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Abstract

This paper considers tests of zero pricing errors for the linear factor pricing model when the
number of securities, N, can be large relative to the time dimension, 7', of the return series.
We focus on class of tests that are based on Student ¢ tests of individual securities which have
a number of advantages over the existing standardised Wald type tests, and propose a test
procedure that allows for non-Gaussianity and general forms of weakly cross correlated errors.
It does not require estimation of an invertible error covariance matrix, it is much faster to
implement, and is valid even if N is much larger than 7". Monte Carlo evidence shows that the
proposed test performs remarkably well even when 7" = 60 and N = 5,000. The test is applied
to monthly returns on securities in the S&P 500 at the end of each month in real time, using
rolling windows of size 60. Statistically significant evidence against Sharpe-Lintner CAPM and
Fama-French three factor models are found mainly during the recent financial crisis. Also we
find a significant negative correlation between a twelve-months moving average p-values of the
test and excess returns of long/short equity strategies (relative to the return on S&P 500) over
the period November 1994 to June 2015, suggesting that abnormal profits are earned during
episodes of market inefficiencies.
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1 Introduction

This paper is concerned with testing for the presence of alpha in Linear Factor Pricing Models
(LFPM) such as the capital asset pricing model (CAPM) due to Sharpe (1964) and Lintner
(1965), or the Arbitrage Pricing Theory (APT) model due to Ross (1976), when the number of
securities, N, is quite large relative to the time dimension, 7', of the return series under con-
sideration. The Sharpe-Lintner CAPM model predicts that expected excess returns (measured
relative to the risk-free rate) on any given security or a given portfolio of securities is proportional
to the expected excess return on the market portfolio, with the constant of the proportionality,
3, being security /portfolio specific.

There exists a large literature in empirical finance that tests various implications of Sharpe-
Lintner model. Cross sectional as well as time series tests have been proposed and applied in
many different contexts. Using time series regressions, Jensen (1968) was the first to propose
using standard t-statistics to test the null hypothesis that the intercept, «;, in the Ordinary
Least Squares (OLS) regression of the excess return of a given security, i, on the excess return
of the market portfolio is zero.! The test can be applied to individual securities as well as to
portfolios.

However, when a large number of securities are under consideration, due to dependence of
the errors across securities in the LEFPM regressions, the individual t-statistics are correlated
which makes controlling the overall size of the test problematic. Gibbons, Ross and Shaken
(1989, GRS) propose an exact multivariate version of the test which deals with this problem if
the CAPM regression errors are Gaussian and N < T. This is the standard test used in the
literature, but its application has been confined to testing the market efficiency of a relatively
small number of portfolios, typically 20 — 30, using monthly returns observed over relatively long
time periods. The use of large T" as a way of ensuring that N < T, is also likely to increase the
possibility of structural breaks in the 3’s that could in turn adversely affect the performance of
the GRS test.

Recently, there has been a growing body of finance literature which uses individual security
returns rather than portfolio returns for the test of pricing errors. Ang, Liu and Schwarz (2016)
show that the smaller variation of beta estimates from creating portfolios may not lead to smaller
variation of cross-section regression estimates. Cremers, Halling and Weinbaum (2015) examine
the pricing of both aggregate jump and volatility risk based on individual stocks rather than
portfolios. Chorida, Goyal and Shanken (2015) advocate the use of individual securities to
investigate whether the source of expected return variation is from betas or security-specific
characteristics.

It is clearly desirable to develop tests of market efficiency that can deal with a large number
of securities over relatively short time periods so that the problem of time variations in 3's is
somewhat mitigated. It is also important that such tests are reasonably robust to non-Gaussian
errors, particularly as it is more likely that one would encounter non-normal errors in the case
of LFPM regressions for individual securities as compared to regressions estimated on portfolios
comprising a large number of securities.

Out of the two main assumptions that underlie the GRS test, the literature has focussed on
the implications of non-normal errors for the GRS test, and ways of allowing for non-normal
errors when testing a; = 0. Affleck-Graves and McDonald (1989) were amongst the first to
consider the robustness of the GRS test to non-normal errors who, using simulation techniques,

I Cross sectional tests of CAPM have been considered by Douglas (1968), Black, Jensen and Scholes (1972),
and Fama and Macbeth (1973), among others. An early review of the literature can be found in Jensen (1972),
and more recently in Fama and French (2004).



find that the size and power of GRS test can be adversely affected if the departure from non-
normality of the errors is serious, but conclude that the GRS test is ".. reasonably robust with
respect to typical levels of nonnormality." (p.889). More recently, Beaulieu, Dufour and Khalaf
(2007, BDK) and Gungor and Luger (2009, GL) have proposed tests of a; = 0 that allow for
non-normal errors, but retain the restriction N < T. BDK develop an exact test which is
applicable to a wide class of non-Gaussian error distributions, and use Monte Carlo simulations
to achieve the correct size for their test. Gungor and Luger (2009) propose two distribution-free
nonparametric sign tests in the case of single factor models that allow the error distribution to be
non-normal but require it to be cross-sectionally independent and conditionally symmetrically
distributed around zero.?

Our primary focus in this paper is on development of multivariate tests of Hy : «; = 0,
fori=1,2,..., N, when N > T, whilst allowing for non-Gaussian and weakly cross-sectionally
correlated errors. The latter condition is required for consistent estimation of the error covariance
matrix, V, when N is large relative to T'. In the case of LFPM regressions with weakly cross-
sectionally correlated errors, consistent estimation of V can be achieved by adaptive thresholding
which sets to zero elements of the estimator of V that are below a given threshold. Alternatively,
feasible estimators of V can be obtained by Bayesian or classical shrinkage procedures that scale
down the off-diagonal elements of V relative to its diagonal elements.? Fan, Liao and Mincheva
(2011, 2013) consider consistent estimation of V in the context an approximate factor model.
They assume V is sparse and propose an adaptive thresholding estimator of V, which they
show to be positive definite with satisfactory small sample properties. Fan, Liao and Yao (2015)
derive the conditions under which standardised Wald tests of Hy can be asymptotically justified.
Gagliardini, Ossola and Scaillet (2016) develop two-pass regressions of individual stock returns,
allowing time-varying risk premia, and propose a standardised Wald test. Raponi, Robotti and
Zaffaroni (2016) propose a test of pricing error in cross-section regression for fixed number of time
series observations. They use a bias-corrected estimator of Shaken (1992) to standardise their
test statistic. Gungor and Luger (2016) propose a simulation based approach for testing pricing
errors. They claim that their test procedure is robust against non-normality and cross-sectional
dependence in the errors. Amengual and Repetto (2014) consider the standardised F-type test
statistic based on principal component estimation under both serial and cross-section correlation
in the errors.

In this paper we follow an alternative strategy where we develop a test statistic that initially
ignores the off-diagonal elements of V and base the test of Hy on the average of the t tests of
a; = 0, over ¢ = 1,2,..., N. This idea was originally proposed in the working paper version
of this paper (Pesaran and Yamagata, 2012), independently of a similar approach followed by
Gagliardini, Ossola and Scaillet (2016; GOS).? Despite the similarity of the two tests, as will be

2Bossaerts, Plot and Zame (2007) provide a novel GMM test of CAPM which does not require large T, but
is designed for the analysis of experimental data on a few risky assets held across a relatively large number of
subjects. It is interesting to see if their approach can be adapted to the analysis of historical observations of the
type considered in this paper.

3There exists a large literature in statistics and econometrics on estimation of high-dimensional covariance
matrices which use regularization techniques such as shrinkage, adaptive thresholding or other dimension-reducing
procedures that impose certain structures on the variance matrix such as sparsity, or factor structures. See, for
example, Wong, Carter and Kohn (2003), Ledoit and Wolf (2004), Huang, Liu, Pourahmadi, and Liu (2006),
Bickel and Levina (2008), Fan, Fan and Lv (2008), Cai and Liu (2011), Fan, Liao and Mincheva (2011, 2013),
and Bailey, Pesaran and Smith (2017).

‘We are grateful to Olivier Scaillet for drawing our attention to an earlier version of
GOS (2016), after the working paper version of this paper was publicly released in 2012,
and presented at the American Finance Association Meeting in San Diego, January 2013.
https://hq.ssrn.com/Conference/Reports/conf preliminary program.cfm?conflink=AFA-2013-San-Diego



seen our version of the test performs much better even if N is very large (around 5,000), and
we are able to establish its asymptotic distribution under much weaker conditions and without
resorting to high level assumptions. We achieve this by making corrections to the numerator of
the test statistic to ensure that the test is more accurately centered, and correct the denominator
of the test statistic to allow for the effects of non-zero off-diagonal elements of the underlying
error covariance matrix.” The correction involves consistently estimating N~'Tr (R?), where
R = (p;;) is the error correlation matrix. The estimation of N~'Tr (R?) = N~ SV Zjvzl P;
is subject to the curse of dimensionality which we address by using the multiple testing threshold
estimator, ﬁ, recently proposed by Bailey, Pesaran and Smith (2017). We show that consistent
estimation of N7'Tr (R?) can be achieved under a more general specification of R as compared
to tests that require a consistent estimator of the full matrix, R. We are able to establish that
the resultant test is applicable more generally and continues to be valid for a wider class of error
covariances, and holds even if N rises faster than T'. The proposed test is also corrected for small
sample effects of non-Gaussian errors, which is of particular importance in finance. We refer to
this test as Jensen’s a test of LFPM and denote it by J,. The test can also be viewed as a
robust version of a standardised Wald test, in cases where the off-diagonal elements of V become
relatively less important as N — oo. The implementation of the J, test is also computationally
less demanding, since it does not involve estimation of an invertible high dimensional error
covariance matrix.

Our assumption regarding the sparsity of V advances on Chamberlain’s (1983) approximate
factor model formulation of the asset model, where it is assumed that the largest eigenvalue of
V (or R) is uniformly bounded in N (Chamberlain, 1983, p.1307). We relax this assumption
and allow the maximum column sum matrix norm of R to rise with N but at a rate slower than
v/N, whilst controlling the overall sparsity of R by requiring N ~'Tr(R?) to be bounded in N.
In this way we are able to allow for two types of cross-sectional error dependence: one due to the
presence of weak common factors that are not sufficiently strong to be detectable using standard
estimation techniques, such as principal components; and another due to the error dependence
that arise from interactive and spill-over effects.

We establish that under the null hypothesis of a; = 0, the J, test is asymptotically distributed
as N(0,1) for T and N — oo jointly, so long as N/T? — 0, my = |R||, = O (N**),0 < 6, < 1/2,
and N~1Tr (R?) is bounded in N. The test is also shown to have power against alternatives
that rises in NV2T. The proofs are quite involved and in some parts rather tedious. For the
purpose of clarity we provide statements of the main theorems with the associated assumptions
in the paper, but relegate the mathematical details to an appendix.

Small sample properties of the J,, test are investigated using Monte Carlo experiments de-
signed specifically to match the correlations, volatilities, and other distributional features (skew-
ness and kurtosis) of the residuals of Fama-French three factor regressions of individual securities
in the Standard & Poor 500 (S&P 500) index. We consider the comparative test results for the
following eight sample size combinations, 7' = 60 and 100, and N = 50, 100,200 and 500. The
J,, test performs well for all sample size combinations with size very close to the chosen nominal
value of 5%, and satisfactory power. Comparing the size and power of the J,, test with the
GRS test in the case of experiments with N = 50 < T = 60, 100 for which the GRS statistics
can be computed, we find that the J,, test has higher power than the GRS test in most experi-
ments. This could be due to the non-normal errors adversely affecting the GRS test, as reported
by Affleck-Graves and McDonald (1989, 1990). In addition, the J,, test outperforms the test
proposed by GOS as well as the feasible versions of the standardised Wald tests, replacing V

5This correction and how it is estimated turns out to be critical for the small sample properties of the test
when the errors in the individual return regressions are weakly cross correlated.



with the recently developed estimators of large dimensional variance-covariance matrix of Fan,
Liao and Mincheva (2013, FLM) and Ledoit-Wolf (2004). The J, test also outperforms the
simulation-based Fy.x test of Gungor and Luger (2016) that can be implemented when N > T
The Fi.x test is shown to be undersized substantially across the various designs, and has lower
power uniformly as compared to the J, test. We also carried out additional experiments that
allow for time variations in betas as well as errors with a mixture of weak factors and spatial
autoregressive processes, using much larger values of N, namely N = 1,000, 2,000 and 5, 000,
whilst keeping T" at 60 and 100. We only considered the J, test for these experiments, and found
no major evidence of size distortions even for the experiments with T'= 60 and N = 5, 000.

Encouraged by the satisfactory performance of the J,, test, even in cases where N is much
larger than 7', we applied the test to monthly returns on the securities in the Standard and Poor
(S&P) 500 index using rolling windows of size 60 over the period September 1989 to June 2015.
The survivorship bias problem is minimized by considering the sample of securities included
in the S&P 500 at the end of each month in real time. We report the J,, test statistics for a
single-factor and a three Fama-French factor model over the period 1989-2015, and find statisti-
cally significant evidence against the Sharpe-Lintner CAPM and Fama-French factor model only
during the recent financial crisis.

Finally, we examine if there exists any relationship between the p-values of the J,, test and
excess returns on long/short equity hedge funds (relative to the return on S&P 500). A priori one
would expect a reverse relationship between market efficiency and excess returns of an investment
strategy, with excess returns being low during periods of market efficiency (high p-values) and
vice versa. In fact, we find a significant negative correlation between a twelve-months moving
average p-values of the J,, test and excess returns of long/short equity strategies over the period
November 1994 to June 2015, suggesting that abnormal profits are earned during episodes of
market inefficiencies.

The outline of the rest of the paper is as follows. Section 2 sets out the panel data model for
the analysis of LFPM, and the GRS test. Section 3 proposes the J,, test for large N panels, de-
rives its asymptotic distribution, and Section 4 summarises the main theoretical results. Section
5 reports on small sample properties of ja, GRS, GOS, standardised Wald tests and the Gungor
and Luger (2016) simulation based F,.x test, using Monte Carlo techniques. Section 6 presents
the empirical application. Section 7 concludes. The proofs of the main theorems are provided
in Appendix A, and the lemmas which are used for the proofs, as well as the additional Monte
Carlo evidence, are provided in an online supplement to this paper, that is available on request.

Notations

We use K and c to denote finite and small positive constants. If {f;},°, is any real sequence
and {g:},~, is a sequences of positive real numbers, then f; = O(g;), if there exists a positive
finite constant K such that |f;| /g: < K for all t. f; = o(g:) if fi/g: — 0 ast — oo. If {fi}2,
and {g:},~, are both positive sequences of real numbers, then f; = © (g;) if there exists Ty > 1
and positive finite constants Cy and C1, such that inf,>7, (fi/g:) > Co, and sup,>q, (fe/9¢) < Ci.
For a N x N matrix A = (a;;), the minimum and maximum eigenvalues of matrix A are denoted
by Amin(A) and Apax(A), respectively, its trace by Tr(A), its maximum absolute column and
row sum matrix norms by ||Al|_ = sup; Zjvzl |ag|, and,||A||, = sup; SV |a;], respectively, its
Frobenius and spectral norms by ||A||, = \/Tr(A’A), and ||A|| = A2 (A’A), respectively. For

max
a N x 1 dimensional vector, a, |la| = (/)"



2 Some preliminaries and the GRS test

Under the Arbitrage Pricing Theory (APT) of Ross (1976), we have
Ry = vy + B+ Bi(f, — By) +uyg, fori=1,2,... N;t=12,..T, (1)

where, R; is return on security i during period t, f; = (fi, fot, .-, frne)" is the m X 1 vector
of factors, B, = (81,849, - Bim) 18 the associated vector of risk factors, and v, is zero-beta
expected return which under APT should be equal to the risk-free rate, A is the vector of
expected cross-sectional risk premium and p f=F (f)). Setting vy = ry + v, where 7, is the
risk-free rate, the return regressions can be written as

Vit = ; + Bify +uy, fori=1,2,... N;t=1,2 ... T, (2)

where y;; = Ry — r;, and
0 = v+ BIA - ). 3)
To ensure that the risk from common factors, f;, cannot be fully diversified we assume that
at least one of the factors is strong, in the sense that

Sgpz 85| = O(N), (4)

and allow for the presence of common unobserved weak factors in the error term u;;. Specifically
we assume that

Uit = YiVe + Ny (5)
where v, is a kx 1 vector of unobserved common factors that are I1D(0,1.), v, = (Vi1 Yizs - Vir)
is the associated vector of factor loadings with bounded elements, sup; , |v;,| < K. The factors

included in the error process are weak in the sense that their effects are not pervasive and satisfy
the condition

N
suthiS\ =0 (N"), with 0 <6, < 1/2. (6)
5=l

The idiosyncratic errors, 7,,, are also allowed to be weakly cross correlated. Specifically, we

assume that 17, = (914, Moy, - Nne) = QuEns, Where €, = (€114, Epaty -y Ennt)'s {Enat} are I1D
processes over ¢ and ¢, with means zero, unit variances, v,, = £ (e14)—3, and sup;, E(ley*) <
K < o0, for some ¢ > 0. We denote the correlation matrix of n, by R, = (pn,ij), and note that
R, = Q,Q;,. To ensure that u; = (uy, ua, ..., un:)’ is weakly cross-correlated we require that k,
the number of weak factors, is finite, and |R,[|; < [|Qyl], [|Qyll., < K. The error specification
in (5) is quite general and allows for common factors as well as network and spatial error cross
dependence, so long as the common factors are sufficiently weak.

Different tests of LEFPM are proposed in the literature. Some researchers have focussed on
testing v = 0, which ensures that the zero-beta excess return is zero. Others have considered
testing the restrictions A = py, which require that the risk-premia on factors coincide with
factor means.® In this paper we adopt a more direct approach and consider testing the joint
hypotheses

Hy:a;,=0,i=1,2,..., N, (7)

allowing for the multiple testing nature of the null. In the context of the APT model, the test
of a; = 0 for all i can be interpreted as a test of the joint hypotheses that v = 0, and A = p;.

6See, for example, Shanken (1992).



It proves useful to stack the panel regressions in (2) by time series as well as by cross section
observations. Stacking by time series observations we have

yvi. = ot +FB, +u;, (8)

where y; = (vi1, Yio, -, yir)s Tr = (1,1,...,1), F'=(f,, £, ..., fp), and w; = (w1, wiz, ..., uir)’.
Stacking by cross-sectional observations we have

Vi =& + Bft + U, (9)

where y; = (Yat, Yat, -, Yne)', o = (a1, g, ..., an)’, B = (8,,8,, ..., By) and wy = (uy, uat, ..., unt)’.

For exact sample tests of LEPM, initially we assume that u; ~ IIDN (0, V), namely errors,
u;, are Gaussian, have zero means, and are serially uncorrelated such that E(u;u;») = 0, for
all 7, j,and t # ¢/, with E (u,u}) = V, where V = (0;;) is an N x N symmetric positive definite
matrix. A non-Gaussian version of this assumption will be considered below. Starting with
Jensen’s (1968) test of individual «;’s, we note that the OLS estimator of «; given by

M
—— (L) , (10)

T/TMFTT

where My = Iy — F (F'F) "' F, is an efficient estimator despite the fact that V is not a diag-
onal matrix. This result follows since (8) is a seemingly unrelated regression equation (SURE)

specification with the same set of regressors across all the N securities. It is also easily seen that
foralli=1,2,....N,

N Mp7r
i = (ouT] B : — | = oy ' e, 11
= (a4 B ) (T ) = bl (1)
where
C = MFTT/‘Tr,IwMFTT. (12)

Writing the above set of estimates for all ¢ in matrix notation, we have

tth

T :
where u;c =) ., u;¢;, and ¢ is the t** element of c. Hence

&=at ) we, (13)
where as before u; = (u1¢, oy, ..., u Nt)/. Therefore, under Gaussianity,

&-N|la—V ).
( TrMpTr )
Also in the case where T > N + m + 1, an unbiased and invertible estimator of V is given by

(T_Lm_l)V, where V is the sample covariance matrix estimator

7 __ -1 r
V=T a.u,, (14)



U, = (Uyg, Ugg, ..., Uny)', Uy is the OLS residual from the regression of y;; on an intercept and f;.

Under Gaussianity, @i; has a multivariate normal distribution with zero means, & and 1, are
independently distributed, and hence using standard results from multivariate analysis it follows
that (see, for example, Theorem 5.2.2 in Anderson (2003)) the GRS statistic (see p.1124 of GRS)

. T_N-_ ' M
GRS = W, = mn (TT FTT

AIxT—1 A
N T )aV &, (15)

is distributed ezactly as a non-central F distribution with (' — N — m) and N degrees of

freedom, and the non-centrality parameter p2 = T==m <

N
Hy:a=0"

As noted in the introduction, the single most important limiting feature of the GRS and
other related tests proposed in the literature is the requirement that 7" must be larger than N.
To circumvent this limitation, in applications of the GRS test, individual securities are grouped
into (sub) portfolios and the GRS test is then typically applied to 20-30 portfolios over relatively
long time periods. However, it is clearly desirable to develop tests of a; = 0, that can be applied
to a very large number of individual securities over relatively short time periods (to minimize
the adverse effects of structural change in §,’s) which inevitably lead to cases where T' < N.

Even in cases where N < T', the power of the GRS test could be compromised since it
assumes V to be unrestricted, whilst in the context of the approximate factor model advanced
in Chamberlain (1983), the errors are at most weakly correlated, which places restrictions on the
off-diagonal elements of V and its inverse. As we shall see below, a test that exploits restrictions
implied by the weak cross-sectional correlation of the errors is likely to have much better power
properties than the GRS test that does not make use of such restrictions. It is also important to
bear in mind that being a multivariate F' test, the power of the GRS test is primarily driven by
the time dimension, 7', whilst for the analysis of a large number of assets or portfolios we need
tests that have the correct size and are powerful for large V.

!
T MpTT
T

) o'V~ la, which is zero under

3 Large N tests of alpha in LFMP models

To develop large N tests of Hy : o = 0, we consider the following version of the GRS statistic,
as set out in (15),
W, = (t:Mp17) &V '&, (16)

where we have dropped the degrees of freedom adjustment term and replaced \Y% by its true
value. W, can be regarded as a Wald test statistic, and under Gaussianity and Hy : a = 0,
W, ~ x%. Since the mean and the variance of a x% random variable is N and 2N, one could
consider a standardised Wald test statistic

(Tf,TMFTT) &V1la—-N
V2N '

Under Gaussianity and Hy : @ =0, SW,, —4 N (0,1) as N — oo. To construct tests of large
N panels, a suitable estimator of V is required. But as was noted in the introduction this is
possible only if we are prepared to impose some restrictions on the structure of V. In the case of
LFPM regressions where the errors are at most weakly cross-sectionally correlated, this can be

SW, = (17)

"Noting that (1 + f’Q_lf)_l =T (7 Mp77), where f = T~! Zle £, and Q@ = 71 Zle(ft—f)(ft—f)’,

it is easily seen that (15) can be written as the widely used expression of the GRS statistic, T=N=m(1 4

N _ N N
FO-1f)la'V-la.



achieved by adaptive thresholding which sets to zero elements of V that are sufficiently small,
or by use of shrinkage type estimators that put a substantial amount of weight on the diagonal
elements of the shrinkage estimator of V.

Fan, Liao and Mincheva (2011, 2013) consider consistent estimation of V in the context of an
approximate factor model. They assume V is sparse and propose an adaptive threshold estima-
tor, Vro g1, which they show to be positive definite with satisfactory small sample properties.
We refer to the feasible standardized Wald test statistic replacing V with Vpopr as SWpogr
test. Another candidate is the shrinkage estimator of V proposed by Ledoit-Wolf (2004), which
we denote by VLW, and refer to the associated standardised Wald statistic as SWrw. Such
"plug-in" approaches are subject to two important shortcomings. First, even if V can be esti-
mated consistently, the test might perform poorly in the case of non-Gaussian errors. Notice
that the standardisation of the Wald statistic is carried out assuming Gaussianity. Further,
consistent estimation of V in the Frobenius norm sense still requires 7' to rise faster than NV,
and in practice threshold estimators of V are not guaranteed to be invertible for finite samples
where N >> T

3.1 A J, test for large N securities

To avoid some of the above mentioned limitations of the plug-in procedure, we avoid using an
estimator of V altogether and base our proposed test on diagonal elements of V, namely the
N x N diagonal matrix, D = diag(o11, 0, ...,0nN), With o = E (u%), rather than the full
covariance matrix. Specifically, we consider the statistic

~2
Wd = (T{TMF’TT) d,D_ld = (T/TMFTT) Z <&) s (18)

T
i=1 (A

and its feasible counterpart given by

: , A1 A T Mpr <= (67
Wa= (tpMprr)&@Djla = (L= )Y (). (19)

where 6;; = 0, @; /T, and the degrees of freedom v = T'— m — 1 is introduced to correct for
small sample bias of the test.® The infeasible statistic, Wy, can also be written as

where

It is then easily seen that
N
Wa=> 1, (22)
i=1

where t; denotes the standard t-ratio of a; in the OLS regression of y; on an intercept and f;,
namely
t2 _ éé?(T’TMFTT)
! ’UflT&ii

(23)

80nly securities with 63 > 0 are included in Wd.



As with the panel testing strategy developed in Im et al. (2003), a standardized version of W,
defined by (19), can now be considered:

()

(24)
Var (Wd>
where
NE (Wa) = B (&), (25)

N"War (Wd) — N"War (zji X t?) = NN Var (82) + %Zjﬂ Y Cov (12,42) . (26)

J 7y
Under Gaussianity, the individual ¢; statistics are identically distributed as Student ¢ with v
degrees of freedom, and we have (assuming v =7 —m — 1 > 4)

B() = 1, Var(#) = <U v 2) -l (27)

Using (25), (26) and (27), the standardized statistic (24) can now be written as

N-1/2 [Wd - E (Wdﬂ NN (2 )

Ja (%) = = =R T (28)
ver (W) V) ER 40
where .
O = NT' 5, X5 Corr (t,45) (29)
and

Corr(t2,t3) = Cov(t; tz)/[Var(t?)V@r(ti)}l/Q.

irYj ir%j

To make the J, test operational, we need to provide a large N consistent estimator of 63.
Second, we need to show that, despite the fact that J, test is standardised assuming ¢; has a
standard t distribution, the test will continue to have satisfactory small sample performance
even if such an assumption does not hold due to the non-Gaussianity of the underlying errors.
More formally, in what follows we relax the Gaussianity assumption and assume that u; = Qe,,
where Q is an N x N invertible matrix, &, = (£, €21, ..., ent) , and {e;} is an I1.D process over
i and t, with means zero and unit variances, and for some ¢ > 0, E(|e;|>*) exists, for all i and
t. Then E (wu)) =V = (045) = QQ’, and V is an N x N symmetric positive definite matrix,
with Apin (V) > ¢ > 0. We allow for cross-sectional error heteroskedasticity, but assume that the
errors are homoskedastic over time. This assumption can be relaxed by replacing the assumption
of error independence by a suitable martingale difference assumption. This extension will not
be attempted in this paper.’

3.2 Sparsity conditions on error correlation matrix

As noted already, we advance on the literature by allowing V = (0;;) to be approzimately sparse.

Equivalently, we define sparsity in terms of the elements of the correlation matrix R = (pij),

where p,;; = 7/ U;./ 20}]/2. We consider the following two conditions

my = max YN |p,;] = O(N%), with 0 < 6, < 1/2, (30)

1<i<N

9We conducted an experiment with GARCH(1,1) error and the evidence supports our claim. The results are
reported in Table M6 of the online supplement, which is available upon request.
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and

=22 ry=0N). (31)

=1 j=1

Under (30), my is allowed to rise with N, but at a slower rate than N'/2. For example, consider
the case where condition (30) applies to the first p rows of R (with p fixed), and the rest of the
N — p rows of R are absolute summable, namely

o] = O(N*), fori=1,2,..p,
p7,] = 0(1), fOfZ:p+1,p+2’7N

S

Then, since | pij|2 < } pz»j|, it readily follows that

DN OVARS

i=p+1 j=1
D N
< S (Shl)+ 3 S
i=1 \j=1 i=p+1 j=1

< O(pN®) + (N —p)O(1) = O(N), for 0 < 6, < 1/2.

Another important case covered by our sparsity assumption is when wu; has the weak factor
structure given by (5), with the factor loadings, =y,, satisfying (6). Denoting the correlation
matrix of the idiosyncratic errors, 1, = (11, Moy, - May) by Ry = (pn,ij)7 and assuming that

IRyl < XK, (32)
we have Tr (N'R2) = O(1). It is now easily seen that conditions (30) and (31) are also satisfied
under this set up. Denoting the correlation matrix of w, = (u¢, uat, ..., unt) by R = (pz-j) we
have

- oo o 1/2
Pij = ’7;’7’]' + (w) Pr.ijs (33)
0 jj

where 7, = 71/051/2 =/ (Vivi + Un,ii)l/Q- Since ‘pij‘ < 2521 ¥is] ‘;)//js‘ + |:077,ij|7 then

my = ||RH - maXZZ |/725| }7]s| + maxz |p7l U‘

7j=1 s=1

k (Sup \’%s\) (m?XZ }:Yjs|> + IRy
i,8 j=1

IA
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N N
Since sup; , 7.6 < sup; |7:s], and sup, Z ‘:Vjs} < sup, Z |7js| = O(N‘SW), and by assumption
j=1 j=1
IRy, < K, the condition (30) is met if 6, < 6,. Also, (noting that sup; , |¥;,| < 1)

N N k 2
N~'Tr (R2) < N7 ZZ (Z |¥is Hjs’ + |pn,ij‘>
i=1 j=1 \s=1
N ]N k 2 N N k
! Z Z (Z sl |’~Yjs|> +2N! Z Z Z Vsl ‘:Yjs‘ +N~'Tr (R3;>

i=1 j=1 \s=1 i=1 j=1 s=1

IA
=

k

N 2 k /N 2
- N_l Z <Z |’3/15| |’7zs/|> + 2N_1 Z <Z H/w') + N_lTT (Ri)
s,s'=1 \i=1 s=1 \i=1

I — y—
38 = -

N 2
< (K*+2k)N7! (sup Z ‘%‘J) +N~'Tr (R2).
5=

Therefore, under conditions (6) and (32), N~*Tr (R?) is bounded in N if 0 < 6., < 1/2.

Remark 1 Our assumption of approximate sparsity allows for a sufficiently high degree of cross
error correlations, which is important for the analysis of financial data, where it is not guaranteed
that inclusion of common factors in the return regressions will totally eliminate weak error
correlations due to spatial and/or within sector error correlations. It is important that both factor
and spatial type error correlations, representing strong and weak forms of interdependencies, are
taken into account when testing for alpha. By allowing the error term to include weak factors,
one only need to focus on identification of strong factors to be included in f;, which can be
achieved by using market factors or principal components of individual returns.'® The error
associated with the estimation of strong factors is likely to be negligible for N and T sufficiently
large. In the present paper we abstract from such estimation errors and condition our analysis
on giwen values of f;.

3.3 Non-Gaussianity

For the discussion of the effects of non-Gaussianity on the J, test below, it is convenient to
introduce the following scaled error
1/2
§it = uit/aii/ ) (34)

so that for each i, £, has zero mean and unit variance. In the case where the errors are
non-Gaussian the skewness and excess kurtosis of u, are given by v,,; = E(&) and Voi =
E(&}) — 3, respectively, that could differ across i. Note that under non-Gaussian errors, t;
is no longer Student t distributed and E(t?) and V(¢?) need not be the same across i, due
to the heterogeneity of 7, ; and ~,, over i. Using a slightly extended version of the Laplace
approximation of moments of the ratio of quadratic forms by Lieberman (1994), we are able to

derive the following approximations of E(t?) and Var(t?):"!

E(#) = —5+0 (17, (35)

10Note also that the consistency of the plug-in procedure proposed by Fan, Liao and Mincheva (2011, 2013)
requires that strong common factors are removed before estimation of the error covariance matrix, V.

11See Lemma 21 in the online supplement to the paper, which is available upon request.
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and

Var () = <U v 2> = dioa. (36)

Substituting (35) and (36) into (24) we have the following non-Gaussian version of J, (6%),

defined by (28):
)40 (\/N/T3>
St vom ] 1+

NV (8 -

Ja (83) =

where 6% is defined by (29). When the numerator of the .J, statistic is replaced by N—1/2 Zivzl (t?2 — 1),

which is the typical mean adjustment employed by Fan et al. (2015) and Gagliardini et al.
(2016), for example, then the order of the asymptotic error of the numerator of such test sta-
tistics becomes /N/T2. This is one of the reasons why our proposed test performs better than
the ones proposed in the literature, especially in cases where N >> T, and there are significant

2 2((: 41) for Var(t?) under

non-Gaussianity in the J, test is O(7!), which is small for sufficiently large T'.'

departures from Gaussianity. The asymptotic error of using (ﬁ)

3.4 Allowing for error cross-sectional dependence

A second important difference between the .J, test and the other tests proposed in the literature
is the inclusion of #% in the denominator of the test statistic to take account of error correlations.
As it will be shown more formally below, the limiting property of 3 is governed by the sparsity
of V, and is given by!?

0% — (N —1)p% — 0, (37)

as N and T — oo, so long as N/T? — 0, and 0 < 6., < 1/2, where

p?\f = N( )Zz 22] 1p1] (38)

p% is known as the average pair-wise squared correlation coefficient and plays a key role in tests
of error cross-sectional correlations in panel regressions. See, for example, Breusch and Pagan
(1980) and Pesaran, Ullah and Yamagata (2008). To see the relationship between 63 and the
sparsity of V, we note that

NITT(R2)_1+ Zz 2231 lj_1+<N_]')p?V7

which in view of (37) justifies replacing 1+ 63 by N~'Tr (R?) for N and T sufficiently large so
long as N/T? — 0, and 0 < §,, < 1/2. Therefore, ignoring 03 can lead to serious sizedistortions
even for large N and T panels when the errors are cross-correlated and N~'T'r (R?) does not
tend to zero, since the denominator of .J, will be under-estimated. The size distortion will be
present even if we impose stronger sparsity conditions on V, for example, by requiring my to be
bounded in N. It is, therefore, important that 63 (or p2%) is replaced by a suitable estimator.
One possible way of estimating p3, would be to use sample correlation coefficients, pij» defined
as
piy = 6:4/5:76 )" (39)

]J’

12 Small sample evidence on the efficacy of using N~1/2 Z 2 —

v—2
in Table M3 of the online supplement, which is available upon request.
13(37) follows from Lemma 18 in the Online Supplement which is available on request.

‘ ) over N~1/25°N (t? — 1) is reported
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where 6;; = T Zthl Uittt and Uy is the residuals from the OLS regression of y; on G = (74, F).
However, such an estimator is likely to perform poorly in cases where N is large relative to T,
and some form of thresholding is required, as discussed in the literature on estimation of large
covariance matrices.!? Here we consider the application of the multiple testing (MT) approach to
regularisation of large covariance matrices recently proposed by Bailey Pesaran and Smith (2017,
BPS). However, BPS establish their results for y; — y;, whilst we need to apply the thresholding
approach to ;. Second BPS consider exact sparsity conditions on the error covariance matrix,
whilst we allow for much more general sparsity conditions. We extend BPS’s analysis to address
both of these issues.'”'® The multiple testing (MT) estimator of p,;, denoted by p;;, is given by

pij = Pl [[Vvpy| > ep(N)] (40)
where v =T —m — 1,

- p
cN=<1>1<1——), 41
p is the nominal p-value (0 < p < 1), and f(N) = N° T = c4N¢, where ¢4, § and d are finite
positive constants. Using (40), the multiple testing estimator of p3; is given by

2 .
~2 - N i—1 ~2
PNT = NINZ 1) Dz D1 Py (42)

Under the sparsity conditions (30) and (31), it can be shown that (N — 1) (o — p3/) — 0 in
probability and in /;-norm so long as N/T? — 0, (or equivalently if d > 1/2) as N and T — oo,
jointly, and if

(2—4d)

Fo) ~ 7
> (1 _ 6) Pmax;

(43)

for some small € > 0, where @, <1+ |7, |, where y,. = E (e} ;1) — 3, €, is the ¢ element
117

of the N x 1 error vector €,, = Q, ', with n, = (11,794, .-, Mn¢) T The critical value function,
¢y (N), depends on the nominal level of significance, p, and the choice of ¢, subject to condition
(43). The test results are unlikely to be sensitive to the choice of p, over the conventional values
in the range of 1 to 10 per cent.'® d determines the relative expansion rate of N and T. The
value of ¢ depends on the degree of dependence of the errors even if they are uncorrelated. In
the case where the errors, ¢, ;, are Gaussian Y2,e, = 0 and ¢ < 1, and it is sufficient to set
6 = 2 — d. However, in the non-Gaussian case, and given the evidence provided by Longin
and Solnik (2001) and Ang, Chen and Xing (2006) on the degree of nonlinear dependence of
asset returns, higher values of 6 might be required. In simulations and empirical exercises to be
reported below we set f(N) = N — 1, which is equivalent to setting 6 = 1, which could be too
low in cases where N is large relative to 7.

