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Abstract

This paper considers tests of zero pricing errors for the linear factor pricing model when the
number of securities, N , can be large relative to the time dimension, T , of the return series.
We focus on class of tests that are based on Student t tests of individual securities which have
a number of advantages over the existing standardised Wald type tests, and propose a test
procedure that allows for non-Gaussianity and general forms of weakly cross correlated errors.
It does not require estimation of an invertible error covariance matrix, it is much faster to
implement, and is valid even if N is much larger than T . Monte Carlo evidence shows that the
proposed test performs remarkably well even when T = 60 and N = 5; 000. The test is applied
to monthly returns on securities in the S&P 500 at the end of each month in real time, using
rolling windows of size 60. Statistically signi�cant evidence against Sharpe-Lintner CAPM and
Fama-French three factor models are found mainly during the recent �nancial crisis. Also we
�nd a signi�cant negative correlation between a twelve-months moving average p-values of the
test and excess returns of long/short equity strategies (relative to the return on S&P 500) over
the period November 1994 to June 2015, suggesting that abnormal pro�ts are earned during
episodes of market ine¢ ciencies.
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1 Introduction

This paper is concerned with testing for the presence of alpha in Linear Factor Pricing Models
(LFPM) such as the capital asset pricing model (CAPM) due to Sharpe (1964) and Lintner
(1965), or the Arbitrage Pricing Theory (APT) model due to Ross (1976), when the number of
securities, N , is quite large relative to the time dimension, T , of the return series under con-
sideration. The Sharpe-Lintner CAPM model predicts that expected excess returns (measured
relative to the risk-free rate) on any given security or a given portfolio of securities is proportional
to the expected excess return on the market portfolio, with the constant of the proportionality,
�, being security/portfolio speci�c.
There exists a large literature in empirical �nance that tests various implications of Sharpe-

Lintner model. Cross sectional as well as time series tests have been proposed and applied in
many di¤erent contexts. Using time series regressions, Jensen (1968) was the �rst to propose
using standard t-statistics to test the null hypothesis that the intercept, �i, in the Ordinary
Least Squares (OLS) regression of the excess return of a given security, i, on the excess return
of the market portfolio is zero.1 The test can be applied to individual securities as well as to
portfolios.
However, when a large number of securities are under consideration, due to dependence of

the errors across securities in the LFPM regressions, the individual t-statistics are correlated
which makes controlling the overall size of the test problematic. Gibbons, Ross and Shaken
(1989, GRS) propose an exact multivariate version of the test which deals with this problem if
the CAPM regression errors are Gaussian and N < T . This is the standard test used in the
literature, but its application has been con�ned to testing the market e¢ ciency of a relatively
small number of portfolios, typically 20�30, using monthly returns observed over relatively long
time periods. The use of large T as a way of ensuring that N < T , is also likely to increase the
possibility of structural breaks in the �0s that could in turn adversely a¤ect the performance of
the GRS test.
Recently, there has been a growing body of �nance literature which uses individual security

returns rather than portfolio returns for the test of pricing errors. Ang, Liu and Schwarz (2016)
show that the smaller variation of beta estimates from creating portfolios may not lead to smaller
variation of cross-section regression estimates. Cremers, Halling and Weinbaum (2015) examine
the pricing of both aggregate jump and volatility risk based on individual stocks rather than
portfolios. Chorida, Goyal and Shanken (2015) advocate the use of individual securities to
investigate whether the source of expected return variation is from betas or security-speci�c
characteristics.
It is clearly desirable to develop tests of market e¢ ciency that can deal with a large number

of securities over relatively short time periods so that the problem of time variations in �0s is
somewhat mitigated. It is also important that such tests are reasonably robust to non-Gaussian
errors, particularly as it is more likely that one would encounter non-normal errors in the case
of LFPM regressions for individual securities as compared to regressions estimated on portfolios
comprising a large number of securities.
Out of the two main assumptions that underlie the GRS test, the literature has focussed on

the implications of non-normal errors for the GRS test, and ways of allowing for non-normal
errors when testing �i = 0. A­ eck-Graves and McDonald (1989) were amongst the �rst to
consider the robustness of the GRS test to non-normal errors who, using simulation techniques,

1Cross sectional tests of CAPM have been considered by Douglas (1968), Black, Jensen and Scholes (1972),
and Fama and Macbeth (1973), among others. An early review of the literature can be found in Jensen (1972),
and more recently in Fama and French (2004).
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�nd that the size and power of GRS test can be adversely a¤ected if the departure from non-
normality of the errors is serious, but conclude that the GRS test is ".. reasonably robust with
respect to typical levels of nonnormality." (p.889). More recently, Beaulieu, Dufour and Khalaf
(2007, BDK) and Gungor and Luger (2009, GL) have proposed tests of �i = 0 that allow for
non-normal errors, but retain the restriction N < T . BDK develop an exact test which is
applicable to a wide class of non-Gaussian error distributions, and use Monte Carlo simulations
to achieve the correct size for their test. Gungor and Luger (2009) propose two distribution-free
nonparametric sign tests in the case of single factor models that allow the error distribution to be
non-normal but require it to be cross-sectionally independent and conditionally symmetrically
distributed around zero.2

