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Abstract

Exact collinearity between regressors makes their individual coeffi cients not identified. But,
given an informative prior, their Bayesian posterior means are well defined. Just as exact
collinearity causes non-identification of the parameters, high collinearity can be viewed as
weak identification of the parameters, which is represented, in line with the weak instrument
literature, by the correlation matrix being of full rank for a finite sample size T , but converging
to a rank deficient matrix as T goes to infinity. This paper examines the asymptotic behaviour
of the posterior mean and precision of the parameters of a linear regression model for both
cases of exactly and highly collinear regressors. It shows that in both cases the posterior
mean remains sensitive to the choice of prior means even if the sample size is suffi ciently large,
and that the posterior precision rises at a slower rate than the sample size. In the highly
collinear case, the posterior means converge to normally distributed random variables whose
mean and variance depend on the priors. A new recursively computed diagnostic statistic is
proposed for detection of estimates that are subject to the high collinearity problem. Monte
Carlo evidence is also provided to shed light on the small sample properties of the posterior
means and precisions under different degrees of collinearity. The use of the diagnostic statistic
is illustrated in an empirical application which estimates the effect of dividend yield on excess
returns using Shiller’s monthly data over the period 1872-2017.
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1 Introduction

This paper presents a Bayesian analysis of the multicollinearity problem for linear regression

models with highly collinear regressors. Multicollinearity is an old problem in time series analysis

where the regressors tend to be highly persistent. For example, Spanos and McGuirk (2002, 365-

6) note that although high degree of collinearity amongst the regressors is one of the recurring

themes in empirical time series research, the manifestation of the problem seems unclear; there

is no generally accepted way to detect it; and there is no generally accepted way to deal with it.

Pesaran (2015, Section 3.11) discusses the multicollinearity problem and shows that in the case

of highly collinear regressors the outcomes of individual t-tests and associated joint F-tests could

be in conflict, with statistically insignificant outcomes for the individual t-test and a statistically

significant outcome for the joint test. The term "multicollinearity" originates with Ragnar Frisch

(1934) as a contraction of his phrase multiple collinearity which refers to a situation in which

several linear relationships hold between variables and the meaning subsequently changed to

linear dependence between regressors.

The adverse effects of multicollinearity on the precision with which the parameters are esti-

mated can be reduced by the use of extra information, should it be available. The extra infor-

mation can take the form of either more data or prior information. The prior information may

be exact, for instance that a coeffi cient is zero or takes a particular value, or probabilistic, as

in the Bayesian approach we focus on. The properties of Bayesian procedures are of particular

interest, both because suggested solutions such as shrinkage estimators and ridge regression can

be interpreted in Bayesian terms and because, as Leamer (1978) notes, Bayesian estimators can be

interpreted in terms of pooling two samples of data as Tobin (1950) did by combining cross-section

and time-series data. Poirier (1998) provides a Bayesian treatment of nonidentified models.

One can distinguish three cases. First, when there is exact collinearity between regressors, their

individual coeffi cients are not identified, but given an informative prior their Bayesian posterior

means are well defined. Second, when there is multicollinearity in that the correlation matrix

between regressors may be ill-conditioned in small samples, but has full rank for all T , including

the case where T → ∞. Here a Bayesian approach can compensate for the ill conditioned

correlation matrix in small samples, but the posterior means converge to the true values in large

samples, so for large samples there is little to choose between Bayesian and frequentist approaches.

We consider the Bayesian analysis of a third, intermediate, case where the correlation matrix is

of full rank for a finite T , but converges to a rank deficient matrix as T goes to infinity. So in

the case of two regressors the correlation between them tends to ±1 as T →∞. We call this the
highly collinear case. Just as exact collinearity causes non-identification of the parameters, high

collinearity can be viewed as weak identification of the parameters. This characterisation of the

highly collinear case is in line with the notion of weak instruments and weak identification in the

generalized method of moments, GMM, literature where the correlation of the instruments and

the target variable is allowed to tend to zero with the sample size. See, for example, the survey
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by Stock, Wright, and Yogo (2002).

This representation allows us to examine the extent to which the Bayesian analysis is robust to

the choice of prior. We analyse the asymptotic behaviour of the posterior mean and precision of the

parameters of a linear regression model for exactly and highly collinear regressors, corresponding

to the non-identified and weakly identified cases. Whereas in the identified case the posterior mean

tends to its true value, in both the exactly collinear and highly collinear cases the posterior mean

continues to depend on the priors even if T → ∞. Also, posterior precisions of non-identified or
weakly identified coeffi cients increase at rates slower than T , in contrast to the posterior precisions

of identified coeffi cients that rise linearly with T . In the highly collinear case, the posterior means

converge to normally distributed random variables whose mean and variance depend on the priors

for coeffi cients and precision. The distribution degenerates to fixed points in the polar cases of

either exact collinearity or strong identification. This analysis also suggests a new diagnostic

statistic for the detection of high collinearity. This is based on a recursively computed estimate

of the signal to noise ratio associated with a particular parameter estimate of interest. In the

absence of perfect or high collinearity, this ratio must grow linearly with the sample size. We

propose detecting high collinearity if this recursively estimated ratio does not rise in line with the

sample size.

Our analysis is related to Poirier (1998), Koop et al. (2013), Baumeister and Hamilton (2015),

and Basturk et al. (2017); all of which consider Bayesian analysis of unidentified or weakly

identified models. The focus in Koop et al. (2013) was on the behaviour of the posterior precision

of the coeffi cient when the parameter was not identified or only weakly identified, here the focus

will also be on the behaviour of the posterior mean.

Phillips (2016) provides a frequentist analysis of a similar case of near singular regressions for

both least squares and instrumental variable estimators, and shows that in the case of asymptot-

ically collinear regressors the estimators will be inconsistent and converge to random variables.

We obtain similar asymptotic results for the Bayesian case.1

Many Bayesians emphasise finite T rather than asymptotic analysis. But we believe our

asymptotic analysis is also relevant from a finite T perspective, since it addresses how data

updates (changes in T ) affect the posterior means and precisions. In the unidentified and weakly

identified cases our analysis suggests that the posteriors remain dependent on the choice of the

priors; and that this dependence that does not diminish with successive Bayesian updates. It also

follows that posterior mean of a weakly identified parameter (although well-defined for a finite

T ), will be much more sensitive to the choice of the priors as compared to the posterior mean

of a strongly identified parameter. We demonstrate the properties of the posterior mean and

precision for different degrees of collinearity between the regressors with a number of Monte Carlo

experiments which show how the asymptotic results operate in finite samples.

The rest of the paper is organized as follows: Section 2 considers the exactly collinear case,

1Cheng et al. (2017) comment that there is little discussion on the large sample behaviour of the posterior mean
and examine asymptotic properties of posterior means obtained from simulations.
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where the parameters are not identified, to illustrate the influence of the priors on the poste-

rior means and precisions as T → ∞. Section 3 considers the highly collinear case, where the
parameters are weakly identified. The strength of identification can be measured in terms of a

signal to noise ratio, and Section 4 discusses the use of a recursively estimated version of this

ratio as a diagnostic indicator of high collinearity. Section 5 contains the Monte Carlo analysis.

Section 6 uses the empirical relationship between stock returns and dividend yields to illustrate

the application of this diagnostic. Section 7 contains some concluding comments.

2 Exactly collinear regressors

This section examines the properties of the posterior means and precisions in the exactly collinear

case as a benchmark for the highly collinear case. Consider the linear regression model

y = Xθ + u

where y is a T × 1 vector of observations on the dependent variable, X is a T × k matrix of

observations on the k regressors, θ = (θ1, θ2, ...θk)
′, a k× 1 vector of unknown parameters, and u

is a T × 1 vector of errors distributed independently of X as N(0, σ2IT ). An element of θ, say

θi is the parameter of interest and to simplify the exposition below we often assume that σ2 is

known.2

The least squares estimator is given by

θ̂ =
(
X′X

)−1
X′y

when (X′X) is non-singular. When (X′X) is rank deficient it may still be possible to estimate

linear functions of θ, say β = b′θ, where b is a k × 1 vector that characterises the exact linear

relationships among the regressors.