14See, for example, Cai and Liu (2011), Fan et al. (2013), Bailey Pesaran and Smith (2017), among others.

15Other thresholding estimators of V proposed in the literature can also be used. The efficacy of using the
estimator [)?\,’T over other estimators in small samples is investigated and the results are summarised in Table
M2 in the Online Supplement (available on request).

16 Gagliardini, Ossola and Scaillet (2016) employ Bickel and Levina (2008) thresholding (BL). The finite sample
evidence in BPS shows that the MT estimator uniformly outperform the BL in all the designs considered in BPS.

17See Theorem 4 in Section 4 and its proof in Appendix A.

18Tn the Monte Carlo experiments reported below, we set p = 10%.

9The robustness of the J, test against non-Gaussian and nonlinear error dependence is investigated and
reported in Table 4. These results are generally supportive of setting § = 1.
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Accordingly, we propose the following feasible version of the J, statistic
L NTERY )
(52) /35 [1+ (N = Dpes]

where t; is the t-ratio for testing a; = 0, defined by (23), v = T —m — 1, and f)?vj, is given

(44)

by (42). The J,, test is robust to non-Gaussian errors and allows for a relatively high degree of
error cross-sectional dependence. In what follows we provide a formal statement of the conditions
under which .J, tends to a normal distribution.

3.5 The Gagliardini et al (2016, GOS) test

GOS propose the following statistic for testing the hypothesis of zero pricing error (GPS, p.1008-
9)

GOS = 1/22 (1) : (45)

V21 (N = 1)p)

where p%; is an estimator of p3 based on Bickel and Levina (2008, BL) threshold estimator of
pij.QO As noted in the Introduction GOS is closely related to the .J, test statistic, but also differs
from it in a number of important respects. First, GOS does not employ the degrees of freedom
adjustment for the standardisation of ?, which we have shown will provide more accurate normal
approximation especially when N is much larger than 7. Second, for the estimation of large
variance-covariance matrix, the evidence in BPS shows that the MT estimator outperforms the
BL estimator almost uniformly in their experiments, and our use of MT estimator of p%; turns out
to yield much better results. Third, the BL estimation requires cross-validation, which can be
computationally far more costly than the MT estimation. Finally, we derive limiting distribution
of the J, test statistic under primitive assumptions with fairly general error covariance structure,
while GOS place high level assumption of asymptotic normality of the test statistic (see their
Assumption A.5) or only consider a restrictive error covariance structure (see their Appendix
F).2! We believe that our error specification is valid more generally in empirical asset pricing
literature where not all factors can be identified and estimated, and in consequence one needs
to allow for a much wider degree of error cross correlations to take account of weak unobserved
effects.

3.6 Survivorship bias

Finally, it is important that the application of the J,, test is not subject to the survivorship bias.
The GRS type tests of alpha considers a relatively small number of portfolios over a relatively
large time period to achieve sufficient power. By making use of portfolios rather than individual
securities the GRS test is less likely to suffer from survivorship bias. By comparison tests such
as the J, test can suffer from the survivorship bias due to the fact that they are applied to
individual securities directly and obtain power from increases in N as well as from 7. To deal
with the survivorship bias we propose that the .J, test is applied recursively to securities that
have been trading for at least 7' time periods (days or months) at any given time ¢. The set
of securities included in the .J, test varies over time and dynamically takes account of exit and
entry of securities in the market. The number of securities, N, used in the test at any point of

20For more details, see Section M1.2 of the online supplement.
21See Assumptions BD.1-3 in GOS.

14



time,

7, depends on the choice of T', and declines as T' is increased. It is clearly important that

a balance is struck between 7' and N,. Since the .J, test is applicable even if N is much larger
than 7', and given that the power of the J,, test rises both in N and T, then it is advisable to
set T such that min,(N,)/T? is sufficiently small. This procedure is followed in the empirical
application discussed in Section 6 below, where we set T = 60 and end up with /N, in the range
464, 487], giving min, (N,)/T? = 0.12.

4

Summary of the main theoretical results

In this section we provide the list of assumptions and a formal statement of the theorems for the
size and power of the proposed J,. First, we state the assumptions for establishing the results.

Assumption 1: The m x 1 vector of common observed factors, f;, in the return regressions, (2),

are distributed independently of the errors, u; for all 4, ¢ and #’. The number of factors,
m, is fixed, and the factors can be strong in the sense that

N
sup Y [B,,] = O(N®), 0< 65 <1 (46)
S =1

and satisfy f/f;, < K < oo, for all £. The (m + 1) x (m + 1) matrix T7'G'G, with
G = (71, F), is a positive definite matrix for all 7', and as T' — oo, and 7/ .Mpg7Tr > 0,
where Mp = Iy — F (F'F) "' F.

Assumption 2: The errors, u;, in (2), have the following mixed weak-factor spatial represen-

(i)

tation
Uig = Yive+ny, fori=1,2 .. N;t=1,2....T, (47)

where v; = (71, Vizs -+ Vir)' 18 @ k X 1 vector of factor loadings, v; = (vi¢, var, ..., V) IS &
k x 1 vector of unobserved common factors and 7;, are the idiosyncratic components.

The unobserved factors v;, are serially independent and the k elements are independent
of each other, such that v; ~ II1D(0,1), v,, = E (v4) — 3, and sup,,E (v5°) < K, for
some ¢ > 0. The factor loadings, v,, for s = 1,2, ..., k, are bounded, sup, , |v;,| < K, and
the factors, v;, are weak in the sense that

N
supz 75| = O (N®) , with 0 < 6, < 1/2. (48)
5=

For any ¢ and j, the T" pairs of realizations, {(nil, 77j1) , (niz, 77]'2) -~ (niT, an)} , are inde-
pendent draws from a common bivariate distribution with mean E (n;,) = 0, Var (n,,) =
oniiy 0 < ¢ <oy < K, and the covariance (nimjt) = Opij-

Writing the error factor specification, (47), in matrix notation we have

w, =I'vy +n,, (49)

where u; = (uyg, Uag, s une)s T = (Y1, Y2, -, Yn) s and 1, = (M145 Moz, -, M) - Under Assump-
tion 2, and denoting F (n,m;) = V,, = (0,,;), we have

E(uwuy) =TT +V, =V = (o), with oy = ¥y, + 0pi5- (50)

We now make the following further assumption.
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Assumption 3: The covariance matrices V and V,, defined by (50) are N x N symmetric,
positive definite matrices with Amin (V) > Amin (V) > ¢,

er = (e1t, €2ty oy Ent) = Q'wy, and €, = (€514, €2ty oy EqNt) = Q;lnt, (51)

where Q and Q,, are the Cholesky factors of V and V,,, respectively. Matrix Q,, is row
and column bounded in the sense that

1Qyllo < K, and [|Qyl, < K. (52)

{eit} and {e;t} are I1D processes over i and ¢, with means zero, unit variances, v,. =

E (5;”) — 3, and supi7tE(|6it|8+c) < K < o0, and supi7tE(|5n,it|8+c) < K < oo, for some

c > 0.

Remark 2 The above assumptions allow the returns on individual securities to be strongly cross-
sectionally correlated through the observed factors, f;, and allow for weak error cross-correlations
once the effects of strong factors are removed. Such residual interdependencies could arise due
to spatial or other network type spill-over effects not captured by the observed common factors.

Remark 3 Under condition (52)
Vil < [1QuQull.. < 1Qull. QI < K =0(1), (53)

nevertheless due to the weak factors we have

N
Ve =sup > |oy| =0 (N*),
J =1

and allows the overall error variance matrix, V, to be approximately sparse, in contrast to the
literature that requires ||V, < K. The relazation of the sparsity condition on 'V is particularly
important in finance where security returns could be affected by weak unobserved factors. Using
principal components does not resolve the problem since, principal components provide consistent
estimates of the factors (up to a rotation matriz) only if the factors are strong.

Remark 4 The high-order moment conditions in Assumption 3 allow us to relax the Gaussianity
assumption whilst at the same time ensuring that our test is applicable even if N is much larger
than T'.

Remark 5 Assumptions 2(ii) and 3 ensure that the sample cross correlation coefficients of the
residuals, p;;, have an Edgeworth expansion which is needed for consistent estimation of P
defined by (38). For further details see Bailey et al (2017).

Our main theoretical results are set out in the following theorems. The proofs of these
theorems are provided in Appendix A, and necessary lemmas for the proofs are given in the
online supplement available upon request.

Theorem 1 Consider the return regressions, (2), and the statistic Zf\il 22 defined by (20).

(2

Suppose that Assumptions 1-3 hold, and N~'Tr (R?) is bounded in N, where R = (p;;), p;; =

E(&4&5), and & = ui/ Jili/ ? is the standardized error of the return regression equation (2). Then,
under Hy : o; =0, in (2) for all i,

N
gvr = N2y 7 (27 = 1) —a N(0,20%), as N — 00 and T — oo, jointly, (54)

=1
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where
w?’= lim N7'Tr (R*) =1+ hm (N —1)p3,

N—oo
with

p?\f = N( )Zz 22] 1P Z] (55)

Theorem 2 Consider the regression model (2), and the statistics S, 22 and S~ | 2, which

=1 "%’

are defined by (20) and (22), respectively. Suppose that Assumptions 1-3 hold. Then, under the
null hypothesis, Hy : a; = 0 for all 1,

N
SNT = N_l/QZ (ZZZ —t?) —p 0,

i=1
as N — oo and T — oo jointly, so long as N/T* — 0, 0 < 6, < 1/2, where 6., is defined by

(48).

Theorem 3 Consider the regression model (2), and suppose that Assumptions 1-3 hold. Then,
under Hy : o; = 0, for all i,

() - N vy, (56)

V) D 4 (V- 13

so long as N/T? — 0, and 0 < 6, < 1/2, as N — oo and T — oo, jointly, where t;, p3% and 6.
are defined by (23), (55) and (48), respectively, with v =T —m — 1.

Theorem 4 Let 5
~2 i—1 ~
pNT N(N— )Zz 22] 1 1]7 (57)

where
pij = PijL [|\/Ei)zj| > Cp(N)} ) (58)

pij = Euin), Eu = vi/ ai-/ ? is the standardized error of the return regression equation (2),
v=T—m~—1, p; is defined by (39)

cp(N) = 01 (1 - foN)) , (59)

p is the nominal p-value (0 < p < 1), and f(N) = N° and T = c4N¢, where cq, § and d are
finite positive constants. Suppose that Assumptions 1-3 hold and

SN by = O(N). (60)

Then (N — 1)E |pa 7 — p| — 0, as N and T — oo, which implies (N — 1) (P31 — p¥) —» 0,

if NJT?* = © (N'72) — 0, (or if d > 1/2), and if 6 > g f)) Prax, Jor some small € > 0, where

;and vy, = =F (e nzt) 3 (Assumption 3).

Prmax S 1 + ‘725
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Theorem 5 Consider the panel regression model (2) in asset returns, and suppose that Assump-
tions 1-3 hold. Consider the statistic

L N ey
('u32> \/2((U 1)) [1 + (N - 1)2’?\{1}

where t; is given by (23), v =T —m — 1, py.p is defined by (57), using the threshold c,(N)
given by (59), withp (0 <p < 1), f(N) = N, T = cqN¢, where cg4, 6 and d are finite positive
constants, 6 > ((? f)) Omaxs for some small e > 0, where ¢, < 1““72,5,7 candy,,, =E (e nzt) 3.

Then, under Hy : a; = 0 for all 1,

, (61)

Jo —a N (0,1), (62)
if N/T? - 0, as N and T — oo, jointly.

For the power of the J,, test, we consider the local alternatives

Hy, : o with 0 < |¢;| < oo, for all 4. (63)

Si
= NUaTL2

Theorem 6 Consider the panel regression model (2) in asset returns, and suppose that condi-
tions of Theorem 5 apply. Then, under the local alternatives, Hy,, defined by (63),

gy —a N <¢2/\/§, 1) : (64)

. N
where ¢* = limy_,o0 < >isi S oy

Remark 7 This theorem establishes that the J, test is consistent (in the sense that its power
tends to unity), if ¢*> > 0, which is satisfied if limy_ o ( N1 val §2> > 0. It is also interesting

to note that the power of the J,, test increases uniformly with N and T', in contrast to the
power of the GRS test that rises with T, only. The J, test has power even if ZZ L a? does not
increase with N, so long as N increases sufficiently slowly as compared to T'. To see this, let
Zﬁil al =0 (N5a), and note that under the local alternatives, (63), and setting T = © (Nd),

we have S aF = (N0, 62) © (NV24) = 0 (N%), or (NP S2Y, F) = © (Noera-1r2),
Hence, the proposed test will be consistent so long as 6, + d > 1/2. The case of 6o = 0 is of

particular interest since it does not require the number of securities with non-zero alphas to rise
with N for the test to have power.

5 Small sample evidence based on Monte Carlo experi-
ments

We examine the finite sample property of the J,, test by Monte Carlo experiments, and compare
its performance to a number of existing tests. For comparison, we consider the GRS test, the
GOS test, and the feasible versions of the standardised Wald tests, SWporpr and SWpy,, which
are discussed in Section 3. We also consider the Fj,.. test recently proposed by Gungor and
Luger (2016, GL). They propose basing a test of Hy : &« = 0 on the simulated distribution of
Finax = maxi<,<n Fj, where F; is a standard F-statistic for testing a; = 0 in the OLS regression
of y; on an intercept and f;. The simulations are carried out by residual resampling allowing
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for cross-sectional correlations and cross-sectional heteroskedasticity using wild bootstraps. GL
employ a bounds testing approach to allow for unconsidered nuisance parameters, which could
result in having inconclusive test outcomes.??

Computational details of the above tests are given in Section M1.2 of the online supplement
available on request.

5.1 Monte Carlo designs and experiments

We consider the following data generating process (DGP)

ra =i+ Y Bufutui=12,Nit=12 T, (65)
=1
and calibrate its parameters to closely match the main features of the time series observations
on individual returns and the three Fama-French factors (market factor, HML and SMB) used
in the literature on tests of market efficiency.”®> The Monte Carlo (MC) design is also intended
to match the models used for the empirical applications that follow. Accordingly, we set m = 3
and generate the factors as

foo = 0.53+0.06fr:-1+ \/he Cp, for £ =1, (Market factor),

foo = 019+0.19f0; 1+ /het Cpy, for £ =2, (HML),
fo = 0.19+0.05f0;: 1+ Vhet Cpy, for £ =3, (SMB),

where (,, ~ [IDN(0,1) and**

ha = 0.89+ 0.85he 1 +0.11(7,_y, for £ =1, Market,
hee = 0.62+4 0.74he1 +0.19¢7,_y, for £ =2, HML,
hee = 0.80 4 0.76he 1 + 0.15¢;, ,, for £ = 3, SMB.

The above processes are generated over the period ¢t = —49, —48,....0,1,2,...., T with f; 50 =0
and hy_50 =1 for £ =1,2,3. Observations ¢t = 1,2, ...,T are used in the MC experiments.

To capture the main features of the individual asset returns and their cross correlations,
we generate the idiosyncratic errors, w, = (uy,usy, ..., une), according to u;, = Qe,, where
e = (€11, €25 . Ent) , and Q = DY?P with D = diag(o11,022, ..., onN)', 05 = Var(uy), and P
being a Cholesky factor of correlation matrix of u;, R, which is an N x N matrix used to calibrate
the cross correlation of returns. For each i, €;; is generated such that u; exhibits skewness and
kurtosis which is typical of individual security returns. To this end, R is generated as

R =1Iy +bb' — B? (66)

where b = (b, by, ..., by)’, and B = diag(b). The correlation matrix R also arises from the single
factor model, u; = v,v; + 0717,/2'22'77“7 with v, ~ I1D(0,1), and n;, ~ [ID(0,1), and b; = %/01/2

i)

22We also considered two distribution-free sign tests of a; = 0, proposed by Gungor and Luger (2009). These
tests, referred to as SS and WS tests, are valid for single factor models with errors that are conditionally
symmetric around zero, but they do allow for non-normal errors, are relatively easy to compute, and are applicable
even when N > T. The results of these simulations are reported in Table M4 of the Online Supplement. These
tests are also outperformed by the Jy test.

23SMB stands for "small market capitalization minus big" and HML for "high book-to-market ratio minus
low". See Fama and French (1993), and Appendix C for further details and data sources.

24The estimates used in the generation of the factors and their volatilities are computed using monthly obser-
vations over the period April 1973 - September 2011.
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where 0y; = 7?40, To generate different degrees of error cross-sectional dependence, we draw
the first and the last IV, (< N) elements of b as Uni form(0.7,0.9), and set the remaining middle
elements to 0. We set N, = [N%|, where |A] is the largest integer part of A. Using ¢, our
assumption my = o(N'/2) can be expressed by my = N% with 6, < 1/2. In our experiments,
we consider the values of exponents ¢, = 1/4,1/2, and 3/5. The case of no error cross-sectional
dependence is obtained when N, = 0, and the error cross-sectional dependence is weak when
6, < 1/2. The case of 6, = 3/5 is included to see how the J,, test performs when cross-sectional
error correlations are higher than the threshold value of 1/2 allowed by the theory. To save
space, we omit reporting the results for the case where 6, = 0 as they are qualitatively similar
to the case with 6, = 1/4. The present design focusses on the weak factor error correlations and
assumes the idiosyncratic errors, 7,,, are cross-sectionally uncorrelated. A more general design
that allows for both forms of error correlations will be considered below.

Recently, Fan, Liao and Yao (2015; FLY) have derived the conditions under which the limiting
normal distribution of SWpogr will be asymptotically justified. Under their assumptions the
SWpoer test allows for N > T. However, FLY’s assumptions are much more restrictive than
ours.”” For example, FLY do not cover cases where 1/4 < §, < 1/2. When 6, = 1/4, FLY
require that 7' = O (N In(N)*), for some x > 2. Thus, when 6, = 1/4, so long as T rises slightly
faster than N, the SWpopr test is asymptotically justified. On the other hand, J, —q N (0,1)
so long as T' = © (Nd) with d > 2/3 when 6, = 1/4. Therefore, the J,, test is expected to
provide better finite sample approximation than the SWpopr test, especially when N is larger
than 7" and/or when error cross-correlation is not very weak. The simulation results that follow
seem to support these theoretical insights.2¢

To calibrate the variance, skewness and kurtosis of the simulated returns, we used estimated
values of these measures based on residuals of Fama-French regressions for each security over the
estimation windows 7 =September 1989,..., September 2011, using sample sizes equal to T" = 60
months. Specifically, for each ¢ = 1,2,..., N; we run the Fama-French regressions 7; ;s — r¢+ =

Qi + BMT (Pt — Tprt) + @JTSMB” + @%HMLtT + Ui, t = 1,2,...,60, at the end of each

month 7 =September 1989,..., September 2011, and computed 6, = M2 7, Nir = mgw/mgﬁi
N ~ ~ . ~ —1 60 N = s = _ 60 ~
and Yy, = My /M3 — 3 with i, = (60) i (Gire — i), and G = (60)71 307 Gy e

We ended up with 126,181 different values of 6y ,, 4, ,, and ¥, ,, estimated for around 476
securities over 265 different estimation windows. We discarded estimates that lied below the
2.5% and above the 97.5% quantiles to avoid the calibrated values being dominated by extreme
outliers. The same procedure was applied to the estimated factor loadings, Bem- The means
and medians of 6, 41, V2., and Bﬁﬁ for £ = 1,2,3, and their 2.5% and 97.5% quantiles
are summarized in Table 1. As can be seen from these results there is a considerable degree
of heterogeneity in estimates of the factor loadings and in the measures of deviations, skewness
and kurtosis, across securities and sample periods. The details of the procedure to generate the
non-normal and cross-correlated errors are described in Appendix B.

To estimate size of the tests, we set o; = 0 for all 7. To investigate power, we generated o
as oy ~ IIDN(0,1) for i = 1,2,..., N, with N, = |[N*|; ay =0 fori = Ny +1, Ny +2,...,N.
We considered the values A, = 0.8,0.9,1.0, but the power ended up to be very high even for

%In addition to some regularity conditions, FLY require Assumption A.2. which defines their version of
"sparseness": Suppose N'/2 (log N)"* = o (T) for some y > 2, and (i) min, . 2o |04;| >> +/(log N) /T; (ii) at least
one of the following cases holds: (a) Dy = 22?;2 Z;;ll I(0ij #0) = O(NY?) and = O (W) or; (b)
Dy = O (N) and m% = O (1). Then they show that SWpogr —a N (0,1) ,as N,T — oo jointly (see Proposition
4.2 of FLY).

26 This may also explain why FLY test suffers from size-distortion as discussed by Bailey, Pesaran and Yamagata
in Fan, Liao and Mincheva (2013), where N is allowed to increase with T fixed.
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Ao = 0.8. Therefore, we only report power estimates for A\, = 0.80.

All combinations of 7" = 60,100 and N = 50, 100, 200, 500 (and 1,000, 2,000, 5,000 for the
Jo test) are considered. All tests are conducted at a 5% significance level. Experiments are
based on R = 2,000 replications.

5.2 Size and power

Table 2 reports the size and power of the GRS, ja, GOS, SWpogr, SWrw and F.x tests of
Gungor and Luger (2016), in the case of models with three factors, under various degrees of
cross-sectional error correlations, as measured by the exponent, 0.,.

First, consider Panel A of Table 2 which deals with the case where the errors are normally
distributed but cross-sectionally weakly dependent with §, = 1/4.*” The GRS test when ap-
plicable (namely when 7" > N) being an exact test, has the correct size. The empirical size of
the J, test is also very close to the 5% nominal level for all combinations of N and T. Even
when N = 500, the size of the J, test lies in the range 5.0% to 5.3% for different values of T. In
contrast, both GOS and SWpopr tests grossly over-reject the null hypothesis, and the degree
of the over-rejection becomes more serious as N increases for a given 7. For example, when
T = 60, increasing N from 50 to 500, the size of the GOS test rises from 10.0% to 16.2% and
that of the SWpopr test rises from 18.3% to 53.1%. In line with the discussion in Section 3.4,
the size distortion is mitigated when T increases. For T' = 60 and N = 50 the size of the GOS
test and the SWpopr test are 10.0% and 18.3% but they fall to 8.3% and 12.1% when T = 100
and N = 50, respectively. The size properties of the SWpy test are very similar to those of the
SWpogr test. The size of the F},., test tends to be substantially smaller than the nominal level
for all combinations of N and 7T (this is in line with the reported results in Gungor and Luger,
2016). The rejection frequencies range between 0.1% and 0.2%. Furthermore, inconclusive test
outcomes are observed more often, ranging between 2.7% and 4.6% of the outcomes.?® The
power of the J,, test is substantially higher than that of the GRS test. For example, for T" = 60
and N = 50 the power of the GRS test is 15.0% as compared to 65.9% for the J,, test, although
both tests have similar sizes (4.6% for the GRS test and 7.4% for the J, test). This is in line
with our discussion at the end of Section 2, and reflects the fact that GRS assumes an arbitrary
degree of cross-sectional error correlations and thus relies on a large time dimension to achieve
a reasonably high power. In contrast, the power of the J,, test is driven largely by the cross-
sectional dimension. This can be seen clearly from the tabulated results. Keeping NN fixed at 50,
and increasing 7" from 60 to 100 increases the power of the GRS test from 15.0% to 69.2%, whilst
the power of the J, test (for example) rises from 65.9% to 87.4%. It is interesting that even in
this case (with 7" much larger than N) the J,, test still has substantially higher power than the
GRS test, with comparable type I errors. The power comparison of the GOS, SWpopr and
SWirw with other tests seem inappropriate, given their large size-distortions. Having said this,
it is perhaps remarkable that the power of the J,, test is comparable to the unadjusted power
of the GOS, SWporr and SWry tests. The power of the J,, test uniformly dominates that of
the Fl.x test for all experiments. The low power of the Fi,., test is partially explained by the
large proportions of inconclusive results. For T' = 60, between 29.3% and 45.5% of inconclusive
results are observed for different N. For 7" = 100, the proportion of inconclusive results tends
to decline as N increases. For example, increasing N from 50 to 500 lowers the frequencies of
inconclusive results of the F, . test from 39.0% to 29.1%.

2TIn line with our theoretical findings (see Section 2), the results of cross-sectionally independent case (with
8, = 0) is qualitatively similar to the case where §, = 1/4.

28 The frequencies of inconclusive outcomes for the Fynax test for different combinations of N and T are reported
in Table M1 of the Online Supplement.
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Consider now the case where the errors are normally distributed and cross-sectionally rela-
tively strongly dependent. First let us discuss the results when 6, = 1/2. The J,, test seems
quite robust to cross-sectional error correlations, with its size falling in the range 5.1% to 6.6%.
The size of the J, test for N = 50 and T = 60 is 6.4%, and its power is 53.6%, which still
exceed the power of the GRS test, which is 20.7%. But, as expected, increasing T from 60 to
100 results in the power of the GRS test to rise to 84.9%, which marginally beats the power of
the J,, test at 82.3%. The size distortion of the GOS test becomes more pronounced as the value
of 6., is increased. For 6, = 1/4, the size of the GOS test increases from 12.0% to 15.4% when
6, is increased from 1/4 to 1/2 in the case of the sample combinations N = 200 and 7' = 60,
and increases from 16.2% to 19.0% if we consider the larger sample of N = 500 and T" = 60.
It is also interesting that when N = 50, increasing 7" from 60 to 100 does not improve the size
distortion of GOS and SWpopr tests, which amount to 21.5% and 23.3%, respectively.

When 6., = 3/5 > 1/2, out of all the tests considered, only the GRS test is valid so long as
N < T, and indeed has the correct size in such cases. However, interestingly, the size of the Jo
test is also close to its nominal level (at 5.5%-7.2%) even for such a high value of §,. This seems
to be due to the inclusion of (N — 1) ,B?\LT in the denominator of the J, statistic.

We now consider the empirically most relevant case where the errors are non-normal as
well as being cross-sectionally correlated. The effects of non-normal errors on the tests are
documented in Panel B of Table 2. Consider first the case where the errors are non-normal
and cross-sectionally weakly correlated (6, = 1/4). We see that the size of the GRS test is
hardly affected by the types of departures from Gaussianity observed in the regression residuals.
The robustness of the GRS test to non-normal errors of the type encountered in practice has
also been documented by Affleck-Graves and McDonald (1989). As to be expected from the
theoretical discussions, the J,, test is reasonably robust to non-Gaussian errors, and exhibit
only a very mild tendency of over-rejecting the null hypothesis, even for relatively large N. For
example, whenT' = 60, for N = 50, 100, 200, and 500, the sizes of the J,, test are 6.5%, 6.9%,
5.9%, and 6.6%, respectively. The over-rejection of the GOS test and the SWpopr test tends
to be somewhat magnified by non-normality. The effects of non-normality upon the size of the
SWirw is less obvious. The size of the Fj .. test is again much smaller than the nominal level,
but on average slightly higher than that under normal errors. For example, the average of the
size of the Fy.y test for all the combinations of (N, T) is 0.14% under normal errors, but under
non-normal errors it is 0.25%. Also, on average the incidence of inconclusive outcomes for the
Flax test is slightly higher under non-normal errors. For example, the average of the frequencies
of the inconclusive outcomes for all the combinations of (N, T") is 3.7% under normal errors, but
increases to 4.3% under non-normal. Under non-normal errors, the J,, test continues to maintain
its power superiority over the GRS and the F,.x tests. When 6., = 1/2 and 3/5 the size of the J,
test is reasonably controlled and lies in the range 6.0%-7.9%. The power comparisons discussed
for the weakly cross-sectionally uncorrelated case (6, = 1/4) also carry over to the present set
of experiments with the much higher degrees of error cross-sectional correlations (6, = 1/2 and
3/5).

We also carried out additional experiments with much larger values of IV, namely N = 1,000,
2,000 and 5,000, whilst keeping 7" at 60 and 100. We only considered the J, test for these
experiments, as it is unlikely that other tests considered, given their relatively poor performance
for values of N < 500, would perform better than the J,, test. The results are summarised in
Table 3. As can be seen, the size is satisfactorily controlled with good power properties, only
showing moderate over-rejection under non-Gaussianity for 77 = 60, and for relatively strong
error cross correlations. For example, for N = 5,000, when 7" = 60 with non-normal errors, the
size of the J, test for 6y =1/4,1/2 and 3/5 are 7.8%, 9.5% and 9.3%, whereas, by increasing T’
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to 100, for N = 5,000 the size of the test drops to 7.1%, 5.9% and 7.1%, respectively.

Finally, we investigated the robustness of the .J, test against possible nonlinear dependence
across security returns, discussed in the literature by Longin and Solnik (2001), and Ang, Chen
and Xing (2006), among others. In the presence of nonlinear dependence, correlation of higher
order moments of errors, such as Corr (u?t, u?t), could be non-zero even when u; and wuj are
uncorrelated. Table 4 summarises the size and power of the J, test when the regression errors
follow multivariate ¢ distribution. Under this design N*¢ securities’ squared errors are cross-
correlated, while the errors themselves are uncorrelated, which give rise to ¢ < 2.5. As can be
seen, the J,, test continues to perform well, giving the correct size and high power, across all of

the MC designs.

5.3 Experiments with mixed factor-spatial error processes

So far we have considered error processes with a weak common factor structure but with cross-
sectionally independent idiosyncratic errors. As we discussed in sub-section 3.2, our test, in-
cluding estimators of the cross-correlation measure (N — 1) p3,, continues to apply when the
eigenvalues of the variance matrix of idiosyncratic errors are bounded. Accordingly, we fur-
ther investigate finite sample behaviour of the J, test under the DGPs identical to those
considered for Table 2, except that a spatial autoregressive component is incorporated into
the error generating process. Specifically, the error correlation matrix is now given by R =
D,'>VD; "2, where D, = diag (03), V = (03;), V =37 + Iy — p.W) " (Iy — p.W’)"! with
!/
vy = (71,72, YN+ 0,0, ...,O) , 7; for i < N, = | N%/| are drawn from uniform(0.7,0.9) distrib-
utionand v, =0 for i = N, +1,N, +2,...., N, p, is a spatial coeflicient such that 0 < |p,| < 1,
W' = (w,,Wo,...,wy) with 7yw; = 1 and its diagonal elements being all zero. Observe that
when N, = 0, the errors possess pure spatial autoregressive processes, and when p, = 0, the
DGP becomes identical to that for the results reported earlier (in Tables 2 and 3). We have
chosen the values p, = {0.5,0.8} and a rook form for W = (wj;), namely, all elements in W are
zero except wip1; = wj—1; = 0.5fori =1,2,..., N—-2and j = 3,4..., N, with w; 2 = wyn_1 = 1.
To investigate the importance of allowing for error correlations in the construction of the J, test
we also consider a version of the test that does not control for error cross-correlations. This
version is denoted by J,(0), and obtained by setting p% = 0 in J,(p%), defined by (56). Table
5 reports the results for p. = 0.5, both with and without the weak factor component. In the
latter case v = 0, and error cross-correlations are only due to the spatial autregressive effects.
As can be seen from the Panel A of the table, under Gaussianity, the size of the J,, test is well
controlled, with slight over-rejection when 7" = 60, which disappears when T is increased to 100.
This result holds for all the values of N considered, including N = 5,000. In contrast, the J,(0)
test over-rejects the null hypothesis, around 10%, for all the combinations of N and T. This
confirms that using the MT estimator of p% does a good job at correcting the bias of the J,
test for the spatial error correlations. The over-rejection of the test becomes more pronounced
when the errors are non-Gaussian (see Panel B), but the size distortion becomes rather small
for T = 100, even if N > 1,000. The results are very similar when the errors have a mixed
spatial-factor models. When ¢, = 1/4 and 1/2, there is no noticeable difference in the results
from the case with v = 0 for both Gaussian and non-Gaussian errors. When 6., = 3/5, as to be
expected, we observe moderate size distortions, especially when 7" = 60 and N > 1000. The J,
test continues to show good power performance for both types of error processes and for different
values of 6,. As noted earlier, there is some loss of power 4., is increased. But the extent of the
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power loss is much smaller than those reported in Table 2.2

5.4 Experiments with time varying betas

We also investigated the robustness of the proposed test to random time variations in 3,. In the
case where betas are time-varying (2) can be written as

Yir = it + Byt + wir, (67)

where a;; = v+ 8, (A—p #)- Suppose that time variations in 3;, can be modelled by the following
random coefficient model®”

Bit = By + v, (68)
where E (8;,) = B;, and vy = (U141, Vasit, -y Umit) ~ 11D (0,82, ;) over i and ¢, and distributed
independently of w;y and f; for all ¢, j,¢,¢', and s. Using (68) we now have

Yir = i + Bify + e, (69)

where 1;; = v;tf't + ui, and E =fi—u Ft A. Suppose that f; is a stationary process with mean
p; and variance £2;. Then for each i, 1 is serially independent with zero means and constant
unconditional variances, namely

Gii = Oyii + 04 for i =j

04 = 045 for @ # 7,

E (ﬁzt) - O, E (ﬁitﬁjt) — {

where 0,,;; = E (ft’vitvgtft> = XNQu M Tr (2,Q,,:). Hence,

Corr (Wi, Ujt) = p;: = ] , for i # j, (70)
N O R R CE I

and it readily follows that ‘pm} < ‘pij , and the presence of random variations in betas in fact

reduces the degree of error cross sectional dependence. Therefore, the composite errors, i,

implied by the time-varying betas satisfy the sparsity conditions (30) and (31). However, the

theoretical analysis become further complicated due to the fact that u;; are now conditionally

heteroskedastic, namely Var (ﬁit ’ft) = ft’ﬂvuﬂ + 0. Nevertheless, our preliminary analysis
suggests that the proposed test continues to be applicable in this case so long as f; is stationary
with bounded support and the in-sample mean of f; is sufficiently small. A formal proof of
this conjecture is beyond the scope of the present paper. But in support of our conjecture we
provide additional Monte Carlo evidence in Table 6, where we present finite sample behaviour
of the .J, test under the DGPs identical to those considered for Table 5, except that betas are
now generated to be time varying. Specifically, we generated betas as (,, = [y + ver with
vege ~ IIDN (0,1), and set y;; = ao; + 22:1 Bufor +ui, i =1,2,.., N;t =1,2,....;T. The results
summarized in Table 6 are qualitatively similar to those in Table 5, suggesting that allowing for
random time variations in betas do not adversely impact the small sample properties of the J,
test, and if anything tend to correct the slight over-rejection of the test in the case of models
with time-invariant betas, most likely due to the fact that random-variations in betas reduce
the degree of error cross-correlations.

29The results for p. = 0.8 are qualitatively similar to the results for p. = 0.5, which are summarised in Table
M5 in the Online Supplement (available upon request).