Our primary focus in this paper is on development of multivariate tests of H0 : �i = 0;
for i = 1; 2; :::; N , when N > T , whilst allowing for non-Gaussian and weakly cross-sectionally
correlated errors. The latter condition is required for consistent estimation of the error covariance
matrix, V, when N is large relative to T . In the case of LFPM regressions with weakly cross-
sectionally correlated errors, consistent estimation ofV can be achieved by adaptive thresholding
which sets to zero elements of the estimator ofV that are below a given threshold. Alternatively,
feasible estimators of V can be obtained by Bayesian or classical shrinkage procedures that scale
down the o¤-diagonal elements of V relative to its diagonal elements.3 Fan, Liao and Mincheva
(2011, 2013) consider consistent estimation of V in the context an approximate factor model.
They assume V is sparse and propose an adaptive thresholding estimator of V, which they
show to be positive de�nite with satisfactory small sample properties. Fan, Liao and Yao (2015)
derive the conditions under which standardised Wald tests of H0 can be asymptotically justi�ed.
Gagliardini, Ossola and Scaillet (2016) develop two-pass regressions of individual stock returns,
allowing time-varying risk premia, and propose a standardised Wald test. Raponi, Robotti and
Za¤aroni (2016) propose a test of pricing error in cross-section regression for �xed number of time
series observations. They use a bias-corrected estimator of Shaken (1992) to standardise their
test statistic. Gungor and Luger (2016) propose a simulation based approach for testing pricing
errors. They claim that their test procedure is robust against non-normality and cross-sectional
dependence in the errors. Amengual and Repetto (2014) consider the standardised F-type test
statistic based on principal component estimation under both serial and cross-section correlation
in the errors.
In this paper we follow an alternative strategy where we develop a test statistic that initially

ignores the o¤-diagonal elements of V and base the test of H0 on the average of the t tests of
�i = 0, over i = 1; 2; :::; N . This idea was originally proposed in the working paper version
of this paper (Pesaran and Yamagata, 2012), independently of a similar approach followed by
Gagliardini, Ossola and Scaillet (2016; GOS).4 Despite the similarity of the two tests, as will be

2Bossaerts, Plot and Zame (2007) provide a novel GMM test of CAPM which does not require large T , but
is designed for the analysis of experimental data on a few risky assets held across a relatively large number of
subjects. It is interesting to see if their approach can be adapted to the analysis of historical observations of the
type considered in this paper.

3There exists a large literature in statistics and econometrics on estimation of high-dimensional covariance
matrices which use regularization techniques such as shrinkage, adaptive thresholding or other dimension-reducing
procedures that impose certain structures on the variance matrix such as sparsity, or factor structures. See, for
example, Wong, Carter and Kohn (2003), Ledoit and Wolf (2004), Huang, Liu, Pourahmadi, and Liu (2006),
Bickel and Levina (2008), Fan, Fan and Lv (2008), Cai and Liu (2011), Fan, Liao and Mincheva (2011, 2013),
and Bailey, Pesaran and Smith (2017).

4We are grateful to Olivier Scaillet for drawing our attention to an earlier version of
GOS (2016), after the working paper version of this paper was publicly released in 2012,
and presented at the American Finance Association Meeting in San Diego, January 2013.
https://hq.ssrn.com/Conference/Reports/conf_preliminary_program.cfm?con�ink=AFA-2013-San-Diego
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seen our version of the test performs much better even if N is very large (around 5; 000), and
we are able to establish its asymptotic distribution under much weaker conditions and without
resorting to high level assumptions. We achieve this by making corrections to the numerator of
the test statistic to ensure that the test is more accurately centered, and correct the denominator
of the test statistic to allow for the e¤ects of non-zero o¤-diagonal elements of the underlying
error covariance matrix.5 The correction involves consistently estimating N�1Tr (R2), where
R =

�
�ij
�
is the error correlation matrix. The estimation of N�1Tr (R2) = N�1PN

i=1

PN
j=1 �

2
ij

is subject to the curse of dimensionality which we address by using the multiple testing threshold
estimator, ~R, recently proposed by Bailey, Pesaran and Smith (2017). We show that consistent
estimation of N�1Tr (R2) can be achieved under a more general speci�cation of R as compared
to tests that require a consistent estimator of the full matrix, R. We are able to establish that
the resultant test is applicable more generally and continues to be valid for a wider class of error
covariances, and holds even if N rises faster than T . The proposed test is also corrected for small
sample e¤ects of non-Gaussian errors, which is of particular importance in �nance. We refer to
this test as Jensen�s � test of LFPM and denote it by Ĵ�. The test can also be viewed as a
robust version of a standardised Wald test, in cases where the o¤-diagonal elements of V become
relatively less important as N !1. The implementation of the Ĵ� test is also computationally
less demanding, since it does not involve estimation of an invertible high dimensional error
covariance matrix.
Our assumption regarding the sparsity of V advances on Chamberlain�s (1983) approximate

factor model formulation of the asset model, where it is assumed that the largest eigenvalue of
V (or R) is uniformly bounded in N (Chamberlain, 1983, p.1307). We relax this assumption
and allow the maximum column sum matrix norm of R to rise with N but at a rate slower thanp
N , whilst controlling the overall sparsity of R by requiring N�1Tr(R2) to be bounded in N .

