. AlSO, define S’l = (yi,T_m,yZ'7T_m+17 ‘-7%7’)/ =
(47—, ¥)' - Then, noting that W; = <5}z‘,—1, th> where §; 1= (Vi 1, Yi,7—int1s > Yir—1)
yvi = Loy; and y; _1 = Lyy;, we have

Vi = Wi+ 0§, — W, + &, — Vg,
— W0+ ULy, — © (fyLleZ- + Xﬁ) e - WE
= W6+ 0 (L — L)) 3 — ¥X:8+v;
= Wid+ 7Yy, — ¥X,8+ v,
= W.d+ (Ir_ @ 7)) vee(X') — (vec()"(i)’ ® IT,fn> vec(B @ ¥) + v;

where YT =W (L2 — ’)/Ll) y Xz = <V‘V7,, (IT_m &® S’;) , T (UGC(XZ')/ (%9 IT—Th)) and w =

(8", vec( X" vec(B' @ ®)) = (m), wh, ) with w1, = 8, my = vec(Y"), m3 = vec(8 @ V).
We consider this particular model rather than the original model (S.3) because perfect mul-
ticollinearity between y; and W, occurs in (S.3) when m > 1. Since this is a linear model in
7 with moment conditions E [Z]v;(7)] = 0, a closed form solution is obtained as

!/
Y

-1

1N~ 1 & T
" Z ’ }: / 2: /
"o (N i=1 XiZi> (N i=1 ZiZi) (N i=1 ZiXi)_
1 <N~ 1 & T X
X —§ X!Z; —§ 7.7, —E Zy;
<N =1 > (N =1 ) (N =1 y

Hence, 71 and 75 are consistent estimates of § and vec(Y"), respectively. To recover ¥ from
the estimate of Y, since

vee (X') =vec (L — yL1)" ¥') = (Ir_s5 @ (Ly — vL1)") vec (¥') = Avec (¥),

vec (') is obtained as vec (¥') = (A’A)~" A’vec (Y’) . In the computation of the nonlinear
GMM estimators, estimates of § and vec (¥’) are obtained from #; and 7, and are used as
the starting values of the numerical optimization.

The same procedure can be used in approach 2 by replacing the y;’s and W;’s with their
first differences.

S.3.4 The AR(1) model

Estimation of the AR(1) model is exactly the same as above after removing all x’s from
both the model and instruments. However, for the starting value, we cannot use the linear
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estimator since the number of moment conditions is always smaller than that of the unknown
reduced form parameters. Hence in the Monte Carlo simulations for this case we use random
starting values. Specifically, we use

Yini ~ U (=1,1), wj,z’m’ ~U(=2,2), (j=1,...(T—m)m)
for approach 1 and
Ying ~ U (_L 1)7 wj,ini ~U (_272)7 (.7 =1,.., (T -1- m)m)

for approach 2.

S.4 Monte Carlo results for the ML and GMM esti-

mators

Tables S7-S10 present results on the bias, RMSE, size and power for the ML and the GMM
quasi-difference (QD) and first-difference (FD) estimators of ALS, when the number of factors
is assumed to be known and the errors in the Monte Carlo designs of HPS are generated as
normal. In these experiments the fixed effects are not correlated with the errors, only with
the regressors for the ARX(1) model, as this would render the GMM estimators inconsistent.
This is equivalent to setting b; = 0 and by = 1, with the additional b, parameter set to 1
for the ARX(1) model in the Monte Carlo designs of Sections 8.1.1 and 8.1.2. The GMM
estimators are computed as shown in Section S.3. Results for the AR(1) model are presented
in Tables S7 and S8 and in Tables S9 and S10 for the ARX(1) model.