30This set up is sufficiently general and accommodates a wide class of random coefficient models considered in
the literature, but it rules out persistent and systematic time variations in betas. In practice, as with the empirical
application discussed in Section 6 below, one can deal with such persistent time variations by considering tests
of LFPM over relatively short time periods, which requires the test to apply in cases where N is much larger
than T'.
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6 Empirical Application

6.1 Data description

We consider the application of our proposed J,, test to the securities in the Standard & Poor
500 (S&P 500) index of large cap U.S. equities market. Since the index is primarily intended
as a leading indicator of U.S. equities, the composition of the index is monitored by Standard
and Poor to ensure the widest possible overall market representation while reducing the index
turnover to a minimum. Changes to the composition of the index are governed by published
guidelines. In particular, a security is included if its market capitalization currently exceeds US$
5.3 billion, is financially viable and at least 50% of their equity is publicly floated. Companies
that substantially violate one or more of the criteria for index inclusion, or are involved in merger,
acquisition or significant restructuring are replaced by other companies.

In order to take account for the change to the composition of the index over time, we compiled
returns on all the 500 securities that constitute the S&P 500 index each month over the period
January 1984 to June 2015. The monthly return of security ¢ for month ¢ is computed as
ri = 100(Py — Piy—1)/Pit—1 + DYy /12, where P is the end of the month price of the security
and DY}, is the per cent per annum dividend yield on the security. Note that index ¢ depends
on the month of which the security ¢ is a constituent of S&P 500, 7, say, which is suppressed for
notational simplicity.

The time series data on the safe rate of return, and the market factors are obtained from Ken
French’s data library web page. The one-month US treasury bill rate is chosen as the risk-free
rate (), the value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from CRSP)
is used as a proxy for the market return (r,,;), the average return on the three small portfolios
minus the average return on the three big portfolios (SM B;), and the average return on two
value portfolios minus the average return on two growth portfolios (HML;). SMB and HML
are based on the stocks listed on the NYSE, AMEX and NASDAQ. All data are measured in
percent per month. See Appendix C for further details.

6.2 Month end test results (September 1989 - June 2015)

Encouraged by the satisfactory performance of the J,, test, even in cases where N is much larger
than T, we apply the J,, test that allows for non-Gaussian and cross-correlated errors to all
securities in the S&P 500 index at the end of each month spanning the period September 1989
to June 2015.3' In this way we minimize the possibility of survivorship bias since the sample
of securities considered at the end of each month is decided in real time. As far as the choice
of T is concerned, to reduce the impact of possible persistence or systematic time variations in
betas, we select a relatively short time period of 60 months. Recall that the experimental results
reported above show that our test is robust to random time variations in betas. Accordingly,
we estimated the CAPM regressions

Tist —Tfrt = é‘ir + Bir (Tm,Tt - rf,Tt) + ﬁz‘,rb (71)
and the Fama-French (FF) three factor regressions,

Tigt — Tfrt = diT + Bl,i‘r (Tmﬂ't - Tf,Tt) + BQ,iTSMBtT + B3iHMLtT + ﬁ’i,Tt) (72)

31In all the empirical applications T' < N, and the GRS test can not be computed. We have also decided to
exclude other tests discussed in the Monte Carlo Section on the grounds of their substantial size distortion of the
null and/or low power.

25



fort = 1,2,...,60, ¢« = 1,2,..., N, and the month ends, 7 =September 1989,...,June 2015.
All securities in the S&P 500 index are included except those with less than sixty months of
observations and/or with five consecutive zeros in the middle of sample periods.

Table 7 reports summary statistics for p-values of the Jo test, cross-sectional averages of
measures of departure from non-normality and average pair-wise correlations of residuals from
CAPM and FF regressions of securities in the S&P 500 index using five year estimation win-
dows (sixty months) at the end of the months of September 1989 to June 2015. The results
confirm important departures from normality in the residuals. The extent of the departures are
particularly pronounced in the case of kurtosis measures where v, = 0 is rejected in 26-29% of
the samples under consideration. Three measures of average pair-wise correlations of residuals
are reported in the last columns of the table, which indicate minor degrees of cross-sectional
correlations. The residuals from FF regressions tend to be cross-sectionally less correlated than
those of CAPM regressions. The p-values range from 0 to 1, with a mean and median of 0.52
and 0.63 for the CAPM model, and 0.46 and 0.50 for the FF model, suggesting important time
variations in the degree of market efficiency.

Figure 1 provides plots of the evolution of p-values of the J,, test based on CAPM and FF
regressions at the end of the months of September 1989 to June 2015. The months at which the
null of market efficiency is rejected at the 5% level based on both CAPM and FF regressions are
August 1998, November 1998-February 1999, August 2007-March 2009 and November 2013-June
2015 (the last data point). The period around August 1998 and December 1998-February 1999
coincide with the Russian financial crisis (during August -September 1998) and the subsequent
collapse of Long-Term Capital Management. The period August 2007-March 2009 matches
the recent global financial crisis. November 2013-June 2015 corresponds to series of exogenous
economic and financial shocks - unrest around Russian, started by the Ukraine crisis, then the
negative oil price shock started around June 2014. In general, the J,, test tends to result in
rejection of the null of market efficiency, in the Sharpe-Lintner sense, during periods of major
financial disruptions.

6.3 Long/short equity returns and p-values of the J, test

As the test results in Figure 1 clearly show important variations in the p-values of the J,, test
over time, it would be interesting to see if such variations are related to the performance of
trading strategies. There are many trading strategies that are designed to exploit non-zero
a’s in selection of securities. A prominent example is the long/short equity strategy where
securities are ordered by their predicted returns, from the most positive to the most negative.
The investor then goes long on securities with positive predicted returns and goes short on
securities with negative return predictions. There are many variations in the way that this
strategy is implemented which need not concern us here. What we are interested in is to see if
there are any relationships between the return on long/short (L/S) strategies and the evidence
of market inefficiency as measured by estimated p-values. In time periods where «; = 0 for all i,
the L/S strategy is unlikely to perform better than the market return, and could do even worse
if one allows for transaction costs and management fees. But we would expect a higher return
on the L/S strategies relative to the market if there are positive and negative alphas that the
investor can identify and exploit. Therefore, a priori we would expect an inverse relationship
between p-values and returns on L/S strategies relative to the market.

For return on L/S strategies we used Credit Suisse Long/Short Equity Hedge Fund Index
that are available monthly from December 1993. This is a subset of the Credit Suisse Hedge
Fund Index and provides the aggregate performance of long/short equity funds, and as such is
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not subject to a selection bias. We denote the monthly return on this index by r,; and consider
the relationship between 7,; = ry,, — 1, where r; is the return on S&P 500 index, and monthly p-
values of the J, tests, which we denote by 7;.>> The p-values needed for this purpose are already
reported in Figure 1. Given the considerable volatility of return data, in Figures 2 and 3 we plot
twelve-month moving averages of returns and p-values computed as 7p,(12) = % 2]1.1:0 Thi—j,
and 74(12) = % 2;1:0 71—, respectively. Figure 2 depicts the relationship for p-values computed
using the CAPM regressions, and Figure 3 shows the relationship for the p-values computed
using the FF regressions. There is a significant negative relationship between the p-values and
the excess returns. The value of sample correlation between 7,,(12) and CAPM p-value is -0.28
(s.e. 0.061), giving a t-ratio of -4.6, strongly rejecting the null of zero-correlation.*® The value of
sample correlation between 7p,(12) and FF p-value is almost identical, giving -0.27 (s.e. 0.061)
and a t-ratio of -4.4.

7 Conclusion

In this paper we propose a simple test of Linear Factor Pricing Models (LFPM), the J,, test,
when the number of securities, N, is large relative to the time dimension, 7', of the return
series. It is shown that the J, test is more robust against error cross-sectional correlation
than the standardised Wald tests based on an adaptive thresholding estimator of V, which is
considered by Fan, Liao and Yao (2015). It allows N to be much larger than 7', as compared
to alternative tests proposed in the literature. The proposed test also allows for a wide class of
error dependencies including mixed weak-factor spatial autoregressive processes, and is shown
to be robust to random time-variations in betas.

Using Monte Carlo experiments, designed specifically to match the correlations, volatilities,
and other distributional features of the residuals of Fama-French three factor regressions of
individual securities in the Standard & Poor 500 index, we show that the proposed J,, test
performs well even when N is much larger than 7', and outperform other existing tests such as
the tests of Gagliardini et al (2016), Fan et al (2015) and Gungor and Luger (2016). Also in
cases where N < T and the standard F test due to GRS can be computed, we still find that the
J,, test has much higher power, especially when T is relatively small.

Application of the J, test to all securities in the S&P 500 index with 60 months of return
data at the end of each month over the period September 1989 - June 2015 clearly illustrates
the utility of the proposed test. Statistically significant evidence against Sharpe-Lintner CAPM
and Fama-French three factor models is found during periods of financial crisis and market
disruptions. Furthermore, a significant negative correlation is found between a twelve-month
moving average p-values of the J,, test and excess returns of long/short equity strategies over
the period November 1994 to June 2015.

32See Appendix C for further details and the source of the L/S equity hedge fund returns.
33The standard error of the sample correlation pp is computed as [(1 — p3)/(T — 2)]"/2.
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Table 1: Summary statistics of the estimates used in the Monte Carlo simulations

This table reports the summary statistics for estimated 3's, variance, skewness and kurtosis measures
of residuals from Fama-French (FF) three factor regressions, estimated for all securities in the S&P 500
index with at least sixty months of return data using rolling estimation windows of sixty months, over
the period September 1989 to September 2011. BiT is estimated using the FF regressions: 7 4 — 7y =
Qir + B1ir (Pmat — Tprt) + Bois SM Bir + B3, HM Liy + 1 74, for i = 1,2,..., N7, and t = 1,2,...,60,
where N denotes the number of securities available at the estimation windows 7 = September 1989,...,
September 2011. G4, = Mo s ’yLZ‘T = mgw/mgﬁ and '}27” = m4,i7/m§7i7 — 3, which are computed
using the FF residuals, where my;r = (60)_1 ?21 (ﬂi;t —Ei,,)s and 0;, = (60)~1 ngl Ui rt, for
s = 2,3,4. All securities in the S&P 500 index are included except those with less than sixty months of
observations and/or with five consecutive zeros in the middle of sample periods. Under normal errors
we set vy ; =Yg, = 0.

Mean Median 2.5% Quantile 97.5% Quantile

Giir 6560  44.72 12.81 249.89
41:- 018 0.4 -0.89 1.46
9ir 100 0.38 -0.71 6.74
Brir L10 051 0.24 2.26
Byir 0.0  0.04 -0.91 1.47
Bsir 020 024 -1.55 1.72
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Table 2: Size and power of GRS, ja, GOS, SWpogr, SWrw and F., tests

This table summarises the size and power of GRS, ja, GOS, SWpogr, SWrw and Fpax tests of
a;, = 0, for ¢ = 1,2,..., N, in the case of three-factor models. The observations are generated as
it = i+ Yoy Bufer + i, i = 1,2, Nyt = 1,2, T, fu = g+ profos1 + Vhe oo har =
/’th + plhéhf,tfl + p2hé<2t—1’ Cft ~ I[DN(O, 1), t = —49,,T Wlth f£7750 = O and h[7750 = 0, E =
1,2,3, pge = 0.53,0.19,0.19, pyp = 0.06,0.19,0.05, p5, = 0.89,0.62,0.80, pypp = 0.85,0.74,0.76, pop, =
0.11,0.19,0.15, for ¢ = 1,2, 3, respectively. For the size of the test, a; = 0 for all ¢, and for the power
of the test, a; ~ IIDN(0,1) for i = 1,2,..., Nq with Ny = [N*], A, = 0.8, otherwise oy = 0,
where |A| is the largest integer part of A. The idiosyncratic errors, w, = (uy,ust, ..., unt)’, are
generated as u; = Qe,, where ; = (€14, €2t, ..., ent) , and Q = DY/2P with D = diag(c11,022,..,oNN),
= E (u2,) , and P being a Cholesky factor of correlation matrix of u;, R = Iy +bb’—B?, which is an
N x N matrix used to calibrate the cross correlation of returns, where b = (b1, b, ..., by)’, B = diag(b).
The first and the last N, (< N) elements of b are generated as Uniform(0.7,0.9), and the remaining
middle elements are set to 0. We set N, = | N%|. We consider the values 6, = 1/4,1/2 and 3/5. For
the case of non-normal errors, u;; are generated following steps 1-4 of the procedure in Appendix B,
using skewness and kurtosis measures, v; ; and vy ;. Gii, V1,4, Y2, and By for £ =1,2,3, are randomly
drawn from their respective empirical distributions, see Subsection 5.1 and Appendix B for details.
GRS is the F' test due to Gibbons et al. (1989) which is distributed as Fy 7—n_m, and is applicable
when 7" > N +m + 1. N/A signifies that the GRS statistic can not be computed. J, is the propose
large N test which is robust to non-Gaussian errors and cross-sectional correlations; GOS is the test
proposed by Gagliardini et al (2016) defined in (45); SWpogr and SWry are the tests based on the
POET estimator of Fan et al. (2013), V;(lj g1, and Ledoit-Wolf (2004) shrinkage estimator, VZ;V, as
estimates of V™! in (17). Fpax is the bounds test of Gungor and Luger (2016), with frequencies of
inconclusive test outcomes reported in Table M1 in the online supplement available on request. Values
of the J,, GOS, SWporr and SWiy test statistics are compared to a positive one-sided critical value
of the standard normal distribution. All tests are conducted at the 5% significance level. Experiments

Oii

are based on 2,000 replications.

Panel A: Normal Errors

5, =1/4 5, =1/2 5, = 3/5
(T.N) 50 100 200 500 50 100 200 500 50 100 200 500
Size: «o; =0 for all 7

GRS 60 46 NJ/A N/A N/A 53 N/A N/A N/A 54 N/A N/A N/A
100 58 N/A N/A N/A 53 N/A N/A N/A 55 N/A N/A N/A

Ja 60 74 53 60 50 64 59 56 6.1 60 55 6.7 7.2
100 66 52 55 53 61 66 51 5.3 6.7 63 56 58

GOS 60 100 109 12.0 162  11.3 12.6 154 19.0 9.8 12.0 149 214
100 83 10.2 9.3 117 9.1 9.9 106 15.2 80 89 106 13.1
SWpogpr 60 183 262 34.0 531 215 25.0 304 486 214 231 30.6 452
100 121 143 204 303 233 187 209 275 289 208 248 29.0

SWiw 60 17.7 233 339 565 223 329 468 67.6 285 50.7 750 93.0
100 12.7 167 21.6 31.3 169 24.1 373 50.8 21.6 439 76.1 94.0

Frnax 60 02 01 02 0.1 03 01 03 02 01 01 01 0.1
100 02 01 01 0.1 00 02 01 01 02 02 01 02

Power: a; ~ IIDN(0,1) fori =1,2,..., N, with N, = [N**], A\, = 0.8, otherwise a; = 0

GRS 60 150 NJ/A N/A N/A 207 N/A N/A N/A 242 N/A N/A N/A
100 69.2 N/A N/A N/A 849 N/A N/A N/A 876 N/A N/A N/A

Ja 60 65.9 80.2 932 988 536 67.2 841 964 422 53.9 66.3 82.1
100 87.4 974 999 100.0 823 93.7 98.7 100.0 722 864 950 99.6

GOS 60 72.1 88.0 96.1 99.6  66.1 825 948 99.6  54.6 704 859 97.9
100 90.5 97.8 99.8 100.0 86.0 96.0 99.3 100.0 76.6 91.4 97.8 100.0
SWpogr 60 81.9 952 99.3 100.0 80.3 91.1 98.6 999  77.5 833 97.0 99.9
100 93.5 99.3 100.0 100.0 97.3 989 99.9 100.0 958 97.9 99.8 100.0

SWiw 60 68.8 82.7 935 99.7 774 89.7 96.7 99.7  86.1 964 99.9 100.0
100 86.2 951 99.5 100.0 943 985 99.8 100.0 96.8 99.8 100.0 100.0

Frnax 60 115 125 17.6 222 125 151 166 227 116 138 17.8 24.3
100 295 413 514 674 322 41.5 514 664 304 409 51.9 66.2




Table 2 —Continued

Panel B: Non-normal Errors

b5, =1/4 5y =1/2 8, =3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: «; = 0 for all ¢

GRS 60 55 N/A N/A N/A 54 N/A N/A N/A 52 N/A N/A N/A
100 44 N/A N/A N/A 54 N/A N/A N/A 53 N/A N/A N/A
Ja 60 65 69 59 6.6 60 69 65 6.3 63 79 64 7.6
100 56 67 64 7.2 66 62 70 7.8 78 73 67 6.9
GOS 60 92 108 133 192 114 140 160 203 95 147 148 21.8

100 81 7.8 9.6 12.1 8.7 10.0 11.2 14.6 85 98 101 134

SWporr 60 18.7 272 378 56.8 216 265 34.1 51.6 228 275 322 480
100 11.7 172 216 334 307 20.5 228 31.7 30.6 21.3 23.8 31.2

SWrw 60 175 232 332 56.0 21.2 34.8 472 69.3 279 49.2 772 934
100 121 172 21.6 31.0 15.6 26.3 37.3 53.3 214 436 78.1 94.6

Frnax 60 0.3 0.2 0.4 0.2 02 04 0.1 0.1 0.2 0.2 0.2 0.1
100 0.3 0.2 0.2 0.2 02 02 02 0.1 0.1 0.2 0.2 0.1

Power: a; ~ IIDN(0,1) fori = 1,2,..., N, with Ny = [ N** |, A, = 0.8, otherwise o;; = 0

GRS 60 157 N/JA N/A N/A 190 N/JA N/A N/A 231 N/A N/A N/A
100 709 N/A N/A N/A 837 N/A N/A N/A 883 N/A N/A N/A
60 68.4 824 936 995 542 692 844 97.6 426 57.1 66.7 84.6
100 887 96.7 99.8 100.0 822 93.3 99.0 100.0 734 86.0 953 99.7
GOS 60 752 86.7 96.6 99.9 668 83.6 948 99.7  56.6 71.8 85.6 98.2
100 904 984 99.9 100.0 853 953 99.6 100.0 764 91.0 97.5 99.9
SWpopr 60 838 952 99.4 100.0 803 921 987 99.9 747 89.1 97.6 100.0
100 936 99.4 100.0 100.0 967 985 99.9 100.0  93.9 982 99.9 100.0
SWrw 60 704 819 938 99.7 774 904 97.1 99.9 849 96.1 99.7 100.0
100 87.0 948 99.0 99.9 936 98.6 99.8 100.0  97.3 99.7 100.0 100.0
Fonax 60 12.1 138 190 239 120 152 188 237 122 13.1 183 234
100 318 414 516 67.7 309 402 53.0 685  30.3 40.6 51.8 64.8

Qko
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Table 3: Size and power of J, test for N = 1,000, 2,000 and 5,000 in the case of
models with three factors

This table summarises the size and power of the J,, test in the case of models with three factors with
focus on large values of V. The data is generated as described in the notes to Table 2.

6y =1/4 6y =1/2 6y =3/5
(T, N) 1,000 2,000 5,000 1,000 2,000 5,000 1,000 2,000 5,000
Panel A: Normal Errors

Size: «; = 0 for all 4

T =60 5.9 5.3 6.3 5.9 6.2 6.3 6.5 7.0 8.1

T =100 4.8 4.8 4.3 7.3 6.4 6.8 70 7.0 7.2
Power: o; ~ IIDN(0,1) for i = 1,2, ..., Ny with N, = [N*«|, A\, = 0.8, otherwise o = 0
T =60 100.0 100.0 100.0 99.2 100.0 100.0 92.6 98.5 100.0

T =100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Panel B: Non-normal Errors

Size: «; = 0 for all 4

T =60 6.3 7.6 7.8 7.7 8.4 9.5 7.5 8.6 9.3
T =100 4.8 6.0 7.1 6.9 7.0 5.9 81 7.0 7.1
Power: o; ~ IIDN(0,1) for i = 1,2, ..., Ny with N, = [N*«|, A\, = 0.8, otherwise o = 0
T =60 100.0 100.0 100.0 99.6 100.0 100.0 94.6 98.6 99.9

7T =100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 5: Size and power of J,, test with mixed spatial-factor models with the value
of spatial parameter p_ = 0.5

Data is generated using the same set up as in Table 2, except that an spatial autoregressive component
is added to the error generating process. Specifically, the error correlation matrix is given by R =
D, *VD,'? where D, = diag (i), V = (03j), V = yv'+ (Ixy — p.W) ' Iy — p,W') ! with v =
(’yl,’y?,...,’yNwO,O,...,0>/, v; for i < N, = | N®v| are drawn from uniform(0.7,0.9) distribution and
v; =0fori = N,+1,N,+2,...., N, p, is spatial coefficient such that 0 < |p.| < 1, W'= (w, wa, ..., wy)
with 7/yw; = 1 and its diagonal elements being all zero. Observe that when N, = 0, errors possess pure
spatial autoregressive processes, and when p. = 0 the DGP becomes identical to that for the results
reported in Table 2. We have chosen the value p, = 0.5 and a rook form for W = (w;;), namely, all
elements in W are zero except w;y1; = wj_1,; = 0.5 for 2 = 1,2,..., N — 2 and j = 3,4..., N, with
w12 = wN,N—1 = 1. For the purpose of comparison to ja, we also provide results for J,(0) test defined
by (56) with p3; = 0, which does not control for error cross-correlations, evaluated at. Panel A of the
table reports size and power of J, and Jo(0) tests with normal errors, and Panel B reports size and
power with non-normal errors. All tests are conducted at the 5% significance level. Experiments are
based on 2,000 replications. See also the notes to Table 2.

Panel A: Normal Errors with p, = 0.5

Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (v = 0)

A 60 6.8 72 76 77 80 6.7 89 55.6 72.1 87.0 976 99.7 100.0 100.0
100 6.8 68 6.1 59 58 58 51 82.0 94.4 99.0 100.0 100.0 100.0 100.0
Ja(0) 60 10.1 105 10.5 11.1 10.8 8.9 10.6 63.9 784 914 98.3 99.8 100.0 100.0
100 109 10.7 96 99 94 9.0 97 88.1 96.6 99.4 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/4)
Ja 60 59 56 62 63 65 70 79 576 700 8.0 97.8 99.5 100.0 100.0
100 64 64 68 67 48 58 59 82.6 93.6 99.1 100.0 100.0 100.0 100.0
Ja(0) 60 95 97 98 93 92 95 93 66.4 776 89.6 98.6 99.7 100.0 100.0
100 10.5 12.1 109 104 89 96 99 87.5 96.2 99.6 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/2)
Ja 60 69 70 73 75 68 72 7.0 551 706 8.4 96.7 99.7 99.9 100.0
100 63 65 67 71 54 69 6.2 823 939 99.1 100.0 100.0 100.0 100.0
Ja(0) 60 10.9 11.1 10.5 10.7 104 100 9.1 65.1 79.2 90.7 98.0 99.8 100.0 100.0
100 10.5 10.7 11.0 115 94 11.5 10.6 88.1 96.2 99.6 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 3/5)
Jo 60 6.8 75 6.2 84 88 97 98 53.5 T71.1 849 96.4 99.7 100.0 100.0
100 6.3 6.7 68 68 60 73 86 825 928 985 100.0 100.0 100.0 100.0
Ja (0) 60 10.8 12.2 10.1 12.1 11.8 124 11.6 63.7 79.0 899 97.8 99.9 100.0 100.0
100 11.0 11.3 11.2 11.0 10.8 11.2 122 89.3 96.0 99.4 100.0 100.0 100.0 100.0
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Table 5 —Continued

Panel B: Non-normal Errors with p, = 0.5

Size Power
(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (v = 0)

A 60 78 72 78 87 88 9.1 101 589 72.6 884 975 99.7 100.0 100.0
100 72 68 69 64 63 72 73 82.2 93.1 99.1 99.9 100.0 100.0 100.0
Ja(0) 60 11.9 11.1 11.7 12.2 11.8 12.0 124 68.0 79.0 92.3 98.6 99.9 100.0 100.0
100 10.8 10.9 12.2 10.2 10.6 11.9 11.6 87.7 96.1 99.3 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/4)
Ja 60 75 68 81 73 82 86 101 579 724 874 978 99.5 100.0 100.0
100 69 65 72 54 77 78 6.8 82,5 93.8 98.9 100.0 100.0 100.0 100.0
Ja(0) 60 11.2 98 121 98 11.2 11.8 13.3 66.5 79.3 914 98.6 99.6 100.0 100.0
100 106 109 12.0 9.5 11.8 11.5 11.1 86.9 96.2 99.4 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/2)
Ja 60 75 79 81 85 82 94 112 55.8 71.7 8.9 970 99.6 99.9 100.0
100 79 71 82 67 65 76 7.3 80.0 94.2 98.7 100.0 100.0 100.0 100.0
Ja(0) 60 114 123 12,5 12.0 11.8 13.0 13.5 65.5 79.6 90.8 98.2 99.8 100.0 100.0
100 11.6 11.2 123 11.6 11.2 12.7 12.1 85.6 96.7 99.3 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 3/5)
Jo 60 70 70 75 83 103 9.5 125 53.9 71.5 8.6 964 99.5 100.0 100.0
100 6.7 75 73 65 84 77 86 81.3 92.0 98.7 100.0 100.0 100.0 100.0
Ja(0) 60 115 11.7 11.2 129 13.5 125 14.8 64.9 789 90.3 983 99.6 100.0 100.0
100 12.0 122 13.1 11.0 13.7 12.8 13.5 87.8 96.1 99.3 100.0 100.0 100.0 100.0
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Table 6: Size and power of J,, test with time-varying beta and mixed spatial-factor
model (spatial parameter p, = 0.5)

The data generating process is yir = i+ 3oy Beirfoe + ity i = 1,2, ., Nt = 1,2, ... T, Byir = Bui + Vet
with vg ~ IIDN (0, 1), which are drawn independently over ¢ = 1,2,3, i and ¢. See Table 5 and the
notes to Table 2 for further details.

Panel A: Normal Errors

Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (v = 0)

60 6.0 58 6.1 6.3 47 46 41 51.0 64.6 80.3 93.3 98.8 99.5 99.8

100 5.8 55 45 35 34 29 22 78.0 904 97.8 99.9 100.0 100.0 100.0
Mixed spatial-factor models (6 = 1/4)

60 54 52 55 46 40 46 3.1 50.1 64.0 78.5 93.5 985 99.8 99.8

100 58 54 50 49 29 29 21 77.0 89.8 98.0 99.9 100.0 100.0 100.0
Mixed spatial-factor models (6, = 1/2)

60 6.4 6.0 55 57 47 43 39 50.0 624 79.3 924 98.3 99.6 100.0

100 5.8 50 59 55 38 3.7 3.1 77.1 899 974 99.9 100.0 100.0 100.0
Mixed spatial-factor models (6, = 3/5)

60 6.1 68 55 62 56 60 55 473 63.7 77.1 91.8 983 99.6 100.0

100 58 54 58 4.8 42 47 37 77.6 88.7 97.1 99.9 100.0 100.0 100.0

Panel B: Non-normal Errors

Pure spatial models (v = 0)
60 71 62 61 64 52 58 4.7 52.7 65.6 80.3 94.1 984 99.6 100.0
100 59 57 58 44 38 39 28 777 904 979 99.9 100.0 100.0 100.0
Mixed spatial-factor models (6, = 1/4)
60 6.5 51 6.1 54 57 45 4.2 51.3 64.1 80.1 93.5 981 99.8 100.0
100 5.8 56 6.1 40 49 42 26 76.7 90.1 97.5 99.9 100.0 100.0 100.0
Mixed spatial-factor models (6, = 1/2)
60 6.5 65 69 6.7 53 58 53 48.8 64.0 783 919 979 99.5 100.0
100 6.6 63 59 48 42 46 3.0 73.8 90.5 97.2 99.8 100.0 100.0 100.0
Mixed spatial-factor models (6, = 3/5)
60 6.2 69 bH7 57 82 62 6.2 473 642 776 924 974 991 999
100 6.2 68 63 48 56 47 38 76.2 88.5 96.8 100.0 100.0 100.0 100.0
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Table 7: Summary Statistics of p-values, departure from non-normality and
average pair-wise correlations of residuals

This table provides summary statistics for p-values of the J,, tests applied to residuals from CAPM and
FF regressions of securities in the S&P 500 index using rolling sixty months estimation windows over the
period from September 1989 to June 2015. The table also reports cross-sectional averages of measures
of departure from non-normality and average pair-wise correlations of the residuals. Results reported in
panel A of the table refer to CAPM regression residuals, r; 74 — 777 = Gir + BMT (Pmyrt — T¢7t) + Uirt,
for t = 1,2,...,60, and ¢« = 1,2,...,N;, and the months ending in 7 =September 1989,..., June
2015. 3y = NN Ay, for € = 1,2, 4y, = i /iy and Ayy, = e /id,, — 3 with
s = (60) ,?21 af 4. Skewness statistic for testing v; ;- = 0is SKir = T’AyiiT/Ii ~ x?, and the Kur-
tosis statistic for testing vy ;, = 0is K R;; = T’y%m/24 ~ x3. Jarque and Bera (1987) statistic for testing
Yi,ir = Vo,ir = 018 SKir + K Rir ~ X3. Rejection frequency refers to the proportion of normality tests re-
jected out of the N, tests carried at the end of each month, 7. p. = m Zﬁ;l Z;V:H_l Prijs P2 NT =
N St N P2 with p g = 0 /(8 0 ) Y28 02, G = (@1 G ier)
and p? w7 is the MT estimator defined by (57). Results reported in panel B of the table refer to
FF regression residuals: 7 ¢ — 1yt = Qir + /Bl,ir (Pmat = Tfrt) + 32,iTSMBtr + By HM Ly + @i ¢, for
t=1,2,...,60, and ¢ = 1,2, ..., N, and the month ending in 7 =September 1989,..., June 2015.

Average skewness

Rejection frequency Average pair-wise
& excess kurtosis
for normality tests at T correlations
measures
N7 p-value Y1r Yor  Mir =0 Y2, =0 Tr =0 Pr PiNng PENr
of Jo Y2,ir =0
Panel A: CAPM regressions
Mean 479 0.52 0.20 1.20 0.24 0.29 0.32 0.02 0.03 0.01
Median 480 0.63 0.19 1.16 0.24 0.28 0.31 0.01  0.03 0.01
Min 464 0.00 -0.01 0.38 0.13 0.12 0.15 0.01  0.02 0.00
Max 487 1.00 0.37 2.16 0.35 0.46 0.47 0.08 0.05 0.02
stand. dev. 5.9 0.38 0.09 0.46 0.06 0.09 0.08 0.03 0.01 0.00
Panel B: Fama-French regressions
Mean 479 0.46 0.19 1.06 0.22 0.26 0.28 0.01 0.03 0.00
Median 480 0.50 0.20 1.02 0.23 0.25 0.28 0.01  0.03 0.00
Min 464 0.00 0.02 0.38 0.12 0.11 0.14 0.00 0.02 0.00
Max 487 0.98 0.34 1.91 0.31 0.40 0.42 0.03 0.03 0.01
stand. dev. 5.9 0.33 0.09 0.37 0.05 0.07 0.07 0.01  0.00 0.00
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Figure 1: Plots of p-value of the J,, test

This figure presents plots of the evolution of p-values of the J, test based on CAPM and FF regressions
of securities in the S&P 500 index using five year estimation windows (sixty months) at the end of the
months from September 1989 to June 2015. Reported plots are the p-values of the Jy test, which are
computed using CAPM regressions, r; ¢ — 7frt = Qir + ﬁiT (Pmyrt — T¢7¢) + Ui ¢ and FF three factor
regressions, 1y ¢ —7rt = Qir + By ir (Pmyrt — 7'frt) + Bo,ipSM By + B HM Lyy + 1 74, for t = 1,2, ..., 60,
and ¢ = 1,2, ..., N;, of the month ends estimation windows 7 =September 1989,..., June 2015.
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Figure 2: Plots of Hedge Fund Index relative to S&P 500 returns and p-values of
the J, test based on CAPM regressions

This figure presents monthly rate of returns of Credit Suisse Core Long/Short Equity Hedge Fund
Index relative to S&P 500 returns, and p-values of the J, test applied to CAPM regressions over
the period November 1994 to June 2015. The long/short return variable, 74:(12), is computed as
The(12) = % Z;io Thi—j, Where Tpy = Tpy — ¢, The is the return on Credit Suisse Core Long/Short
Equity Hedge Fund Index, and r; is the return on S&P 500 index. 7-(12) = % Z}LO 7r—j, where 7,
is the p-values of the J, test at the end of month 7, computed using CAPM regressions estimated on
rolling samples of sixty months. See the notes to Table 7 for details of CAPM regressions.
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Figure 3: Plots of Hedge Fund Index relative to S&P 500 returns and p-values of
the J, test based on FF regressions

This figure presents monthly rate of return of Credit Suisse Core Long/Short Equity Hedge Fund Index
relative to S&P 500 return, and p-value of the J, test based on Fama-French regressions over the
period November 1994 to June 2015. See the notes to Figure 2, and the notes to Table 7 for details of
Fama-French regressions.
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Appendices

Appendix A: Proofs of the theorems

In this appendix we provide proofs of the theorems set out in Section 4 of the paper. These proofs
make use of Lemmas which are provided, together with their proofs, in an online supplement available
on request.

For further clarity and convenience we summarize some repeatedly used notations below:

Mg = (my) =Ir = Pg, P =G (G'G) "G, G = (r7,F), v=Tr(Mg) =T —m—1, (A1)

Mp = (mpw)=1Ir—F (FF)'F, Hp = hh' = (h;hy) (A.2)
with h = (ht) = MFTT, wr = TT(HF) = h/h = TITMFTT;

where F is a T' x m matrix, and 77 = (1,1,...,1)" is a T x 1 vector of ones. Also, before providing a
proof of Theorem 1, we state a theorem due to Kelejian and Prucha (2001) which is used to establish
it.

Lemma 1 (Central Limit Theorem for Linear Quadratic Forms) Consider the following linear quadratic

form
Qn =€'Ae +be = ZZa”@e] + Zb €

i=1 j=1

where {e;, 1 = 1,2, ..., N} are real valued random variables, and a;; and b; denote real valued coefficients
of the quadratic and linear forms. Suppose the following assumptions hold: Assumption KP1: &;, for
i = 1,2,..., N, have zero means and are independently distributed across i. Assumption KP2: A is
symmetric and sup; Zjvzl laij| < K. Also N“PSON |02 < K for some 9 > 0. Assumption KP3:
sup; Ele;[*1¢0 < K for some g9 > 0. Then, assuming that N~'Var (Qn) > ¢ for some ¢ > 0,

QN — E(Qn)

Var (On) —q N(0,1).