In this way we are able to allow for two types of cross-sectional error dependence: one due to the
presence of weak common factors that are not su¢ ciently strong to be detectable using standard
estimation techniques, such as principal components; and another due to the error dependence
that arise from interactive and spill-over e¤ects.
We establish that under the null hypothesis of �i = 0; the Ĵ� test is asymptotically distributed

asN(0; 1) for T andN !1 jointly, so long asN=T 2 ! 0,mN = kRk1 = O
�
N ��

�
, 0 � �� < 1=2,

and N�1Tr (R2) is bounded in N . The test is also shown to have power against alternatives
that rises in N1=2T . The proofs are quite involved and in some parts rather tedious. For the
purpose of clarity we provide statements of the main theorems with the associated assumptions
in the paper, but relegate the mathematical details to an appendix.
Small sample properties of the Ĵ� test are investigated using Monte Carlo experiments de-

signed speci�cally to match the correlations, volatilities, and other distributional features (skew-
ness and kurtosis) of the residuals of Fama-French three factor regressions of individual securities
in the Standard & Poor 500 (S&P 500) index. We consider the comparative test results for the
following eight sample size combinations, T = 60 and 100; and N = 50; 100; 200 and 500. The
Ĵ� test performs well for all sample size combinations with size very close to the chosen nominal
value of 5%, and satisfactory power. Comparing the size and power of the Ĵ� test with the
GRS test in the case of experiments with N = 50 < T = 60, 100 for which the GRS statistics
can be computed, we �nd that the Ĵ� test has higher power than the GRS test in most experi-
ments. This could be due to the non-normal errors adversely a¤ecting the GRS test, as reported
by A­ eck-Graves and McDonald (1989, 1990). In addition, the Ĵ� test outperforms the test
proposed by GOS as well as the feasible versions of the standardised Wald tests, replacing V

5This correction and how it is estimated turns out to be critical for the small sample properties of the test
when the errors in the individual return regressions are weakly cross correlated.
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with the recently developed estimators of large dimensional variance-covariance matrix of Fan,
Liao and Mincheva (2013, FLM) and Ledoit-Wolf (2004). The Ĵ� test also outperforms the
simulation-based Fmax test of Gungor and Luger (2016) that can be implemented when N > T .
The Fmax test is shown to be undersized substantially across the various designs, and has lower
power uniformly as compared to the Ĵ� test. We also carried out additional experiments that
allow for time variations in betas as well as errors with a mixture of weak factors and spatial
autoregressive processes, using much larger values of N , namely N = 1; 000; 2; 000 and 5; 000;
whilst keeping T at 60 and 100. We only considered the Ĵ� test for these experiments, and found
no major evidence of size distortions even for the experiments with T = 60 and N = 5; 000.
Encouraged by the satisfactory performance of the Ĵ� test, even in cases where N is much

larger than T , we applied the test to monthly returns on the securities in the Standard and Poor
(S&P) 500 index using rolling windows of size 60 over the period September 1989 to June 2015.
The survivorship bias problem is minimized by considering the sample of securities included
in the S&P 500 at the end of each month in real time. We report the Ĵ� test statistics for a
single-factor and a three Fama-French factor model over the period 1989-2015, and �nd statisti-
cally signi�cant evidence against the Sharpe-Lintner CAPM and Fama-French factor model only
during the recent �nancial crisis.
Finally, we examine if there exists any relationship between the p-values of the Ĵ� test and

excess returns on long/short equity hedge funds (relative to the return on S&P 500). A priori one
would expect a reverse relationship between market e¢ ciency and excess returns of an investment
strategy, with excess returns being low during periods of market e¢ ciency (high p-values) and
vice versa. In fact, we �nd a signi�cant negative correlation between a twelve-months moving
average p-values of the Ĵ� test and excess returns of long/short equity strategies over the period
November 1994 to June 2015, suggesting that abnormal pro�ts are earned during episodes of
market ine¢ ciencies.
The outline of the rest of the paper is as follows. Section 2 sets out the panel data model for

the analysis of LFPM, and the GRS test. Section 3 proposes the Ĵ� test for large N panels, de-
rives its asymptotic distribution, and Section 4 summarises the main theoretical results. Section
5 reports on small sample properties of Ĵ�, GRS, GOS, standardised Wald tests and the Gungor
and Luger (2016) simulation based Fmax test, using Monte Carlo techniques. Section 6 presents
the empirical application. Section 7 concludes. The proofs of the main theorems are provided
in Appendix A, and the lemmas which are used for the proofs, as well as the additional Monte
Carlo evidence, are provided in an online supplement to this paper, that is available on request.