Table S7. Bias(x100) and RMSE(x100) of v for the QML and GMM estimators in the
case of the AR(1) model, using the true number of factors, my

N T=10
Bias (x100) RMSE (x100) Bias (x100) RMSE (x100)
ML GMM ML GMM ML GMM ML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
mo 1 2
v=0.4
100 0.42 11.41 15.04 -34.15 -22.96 3.96 36.97 36.10 35.50 25.05 -0.21 49.58 49.44 -26.63 -24.84 4.21 52.74 53.24 58.14 50.26
300 -0.07 -0.88 4.37 -18.33 -7.55 2.35 24.01 22.50 19.41 9.28 -0.08 48.33 47.33 -12.64 -12.08 2.44 52.21 52.23 43.45 34.81
500 -0.02 -0.87 3.98 -13.00 -4.10 1.79 20.31 19.49 14.13 5.79 -0.02 46.85 45.83 -7.61 -8.42 1.85 51.43 51.44 36.93 28.96
v=0.8
100 0.69 13.17 13.18 -70.69 -62.14 6.12 20.93 21.64 72.10 64.84 0.30 17.60 17.51 -71.91 -68.08 6.63 18.61 18.64 90.92 87.27
300 0.11 9.27 9.93 -51.59 -34.78 3.19 20.13 19.68 52.68 37.01 0.10 17.48 17.40 -49.83 -42.84 3.53 18.52 18.42 71.04 63.46
500 0.08 8.26 9.46 -42.71 -24.51 2.34 19.05 18.04 43.86 26.77 0.06 16.75 16.74 -41.85 -34.15 2.54 18.44 18.27 63.02 55.19

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first- difference ALS one step and two step estimators
respectively computed as described in Section S.3. All experiments are based on 2,000 replications. See also the notes to Table
S3.



Table S8. Size(%) and power(%) of v for the QML and GMM estimators in the case of the

AR(1) model, using the true number of factors, my

N T =10
Size Power Size Power
ML GMM ML GMM ML GMM ML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
mo 1 2
oY Hp: v=0.40 Hi: v=0.34 Hp: v=0.40 Hi: v=0.34
100 5.3 65.3 71.3 89.4 88.7 31.7 781 84.0 966 97.1 5.0 86.4 881 30.6 429 30.1 86.0 88.0 31.6 45.9
300 5.4 449 36.2 73.1 46.2 742 71.6 70.1 92,5 854 49 829 834 19.7 32.7 70.1 827 832 194 323
500 5.3 38.5 282 60.8 27.6 91.6 722 703 89.6 821 3.2 794 81.0 148 255 894 79.3 81.5 14.3 284
¥ Hp: v=0.80 Hi: v=0.74 Hp: v=0.80 Hi: v=0.74
100 9.0 93.8 96.4 989 99.7 31.1 95.0 97.0 99.1 100.0 8.3 95.6 96.9 51.8 65.0 27.5 94.0 96.2 54.0 734
300 5.1 87.3 88.8 98.4 958 539 915 929 99.5 99.0 4.6 954 958 35.7 48.2 471 939 954 37.5 61.2
500 4.6 84.4 83.0 96.8 88.5 729 89.5 883 989 97.1 3.7 93.0 93.8 294 419 649 91.3 93.8 30.5 59.7

See the notes to Table S7.

Table S9. Bias(x100) and RMSE(x100) of v and § for the QML and GMM estimators in

model, using the true number of factors, myg

the case of the ARX(1)
T=5

N T =10

Bias (x100) RMSE (x100) Bias (x100) RMSE (x100)