However, even with exact collinearity, the Bayesian posterior distribution of θ is well defined.

Suppose that the prior distribution of θ is N(θ,H
¯
−1), where H

¯
, the prior precision matrix of θ, is

a symmetric positive semi-definite matrix. Then based on a sample of T observations and known

σ2 the posterior mean of θ is given by

θ̄T =
(
σ−2T−1X′X + T−1H

¯

)−1
(σ−2T−1X′y + T−1H

¯
θ). (1)

This result can also be used to derive the Ridge Regression estimates of θ, often used to deal with

the multicollinearity problem, by setting θ = 0, and H
¯

= 1/σ2, where σ2 is the prior value of σ2.

For this choice of priors, θ̄T reduces to the Ridge estimator θ̂κ defined by

θ̂κ =
(
X′X + κIk

)−1
X′y,

where κ = σ2/σ2 is the ridge of the shrinkage parameter that determines the extent to which X′X

is shrunk towards the identity matrix. The smaller the value of σ2 relative to σ2, the greater the

shrinkage of X′X towards the identity matrix.
2Since σ2 does not appear in the expressions for the main results, this is not a strong assumption.
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The covariance matrix of the posterior distribution of θ, denoted by V̄, is given by

V̄ =
(
σ−2X′X +H

¯

)−1
. (2)

The posterior precision of θi, which we denote by h̄ii, is given by the inverse of the ith diagonal

element of V̄.3

When T−1X′X is non-singular for all T > k, then θ̄T converges in probability to θ0, as

T →∞, where θ0 is the true value of θ. But when there are exact linear dependencies amongst
the regressors and X is rank deficient, the posterior mean remains well defined for finite T since(
σ−2T−1X′X + T−1H

¯

)−1 exists even if (X′X)−1 does not. We consider below what happens to

the posterior means (and precisions) as T →∞.
To simplify the exposition we consider the relatively simple case where k = 2 and the regression

model is given by

yt = θ1x1t + θ2x2t + ut, ut ∼ IIDN(0, σ2), (3)

where the yt and the regressors are measured as deviations from their means, and where θ =

(θ1, θ2)
′ are the parameters of interest.

Suppose that there is exact collinearity of the form x2t = φx1t for all t, and φ is a known

non-zero constant. In this case

T−1X′X = s2Tκφκ
′
φ, T

−1X′y = s2T β̂Tκφ (4)

where β̂T = syT /s
2
T , syT = T−1

T∑
t=1

ytx1t, s2T = T−1
T∑
t=1

x21t > 0, for all T , and κφ = (1, φ)′. Also

note that the estimable function is

β̂T →p β
0 = θ01 + φ θ02. (5)

In the case where x1t and x2t are perfectly correlated, θ01 and θ
0
2 are not unique but defined by all

values of θ1 and θ2 that lie on the line β = θ1 + φ θ2, for all values β ∈ R.

2.1 Posterior means in the exactly collinear case

We consider the limiting properties of the posterior means in the two regressor case, (3). Using

(4) in (1) and after some algebra we have

θ̄T =
(
κφκ

′
φ + T−1A

)−1 (
β̂Tκφ + T−1b

)
,

where

A = (aij) =
(
σ2/s2T

)( h
¯ 11

h
¯ 12h

¯ 12
h
¯ 22

)
,

b = (bi) =
σ2

s2T
H
¯
θ =

σ2

s2T

(
h
¯ 11

θ1 + h
¯ 12

θ2
h
¯ 12

θ1 + h
¯ 22

θ2

)
.

3We consider conjugate priors, which are widely used in a regression context, such as Bayesian VARs. This
enables us to obtain analytical results and not have to resort to numerical methods.
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Therefore,

θ̄1,T =
β̂T (a22 − φa12) + φ (φb1 − b2) + T−1 (b1a22 − b2a12)

a11φ2 − 2φa12 + a22 + T−1(a11a22 − a212)
, (6)

θ̄2,T =
b2 − φb1 − β̂T (a12 − φa11) + T−1 (b2a11 − b1a12)

a11φ2 − 2φa12 + a22 + T−1(a11a22 − a212)
. (7)

These are exact results, but to investigate the probability limits of the posterior means we only

need to consider the first order terms.4

θ̄1,T = θ01 +

(
h
¯ 11

φ2 − φh
¯ 12
)

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

(
θ1 − θ01

)
−

(
φh
¯ 22
− φ2h

¯ 12
)

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

(
θ2 − θ02

)
+Op(T

−1), (8)

and

θ̄2,T = θ02 −
(φh
¯ 11
− h
¯ 12

)

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

(
θ1 − θ01

)
+

(h
¯ 22
− φh

¯ 12
)

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

(
θ2 − θ02

)
+Op(T

−1), (9)

In the case where h
¯ 12

= 0, the results simplify to

p lim
T→∞

(
θ̄1,T

)
= θ01 +

φ2h
¯ 11

h
¯ 11

φ2 + h
¯ 22

(
θ1 − θ01

)
− φh

¯ 22
h
¯ 11

φ2 + h
¯ 22

(
θ2 − θ02

)
,

p lim
T→∞

(θ̄2,T ) = θ02 −
φh
¯ 11

h
¯ 11

φ2 + h
¯ 22

(
θ1 − θ01

)
+

h
¯ 22

h
¯ 11

φ2 + h
¯ 22

(
θ2 − θ02

)
which are not equal to their true values and highlight the role of the prior means and precisions

of both coeffi cients in the determination of the asymptotic posterior means. In the case where the

prior precisions are set to be the same across the parameters and h
¯ 12

= 0, (often done in practice)

we have

p lim
T→∞

(
θ̄1,T

)
= θ01 +

φ2

1 + φ2
(
θ1 − θ01

)
− φ

1 + φ2
(
θ2 − θ02

)
, (10)

p lim
T→∞

(θ̄2,T ) = θ02 −
φ

1 + φ2
(
θ1 − θ01

)
+

1

1 + φ2
(
θ2 − θ02

)
, (11)

and the limit of posterior means do not depend on the prior precisions, but do depend on both

prior means, even asymptotically.

2.2 Posterior precisions in the exactly collinear case

Using (2) and noting that x2t = φx1t we have

V̄ =
(
T s̃2Tκφκ

′
φ +H

¯

)−1
=

(
T s̃2T + h

¯ 11
T s̃2Tφ+ h

¯ 12
T s̃2Tφ+ h

¯ 12
T s̃2T + φ2h

¯ 22

)−1
=

1(
T s̃2T + h

¯ 11
) (
T s̃2T + φ2h

¯ 22
)
−
(
T s̃2Tφ+ h

¯ 12
)2 ( T s̃2T + φ2h

¯ 22
−T s̃2Tφ− h¯ 12−T s̃2Tφ− h¯ 12 T s̃2T + h

¯ 11

)
,

where s̃2T = s2T /σ
2. The posterior precison of θ1 is given by the inverse of the first element of V̄,

namely

h̄11 =

(
T s̃2T + h

¯ 11
) (
T s̃2T + φ2h

¯ 22
)
−
(
T s̃2Tφ+ h

¯ 12
)2

T s̃2T + φ2h
¯ 22

,

4The derivations are given in Appendix A1.
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which gives the following result for the average precision of θ1

T−1h̄11 = (s̃2T + T−1h
¯ 11

)−
(
φs̃2T + T−1h

¯ 12
) (
φ2s̃2T + T−1h

¯ 22
)−1 (

φs̃2T + T−1h
¯ 21
)
,

and after some algebra yields

T−1h̄11 = T−1s̃2T

{
(h
¯ 22

/s̃2T ) + (h
¯ 11

/s̃2T )φ2 + (h
¯ 11

/s̃2T )T−1(h
¯ 22

/s̃2T )− 2φh
¯ 21

/s̃2T − T−1
(
h
¯ 21

/s̃2T
)2

φ2 + T−1(h
¯ 22

/s̃2T )

}
.

It now readily follows that limT→∞ T
−1h̄11 = 0, namely for any choice of priors and finite values

of s̃2T , the average precision of θ1 will tend to zero when the regressors are exactly collinear. This

result contrasts to the identified case where the average precision tends to a non-zero constant.