Proof. See Kelejian and Prucha (2001, Theorem 1, p. 227). m
Proof of Theorem 1. Noting that Hp = hh', where h = (hq, ho, ..., hy)’ = M7, we can write
7 = wp §HRE,

with wp = 7. Mp7p. Then,

T ! T
Z 22 = w! Zs Hrpé, = wy (Z ) utht) D;! <Zt:1 utht) :
where D, = diag(o11,022,...,0nN). Using (49)
N N
N2y 2 = wp' Y NTVREHRE,
i=1 =1
! T
= —1 [ 1/22 (Tvy +my) h] D! {Zt_l (Tvy +my) ht]

= ant + 2byT + CNT, (A.S)
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where
o 1ar—1/2 T o\ -1 T
ant = wp N thl heviI" | D thl hITvy ),
o —1ar—1/2 T e\ -1 T
byt = wp N thl hevi I ) D thl him, |, and
T T
eyt = wp'NTV? (thl hmé) D, (thl htnt) : (A.4)

Consider the first term, ayr, and note that

T T
aNT = w;l_—leil/Q th:t Zr:1 hthT-VQI‘,Dgll-‘Vr
T T N
—1a7r—1/2 ~ ~
~ e S (St
1=

where

~ Vi Vi
;= = . (A.5)
! \VOii 7§7i + On,ii

Equivalently, letting dr = w%l/ 2 Zle hsv¢, and noting that for any conformable real symmetric posi-
tive semi-definite matrices A and B, Tr (AB) < T'r (A) Amax (B) (this result is repeatedly used below),
we have

!/
ayy = N2 Z [< 12 Z1T:1 htVt> (w;1/2 Z;—le htvt> ] N2 Z Fidrdd,
( —1/2 Z 7z71> max de, ( —1/2 Z ’77,72) )

But since h; are given constants such that Zle h? = wr, and by assumption v; is I1D(0,1}), it then
readily follows that d/.dy —, 1, and hence

N
ant = O, (N‘l/ ? Zm) :
i=1

Also, it is clear from (A.5) that |9,,] < 1 and |7, < |74, and

N N k k N
NTEY A = N‘”QZZ%&SN‘”QZ(ZI%O
i=1

IN

1=1 s=1 s=1 =1
< Nry (zw) <N 1/2supz|m
s=1 =1

and hence by Assumption 2, N—1/2 22_1 YAy, =0 (N‘SW*I/Q), and overall ant = O), (N‘SW*I/Q). Simi-
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larly,

L 1ar—1/2 T 1) -1 T

byt = wp'N Do, uvil’ DY ey
= wplNTY2 ZtT X ZT hthrvgr’D‘lm
_ 71 1/2 Nir | 2
= N~ / Z 1 ZT 1 hth Z ( 1/2) iVt

_ —1/2 T —-1/2 ~ i

= N 1/2 <wT/ Zt 1htvt> [ / Zz 1Zt hiA Z'(J?;?)]
— —1/2 -1/2 Nt
o / [ Zt 1Zz 1 Yi <01/2>]'

i

Since by Assumption, 7,; and v; (and hence dr) are independently distributed, it follows that E(byr) =
0. Consider now Var (byt), and note that for given values of ~; we have (recall that n;, is independent
over t and Y1 h? = wr)

B B T T N N _ - NN jr
Var (bnt) = N lel Zt:l Zr:l Zi:l ijl hfr [%E (de/T) 7j] b ((71/;0]1/2>

i O
_ - Tn,ij
= Nt 3 3 S G () 5 )<U%/g(ﬁ/.2>
i 9jj
_ N N - - g ,’L”
= N> Zj:l (3B (drdr) ) <01/;70J1./.2>‘
i 9jj

Atso B (drdy) = E | (wr* STy hevi) (wr? STy hevt) | = T, and

-1 On,ij
Var (byr) = ZZ 123 . ’71’73 <01/2 1/2>.

i 7jj
Further
Tn,ij |on,is |Pn.is] <|
_ _ < 1onss] -
31:/201‘/'2 ! 3y / B Yivi 1 iRt 1 "
7 (Yivi + o) (V55 + ongs onii T Tugs T

Therefore, (recalling that sup; , |¥,,| < K, and |7, < |7])
Varwr) < NS ST A oyl < VU ST ST Bl ol
sup il [V S0 S Bl (S0 Do)
VY S bl (S0 esl)
But by condition (52) in Assumption 3 and oy > ¢ > 0 imply sup,; S8 | [, 4] < K (also see (53)),

and by (48) we have sup, SN | |75l = O (N%). Then it follows that Var (byr) = O (N%~1), and
byt = 0O (N v/2-1/ 2). Therefore, by is dominated by ayr and using these results in (A.3) we have

N
NN =wp N2 <Zf1 hm;) D! <Zj1 hﬂh) +0, <N57_1/2) _ (A.6)

=1

IN

IN
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Now using (51) we can express the above as

N
NS iy (thl hts;mQ;) D1 (thlthnsn,t) 0, (V2.

i=1

where €, ; ~ IID(0,Iy). After some re-arrangement of the terms we now obtain

N
NS (1) = NV <Z; hteﬁm) (Q)D,'Q,) <ZtT:1 htsn,t> +0, (Név—l/Q)
i=1
gvr = N7V [xhAxp —Tr(A)] + N2 [Tr(A) = N] + O, (Nﬁv—lﬂ) . (A

where
_.—1/2

T
xr=wp ") ene and A=QD,'Qy. (A.8)
First consider the deterministic component of gy7, and using (50) and under Assumption 3 we have
R =TT +D;'?Q,Q,D;"?, (A.9)
where T = (51,79, ..., 7x)"- Then
N _,_
Tr(R)=N=3) A% +1Tr(A).

But, as before,

~=/ . N _,. _ N N
Ir (PF) = > Am=) > Ak (A.10)
k N N B 5
> > el < ks YT bl =0 (8%).

IN

Hence
N=Y2[Tr(A) — N =0 (N57‘1/2) ,

and (A.7) can be written as
avr = zvr + 0 (NB712) 4 0, (N&12), (A.11)

where _ _
any = N7V2x0 Axp, with A = A—N"'Tr (A)Iy. (A.12)

We now apply the Central Limit Theorem for Linear Quadratic Forms due to Kelejian and Prucha
(2001, KP) to zn7p, which is reproduced for convenience as Lemma 1 above. We first establish the
conditions required by KP’s theorem (see Lemma 1). To this end we first note that E (xr) = 0, and

T T !
Var (XT) = w;lE [(thl htsn,t> <Zt:1 ht£n,t> :|
T
= w}l thl hiE (En,tE;;,t) =1Iy.

Denote the it element of x by x; 7 and note that it is given by x; 7 = w,, 1/2 Z:tpzl hign it = wp
1/2

where €,; = (ey,i1 €n,i2; -, Enyir)’, With an abuse of the notation. Then z; 7 = w,.

2 1.y ) . . .
Tip = Wy emeen,,, hence, for a given T, the elements of xp have zero means, a unit variance and

are independently distributed as required by KP’s theorem. Using results on the moments of quadratic

3
forms it is also easily established that E(ng) = w*E (sgmﬂps,w-) =15+ O(v~!) < K uniformly

/
EW-MFTT, and
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over i (see Lemma 11), and hence condition KP1 of the KP theorem (Lemma 1) is met. Consider now
matrix A defined by (A.12) and note that it is symmetric and we have

A] <A -N7r () Iu]l, < Al + N 1T (A)
o0

and using (A.8)

< [|Q)D;'Qull, + N T (Q,D;1Qy)

[e.0]

IN

1 , _
()) 1Qul 1Qulle + N (Q Q) Amax (D)

mlni(aii
1

< [ ——— N7'Tr (Q! :

< (i) QL @l + 5T (@)
But under condition (52) and noting that o;; > ¢ > 0, then

- N
HAHOO - 2 gl < K,

and condition KP2 of Lemma 1 is met. To establish condition KP3, we note that

Tr(A) =0, Tr (&%) =T (A?) - N7'[Tr (A)).
Using (A.9), let B = D, "/°Q,Q,D,"/?, and note that

L -N\2 -
Tr(R?) = Tr (B2) + Tr [(r'r) ] + 2Ty (r'Br) . (A.13)

Also
Tr (f Br) < Tr (f f) Amax (B) |

and in view of (52) we have

Amax (B) = Amax (Q,D;'Q,) < [(Q,D;'Qy) |, < ( )) 1Qy 1, 11Qyll < K

mini(O'n'
and hence (using (A.10)):
Tr <f"BI‘) =0 (Nﬁv) . (A.14)

Also (recalling that |¥,,| < |vis])
~ ~\2 N
Tr (1“’1“) = Tr (Zi_l ’yﬁz) Z 1 Z Tr (3:79,;75)
N N N N oL
= > ijl (7:4;)% = Zs:l Zsle > ijl |Fis7 s Visr Vs
k k N N
< ZS 1 Z 1—1 Zz 1 Zj:l |’Yis| ‘Vjs
k2 <Supz |’st|> =0 (N%V) . (A.15)

Hence, using (A.14) and (A.15) in (A.13) we have

IA

Tr (B2) = Tr(R?) + O (N*1).
Also in view of (A.8)
Tr (B2) = Tr [D;l/QQnQ;?Dgl/QDgl/?QnQ;?D;l/?} —Tr [(Q;?Dngn)z} = Tr (A2).
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To summarize

Tr(A) = VN + O (N5v) , and Tr (A%) = Tr(R2) + O (N%v) ,
which also yield
Tr (A?) = Tr(A%) - N"'[Tr(A)
= Tr(R?)+0 (N*7) - N [VN + 0 (N")] i
= Tr(R?)+0 (N*7) +0 (N*1) — 1.

Therefore,
N7ITy (A2) = N 'Tr(R%) + O (N%v*l) , (A.16)

which is bounded in N under the assumptions that N ~17Tr (Rz) is bounded in N and 0 <4, <1 /2.
Furthermore, it is readily seen that

Finally, using (A.12)

Consider

T T T T
= w3 hihwhehy (e Aey) (e Asy ).

Since, by assumption, €, are serially independent, then using the results on moments of the quadratic
forms, we have

- 9 N N N N o
E (En,tAEn,t> = D00 D ey E (enucnjicniicn)
N N 2 N N
~9 ~ -~ o~
= Yoo, D5+ G | +2) ) i,
=1 1

i= i=1 j=1

< K. Also

where v, . = E(efm.t) — 3, and by assumption ‘727&7

E [(6%7#&5%,5) (s;hrAen,T)] = [Tr (A)r for ¢t # r.
Forr=t#1t =1/,

E {(6;77,51&67]’15/) <€%,t1&€n,t’):| = K {<€;7¢/A€n,t) (e;’tfksn,t/)]
E (s;’t,AAsmt/> = Tr(A?%).
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Similarly, for v’ =t #t' = r, we have F [(Eg,ti&en,t) (s;] t'AEn,tﬂ = Tr(A?). Using these results

3 ) T N N 2 N N
wtE [(X%AXT) } = (Z h?) V2,6, Z g + (Z dz‘z‘) +2 Z Z @ijji
t=1 i=1

+ iiﬁﬁ—(i%‘) [TT(A)} ZthhQ (Zh‘*) Tr(A?).

2 - -
But (Zthl Z:{:l h%h%) = (ZZ:1 h%) ) Zz]\il ai; = Tr(A) =0, Zi\il Z;V:I ijaj; = Tr(A?), and we

have

~ 2 N T
Var (zyt) = N"'E [(XITAXT> ] = Yo, Wr" (Nl Zﬁ') (Z hil) +2wr (Z ht) NTITr(A%),
=1 t=1

and, further noting that Zle h? = wr, then

wp

T 4
- V2, > —1 Iy N
Var (zn7) = 2N71TT(A2) + i < ; ) (Nl ZEL% ,
=1

and using (A.16)

T 4
Y2, Z:1ht N
e vy« ) (1) o o)
wr i=1

where by assumption N ~'Tr (R?) is bounded in N. Also, using (S.15) in Lemma 8, Zle hi = O(T),
and

‘72’5" SU%L hél) (Nliafi) K< %;h?) <N*1TT(A2)>

<
K -1 2 —1a7260—1Y\ __ —1 —1a726~—1
< o [NTTr(R )]+O<T N2y >_0(T )+0(T N2ov )
Therefore
Var (zyr) = 2N 1Tr(R2) + O(T~1) + O (N%v—l) . (A.17)

which is bounded for any N and T, so long as N~'Tr (Rz) is bounded in N, and 0 < 6, < 1/2. Also
using (A.11), and under the same conditions, and as N and T — oo, in any order,

th Var (gnt) = 2w? > 0,

as required. This result also ensures that condition KP3 of Lemma 1 is satisfied and therefore, we also
have gyt —q N(0,2w?), as N and T — oo, in any order. m

Proof of Theorem 2. We have

= Nlﬂi [23 <1 _}A )] , (A.18)

O Oig

where 22 = & HF&; /wr, with &, = u; /o] 1/2 being the standardised error of the return equation (2) and
wp = TTMFTT, and 6;; = uz.uz,/T erte X; = 0”10“ and note that by assumption o4 > 0, and by
construction only securities with 6;; > ¢ > 0 are included in the J, test, so that

_ N—wé [zg (1 _ ;)} 7 (A.19)
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where X; = &Mg€; /v, with v = T —m — 1 and Mg = (myy), defined by (A.1). Also, by (35),
E(#2) = E (22/X;) = v/ (v—2)+0 (T~3/2) for each i, and by Lemma 11 E (2?) = E (¢ Hp¢;/wr) =
wy'Tr (Hp) = 1, for all 4. Thus, we have

E(Syr) =0 (MN/T?) . (A.20)

Next, for all ¢ = 1,2,..., N we have X; > 0, and (A.19) can be written as

N 2
Snr = N_1/2ZZ¢2 [(1 _ X))+ (1 XXz) ]
i=1 ‘

= SinT + SoNT,

where N
S1NT = NT/2 Z 2(1-X;), (A.21)
i=1
and v
2 2
_ vt A (- XG)
SonT =N z; = (A.22)

But since X; > ¢ > 0, and 22 (1 — X;)? > 0, then

N

[So,vr| < ¢TINTVEY 2R (1 X0)?,
=1
and
E|Sanr| < ¢ INY2sup E [zf (1- Xﬂ . (A.23)
7
But
E(1-X)| = B(:2XP) - 2B (:1X) + B (2})

= o B [(6HRE) (6M68)°] - 207 wp B [(€iHRE,) (6MGE,)] + 1.
Now using results from Lemma 11 we have

E [(ﬁgHFﬁz) (S;MG&)] = vwr + O(v),
E|(¢Hrg) (§Mc&)’| = vwr+Ovwr),

which yields
E [212 (1- Xi)Q] =0 (T_l) , uniformly across . (A.24)
Using this result in (A.23) we obtain
N

and by Markov inequality we have Sy y7 —p 0, so long as N/ T? — 0. Therefore, to establish Sy —p 0,
it is sufficient to show that S1 y7 —, 0. By Lemma 17 we have

N N
NN 2 (X - 1) = N2 2, (X — 1) + O, (N5v—1/2) :
=1 i=1
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where 27%72- = nHrn;/ (wroy i) > 0, Xy = n;Megmn;/ (voyi) > 0. Using results on the moments of
quadratic forms, by Lemma 15, we have

1/2 Y 2 > himu 1/2 e 4

— t — ~

N2y Bz (Xpi—1)] = WW&N > Gy
i=1 i=1 ¢=1

it < K by assumption), Gy = qn,ig/a:/;. with g, ;o being such that
Qy = (qn,it), Qy defined by (51). But as 0 < my < 1 (Mg = (myy)) by Lemma 8, v_lw;l Zthl h3my <
v lw! 23:1 h? = v~ ! as Zle h? = wr, and also that 0 < Zévzl (jﬁ o <1, as Zévzl (1727 0 = 1 (since

N 2
> 1=19y 0 = Onyii), and ‘727&7 < K, we have

where v, . = E(*.) —3 (and ’72,6n

N
N7V B[ (X - 1)] =0 (VN /T) .
i=1

Furthermore,
N 1
Var | N~1/? Z 272;,1‘ (Xni — 1)] - N Z Var [z%yz (X —1)]
i=1 i
1
+N Z Cov [zgz (Xpi—1) 7272,,3‘ (Xp; = 1)] -
1#£]

We first note that

Var [22,(Xyi = 1] = B |28 (Xps = 1?] = {B [22, (X5 - D]}

As has shown above,

uniformly over i. Next consider
4 2 4 4 4
B [ (Xgi = 1] = B (2,X2,) — 2B (2, Xp:) + B (24,) (A.25)
But, using results on the moments of quadratic forms, by Lemma 11, we have
E(z;)=3+0(T™"), E(2),Xy:) =3+0(T7") and E (2,,X2,) =3+ 0 (T™"), (A.26)
uniformly over 7. Substituting (A.26) into (A.25) we have
B [ohi (Xpi = 12| =0 (17,

therefore,
Var [272” (Xn,i— 1)] =0 (Tﬁl)

uniformly over 7. We conclude that
1 _
LS var [, (- )] = 0 (1Y),
i
Secondly, by Lemma 16,

1
N D Cov [z} (Xpi—1),20;(Xp; —1)] =0 (T7") + O(N/T?).
i#]
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In sum, under Assumptions 1-3, Syr — 0, so long as 0 < 6, < 1/2, N/T? — 0 as N and T — oo,
jointly. m

Proof of Theorem 3. Under Assumptions 1-3, using Theorem 2 we have
N

NN (2 = 17) /12 (1 + (N = D)piy) ]2 = 0,
i=1

where 27 is defined by (20), so long as (N —1)p%, = O(1), N/T? — 0, and 0 < 6, < 1/2,as N and T —
00, jointly. Under these conditions, (by Lemma 4) it follows that N—1/2 Zfil (tf — Uf2) /12 (L4 (N —1)p%)]/2
has the same limit distribution as N~%/2 3N (22 1) /[2 (1 + (N — 1)p%)]*/2, which is shown to be

2
standard normal by Theorem 1, and the desired result now follows, observing that limp_, (v32) 2(1]”__41) =
2.m
Proof of Theorem 4. Let ¢yyr = % nyj:l (Z)?j — p?j), and note that

1 n 5 5
YNy = N Zi,j:l (pz’j + pij) (pij - pij) ;
and since ‘ [)Z-j‘ < 1 and ‘ pij‘ < 1, it also follows that
2 N -
[YnT] < N dii=1 |Pij — Pij] - (A.27)
Further, letting I;; = I H%’ > v_l/Qcp(N)], we have
pij = Pij = Pijlij = pij = [Py — E (pij)] % Lij + [E (pij) — pij] * Lij — pig (1 = Iij)
and hence
1 1 N ~ ~ 1 N ~
§E [Nl < N Zi,j:l E ( Pij — L (/)ij” X Iij) + N Zz’,jzl ’E (pij) - pij} E (Iij)
1
+ St o [1 = E (Iij)] = Ay + Ay + As. (A.28)

Now using (39) we note that

!
u; Mgu;,

Pij = 1/2°
(u;.MGui.)l/2 (u;_MGuj_)

where @1;, = Mgu;.. Also, since Mg is an (T x T') idempotent matrix of rank v = T — m — 1, there
exists an orthogonal T' x T' transformation matrix L (LL’' = I7), defined by

I, O
LMcL = 7 . A.29
oo (19) -
Hence, setting
¢ =0, Ly, (A.30)

pij can be written equivalently in terms of the first v elements of ¢; = ((;1, (a5 -+, (i)’ as (see Lemma

19)
D = Z:‘,)zl Cz‘tgjt
T ) (o, et
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where (;;, = Zle L&y, and Ly is the (¢,t') element of L. Also as shown in Lemma 19, for each i,
C;'s are independently distributed over ¢, and

E(Cy) = 0, E( th) =1, E (Citht) = Pij>

4,0) = E(C) —3, ri;(0,4) = E(Ciy) — 3,

”ij(?’, 1) = E(C?tht) - 3/%']'7 Hz‘j(l, 3) = E(Cit(?t) - 3pij>
2,2) = B(CGiC) - 20— 1.

Furthermore, by Lemma 19

E(py) = py+ % +0 (v72), (A.31)
bij _
Var (,b”) = TJ +0 (v 2) , (A.32)
where
1 5. 3 1 1
QAij = _iloij(l - pij) + épij [Kij(4,0) + £i5(0,4)] — 9 [1i5(3,1) + K45(1,3)] + 4Pzg“zy(2 2),
and

1 1
ZP% [Ki5(4,0) + £i5(0,4)] — pyj [Rij (3, 1) + Ky5(1, 3)] + 5(2 + 05k (2,2).

bij = (1 — P?j)z +
Hence, using (A.31), ‘E (bij) — p,»j| <1 laij|+O (T*Q), and we have the following bound on the second
term of (A.28):

1

Ay = I 222:1 \E (pij) — pij| E (Lij) <

1

—~ Yoy lagl + O (NT™?).

Furthermore, since k;; are bounded, and by assumption Egj:l |pi;| = O(N), we have

J
No Zi,j:l |aij|
11
2 8 Nv :J 1

Nv
11 1 SN
+1 No Ez] 1 |Hz](3 1)+ “w(l I+ 5 INv i,jzl }pij‘ |/‘?ij(272)|

IN

Zgjtl |pij| ‘1 pw} + ‘pz]‘ ’“w (4,0) + Hl](o 4)’

But
1 1 _
No 7] 1 ‘p”‘ |kij(2,2)] < sup|/f”(2 2)| — o Zi,j:l ‘pij‘ =0(v 1)7
and hence
1 11 N -1
No oy laigl < 17y =1 [Fi(3:1) + ki (1,3) + O (™). (A.33)
Also
1

Nf Yoy [Kig (3, 1) + ki (1,3)]
6
72” 1|EC +Cjit) +E(<zt< )‘ vaEfﬂzl\pij\

= 721] 1|ECC]t +ECth ’+O _1)

IA

and as established in Lemma 20 (see (S.80) ) we have

1

NU zg 1 ‘EC Cgt)+E(Cth )| (T_1N26’Y—1) +O(T_1),
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which if used in (A.33) yields

1
= S lail = 0 (v—lN%w—l) + oL
and overall for the second term of (A.28) we have

) ) - - _ _
Ay = Nzgjzl |E (pij) = pig| E (Iij) = O(T'N*"1) + O(v™") + O (Nv?)

and since by ssumption &, < 1/2, and N/T? — 0, as N and T' — oo, then
As — 0. (A.34)

To deal with the first and the third terms of (A.28) we need to distinguish between values of ‘pij‘ that
are strictly away from zero, namely those values that satisfy the condition ’pij| > Pin > 0, and those
values that are zero or very close to zero. Note that for values of ‘pij‘ sufficiently close to zero, in the

sense that !piﬂ < kN ™%, for some k > 0 and ¢, > 1, we have®!
1 v _ .
As < N Yot |pi] < RNY % —0,if ¢, > 1.

Therefore, without loss of generality, we only consider the case where |pij| > Pmin > 0, for all 7 and j.
In this case we have

1 N
As = 3 Lijm,

I~
pij‘ FE (1 — IU) S N Zivj:17|pij|>pmin F (1 — IZ]) . (A35)

Pij ‘ > Pmin

Further, since E (1 — I;;) = Pr [|p;;| < v~1/2¢,(N)], then using result (A.7) in Lemma 4 of BPS (2017,
supplement) we have (for some small € > 0)

c 2
e (] i)
Pr{lpy] < v e (V) oy #0) < ke T T 4ol
Using this result in (A.35) now yields
—(1—e) v(pmin—CP\(/g) ’
A3 < KNe = bmax 14 o0(1)].

where bpax = sup;;; b;; < K, which can be written equivalently as

N
As < Ke 2 i T }[1+0(1)].

Noting that ¢Z(N)/v and In(N) /v have the same rate of convergence and both — 0, as N and T' — oo,
it then follows that3?
Az — 0, for some p,;, > 0. (A.36)

Finally, consider the first term of (A.28) and write it as

1 ) ) 1 N
A = N Zz]'?[jzl E [ Pij — E (pij)’ X Iz-j] =5 Z%’:l Var(pij)E (|2i5] < 1i5) (A.37)

34Note that the sparsity condition given by (60) can be violated if ¢, < 1.
3°Note that since by assumption 7' = ¢4 N9, with d > 1/2, then In(N) /v = (T/(T — m — 1)) ¢; ' N=¢In(N) — 0,
as N — oo. Recall that m, the number of factors, is fixed as T — oo.
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where z;; = [ﬁij - E(ﬁij)] /\/Var (ﬁij), and Var (bij) is given by (A.32). Also by Cauchy—Schwarz
inequality (noting that E (zlzj) =1)

pij| > Uﬁl/?Cp(N)} })1/2

E(|zij| x Iij) = E <|Zz’j\f [\f%j\ > Ufl/QCp(N)D < [E (!Zz‘jIQ)r/Q <E {I[
{Pr ['ﬁij} > Ufl/ch(N)} }1/2 <

Using this result and Var (p;;) from (A.32) in (A.37) and distinguishing between non-zero and near
zero values of p;;, we have

IN

1.

N
A = Nﬁl'z_lE[

1,j=
bmaX _ R _ 1/2
W (P06 ) (el > 0 ol <0}

= A+ A

Under the sparsity conditions, (30) and (31), the maximum number of non-zero |p;;| is given by m%,
and we have

Apz < % [*/i’/g +0 (vl)] m% =0 (J;”\%) , (A.38)

where my = O(N?%). Hence, since by assumption 6, < 1/2, then it follows that A2 — 0, as N and
v — o0. For Ajj, which relates to the near zero values of ’pi]-’, making use of result (A.5) in Lemma 4
of BPS (2017, supplement) we have

Ay < k=) o0 07 e (‘ (L= 50V) ) 1+ o(1)],

N Vv 4 Pmax

where ¢, = max;j ¢;; < K. Then for A; to tend to zero it is sufficient that (note that N~tm3 — 0,
since 6, < 1/2)

(1 — 2(N
\]/\;exp< <14 G)Cpfp )>—>0,asNandv—>oo. (A.39)

To obtain a sufficient condition for (A.39) to hold, set T' = c4N¢ and note that (recall that v = T—m—1
and T/(T —m —1) < K, since m is fixed as T' — o0)

— — € 02 — — € 62
\]/\%exp( (14 )pEON)> < ”T—Zﬂn—leXp< (14 )pEpN)+(1—d/2)log(N)>

. (1—¢) (V) _ (1—d/2)log(N)

4 ¢
S S — ~log(N
T-m-17 og(N) log(NN)

But by result (b) of Lemma 2 of BPS (2017, supplement), limy . ¢2(N)/log(N) = 26, and condition
(A.39) ismet if 6 (1 — €) /20 — (1 —d/2) > 0, or equivalently if § > ((i:':)) max- Lherefore, under this
condition, A;; — 0, and together with (A.38) establishes that A; — 0. Therefore, using this result,

(A.34) and (A.36) in (A.28) we have E |¢yp| — 0, as required, and in turn implies ¢ —p 0, by
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Markov inequality. Finally, using (S.79) established in Lemma 20, and setting v, = 0, for all i, and
on,ij = 0, for all ¢ # j, to ensure that p;; = 0, for all i # j, we have

T
N J— — — —
Pij = E(C?té?t ‘pij =0)= V2,6 (Z lfr) <Zg:1 Uiilajjlqg,iqu,jz) + Uiilajjlﬂn,imn,jj,
r=1
where Iy, is the (¢,7) element of the T' x T orthonormal matrix L defined by (A.29), gy is such that
2
Qy = (ay), Qy defined by (51). Also, [ogai/oal < 1, S0 1t < (ST ) <1 S, a2, =

N
D=1 q%,ie/an,ii =1, and
1/2 1/2
N N N N
-1 _—-1_2 2 _ ~2  ~2 ~4 ~4
(X atot ) =[S0 il < (S0 a0) - (X0 0k) <1

Hence, sup;; p;; <1+ )72,% ’

as required. m

Proof of Theorem 5. By Theorem 3, J, (p%) —a N(0,1) so long as N/T? — 0, and 0 < 6, < 1/2,
as N — oo and T — oo, jointly, where Jo(p%) and &, are defined by (56) and (48), respectively. Since
Theorem 4 ensures that J, — Ja(p%) —p 0, as (N — 1) (b?\,j - p%) —p 0 when d > 2/3, as N and

(2=d)

T — oo, and 6 > (1=¢) Pmax> for some small € > 0, where ¢, <1+ ’727571 , under these conditions, J,

has the same limit distribution as J, (p?\,) (by Lemma 4), which establishes the result. m

Proof of Theorem 6. The steps in the proof are similar to the ones in deriving the limiting
distribution of J, under the null hypothesis. First, Lemma 22 provides the proof of the result, under

Assumptions 1-3, and under the local alternatives (63), N‘l/2 ZZ 1 ( - 1) —q N(¢?,2w?), as N —
oo and T — oo, jointly, where z . defined by (5.97), w® =1+ th_m(N — 1)p%, p% is defined by
(55). Also, by Lemma 23 we have N-1/2 ZZ 1 ( - t2) = 0, (1). Finally J, — Jo = 0, (1), since the

consistency result of the MT estimator p% ~,7 given by Theorem 4 will not be affected by the introduction
of local alternatives, as the MT estimator is obtained based on the regression residuals of the alternative
model. This completes the proof of Theorem 6. m

Appendix B: Generating non-(Gaussian errors
(r)

To generate non-normal correlated errors, u;,”, with given skewness and kurtosis, we use the following
procedure (see Section M1.1 in online supplement for full details). For each replication, r,

1. We generate N random draws crl(-;), ygrl) and 'yg;) ,1=1,2,..., N, as described in Section M1.1 and

set
{ r)r)/Q 'ygrl, and m(T) = [ag)} (’ygz) + 3) .
r) _
2=

(r)

1, and derive m Y and m

(r)

e,4,1

2. We then set m(ri =0 and g

€, as

r)—1 r r r)—1 (r
w7} = Q"m0 = Q0

where mg}z =(m gg 1,m£7"§ 9 ,mg:,))N), Qgg =QMeQMeqQ™, mg ) _ (m:(;%, mgg, . mg])\,)

O = (k565 kD), Q) = QMEQNEQRMEQM, and w1 = (kxS .. kT) with
(r) = miiz 3 and /i(r) = m(r) 30 2(r) Q(T (T)l/QP(T), with D) = diag(agﬁ),aég),- 705\2\/)

and P (") being a Cholesky factor of correlatlon matrix R("). The correlation matrix, R, is defined
by (66). The operator ® denotes the Hadamard or element-wise multiplication.

K
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3. Following Fleishman (1978), we then generate €;;, t = 1,2,...,T as (suppressing the superscript
r for notational convenience)

2 3
€it = @i + bjv + cuy +divy, 1 =1,2,..., N,

where v;; ~ IIDN(0,1) and the coefficients a;, b;, ¢; and d; are determined so that E(e;) = 0,
E(e%) =1, E(e3) = me3; and E(c}) — 3 = k. This involves solving the following system of
equations for a;, b;, ¢; and d;:

a; +¢; =0,

b? + 6bsd; + 2¢2 + 15d2 = 1,
2¢; (b7 + 24b;d; + 105d? + 2) = m. 34,
24[bid; + c3(1 + b7 + 28b;d;) + d? (12 4 48b;d; + 141c? 4 225d2)] = k.

4. Finally, we set ug ) = Z;V:1 qg)sg-;), where qg) is the (i,7) element of Q) and 55? is the rth

draw from the DGP in step 3 above.

Appendix C: Data sources and their descriptions

We downloaded price and dividend data on all 500 securities included in the S&P 500 index at close of
each month from September 1989 to June 2015 (inclusive) using Datastream.?® For example, the code
LS&PCOMP1210 will give the 500 constituents of S&P 500 index as of December 2010.To construct our
security return data, the security price (P) and dividend yield (DY) are obtained from Datastream, as
specified the table below. We adopted the following rules in selecting individual securities for inclusion
in our analysis. At the end of each month under consideration, we downloaded historical return series
on all 500 securities included in the S&P 500 index at the time. We then dropped all securities with
less than 60 months of observations and/or with five consecutive zeros in the middle of sample periods.

36We could only download data for 499 securities on September 30, 2008, and it is confirmed on Standard &
Poor’s website that the S&P 500 index on this day was based on 499 securities.
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Variable

Description

Source (Code)

Price of security 7 at the market close of the last day of

P ) . . Datastream (LS&PCOMP, P)
the month (¢), adjusted for subsequent capital actions.
Dividend per share as a percentage of the share price
DY, based on an anticipated annual dividend and excludes Datastream (LS&PCOMP, DY)
special or once-off dividends.
P S&P 500 price index at close of the final day of the month (¢). | Datastream (S&PCOMP, PI)
Datastream (S&PCOMP, DY,
DY, ‘Dividend yield’ on S&P 500 as a percentage of P;. up to Oct. 2012, S&KPCOMZ,
DY, Nov. 2012 onwards)
SMB, Average return in per cent on the three small portfolios Ken French’s data library
minus the average return on the three big portfolios. (up to Jan. 2016)
HML, Average return in per cent on two value portfolios minus Ken French’s data library
the average return on two growth portfolios. (up to Jan. 2016)
Monthly return of security ¢ in month ¢ in per cent,
Tit Datastream
computed as 100(P;; — P; ;—1)/P;1—1 + DY /12.
One-month US treasury bill rate in per cent in month ¢ Ken French’s data library
s as the risk-free asset return from Ibbotson Associates. (up to Jan. 2016)
Value-weight return on all NYSE, AMEX, and NASDAQ Ken French’s data library
Tt stocks (from CRSP) in per cent. (up to Jan. 2016)
Monthly return of S&P 500 portfolio at month ¢
Tt . Datastream
in per cent, computed as 100(P, — P,—1)/P;—1 + DY;/12.
Monthly rate of return of Dow Jones Credit Suisse Core Credit Suisse (ROR), up to May
"ht Long/Short Equity Hedge Fund (the end of the month) 2016 http://www.hedgeindex.com
Tht Tht — Tt-
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Supplement to "Testing for Alpha in Linear Factor Pricing Models with a Large
Number of Securities"
by

M. Hashem Pesaran and Takashi Yamagata

This supplement consists of two parts. The first part establishes a number of lemmas used in the proofs of
theorems in Section 4 of the paper. The second part provides additional documentation of the Monte Carlo
experiments, specifically regarding the simulation of multivariate non-Gaussian random variables, details of the
alternative test statistics considered in Section 5, and additional Monte Carlo results.

Notations

We use K and ¢ to denote finite and small positive constants. If {f;},°, is any real sequence and {g;},~,
is a sequences of positive real numbers, then f; = O(g;), if there exists a positive finite constant K such
that [fi| /g¢ < K for all t. f, = o(g) if fi/gr — 0 ast — oo. For two N x N matrices A = (a;;) and
B = (b;;), the Hadamard product A© B =B ® A is an N x N matrix with elements given by a;;b;;. The
minimum and maximum eigenvalues of matrix A is denoted by Amin(A) and Apnax(A), respectively, its trace

by Tr(A), its maximum absolute column and row sum matrix norms by [|[A[l, = maxj<;<y {Z;VZI |aij|},

and,||Al|; = maxi<j<n {ZZI\; |aij|}7 respectively, its Frobenius and spectral norms by ||[A|z = /Tr(A’A),
and ||A|| = A2 (A’A), respectively. For an N x 1 dimensional vector, o, |ja|| = (a’a)l/z. We set
MG = (mtt/) = IT — PG, PG = G (G/G)_l G/, G = (TT,F) s U = Tr(Mg) = T —m — 1, (Sl)
Mp = (mpw)=1Ir—F(FF)'F, Hp =hh' = (hhy) (S.2)
withh = (hf) = MFTT, wr = TT(HF) = h/h = ‘I'ITMFTT,

where F is a T x m matrix, and 77 = (1,1,...,1)" is a T x 1 vector of ones. To simplify the algebra all derivations
are made conditional on F.

S1 Statement of lemmas and their proofs

Lemma 2 (Moments of linear functions) Consider w = Zf\il a;€;, which is a linear combination of indepen-
dently distributed random variables, €;, for i = 1,2,..., N, with mean zero and a unit variance, and the weights,
a;, that satisfy Zfil a? = 1. Then, the r" moment of w exists if €; has the r'" moment.

Proof. We first note that since Z
Therefore,

= 1, then it must be that |a;| < 1, and hence |a;|" < |a;|, for r > 1.

71z

Zila§§211\ai|3§22 a =1 Z*la Zz 14T 1

or more generadly7 val la;|” < 1, for r = 2,3, ..... Consider now moments of w, and note that F(w) = 0,
Ew?) =N a2=1,

i=1"1

N

{ N 3 N N
Ew®) =E <Zi_1 am) = ZZZa a;arE (e€5€p) (Za ) < supE( )

i=1j=1 (=1

N ¢ N N N N
E(w4) =F <Z aiei> = Z Z Z Z a;ajaranE (€;€5€0€,) = 32 a2a2E (63) + Za?E (64)

i=1 j=1¢=1n=1 i#j
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:3+Za?[E( )—3]<3—|—bup (Za)ﬁB—!—sgp[E(ef)—?)].

Note that E (€]) need not be the same across ¢, it is only required that E (¢]) < K < cc.