Notations
We use K and c to denote �nite and small positive constants. If fftg1t=1 is any real sequence

and fgtg1t=1 is a sequences of positive real numbers, then ft = O(gt), if there exists a positive
�nite constant K such that jftj =gt � K for all t. ft = o(gt) if ft=gt ! 0 as t ! 1. If fftg1t=1
and fgtg1t=1 are both positive sequences of real numbers, then ft = � (gt) if there exists T0 � 1
and positive �nite constants C0 and C1, such that inft�T0 (ft=gt) � C0, and supt�T0 (ft=gt) � C1.
For a N�N matrix A = (aij), the minimum and maximum eigenvalues of matrix A are denoted
by �min(A) and �max(A), respectively, its trace by Tr(A), its maximum absolute column and
row sum matrix norms by kAk1 = supi

PN
j=1 jaijj, and,kAk1 = supj

PN
i=1 jaijj, respectively, its

Frobenius and spectral norms by kAkF =
p
Tr(A0A), and kAk = �1=2max(A0A), respectively. For

a N � 1 dimensional vector, �, k�k = (�0�)1=2.
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2 Some preliminaries and the GRS test

Under the Arbitrage Pricing Theory (APT) of Ross (1976), we have

Rit = �t + �
0
i�+ �

0
i(ft � �f ) + uit; for i = 1; 2; :::; N ; t = 1; 2; :::; T; (1)

where, Rit is return on security i during period t, ft = (f1t; f2t; :::; fmt)
0 is the m � 1 vector

of factors, �i = (�i1; �i2; :::; �im)
0 is the associated vector of risk factors, and �t is zero-beta

expected return which under APT should be equal to the risk-free rate, � is the vector of
expected cross-sectional risk premium and �f = E (ft). Setting �t = rt + �, where rt is the
risk-free rate, the return regressions can be written as

yit = �i + �
0
ift + uit; for i = 1; 2; :::; N ; t = 1; 2; :::; T; (2)

where yit = Rit � rt, and
�i = � + �

0
i(�� �f ): (3)

To ensure that the risk from common factors, ft, cannot be fully diversi�ed we assume that
at least one of the factors is strong, in the sense that

sup
s

NX
i=1

j�isj = O(N), (4)

and allow for the presence of common unobserved weak factors in the error term uit. Speci�cally
we assume that

uit = 

0
ivt + �it; (5)

where vt is a k�1 vector of unobserved common factors that are IID(0; Ik), 
i = (
i1; 
i2; :::; 
ik)0
is the associated vector of factor loadings with bounded elements, supi;s j
isj < K. The factors
included in the error process are weak in the sense that their e¤ects are not pervasive and satisfy
the condition

sup
s

NX
i=1

j
isj = O
�
N �


�
; with 0 � �
 < 1=2: (6)

The idiosyncratic errors, �it, are also allowed to be weakly cross correlated. Speci�cally, we
assume that �t = (�1t; �2t; ::::; �Nt)

0 = Q�"�;t, where "�;t = ("�;1t; "�;2t; ::::; "�;Nt)0, f"�;itg are IID
processes over i and t, with means zero, unit variances, 
2;"� = E

�
"4�;it
�
�3, and supi;tE(j"�;itj

8+c) �
K <1, for some c > 0. We denote the correlation matrix of �t by R� =

�
��;ij

�
, and note that

R� = Q�Q
0
�. To ensure that ut = (u1t; u2t; :::; uNt)

0 is weakly cross-correlated we require that k,
the number of weak factors, is �nite, and kR�k1 � kQ�k1 kQ�k1 � K. The error speci�cation
in (5) is quite general and allows for common factors as well as network and spatial error cross
dependence, so long as the common factors are su¢ ciently weak.
Di¤erent tests of LFPM are proposed in the literature. Some researchers have focussed on

testing � = 0, which ensures that the zero-beta excess return is zero. Others have considered
testing the restrictions � = �f , which require that the risk-premia on factors coincide with
factor means.6 In this paper we adopt a more direct approach and consider testing the joint
hypotheses

H0 : �i = 0, i = 1; 2; :::; N; (7)

allowing for the multiple testing nature of the null. In the context of the APT model, the test
of �i = 0 for all i can be interpreted as a test of the joint hypotheses that � = 0, and � = �f .

6See, for example, Shanken (1992).
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It proves useful to stack the panel regressions in (2) by time series as well as by cross section
observations. Stacking by time series observations we have

yi: = �i� T + F�i + ui:; (8)

where yi: = (yi1; yi2; :::; yiT )
0, � T = (1; 1; :::; 1)0, F0= (f1; f2; :::; fT ), and ui: = (ui1; ui2; :::; uiT )

0.
Stacking by cross-sectional observations we have

yt = �+Bf t + ut; (9)

where yt = (y1t; y2t; :::; yNt)0, � = (�1; �2; :::; �N)0,B = (�1,�2; :::;�N)
0 and ut = (u1t; u2t; :::; uNt)0.