It is also instructive to consider the special case when the priors of θ1 and θ2 are independent,

namely h
¯ 12

= h
¯ 21

= 0. In this case the above expression simplifies to

h̄11 =
h
¯ 22

+ φ2h
¯ 11

+ T−1h
¯ 11
h
¯ 22

/s̃2T
φ2 + T−1(h

¯ 22
/s̃2T )

.

Hence, the posterior precision (h̄11) of the unidentified parameter, θ1, differs from its prior preci-

sion (h
¯ 11
) for all T , and as T →∞, even though θ1 and θ2 are assumed to be a priori independent.

Also, for T suffi ciently large we have

lim
T→∞

h̄11 = h
¯ 11

+ φ−2h
¯ 22

,

which shows that the posterior precision is bounded in T , in contrast to the posterior precision

of an identified parameter that rises linearly with T .

The extent to which the posterior precision deviates from the prior precision is determined

by h
¯ 22

/φ2. It is also worth noting, however, that as T increases the posterior precision declines.

This could be viewed as an indication that θ1 is not identified. In the case where a parameter

is identified we would expect the posterior precision to rise with T and eventually dominate the

prior precision.

3 Highly collinear regressors

In practice, the case of exactly collinear regressors is only of pedagogical interest. In this section

we investigate the role of the priors in regression analysis when the regressors are highly collinear

and are expected to remain so even if we consider larger data sets. Following the literature on

weak identification, we define the highly collinear case as being where the correlation matrix is

full rank for a finite T , but tends to a rank deficient matrix as T → ∞. Thus we model the
collinearity of the regressors in (3) by

x2t = φx1t +
δT√
T
vt, (12)
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where vt is a stationary process with zero means, distributed independently of x1t and ut such

that

svv,T = T−1
T∑
t=1

v2t →p σ
2
v , s2T = T−1

T∑
t=1

x21t →p σ
2
1, (13)

T−1/2s−2T

T∑
t=1

x1tvt →d N(0, σ2v), T−1/2
T∑
t=1

utvt →d N(0, σ2σ2v). (14)

The coeffi cient δT in (12) controls the degree of collinearity between the two regressors. It is clear

that the correlation between x1t and x2t is not perfect when T is finite, but when δT is constant,

it tends to unity as T →∞. More specifically, denoting the correlation coeffi cient of x1t and x2t
by ρT , we have

ρT =
φ+ δT√

T

(
T−1/2

∑T
t=1 x1tvt
s2T

)
√
φ2 + 2φ δT√

T

(
T−1/2

∑T
t=1 x1tvt
s2T

)
+

δ2T
T

(
svv,T
s2T

) ,
which in view of (13) and (14) yields

ρT =

(
φ

|φ|

)[
1 +Op

(
δT√
T

)]
. (15)

In finite samples ρT could take any value over the range (−1, 1), but tends to ±1, as T →∞. It
tends to 1 if φ > 0, and to −1 if φ < 0. The above result can also be written equivalently as

ρ2T = 1 +Op

(
δT√
T

)
.

There is a one-to-one relationship between the degree of correlation of x1t and x2t and the

degree of identifiability of θ1 and θ2. The different cases can be characterized in terms of δT . In

the perfectly collinear case δT = 0, for all T , and in the highly collinear case of weak identification

δT is bounded in T . Strong identification requires δ2T = �(T ) where �(T ) denotes that δ2T rises

at the same rate as T , such that ρ2T < 1, for all values of T , including as T →∞.5

As noted above, this formulation is akin to the treatment of weak identification employed

in the GMM literature. Where we have ρ2T → 1, as T → ∞, in that literature a reduced form
coeffi cient goes to zero as T → ∞. For instance, Staiger and Stock (1997) consider the case of
a single right hand side endogenous variable with reduced form coeffi cient π and introduce weak

instrument asymptotics as a local to zero alternative of the form π = δ/
√
T , where δ is a constant

and T is the sample size. In a specification that is even more similar to ours, Sanderson and

Windmeijer (2016) examine the case where there are two right hand side endogenous variables

and consider weak instrument asymptotics local to a rank reduction of one of the form

π1 = απ2 +
δ√
T
, (16)

5The notation f = �(T ) differs from the standard big O notation, f = O(T ). The latter provides an upper
bound on the expansion rate of the function in terms of T , whilst the former refers to the exact rate at which the
function rises with T.
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where π1 and π2 are vectors of parameters in the two reduced form equations, δ is a vector

of constants and T is the sample size. Where (16) has the relation between the reduced form

parameters a deterministic functions of the sample size, (12) postulates a stochastic relation

between the regressors such that their correlation coeffi cient, ρT , tends to unity at the rate of

δT /
√
T , which corresponds to the local parameterization used in the weak instrument literature.

3.1 Posterior mean in the highly collinear case

The posterior mean of θ1, namely θ̄1,T , is derived in Appendix A2 and is given by (33)

θ̄1,T = θ01 +
φ (h
¯ 11

φ− h
¯ 12

)

λ2T +ψ′H
¯
ψ

(
θ1 − θ01

)
− φ (h

¯ 22
− φh

¯ 12
)

λ2T +ψ′H
¯
ψ

(
θ2 − θ02

)
−
(

β0φλT
λ2T +ψ′H

¯
ψ

)(
T−1/2

T∑
t=1

vtut
σvσ

)
+Op

(
T−1/2

)
.

where ψ = (φ,−1)′, H
¯

=
(
h
¯ ij
)
, and λ2T = δ2Tσ

2
v/σ

2 is a signal-noise ratio that provides a summary

measure of the relative importance of the collinearity for the analysis of the posterior mean. The

above result generalizes equation (8), derived for the exactly collinear case, and reduces to it when

δT = 0.

Denoting the limit of δT as T →∞, by δ, (which could be 0 or ∞), then the posterior mean
tends to a normal distribution that depends on prior means and precisions. More specifically we

have

θ̄1,T →d N
(
µ, ω2

)
, as T →∞,

where

µ = θ01 +
φ (h
¯ 11

φ− h
¯ 12

)

λ2 + ψ′H
¯
ψ

(
θ1 − θ01

)
− φ (h

¯ 22
− φh

¯ 12
)

λ2 + ψ′H
¯
ψ

(
θ2 − θ02

)
,

and

ω2 =

(
β0φ

)2
λ2

(λ2 + ψ′H
¯
ψ)2

.

The frequentist results in Phillips (2016, Theorem 1) match the above result that the posterior

means do not converge to their true values and are normally distributed random variables, and

show the similarity between classical and Bayesian approaches for weakly identified cases.

The nature of the limiting property of the posterior mean, θ̄1,T , critically depends on the

(population) signal-to-noise ratio λ2 = δ2σ2v/σ
2. The signal, δ2σ2v , measures the extent to which

x1t and x2t have "independent" variation in the regression of x2t on x1t, (12), while σ2 is the

measure of the noise in the regression. As will be discussed below this provides a measure of the

strength of identification. The distribution of θ̄1,T degenerates to a fixed value only under the

two polar cases of exact collinearity and strong identification. In the case of exact collinearity

δ = λ = 0, and we have ω2 = 0, and µ is the limit (as T → ∞) of the posterior mean of θ1 in
the exactly collinear case discussed in Section 2.1. In the case where the parameters are strongly

identified, δ2T = �(T ), such that δ2T /T → c > 0, then ω2 → 0, and µ→ θ01.
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3.2 Posterior precision in the highly collinear case

Turning to posterior precisions, using (2) we have

V̄−1 = T s̃2T

(
1 φ
φ φ2

)
+

(
h
¯ 11

h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)

h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)
h
¯ 22

+ λ221,T + 2φδT
(
T 1/2s1v,T /σ

2
) ) ,
(17)

where as before s̃2T = s2T /σ
2, and

s1v,T = T−1
T∑
t=1

x1tvt, svv,T = T−1
T∑
t=1

v2t , λ
2
21,T = δ2T

(
svv,T /σ

2
)

The posterior precision of θ1 is given by the inverse of the first element of V̄. The derivations are

given in Appendix A3, where it is shown that,

h̄11,T =
s̃2T
(
h
¯ 11

φ2 + λ2T − 2φh
¯ 12

+ h
¯ 22
)

φ2s̃2T + 2χTφT−1zT + T−1h
¯ 22

+ T−1λ2T
+
−T−1χ2T z2T + 2χT (h

¯ 11
φ− h

¯ 12
)T−1zT

φ2s̃2T + 2χTφT−1zT + T−1h
¯ 22

+ T−1λ2T
+h
¯ 11

T−1λ2T + T−1h
¯ 11
h
¯ 22
− T−1h

¯
2
12

φ2s̃2T + 2χTφT−1zT + T−1h
¯ 22

+ T−1λ2T
, (18)

where χT = δTσvσx1/σ
2,

zT =
T 1/2s1v,T
σx1σv

= T−1/2
T∑
t=1

x1tvt
σx1σv

→d N(0, 1).