ML GMM ML GMM ML GMM ML GMM

QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
mo 1
7, y=04
100 0.03 0.36 0.13 0.08 0.12 1.46 3.13 3.09 4.05 2.76 -0.02 10.21 10.12 -2.43 -2.09 0.81 20.64 20.55 3.22 2.82
300 0.02 048 0.16 -0.01 0.04 0.82 1.37 1.30 2.44 1.60 0.02 2.14 1.88 -0.85 -0.35 0.45 8.46 8.11 1.89 0.83
500 0.02 0.49 0.16 0.05 0.05 0.63 1.11 1.02 1.88 1.21 0.00 095 0.71 -0.55 -0.16 0.35 4.28 3.98 1.82 0.53
JE]
100 -0.03 -0.04 0.00 0.20 0.08 1.90 2.40 2.38 4.45 321 -0.02 -8.93 -8.85 -0.67 -0.52 1.14 20.01 19.84 4.14 3.55
300 -0.02 -0.13 -0.03 0.18 0.06 1.07 1.37 1.35 2.80 1.87 -0.01 -1.60 -1.46 -0.08 0.05 0.67 8.22 7.60 3.12 1.19
500 0.00 -0.14 -0.04 0.09 0.03 0.83 1.03 1.00 2.06 1.42 -0.02 -0.50 -0.45 -0.09 -0.01 0.50 4.30 3.81 2.56 0.75
Y, ¥=0.38
100 0.05 8.62 7.12 -0.47 -0.37 1.90 10.17 9.26 5.11 4.28 -0.02 12.47 12.40 -5.74 -4.98 0.82 12.50 12.43 7.20 6.23
300 0.01 850 5.57 -0.03 -0.10 1.07 9.71 7.82 298 239 0.02 12.29 11.80 -1.95 -0.78 0.46 12.30 11.81 3.04 1.30
500 0.03 8.56 5.03 0.06 0.02 0.80 9.68 7.28 2.30 1.84 0.00 12.23 11.66 -1.27 -0.35 0.36 12.23 11.66 2.07 0.73
JE]
100 -0.04 -1.75 -0.37 -0.27 -0.08 3.48 7.17 5.70 7.47 6.17 -0.04 -14.16 -13.64 -4.46 -3.83 2.02 15.35 14.84 10.31 8.90
300 -0.03 -0.29 0.03 -0.15 -0.07 1.98 3.31 2.90 4.40 3.41 0.00 -12.45 -8.75 -1.06 -0.32 1.18 12.94 9.35 5.90 2.49
500 0.02 -0.06 0.02 -0.22 -0.09 1.52 2.31 2.08 3.28 2.64 -0.03 -11.92 -7.64 -0.71 -0.18 0.88 12.22 8.02 4.47 1.46
mo 2
v, y=04
100 -0.02 0.51 0.34 -1.91 -1.61 1.60 4.87 398 7.42 7.13 ~0.00 -0.58 -0.46 -1.27 -0.98 0.84 4.34 424 5.28 3.85
300 -0.03 0.01 -0.09 -0.63 -0.49 0.90 1.80 1.67 3.78 3.43 0.00 -0.35 -0.16 -0.25 -0.08 0.47 1.83 1.55 4.27 1.45
500 0.00 -0.10 -0.11 -0.30 -0.24 0.67 1.25 1.25 249 213 -0.01 -0.27 -0.10 0.10 0.01 0.38 1.13 0.89 4.34 0.96
B
100 -0.02 -0.12 -0.03 -2.15 -1.83 2.03 3.18 3.26 13.32 13.41 ~-0.02 0.26 0.17 0.09 0.06 121 4.39 4.23 5.24 4.01
300 0.01 0.02 0.12 -0.59 -0.36 1.18 1.77 1.76 6.89 6.43 0.01 0.22 0.13 0.02 0.02 0.67 1.53 1.08 3.81 1.53
500 -0.02 0.04 0.07 -0.11 0.00 0.87 1.35 1.31 3.78 3.41 0.02 0.17 0.08 0.07 0.03 0.51 1.06 0.80 3.23 1.02
v, 7 =038
100 0.02 7.87 5.78 -17.82 -17.32 1.88 9.54 8.29 31.56 32.49 0.00 -0.61 -0.48 -3.66 -2.86 0.82 3.91 381 7.26 5.48
300 -0.05 4.49 2.58 -7.65 -7.24 1.07 7.13 5.59 18.26 19.05 -0.01 -1.16 -0.79 -1.37 -0.69 0.46 1.59 1.25 4.41 1.79
500 0.02 2.82 1.54 -3.32 -3.07 0.81 5.71 4.16 11.75 12.11 -0.01 -0.95 -0.59 -0.86 -0.38 0.37 1.22 0.89 3.51 1.11
B
100 -0.03 0.26 0.56 -19.87 -19.61 3.55 6.93 6.93 37.22 38.28 -0.22 0.63 0.52 -0.77 -0.55 2.09 3.99 3.80 10.32 7.96
300 0.01 0.70 0.37 -9.45 -859 2.05 3.92 3.47 2259 22.89 0.02 0.58 0.36 -0.38 -0.03 1.16 2.09 1.75 6.93 2.90
500 -0.03 0.53 0.17 -4.34 -3.85 1.54 2.90 2.42 1459 1459 0.04 0.45 0.26 -0.08 0.04 0.88 1.60 1.34 5.17 1.83