For exact sample tests of LFPM, initially we assume that ut s IIDN (0;V), namely errors,
uit; are Gaussian, have zero means, and are serially uncorrelated such that E(uitujt0) = 0, for
all i, j;and t 6= t0, with E (utu0t) = V, where V =(�ij) is an N �N symmetric positive de�nite
matrix. A non-Gaussian version of this assumption will be considered below. Starting with
Jensen�s (1968) test of individual �i�s, we note that the OLS estimator of �i given by

�̂i = y
0
i:

�
MF� T
� 0TMF� T

�
, (10)

where MF = IT � F (F0F)�1F0, is an e¢ cient estimator despite the fact that V is not a diag-
onal matrix. This result follows since (8) is a seemingly unrelated regression equation (SURE)
speci�cation with the same set of regressors across all the N securities. It is also easily seen that
for all i = 1; 2; :::; N;

�̂i = (�i�
0
T + �

0
iF
0 + u0i:)

�
MF� T
� 0TMF� T

�
= �i + u

0
i:c, (11)

where
c =MF� T=�

0
TMF� T : (12)

Writing the above set of estimates for all i in matrix notation, we have

�̂ = �+

0BBB@
u01:c
u02:c
...

u0N:c

1CCCA ;
where u0i:c =

PT
t=1 uitct; and ct is the t

th element of c. Hence

�̂ = �+

TX
t=1

utct, (13)

where as before ut = (u1t; u2t; :::; uNt)
0. Therefore, under Gaussianity,

�̂ v N
�
�;

1

� 0TMF� T
V

�
:

Also in the case where T � N +m + 1, an unbiased and invertible estimator of V is given by
( T
T�m�1)V̂, where V̂ is the sample covariance matrix estimator

V̂ = T�1
XT

t=1
ûtû

0
t; (14)
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ût = (û1t; û2t; :::; ûNt)
0, ûit is the OLS residual from the regression of yit on an intercept and ft.

Under Gaussianity, ût has a multivariate normal distribution with zero means, �̂ and ût are
independently distributed, and hence using standard results from multivariate analysis it follows
that (see, for example, Theorem 5.2.2 in Anderson (2003)) the GRS statistic (see p.1124 of GRS)

GRS = Ŵ0 =
T �N �m

N

�
� 0TMF� T

T

�
�̂0V̂�1�̂; (15)

is distributed exactly as a non-central F distribution with (T � N � m) and N degrees of

freedom, and the non-centrality parameter �2� =
T�N�m

N

�
� 0TMF �T

T

�
�0V�1�, which is zero under

H0 : � = 0.7

As noted in the introduction, the single most important limiting feature of the GRS and
other related tests proposed in the literature is the requirement that T must be larger than N .
To circumvent this limitation, in applications of the GRS test, individual securities are grouped
into (sub) portfolios and the GRS test is then typically applied to 20-30 portfolios over relatively
long time periods. However, it is clearly desirable to develop tests of �i = 0, that can be applied
to a very large number of individual securities over relatively short time periods (to minimize
the adverse e¤ects of structural change in �i�s) which inevitably lead to cases where T < N .
Even in cases where N < T , the power of the GRS test could be compromised since it

assumes V to be unrestricted, whilst in the context of the approximate factor model advanced
in Chamberlain (1983), the errors are at most weakly correlated, which places restrictions on the
o¤-diagonal elements of V and its inverse. As we shall see below, a test that exploits restrictions
implied by the weak cross-sectional correlation of the errors is likely to have much better power
properties than the GRS test that does not make use of such restrictions. It is also important to
bear in mind that being a multivariate F test, the power of the GRS test is primarily driven by
the time dimension, T , whilst for the analysis of a large number of assets or portfolios we need
tests that have the correct size and are powerful for large N .

3 Large N tests of alpha in LFMP models

To develop large N tests of H0 : � = 0, we consider the following version of the GRS statistic,
as set out in (15),

Wv = (�
0
TMF� T ) �̂

0V�1�̂; (16)

where we have dropped the degrees of freedom adjustment term and replaced V̂ by its true
value. Wv can be regarded as a Wald test statistic, and under Gaussianity and H0 : � = 0,
Wv � �2N . Since the mean and the variance of a �2N random variable is N and 2N , one could
consider a standardised Wald test statistic

SWv =
(� 0TMF� T ) �̂

0V�1�̂�Np
2N

: (17)

Under Gaussianity and H0 : � = 0, SWv !d N (0; 1) as N ! 1. To construct tests of large
N panels, a suitable estimator of V is required. But as was noted in the introduction this is
possible only if we are prepared to impose some restrictions on the structure of V. In the case of
LFPM regressions where the errors are at most weakly cross-sectionally correlated, this can be

7Noting that (1 + �f 0
̂�1�f)�1 = T�1 (� 0TMF �T ), where �f = T�1
PT

t=1 ft, and 
̂ = T�1
PT

t=1(ft��f)(ft��f)0,
it is easily seen that (15) can be written as the widely used expression of the GRS statistic, T�N�m