Hence, for a finite T the posterior precision of θ1 is a nonlinear function of the random variable

zT , and itself is also a random variable. The limiting properties of h̄11,T , crucially depends on the

limiting properties of δT (see (12)) as T → ∞. In the highly collinear case, δT is bounded in T
and we have

p lim
T→∞

h̄11,T =

(
λ2 + h

¯ 11
φ2 − 2φh

¯ 12
+ h
¯ 22
)

φ2
=
λ2 + ψ′H

¯
ψ

φ2
.

where as before λ2 = δ2σ2v/σ
2 = p limT→∞ δ

2
T

(
svv,T /σ

2
)
. Similarly,

p lim
T→∞

h̄22,T = λ2 + φ2h
¯ 11
− 2φh

¯ 12
+ h
¯ 22

= λ2 + ψ′H
¯
ψ.

Hence, in the highly collinear case (where θ1 and θ2 are weakly identified), the posterior precision

tends to a finite limit, which is qualitatively the same conclusion obtained for the exactly collinear

case. Finally, in the strongly identified case, where δ2T /T → c2 > 0, then limT→∞
(
T−1λ2T

)
=

c2σ2v/σ
2, and using this results in (18) we have

p lim
T→∞

T−1h̄11,T =
limT→∞

(
T−1λ2T

)
φ2σ2x1/σ

2 + limT→∞
(
T−1λ2T

)
=

c2σ2v/σ
2

φ2σ2x1/σ
2 + c2σ2v/σ

2
=

c2σ2v
φ2σ2x1 + c2σ2v

> 0.

Also using (12) it follows that φ2σ2x1 + c2σ2v = σ2x2 , and hence in the strongly identified case

p lim
T→∞

T−1h̄11,T = 1− ρ2,

9



where ρ is the population correlation coeffi cient between x1t and x2t. Therefore, as to be expected,

in contrast to the highly collinear case, the posterior precision of strongly identified coeffi cients

rise with T such that the average precision, T−1h̄11,T , tends to a strictly positive constant. Also,

as to be expected, the posterior precision does not depend on the priors when T is suffi ciently

large and the regression coeffi cients are strongly identified.

Finally, it is worth noting that the limiting property of the average precision is qualitatively

the same irrespective of whether the parameters are not identified (the exactly collinear case) or

weakly identified (the highly collinear case). In both cases the average precision tends to zero with

T , although the rates at which this occurs does depend on whether the underlying parameter is

weakly identified or not identified. This common feature does not extend to the posterior mean,

whose limiting properties differ between the weakly identified and not identified cases.

4 Diagnostics for collinearity

As noted above, for large T the strength of identification is measured by the signal-to-noise ratio

λ2 = δ2σ2v/σ
2. The numerator, δ2σ2v , can be estimated from the OLS residuals of the regression

of x2t on x1t, corresponding to (12), namely

δ̂2σ2v =
T∑
t=1

(
x2t − φ̂x1t

)2
.

The denominator, σ2, can be estimated consistently from the regression of yt on x1t and x2t, even

if x1t and x2t are perfectly correlated.6 A consistent estimator7 of λ2T is now given by:

λ̂2T =
δ̂2σ2v
σ2

=

∑T
t=1

(
x2t − φ̂x1t

)2
T−1

∑T
t=1

(
yt − θ̂1x1t − θ̂2x2t

)2 . (19)

This collinearity diagnostic can also be written equivalently as

λ̂2T =
T σ̂22:1
σ̂2

, (20)

where σ̂22:1 is the estimator of the error variance of the regression of x2t on x1t, and σ̂
2 is the

estimator of the error variance of the regression model. This will be zero in the case of exact

collinearity.

We first consider the possibility of testing for weak identification and show that it is not feasible

because of the presence of a nuisance parameter. The null hypothesis of weak identification of θ1

or θ2, can be written as

H0 : δ2T = c2,

where c is a positive constant. The alternative hypothesis of strong identification is defined by

H1 : δ2T = �(T ).

6See Section 3.12 of Pesaran (2015).
7 In small samples one might want to make a degrees of freedom adjustment.
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Using (12), under the null hypothesis (and noting that all variables are measured as deviations

from their means) we have

T σ̂22:1 = x′2M1x2 = c2
(

v′M1v

T

)
,

and hence

λ̂2T =

(
c2σ2v
σ2

)(
v′M1v
Tσ2v

)
u′Mu
Tσ2

,

where v = (v1, v2, ..., vT )′, u = (u1, u2, ..., uT )′,M1= IT−X1(X
′
1X1)

−1X1,M = IT−X(X′X)−1X,

X1 = (τT ,x1), X = (τT ,x1,x2), and τT is a T × 1 vector of ones. For T large and by the Slutsky

Theorem

λ̂2T
a∼ λ2

(
v′M1v

Tσ2v

)
,

where λ2 =
(
c2σ2v
σ2

)
, and λ̂2T →p λ

2. Consider now the standardized test statistic

∆′T =

√
T − 2

2

[(
T

T − 2

λ̂2T
λ2
− 1

)]
, (21)

and suppose that vt is IIDN(0, σ2v). Then, since M1 is an idempotent matrix of rank T − 2, we

have

∆′T =
σ−2v v′M1v − (T − 2)√

2 (T − 2)
=

∑T−2
i=1 (ξ2i − 1)/

√
2√

(T − 2)
,

where ξ2i are IID(1, 2). Hence, under H0, ∆′T →d N(0, 1). An asymptotically equivalent version

of ∆′T is

∆T =

√
T

2

(
λ̂2T
λ2
− 1

)
→d N(0, 1), under H0 and as T →∞. (22)

In practice, the implementation of the test is complicated by the fact that ∆T depends on the

nuisance constant λ2. The test could only be implemented if one had a prior view about the value

of λ.

Given that testing is not feasible because of the dependence of ∆T on λ2, an alternative

strategy would be to use λ̂2T as an indicator of high collinearity, with low values interpreted as

evidence of weak identification of θ1 (or θ2). Under exact collinearity, λ̂2T = 0, and it might be

expected to be close to zero in the highly collinear case. If identification is strong we would expect

λ̂2T to rise with T . But if identification is weak, in the sense defined above, we would not expect

λ̂2T to rise with T . Accordingly, collinearity is likely to be a problem if λ̂2T is small and does not

increase much as T increases. This suggests estimating λ2 recursively using expanding observation

windows starting with the first T0 observations and then plotting λ̂2τ , for τ = T0, T0 + 1, ...., T

and check the rate at which λ̂2τ rises with τ . Equivalently one could consider whether τ
−1λ̂2iτ was

constant as τ increased.

A scaled version of the high collinearity diagnostic statistic, λ̂2T , is also related to the R
2 rule

of thumb due to Klein (1962, p101) that considers multicollinearity is likely to be a problem if

11



R212 > R2y, where R
2
12 (= R221) is the squared correlation coeffi cient of x1t and x2t, and R

2
y is the

multiple correlation coeffi cient of the regression model, since.(
V ar(y)

V ar(x1)

)
λ̂2T = T

(
1−R212
1−R2y

)
.