N

N 5 N N N N
E galel g E g gaa]apanap (ei€j€r€nep)
i=1 7 =

i=1 j=1/4=1n=1p

= 10 alalE () E() + ) alE ()

i) i

BE(w®)

= 10 [(Z alE (e?)) (Z alE (ef)) - Za?E + Za5E

~ 0 (e 4 Y ) - 08
i=1 i=1

IN

N
10sup E(€)) > _a} +sup [E(e)) — 10E(e})] > af
7 i—1 1 X
< 10sup E(€]) 4 sup [E(e}) — 10E(e})]

and

=
g
=
Il
=
T~
WE
£
@)
~
(=]
I
WE
WE
WE
Mz
Q
@
§
£
E@
Q@
had
G
(T\
2
o
ﬁ(’h
<

=1 i=1 j=1 (=1 n=1p=1
= 15 Z afa?a?E (e?)?) +10 Z a‘?a? e‘f + 15 Z a4a2E ej + Z aE (e?)
i#j AL i#j i#] i

N
+> alE()
=1

Again noting that E(e?) =1 and 31| a? = 1, we have, after some simplifications,

N 2 N
Ew®) = 15410 (Zaf [E(e;?)]) +15Za;1 [E(eh) —3] +
lZaGE +3OZa —1oza —15Za6E
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N N 2
< 15+ 15sup [E(e}) — 3] Z ai +10 sup [E(ef’)]2 (Z a?) +

i=1

N
sup B() =10 [B(D)] = 15 [B(e]) - 3] ~ 15] D af

< 15+ 15sup [E(e}) — 3] + 10sup [E(c})]” + sup {E(e?) — 10 [E(})]* — 15 [E(e}) — 3] — 15} .
The processes can be continued for higher order moments. m

Lemma 3 Under Assumptions 1-3,
i) ¢, = uit/oili/2 ~ IID(0,1) for all t and E(|;;|") < K < oo, where uy is defined by (2) and o = Var (ui),
and;

(ii) ;= Uit/“},,/i' ~ IID(0,1) for allt and E(|0;,|") < K < oo, where n,, is defined by (2) and 0, ;; = Var (n;),
foralli andt, r=1,2,...,8.

N

Proof. We have u; = Z | Gig€its for ¢ = 1,2,...,N,t = 1,2,...,T, where ¢;; is defined by (51), and ¢;;
]:

is the (i,7) element of Q which is defined by (51). Note that e;; is IID(0,1) across i and t, E(e},) exists,

1/2
_ 12 _ NV _— /2 _ N NG, .
Eip = wi/o;l” = ijl q;iejt, where @iy = qij/oy]” = qij/ (Zj_l @ , and Zj:l q;; = 1. Then applying

N
Lemma 2 to Z . Gi;€j¢ yields the required result. For part (ii), a similar discussion for #;, = Z . Gn,ij€n,jt Will
j= j=

1/2
N
lead to the required result, where ¢, j; is defined by (51), Gy,.; = U,ll/i = qn,ij/ <Zj:1 quj) , Z

n,ij 1s the (4, 7) element of Q,, which is defined by (51). m

N

~2 —
j=1 q"]vij - 1’

Lemma 4 Consider the sequences of random variables {Xn} and {Yn}. If Xn —Yn —p 0, and Yy —q4 Z, then
XN —d Z

Proof. See Rao (1973, p.122). =

Lemma 5 (Lieberman 1994) Let ® be a T X T symmetric matriz and T a positive definite T x T matriz, and
suppose that & ~ I1D(0,1r), where & = (&1,&,,...,&p) . Denote the p" cumulant of €' T¢ by k,, and the m + 1
order, m+r degree generalized cumulant of (§ ®&)"(§'TE) by Kyrm, and assume that the following conditions hold:

o Condition 1: Forp=1,2,...,k, = O(T).
o Condition 2: Forr =1,2,....,k.0 = E(£'®&)" = O(T").
o Condition 3: For r,m = 1,2, ..., kym = O(TY), with £ < r.

Then the Laplace approzimate expansion for the r** moment of £'<I>§/.£/1"£ is given by

£®e\"]  E[(E'®E)] 2
i Ke'r£> } = BErey oI (5.9
where
Cr(r+1) [ E[(£'®€)] ko . K1
b= { [E(ETe)+ } \erer | (54
and

kr1 = E[(€'®€)"E'TE] — E[(§'®€)"E(E'TE). (S.5)

Proof. See Lieberman (1994). m
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Lemma 6 (Moments of products of quadratic forms under non-Gaussianity): Suppose that & ~ I1D(0,1r),
where & = (§1,8a, .., &7)", with v, = E(f?); Yo = E(f?) =3, 73 = E(f?) =107y, 74 =F (5?) — 157, — 10’)’% —15
and vg = FE (ﬁf) — 287y, — 567571 — 3575 — 2107y, — 2803 — 105 for all t = 1,2,...,T, and suppose that A,
7=1,2,3,4 are T x T real symmetric matrices, and 71 is a T x 1 vector of ones. Then

E(£A.8) =Tr(Ay), (S.6)

E(§A188) =7 (1o A)
E [(élAlg) (EIAgg)] = ’72T7’ [(Al ® AQ)] -+ Tr (Al) TT(AQ) + 2Tr (AlAg) 5 (S?)

E[(6'A1€) (£'A2€) €] =13(T0 A1 O Ag) T+ 7, {410 (A1A2)] T
+2A1 (I © Az) ’T+2A2 (I O] Al) T+Tr (Al) (I O] Ag) T+Tr (Ag) (I O] Al) T}

E[(&'A1€) (€A2€) (€A38)] =7,Tr (A1 © Ay O Ag) +7,Tr (A1) Tr (As © Aj) (S.8)
+7,Tr (A2) Tr (A1 © As) +75,Tr (As) Tr (A1 © Az) + 47,71 [A1 © (A2A3)]
+47,Tr [Ag ® (A1A3)] + 47,17 [As © (A1A)] + 293 [7/r (I © A1) Ay (Ir © Ag) 7]
+297 [77 (Ir © Aq) Az (Ir © Ag) 77] + 297 [77 (Ir © Ag) Ay (Ir © Ag) 71
+473 [T (A1 © Ay © A3) T7] +Tr (A1) Tr (Az) Tr (Asz) 4+ 277 (A1) Tr (A Ag)
+2Tr (A) Tr (A1 As) + 2T (As) Tr (A1 As) + 8T (A1AzAs3),

E[(§'A18) (§'Ax¢) (€'A3€) (£'A4E)] = Tr (A1) Tr (Ag) Tr (Asz) Tr (Ay) (S.9)
+2[Tr (A1) Tr (A2) Tr (AzAy) +Tr (A1) Tr (As) Tr (AxAy) +Tr (A1) Tr(Ay) Tr (AsAzs)
+Tr (A2)Tr (As) Tr (A1Ay) +Tr (Ag) Tr (Ay) Tr (A1As) + Tr (As) Tr (Ag) Tr (A1AL))
FA[Tr (A1 As) Tr (AsAy) + Tr (A1 A) Tr (AsAg) + Tr (A Ag) Tr (AsAs)]
+8[Tr (A1) Tr (A2A3AL) +Tr (A2) Tr (A1A3AL) +Tr (As) Tr (A1 AsAy) +Tr (Ay) Tr (A1 AzA3)]
16[Tr (A AsAsAs) + Tr (A1 AsAsAs) + Tr (A1 AsA3AL)]
oLy, + Vafyy V6 Srs T ’Y%fﬁ + ’Y%fyg + Y173 517

Expressions for fy,, fv,: frg: fy2, f12 and [y, are provided in Bao and Ullah (2010).

Proof. For (S.6) and (S.7), see Ullah (2004, Appendix A.5). Result (S.8) was provided to us through a private
communication by Yong Bao. Result (S.9) is given in Bao and Ullah (2010). m

Lemma 7 Let A be a real symmetric T x T matriz. Then Amin(A) < ay < Amax(A), where ay is the t"
diagonal element of A.

Proof. See Theorem 14 in Chapter 11 of Magnus and Neudecker (1999, p.211-212). =

Lemma 8 Denote the (t,7) elements of matrices Mg, Mg, and P (defined by (5.2) and (S.1)), by mp tr, Mer
and py,, respectively, and denote t'" element of h = MpTy by hy = ZTT:1 mpyr. Then, under Assumption 1,
for all t we have

0<mpu = Z; my,, <1, (S.10)
0< my = Z; m2, <1, (S.11)
0<py= Zilpf,. <1, (S.12)
’Zf_l mper| =[] < K < oo, (S.13)
Zil M = 0, (S.14)
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and for any finite p
T T

> (ZT._l mF’tr)p = Z; hi =0(T). (S.15)

Proof. (5.10), (S.11) and (S.12) follow immediately using Lemmas 7, since Mg, Mg and Pg are idempotent
and real symmetric matrices, with eigenvalues that are either one or zero. Next we note that

F'F\ ' Fry
M =77 —F
FTT =TT ( T ) T
’ -1 ¥/ ’ -1 F’
where by Assumption 1 all elements of (%) and =7~ are bounded. Let wr = (FTF 7=, and note

that the m elements of wr,r, being the OLS estimates of the coefficients in the regression of 1 on f;, are bounded,
and hence 22;1 |wF7T7g|2 < K < o0, for all T. Then, the t** element of MpTr can be written as

T m
!
g oy R = 1-—fiwpr=1— E — feowr .

m
<1+ ‘ZH frowr e

)

T
Zr:l megtr
and by Assumption 1, Y ", |ft,z|2 < K < 00, and hence for all t we have
’Zzz1 ft,@wF,T,€’ < \/Zz_1 | f.e \/Zz_1 lwprel” < K < oo.

Therefore, we have ‘ZrTzl mpy| < K < o0, as required. (S.14) follows from MgTy = 0. Finally, (S.15) follows
from (S.18) since 2321(23;1 mp )P < Zle |ZZ;1 mp [P < ZZ;I KP =0O(T), forp finite. =

Lemma 9 Suppose that A; = (a;), for j =1,2,3,4 are T X T real symmetric matrices, and 77 is a T x 1
vector of ones. Then,

T
Tr (A1 © A2 O A30Ay) = thl a1,+£G2 103 +£04 1, (S.16)
T T T T
TrA1AAgTT = thl Z’r':l szl Zu:l a1,trQ2,r0a3,0u, (S.17)
and T -
T'/T (A1®A2) TT = Tr (AlAIQ) == Zt:l ZT:l a1,tra2 tr- (818)

Proof. (S.16) and (S.17) follow from direct derivations and (S.18) see Magnus and Neudecker (1999; p.46). =

Lemma 10 Consider the matrices Mg, Pg and Hp, defined by (S.2) and (S.1), and v =T —m — 1. Then,
under Assumption 1 we have
TT(HFQHF@MG) :O(T),

(S.19)

Tr(Hp ©Mg) =0(T), (5.20)

Ir(Hr ©Hp) =0 (1), (S.21)

Tr (Mg ©Mg)=0(T), (S.22)

Tr (Pg ©Pr) = O(1), (S.23)

Tr (Pg ®Hp) = O(TY/?), (S.24)

70 (Ir ©Hp)Hp (Ir © Mg) 71 = O (T?) , (S.25)

4 (Ir © Hp) Mg (Ir © Hp) 77 = O(T*?), (S.26)

7 (Hp © Mg ©® Mg) 77 = O(T*?), 74 (Hp © Hp © Mg) 70 = O(T%/?), (S.27)
7 (Hp OHp) 1 = O(T?), 7% (Hr ©Mg) 77 =0, 70 Mg © Mg) 77 =T,

Tr (Mg ©H) =0 (T%), 74 (Ir ©HE) (Ir ©Mg) 77 = O (T?)
7 (Ir ©OHp) Hr ©Mg) 77 =0, 777 (I7 © Mg) (HF © Mg) 77 =0 (5.28)
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TT(HFQMg®Mg) =

7 (Hp ©Hp) Mg (Ir © Mg) 77
7 (HF ©Mg) Mg (Ir ©Hp) 71

Tr(Hp ©Hp © Mg © Mg)

/

o(1),

= O (T2) , 7 (Hr ©Mg)Hp (Ir ©Mg) 77 =0,
= 0f, 77 Mg OMg)Hp (I ©Hp) 77 = O (Tz) ,

=0(1),

);

7 (Ir © Hp) Mg (Ir © Mg) 77 = O(T%/?), |77 (Ir © Mg) Hr (Ir © Mg) 77 = O(T?),
' (Ir ©Hp) Mg (Ir © Hp) 77 = O(T%/?), 74 (Ir © Hp) Hp (Ir @ Mg) 77 = O(T?),
Tr [Hi (Mg @ Mg)] = O(T*?), Tr [M¢ (Hp @ Hp)] = O(T*?),
7 (Ir @ Hp) (Hp © Mg) (Ir © Mg) 77 = O(T%/?),
5 (Ir ®Hp) (Mg @ Mg) (Ip © Hy) 70 = O(T%/?),
T/T (ITQMg) (HFG)HF) (ITQMG)TT (Tz)
( o(T%/?

Tr

70 (Ir ©Hp) (Hp © Mg © Mg) 77

Tr(Hr ©Hr ©Hp)

Hr OHF © Mg © Mg) 77 =

TlT (IT © HF) Hp (IT O Mg 6 M(;) T = O(Tz), T/T (IT ® HF) Mg (IT OHr o MG) Tp = O(TS/Q),
7 (Ir © Mg) Hy (Ir © Hp © M) 77 = O(T?), 7} (I © Ma) Mo (T © Hy © Hy) 71 = O(T¥?),
= O(T%?), 74 (Ir ® Mg) (Hr @ Hp © Mg) 77 = O(T%/?),
:O(T), T'{T(ITQHF)HF(ITQHF)T :O(T'Q)7
'7'/T(HFQHFQI‘IF)’TT:O(Tz)7
=O(T), Tr (Mg ® Mg ® Mg © Mg) = O(T)

Tr (Mg ©@ Mg 6 Mg)
Tr((IoMg)Mg] =

7 (Mg ® Mg ®Mg) T =

7 (It ©Mg) Mg (Ir ©Mg) 11

77 (Ir ©Mg) Mg (Ir © Mg © Mg) 77

O(
= O(T%?), 7 (Mg © Mg) Mg (Ir @ Mg) 77

O(T), Tr (Mg © Mg) Mg]
T), TIT<MG®MG®MG®MG)TT ZO(T)
=0(T??)

= O(TS/z)’ T/T (Ir ©Mg) (Mg @ Mg © Mg) 77 = O(T),

= 0(T)

TIT (IT ® Mg) (MG ® Mc;) (IT ® Mg) T = O(T), TIT (IT ® Mg) (IT ® MG) TT = O(T)

Proof. Denote the (t,r) element of matrices Mg, Mg and Pg by mp i, My and py,., respectively, and observe

that the (t,r) element of Hr = hh' is (Z;";l mp,tl>

(Zszl mRN) = hih,.. The proofs below follow straightfor-

wardly from application of Lemmas 8 and 9, and making use of Cauchy-Schwarz inequality, and the fact that

McMp = Mg, McHp = 0. First

Tr (HF OHrp o Mg)

as 0 <my <1 (by Lemma 8) and Y, h{ =

t

Tr (HF ® Mg)

and

Tr (MG O) Mg)

Result (5.23) follows since Tr (Pg ©® Prg)
(S.12).

t t
O(T). Similarly, we have

s TT(HF(DHF) =

>

My = )

:E mtt
t

= 2321 PR 1P < Zthl Pt = m + 1, recalling that 0 < ppy < 1 by

r(PqgoOHp) = Zptth \/Zt lpft\/zt 1

T1/2)
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since 0 < p?, < py < 1, then Zthl pi < ZtT=1 pee = m+ 1. Further, using (S.17) in Lemma 9 and results in
Lemma 8 we have
|‘I'f/T (IT O] HF) HF (IT O] Mg) TT| S Z {h?| Z \hrmrr\ = O(TQ)
t T

Similarly, noting that Y., m7. = my and 0 < my, <1 and that 0 <Y mi, < >, mi. <1, we have

v (Ir @ Hp) Mg (Ir © Hp) 70| < B2 |fmuhy| <> 07 > m2. [> b (S.29)
t T t T T
< Zh2 /Zh4 o(T%?),

[T (Ir ©Me) Hp (Ir © M) 7] < fmush Y [meche] <> 0] Y |he| = O(T?)
t T t T

i W oMo o Ma)rrl < 30X oot < Y, [t 502
t T
< 3|l Zhgzo(T3/Q).
t T
Also
T/T(HFQHF@Mg)TTZT/T(IT@HF)Mg(IT@HF)TTZO(T3/2). (S.30)

Using (S.18) we have
mr (Hr ©Hp) 70 = Tr (Hy) = [Tr (Hr)]” = O(T?),

T/T (HF ® Mg) Tr="1Tr (HFMg) =0,

and
T/T(M(;(DM(;)TT :TT(M(;) = .
Also
Tr (Mg ®H}) = Tr (Hp) Tr (Mg © Hp) = O (T?),
and

TIT (ITQH%) (ITQMg)TTZTT(HF)Tr/T(IT@HF)(IT@Mg)TT:TT(HF)TT(Mg(DHF)ZO(T2).

Since Y, hymy =0 for any t #r

77 (Ir © Hp) (Hp © Mg) TT—ZZh hemey = 0,

77 (Ir © M) (Hp © Mg) Tr = Y > muhihymy, = 0.

T t

Similarly to the above derivations, we have

Tr (HF ® Mg @MG) = Zm?thtz = O(T)v
t

|77 (Hp © Hp) Mg (Ir © Mg) 77| < ZZZ |h2h2 s

< DD M D S D 0 D b=
and noting Mg and Hp are symmetric and MgHp = 0, Zt hrhymyy, for any t #r and t #u

7 (Hr ©Mg)Hr (Ir © Mg) 71 = Z Z Z hih2meyhpmy, = 0
t

u T
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7 (Hp ©Mg) Mg (Ir ©Hp) 770 = Z Z Z RehyMpy My h? = 0
7

[T (Ma ©Mg)Hp (Ir @ Hp) 77| <)Y mi, [ha| Y ||
u t T
= " muu |hal YR = O (T*

Tr(Hr OHr © Mg ©Mg) = meth? =
i

7 (Ir @ Hp) Mg (Ir © M) 7o <> hi > [my| my,
t T

ZhQ\/thT\/Zm < ZhQ\/ﬁ_ o (1),

|7-/T (IT © MG) Hr (IT ©) MG) '7'T| < Z |mttht‘ Z |hrmr,~| =0 (Tz) s
t T

|77 (Ir © Hp) Mg (Ir © Hp) 77| <ZZh2 Imy| b2

Z’f\/ﬁ\/§<2h2\/§— o(r%2).

It (Ir © Hp) Hp (Ip © Mg) 77| < Y [BE]D 7 |he|myy = O (T7)
t

T

Tr [H% (MG © Mg)] =Tr (HF) Tr [HF (MG O] MG)] =1Tr (HF) T/T (HF O Mg o Mg) TT

Tr Mg (Hp © Hp)] = 7 (Hp @ Hp 0 Mg) 77 = O (T3/2) :

|77 (Ir ©Hp) (Hp © Mg) (Ir © Mg) 77| < ZZUI Ry |

T t
< STl (0[St =0 (1)

77 (Ir ©Hp) (Mg © Mg) (Ir ©Hp) 71 = Z Z him3,h?

< ;hf\/ﬂ -0 (T3/2) -0 (Ts/z) ’

70 (Ir ©Me) (Hp © Hp) (Ir ©Mg) 77 = Y _myhi ¥ himg, = 0 (T?),
t T

7 (Hp ©Hp ©Mg O Mg) 0 = > Y hhZm?, = O (T3/2)
t r

|T{T(ITQHF)HF(ITQMGQMG)TT‘SZ‘hf’Zhg:O(TQ)’
t

r

77 (Ir © Hp) Me (Ir © Hp © Mg) 7| < Y b7 Y [muchim,, |
t

th\/ﬂ =0 (T3/2> ,
t r

S8

—0(1°?),



[T (I ©Me) Hy (Ir ©Hp 0 Mg) 77| <Y Imuehe] Y |h¥my| = O (T7),
t T

[T (Ir © M) Me (Ir © Hp © Hp) 77| <metzym”h |

< Zmn\/ﬁ\/ﬁ<zmﬁ\/ﬁ o (1),

It (Ir @ Hp) (Hp © Mg © Ma) 7o < YB3 [mihe| <D |03 [> h2=0 (T3/2) ,
t r t r

T (Ir ©Mg) (Hp @ Hp © Mg) 77| < ththfz ’mtrhzl < th /Zhﬁ =0 (T3/2)7
t r t r
Tr(Hp ©Hp @ Hp) = tht:

[T (Ir @ Hp) Hp (Ip 0 Hp) 7| <> |BF] D12 =0(17),
t

T

T (Hp ©Hp 0OHp) 77 =70 (Ir ©Hp) Hp (Ir ©Hp) 77 = O (T?),

Tr (Mg © Mg 6 Mg) = ng =O(T), Tr (Mg @ Mg © Mg ® Mg) = Zmﬁ; = O(T)

Tr[(IoMg)Mg] = tht = , | Tr (Mg © Mg)Mg]| < ZZ Imj.| < tht =0(T)

t T

DX mb <> mu=0(T) ,
DY mi <Y mu=0(T)

|77 (Mg ©@ Mg © Mg) 77|

IN

7 (Mg ®Mg ® Mg ©Mg) Tr

|70 (Ir @ Mg) Mg (Ir @ Mg) 77| < Z Z Mg mermyy| < Z N Z My = O(T%?),
t r t r

|T/T (Mg © Mg) Mg (Ir © Mg) 77| < Z Z Z |m?umu,.m,.,.| < Z Z MMMy | = O(TB/Q)
t s u

77 (Ir ©Mg) Mg (Ir © Mg © Mg) 77| < Z Z |mumym?,| = O(T%?),
ZZ e | =
t T

7 (Ir ©Mg) Mg © Mg) (Ir ©Mg) 77 = Z Z mttmfrmrr < Z thtmfr =O(T)
t r t r

|77 (Ir ® Mg) (Mg © Mg © Mg) 77|

IN

7 (Ir © Mg) (Ir ©Mg) 70 = Y _mj, = O(T).
t
|

Lemma 11 Suppose that & ~ I1D(0,1r), where & = (&1,&o, .-, &7)', with vy = E(&)), 72 = B(§)) =3, 73 =

E(&)) =107y, 74 = B (&) = 1575 — 109§ — 15 and 75 = E (&;) — 287, — 56737, — 3573 — 2107, — 280+ — 105 for
allt = 1,2,...,T. Consider the matrices Mg, Pg and Hp = hl, defined by (S.2) and (S.1), wr = 7/MpT7r
andv =T —m — 1. Then, under Assumptions 1 and 3, we have

E (E'HFE) =Tr(Hp) =wr, E (.‘;"Mgé) =Tr(Mg) = v,

E [ (€Mg€)"] = 7,17 (M © M) +v (v +2) = v(v+2) + O(T),
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F [(E’Hpé) (glMgg)] = ’}/QTT' (MG O] HF) + U(T/TMFTT) = vwrt + 0] (T) s
E [(g’HFg)Z} — 7, Tr (Hp © Hp) + 3 (7 Mprr)? = 3w + O (T),

E [(s’HFs)2 (g’Mgs)} — 7,7 (Hp ® Hp © Mg) + 27,7 (Hp) Tr (Hp © Mg)
+7,Tr (Mg) Tr (Hp © Hp) + 49,Tr [Mg © HE] + 493 [t (Ir © Hp) Hp (Ir © Mg) 77
+2’)€ [T/T (IT ® HF) Mg (IT ® HF) TT] + 4’)/3 [T/T (HF OHr O MG) TT] +3 [TT (HF)]2 Tr (Mg)
= Sw%v + O (T2) ,

E [(g’Hpg) (g'MGg)Z} = 7,Tr (Hp © Mg ® Mg) + 7,Tr (Hp) Tr (Mg @ Mg)
+27,Tr (Mg) Tr (Hp © Mg) + 47,Tr (Hp © Mg) + 493 [7h (Ir © Hp) Mg (Ir © Mg) 77]
+293 [ (Ir ©Mg) Hp (Ir © Mg) 77] 4 493 [77 (Hp © Mg © Mg) 77]
+Tr (Hp) [Tr (Mg)]” + 2Tr (Hp) Tr (Mg) = wrv? + 0 (T?),

E {(g’Hpg)ﬂ =~ (Hp ® Hp © Hp) + 159,77 (Hp) Tr (Hp © Hp)

+6+2 [7p (I ©Hp)Hy (Ir ©Hp) 7] + 492 [7 (Hp 0 Hp 0 Hp) 7] + 15 [Tr (Hp)]?
= 15w} + O (T?),

E {(S/MG«E)?’] =7,Tr (Mg ® Mg © Mg) + 37,0Tr (Mg © Mg)

+127,Tr (Mg © Mg) 4 692 [t/ (Ir © Mg) Mg (Ir © Mg) 77
+473 [t (Mg © Mg ©® Mg) 77 + v° + 60° + 8v = v* + O(T?)

E [(e'HFs)2 (s’MGs)Q} — [Tr (Hp)]? [Tr (Mg)]?
+2[Tr (Hp)]> Tr (Mg) + 2 [Tr (Mg)]* Tr (H%) + 4Tr (H%) Tr (Mg)
2 fvy + Yalvs + Ve Fre + Vi E2 T V3 23 + V173 100
= 3wiv? + O (T3) ,
where
fr, = [Tr(Hp)) Tr (Mg @ Mg) +4Tr (Hp) Tr (Mg) Tr (Hp © Mg) + [Tr (Mg)]? Tr (Hp @ Hp)
+2T’T (HF @ HF) TTT’I“ (MG @ MG’) + QTIT (MG @ Mg) TTTT‘ (HF @ HF)
+87r (Hp) Tr (Hp © Mg) + 8Tr (Mg) Tr (Mg © HE) + 1674 (Ir © HE) (Ir © Mg) 77
= 0(1°)),

fr 2Tr (Hp) Tr (Hr @ Mg © Mg) + 271 (Mg) Tr (Hr © Hrp © Mg)
+4Tr (Hp © Hp © Mg) + 477 (Mg © Mg © H},)
= 0(17),

ffy6 :TT(HFQHF@Mg®Mg) :O(T),

fye = 875 (Ir ©Hp) Mg (Ir @ Mg) 7rTr (Hp) + 475 (I © Mg) Hr (Ir © Mg) 7rTr (Hp)
A7l (I © Hp) Mg (Ir © Hy) 70T (Mg) + 874 (Ir © Hp) Hey (Ir © Mg) 70T (Mg)
87 (Ir ©Hp) Mg (Ir © Hp) 71 + 87 (Ir © Mg) Hy, (Ir © Mg) Tr
877 (Hrp © Mg © Mq) 7rTr (Hp) + 870 (Hp © Hp © Mg) 70Tr (Mg)
+1677 (Hr © Hp) Mg (Ir © Mg) 77 + 327 (HF © Mg)Hp (I7 © Mg) 77
+3270 (Hp © Mg) Mg (Ir © Hp) 71 + 1677 (Mg @ M) Hp (Ir ©Hp) 71
+16Tr [H} (Mg © Mg)| + 167 [Mg (Hp © Hp)]
= 0(1°)),
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fiz = Tr(Hp @Hp)Tr (Mg ©Mg) +2[Ir (Hp © Mg))?
+1677 (Ir ©Hp) (Hr @ Mg) (Ir © Mg) 77
+477 (Ir © Hp) (Mg © Mg) (Ir @ Hp) 77
+477 (Ir ©Mg) (Hr © Hp) (Ir © Mg) 77
+87 (Hr ©Hp © Mg © Mg) Tr
?)

o(r

Jyve = 470 (Ir OHp)Hp (Ir ©Mg © Mg) 77 + 877 (Ir © Hp) Mg (Ir ©Hp © Mg) 77
+87 (Ir ©Mg)Hp (Ir ©Hrp @ Mg) 71 + 477 (Ir ©Mg) Mg (Ir ©Hr ©Hp) 71
+167‘/T (IT O] HF) (HF O Mg Mg) Tr + 16’7'/T (IT ® Mg) (HF OHr O Mg) TT

Y

= 0(T?%),
and
B [(6Ma€)'| = [Tr (Mo)]' + 12 [Tr (Mg)[ Tr (Ma) + 12 [T (M)
+327r (Mg) Tr (Mg) + 48Tr (Mg)
Yoy + Va9, + V69vs + V1992 + 13943 + V1739717
=v* 4+ 0(T?),
with
9y, = 6[I7(Mg)]” Tr (Mg © Mg) + 1274 (Mg © Mg) 7017 (Mg © M)

+48T7“(Mg>T’I“ (MG O] Mg) + 96T'r [(IT © Mg) Mg] + 48T/T (IT © Mg) (IT © MG) TT,

Gy, = 4Tr(Mg)Tr (Mg © Mg © Mg) + 24Tr (Mg © Mg © Mg),
ve = Tr (Mg © Mg © Mg ©Mg),

9y = 247'/T (IT ®© Mg) Mg (IT © Mg) TrTr (Mg) + 487'/T (IT © Mg) Mg (IT © Mg) TT
+1677 (Mg © Mg © Mg) 7717 (Mg) + 9677 (Mg © M) Mg (Ir © Mg) 71
+967T'r [(MG ® Mg> Mg] ,

g2 = 3[Tr (Mg ®Mg))* + 2474, (Ir © Me) (Mg © Me) (Ir © Mg) 77
+877 (Mg © Mg © Mg © Mg) 7,

vy = 247'/T (IT O] Mg) Mg (IT O Mg o Mg) T + 32'7'/T (IT O] Mg) (MG OMg® MG) TT.

Proof. These results are obtained by using the results established in Lemmas 6 and 10, together with the fact
that E(&}) for r = 1,2, ...,8 are time invariant (which is ensured by Assumption 3), and noting that MgHp = 0
(since MpMg = Mg and Mg7r = 0), H}, = Hp [Tr(Hp)) ' for j > 1. =

Lemma 12 Suppose that & ~ I1D(0,17), where € = (£,,&4,....,E7), with v, = E(€2), 7o = E(£}) — 3, 73 =
E(&) — 107, and v4 = E (£)) — 157, — 1073 — 15 for all t = 1,2, ..., T. Consider the matrices Mg, P and Hp,
defined by (S.2) and (S.1), and v =T —m — 1. Then, under Assumptions 1 and 3 we have

ko = E [(€'Mg€)?] — [E(EMG@}Q =7,Tr (Mg ® Mg) + 2v = O(T), (S.31)
k11 = E[(&HpE) (€Mg€)] — E(EHpE)E(E'MgE)
= 7 Tr[(MgoHp)] =0(T), (S.32)

and

K21

E[(€'Hre)” (€ Mcé)| ~ EI(€'Hrg)?| E(€ Mcé)
= 67y (T/pMprr)Tr (Mg © Hp) 4+ 492 [7) (Ir © Hp) Hp (Ir © Mg) 7]
+672 [t (Ir © Hp) Mg (Ir © Hp) 77] + O(T) = O(T?). (S.33)
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Proof. The results (S.31) and (S.32) follow immediately from Lemmas 11 and 10, together with the fact
that E(&;) for r = 1,2,3,4 are time invariant, which is ensured by Assumption 3. The result (S.33) follows
using Lemmas 11 and 10 and the equality (S.30), noting that Tr (H%) = [T'r (Hp))?, and Tr (Mg o HZ) =
Tr(Hp)Tr (Mg ® Hp), since HZ = Tr (Hp) Hr. =

Lemma 13 Suppose €, = (eit), where e; ~ 11D (0,1), with v, . = E(},), V2, = E(e}) — 3, V3, = B(ey) —
1071 ,€ and Va,e = E( zt) - 15’72 € 107%,5 - 157 and qQ; = (QM) Th6n7

(etqiqier) Z G E tqiq;'Et) = Zz Qieqje, (S.34)
E(eiaidieeidi) =71 ), 4 B (elasdjeceiar) =712 ), aiedie
2
B |(ejaidie)’] = 7o (30, ak) +3 (3, a%)
2 2
e i) . (5, )+ (5,2 (5,2 25, )
E [(ejaidjer) (shaidfer)] = Yo (Zé qf’eqje) +3 (Z , q?z) (Z . ql‘ﬂljé) :

E [die: (staiaier) (etasdier)] = 7352 G + V1,e {6 (Z Qizqg‘e) (Ze qlzgqjé)
(X)) (D) + (X,2) (S,a)], 63

E|de (Elasaien)’| = 1D, queale + e [4(X, a) (30, ak)
4 (3 aaie) (3, a) +2 (30, @) (32, dheaie) | (S.36)

B |(ejasien)” (hajdie)| = vz (3, aade) + 672 (O, @) (3, ) (8.37)
e (D0, ate) (32, 4%) + 8720 (32, auease) (32, dlase) + 493 (32, ai) (O, )
+697 . (Zz qfeqje>2 +3 (Zl %‘22)2 (Ze q?e) +12 (Zé qfe) (Zé qwqje)2 : (S-38)

E [(elaidien) (elaidjer) (slaydie)] = vac (30, ahale) + 592>, a2 (D, auedle) (S-39)
+572,c Zé qieqse (Zé qz‘zquze) + 572, Z[ T (Zz qg’e‘lﬂ) + 297, (Zz Q?e) (Zz q;n?e)
w293 (30, dhare) (30, aued) + 298 (X2, dhae) (32, auea)
47 . (Z , q?eqje)2 +2 (Z , qZ‘ZQjZ>3 +13 (Z , q?e) (Z , q?z) (Z , (Iz‘EQJ‘£> :
Proof. Applying Lemma 6, the results follow. m

Lemma 14 Let 7,;, = %8/02/2 and Gp,ie = q,,,ig/az)/i-, where 7y, is the st element of the k x 1 vector of factor

loadings, 7;, defined by (47), 0ii = Yiv; +0n,ii, and gy i is the (i,€) element of Q,,, where Q,, is defined by (51).

(a) For any finite M, v, and 7p, p = 1,2,.... M, at least one of v, is non-zero and at least one of ry, is

non-zero, then
N N M
SIS i) =0 ().
Jj=1p

1=1

(b) Further, for any finite L, vy, and v, h=1,2,..., L, where vy, >0 and r;, > 0,

S SIS0 ) TL (S, 527) = 0 v%).