N (1 +
�f 0
̂�1�f)�1�̂0V̂�1�̂.
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achieved by adaptive thresholding which sets to zero elements of V that are su¢ ciently small,
or by use of shrinkage type estimators that put a substantial amount of weight on the diagonal
elements of the shrinkage estimator of V.
Fan, Liao and Mincheva (2011, 2013) consider consistent estimation of V in the context of an

approximate factor model. They assume V is sparse and propose an adaptive threshold estima-
tor, V̂POET , which they show to be positive de�nite with satisfactory small sample properties.
We refer to the feasible standardized Wald test statistic replacing V with V̂POET as SWPOET

test. Another candidate is the shrinkage estimator of V proposed by Ledoit-Wolf (2004), which
we denote by V̂LW , and refer to the associated standardised Wald statistic as SWLW . Such
"plug-in" approaches are subject to two important shortcomings. First, even if V can be esti-
mated consistently, the test might perform poorly in the case of non-Gaussian errors. Notice
that the standardisation of the Wald statistic is carried out assuming Gaussianity. Further,
consistent estimation of V in the Frobenius norm sense still requires T to rise faster than N ,
and in practice threshold estimators of V are not guaranteed to be invertible for �nite samples
where N >> T .

3.1 A Ĵ� test for large N securities

To avoid some of the above mentioned limitations of the plug-in procedure, we avoid using an
estimator of V altogether and base our proposed test on diagonal elements of V, namely the
N � N diagonal matrix, D = diag(�11; �22; :::; �NN), with �ii = E (u2it), rather than the full
covariance matrix. Speci�cally, we consider the statistic

Wd = (�
0
TMF� T ) �̂

0D�1�̂ =(� 0TMF� T )
NX
i=1

�
�̂2i
�ii

�
; (18)

and its feasible counterpart given by

Ŵd = (�
0
TMF� T ) �̂

0D̂�1
v �̂ =

�
� 0TMF� T
v�1T

� NX
i=1

�
�̂2i
�̂ii

�
; (19)

where �̂ii = û0i:ûi:=T , and the degrees of freedom v = T � m � 1 is introduced to correct for
small sample bias of the test.8 The infeasible statistic, Wd, can also be written as

Wd =
NX
i=1

z2i ; (20)

where
z2i = �̂

2
i (�

0
TMF� T )=�ii. (21)

It is then easily seen that

Ŵd =

NX
i=1

t2i ; (22)

where ti denotes the standard t-ratio of �i in the OLS regression of yit on an intercept and ft;
namely

t2i =
�̂2i (�

0
TMF� T )

v�1T �̂ii
: (23)

8Only securities with �̂ii > 0 are included in Ŵd.
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As with the panel testing strategy developed in Im et al. (2003), a standardized version of Ŵd,
de�ned by (19), can now be considered:

N�1=2
h
Ŵd � E

�
Ŵd

�i
r
V ar

�
Ŵd

� , (24)

where
N�1E

�
Ŵd

�
= E

�
t2i
�
; (25)

N�1V ar
�
Ŵd

�
= N�1V ar

�PN
i=1 t

2
i

�
= N�1PN

i=1 V ar
�
t2i
�
+
2

N

PN
i=2

Pi�1
j=1Cov

�
t2i ; t

2
j

�
. (26)

Under Gaussianity, the individual ti statistics are identically distributed as Student t with v
degrees of freedom, and we have (assuming v = T �m� 1 > 4)

E(t2i ) =
v

v � 2 , V ar(t
2
i ) =

�
v

v � 2

�2
2(v � 1)
v � 4 . (27)

Using (25), (26) and (27), the standardized statistic (24) can now be written as

J�
�
�2N
�
=
N�1=2

h
Ŵd � E

�
Ŵd

�i
r
V ar

�
Ŵd

� =
N�1=2PN

i=1

�
t2i � v

v�2
�q�

v
v�2
�2 2(v�1)

v�4
�
1 + �2N

� ; (28)

where
�2N = N

�1PN
i=2

Pi�1
j=1Corr

�
t2i ; t

2
j

�
; (29)

and
Corr(t2i ; t

2
j) = Cov(t

2
i ; t

2
j)=[V ar(t

2
i )V ar(t

2
j)]

1=2:

To make the J� test operational, we need to provide a large N consistent estimator of �2N .
Second, we need to show that, despite the fact that J� test is standardised assuming ti has a
standard t distribution, the test will continue to have satisfactory small sample performance
even if such an assumption does not hold due to the non-Gaussianity of the underlying errors.
More formally, in what follows we relax the Gaussianity assumption and assume that ut = Q"t,
where Q is an N �N invertible matrix , "t = ("1t; "2t; :::; "Nt)

0, and f"itg is an IID process over
i and t, with means zero and unit variances, and for some c > 0, E(j"itj8+c) exists, for all i and
t. Then E (utu0t) = V = (�ij) = QQ

0; and V is an N � N symmetric positive de�nite matrix,
with �min (V) � c > 0. We allow for cross-sectional error heteroskedasticity, but assume that the
errors are homoskedastic over time. This assumption can be relaxed by replacing the assumption
of error independence by a suitable martingale di¤erence assumption. This extension will not
be attempted in this paper.9

3.2 Sparsity conditions on error correlation matrix

As noted already, we advance on the literature by allowingV = (�ij) to be approximately sparse.
Equivalently, we de�ne sparsity in terms of the elements of the correlation matrix R =