The above results and the diagnostic given by (20) generalize to regression models with more

than two regressors. In the case of a linear regression model with k regressors (not counting the

intercept) the high collinearity diagnostic statistic for the ith regressors is given by

λ̂2iT =
T σ̂2i
σ̂2

, for i = 1, 2, ..., k, (23)

where σ̂2i is the estimator of the error variance of the regression of the i
th regressor on the

remaining regressors, and σ̂2 is the estimator of the underlying regression model. Once again

expanding window estimates of T−1λ̂2iT can provide useful indication of the weak identification

of the ith coeffi cient in the regression model. There would be a collinearity problem if λ̂2iτ for

τ = T0, T0+ 1, ...., T do not exhibit an upward trend as the window size is increased. The relative

size of this measure for different regressors also indicates their relative sensitivity to collinearity.

In cases where T is short one could follow Koop et al. (2013) consider estimates of T−1λ̂2i,T
using bootstrapped samples generated using the regression model and the marginal regressions of

xit on the remaining regressors.

5 Monte Carlo Analysis

We conduct a number of Monte Carlo experiments to investigate the extent to which our as-

ymptotic theoretical results apply in finite samples. We consider a regression with two serially

correlated and multicollinear regressors x1t and x2t. Given the Monte Carlo design and parameter

values chosen for δT , that controls the correlation between the regressors, we consider how the

posterior means and precisions of the regression coeffi cients evolve as T increases.

5.1 Design

For replications r = 1, 2, ..., 2000, we generate x1t as

x1t = γx1,t−1 +
√

1− γ2εt, εt ∼ IIDN(0, 1),

for t = −49,−48, ..., 0, 1, 2, ...T, with x1,−50 = 0. We drop the first 50 observations to reduce the

impact of the initial observation on x1t and use x1t, t = 1, 2, ..., T in the simulations. Uncondi-

tionally x1t ∼ N(0, 1). We generate x2t as

x2t = φx1t +

(
δT√
T

)
vt, vt ∼ IIDN(0, 1),

so that x2t ∼ N(0, φ2+T−1δ2T ), and Cov (x1t, x2t) = φ. We also note that x2t follows a first order

moving average process which reduces to an AR(1) process under the highly collinear case where

T−1δ2T → 0. We generate yt as
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yt = θ1x1t + θ2x2t + ut, ut ∼ IIDN(0, 1).

We fix γ = 0.9; θ1 = θ2 = 1, φ = 2 and consider the following values of δT :

δT = 0 : exactly collinear,

δT = 1 and 5 : highly collinear,

δT = T 1/2 : not highly collinear.

The priors for means and variances are set as

θ =

(
θ1
θ2

)
=

(
0
0

)

H
¯
=
(
h11 h12
h21 h22

)
=

(
1 0
0 1

)
For each δT and for each replication we compute equations (1) and (2) above, repeated here

for convenience:(
θ̄1T
θ̄2T

)
= θ̄T =

(
σ−2T−1X′X + T−1H

¯

)−1
(σ−2T−1X′y + T−1H

¯
θ), (24)

and

V̄ =
(
σ−2X′X +H

¯

)−1
. (25)

where
X

T × 2
=

(
x1, x2
T × 1 T × 1

)
and

x1 =


x11
x12
...
x1T

 , x2 =


x21
x22
...
x2T

 ,

As in the theoretical derivations we treat σ2 as known and set σ2 = 1 when calculating (24) and

(25).

5.2 Expected results

In the case where high collinearity is not a problem, δT = T 1/2,

E(x21t) = 1 and E(x22) = 1 + φ2, Cov(x1t, x2t) = φ,

which gives the following population value for the correlation coeffi cient between x1t and x2t :

ρT =
φ(

φ2 + T−1δ2T
)1/2

=
φ2

1 + φ2
, if δT = T 1/2.
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Also note that in this case

p lim
T→∞

T−1h̄11,T = 1− ρ2.

For the exactly collinear case where δ = 0, and setting prior precisions to be the same across

parameters and h
¯ 12

= 0, using (10) and (11), we obtain:

p lim
T→∞

(
θ̄1,T

)
= θ01 +

φ2

1 + φ2
(
θ1 − θ01

)
− φ

1 + φ2
(
θ2 − θ02

)
,

p lim
T→∞

(θ̄2,T ) = θ02 −
φ

1 + φ2
(
θ1 − θ01

)
+

1

1 + φ2
(
θ2 − θ02

)
.

For our choices of priors: θ1 = θ2 = 0, θ01 = θ02 = 1 and setting φ = 2, we have

p lim
T→∞

(
θ̄1,T

)
= 1− φ2

1 + φ2
+

φ

1 + φ2
=

1 + φ

1 + φ2
=

3

5
, (26)

p lim
T→∞

(θ̄2,T ) = 1 +
φ

1 + φ2
− 1

1 + φ2
=
φ(φ+ 1)

1 + φ2
=

6

5
. (27)

In the strongly identified case where there is not a high collinearity problem and δT = T 1/2,

the regressors are still quite highly correlated for this value of φ, and the population value for the

squared correlation coeffi cient between x1t and x2t is

ρ2T =
φ2

1 + φ2
=

4

5
.

In addition, for this case since σ2 = 1 :

X′X=

(
1 φ
φ 1 + φ2

)
,

V (θ̂ ) =
(
X′X

)−1
=

(
φ2 + 1 −φ
−φ 1

)
.

Precision is the inverse of the diagonal elements of the variance covariance matrix so asymptotically

p lim
T→∞

T−1h̄11,T = 1/(1 + φ2) =
1

5
(28)

p lim
T→∞

T−1h̄22,T = 1 (29)

5.3 Results

We first consider the distribution of the posterior means for T = 1000. Figure 1, shows the

simulated distribution of the posterior mean in the exactly collinear case where δ = 0. The

distribution is tightly clustered around the values of θ̄1,T = 0.6 and θ̄2,T = 1.2, as predicted by

(26) and (27). The fact that the posteriors differ from the priors may be taken to indicate that

"learning" is taking place about the true values, but this is not the case. The posterior means

(i.e. 0.6 and 1.2) are determined by the priors and φ, and do not tend to the true values of θ1

and θ2 even as T →∞.
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Fig. 1: Distribution posterior means, exactly collinear, T=1000.

Figure 2 shows the distribution of the posterior mean for a highly collinear case where δ = 1.

The posterior means are distributed around the same values of 0.6 and 1.2 as expected, though

the distribution is much more dispersed.
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Fig. 2: Distribution posterior means, highly collinear, T=1000

Figure 3 shows the distribution of the posterior mean for the case where δ = T 1/2, and the

regressors are not highly collinear. As expected, the posterior means are distributed around true

values of the parameters θ1 = θ2 = 1.
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Fig 3: Distribution posterior mean, not collinear, T=1000

We next examine the behaviour of the posterior precisions as the sample size is increased.

When the regressors are not highly collinear, the posterior precision of each coeffi cient should rise

with T, so the average precision should go to a non-zero constant. When the regressors are exactly

or highly collinear the posterior precision does not rise with T and the average precision goes to

zero as T tends to infinity. Figure 4 plots the values of T−1h̄11,T and Figure 5 of T−1h̄22 against

T = T0, T0 + 1, ..., 1000, where T0 = 20. Four different values of δT are shown on the same graph.

The values are the exactly collinear case δ = 0, two highly collinear cases δ = 1 and δ = 5, and the

not highly collinear case, δ = T 1/2. We are interested in how fast the average posterior precisions

of the exactly and highly collinear cases go to zero. The simulations match the theoretical results

and show the asymptotic properties are important for sample sizes that occur in practice. For the

not highly collinear case the average precisions converge to their theoretical values, given by (28)

and (29), when T reaches 200. For the exactly collinear and highly collinear cases the average

precisions go to zero. For δ = 0 and δ = 1 they are close to zero by T = 200, for δ = 5 by

T = 1000.
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Fig 4: average precision θ1.
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Fig 5: average precision θ2.

The Monte Carlo simulations indicate that the asymptotic results are relevant for sample sizes

that are likely to be encountered in practice.

6 An empirical illustration

We use the example of predicting excess stock returns by the dividend yield. Stambaugh (1999)

prompted a large literature on predictive regressions by showing that in regressions of rates of

return on lagged stochastic regressors, such as dividend yields, the OLS estimator’s finite-sample

properties can depart substantially from the standard regression setting. He also showed that the

Bayesian posterior distributions for the regression parameters are sensitive to prior beliefs about
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the autocorrelation of the regressor and whether the initial observation of the regressor is specified

as fixed or stochastic.