=1 j=1
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(¢) Further, for any finite w > 1 and v > 1,

L

N
ZZ (Zz 1%,“45,]1) 11 (Zz ldzm:,f;p) =0 (N).

i=1 j=1 h

Proof. Consider part (a) first. Noting that |§,,| < 1 for all i and s, |7,,]"” < |¥,,| and sup, Zf\[:l 55| = O (N®)
by (48), we have

N N M N N M
SO TIC, wease < XTI, ol 1™
=1 j=1 p =1 j=1 p
N N M N N M
S ZZHZS ‘;)'/'LVS| |3/J6 ZZHk (bup|715|bup |rng|>
i=1j=1 p i=1j=1 p
N N M N N
< DKM (Sup%s|sup\%|> <kM (supZ%A) sup > |75
i=1 j=1 s s S =1 5 j=1
= O(N?),

as required. Now consider part (b). By Cauchy-Schwarz

N N L M
SIS ared 11|30, 30232

=1 q’r] z@qn,jl s=1 Vis Vjs
i=1j=1 h p
N N L

2vp, Z Th Z ~VpxTp
< E E \/E - 1|an€| \/ - 1‘Q’r/,jé| ’ ’715 Vis|»

i=1 j=1

but, as Eévzl |Gy.ic)® =1, Zévzl |(jw'g|2 > Zévzl |@y,ie|l” for r > 2, together with part (a) we have

N M
S ST, e X ™ | TS 527

':glh

N N N
Sy g (supzm> supzms _o (v,
S i=1

=1 j=1

IN

Observe that the result holds when all of v}, and/or all of r), are zero. Now consider part (c). Similarly, using
Cauchy-Schwarz

L
S SS ann | TS a
— IQTI,’L[qn,jZ (= 1q7lyb[q7/7.7£
i= 1] 1 h
2 2r
5% » H >, VL h
~ 1= 1|Q7],7,Z| |q7]7Je| (= 1|q7]’Lé| = 1|q7/7j[|
1=1j5=1
<

N N w 5 v
Zé:l Z |qU,i€| Z |q77,j€|
i=1 j=1

but S5, ;¢ = 1 implies |Gy i¢| <1, hence, |Gyie|” < |Gy.ie| for r > 1, we have

N N N N N N
Do D dnae D Ndnel” < Y0, D ldniel Y lGn.jel
i=1 j=1 T =1 j=1

IN

N N
¥ (s3] (s 3| =00,
i=1 j=1

as required, where the final line follows from sup, vazl |Gn,ie] < K for all ¢ (by (52)). m

S13



Lemma 15 Consider the regression model (2), and suppose that Assumptions 1 and 3 hold. Let Z%@ =nHpn,/ (wro, i)
and X,; = 0iMan;/ (va,i), where m; = (N1, Mgy - Mir) s WT = TTMFTT, and Hp = (hthy), Mg and

Mg are defined by (S.2), and v = T — m — 1. Denote 7, = nzt/on ii» and set D, = diag (0yi), so that

Dgn/ N, =1 = Qnsn +, where Q,, = Dgn Qm and q q,, ;= (qn,ihqwg, oy dnin) s the ith row of Qn' Also, set
Prij = Cov (nmnﬂ) e, = E (sf’mt) and Vo, = FE (6;1]7”) — 3. Then we have

E(z:) =1, E(Xy:) =1, (S.40)
Pn,ij = E (ﬁ?tﬁ?t) =1+ 2p127,ij + V2,e, Z q?;,iszy,jz, (S.41)
=1

B(ehi) = (1 28) 4, (B0 (D i) 2
=1

E(XiXp;) =1+ 201723” T2, (Ztv;nt2t> i ?,,w‘jg,jea (S.43)
=1

E (2, Xy) =1+ w (72,57 >, dﬁ,ie) , (S.44)

> himu - Z h4
E (Z"thX”lviZ’?hj) = (1 +2p317ij) + AVZEW (Z@ qgaié) (Z qmﬂqmﬂ)

vwT

+ (1 52X s 43 Z )3 h2h2mtv> e, (3, i) (30, 80

wT

( Z Z R hemy, + 2 Z Z ththr> e, (Z @y, qu,ﬂ)
+ <U);U Zhgmtt> [Vz,en (Z[ @3,7i2572,,jz>]
t
+4p, 45 (w Zh mtt) {72,5,,, (Z[ Qg,ié@n,jé)} +0(T7?), (S.45)

h2m hi
E (7 Xnizy i Xng) = (1+20] )+ (Et . tt) (Z Qe+, %w) Et t%sn (Z Oy, qu,u)

vw

18 2 1
+2,071 ij ( Z T vwr Z himy, — 02 Zm%t + v)
t t t

+ ( 22 Zzh himyrmyy + ZZh MMy + mi%zzhihtmtt>
t T

vTwT

2 ~ ~ - 2
X“Yien [(Zz qn,z{qmﬂ) (Zz qme) + (Zé qn,ié) (Zl an%,ﬂ)]
4 N .
+’Yia,,9n,ij (vsz ZZhrhtmrrmtt) (Zz qi,ﬂ) (Ze q73]7i€>
t r

1 1 1
+ (4”[}2 . 2 2 hrhtmzt + m ; 2 h?mrrmtr + 2@ zt: XT: hihtmtt>
2 2
x { (Zl qn,wdi,ﬂ) + (Zl q?,,qu,ﬂ) }
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rt

1 1
+ <4U2wT Z Z ey + 165 — Et:

2 2~ ~
XV,e, Pn,ij (Zz qn,ieqn,jf) <ZZ qﬂvifqnﬂ)

Ly mwmtr>

004 <4vw1T ; h?mtt> {72,5,7 (Ze q~2,i€§n7j2> + 3Pn,ij]
(21)10 Z hszt + Z mt,>
X [72,5,, (Zé q?y,ié‘f;,jl) + 203;@} + 2p3;,ijw1% Zt:h?
05 ij <2v12 Z”%%) [72,5,,, <Zé dﬁ,wdﬁ,jz) +(1+ 20727@‘)}
t
+0n.i5 <4mtT Z h?mtt> [72,5,, (Zé q~2,if@nﬂ> + 3pn,ij:| +0(T77). (S.46)

Proof. First, F (272“) = 1since E (n;Hpn;/0y:i) = Tr (Hp) = wr and E (X, ;) =1 since E (n;M¢gn;/0y.i) =
Tr (Mg) = v (see Lemma 11). Noting that 7,, = €], , @, We have

=2 -2 - - o
¢ni; =B (303) = B[ (€] 180 i€n.t) (€ 18n,8 j€nt)] -
and since €, ~ I1D(0,1y), then using (S.7) in Lemma 6, and noting that Y-, y.ieGy,j¢ = @y, ;An,j = Py,ij, and
N U
Z(:1 (ﬁ,,ie = qﬁmqn,i =1, we have

Pnig = V2., Tr ((.inzq/nz © fln,j(i;,,j) +1Ir (q"’iq;ﬂ) Tr ((‘i"’jq;"j)
+Tr ((IT1,i(I;1,iq”17j€1’/V]7j) ’

which establishes (S.41). Next, noting 27 ; = NHr, =3, > hu (n,t/orrl]/i) (77”,/07, “) =D 0>y hae MMy
and 7;, = e%,tqw, we have

E (Ziz nJ = Zzzzhtht'h e B2 [( t(ln,i(l;;,igmt’) (€%7rqn,j(~l;,j€n,r’)] )

and note that there are the following combinations of indices {¢,t’,r,7'} to take into account. There is one
t =t =r =17', and three relevant pairs, t =t and r =71/ (t #r),t =7 andt' =r (t #r),andt =r and t' =1’
(t #t'). Thus,

- - 2
E (,2727 iz j = Z hiE [ ’tq,,,iq;’jen’t) } (fort =t =r=r")

+7 Z h2h2 n,t(‘in,iqln,isn,t) (E;),TQT]JQ;],]‘ET],T)] (fOI‘ th= t, = r, t 7é T)

T ttr
% > hihpho i E [(€), @000, j€n1) (€ ,8nid, jen.r)] (or v’ =t,t' =7, t#7)
thr
1% Z hihiw E [ (€7, 1Gn,i@), j€n.t) (€0.0@n.i, j€ne)] (for r=t,r =t t #1').
t#t!
Hence
E (27%127273) = wl% Z hi B [( €,¢8n.i¢0,;€n.t) } ; hihiE (040,800 i€0.t) (€08, j€0.r)]
r
*% ; hihi E [(€), 1@ j€n.e) (€ ni, e )] -
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Observing that the ordering of hihy h-h, is arbitrary, we have

1 -
E(2,22) = @Zh?E [CR

t

Z hih: { € 18n,illy i€0.0) B (€7, 18058 j€nr) + 2 [E (Ezv,tqnvi‘i:z,js’?’t)]z} '
t;ér

- - 2. . - -
Also note that E (e}, Gy, j€n.:)" is given by (S.41), E (simqn,iq%’ien,t) =1 and E (e}, ;.9 ;€. t) = Pyijs
and 37, . hih2 =5, > hih2 — >, hi = w% — >, hi. Then, after some simplifications we obtain

4 212 4
2 2y _ Zth Do 2 hih = 30, 2
E (Z7lvi277>j) - w2 (72 €n Z ay, ’Lﬁqn Y4 +1+ 2p17 lj) + w2 (1 + 2p,,] ,L])
T (=1 T
Z
= 14+ pr],” L 7’2 En Z n, %qn,ﬂ
(=1

as required. Next, similarly,

1 - - - -
E(XyiXy;) = 2 Z Z Z Z MMy B [ (€] 48,00 €n,t) (€1),080,58 €0, ]

t tr

1 -

= ﬁzm%tE {(E%,tqn,iqi;,jsn,t)Q}
t
1 - - - o~
JquQ thtme (€048, i€n.t) E (€] 1804 j€n.r)

1 -~
+v722§:m%rE (B (Eiz,tq'miqun,jeﬂﬂ‘)f
t#r

,0,7 ij Zt mtt Y 2 =2
= 1+ V2., quil’»qn,jf :

Next consider

FE (Zi i) = m Zzzzhtt’mrT’E ntqﬂ 1qn i€, t/) ( m v, 1(17, i€n.r’ )]

1 -~ -~
- E ; h?mttE [(€;7th,iqln)i6n¢)2}
'UU}T (Z Z h My + 2 Z Z hz‘ rMy — 3 Z h mtf> 7],t(‘517],iql7]7i€777t)] 2 )

- - 2 -
But X5, 35, hihymi = Tr (MeHr) = 0, 5, 5, hme, = vor, and B [(€) iyl i00)] = 2.0, S0 45
E (e}, /Gy.id), ;€n.) = 1 by Lemma 13 we have

9 N
2 > hima ~4
F (Zn,an,i) =1+ 7211&@ V2,6, ; ay,ie-

Next, consider
E (Z%,an,izig - wT ’U ! Zzzzzzhtht'h h ’muu’E [( 77 th,iQ%,isn,t’) (E;],raln,j(i;;,jsnm’) (E;,,ué-ln,iél;,,isn,u’)] .

In addition to the case of t =t =r = r' = u = v/, three combinations of six indices {¢,t',r,7',u,u'} are to be
considered: three pairs, two of threes, and fours and twos, which are with superscripts (2,2, 2), (3,3) and (4, 2),
respectively. As the groups’ ordering does not matter when the number of group members are the same, we

have (2%) (%) 37 = 15 different combinations of (2,2,2), (3,3,) 51 = 10 of (3,3), and 2‘,3!1, =15 of (4,2). After
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considering of all the combinations, and observing that the ordering of hyhy h,-h, and {u,u'} in my, is arbitrary
(as Mg is symmetric), after some algebra, we have
- - 2 .
E (2 Xnizn;) = (Ae2z) +2Be2y) [B(€bnidn0)] B (€, 8n.,8,60.r)
-~ - - 2
+2(A22) +5B222) E (€, @i i€n.0) [E (€] 080,00 €0.r)]
+(A@ss) +3B.s) B (€,8n.i,,160.180,00.5) B (&80, i€0.r)
- - - 2
+2 (A +2Bs) [E (€, @0.i,i€0.0€5,18n.5) ]
+(A@a) + 4By + Crw) B [(€),80n.i0,80.) (€180, 80.4)] B (€ 08n.i0,8n.r)
+4 (B + Cay) B [(€1,1@0.i%0,80.0) (€),18n.0@0 60.0) | B (€],08.6, ;€n.r)
- - 2 U
OB | (2),80480580.)° | E ()00, 1€0.)

—2 —15 : 4 I~ = 200 = =
erT v htmttE [(En,tq7laiqn,i€7ht) (En,tqn,jqn,jsmt)}
t

where
A@22.2) = w;%fl Z R h2Myy, B,22) = wE%il Z B BB (5.47)
t#£r#u t#£r#u
Az = wptv Z K hymyr, Bs ) = wptv ! Z R2h2my,, (S.48)
t#r t#£r
A(274) = ’ZUJ_—vQ”U71 Z hfmm,, B(274) = UJEQ’U71 Z hi’hrmt,,, 0(274) = w;Qvfl Z hfh%mtt, (849)
t#£r t#r t#r

and noting that Zt;ﬁr;ﬁu hihimun = 32, 32, 30y Wi himan = 32, 30, himay = 32, 30, hihime — 35, 32, hihimy, +
237, hifmu,
A(27272) =1- w;Q Z h;l - 211);17}71 Z h?mtt + O(T‘72)7
t t

since >, h? = wp and >, my = v, and >, himy < >, h{ = O(T), and noting that, as Mg and Hp are
symmetric and MgHp = 0, ), hyhymy, for any t # r and ¢t # u we have

B(2,272) = 710;11}71 Z hfmtt + O (T72) ,
t

Az =wriv Z Z R hemy, + O (T7%), Bigg) = wp v Z Z hihimy, + O (T7?)
t T t T
Apgy =wp® Y hi+0(T7?), Baay =0 (T7?), Cauy =wr'v™ "> himy +0 (T7?).
T t
Using the result in Lemma 13 and noting that E (|7~7it|8) is uniformly bounded by Lemma 3, we have
1 -
E (2 Xni25) = 1+2p0;+ wr > himu [72»% (Zf qﬁ,w)}
t
1 . 1 U L
+ <w%v S5 W hemy, + e 3 hfhfmt,n> e, (3, aniei o) (3,30
t T t T
1 1 9 - 2
- (10%0 Do Wi, + 2 >N hfhf»mw) e, (Z , qi,qu,ﬂ)
t T t T
L 4 1 2 2 -2
+ <w% zr: hi + oo zt: h mtt) [’YQ,an (ZZ qmizqn,jz)}

1 -3~
+4Pn,i_j (wTU thmn) {72,5” (Ze (J?,,iéqU,jZ)}
t

+0 (T7?).
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Next consider

E (2 i Xnizy jXn ) = wpv? Z Z Z Z Z Z Z Z D B P M, Mg
t v

r o r v v u u
xE [(E’:;;,tqmq:;,iemt’) (E;/,v-(i717j(~1(r;,jE'rl,'r") (E(r/,u(~17]:iqfr/,i€717V/) (€;],u€17l7jq’lr],j€7lau/)] .

In addition to the case of t =t = r =1’ = v =1/ = u =/, five combinations of eight indices {¢, ¢, r,7’', v, v/, u, u'}
are to be considered, which are subscripted by (2,6), (3,5), (4,4), (2,3,3), (4,2,2), and (2,2,2,2). As the groups’
ordering does not matter when the number of group members are the same, we have %é! = 28 of different com-

binations of (2,6), £t = 56 of (3,5), fi5i2 = 35 of (4,4), o (555 4) = 280 of (2,3,3), 2% (5544) = 210
of (4,2,2), and %%%% = 105 of (2,2,2,2), respectively. After considering of all the combinations, and

observing that the ordering of hihy h,-hy and {u,u'} of my, are arbitrary, after tedious algebra, we have
E (2 :Xyiz ;X)) = (A +4C0 002 +4B0222) [E (¢ @0, €00)]” [B (€ 1805, j0.r)]
+2 (A(2,2,2,2) + B2,2,2,2) + 10C(2.2.2.2) + 16D(22 2 2) + 8E(2,2,2,2)) [E (€%¢51n,z‘51;7,i€n,t)]2 [E (E;],an,iq;men,r)]
+2(2B2,2,2,2) + 8D2,2,2,2) + 2E(2.2.2.2)) |[E (E;I,rfln,iflr/r,,jenﬂ')]4

2

+ (E(2,2,4) + 20(2,2,4)) E {(Ei,,tfln,jd%,jsn,t)z] [E (5;,,15617],1'61;],@‘577,15)]2

+ (4C(2,2,4) + 8D(2,2.4) + 4E(2.9.4) + 4F(2.2 1) + 8G2,2,4) + 8H(2.2,4) + 12112 5 1))
xXE [(E;,,tqn,jq;;,jsmt) (E;;,t(ln,jeli,,if:n,t)] E (eg,t(ln,iq;;,zfn,t) E (€/71,t(~1717i(~1;;,j€’717t)

+ (A@22,4) +8C(2,2.4) +2E(2.9.4) + 16H(5 2 1) + 8 (2.5.4) + J(2,2,4))

xE [(E%,tqn,jqé,jen,t) (E;z,tfln’ifl%,ien’t)] E (5;7,@71,2‘51;;,2‘5%0 E (5;7,t(~1n,j(~l;;,j5n,t)

+ (2B2,2,4) + 16D 204y + 16F 2 5.4y + 4G (2,2,4) + 16H(2 5.4y + 161224y + 2J(2.2.4))
xE [(Eiz,tqn,jq%,jsmt) (%,tqn’iqz,ien,t)] 2 (eg,tqn,iq%,jsmt)f

+ (4C (22,4 + 8D(2,2,4) + 4E(2.2,4) + 4F(2,2,4) + 8G (2,2.4) + 8H(2,2,4) + 121 122.4))
xE [(Eiz,tqmi‘?l;z,jsn,t) (E;z,t‘in,iq;v,ﬁnytﬂ E (€160, 5&n.t) B (€105 56n.1)

+ (Baza) +2Ge20) B | (€180i0,800)° ] [B (€)1808 600)]

+ (24@3,3.2) + C3,3,2) T 9D3.3.2) + 8E3,3.2) + 2G(3,3,2) + 21 (33.2))

X [E (E;htqﬂviq;meﬂvt) E (E;z,rqmiq;y,ien,reiz,rqn,j) E (q;;,jen,ueln,u‘in,jqu,j@z,u)

+E (),4an.jQ j€nt) E (€),,Q0,iQ,:80.r€0 1ni) E (&)i80u€0,400,a j€nu)]

+ (4A3,3,.2) +8D(3,3,2) + 4J332)) E (€10, j€nt) E (€1, Q0@ i€y +Ani) B (A 80,080 uni Q) i€n,u)
+ (4B,3,2) + C(3,3,2) +5D(3,3,2) + 16E(3.3.2) + 4F(3.32) +2G(332) + 4l(33.2))

X {E (€;7,tqn,i€1;7,i5n,t) [E (E;],TQWJq%,jeanE;],Tq%i)]2 +E (5%,t(~1n,j(~1;z7j€mt) [E (5%,rﬁn,iﬁ%,ﬁn,rséwﬁn,j)]2}
+ (4A(3,3,2) + 16B(332) + 8C(3,3,2) + 24D (5,3 2) + 48E (3 3 2) + 8F(3,3,2) + 16H(33,2) + 20J(3.3.2))

/o= =1 /o~ = 5 = ~/ /o~ =~
xE (€7I,tq’77’iqn7j€’ht) B (Em‘q’i»iqn,jEﬂﬂ’snmqm) E (qm’ie’lvusn,uq%iqmjsnv")

+ () + 4B + Co0) B | B (&)@ 800 (€),080.58 €00)"| B (€),0.,.50.)
+4 (Ae) +2Bas) + D) B [E (€),08nid,i€0.0) (€0.08n.0@0 58n.) (€.08n.580,6n.0)] B (1,080 5€0.r)
+ (A + 4B + Co0) B | B (&)8nd)800)” (£).080, 600) | B (€),805,€0.)

+2 (B(ss) + Css)) E (€7,080.iQ) €006 ,An.i) E [Q;,,if?n,t (€;,,t<~lv;,j(~1§7,j€7;,t)2}
+2 (A@5) +5Bs) + Ca sy +4D 35 + B 5)
xXE (5;,,Tfln,iq%,ien,r‘“:%,rfln,j) E [(q%,j":n’t) (E%,tqn,jq%,jsmt) (E;z,tfln,ifliy,iemt)]
+2(A@s) + 5B + C35) +4D5) + Es 5)
xE (6/71,7"617]7’5Efr},rqndqij,j677,7") E [(qim'emt) (Efln,tqn,i(lln,ien,t) (E;;,tqn,jq;;,jsmt)]

+2 (B + Ciss) B [(5%,t‘in7i‘i;z,i€mt)2 E%ﬂnd] E (&, ;€0 (£1,rGn.3 . 5€0.r)]

S18
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tBuyE [(6;777’61’171'61/7171‘5’7*) (Elnyrq’laiqiz,ieﬂvr)} E [(Eg,tqnyjq;;,jen,t) (Ei],tQW,j(i;LjEn,t)]
+4 (20,0 + Dy + Baw) E (€)1 80.180,:€0.0) (€5,08n,i0y j€n.r) | B [(€7, 180,60 j€n.e) (€1,480.58,,j€n.1)]
+ (Aa) + Blaay +8Caa) + 8Dwwy) LB [() il €0.r) ()60, j€0.)] }

2, —2 4,2 I~ = 207 ~ =~ 2
Wy E himy B [(sn,tqmiqn,ien,t) (En,tqn,jqn,jemt) } )
t

where
A(272g2’2) = w% Z hzhzml/l/muua B(2 2,2 2) - wT v Z h2h2
t#ErFvEu t#r#£v#£u
Cio222 = w; Z th hymey My, Di222.2) = wT v Z h2h By Mo Mg
tETEVFEU t#Er#£v#£u
Egpp2 = wpv™? Z hiwhorhympymy,
t#Ar#v#u
24 = wptv? D WMy, Bosy = wptv™? Y him?,
t#r#£u t£rF£u
Copa = w;zv_2 Z R Ry M, D(27274):w;2v_2 Z B3 By MMy,
t#£r#u t#£r#u
E(27274) = wT ’1)_2 Z h h rtt My, F(224) = 'lUT ’U -2 Z h2h2
t#r#u t#£r#£u
G(21274) = ’LU;Q’U_Q Z h?hThumttmTu7 H(2,2,4) :w;2v_2 Z h?hrhumtrmtuy
t£r#u t#r#u
lo24) = wr o Z hehuhZmgme,, J2,2,4) = wr 22 Z hZhZm3,,
t#r#u t#r#u
A(3,3,2) = wT2U72 Z th htmwmtt, B(332) = wT v -2 Z h2h htmrﬂ
uFErFEt uFr#t
0(37372) = w;2vi2 Z hih?m’ﬂ’mtra D(3,3,2) :w;2vi2 Z h%huhtmurmtt;
uFrFEt u#rF£t
Eisso = w;20_2 Z e B B M, F(3,3,2)=w}20_2 Z R3hymgemys,
uFErFEt uFErF£t
G2 = w;%_Q Z R B Mg, Hz3.2) =wp Zy~? Z h3hym?2,,
uFErFEt u#ErF£t
I(3,3,2) = w;ZU—Z Z hgh?muumtm J(3,3,2) :w;Qv_Q Z hgh?mtumura
uFErF£Et uFr#£t
A(Q»G) 2 72 Zh2h2 My, B(2,6) = w;2v72 thhimtrmrra
t#£r t#£r
Cs) 072 Y himimes, Disg) = wptv ™Y himd,
tF#r t#r
A(3a5) 2 _22h3h mrr7 B (3,5) — wT U_QZthzmtrmrr;
t#r t#r
Ci) 202N hehimgmer, Digs) = wptv™? Y hehimi,,
t#r t#r
L35 wrv™? Z hymemt,
t#£r

519

(S.50)

(S.51)



-2, -2 4 2 -2, -2 212
A(474) = wpv Zhrrmtta B(4,4) =wWp v Zhrhtmrrmtty

t#£r t#r
C(474) = w;2v72 Z hfhtmrtmtt, D(474) = U}%Z'U72 Z h%h?mit (852)
t#£r t#r

But observing that the ordering of indices in h;hy hyh, and {u,u'} of m,, are arbitrary, and noting that as

M¢ and Hp are symmetric and MgHp =0, >, >~ >~ hyhymy, for any ¢t # r and t # u, a similar discussion
for the proof of Lemma 10 will give

1 1
A(2’2’2’2) =1-— wi% Z h? — 4@ Z h’t Myt — tht =+ O (853)
t t

B222) = thﬂ‘()

C(2,2,2,2) = _E Z h?mtt + O(Tﬁz),
t

D22y =O(T7?), Egaga =O0(T?),
so that

1 _
(A(2,2,2,2) +4C(22,22) +4E(222 ,2) T2 Z hi — TwT Z h2my — 22 met +0(T?
W t t

Next 1
— -2
A(3,3,2) - UQU}T § § hyhymprmye + O(T )7

B(3,3,2) —UszZZh hemy, +O(T2),

1 _
Ci2) = wr Z Z Ry my+O(T~2),

t
D332 =O(T™?), B39 = O(T™?), Fiz32 = O0(T?),
1
G332 = v, zt: Z R2himu+O(T™32),
Hz39) = o(T~), I3,3 2) =0(T?), J(3 3,2) = o(T?),
A(2,2,4) wE Z hi+
Bo) =0T ?),Caaa) = O(T72)7D(2,2,4) =0(T?),
1
E _ 2 T—2
(2,2,4) TwT ; himyu+0( ),
Foo4) = O0(T7?), Gaaa) = O(sz) Hpoo4)=0(T7?), Ipp24) = O(T?),
J(2,2,0) tht +0(T (S.54)

Since the functions with subscripts (2,6), (3,5) and (4,4) are all O(T~2), and v 2w;*Y, him? <

v 2w Y, him?, Yo, hi = O(T~?), noting that E (¢ 4 ;) is uniformly bounded, using the results in Lemma
13 we have

1 4 ~4
E (2 Xnizy ; Xn5) = 1420+ (va > hfm“) V2,64 (ZZ n,je T Zg qwf)
t
4202 _Lzhzx_ﬁzhm Zm
mi \ Tud 2Ty 2 tt — t
+2p, Prij (v v2 tht>
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2 1 2
h2 T T 5 h3h
(BTt S b+ 2 )
2 o - ~3 3 U,
XM,e, KZ@ qn,ieqn,ﬂ) (Ze qn,je> + (Zz qn,ié) (Zé qnd”mﬂ)]
4
2 ~3 ~3
s (5 zzhhmm) (5 ) (2, 70)
t T
e S SRR 3 S IRER 3 T
X [(ZK q~7],i€(j3,j€) + (Zf q?,,ieqn,jf) :|
1 1 2 1 2
+ <4v2wT Z: Z by hympr g + 16U2wT Et: Z hyrhymy, + 8v2wT Z: Z hy mrrmt'r’>
XVisnPn,ij (Ze qu,ieqn»ﬂ) <Zz q,,,wqu)
1 5 .
+05,i5 (4UUJT Zh%mtt> [727% (Zz %37,1'5‘177,1'2) + 3%@;‘]
t
(S e S R
wi t ' vwr = ' v? t "
X {hsn (Ze 63,mdi,jz) + 205@4}
1
2 2 ~2 ~2 2
FPn.i5 (21)2 tht> {72,57, (Ze qn,iéqmﬂ) +(1+ QPn,ij)]
t
1 5 -
+00.i5 (%wT > i mtt) e, (32, Giednie) + 30,
t

+0(T7?).
|
Lemma 16 Consider the regression model (2), and suppose that Assumptions 1-8 hold. Let Zn i = Z;HiFw"T and
Xy = MM here wp = TLMpTr, where n; = (N1, Mg, - Mir) s wr = h'h with h = Mp7r, and Hp =

On,iiV

hh' = (hehe), Mp = (mpgw), and Mg = (my) are defined by (S.2), and v =T —m — 1. Then we have
) B N
N1 ZCO’U [272” (X, — 1)72}%4‘ (Xp; =] =0(T7")+0 <T2> ’
i#]

Proof. First, consider N1 Z#j Cov ( Zp o Zm) Using Lemma 15, we have E( Zy 1) =1and

>, ht
E(z2m,) = L4205 5 + Yae, ( : an el jo

L - 1/2 - .
where p, ;; = Cov (it T5¢) Ve, = E (51; i) and 7, e T E( i) =3 iy = Uit/an,/n‘a and g, ; is the i’
Q, = D,,/*Q,, with D, = diag (0;;). Thus,

—1 —1 —1
Z COU 27 n ] - Z 2p77 z] ’YQ E,, Z (Z qn zlqn,jl)
i#£] i#£] i#]
< K,and Y, h{ = O (v) by Lemma

b row of

but, since by Lemma 14 3,37, "fy,ie‘j%,je = O (N), by assumption "yzﬁgn

8, we have

h#
Z f Y2 5,, _1 Z (Z qn zlqn ]Z) < Zﬂi% :

i#]

! ZZ |qn zfqnj€|

Y2 En

o(r 1),
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and

N1 ZCOU (z?”, 272”) =N"! ZQp?N-j + 0 (T_l) . (S.55)
i#£] i#]
Next, using Lemma 15 we have
N7UY Cov(ey Xpizy;) = NT'Y[E (27, Xna25,) — B (25,:X04) E (275)]
i#j i#]
= o Z 20, Pn.ij + t N Z (Z qw@qn,ﬂ)
i#£] i#£]

+1 e, <wlv > Z B hymy, + 3— Z Z h2h2mt,)
T

t

xN~1 Z (Ze @],ié@%,jé) (Zz Qn,iz)
i#]
ot (o S 2 S ) 3 (5, )

i#£j
e (2 ﬁzhtw) (S, )
i#]
010 (s S ) S s (O, )]
i#j
+0 (NT?).

But the second term is O(T~1) as above. Consider the third term. Using Lemma 10 we have

wTU ZZ hsh m”| - ) w v szlzhzmtr‘ = ( *3/2>7

t

and noting also >, ‘Ze Qﬂn,ieéiyﬂ‘ ‘Ze @y ;| = O (N) from Lemma 14 and 77, < K by assumption, we have

7. (év >3 it + 3— P> thmer> NSNS, i) (3, @)

oy
7%,57, <wiv Z Z |h} hymyy | + 3% Z Z |h?h3mtr|> N7t Z ’Zz (in,mﬁ,je‘ ‘Ze Qz,iz
T t r T t r i#£]

O(r7Y) +0(T7%?).

IN

2
In a similar manner, the fourth term is O (T~1) 4+ O (T=*/2), since Doitj ‘Zz qﬁﬂ(jmﬂ‘ = O (N) from Lemma

14. Noting that 0 < Y=, hZmy < Y, h? = wr and "yzgn < K, the fifth term is O(T~!). For the sixth term,

noting that p, ;; = >y Gn.ieGn je, We can write p,, ;; (Zz ‘f;,m‘jn,jé) = (22 Gn.iedn.je) (Zz qg;,iédfhﬂ>7 so that

e (s ) 7S s (0 )]

i#]

< 4 ‘72,% (wiv Xt:h?mtt> N7t ; ’Zz (jn,qu,jé‘ ‘Zé (f;,mdn,je‘
— o,
because Zi# 1> ¢ Gnieln, je| ’Z@ (fi,min,ﬂ = O(N) from Lemma 14, Y, h¥my < wr, and ’727% < K by as-
sumption. All together we have
12001} Xois w = 122,077 ij (T~ + 0O (NT?). (S.56)

iF#£] i#£j

S22



By symmetry

12001} X nz = 12:2@7 it T™YY+O(NT™?). (S.57)
i#] i#£]
Next, consider
IZCOU nz 77“ 77] = 12 nz 771’277 jXUJ') _E(Zgi,iXﬂai)E(Z?],an,j)] :
i#£j i#]

vwT

Since E (22 ,;X,:) =1+ Zihyme (72,% > ‘fhif) from Lemma 15,
2
2 2 Z h Mg > h?mtt 2 -4 A
E (Zn,iX"]»i) E (Zn jXW ]) =l4+=—— L V2 En (Z qn il + Z qn zZ) ( tva 72,5n (Zé qﬁ,i[) (ZZ qn,jf) 3
and together with (S.46) we have

NAZCOU(Z%Z n”ZUJX i) = 122pnm Zt ‘ 72,6, _12(2 qm@qnﬂ)

i#] i#] i#]

(B N (S ) (5, 20)

i#]

1 18 2 1\ .
-y i Ay vy,
wy 4 vwy 4 v? & v Py
9 2 2 2 | y-1 4
2|~ -5 > mh > P

t

i#]

+ (U;UT Z Z hyphymp,myy —|— Z Z R, + 72 Z Z h2 htmtt)
RN [(5 i) (Ze ) (S ) (5, )

+’Y%,an (vsz Z Z hrhtmrrmtt> N1 Z Pr.ij (Ze q?],j() (Zz ffm'e)
Lo i#]

1 1 1

+ (41)2U)T zt: XT: hThtm?‘t + m 2 ; hfm”mf,r + 2@ Zt: zr: hghtmtt>
2 2

x N1 Z {(Ze t}r;,iﬂf,,ﬂ) + (Ze i??,,izfjn,jé) }

i#£]

1 1
+ <4v2wT Xt: Z By hymy, o Z

t

2 -1 -2~ ~
X’Yl,gnN Z Pn,ij (Ze qn,izqn,jé> (Zz C]'r;,qu,je)
i#]

rt

DI
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1
4— Z hgmtt> Y2 En -t Z pn,zj (Z Qn zﬁq’flyje) +3N™ ! Z pr],z]

i#] i#£]

[’Yz e 12(2 qn iy, 7[) + 2N~ 1an ij +2—thN_lzP1277ij

i#£j i#j i#j
1 2 -1 2 2 2 2
+ (21,2 tht> N7y o {Msn (Zz qn,ieqn,ﬂ) +(1+ 2Pn,ij)}
t i#]
+pn,ij ( Zh mtt) N~ an ij (72 En (Z Qn L[qﬂ J£> + 3/777 z])
i#]

+0 (NT7?).

As established earlier, the second term is O(T~1!). Noting that 0 < Yo h?my < wr, and also ) (jfm[ <1, we

have
2 2
Do htzmtt 2 -1 4 ~4 Do h%mtt 2 —2
(Zaime) a3, > (30, aha) (32, o) = (S507) eV =0 (V7).
]

In a similar manner, noting that (from Lemma 10)

1
0<ﬁz;mft:0(T*1) For ZZVI himmy) = O (T,
1 _ 1 _ 2 _
Usziglhrhtmit! =o(r 3/2),m§;\h3mmtr\ =0 (12, @gghzhtmﬂ:o@ oF

and (from Lemma 14)

D P =O0W). D ppyy=0(N), Y ‘Ze ‘ﬁﬂ@hﬂl ’Zz Gy je| = O
it

i#j i#j

‘Zﬂf},ie =0 (N

N Z ‘Ze ‘jmiéfj?,,jz
i
> 1ol ‘Zé df;,je] }ZE @l =0

N), Z [(Ze qnyif‘fz,jz)Q + (Ze @%,M%JK)Q} =0 (N),
i#£]

i#j
Z ‘pnﬂ?j’ Zz ‘jg,ifqmﬂ ‘Ze ‘jn,iéqu,jé =O(N), Z |P7,,ij’ Zz Cj?;,w@;,j@ =0 (N) )
i i
and by assumption ’71,5,, < K and ’72,5,, < K, we have
N> "Cov (22 Xpirzn ; Xy i) =NT'> 202,40 (T7) + 0 (NT?). (S.58)
i#] i#]
Using (S.55), (S.56), (S.57), and (S.58), we conclude
N1 Z Cov [z?” (Xy,— 1) ,thj (X5, — 1)]
i#j
= IZCOU 2.0 7)] 12001/ r]u 7]] 12001} Zn,is 7]] 72]J)
i#] i#] i#]
Jr]\fflzcvov X i X, nj)
i

= O(T")+O(NT™?),

as required, since the terms N ! Ei# 2p72m'j will cancel out. =
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Lemma 17 Consider the return regressions, (2), and suppose that Assumptions 1-8 hold. Let 2? = & Hp€, /wr >

0 and X; = &Mg¢;/v > 0, where Hp = (hyhy) and Mg = (myy) are defined by (S.2), w

/
wr = 'TTMFTT;

v=T-m-1,§, = (5“7@27...75”)', & = uzt/au/ , 055 = E(ujpuj) and E(&::&51) = pij- Also let Zm =

niHrn;/ (wroyi) >0, Xy = niMan;/ (voy,i;) > 0. Then,

1 < 1 &
2 _ 2 8y—1/2
Zz’i (]‘7 1 Zznﬂ 171)+O (NFY )
VN — \/N
Proof. Recalling from (47) that u; = Vv, +n, = Zle Vs¥s + M;, We have

! /

2 EzHF€1 1 ui'HFu,;_ Onyii 9

Zi - = — = 27]77‘/ + A?, 5
wr Oii wr

i

where

7. V'HFV7, 0\ AV HeR,
Ai:q/l FVY; +2(0-777 > i F"h’

wTr Oii wr

c1 = - N 1/2 - 1/2
with 7; = (i1, Vizs - Vir) = ’Yi/Uz'z'/ ;and 7; = ni/Un,/iz" Similarly,

M€, 1 u Mau; y
X = §Mag, = — Lot (Un’lan,z’ + B¢> ;
v Oii v Oii
where "
B = :)"//L‘V/MGV’?i +2 On,ii ~/V/MG7’1
' v O v

Using the above results we obtain

On.ii On,ii
Z(1-X;) = (077”27271 + Az‘) [1 — Xn.i + X (1 - an“) - Bi] ’
and since 1 — 0, /04 = v;7y;/0i, then (after some algebra) we have
N o
2 n,ii 2
e ) - Y T 0 X
= |: T > Z%JX?],Z' + Az’X7),i:| (’7;"%)

{AB—i—((;’:l) 2z ]+A( Xyi)

= Dy1+ Dn2+ Dy,

where

i=1
Dno = b Z {AiBi + <U?7“) zf, iBl} , and
N = Oii ’
1 X
Dns = > A= Xp).