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first- difference ALS one step and two step estimators
respectively computed as described in Section S.3. All experiments are based on 2,000 replications. See also the notes to Table

S5.



Table S10. Size(%) and power(%) of v and f for the QML and GMM estimators in the
case of the ARX(1) model, using the true number of factors, mg

N T=5 T =10
Size Power Size Power
ML GMM ML GMM ML GMM ML GMM

QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
mo 1
oY Hp: v=0.40 Hi: v=0.38 Hp: v=0.40 Hi: v=0.38
100 5.3 6.1 148 3.6 124 299 14.1 30.6 8.2 19.7 52 31.5 87.8 283 82.8 71.2 335 874 69.7 97.7
300 48 66 9.6 3.8 7.2 67.1 225 399 16.5 29.7 4.7 16.8 455 12.6 26.2 99.3 27.0 77.7 73.6 974
500 49 69 85 39 6.3 87.5 31.3 554 23.1 412 5.1 16.5 37.5 10.1 14.3 100.0 34.3 88.7 84.0 99.6
B Hp: B=1 Hi: B =0.98 Hp: B=1 Hi: 5 =0.98
100 5.0 6.0 151 4.2 11.1 19.6 153 283 7.3 194 56 275 84.6 7.8 75.1 44.1 33.0 885 13.2 8I1.1
300 5.1 59 106 49 79 459 36.9 44.8 119 243 5.6 10.6 353 5.0 27.2 86.6 30.4 81.1 15.1 73.6
500 49 5.0 88 43 74 66.0 54.9 61.6 17.3 33.0 49 9.0 274 4.7 159 97.9 43.3 91.5 20.2 90.1
¥ Hp: v=0.80 Hi: v=0.78 Hp: v=0.80 Hi: v=0.78
100 6.0 76.5 69.2 4.7 13.0 19.0 775 70.8 84 19.5 4.1 100.0 100.0 55.4 95.5 70.0 100.0 100.0 77.6 99.2
300 5.1 76.7 57.1 4.0 7.9 46.2 78.3 58.1 10.4 20.2 4.5 100.0 100.0 20.2 41.0 98.9 100.0 100.0 58.3 95.9
500 3.8 77.5 547 39 74 65.9 79.5 544 12.8 23.1 4.5 100.0 100.0 13.7 21.4 100.0 100.0 100.0 59.5 98.9
B Hp: B=1 Hi: B =0.98 Hp: B=1 Hi: =098
100 5.2 124 188 4.4 136 9.4 157 21.6 5.8 159 5.6 854 985 15.3 80.0 18.2 91.1 994 21.3 827
300 54 7.5 124 45 83 17.0 128 189 7.8 144 57 99.0 975 7.6 33.3 42.3 99.8 99.7 12.3 534
500 49 53 9.6 46 8.2 25.7 145 236 94 170 53 999 988 6.3 18.0 63.8 100.0 99.9 12.7 56.0
mo 2
v  Hop: v=0.40 Hyi: v=0.38 Hp: v=0.40 Hyi: v=0.38
100 6.0 5.5 126 7.7 11.7 279 10.8 19.8 12.1 19.1 54 127 556 95 574 67.1 51.8 89.4 27.8 80.7
300 6.1 4.0 93 49 8.1 62.8 23.5 339 15.0 252 48 82 200 6.1 274 98.8 77.0 94.2 23.3 823
500 53 38 79 49 72 84.8 38.8 473 209 372 6.0 7.4 159 54 20.1 1000 883 98.1 22.0 92.7
B Hp: =1 Hy: =0.98 Hp: =1 Hyi: 8 =0.98-
100 5.8 4.8 126 5.9 11.0 173 10.7 21.6 8.0 150 5.7 7.9 494 9.2 62.2 40.7 12.8 60.5 12.8 66.7
300 5.8 46 89 5.0 b 424 20.1 26.0 10.0 169 4.8 5.7 193 6.0 28.,5 83.4 29.0 684 13.7 62.2
500 4.7 43 7.2 33 59 62.5 29.6 38.6 11.9 236 45 53 155 54 18.9 96.2 44.1 84.8 12.9 76.6
¥ Hp: v=0.80 Hy: v=0.78 Hp: v=10.80 Hy: v=0.78
100 5.8 74.5 56.0 29.7 34.5 204 74.1 57.2 319 372 52 274 685 226 76.5 69.2 68.7 94.6 389 §89.1
300 5.7 44.5 30.5 20.8 20.6 49.2 49.6 40.8 244 293 45 244 371 9.0 389 99.3 904 97.1 25.3 86.6
500 4.5 29.9 19.5 12.6 13.5 67.4 425 37.0 19.0 30.7 59 254 321 6.0 29.3 100.0 96.3 99.1 22.0 93.4
8 Hop: p=1 Hy: 5=0.98 Ho: B = Hy: 5 =0.98
100 5.6 7.1 164 26.7 31.4 9.3 81 181 281 339 58 7.4 487 10.7 65.7 173 82 51.7 121 67.2
300 5.7 7.7 12.0 194 19.7 16.1 10.0 14.8 21.0 240 44 56 177 7.6 315 39.6 10.6 34.5 10.1 45.0
500 5.0 6.8 88 129 129 245 122 19.8 152 19.1 3.9 56 140 5.7 21.5 57.9 15.2 45.0 8.3 464