We use Robert Shiller’s online monthly data over the period 1871m1 2017m8.8 Monthly real

excess returns on Standard & Poor 500 (SP500), denoted by yt, are computed as

yt =

(
st − st−1
st−1

)
+

dt
st−1

− rt−1,

where st = SP500t/CPIt, dt = DIVt/(12 ∗ CPIt), SP500t is the SP500 price index, CPIt is

the consumer price index, DIVt is the annual rate of dividends paid on SP500, and rt is the real

return on ten year US government bond computed as

rt =
[
(1 +GS10t/100)1/12 − 1

]
− πt,

where GS10t is the 10-Year Treasury Constant Maturity Rate per annum, and πt is the rate of

inflation computed as πt = (CPIt − CPIt−1)/CPIt−1. The dividend yield variable is defined by
xt = ln(dt/st). We consider the predictive regressions

yt = αy + λyyt−1 + θ1x1t + θ2x2t + ut, (30)

where xit = xt−i, for i = 1, 2, and compute recursive estimates of σ2 = V ar(ut) using expanding

windows starting with 1872m1 and ending at 2017m8 : 1746 observations. We denote these

recursive estimates by σ̂2τ . We also consider the recursive estimates of the following auxiliary

regression

x1t = αx + φx2t + λxyt−1 + vt, (31)

and compute the recursive estimates of σ21 = V ar(vt), which we denote by σ̂21,τ .

Using equation (23) of Section (4) we can write the recursive estimates of the collinearity

indicator for θ1, for τ = 1872m1, ..., 2017m8 as

τ−1λ̂21,τ =
σ̂21,τ
σ̂2τ

.

In the case where θ1 is strongly identified we would expect λ̂21,τ to rise linearly with τ , or equiva-

lently that τ−1λ̂21,τ to remain reasonably constant over the period 1872m1− 2017m8. To avoid

the large sample variations when τ is small we drop the first 100 observations and show the values

of τ−1λ̂21,τ over the period τ = 1880m1− 2017m8 in Figure 6 below.

8See http://www.econ.yale.edu/~shiller/data.htm.
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Fig 6: Recursive Estimates of τ−1λ̂21τ for θ̂1.

As can be seen, the high collinearity indicator has been falling over the sample with the

exception of a brief period after the stock market crash of 1929. The pattern for θ̂2 is very

similar. This suggests that the coeffi cients of the dividend yield variables are likely to be weakly

identified. To illustrate the effect of sample size on the estimates, we plot θ̂1τ , the recursive

coeffi cient of lagged dividend yield, and its two standard error band in Figure 2. The coeffi cient

is insignificantly different from zero for the whole period but its standard error does not reduce

with the expanding sample: adding more data does not solve the multicollinearity problem.
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Fig 7: Recursive estimates of θ̂1τ and its 2 standard error bands.

To illustrate the effect of the sample size on the variance of θ̂1τ , we plot, τ V̂ ar(θ̂1τ ). The

estimated variance should fall at rate of τ so τ V̂ ar(θ̂1τ ) should be reasonably constant if the θ1 is

strongly identified. In fact, Figure 8 shows that the recursive estimates of τ V̂ ar(θ̂1τ ) are rising.
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with τ, confirming that the multicollinearity problem is not being solved with more data. The

recursive estimates of the diagnostic statistic τ−1λ̂21,τ and τ V̂ ar(θ̂1τ ) both point to the diffi culty

of estimating the coeffi cient of dividend yield in the regression predicting excess returns.
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Fig 8: Recursive estimates of τ V̂ ar(θ̂1τ ).

7 Conclusion

We have considered a Bayesian approach to the analysis of high collinearity in linear regressions.

We distinguish three cases. First, in the standard multicollinear case, where the regressors are

not highly or exactly collinear, the coeffi cients are strongly identified and as the sample size gets

large, the Bayesian posterior mean converges to the true value of the parameter. Second, in the

exactly collinear case, the posterior mean converges to a constant which depends on the priors,

and the posterior precision is bounded in T . Third, in the highly collinear case the posterior

mean converges to a normally distributed random variable whose mean and variance depend on

the choice of the priors even if T is suffi ciently large. The distribution of this random variable

degenerates to a fixed point in the polar cases of either where the parameters are not identified

(exact collinearity) or where the parameters are strongly identified.

Our analysis also suggests a recursive indicator of collinearity, λ̂2i,τ , a measure of the signal to

noise ratio, for the ith regressor, which is zero in the exactly collinear case and rises with T in

the strongly identified case. We derive the distribution of this measure, which would allow it to

be used as the basis for a test, except that it depends on a nuisance parameter. Therefore, we

propose to use τ−1λ̂2i,τ as an indicator of highly collinear regressors in cases where τ
−1λ̂2i,τ exhibit

a falling trend.

Since the posterior mean can go to a random variable as the sample size increases in the highly

collinear case, it is not a reliable estimate and is likely to be quite sensitive to the choice of the

20



priors even in the case of suffi ciently large samples. The posterior precision, which increases with

T in the strongly identified case, provides a better indicator and our suggested diagnostic can

be seen as a frequentist counterpart to the posterior precision. We illustrated the usefulness of

this diagnostic in an empirical example which involved estimating the effect of dividend yield on

market excess returns.
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Appendices

A1. Derivation of the probability limit for the posterior mean, θ̄T , in the exactly
colinear case

First consider θ̄1,T given by (6):

θ̄1,T =
β̂T (h

¯ 22
− φh

¯ 12
) + φ [φh

¯ 11
θ1 − h¯ 12θ1 + φh

¯ 12
θ2 − h¯ 22θ2]

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

+Op(T
−1),

=
β̂T (h

¯ 22
− φh

¯ 12
) + φ (φh

¯ 11
− h
¯ 12

) θ1 + φ (φh
¯ 12
− h
¯ 22

) θ2
h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

+Op(T
−1).

Then taking probability limits (noting that β̂T →p θ
0
1 + φ θ02 ), we have

p lim
T→∞

(
θ̄1,T

)
=
θ01 (h

¯ 22
− φh

¯ 12
) + φ (φh

¯ 11
− h
¯ 12

) θ1 + θ02
(
φh
¯ 22
− φ2h

¯ 12
)
− φ (h

¯ 22
− φh

¯ 12
) θ2

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

,

=
(h
¯ 22
− φh

¯ 12
) θ01 + φ (φh

¯ 11
− h
¯ 12

) θ1 + φ (h
¯ 22
− φh

¯ 12
)
(
θ02 − θ2

)
h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

,

= θ01 +
φ (φh

¯ 11
− h
¯ 12

)
(
θ1 − θ01

)
− φ (h

¯ 22
− φh

¯ 12
)
(
θ2 − θ02

)
h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

.

Similarly,

θ̄2,T =
β̂T (φh

¯ 11
− h
¯ 12

) + (h
¯ 12
− φh

¯ 11
) θ1 + (h

¯ 22
− φh

¯ 12
) θ2

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

+Op(T
−1),

and

p lim
T→∞

(θ̄2,T ) =

(
θ01 + φθ02

)
(φh
¯ 11
− h
¯ 12

) + (h
¯ 12
− φh

¯ 11
) θ1 + (h

¯ 22
− φh

¯ 12
) θ2

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

,

=
φθ02 (φh

¯ 11
− h
¯ 12

) + (h
¯ 22
− φh

¯ 12
) θ2 + (φh

¯ 11
− h
¯ 12

)
(
θ01 − θ1

)
h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

,

= θ02 +
− (φh

¯ 11
− h
¯ 12

)
(
θ1 − θ01

)
+ (h
¯ 22
− φh

¯ 12
)
(
θ2 − θ02

)
h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

.

Let ξ′= (− φ, 1), so Xξ = 0 then h
¯ 11

φ2 − 2φh
¯ 12

+h
¯ 22

= ξ′H
¯
ξ, and

p lim
T→∞

(
θ̄T
)

= θ0 +
1

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

(
φ2 −φ
−φ 1

)(
h
¯ 11

h
¯ 12h

¯ 12
h
¯ 22

)(
θ − θ0

)
= θ0 + ξ

(
ξ′H
¯
ξ
)−1

ξ′H
¯

(
θ − θ0

)
.