Noting that 0 < 2% <1 and sup; |7;,| < 1, we have

=

Dyl < —

T 2 (el + 1Al) 1%l (3)

7:1

2)—‘
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Also since Hr = hh/, h = Mp7r, and noting that for any conformable real symmetric positive semi-definite
matrices A and B, Tr (AB) < T7r (A) Apax (B) < Tr (A)Tr (B) (this result is repeatedly used below), we have

VVHEVY,; o [3i V'

|4i| < "
T wr
/h h/
< (33) Amax (w3 ' VHRV) I ARILUTY (S.61)
wr
and therefore
al . V'h| [0'a, -
[Dyal < Z vl + (Fi7i) Amax (leleFV)+2W | Xoil (7iA:) 5

and taking expectations of both sides and noting that 4, and h are non-stochastic then
1 N 1/2 1/2
EDnal < —=> (7:) [B ()] [B (X3,)]
(¥4:)" B e (wr' VHEV) X,

E (|5 v'n[’ |hfm|2)] v

LS ) 8 (03,

2
W

But E (2} Zy ;) < K, and E (X%l) < K (see Lemma 15), and since v; and 7, are independently distributed (by
assumption), we have

K N . - N
E[Dna| < —N;’y;'yi+E[>\mM(wT1V’HFV 7f§ (Xn,)
1/2
K o, (E[AVH]E WG,
+ N;(vm)( o

Further

w; ' E |7 V'h|? wy'E (7;V'hh'V7,) < E [Anax (wr' VHEV)] (757,)
wp' EWi* = wp'E (i) = wp' B (i Hpi,) = B (2,) = 1

Hence, noting that E (X,,;) = 1 and Amax (w;lV’HFV) <Tr (w;lV’HFV),

K N

E |DN,1| S ﬁ

B [T (V)Y w;m‘”’/zl |

i=1

2

N
YA + E[Tr (wpz'VHRV)] Y (%i7,)
=1 =1

Also V = (v1,Va, ..., Vi), Vs = (Us1,Vs2, .., Us7)’ and by assumption E (vvy,) = 0, for s # ¢/, and E (vsv)) = Ir.
Then E (VV') = kIr, and E [Tr (wp'V'HF V)] = kwy'Tr (Hp) = k. Hence

K
E|Dn| < Vi

N N ) N 5
A+ kY () + R (3 ] :

i=1 i=1 i=1

Finally, since 77, = Zle 7%, and |7, < 1, then

< k (Z ’Y’LS> ) ~;~ 3/2 < k1/2 (ZWZS) ?

s=1
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and
K(k*+k+1) (Zf\; :5/;:5/1') K N K, N oo -
: 7~ < U S el =0 (V)

E|Dna

and by Markov theorem Dy = O, (N‘Sv’l/z). Similarly, for Dy 2, we first note that

YVHV, (w)l/ * YV Hpi,

wTr Oii wr

FVMGVA, |, (oni) " 7V Mo,
v O v

¥iV'HrVY, 5, V'Mc V3, <an,n«>” * AV HRVE; AV Mei,

wT v O wr v

(Un,ii)1/2 ’%VIHFﬁi ’~YQV/MGV’3’¢ +4 <Un,n') ’%VIHFﬁi ’%V/Mcfh

+2
O wp v Oii wr v
Also 1o
Y V' Ma V7, i Y V' Man;
Z,?] iBi _ Z,?] ; ’Y’L G 71 + 2 <O-777 ) 71 GT’Z ,
’ ’ v Tii v
and
1 N
D S — AiBi + 22 iBi .
|Dn 2| \/N;“ |+ |20 Bil)

Consider the terms involving A; B;. Since 0 < 224 < 1, note that

|Ai B

IN

(7:4:)% Amax (07" VMG V) Ao (wp ' VHEV)
7 V' Mg,
v
¥:V'Hp7,
wr

+2 (%:4;) Amax (w7 ' V'HEV)

F2(71) A (07 V'MGV) |

+4’3’;VIHF7~7iﬁ;MGV5’i
vwr
(’3’2’3’1‘)2 Amax (V'V' MG V) Apax (07 VHEV)
'S’QVIMG;%
e
7 V'Hpi),
wr

IN

+2 (%7;) Amax (w3 V'HEV)

F2(7) A (07 V'MGY) |
4

+E (¥i7:) (MMcVV'Hpa,)

and hence (again noting that 7); and V are distributed independently and MgHp = MgMpTr7-Mp = 0)

E|AB| < (34) E{[Tr (v"'"V'MgV)] [Tr (wy' V'HFV)]}

. _
+2 (Yi7:) B |:>‘max (wr'V'HEV) M ]
£2.5130) B e (7 Mov) [ BV,

wr
where
~/ / ~
E [Amax (wp'V'HEFV) ‘“/Vl;/fcﬂ }
~/\7! ~ 1/2
< (5’;5%‘)1/2 E (Xé’/lz) E {TT (w;lv/HFV) Ty (U_1V/MGV)1/2}
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and

¥ V'Hp7;

E [/\max (v'V'MgV) "
T

|

%V’H rV9;
wr

E

IN

Amax (V' V' MgV)

1/2
Zn,i

(73:) """ B (z) E [Tr (o7 V'MaV) Tr (wp ' VHRV) ]

IN

so that
E|AB| < (74) E{[Tr (v"'V'MaV)] [Tr (wp' VHRV)]}
+2(57)"° B (X,7) B [Tr (wr' VERV) Tr (v VMaV) ]

mn,t

3/2

+2 (77,) " B (20,) B [Tr (07 VMaV) Tr (wp ' V'HEV) 7).

Since

Tr (wy'VHpEV) = wy' Z Z Z hihsveevse,

noting that all the elements of V are independent of each other by assumption, we have

E[Tr (wp'VHRV)]? = QZZZZZthh shithat B (0pveevpevae) |
_ 2k2h4 /u; +w;2k22h4 (v2)]?
+wT2k2 Z Z hih? [E
+wT22kZZh2h2 (v))]

QZh‘* (vie) + k] +k(k+2), (S.62)

since 3=, hjwz? = O(T7Y), E (v4) = 1, and wp® Y, S, hZh? = 1, which is bounded as E (v}) < K (by

assumption). Similarly, as
Tr (v 'VMaV) =0 Y 3> musvvr,
YA t s

we have
E [TT (villeGv)] =k,

FE [T'I’ (vilV’MGV) 2} = p2 Z Z Z Z Z Z hihshyhg B (’Ut[l)sﬂ}t/g/’l}s/[/) . (863)

= fzzmﬁ (viy) + k| +k(k+2),

asv 2y, my <v 2> my=v tand v2>, > m? = v, which is bounded. Using these results, we have
E{[Tr (v'V'MgV)] [Tr (wp' V'HEFV)]}
1/2

< (E{[Tr(v_lV’MgV)]QDI/z (B{[rr (wr'vVEV)}) T <K,

E(X,[?) B [Tr (wp' V'HRV) Tr (v V'MeV) |

G

5

< B(x,7) (B{[rr (wglv’HFV)f})l/2 K2 < K
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as B/ (Xl/,-z) < K since E (X,,;) =1,

,%
B () B [ Tr (v™'V'MeV) Tr (wp VVHFV) |

E (Zn,i) (E { [TT (,UflleGV)]Q}>1/2 L1/2
K

INIA

as F (z,,) < K since E (zgl) =1, so that

E|A;Bj| < K {(5’;5%)2 + (%'71')3/2} :

~/ 7 ~ ~/ !/ ~

V' MgV~7, ;. V' M¢gn;

28] < o) VMV |, TV Mo,
V' MgV ;)'//‘V/MG’ﬁ‘
< ’Ysz‘Zm max( . >’+2|z3”| %

and taking expectation we have
E|22,Bi| < AA:E(22,) E[Tr (v 'V MgV)]

1/2
+3A) (Bl2) R MV Y M)

but as E |22,|* is bounded (see Lemma 15), E [Tr (v7'V'MgV)] = k,
E (v*7MgVV'Mc¢#,) = v Tr [E (7;7;) MgE (VV') Mg] = v,
we have
B|2 B < K |(74:) + (37 "]
Thus

S (481 + |25

|IDna| <

IN

K3 [(50° + (550" + 503+ (307) ]

Similarly, for Dy 3,

N

1
=N Z ([Ail + 1A X4 -
i=1

|Dvsl < 7% fj A4, (1
Noting 0 < Z24* <1 and Hp = hh,
E|A| < El|wp'5VHpV'A,| +2E w5,V Hpi,|
(37,) E nax (0 V'HEV)] + 2 [E [up 5 VHVE, || (B]22,))
(37:) E [Tr (wr VHpV)] +2(35,) * {E [Tr (wp VERV) |V (B ]22,)

K [(37A,) + (73]

ININ

IN

as K [Tr (w:FlV’HFV)] =kand F !zf” =F (z ) = 1. Similarly, noting the independence between V and n,,

E|A; X,

IN

+2(37,)"* [ (X2)]* {E (v i He VY Hed )}
K [(3) + )”2],
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as E (v *HpVV'Hp7,) E (szz,i) is bounded (by Lemma 15) and

E (0w *fHpVV'Hp#),;) = w?Tr [E (7,7;) HrE (VV')Hp| = v *Tr (H}) =

Thus,
1 & 1/2 5,—1/2
Dnal < —= S K [(33) + (73,)*] = ove-1/2),
| N,3| = \/N Lzzl (77,7L) + ('71%) ( )
Finally,
1 i( Unn>E|Z (1- an)| < Li(:}//;}/) {(E|2’2 2) (E|1* nl|>/}
VN i=1 " 7 N '
1
= 0| — 'y, :O(N‘S —1/2)
N ; (%%))
as B |Z77 ;1T <K and E |X,,,,-|2 < K from Lemma 15. Therefore, we have
N XN
Z L2 1— 7N Z Z721,i (1= X5,4) +Op (Néwil/Q) )
i=1 i=1

as required. m

Lemma 18 Consider the regression model (8), and suppose that Assumptions 1-3 hold. Under Hy : a; = 0, in
(2) for all i,
03 — (N —1)p% — 0 (S.64)

as N and T — oo, so long as 0 < 6, < 1/2, and N/T? — 0, where 0%, p%, and 6~ are defined by (29), (55) and
(6), respectively.

Proof. Theorem 1 ensures that N2 3" (22 — 1) / [2(1 + (N — 1)p3 ]1/2 —q N (0,1) for [2(1+ (N —1)p%] =
O (1). Then, Theorem 2 ensures that N~'/23", (t? — 22) —, 0, so long as 6, < 1/2 and N/T? — 0 as N and

T — oo, which ensures that (from Lemma 21) Var (N~Y/23,#2) = [(UUQ) 2((”” 41 +O0(T7YHY| (1+063) =

2
O (1) and Var (N~Y2Y #2) — Var (N~Y2 3, 22) — 0, since (vf2> 2((::41)) =2+ 0 (T™"), which establishes

the required result. m

Lemma 19 Consider the panel regression model (2), and suppose that Assumptions 1-8 hold. Denote the OLS
residuals from the regression of yiu on G = (rr,F) by &;, = ('Ilil,aiQ,...7ﬁiT)l, and denote the correlation
coefficient of &;, and @, by

5 a; 4
ij = - - N N 172" (8.65)
()" (a0, 0;)
Then
s CQZ);; EZC o (5.66)
t=1Git t=15jt
wherev=T—m — 1,
T
Cio =D by, (S.67)
=1
£y = uit/oili/Q, Ly is the (t,t') element of the T x T orthonormal matriz L (LL' =1Ir), defined by
I, O
LML = N . S.68
e (50) o
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Then

E (f)ij) = pyt % +0 (T_Q) ) (S.69)
Var (p;) = % +0(T7?), (S.70)

where Pij = E (Citgjt) =F (gitgjt)’

1 1
aij = —5pi;(1 = pij) + 3 {3035 [Kij(4,0) + £ij(0,4)] — 4 [rij(3,1) + kij (1,3)] + 20,445 (2,2) } (S.71)
1
bij = (1= p{)* + 7 {pl; ki (4,0) + £ (0, 4)] — dpy; [ki(3,1) + iy (1,3)] + 22 + pf i (2,2) ), (S72)
and

kij(4,0) = E(Ch) -3, ki (0,4) = B(C) — 3, (S.73)
kij(3,1) = E(Ch¢0) — 3piy, rii(1,3) = E(CyCh) — 3p4, (S.74)
ki (2,2) = E(Ch¢E) — 205 — L. (S.75)

Proof. First note that &;, = Ir — G (G’G)_1 Glu;, = Mgu;, and

Ib-- _ fl;fl] _ u;MGuj,
ij (ﬁ;ﬁi.)l/Q (ﬁ;..ﬁj_)l/z (u;.MGui_)l/z (u;‘.MGuj_)l/z

Also, since Mg is an (T x T') idempotent matrix of rank v = T — m — 1, there exists an orthogonal T' x T
transformation matrix L (LL' = Ir), defined by (S.68). Hence, setting

¢ =0, Luy, (S.76)

K22

then p,; can be written equivalently in terms of the first v elements of ¢; = (;1,Ci2, -+ (i7)" a8
21 SirGi
2 2\1/2 2 2
(= G) (= G

Pij = 1/2°

Noting that
T T
Cit = 051/2 Z Ly = Z L& (S.77)
=1 =1
it now follows that (under Assumption 3), £ (¢;;) = 0 and E (C?t) =1p;,=F ((it(jt), for all 4,5, and ¢; and

for each i, (;;’s are independently distributed over ¢t. Note that 2521 12, = 1, where Iy is the (¢,t') element of
L. Now consider

T 6

E ((?t) =F (Z ltt’git/> ,fort=1,2,...,0, (S.78)
=1

and recall that by Lemma 3, £;, are independent over ¢ with, E(¢;,) = 0, E(&2,) = 1, and E (ﬁft) < K < 0o. Then

application of Lemma 2 to (S.78) ensures that E (C?t) < K < oo, uniformly over i and ¢, as required. Results

(S.69) and (S.70) now follow immediately from Proposition 1 in Bailey, Pesaran and Smith (2017). m
Lemma 20 Consider (;; defined by (;; = sz ZtT,:l lepruger, where Ly is the (t,t') element of the orthonormal

matriz, L, defined by (S.68), and wy = vjve+n;,. Let vy, = E (vl,) —3, and V2,0, = E (g7 .41) — 3, and suppose
that Assumptions 1-8 hold. Then

T
0505 B (CiG) = Yo (Z léﬁ) (32 020%) +2 (i) + (Vo) () (8.79)
r=1
+ (Vivi) oni + (7;7;‘) Onii +4 (727]‘) Onyij +

T
4 2 2 2
T2, <Z ltr) (Zz qn,i@‘]n,jl) + 203,55 + niiOn,jjs
r=1

and
1

o St [E(CHG) + Bl = O (TTIN71) + O(T 7). (S.80)
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Proof. Under Assumption 3, #;, = o;; 1/ Mg = 0y 1/2 q77 En.t, Where g, ; is the i*" row of Q,. Also note that

4y dn,j = Op,ij, for all i and j, and sup; Zi:l |q,,7”\ < K. Then using these results in (S.67) we have

—1/2
Cit =0y / ('Y;dt,T + q;],igt,T) )

where d; 1 = 25:1 v = (dy sy dosr, o disr), and grp = EtT/Zl lLiveny = (9147, 92,47 - gNe.7) - But
since ZtT,:l 2, =1, ZtT,:l liplsy = 0 for all t # s, vy ~ IID(0,1;) and €, ; ~ I1D(0,1Iy) by assumption, then
it follows that d; 7 ~ ITD(0,1}), and g7 ~ IID(0,Iy). Since vy, for s =1,2,...,k and €;,, ¢, for i = 1,2,..., N
are assumed to have at least finite fourth order moments, then by Lemma 2 we also have E(dj, ;) < K and
E(g}, ) < K. We now write ¢;; as

Cig = @it + bit,

where
k
aip = :Y;dt,T = Z:Yisds,t,Ta and b;y = qi/,igth’
s=1
~ 12 - 1/2
Yi = ‘Yi/Um'/ v Ani = q’“/au/ ’
and hence
Oii = ViYi+ Oniiy Onjii = i/ o <1,
1/2 1/2 -
E (Cit) = 0 E (Czt) — 1 qn zqn i — U77 1 S 1 qn 'LqUJ 077 U/U / G]J/ B Jn,ij-

It is clear that a;; and bjp are distributed independently for all 4, j, ¢ and ¢. Then

E (czth?t) = b [(ait + bit)2 (aj + bjt)ﬂ
= E[(a}, 4 2aibi + b%) (a3, + 2a5bje + b%) ]
= E(a},a},) + E (a3) E (b3,) + 4E (aia;i) E (bitbjy)
+E (a3,) E (b7,) + E (b7,b3,) -
Also (using results in Lemma 6),
E (aiajt) =35 B (bicj) = @ ;G5

k
E (azzta’Q ) Y2,d <Zs fﬂ?s) + (':/;:/i) (%ﬁ’j) +2 (%%)27

N
E (b7b5¢) = Va.q (24—1 quéqrgzﬂ) (@ 5600.0) (@580.) +2 (@,505)

where v, 4 = E(d;, 1) — 3, and v, , = E(g}, ) — 3. Hence,

E(Ci¢) = 724 (Zk %257?5) (F4:) (35A,) +2 (34,)° (S:81)
+(¥i¥:) (@, 580.5) +4 (Vi) B (a,600.5) + (V575) (@),:60.1)

;5/
N
2 (Ze_l dfz,ié@rzz,ﬂ> (@ i) (@, @00) + 2 (@,580)"

Further we note that

T T T T T
E(dg,t,T) = F (Z ltr”sr) Z Z Z Z ltrltr’ltpltp’E(vsrUsr’vspvsp )
r=1 p=1p'=1

r=1r'=1 =
T
S EGL) -3 BB EGEEG)
r=1 r#p

T T T
::zmmm+%z@)m@ﬁﬂzmww
r=1 r=1 r=1

532



and since ZTT=1 I, =1 and E(v2,) = 1, we have

T
Yo,a=FE etT 3*21 *3] = (Zl?r> V2,05
r=1

where v, ,, = E(vi,) — 3. Similarly, v, , = (ZrTzl It ) V2,e,, Where vy . = = E (e} ;) — 3. Then, the result (S.79)

follows by substituting these expressions for 7, ; and 7, ; in (S.81). Consider now E (gftgjt). Again using results
in Lemma 6, we have

E (aftajt) = F [(dQ,T:Yi:Y;dt,T) (d;s,T:Yﬁ;'dt,T)]
= 7407 [(7A) © (3A))] +3(3A:) (3iA,)
E (b?tbjt) = F [(gi 74, 151;7 i8t, T) (g;f,TQW,iéiZy,jgt,T)]
= 7p,TT [( an, lqn z) © (qn»iq%,j)] +3 (61;7,1‘61%%') (q%,jaln,i)
E(a}) E (bjbi) = (¥i7,)a ay,:qn.j; E (airaje) E (b?t) =G0, (7i7)
where as before v, ; = E(d,‘it’T) —3and v, , = E(gﬁnT) — 3. Hence
k
E (C?tgjt) = 724 Z 'ﬁs’?js +3 (ﬁ/ﬁlz) (’?;’?J)
s=1
N
+72,4 Z Qz,isfjn,js + 3 (@, Qn.) (q%,iqn,j)
s=1

+3 (’72’71) El;;,iflmj + 300, (5';5']) ’

. - o~
or since qj ;Qn,j = On,ij

k
E(GC) = vaa D ey +3(FA:) (FiA;)
s=1

N
..,3 ~ ~ ~
+Y2,4 E Ty,isn,js T 300,ii00n,ij
s=1

+3 (:Y;:)’z) Onij + 307, (:7;':73') ’

and

hzd|ZZI%SI |%q|+3z YA |7'YJ|+30,,HZ\%73

s=1 14,5

}729|ZZ|%79| |an€|+3Z‘7nn“7nw‘+3Z 'Y'Yz |60, -

s=1 14,5

Z E (C?tCJt
(2]

~/ ~ k ~ ~ ~ ~ ~
But "/;"/j = Zs:l VisVjso 'Zizl |Q77,ij‘ <K, "Yis| <1, and On,ii <L

Also

i%mﬂm i(Dm)z O (N*),

Z (¥i7:) 1745 sup (77 ZZ Fisl |5 = O (N2,

1,7 s=1 14,5

Vsl = Z <Zlms )2 O (N*n),

IN

6-7777;7;2 ”7:’7] S ZZ |77,9
1,7 s=1 1,5
o/251/2
- 1/2 1/2 ~1/2.1/2
Onyij = (Uﬂ,ij/an,/iian,/jj) < nl;; q;;) = Un/u n/gjpn 25
Tii 955
|Gn,i5] < , and by assumption Z ‘pw‘j| = O(N).

4,7
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IN

k k k
Z Z |dn,i8|3 |‘j777j8| Z Z ‘qn7i8|2 |Q~n,j5‘ < Z Z |qn,j5| <K
s=1 1

s=1 1,5 s=1 14,5

Z‘}w‘i il < Z ’pn,ij‘ = O(N),
0] i
> (7iA:) 15nil < sup (3i7:) Y_10nal = O(N).
1,3 i,j
Hence
DB (Ch¢i)| < O (V) +0(),
and ’

NS E(Gh¢) =0 (N1 +0(1).
]

Similarly N='Y, - E (¢},¢;) = O (N*>71), and overall

1

o Zijmt [E(GiG) + Bl = 0 (T7IN 1) + O(T 7Y,

as required. m

Lemma 21 Consider the regression model (8), and suppose that Assumptions 1-8 hold. Then for each i

E () = v% +O(T3/2), (S.82)
and
9 v \?2 (v—1) 4
Var (£2) = <U_2> = voa, (5.83)

where 7 is defined by (23), and v =T —m — 1.

Proof. Below we use matrices G, Mp, Mg, Pg, Hp, which are defined by (S.2) and (S.1), and also v, ; = E(&2),
Y2,i = E(é?t) -3, V3,0 = E(fft) - 1071,1’7 Ya,i = E(f?t) - 107%,1’ - 1572,1’ — 15 for all ¢, where §;, = uit/":z‘/zv and
by assumption F(£5,) < K. Furthermore,

(o Mprr) ' =O(T ). (S.84)
Using (23), we can write
"HpE,
2= —— SHrE, S.85
" TpMpTr <£;MG€i ’ (5.85)

where &, = (§,1,&:9, - &), with €, ~ ITD(0,1) for all ¢ (see Lemma 3). Using a slightly extended version of
Laplace approximation of moments of the ratio of quadratic forms by Lieberman (1994), that allows I' defined in
Lemma 5 to be a positive semi-definite matrix, and substituting ® = Hr and I' = Mg into Lemma 5, we have
(conditional on F)

E (¢&HFpE;)

2\ _ v , —2
E (tl) - TITMFTT E (£;MG€Z) +¢z,1v +O(T )a (8'86)
where
i1 = [E(&HF&)MQ} _ [ Ki,11 }
P L B(EMGE)P [E(&iMcE,)]? ]
ria = B [(€Mc€)?] - [B(€MaE,)]”,
and

ki1 = E[(§HFE;) (§Mc€;)] — E(EHFE)E(EMa,).
Using Lemmas 11 and 12, it is easily seen that

v E (&HRE;)

—1
TrMpTr E (§Mg;)
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and

VY 1y _ v (E(&HF&)“M _ ki 11 >
T MpTT TrMprr \ [E(EMcE)?  [E(EMeE;))?
B v ((T’TMFTT) (2,77 (Mg © Mg) +2v] 75, Tr (Mg © HF)>
T MpTr v3 v?
= % + 72,10,
where
K, = l [TT (Mg © Mg) _ Tr (%VIG © Hp) (S.87)
v v T MpTT

Noting that Mg = Iy — Py with Pg = G (G/G) ™' G/, where G = (71, F), the first term of (S.87) can be
written as

Tr (Mg oM 1

IriMeOMe)l — 11v [ty ~ Po) o (Ir - Po) (589

- %[T* 9T (Pe) + Tr(Pe @ Pa) =1 L (UPG) N Tr(PC;@ Pq)

v

Similarly, for the second term of (S.87) we have

Tr (MGQHF) 1
= Tr|(Ir - P H S.89
T/TMFTT T%MFTT T[( T G)® F] ( )
1 Tr(Pc ©Hp)
= —— [Tr(Hp)-Tr (P H =1-——
T/TMFTT [ T( ") T( GO F>] T/TMFTT

Substituting (S.88) and (S.89) into (S.87), then using Tr (Pg¢ ® Pg) = O(1) and Tr (Pg © Hp) = O(T'/?),
which are established by (S.23) and (S.24) in Lemma 10, we have

1 v/2Tr (PgoHp) 1 1 Sou 2
Ko = v3/2 T MpTT + ETT (Pe©Pg) — ETT (Pe) = v3/2 +O(T™),
where
02T (Pg © Hp)
YT (T Mprr)
which is O(1) by (S.24) and (S.84), so that
2 2 SO’U —92

However, since

v 2 4
—(14+2)=——=0(1""
v—2 ( + v) v(v—2) =,
and using Lemma 12 ensures that the three conditions in Lieberman’s lemma are satisfied. Result in Lieberman

(1994; p.683) now implies that the last term can be rewritten as v=2Wy ;,,, where Wy ;, is a function of Yeis F
and v, for £ =1,2,3,4. Since under Assumption 3, sup; |W,i| <K <oo, forl=1,2,3,4, all i, then

v SOv W()’Z‘U v

2y — , _ —-3/2
E(t}) =5 +migp T —p =55 TOT7), (S.91)
which establishes (S.82). To prove (S.83), we first note that
2 "HpE
E(t)=—"_F (5} Fﬁl) . (S.92)
('T/TMFTT) &McE;
But by Lemmas 5 and 11 we have
/ 2
v2 E [(ngng) ] Yo, I'r (Hp © Hp)

T (- Mprr)’ [E (6Mg€,)]”



Since Tr (Hp ® Hp) = O(T') by Lemma 11, Lemma 5 implies that the last two terms can be rewritten as
v~ W1 4y, where W1 4, is a function of Ye.i» F, and v, with £ = 1,2,3,4. Again under Assumption 2, sup; |y, ;| <
K < o0, for £ =1,2,3,4 and all i, we obtain

E(t}) =34+0(T". (S.94)

Using (S.91) and (S.94), and noting that
9 2
[3 (1+2)
v

Var () = B(8) - ()] = () 20 vou,

() 3o

then for each ¢ we have

which completes the proof. m

Lemma 22 Consider the regression model (2), and let 2}, = &Gwr /oy, where wy = THEMp7r, Hp and Mp
are defined by (S.2), and &; is the OLS estimate of «; given by (11). Suppose that Assumptions 1-8 hold, and
N-iTy (RZ) s bounded in N, where R = (pij), Then under the local alternatives defined by (63)

N
NN (27, — 1) —a N(6°,20), (S.95)

1‘7
=1

as N — oo and T — oo, jointly, where

@ = Jim % i ;2 and w? = Jim N7'Tr (R*) =1+ Jim (N - 1)p%,
05 = E(uguge), Corr(uyuse) = pyj, and p3; is defined by (55).
Proof. Using (11) and (12), we first note that

2, = (w%r/zdi + w:Fl/QT/TMF&>2,

1/2
i

where &, is defined by (34), and &; = «;/0;/”, and under (63)

. Si
Q; = 7N1/4T1/2 5 (896)
where ¢; = ¢; /U;i/ ? are given and bounded. Then
% = 2 +wpa} + 28T Mpé;, (S.97)
where 27 = ¢, Hp¢; /wr. Hence
1 & 1 &
VN (zia -1) = N Z (27 = 1) + dnr + 2bNT, (S.98)
i=1 =1
where
wr ol wrT 1 N 2
2 ~ 2 — ~
= T~ Q= 5 N Si | S.99
and
1 N
_ ~ !
byT = T1/2 N3/4 ;gZTTMFgr (S.lOO)
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Also, for given values of |¢;| < K, ¢%r > 0, and we have
N
i 2 = > : :
i (55) e (15). o

Since g;; > 0, then ¢2 >0, if N7! Zf\il 62 tends to strictly positive limit. Consider now by, and note that for
given values of ¢; we haveS!

N
1 - Vi +n;
byt = T1/2N3/4 Z§zTTMF€ W ZQTTMF (1/2
i=1 it
1 1 N g \Y/2
Tl 5 2t ~ _/ ~
T12N3/4 ZmTMFVw + N O ( - ) ST Mp);,
=1 i=1

bi,nT + b2, NTs
where 4, = 'yi/a},t-/Q, and 7; = 171-/03],/5. For given values of <;, it is easily seen that E (b1 n7) = 0, and

1 N N

Var (bl,NT) = WZZ&Z&]'T’TMFE (V;?z;?;vl) MFTT7
i=1 j—l
1 N N
= TN3/2 ;;Qij’ijprTTTMp'yl = TNz ;leglgﬂjMp‘rTTTMF%
N N N N
/\max (MFTTT&“MF ~ ~/ ~ wr —3/2 ~ ~ ~ ~
< QRN S S s < () v (Lea) (e,
i=1 j=1 i=1 j=1

However, ‘Zf\il Efyl‘ < Kksup, I [3,5] = O (N®7), and since wr /T = O(1), then Var (by yr) = O (N?v~3/2) and
bi,nT —5 0, if 6, < 3/4. Similarly, E (by 1) = 0, and

N N 1/2
1 On,ii On,jj
Var (bont) = sz(nwa> $STrMEE (7,7;) MpTy

i=1j=1 \ 7 9ii

1 N N /o N2

5t ~ 1,37 ~ o~

e — SiS TP MpTT
v o (AT ), e

o
i=1 j=1 J3

wT 1 N N O ii O i 1/2
—_— e = n,J37 ~ ~
( T ) W ZZ (..__) p’r/,ijgigj

i=1 j=1 Tii Tjj

Hence
T MpT e o SiS5045
2 \_Tr i55Pij
E (bNT)  N3/2T ZZ 1/2 1/2°
i=1j=1 04 0jj
But since |¢;] < K, and 0 < 0; < K, for all 4, and 77.Mp1 = O(T'), then

1 N N 1 N B
Var(bant) < K | 55722 eyl | <K stngmﬂ —o (N2,
J:

i=1 j=1

and Var (ba,n7) — 0, if 64 < 1/2. Hence, byt — 0, and in view of (S.98) \/% Zﬁl (22— 1) and \/% Zfil (22 - 1)+
¢* will have the same asymptotic distributions as N and T' — oo, jointly and my = o(N'/?). But in view of (54),

\/% SN (22 — 1) —4 N(0,2w?), and therefore it also follows that under local alternatives \/—% PR (22.—1) —a
N(¢?, 20?). =

S1The same results follow if ¢; are random but distributed independently of &,.

S37



Lemma 23 Consider the regression model (2), and let ziz,a = wTd?/Uii, where wp = 7-MpTr, Hp and Mp
are defined by (S.2), and &; is the OLS estimate of «; given by (11). Suppose that Assumptions 1-8 hold, and
N—1Tr (RQ) 1s bounded in N, where R = (pij). Then under the local alternatives defined by (63)

N
SNT = N71/2 Z (21'2,11 - tzQ) —p 07
=1

if N/T> =0 and 0 < 6, < 1/2, as N — 0o and T — oo, jointly.

Proof. As with the proof of Theorem 2, we first note that

2 ~2
P R P e wra; =2 (1= 1
e ! Ti; Tﬁly;,MGy;. b X )’

where X; = &Mg€, /v, v=T—-m—1,§;, = uit/a;-/z. Using (S.97), we note that

2 .2
ha = % T i

V4
gi = wrd; + 284; 7 MR,

- - 1/2 .
where &; = and ¢; = ¢;/ a“-/ . Consider

ol 1
SNT:N_1/2Z|:Zza (1— — ﬂ

i=1

Si
N1/471/2>

Write X; = cri_il&ii and note that by assumption o;; > 0, and by construction only securities with ;; > ¢ > 0
are included in the J, test. Hence, for all ¢ = 1,2,..., N we have X; > 0, and (A.18) can be written as

N 2
Syr = N71/2 Z Z72a [(1 - X))+ (A-X)"
i=1

X;

Si,nT + Sa2,NT,

where

N
Sl,NT = N_l/QZZiQ,a (1 —Xi),
i=1

and
22, (1—X;)?

N
Sy = oy el X
i=1 i

But since X; > ¢ >0, and 27, (1 — X;)? > 0, then

N
|SQ7NT| < C_l]\f_l/2 Zzia (1 — Xi)2 s

=1

and
E ‘SQ,NT| S C_1N1/2 SupE |:Zi2,a (1 — Xz)z} .

E [z;{a (1— Xﬂ <E

2(1 fXZ-)Z‘ Vv E

gi(1— Xi)2’ : (S.102)

From (A.24) we have

E [z? (1- Xﬂ =0 (;) : (S.103)

uniformly across ¢. Next,

E diT{TMpéi (1 — )(Z‘)2 ;

gi (1 — XZ')Q} <wrdlE [(1 - Xﬂ +2F
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but by Lemma 11 we have
Bl(1-X)'| =B (X}) -1=0(""),

as E [(g;Mcgi)Q] =2+ O(T), so that
wrd2E [(1 - Xi)2] — 0(a2).
Next

1/2
E

& Mpé, (1 — Xi)Q‘

IN

&l [E(¢Hre)]* {E[0-x)"]}
|G| w2 {E [(1 - Xj,)‘*] }1/2.

Noting that, since, by Lemma 11, F [(E'LMG{L)T] =v"+0 (T’"’l) and F (Sngéz) = v, we have E (X]) =
1+0 (T~=V) for r = 2,3,4 and E (X;) = 1 uniformly over i,

E(1-X;)'=FE(X])—4E (X}) +6E (X7) —4E (X;)+ 1 =0(T™").

Thus, F

& Mpg; (1 — Xi)z‘ = O(|a;]) = O (N~Y4T=%/2) and

E

g: (1= X)*| = 0 (ail*) + O (Jail) = O (asl) = 0 (N477112). (S.104)
Substituting (S.103) and (S.104) into (S.102), we have

B2, 0-x)]=0 (;) +0 (N-ir1)

uniformly across 4, so that

1/4
ptzcovopalen-]-o(2) o 2)

T T1/2

By Markov inequality we have So y7 —, 0, so long as N/T? — 0. Therefore, to establish Sy —, 0, it is
sufficient to show that S yv —, 0. Now

N
Suxr = NEY (1%
=1

N N
= N2 2(1-X) - N2 g (X —1).
i=1 i=1

Consider

N N N
NN g (Xi—1) = (%) NS (X - 1) 4 2T AN AN G Mg, (X — 1). (S.105)
=1 =1 =1

Oiq v Oiq v

. ~/ ! ~ . 1/2 ~/ ! ~
By (S.60), X; = =4 X, ; + B;, where B; = YiVMeVY; | 9 (m) YV Mehi - and we have

N

N7 (X - 1)

i=1

N
KN-12% [Xn,i —1+ <U"” - 1) X+ Bz}
=1

Oii

N

ENTY2Y 3 (X = 1) = (3i7:) X + Bi] -
i=1

First, as sup; [¢;| < K and 0 < 224 <1,

N N
NN E@B| < KNS BB,

i=1 i=1
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but

N N
N7'2N"E|B| < KN7'2Y ' V'MeVA,| +2KN~ 1/22 v ™15V M,
=1 L =1
N
< KNT'2Y " (%A,) E|Tr (v"'V'MeV))|
=1
N
+2KN"23" (B (o3 V' Meii, i Me V)]
=1
N
= KNTV2N k() + 207k (77,) 7 = 0 (N2
i=1
since E (V'V) =1, V and #; are independent, E |Tr (v"'V'MgV)| =k and
E (v V'MeiiiMcVy,;) < v 2 (37,) Tr [E (V' Me; ;Mg V)]

= v (3i%) TrMe) = v (Vi) -
Similarly, noting E | X, ;| = E (X,,;) = 1,
N

N
NT1/2 Z E ’512 (’72’71‘) Xw" KN~ Z ﬁﬁi) Bl

i=1 i=1

N
= KN*I/Q Z (5/:5/1) =0 (Né,yfl/Q) )
=1

IN

Hence,
N N

EN"YV2Y 2 (X, - 1) = KNS & (X, — 1)+ 0, (NWW) .