�
�ij
�
,

where �ij = �ij=�
1=2
ii �

1=2
jj . We consider the following two conditions

mN = max
1�i�N

PN
j=1

���ij�� = O(N ��), with 0 � �� < 1=2; (30)

9We conducted an experiment with GARCH(1,1) error and the evidence supports our claim. The results are
reported in Table M6 of the online supplement, which is available upon request.
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and

Tr
�
R2
�
=

NX
i=1

NX
j=1

�2ij = O (N) : (31)

Under (30), mN is allowed to rise with N , but at a slower rate than N1=2. For example, consider
the case where condition (30) applies to the �rst p rows of R (with p �xed), and the rest of the
N � p rows of R are absolute summable, namely

NX
j=1

���ij�� = O
�
N ��

�
, for i = 1; 2; :::; p;

NX
j=1

���ij�� = O(1), for i = p+ 1; p+ 2; :::; N .

Then, since
���ij��2 � ���ij��, it readily follows that
Tr
�
R2
�
=

pX
i=1

 
NX
j=1

�2ij

!
+

NX
i=p+1

NX
j=1

�2ij

�
pX
i=1

 
NX
j=1

���ij��
!
+

NX
i=p+1

NX
j=1

���ij��
� O(pN ��) + (N � p)O(1) = O(N), for 0 � �� < 1=2:

Another important case covered by our sparsity assumption is when uit has the weak factor
structure given by (5), with the factor loadings, 
i, satisfying (6). Denoting the correlation
matrix of the idiosyncratic errors, �t = (�1t; �2t; :::; �Nt)

0 by R� =
�
��;ij

�
, and assuming that

kR�k1 < K; (32)

we have Tr
�
N�1R2

�

�
= O(1). It is now easily seen that conditions (30) and (31) are also satis�ed

under this set up. Denoting the correlation matrix of ut = (u1t; u2t; ::::; uNt)0 by R =
�
�ij
�
we

have

�ij = ~

0
i~
j +

�
��;ii��;jj
�ii�jj

�1=2
��;ij; (33)

where ~
i = 
i=�
1=2
ii = 
i= (


0
i
i + ��;ii)

1=2. Since
���ij�� �Pk

s=1 j~
isj
��~
js��+ ����;ij��, then

mN = kRk1 = maxi

NX
j=1

kX
s=1

j~
isj
��~
js��+max

i

NX
j=1

����;ij��
� k

�
sup
i;s
j~
isj

� 
max
i

NX
j=1

��~
js��
!
+ kR�k1 :

10



Since supi;s j~
isj � supi;s j
isj, and sups
NX
j=1

��~
js�� � sups NX
j=1

��
js�� = O(N �
 ), and by assumption

kR�k1 < K, the condition (30) is met if �� � �
. Also, (noting that supi;s j~
isj � 1)

N�1Tr
�
R2
�
� N�1

NX
i=1

NX
j=1

 
kX
s=1

j~
isj
��~
js��+ ����;ij��

!2

� N�1
NX
i=1

NX
j=1

 
kX
s=1

j~
isj
��~
js��

!2
+ 2N�1

NX
i=1

NX
j=1

kX
s=1

j~
isj
��~
js��+N�1Tr

�
R2
�

�
= N�1

kX
s;s0=1

 
NX
i=1

j~
isj j~
is0j
!2
+ 2N�1

kX
s=1

 
NX
i=1

j~
isj
!2
+N�1Tr

�
R2
�

�
�

�
k2 + 2k

�
N�1

 
sup
s

NX
i=1

j
isj
!2
+N�1Tr

�
R2
�

�
:

Therefore, under conditions (6) and (32), N�1Tr (R2) is bounded in N if 0 � �
 < 1=2:

Remark 1 Our assumption of approximate sparsity allows for a su¢ ciently high degree of cross
error correlations, which is important for the analysis of �nancial data, where it is not guaranteed
that inclusion of common factors in the return regressions will totally eliminate weak error
correlations due to spatial and/or within sector error correlations. It is important that both factor
and spatial type error correlations, representing strong and weak forms of interdependencies, are
taken into account when testing for alpha. By allowing the error term to include weak factors,
one only need to focus on identi�cation of strong factors to be included in ft, which can be
achieved by using market factors or principal components of individual returns.10 The error
associated with the estimation of strong factors is likely to be negligible for N and T su¢ ciently
large. In the present paper we abstract from such estimation errors and condition our analysis
on given values of ft.

3.3 Non-Gaussianity

For the discussion of the e¤ects of non-Gaussianity on the J� test below, it is convenient to
introduce the following scaled error

�it = uit=�
1=2
ii , (34)

so that for each i, �it has zero mean and unit variance. In the case where the errors are
non-Gaussian the skewness and excess kurtosis of uit; are given by 
1;i = E(�3it) and 
2;i =
E(�4it) � 3, respectively, that could di¤er across i. Note that under non-Gaussian errors, ti
is no longer Student t distributed and E(t2i ) and V (t

2
i ) need not be the same across i, due

to the heterogeneity of 
1;i and 
2;i over i. Using a slightly extended version of the Laplace
approximation of moments of the ratio of quadratic forms by Lieberman (1994), we are able to
derive the following approximations of E(t2i ) and V ar(t

2
i ):

11

E
�
t2i
�
=

v

v � 2 +O
�
T�3=2

�
; (35)

10Note also that the consistency of the plug-in procedure proposed by Fan, Liao and Mincheva (2011, 2013)
requires that strong common factors are removed before estimation of the error covariance matrix, V.