Clearly, we have p limT→∞
(
θ̄T
)

= θ0, if θ = θ0, a sort of self-fulfilling belief.

Finally,

θ̄1,T + φθ̄2,T =
β̂T
(
φ2a11 − 2φa12 + a22

)
+ 1

T (b1a22 − b2a12) + 1
T φ (b2a11 − b1a12)

a11φ2 − 2φa12 + a22 + T−1
[
a11a22 − a212

] .

or

θ̄1,T + φθ̄2,T = β̂T +
1

T

[
(b1a22 − b2a12) + φ (b2a11 − b1a12)− β̂T

[
a11a22 − a212

]
a11φ2 − 2φa12 + a22

]
+O(T−2)
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Hence

p lim
T→∞

(
θ̄1,T + φθ̄2,T

)
= p lim

T→∞

(
β̂T

)
= θ01 + φθ02.

Which is the only estimable function possible in a classical setting.

In the case where h
¯ 12

= 0, the above results simplify to

p lim
T→∞

(
θ̄1,T

)
= θ01 +

φ2h
¯ 11

h
¯ 11

φ2 + h
¯ 22

(
θ1 − θ01

)
− φh

¯ 22
h
¯ 11

φ2 + h
¯ 22

(
θ2 − θ02

)
,

p lim
T→∞

(θ̄2,T ) = θ02 −
φh
¯ 11

h
¯ 11

φ2 + h
¯ 22

(
θ1 − θ01

)
+

h
¯ 22

h
¯ 11

φ2 + h
¯ 22

(
θ2 − θ02

)
which highlights the role of the prior precisions in the outcomes. In the case where the prior

precisions are set to be the same across the parameters and h
¯ 12

= 0, (often done in practice) we

have (10) and (11) above

p lim
T→∞

(
θ̄1,T

)
= θ01 +

φ2

1 + φ2
(
θ1 − θ01

)
− φ

1 + φ2
(
θ2 − θ02

)
,

p lim
T→∞

(θ̄2,T ) = θ02 −
φ

1 + φ2
(
θ1 − θ01

)
+

φ2

1 + φ2
(
θ2 − θ02

)
,

and the limit of posterior means do not depend on the prior precisions, but do depend on the

priors for the coeffi cients even asymptotically.

A2. Derivation of the posterior mean in the highly collinear case

In the highly collinear case we have

T−1X′X=

(
s2T φs2T + T−1/2δT s1v,T

φs2T + T−1/2δT s1v,T φ2s2T + T−1δ2T svv,T + 2T−1/2φδT s1v,T

)
= s2T

(
1 φ
φ φ2

)
+

(
0 T−1/2δT s1v,T

T−1/2δT s1v,T T−1δ2T svv,T + 2T−1/2φδT s1v,T

)
.

where

s1v,T = T−1
T∑
t=1

x1tvt, svv,T = T−1
T∑
t=1

v2t .

Similarly,

T−1X′y =

(
T−1x′1y
T−1x′2y

)
=

(
s2T β̂T

T−1y′
(
φx1 + δT√

T
v
) ) =

(
s2T β̂T

s2Tφβ̂T + δT√
T
T−1y′v

)

σ−2T−1X′y =σ−2s2T β̂T

(
1
φ

)
+

(
0

δT
σ2
√
T

(
T−1y′v

) ) ,
where syv,T = T−1

∑T
t=1 ytvt. Hence

σ−2T−1X′X + T−1H
¯

=
(
s2T /σ

2
)( 1 φ

φ φ2

)
+

T−1
(

h
¯ 11

h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)

h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)
h
¯ 22

+ δ2T
(
svv,T /σ

2
)

+ 2φδT
(
T 1/2s1v,T /σ

2
) )
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σ−2T−1X′y + T−1H
¯
θ =

(
s2T /σ

2
)
β̂T

(
1
φ

)
+

(
0

δT
σ2
√
T

(
T−1

∑T
t=1 ytvt

) )+ T−1
(
b1
b2

)

σ−2T−1X′y + T−1H
¯
θ =

(
s2T /σ

2
)
β̂T

(
1
φ

)
+ T−1

(
b1

b2 + δT
σ2

(
T−1/2

∑T
t=1 ytvt

) )

T−1/2
T∑
t=1

ytvt = T−1/2
T∑
t=1

vt

(
θ01x1t + θ02

[
φx1t +

(
δT /
√
T
)
vt

]
+ ut

)
= θ01

(
T−1/2

T∑
t=1

vtx1t

)
+ θ02φ

(
T−1/2

T∑
t=1

vtx1t

)
+ δT θ

0
2

(
T−1

T∑
t=1

v2t

)
+ T−1/2

T∑
t=1

vtut

= β0

(
T−1/2

T∑
t=1

vtx1t

)
+ δT θ

0
2

(
T−1

T∑
t=1

v2t

)
+ T−1/2

T∑
t=1

vtut.

T−1/2
T∑
t=1

ytvt = δT θ
0
2svv,T + β0T−1/2

T∑
t=1

vt (x1t + ut)

s2T β̂T = T−1
T∑
t=1

ytx1t = T−1
T∑
t=1

x1t

(
θ01x1t + θ02

[
φx1t +

(
δT /
√
T
)
vt

]
+ ut

)
,

β̂T = β0 +
δT θ

0
2√
T

(
s1v,T
s2T

)
+
s1u,T
s2T

. (32)

β̂T →p β
0 = θ01 + φθ02.

Consider now the posterior means

θ̄T =

[(
1 φ
φ φ2

)
+ T−1

(
a11 a12
a12 a22

)]−1 [
β̂T

(
1
φ

)
+ T−1

(
b1
b2

)]
,

where the aij and bi are now given by

A =

(
a11 a12
a12 a22

)
=
(
σ2/s2T

)( h
¯ 11

h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)

h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)
h
¯ 22

+ δ2T
(
svv,T /σ

2
)

+ 2φδT
(
T 1/2s1v,T /σ

2
) ) ,

b =

(
b1
b2

)
=
(
σ2/s2T

)
H
¯
θ =

(
σ2/s2T

)( h
¯ 11

θ1 + h
¯ 12

θ2

h
¯ 12

θ1 + h
¯ 22

θ2 + δT
σ2

(
T−1/2

∑T
t=1 ytvt

) )

θ̄T =

 1
a11φ2−2φa12+a22+T−1[a11a22−a212]

(
β̂T (a22 − φa12) + φ (φb1 − b2) + T−1 (b1a22 − b2a12)

)
1

a11φ2−2φa12+a22+T−1[a11a22−a212]

(
b2 − φb1 − β̂T (a12 − φa11) + T−1 (b2a11 − b1a12)

)  ,

To evaluate this first consider the denominator of θ̄1,T , where both numerator and denominator

are multiplied by
(
σ2/s2T

)−1

24



(
σ2/s2T

)−1 [
β̂T (a22 − φa12) + φ (φb1 − b2) + T−1 (b1a22 − b2a12)

]
=

[
β0 +

δT θ
0
2√
T

(
s1v,T
s2T

)
+
s1u,T
s2T

] [
h
¯ 22

+ δ2T
(
svv,T /σ

2
)

+ 2φδT

(
T 1/2s1v,T /σ

2
)
− φh

¯ 12
− φδT

(
T 1/2s1v,T /σ

2
)]

+ φ2 (h
¯ 11

θ1 + h
¯ 12

θ2)− φ
[
h
¯ 12

θ1 + h
¯ 22

θ2 +
δT
σ2

[
δT θ

0
2svv,T + β0T−1/2

T∑
t=1

vt (x1t + ut)

]]

+
(
σ2/s2T

)
T−1

[
(h
¯ 11

θ1 + h
¯ 12

θ2)
[
h
¯ 22

+ δ2T
(
svv,T /σ

2
)

+ 2φδT
(
T 1/2s1v,T /σ

2
)]

−
(
h
¯ 12

θ1 + h
¯ 22

θ2 + δT
σ2

(
T−1/2

∑T
t=1 ytvt

)) (
h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)) ]