See the notes to Table S9.

S.5 Monte Carlo results for the unit root case (y=1)

S.5.1 Performance of the sequential multiple testing likelihood ra-
tio procedure

Table S11 provides results on the performance of the sequential MTLR procedure in the
unit root case, for the AR(1) and the ARX(1) models, respectively. Specifically they report
the number of times, in percent, that the estimated number of factors, m, based on the
sequential MTLR procedure outlined in Section 7.1 is equal to the true number of factors
myg. The sequential MTLR procedure is implemented using the LRy (mmax, Mo) statistic for
testing m = my = {0,1,2,..,7 — 3} against m = mpax = T — 2, with significance level
ay = 50ﬁ and p = 0.05, using the critical values of the chi-square distribution with
degrees of freedom given by (44). Results are reported for the case of both Gaussian and
non-Gaussian errors. The tables show that the sequential MTLR procedure works very well
even for the unit root case. The performance is very similar to the stationary case with
|v| < 1, and indeed, the probability of selecting the true number of factors exceeds 95% in

most cases even under non-Gaussianity.
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Table S11. Empirical frequency of correctly selecting the true number of factors, mg, using
the sequential MTLR procedure in the unit root case (v = 1)

N T=5 T =10
mo =0 mo =1 mo = 2 mo =0 mo = 1 mo = 2
Gaussian 0™ Gaussian 207 Gaussian 07 Gaussian 207 Gaussian 0" Gaussian 0™
Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian
AR(1)
100 99.0 96.2 99.2 96.7 97.4 94.7 99.7 95.7 99.0 95.9 99.5 96.6
300 99.7 97.5 99.5 98.1 97.7 97.2 100.0 98.6 99.8 98.9 99.8 99.6
500 99.8 98.9 100.0 98.9 98.3 97.6 100.0 98.7 99.9 99.4 100.0 99.5
1,000 99.9 98.9 99.9 99.8 99.1 97.9 100.0 99.2 99.9 99.5 100.0 99.7
ARX(D)
100 98.8 94.5 98.7 95.1 98.5 96.1 99.4 93.5 98.6 94.9 99.1 95.1
300 99.4 97.7 99.5 98.5 99.7 99.1 99.6 97.5 99.7 98.8 99.7 99.0
500 99.7 97.9 99.6 98.1 99.6 98.7 100.0 98.2 100.0 98.7 99.9 99.3
1,000 100.0 99.4 100.0 99.6 99.9 99.6 100.0 99.2 99.9 99.3 100.0 99.3