=1 i=1
Next, E [N 2y N 2y, - 1)} =0 and

N

2 N N
N71/2 ZE? (Xn,i - ]-)‘| - Nil Z ZE?E?E (X”’an’j - 1) ’
i=1j

i=1 =1

E

Noting F (X, X, ;) =1+ p” L+ 7., (Z’ ) th 1 q77 qu ;o (from (S5.43)), we have

N

_ . 202

N 122&3[ mﬂm( )zqm@qw],
i=1 j=1

but Ze 1 Gp s0Gn o < 1and pf ,; <1, for all 4, 7, and also Y-, m7, < >, my = v, we have

N 2 N N
B S n] s S e )
= i=1 j=1
= O(N/T).

Therefore, KN—1/2 Zl S (Xyi -1 =0, (\/W) Thus,
N
(%) N ;5? (Xpi = 1) =0, (N>71) + 0, (T—l/z) .

\1/2
Next, using (S.60) and noting &, = V7, + (0’—) 1, we have

T4

N
N3/ 20_1/251‘7'%1\/[1?& (Xi—1)
i=1

N
N73/4 Z/Ufl/QGiTITMF

Oii
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N\ 12
V:)"z + (OW> ﬁz] [(Xn,i - 1) - (:)I;:)IL) X’r/,i + Bl} .

(S.106)



oting sup; ;| < K, v~ T'r F =k(wr/v), Mt =h, HF = an il” < y (5.43), we
Noti i S K Ty [E(VHRV k M h H hh' dEXn,2 K by (S.43

have

N N
N—3/4ZE’v—l/QaiT'TMFV&i(XW—1) < N‘3/4KZE) “1200 MpV7, (X, —1)‘

N3/4 S5 1/2 - / 1/2 2\ /2
< KZ Tr (B (VHRV)} (81X - 1F)
< KN—3/4Z (77 )1/2 kwr v =0 (N5W—3/4)
= P ’YZ’Y’L ) - .

Similarly

N

NN (7)o 2 MeVA Xy < 3/4KZ Y4 S/Q{v’lTTE(V’HFV)]}1/2(E|XW-|2)1/2

i=1

IN

—3/4 = 1~ \3/2 [ kwr 1z 5,—3/4
KNS (313, (v> zo(Nv /).

i=1

N N
N—3/4ZE\U—1/2@T’TMFV% | < KN—?’/‘*ZE\ 32 MpVA,7,V' Mg V7,
i=1 =

N
+2KN*3/4ZE‘ P MEVAAV M| -

i=1

First, by (S.63), noting that { [v™1Tr (V'Mc;V)]2} v72 Y, mik [E (viy) + k] + &k (k+2) < K, we have

Similarly

IN

IA

N
N‘3/4ZE‘ =3/20 MpV#,7,V' Mg V7,

IN

N
NS Bl ) (el )

1/2

IN

NS (35 E T (VR 53 {E (T (vMevi)) )

i=1

N 52 [ kw 1/2 \
KNS (33)" (F20) =0 (wesi)

: v
=1

IN

N
NS E |0 P M VA AV Mo,

N
NN (E [T HVHRV)) Y (B [0 5V Mei it Ma V'R, ])

N

NN (517) 2 (B [0 T (VEEV)) Y (5150) 7 o2 T [B (V) M (7,i1) Mo] }/*
i=1

N i (¥:7:) [k‘ (%) + v‘l} 0 (T—1/2N67—3/4) .
i=1 v
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Next, noting that |¢;] < K, 0 < % <l FE |z,2”| —=1and E|X,; — 1| < K, we have

3/4ZE

B 1/2 N
/%7 MF(“> i (Xpi—1)| < N“"’“KZE\ M, (X 1)|

04

W () el (e )

<
- O(N—W).
Similarly
N o N2 N wr 1/2 A\ 1/2
Z(ﬁHZ)Evl/zgiT/TMF( nfz> P N*”/“KZ(%%‘) (55) ez (Bl1x)
i=1 " i
< KN~ 3/42 '3, (7)1/2 O(N‘S —3/4)

3/4ZE

IN

o\ 12
1287 MF< 77,“) 1, B;

%

KN~ 3/‘*ZE‘ =3/22! Mpii, 7,V Mg V7,

=1

N
+2KN"3/4N"F ‘ P Mpn AV Ma, | -

First, by (S.63), noting that £ ([v_lTr (V'MGV)]2) =02y, mik [E (v}) + k] + k(k+2) < K, we have

3/4ZE‘ =3/22! Mpit, 7, V' Mg V7,

N—3/4ZN: [(%) B ’Z72” }1/2 (E ‘U—l A% MGV7%| )1/2

i=1

3/42 [( L) E |2, " (3:4,) (B{[v'r (vMeV)]*})
KN~ 3/42 75 (7>1/2 O(Né”_?’/él)'

IN

1/2

IN

IN

v 2 Mpi AV M,

i=1
~3/4 N wT 9 1/2 ot ., . 12
N Z [( v )E|Zn,i } (E}v ¥; V' Mgn;71;MaV l|)
i=1

IA

IN

NS () Bl ) ) (B o (B (V) MeE () Ma] )

i=1
N
_ - \1/2 fwp\Y/2 B B L
< KN 3/4; (3,3,) (7> vl1=0 (T 1/2 s 3/4) .
To sum, we have
N
NN o 2 Mg, (X — 1) = O (N5~*3/4> i) (N*l/z‘) . (S.107)

Substituting the results (S.106) and (S.107) into (S.105),
N
NS g (X -1)=0 (Nf’v*?’/‘*) 10 (N*W) ) (T*W) .
i=1
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Finally, by applying Theorem 2,
N
NN (1= X0) = 0, (N Y2) 40, (T712) 4 0,(VN/T),
i=1

hus,
- Sivr =0y (N712) 4 0,(VN/T) + 0, (T71/2) + 0, (N72),

which establishes the required result. m
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M1 Monte Carlo Supplement

M1.1 Simulating multivariate non-Gaussian random variates

The objective is to generate N random variables u;, i = 1,2, ..., N such that (in population) F(u;) = 0,
E(u?) = 041, E(u?) = mg;, E(u}) = my; and E(u;u;) = pij i # j for i, j=1,2,..., N.

The problem of generating multivariate non-normal random variables have been addressed in the
literature by Vale and Maurelli (1983) and further discussed by Harwell and Serlin (1989) and Headrick
and Sawilowsky (1999). Following Fleishman (1978), Vale and Maurelli (1983, VM) propose generating
u; as,

u; = a; + big; + Cié‘? + diE?, i=1,2,..., N,

where g; ~ IIDN(0,1) and E(e;e;) = Pej- The unknown parameters a;,b;, c;, d;, are obtained

using the following relationships (see equations (2)-(5) in VM)

Pe ij

a; + ¢ =0, (Ml)

b? 4 6bid; + 2¢2 + 15d7 = oy, (M.2)

2¢; (b7 + 24b;d; + 105d? + 2) = ma;, (M.3)

24[bid; + c2(1 4 b7 + 28b;d;) + d? (12 4 48b;d; + 141c? 4 225d?)] = mu;, (M.4)

fori=1,2,..., N, and (see equation (11) in VM)
Pij = Pej(bibj + Bbidj + 3dibj + 9dsdy) + p2 ;5(2¢ic) + p2 15 (6did), (M.5)

fori#j=1,2,...,N.

The VM procedure is shown to work reasonably well for non-extreme values of skewness and kurtosis
and when N is small. But even if one follows VM’s two step procedure where the equations (M.1)-(M.4)
are solved first, the procedure still requires solving a large number of cubic equations, and hoping that
the solution of (M.5) for p,;; lies in the admissible range of [~1,1]. No proof is provided that such a
solution exists.

In what follows we propose a new more compact algorithm for generation of non-normal correlated
random variables as a generalization of the standard Cholesky factor approach used routinely to generate
correlated normal random variables. Let u = (uy,us,...,un)’, € = (¢1,€2,...,en)’, and write each u; as a

linear combination of e N

U; = Zj:l q,-jej,for 1= 1,2, ...,N,

or in matrix notation u = Qe, where g¢;; is the (7, j) element of Q.
We begin by generating ¢;, j = 1,2,..., N, as independent draws from non-normal distributions
with E(e;) = O,E(E?) = l,E(ag-’) = me3; and E(s?) = me4j. Note also that p;; is determined by Q

and is given by the (i,7) element of QQ’ scaled by crili/%’;]/?,
of p;; and 0y, Q can be obtained as the Cholesky factor of E(uu’) = V. In such a case Q can be a
lower or an upper triangular matrix with strictly positive diagonal elements. It is assumed that V is
non-singular, and as a result Q will also be non-singular.

Consider now the problem of generating ¢’s such that £ (u3) = myz and E(u}) = my4 . To this end

note that

N
where o;; = E - qu For given values
]:

N
me; = o4 =FEu?) = ijl qu, fori=1,2,...,N,

N .
my = E@d)=FE (Y > > ajaipaucicpce szzlqgjms,:sj,for%:1,2,--~7N,
i g v
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and
ma; = E(uf) = E Z Z Z Z QijQij diedier €5 j1E0EW
i § L

But since 535 are independent draws with mean 0 and a unit variance we have

E (8]‘6]'/856[/) = Mecy4j, lfj = j/ =(= gl
= 1,ifj=j5and{=/Forif j=Cand j =0 orif j =¢ and j' =/

0 otherwise.

Hence, it readily follows that

N
Mmy; = Z Gijme,aj + 3 Z 4545 (M.6)
J=1 J#t
But )
N N N N N
D aaie =3 D aha =Y a= | d | — D dy=ol -2 db
oy, i=1e=1 i=1 i=1 j=1 j=1

Therefore, (M.6) can be written as

N
2 Z 4
mMy; — 301’1’ = i1 qij (m€’4j - 3) .
Let kej = mea; — 3 and K; = my; — 30;1, and write the above relations in matrix notation, namely

Ky = Qq)Ke,

where k = (K1,K2,..., iN)"; Ke = (Kel,ke2, . hen) and Quy = QO QO Q® Q, where © is the
Hadamard matrix operator (or element-wise operator). Similarly, for the third moments we have

m3 = Q(zm 3,

where mg = (m31,m32,.....,m3N), and me3 = (M31,Me32,....,Me 3 N). Since Q is a triangular
matrix with strictly positive diagonal elements it follows that Q(3) and Q(4) are also non-singular and
hence invertible. Thus

mg.3 = Q(_g%mg (M?)

)

Ke = Q@%Hu. (M.8)

Denoting o = (011,022, -..,0nN) We also have o = Q2)TN-
Having computed m, 3; and m, 4; we can now generate ¢; as

g = a; + bjv; + Civ? + div?, 1=1,2,...,N, (Mg)

where v; ~ ITDN(0,1) and the coefficients a;, b;, ¢; and d; are determined so that E(g;) = 0, E(e?) = 1,

E(e?) = me3; and E(c}) = mc 4, using Fleishman’s formula

a; +¢; =0, (MIO)

b? + 6b;d; + 2¢7 + 15d? =1, (M.11)

2¢;(b2 4 24b;d; + 105d? + 2) = m. 3, (M.12)

24[bid; + c3(1 4 b7 + 28b;d;) + d? (12 + 48b;d; + 141c? 4 225d2)] = k. (M.13)
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Accordingly, in order to mimic as far as possible the main characteristics of observed security

(r) ()

returns, for each replication, r, we generate o;;", 7, ;, fyZZ, {ﬂg ,for £ =1,2 3}, as random draws

(r)

from their respective empirical distributions. For example, to generate o,;” over r and i, we first place
the estimates 6 -, for i = 1,2,..., Ny, and 7 = 1, 2, ..., 265, that lie in the 2.5% to 97.5% quantile range,
into 10 bins and then randomly select a bin with probability equal to the proportion of the estimates

(r)

in each bin, and then draw randomly a value for o;,” from the selected bin. This procedure is repeated

over i = 1,2,..., N and replications r = 1,2, ..., R.

M1.2 Details of the test statistics considered in the MC experiments
in Section 5

The GOS test
The GOS test statistic employs the BL estimator of p?\LT, which is defined by

A 2 i—1 A
P%Lzmzz 2> 5=1 PBLij» (M.14)

R . . . 1/2 . ~ . )
where ppp, ;i = 6BLij/ (0BL#0BL,j;) / , 0BL,i; is such that Vi, = (6prj), with

0BL,ij = 0ij1

64| = C ln(zfv)] , (M.15)

where 6;; is defined by (39), and the value of C' > 0 is typically chosen by cross-validation, procedure
of which is described below.

Standardised Wald tests, SWiryw and SWpogpr
First we present how to compute the estimates of N x N variance matrix V which is used to
construct the feasible versions of the Standardised Wald statistic defined by (17). We considered two
estimates, proposed by Ledoit and Wolf (2004), and the POET estimates of Fan et al (2013, FLM).
Ledoit and Wolf (2004, LW) considered a shrinkage estimator for regularisation which is based on
a linear combination of the covariance matrix, V, and an identity matrix Iy, and provide formulae for
the appropriate weights. The LW shrinkage is expressed as

Viw =piIn+ 5V, (M.16)

with the estimated weights given by

P = meQT/dQTa Py = a%/d%

where
mr = N (V) =N (V) i,
(I’%‘ = d%—w — b%, b%—a = mln(g%, d%)’
and
1 <& 5 T o
T= = Ztr [('&tu;) ('&t’&;)] — Ztr (,&;Vﬂt) b tr ( ) ’
F  NT? — NTZ — NT




with @y = (ti1g, G, . . ., Une)' - Viw is positive definite by construction. Thus, the inverse VEI}V exists
and is well conditioned.
Extending the CL approach, FLM propose the POET estimator

Vpopr = (6i58r, [|65] = 75]), i=1,2,...,N—1, j=i+1,i+2,...,N, (M.17)

where 7;; > 0 is an entry-dependent adaptive threshold such that 7;; = c,bi]-&JT,With gb?j =71 ZiT:1 (Qiplje—
6ij)% and O = C/log (N) /T, for some constant C > 0, setting a lower bound on the cross-validation
grid when searching for C' such that the minimum eigenvalue of their threshold estimator is positive,

Amin (VPOET> > 0. The consistency rate of the POET estimator is Compy+/log (N) /T under the

spectral norm of the error matrix (\7 POET — V).

Cross-validation for BL and POET
We perform a grid search for the ch01ce of C over a specified range: C' = {c¢: Cpin < ¢ < Crax}-

For BL, we set Cpin = |min;j 645 ( > Chax = |max;; UZ]|,/ln , and impose increments of
(Cmax — Cmin) /N. For POET, we set Cppin = 0 and Cpax = 4, and impose increments of ¢/N. In

each point of this range, ¢, we use t;, ¢ = 1,2,...,N, t = 1,2,...,T and select the N x 1 column
vectors Gy = (Q1g, oy, - . ., Unt) , t = 1,2,..., T which we randomly reshuffle over the ¢-dimension. This
gives rise to a new set of N x 1 column vectors ﬁgs) = (ugi), Agi), .. ug\s,i) for the first shuffle s = 1.

We repeat this reshuffling S times in total where we set S = 20 (as suggested by FLM). We consider
this to be sufficiently large. In each shuffle s = 1,2,...,S5, we divide a®) = (ﬂgs),ﬂgs),...,ﬁéf)>

into two subsamples of size N x T1; and N x Ty, where Ty = T — T7 where we set T7 = % and
T = % Let \7(5) = (agsgj) , with elements O'g Z)J =T Z ﬂ(s)ugt), and \A/’gs) = (oé%) with ele-
ments oré Z)] =Ty Zt —Ty 1 u(s) §t), 1,7 =1,2,..., N, denote the sample covariance matrices generated

using 77 and 7% respectively, for each split s. We threshold Vgs) as in (M.14) or (M.17) using I (.) as
the thresholding function, where for POET both ¢;; and wr are adjusted to

) _ 1 @Pa® _ 5 )2

Pl = T, &t=1 g Ugy™ — 07145) >
and
log (N)
Wy (C) =C T

Then (M.17) becomes

)
0, i

1,5

Vi (€)= (o191 [Jo

> Tgsz)j (C)D

for each ¢, where
% (€) = \J@{hwn (€) > 0,

and go( ). and wry, (c) are defined above.
The following is then computed for BL or POET:

: (M.18)

OJ \

for each c. For BL R
C=arg min G(c). (M.19)

Crmin<c<Chax
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If several values of ¢ attain the minimum of (M.19), then C is chosen to be the smallest. For POET,

A~ A~

C= i G M.20
arg de"!‘enéucrécmax (C) ’ ( )

where Cq is the lowest ¢ such that Ayin (\7 POET (de)> > 0 (To ensure that the threshold estimator

is positive definite) and e is a small positive constant. We do not conduct thresholding on the diagonal
elements of the covariance matrices which remain intact.

Gungor and Luger (2009) SS and WS tests

These tests allow the error distribution to be non-normal but require it to be conditionally symmetric
around zero.M! These tests are relatively easy to compute and are applicable even when N > T.
However, they are constructed for models with a single factor and their validity is established only
under N < T'.

The SS test is based on the sign statistic

N
SSy = Zi:l S2, (M.21)
where
ST Iz > 0)| - T/2

S’i = ;
T/

I (A) is the indicator function as defined by (57),

YiarT  Yit \ [ Jt — ft+T>
gy = (T Y\ (ST IRT o T
! (ft-I—T ft> < fefivT

7 is the nearest integer part of 7'/2. The WS test is based on the Wilcoxon signed rank statistic

N
WSy = Zi=1 W2, (M.22)

where

ST (20 > 0) Rank(|zl)| = T (T +1) /4
VT (T +1)(27 +1) /24

Rank(]zy|) is the rank (natural number) of |z;| when |z;1], |zi2], ..., |2zi7| are placed in an ascending
order of magnitude. Gungor and Luger (2009) show that under the null hypothesis, o; = 0 for all 4, both
S; and W; statistics have limiting (as 7' — oo) standard normal distributions. Under the additional
assumption that the errors in the CAPM regressions are cross-sectionally independent, conditional on
the values of the single factor (fi, f2, ..., fr), SSn and WSy follow x4 distributions.

Wi =

Y

Gungor and Luger (2016) . test
Their test is based on the F-statistic

RRSS; —URSS;

Fi: y
URSS;/ (T —m —1)

where RRSS; and URSS; are restricted (imposing «; = 0 for all ) and unrestricted sum of squared
residuals of the i*" regression. They consider various versions of the test, and recommend the use of
the maximum test

Frax = max Fj,
1<i<N

MISee equation (13) in Gungor and Luger (2009) for the definition of SS and WS test statistics.
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which we will consider in our Monte Carlo exercise.™? They claim that their resampling test procedure

is robust against non-normality and cross-sectional dependence in specific errors. Their test is effectively

based on wild bootstrap resampling in such a way that the sample residual cross-sectional correlation

will be preserved, and unconsidered nuisance parameters are dealt with introduction of bounds test.

Their test procedure is computable where N > T and it allows the error distribution to be non-normal.
Specifically, their test procedure is as follows:

1. Obtain the N x 1 b*" bootstrap error vector ugb) = Qyxy, where @y = (@i1g, @at, ..., Gne) s the

residual vector consisting of the restricted regression (imposing no intercept), y;; = ft’,az + U,

and y; is IID random variable over ¢ which takes +1 or -1 with 1/2 chance, b = 1,2,...,B — 1.

Then, obtain the bootstrap sample using ygb) = ft’BZ + ugb).

2. Compute the liberal p-value (p%) and the conservative p-value (p®), where p© = %ﬁ“ and
_RL . — b - b
" = B with RO = 145301 [Fmax =~ Féﬂnax} +3 T {Fmax = Finax| ¥ 1[Us > Uy,

RE = 1405 T | Fnax > F{ | #S05 T [Frnax = F{onai| %1 [Up > Uy, where U ~ iii.d.Uni form|0,1],

RRSS;—URSS" (b)
URSS\" )(T—m~—1)’ = Lmax

b=1,2,...B, FY = maxi<icn F-(lga with Fz(bC)' =

_ (b)
C max i, = IMaxj<G<N Fi,L

(b) (b)
with Féb) = 5}1:5 gfb);(gl_%s%l)a RRSS; = Zle @2, RRSS® and URSS® are bootstrap restricted

and unrestricted sum of squared residuals.

3. Follow the bounds test procedure: "Reject" Hy if conservative bootstrap p-value, p¢ < a, "

cept" Hy if liberal bootstrap p-value, p© > «, otherwise "inconclusive", where « is the significance

ac-

level.

M2We are grateful to Richard Luger for sharing the code to compute the resampling test discussed in Gungor
and Luger (2016).
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M1.3 Supplementary Monte Carlo results

Table M1: Frequencies of Inconclusive Results of Gungor and Luger (2016) test
for Table 2

Panel A: Normal Errors

5, =1/4 8y =1/2 8, =3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: «; = 0 for all 7

Froax 60 3.3 3.1 46 27 3.2 3.7 43 35 42 3.0 34 3.7
(Inconclusive) 100 42 3.8 40 3.9 36 39 39 38 3.7 38 43 3.3
Power: a; ~ IIDN(0,1) fori = 1,2, ..., N, with Ny = [N, A, = 0.8 otherwise a; = 0

Frax 60 29.3 359 40.3 45.5 30.6 34.1 39.6 44.5 274 36.3 38.9 46.0

(Inconclusive) 1)) 39.0 40.0 36.7 29.1 36.8 39.0 37.7 294 37.0 39.9 358 293

Panel B: Non-normal Errors

5, =1/4 5y =1/2 5, =3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: «; = 0 for all 7

Finax 60 42 3.7 48 52 45 4.8 40 49 43 38 48 5.1
(Inconclusive) 1)) 44 36 50 38 43 40 44 50 45 39 48 5.0
Power: a; ~ IIDN(0,1) for i = 1,2, ..., N, with Ny = [N*]|, A\, = 0.8 otherwise a; = 0
Frnax 60 31.1 358 40.1 46.0 30.7 349 39.8 465 286 345 39.6 455

(Inconclusive) 1)) 37.3 39.1 37.7 28.6 39.0 38.8 358 279 37.5 389 36.1 31.7

See notes to Table 2 in the body paper.
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Table M2: Size of the J, test using the estimator of (N — 1)py - based on the
elements in Vpo ET

This table summarises the size of the J, test using the estimator of (N — 1)p?V7T based on the
elements in POET estimator of V proposed by FLM. Specifically, the test statistic is defined by

N2 Z]\i (Z v— 2)/{(v 2) \/ = )) [1+ (N - 1)ﬁ%OET]}aWhereﬁ%0ET = WZ& Z; 11ﬁP0Eng

with ppogr,i; =

UPOET 17
\/UPOET zz\/UPOET 3
in the notes to Table 2. Values of the tests are compared to a positive one-sided critical value of the

standard normal distribution. The test is conducted at the 5% significance level. Experiments are
based on 2,000 replications.

where Vpogr = {6poET,j}- The data is generated as described

6y =1/4 6y =1/2 6, =3/5
(T, N) 50 100 200 500 50 100 200 500 50 100 200 500
Normal Errors
T=60 76 56 62 53 103 9.5 94 10.1 125 12.2 15.0 17.1
T=100 6.8 53 b5 5.6 6.8 95 93 97 9.0 14.0 15.7 15.7
Non-normal Errors
T=60 67 70 61 6.9 104 109 116 11.8 13.6 15.0 14.6 18.1
T=100 58 6.9 6.7 75 8.2 10.2 11.3 126 11.9 14.5 153 16.2

Table M3: Size of the .J, test when the mean of the average of squared t-ratios is
set to one

This table summarises the size of J, test using unity as the average of squared t-ratios. Specifically,

the test statistic is defined by N—1/2 ZZ L (#2=1) /{(U 2) \/2( ) [1 + (N — 1)ﬁ%\7,T] }. The data is

(v—4)
generated as described in the notes to Table 2. Values of the tests are compared to a positive one-sided
critical value of the standard normal distribution. The test is conducted at the 5% significance level.
Experiments are based on 2,000 replications.

6y =1/4 0y =1/2 6, =3/5
(T,N) 50 100 200 500 50 100 200 500 50 100 200 500
Normal Errors
T=60 84 88 99 1438 75 84 95 11.7 8.0 80 86 88
T=100 74 7.6 &85 10.3 77 82 82 178 6.9 77 75 84
Non-normal Errors
T=60 74 9.0 103 15.1 8.2 81 9.0 13.1 75 87 88 10.1
T=100 79 79 85 10.2 6.9 7.0 87 8.1 71 81 77 7.3
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Table M4: Size and power of SS and WS tests in the case of models with a single
factor

The data is generated as yir = o; + By, f1e + uit, @ = 1,2, , N5t = 1,2,..,T, fie = ppy + pprfre—1 +
VI Cips hie = ppy + P1a1hie—1 + p2h1C%,t—17 Cie ~ TIDN(0,1), t = —49,...,0,1,... T with f1 50 =
hi,—50 = 0, pip1 = 0.53, pyy = 0.06, ppy = 0.89, pyj1 = 0.85, pgpy = 0.11. For the size of the test, a; =0
for all i, and for the power of the test, a; ~ IIDN(0,1) for i = 1,2, ..., Ny with N, = [N*|, A\, = 0.8,
otherwise a; = 0, where |A] is the largest integer part of A. We generate the idiosyncratic errors,
w; = (uys, ust, ..., unt), according to u; = Qe,, where ; = (e14,€2¢,...,en¢), and Q = DY/2P with
D = diag(0?,0%,...,0%)" and P being a Cholesky factor of correlation matrix of uz, R, which is an N x N
matrix used to calibrate the cross correlation of returns. R = Iy + bb’ — B2 where b = (b1, b2, ..., bN),
B = diag(b), we draw the first and the last N, (< N) elements of b as Uniform(0.7,0.9), and set
the remaining middle elements to 0. We set N, = [N%|. We examine &, = 1/4,1/2 and 3/5. For
non-normal case, u;; are generated following steps 1-4 of the procedure in Appendix B. SS and WS
are the signed and singed rank tests of Gungor and Luger (2009), which are distributed as X?\, and
applicable for one-factor model (see Section M1.2 for more details) All tests are conducted at the 5%
significance level. Experiments are based on 2,000 replications.

Panel A: With Single Factor, Normal Errors
6y =1/4 6y =1/2 6y =3/b
(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: «; = 0 for all 4

SS 60 43 52 43 5.1 70 77 85 7.8 91 9.7 126 124
100 45 47 53 5.1 T4 79 83 1.7 10.5 10.0 11.5 12.2
wSs 60 43 48 44 46 76 82 90 86 9.8 9.9 131 132

100 3.8 53 52 5.1 79 81 8.1 7.8 104 114 129 134
Power: a; ~ IIDN(0,1) for i = 1,2,..., N, with N, = | N*|, A\, = 0.8 otherwise a; = 0.

SS 60 20.8 26.2 349 479 22.2 255 352 489 21.1 28.2 354 457
100 36.6 47.0 62.8 80.7 35.1 45.6 59.9 779 35.3 445 56.8 72.6
ws 60 234 323 43.0 59.2 254 30.8 404 58.2 255 324 41.3 521

100 44.3 58.7 740 90.3 42.0 55.3 70.9 87.6 41.5 519 672 83.3
Panel B: With Single Factor, Non-normal Errors

Size: «; = 0 for all ¢

SS 60 10.3 13.8 199 334 11.8 14.0 185 334 11.8 174 228 322
100 16.3 23.7 352 63.3 15,5 21.3 33.8 57.2 18.4 245 326 49.9
wSs 60 83 11.5 16.5 24.9 12.7 127 16.9 26.8 13.1 16.5 19.1 28.7

100 14.0 183 27.1 51.6 16.0 18.6 28.2 44.1 17.2 20.8 28.3 39.0
Power: a; ~ IIDN(0,1) for i = 1,2,..., N, with N, = | N« |, A\, = 0.8 otherwise a; = 0.

SS 60 31.8 43.5 57.7 83.2 30.6 421 57.0 79.8 29.2 41.0 548 T4.1
100 55.9 73.6 90.6 99.2 51.5 67.1 88.0 98.8 50.6 64.7 81.8 97.5
wSs 60 33.3 46.2 62.6 87.1 322 446 61.2 81.5 32.3 433 55.8 76.1

100 99.1 772 926 99.6 55.4 70.5 90.7 99.3 92.5 68.3 84.6 98.0
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Table M5: Size and power of J,, test with mixed spatial-factor models with the
value of spatial parameter p, = 0.8

DGP is identical to that for the results reported in Table 5 except p, = 0.8.

Also see notes to Table 2.

Panel A: Normal Errors with p, = 0.8

Size Power
(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (v = 0)

Jo 60 66 70 73 78 75 66 7.3 38.6 52.1 689 86.8 96.5 99.2 99.8
100 70 71 69 64 55 56 5T 68.1 82.8 94.5 99.5 100.0 100.0 100.0
Ja(0) 60 15.8 185 17.8 19.1 184 16.5 19.0 614 73.6 87.6 95.1 99.2 99.8 99.9
100 18.3 174 16.7 171 16.7 16.5 17.6 84.9 94.3 98.5 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/4)
Jo 60 58 6.0 65 70 57 73 6.6 394 51.3 67.5 874 964 99.5 100.0
100 70 78 67 71 54 6.0 6.1 66.6 81.6 94.8 99.4 100.0 100.0 100.0
Ja(0) 60 16.3 164 16.3 17.7 16.5 169 168 61.8 724 847 95.6 98.6 100.0 100.0
100 172 189 176 174 153 181 1738 84.8 93.5 98.8 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/2)
Jo 60 66 76 69 71 60 6.7 5.8 39.1 50.7 66.6 85.8 95.6 98.8 100.0
100 68 6.1 72 67 61 69 6.3 66.4 83.1 944 99.6 100.0 100.0 100.0
Ja(0) 60 172 179 16.8 189 180 17.7 16.5 60.0 729 86.1 952 994 99.8 100.0
100 175 176 176 194 170 189 186  85.3 945 98.6 100.0 100.0 100.0 100.0

Mixed spatial-factor models (6, = 3/5)
Ja 60 64 75 58 76 78 79 75 38.2 51.3 67.5 852 96.2 99.3 999
100 6.8 64 70 7.0 55 64 59 679 824 94.3 99.7 100.0 100.0 100.0
Ja (0) 60 15.7 18.7 16.8 195 173 19.1 183 60.0 74.1 8.6 954 99.1 99.9 100.0
100 175 173 182 173 17.7 177 181  86.2 93.5 98.8 100.0 100.0 100.0 100.0
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Table M5 —Continued

Panel B: Non-normal Errors with p, = 0.8

Size Power
(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (v = 0)

A 60 89 75 75 69 81 80 86 35.5 453 60.0 787 914 97.0 99.7
100 73 60 70 64 71 64 64 57.8 72.1 89.2 97.8 99.8 100.0 100.0
Ja(0) 60 18.7 182 184 183 181 20.3 20.2 57.1 66.0 79.0 91.9 97.1 99.5 99.8
100 16.6 17.1 185 189 188 20.2 17.9 789 88.7 96.5 99.7 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/4)
A 60 74 64 84 71 70 74 75 359 43.0 58.7 77.5 893 97.0 99.7
100 63 63 71 54 62 71 6.9 58.3 73.6 87.5 98.4 99.6 100.0 100.0
Ja(0) 60 16.5 16.2 19.6 18.1 18.0 19.1 19.2 56.4 65.0 79.8 92.3 969 994 99.9
100 16.3 16.6 17.7 17.5 19.0 18.8 19.0 77.2 88.4 96.4 99.7 100.0 100.0 100.0

Mixed spatial-factor models (6, = 1/2)
Ja 60 82 69 73 70 70 83 76 329 433 577 77.8 909 971 99.7
100 68 67 70 71 65 71 7.0 55.7 73.5 88.1 98.2 99.8 100.0 100.0
Ja(0) 60 16.7 16.8 18.8 18.8 21.2 20.5 20.1 54.5 66.1 78.0 91.0 97.2 99.3 100.0
100 17.8 17.0 183 18.8 19.9 19.1 20.5 76.9 89.5 97.0 99.8 100.0 100.0 100.0

Mixed spatial-factor models (6, = 3/5)
Jo 60 72 79 64 64 84 74 7.8 31.8 44.0 58.1 76.9 898 969 99.6
100 72 66 79 66 69 70 6.7 580 73.0 86.7 98.5 99.7 100.0 100.0
Ja(0) 60 16.7 18.0 18.0 189 209 18.6 19.9 54.5 67.0 79.2 91.0 96.5 99.0 100.0
100 177 164 187 18.1 19.2 19.3 18.6 77.9 88.9 96.0 99.8 100.0 100.0 100.0
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Table M6: Size and power of GRS and J, tests in the case of models with a single
factor under GARCH(1,1) idiosyncratic errors

The data is generated as described in the note to Table M4 for Panel A and Table 2 for three fac-
tors, except that the idiosyncratic errors follow a class of MGARCH model, which is known as CCC
(constant conditional correlation) model proposed by Bollerslev (1990), as below. The error vec-
tor ug = (uig, U, ..., uny) is generated according to u; = Qqey, where ; = (e14,€0¢,...,en¢) With
eit ~ IIDN(0,1), Q= D;/*P so that V (w|l,_1) = D;/?RD./? t = 1,2,..., T, where R = PP’ is the
(unconditional) correlation matrix defined as before, Dy = diag (hi, hot, ..., hNt)',With hi: being uni-
variate GARCH(1,1) process defined as hy = o + Oéiluﬁtq + ¢iihig—1, t = —49,-48, ..., T .with
u_s0 = h_s0 = 0. We generate the value of unconditional variance o;; first as described in the
note to Table 2 then we choose the value of a9 = 0y (1 —ay1 — ¢;1). a1 ~ I1DU0.05,0.15] and
¢;1 ~ 1IDUI0.7,0.8] are generated in each replication.

Panel A: With Single Factor

N~ 6y =1/4 6y =1/2 6y =3/5

(T, N) 50 100 200 500 50 100 200 500 50 100 200 500
Size: «; = 0 for all ¢

GRS 60 55 N/A N/A N/A 50 N/A N/A N/A 53 N/A N/A N/A
100 50 N/A N/A N/A 54 N/A N/A N/A 49 N/A N/A N/A
A 60 56 6.7 6.1 52 6.1 59 57 55 6.7 70 73 53
100 5.0 6.1 64 5.1 6.7 6.0 70 59 5.8 6.7 6.6 64

Power: a; ~ IIDN(0,1) fori = 1,2, ..., N, with N, = [ N% ], otherwise o; = 0.
GRS 60 22.8 NJA N/A N/A 334 N/A N/A N/A 38.0 N/A N/A N/A
100 825 N/A N/A N/A  90.6 N/JA N/A N/A 942 N/A N/A N/A
ja 60 78.9 90.1 98.5 100.0 69.3 83.5 95.9 99.8 59.2 70.8 85.1 96.7
100 94.8 98.7 100.0 100.0 90.0 97.8 99.9 100.0 83.4 95.5 989 100.0

Panel B: With Three Factors
Size: «o; =0 for all 7

GRS 60 47 N/A N/A N/A 48 N/A N/A N/A 41 N/A N/A N/A
100 54 N/A N/A N/A 46 N/A N/A N/A 52 N/A N/A N/A
ja 60 6.5 5.6 55 4.2 6.5 59 6.7 538 6.3 7.1 59 6.0
100 6.6 6.1 58 55 64 59 65 6.2 65 66 64 6.2

Power: a; ~ IIDN(0,1) fori = 1,2,..., N, with N, = [ N% |, otherwise a; = 0.
GRS 60 156 N/A N/A N/A 220 N/A N/A N/A 252 N/A N/A N/A
100 717 N/JA N/A N/A 838 N/A N/A N/A 900 N/A N/A N/A
Jy 60 69.0 824 934 994 56.8 72.5 87.4 97.2 47.3 57.8 69.7 86.3
100 89.7 974 99.6 100.0 82.8 93.6 99.1 100.0 74.2 88.4 95.8 99.8
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