=

[
β0 +

δT θ
0
2√
T

(
s1v,T
s2T

)
+
s1u,T
s2T

] [
h
¯ 22
− φh

¯ 12
+ δ2T

(
svv,T /σ

2
)

+ φδT

(
T 1/2s1v,T /σ

2
)]

+ φ2 (h
¯ 11

θ1 + h
¯ 12

θ2)− φ (h
¯ 12

θ1 + h
¯ 22

θ2)−
φδT
σ2

[
δT θ

0
2svv,T + β0T−1/2

T∑
t=1

vt (x1t + ut)

]

+
(
σ2/s2T

)
T−1

[
(h
¯ 11

θ1 + h
¯ 12

θ2)
[
h
¯ 22

+ δ2T
(
svv,T /σ

2
)]

+ 2φδT
(
T 1/2s1v,T /σ

2
)

(h
¯ 11

θ1 + h
¯ 12

θ2)

−
(
h
¯ 12

θ1 + h
¯ 22

θ2 + δT
σ2

(
T−1/2

∑T
t=1 ytvt

)) (
h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)) ]

=

[
β0 +

δT θ
0
2√
T

[
s1v,T
s2T

]
+
s1u,T
s2T

] [
h
¯ 22
− φh

¯ 12
+ δ2T

(
svv,T /σ

2
)]

+ φδT

(
T 1/2s1v,T /σ

2
) s1u,T

s2T
+ φδ2T θ

0
2

(
s1v,T /σ

2
) [s1v,T

s2T

]
+ φ2 (h

¯ 11
θ1 + h

¯ 12
θ2)− φ (h

¯ 12
θ1 + h

¯ 22
θ2)

− φδT
σ2
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φδT
σ2

β0T−1/2
T∑
t=1
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(
T 1/2s1v,T /σ

2
)

+
(
σ2/s2T

)
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[
(h
¯ 11

θ1 + h
¯ 12

θ2)
[
h
¯ 22

+ δ2T
(
svv,T /σ

2
)]

+ 2φδT
(
T 1/2s1v,T /σ

2
)
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¯ 11

θ1 + h
¯ 12

θ2)

−
(
h
¯ 12

θ1 + h
¯ 22

θ2 + δT
σ2

(
T−1/2

∑T
t=1 ytvt

)) (
h
¯ 12

+ δT
(
T 1/2s1v,T /σ

2
)) ]

=

[
β0 +

δT θ
0
2√
T

[
s1v,T
s2T

]
+
s1u,T
s2T

] [
h
¯ 22
− φh

¯ 12
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(
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2
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(
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)
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0
2

(
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σ2s2T

)
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σ2
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βφδ

σ2

(
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)
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2
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(
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2
)
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−
(
h
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θ1 + h
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∑T
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h
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(
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2
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=

[
δT θ

0
2√
T

(
s1v,T
s2T

)
+
s1u,T
s2T

] [
h
¯ 22
− φh

¯ 12
+ δ2T

(
svv,T /σ

2
)]

+ β (h
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¯ 12
)
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σ2s2T

)
+ φδ2T θ
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σ2

(
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)

+
(
σ2/s2T

)
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[
(h
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θ1 + h
¯ 12

θ2)
[
h
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+ δ2T
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2
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2
)
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2
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=

[
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h
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+ δ2T
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2
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)
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θ2) + β (h
¯ 22
− φh

¯ 12
)− βφδT

σ2

(
T−1/2

T∑
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When δT is bounded in T we have
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Similarly, for the denominator we note that(
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)−1 {
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2
)

+ 2φδT

(
T 1/2s1v,T /σ
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In the case where δT is bounded in T we obtain(
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But s1v,T = Op(T
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¯ 22
θ2) + β0 (h

¯ 22
− φh

¯ 12
)

h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

+
(
δ2T σ

2
v

σ2

)
+

θ01

(
δ2T σ

2
v

σ2

)
h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

+
(
δ2T σ

2
v

σ2

)
+

−β0φσvσδT
σ2
[
h
¯ 11

φ2 − 2φh
¯ 12

+ h
¯ 22

+
(
δ2T σ

2
v

σ2

)] (T−1/2 T∑
t=1

vtut
σvσ

)
+Op

(
T−1/2

)
.

The above results can be simplified further by setting λ2T = δ2Tσ
2
v/σ

2, and noting that β0 =
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θ01 + φθ02, h¯ 11
φ2 − 2φh

¯ 12
+h
¯ 22

= ψ′H
¯
ψ, where ψ= (φ,−1)′. Specifically,

θ̄1,T = θ01 +
φ (h
¯ 11

φ− h
¯ 12

)
(
θ1 − θ01

)
λ2T +ψ′H

¯
ψ

−
φ (h
¯ 22
− φh

¯ 12
)
(
θ2 − θ02

)
λ2T +ψ′H

¯
ψ

(33)

−
(

β0φλT
λ2T +ψ′H

¯
ψ

)(
T−1/2

T∑
t=1

vtut
σvσ

)
+Op

(
T−1/2

)
.

Thus as T →∞, in the highly collinear case where λT is bounded in T , the posterior mean, θ̄1,T ,
converges in distribution to a normally distributed random variable given in subsection 3.1.

A3. Derivation of posterior precision in the highly collinear case

Starting with (17) we note that V̄−1 can be written as

V̄−1 = s̃2T

(
T Tφ
Tφ Tφ2

)
+

(
h
¯ 11

h
¯ 12

+ χT zT
h
¯ 12

+ χT zT h
¯ 22

+ λ2T + 2χTφzT

)
,

where

s̃2T = s2T /σ
2, λ2T = δ2T

(
svv,T /σ

2
)
, χT =

δTσvσx1
σ2

,

zT =
T 1/2s1v,T
σx1σv

= T−1/2
T∑
t=1

x1tvt
σx1σv

.

Hence

V̄−1 =

(
h
¯ 11

+ T s̃2T Tφs̃2T + h
¯ 12

+ χT zT
Tφs̃2T + h

¯ 12
+ χT zT Tφ2s̃2T + h

¯ 22
+ λ2T + 2χTφzT

)
,

and the posterior precision of θ1 is given by the inverse of the first element of V̄, which is given

by

h̄11,T = h
¯ 11

+ T s̃2T −
(
Tφs̃2T + h

¯ 12
+ χT zT

)2
Tφ2s̃2T + h

¯ 22
+ λ2T + 2χTφzT

=

(
h
¯ 11

+ T s̃2T
) (
Tφ2s̃2T + h

¯ 22
+ λ2T + 2χTφzT

)
−
(
Tφs̃2T + h

¯ 12
+ χT zT

)2
Tφ2s̃2T + h

¯ 22
+ λ2T + 2χTφzT

=

h
¯ 11
(
Tφ2s̃2T + h

¯ 22
+ λ2T + 2χTφzT

)
+ T s̃2T

(
h
¯ 22

+ λ2T + 2χTφzT
)

−h
¯
2
12 − χ2T z2T − 2h

¯ 12
χT zT − 2Tφs̃2T (h

¯ 12
+ χT zT )

Tφ2s̃2T + h
¯ 22

+ λ2T + 2χTφzT

=

Th
¯ 11

φ2s̃2T + h
¯ 11

λ2T + 2h
¯ 11

χTφzT + T s̃2Th¯ 22
+ T s̃2Tλ

2
T

h
¯ 11
h
¯ 22
− h
¯
2
12 − χ2T z2T − 2h

¯ 12
χT zT − 2Tφs̃2Th¯ 12

Tφ2s̃2T + h
¯ 22

+ λ2T + 2χTφzT
.

Or

h̄11,T =

T s̃2T
(
λ2T + h

¯ 11
φ2 − 2φh

¯ 12
+ h
¯ 22
)
− χ2T z2T + 2χT (h

¯ 11
φ− h

¯ 12
) zT+

+h
¯ 11

λ2T + h
¯ 11
h
¯ 22
− h
¯
2
12

Tφ2s̃2T + 2χTφzT + h
¯ 22

+ λ2T

from which the expression in the text, (18), for the posterior precision of θ1 follows.
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