Note: The first-differences are initially generated and then cumulated to obtain y;; starting from any arbitrary value for y;o. For
the AR(1) case Ay;; is generated as Ay;y = psAds +vAY; 11+ Ay, for i = 1,2, N;t =2,..., T, with Ay;1 = psAd1 + A
where the process is initalised at Ay, = 0, v = 1 and {;; = n}fi + us. The idiosyncratic errors are generated as wu;; ~
IIDN(0,02) under Gaussianity and u;; ~ IID\/%(Xg — 6) under non-Gaussianity where X2 is a chi-square variate with 6
degrees of freedom, and o2 = 1. The remaining parameters are generated as described in Section 8.1.1. For the ARX(1) case
Ay is generated as Ay;p = pusAds +vAY; 1—1 + BAx; + Ay, for i =1,2,..., Nt =2,...,T, with Ay;1 = psAd1 + A;; where
the process is initalised at Ay;o = 0, v = 1 and {;; = n}ft + us;. The idiosyncratic errors, u;, are generated as in the AR(1)
case with 02 = (1 — RQAy)/SRZAy and RQAy = 0.4. The remaining parameters are generated as described in Section 8.1.2. For
mo = 0, {;; collapses to u;; in the above set-ups, and the rest follows accordingly, with 02 =(1- RQAy)/E)RQAy in the case of

the ARX(1) model. Each f; is generated once and the same f/s are used throughout the replications. The first observation is
discarded. 7 is the estimated number of factors computed using the sequential MTLR procedure described in Section 7.1 with
ay = 50ﬁ and p = 0.05. All experiments are based on 1,000 replications.

S.5.1.1 Performance of the (Q)ML estimator

The next set of results concern the performance of the proposed estimator when the number
of factors is estimated based on the sequential MTLR procedure. The results for the case
where the number of factors is known are also included for comparison. Results are reported
for the case of Gaussian and non-Gaussian errors.

AR(1) Simulation results for the AR(1) model are provided in Tables S12 and S13. These
tables report the bias and RMSE, both multiplied by 100, as well as empirical size and
power for the QML estimates of v. The number of factors, when estimated, is computed
based on the sequential MTLR procedure described in Section 7.1 with the significance level
ay = 50T+2)N and p = 0.05. The results show that both the bias and RMSE are sufficiently
small and the empirical size is close to the nominal level regardless of whether the number
of factors is estimated or not, and the error term is Gaussian or not.

Table S12. Bias(x100) and RMSE(x100) of v for the AR(1) model, using the estimated
number of factors, 7, and the true number, myg, (7 = 1)

N T=5 T=10
Bias (x100) RMSE (x100) Bias (x100) RMSE (x100)
(m,mo) (1,1) (i, 1) (2,2) (m,2) (1,1) (1) (272)G(fn,_2) @LD (1) (2,2) (m,2) (1,1) (1) (2,2) (,2)

100 0.02 -0.54 -2.13 -3.46 3.31 7.08 10.66 15.90 0.01 0.00 0.02 -0.07 1.20 147 1.237] 2.21
300 0.01 0.02 -1.04 -1.23 205 2.05 7.79 8.16 0.02 0.00 0.01 0.00 0.71 0.69 0.70 | 0.69
500 0.01 0.01 -0.98 -0.91 1.64 1.82 7.22 7.32 0.01 0.00 0.02 -0.01 0.54 0.53 0.55 | 0.55

non-Gaussian
100  -0.04 -0.95 -2.88 -4.71 3.35 8.57 1230 18.02 -0.01 -0.14 0.05 -0.17 1.19 220 1.257] 3.13
300 0.03 -0.35 -0.98 -1.99 2.17 4.99 7.64 11.32 -0.02 -0.01 0.02 -0.02 0.70 0.97 0.69| 1.05
500 0.07 -0.23 -0.73 -1.37 1.65 4.64 6.64 9.51 -0.01 -0.01 0.03 -0.06 0.50 0.66 0.52 | 1.50

Note: 7 is estimated using the sequential MTLR procedure described in Section 7.1 with ay = SOm and p = 0.05;
v is the coefficient of the lagged dependent variable given in (1) in the absence of the x;; regressors. All experiments are

based on 2,000 replications. See also the notes to Table S11.
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Table S13. Size(%) and power(%) of 7 for the AR(1) model, using the estimated number of
factors, m, and the true number, mg (v = 1)

N T=5 T =10
Size Power Size Power
(m,mo) LT (D) (52) (2 (LD (D 33 w2 LD D &3 w2 (L1 0wl (52 2
Gaussian
Hp: v=1 Hi: v=0.96 Hp: v=1 Hi: v=0.96

100 3.2 3.7 5.7 6.6 226 237 232 232 4.9 4.1 4.7 4.9 90.4 90.3 88.4 88.4
300 5.1 4.8 6.4 6.1 50.6 49.9 44.1 445 6.2 5.0 5.3 4.5 100.0 100.0 100.0 100.0
500 5.8 5.6 6.1 5.4 69.9 70.3 62.7 61.3 5.8 5.4 5.7 4.8 100.0 100.0 100.0 100.0

non-Gaussian

Hp: v=1 Hyi: v=0.96 Hp: v=1 Hyi: v=0.96

100 3.4 5.1 5.8 7.2 23.5 247  22.0 229 5.8 5.5 6.2 90.1 875 86.2 85.2
300 5.2 4.7 4.6 6.0 49.6 50.0 409 426 5.5 4.6 4.7 100.0 99.7 99.9 99.5
500 4.8 5.2 5.9 5.1 66.5 67.6 55.1 55.5 4.2 5.7 4.2 100.0 99.9 100.0 99.8

oo o
00 W W

See the notes to Table S12.

ARX(1) Simulation results for the ARX(1) model are provided in Tables S14 and S15.
Similar results as in the AR(1) model are found for the ARX(1). The bias and RMSE are
small and inference is accurate with reasonably high power regardless of whether the number
of factors is estimated or not, and the error term is Gaussian or not.

Table S14. Bias(x100) and RMSE(x100) of v and § for the ARX(1) model, using the

estimated number of factors, m, and the true number, mqy (7 = 1)
N T=5 T =10
Bias (x100) RMSE (x100) Bias (x 100) RMSE (x 100)
(m,mo) (1,1) (m,1) (2,2) (m,2) (1,1) (m,1) (2,2) (méz) (1,1) (m,1) (2,2) (m,2) (1,1) (m,1) (2,2) (m,2)
aussian

vy =1
100 0.05 0.01 0.04 0.04 1.55 1.53 1.52 147 0.00 0.00 0.01 0.03 045 0.47 047 0.48
300 0.03 -0.01 -0.02 0.04 0.88 0.89 0.84 0.83 0.01 0.00 0.00 0.01 025 0.26 0.26 0.26
500 0.03 -0.02 0.02 -0.03 0.67 0.67 0.63 0.63 0.00 0.01 0.00 0.00 0.20 0.20 0.21 0.21
B
100 -0.06 -0.12 -0.05 0.09 3.83 3.88 3.87T 3.88 -0.07 0.04 -0.04 -0.09 218 2.19 226 2.30
300 -0.04 0.08 0.02 0.07 2.17 220 224 2.20 0.00 0.00 0.01 -0.06 1.27 1.22 1.25 1.26
500 0.01 -0.06 -0.03 -0.03 1.68 1.68 1.68 1.71 -0.04 0.00 0.03 0.01 095 0.94 0.95 0.98
non-Gaussian

vHhy=1

100 0.06 0.07 0.02 0.03 1.60 1.55 1.47 1.48 -0.03 0.01 -0.01 0.00 046 0.47 0.47 047
300 -0.02 -0.02 0.04 -0.02 0.8 091 0.86 0.84 0.00 0.01 001 0.00 026 0.26 026 0.27
500 0.01 0.00 -0.02 0.01 0.70 0.69 0.65 0.64 0.00 0.01 000 0.00 020 0.20 021 0.20
B

100 -0.18 0.0 0.07 -0.13 3.83 3.74 3.890 4.02 0.08 -0.03 0.00 000 2.4 219 2.16 221
300 -0.05 0.07 -0.07 0.14 212 221 223 218 0.02 0.00 0.01 0.01 1.22 127 1.28 1.29
500 0.01 0.01 0.3 -001 166 1.63 1.71 1.71  0.00 -0.04 -0.01 0.01 097 0.97 1.00 0.98

Note: m is estimated using the sequential MTLR procedure described in Section 7.1 with ay = SOﬁ and p = 0.05; v

and B are the coefficients of the lagged dependent variable and the x;; regressor given in (1). All experiments are based on
2,000 replications. See also the notes to Table S11.
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Table S15. Size(%) and power(%) of v and 8 for the ARX(1) model, using the estimated
number of factors, m, and the true number, mq (y = 1)

N T=5 T=10
Size Power Size Power
(m,mo) LT (D) (52) (2 (LD D 33 w2 LD D &3 w2 (LD 0l (22 m2)
Gaussian
o Ho: v=1 Hqy: v=0.98 Hp: v=1 Hqy: v=0.98
100 5.2 5.5 6.4 5.4 26.0 26.2 29.7 30.7 4.4 5.7 5.9 6.1 99.3 98.8 98.6 98.6
300 4.9 5.5 6.4 5.4 61.7 63.3 68.2 67.0 3.7 5.2 4.5 5.0 100.0 100.0 99.9 99.9
500 4.7 4.8 5.0 4.8 82.2 84.3 87.2 88.0 5.4 4.6 5.6 6.2 100.0 100.0 100.0 100.0
B Hp: B=1 Hi: B=0.95 Hp: B=1 Hi: =095
100 5.4 5.5 5.6 5.4 27.3 28.9 258 25.0 5.6 5.4 6.2 6.4 65.3 64.1 62.7 64.2
300 5.3 5.5 5.6 5.3 64.5 604 61.7 61.4 5.6 4.7 4.8 5.2 97.5 97,5 974  97.7
500 4.9 5.6 4.6 5.2 83.9 834 84.0 82.7 5.4 5.0 4.1 5.7 99.8 99.7 99.7 99.9
non-Gaussian
oY Ho: v = Hi: v=0.98 Hp: v=1 Hi: v=0.98
100 6.6 5.6 6.0 6.0 26.7 25.7 31.1 30.0 6.0 6.9 5.6 6.0 97.8 97.0 973 974
300 5.0 5.6 5.6 5.4 62.8 61.8 64.5 67.6 4.7 4.4 4.4 4.8 99.1 98.8 99.2 99.1
500 5.9 5.1 5.3 5.0 81.5 79.8 87.2 85.6 4.9 3.9 5.2 4.6 98.9 98.9 99.3 98.9
B Hp: B = Hi: =095 Hp: B=1 Hi: =095
100 6.3 5.1 7.2 6.8 28.8  26.0 25.4 284 5.1 5.7 5.1 5.2 61.8 62.1 60.7 59.9
300 4.5 5.7 5.3 4.5 64.4 57.6 62.1 58.7 3.9 4.9 4.5 5.0 93.7 933 939 929
500 5.1 4.1 4.8 5.5 84.5 78.0 82.7 79.4 4.8 4.6 4.5 4.1 97.3 96.1 96.1 95.3

See the notes to Table S14.
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