11See Lemma 21 in the online supplement to the paper, which is available upon request.
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and

V ar
�
t2i
�
=

�
v

v � 2

�2
2 (v � 1)
(v � 4) +O

�
T�1

�
: (36)

Substituting (35) and (36) into (24) we have the following non-Gaussian version of J�
�
�2N
�
,

de�ned by (28):

J�
�
�2N
�
=
N�1=2PN

i=1

�
t2i � v

v�2
�
+O

�p
N=T 3

�
rh�

v
v�2
�2 2(v�1)

(v�4) +O (T
�1)
i �
1 + �2N

� ,
where �2N is de�ned by (29). When the numerator of the J� statistic is replaced byN

�1=2PN
i=1 (t

2
i � 1),

which is the typical mean adjustment employed by Fan et al. (2015) and Gagliardini et al.
(2016), for example, then the order of the asymptotic error of the numerator of such test sta-
tistics becomes

p
N=T 2. This is one of the reasons why our proposed test performs better than

the ones proposed in the literature, especially in cases where N >> T , and there are signi�cant
departures from Gaussianity. The asymptotic error of using

�
v
v�2
�2 2(v�1)

(v�4) for V ar(t
2
i ) under

non-Gaussianity in the J� test is O(T�1), which is small for su¢ ciently large T .12

3.4 Allowing for error cross-sectional dependence

A second important di¤erence between the J� test and the other tests proposed in the literature
is the inclusion of �2N in the denominator of the test statistic to take account of error correlations.
As it will be shown more formally below, the limiting property of �2N is governed by the sparsity
of V, and is given by13

�2N � (N � 1)�2N ! 0; (37)

as N and T !1; so long as N=T 2 ! 0; and 0 � �
 < 1=2, where

�2N =
2

N(N � 1)
PN

i=2

Pi�1
j=1 �

2
ij. (38)

�2N is known as the average pair-wise squared correlation coe¢ cient and plays a key role in tests
of error cross-sectional correlations in panel regressions. See, for example, Breusch and Pagan
(1980) and Pesaran, Ullah and Yamagata (2008). To see the relationship between �2N and the
sparsity of V, we note that

N�1Tr
�
R2
�
= 1 +

2

N

PN
i=2

Pi�1
j=1 �

2
ij = 1 + (N � 1) �2N ;

which in view of (37) justi�es replacing 1+ �2N by N
�1Tr (R2) for N and T su¢ ciently large so

long as N=T 2 ! 0; and 0 � �
 < 1=2. Therefore, ignoring �2N can lead to serious size�distortions
even for large N and T panels when the errors are cross-correlated and N�1Tr (R2) does not
tend to zero, since the denominator of J� will be under-estimated. The size distortion will be
present even if we impose stronger sparsity conditions on V, for example, by requiring mN to be
bounded in N . It is, therefore, important that �2N (or �

2
N) is replaced by a suitable estimator.

One possible way of estimating �2N would be to use sample correlation coe¢ cients, �̂ij, de�ned
as

�̂ij = �̂ij=�̂
1=2
ii �̂

1=2
jj ; (39)

12 Small sample evidence on the e¢ cacy of using N�1=2PN
i=1

�
t2i � v

v�2

�
over N�1=2PN

i=1

�
t2i � 1

�
is reported

in Table M3 of the online supplement, which is available upon request.
13(37) follows from Lemma 18 in the Online Supplement which is available on request.
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where �̂ij = T�1
PT

t=1 ûitûjt, and ûit is the residuals from the OLS regression of yi onG = (� T ;F).
However, such an estimator is likely to perform poorly in cases where N is large relative to T ,
and some form of thresholding is required, as discussed in the literature on estimation of large
covariance matrices.14 Here we consider the application of the multiple testing (MT) approach to
regularisation of large covariance matrices recently proposed by Bailey Pesaran and Smith (2017,
BPS). However, BPS establish their results for yit� �yi, whilst we need to apply the thresholding
approach to ûit. Second BPS consider exact sparsity conditions on the error covariance matrix,
whilst we allow for much more general sparsity conditions. We extend BPS�s analysis to address
both of these issues.1516 The multiple testing (MT ) estimator of �ij, denoted by ~�ij; is given by

~�ij = �̂ijI
���pv�̂ij�� > cp(N)� ; (40)

where v = T �m� 1,
cp(N) = �

�1
�
1� p

2f(N)

�
; (41)

p is the nominal p-value (0 < p < 1), and f(N) = N �, T = cdNd, where cd, � and d are �nite
positive constants. Using (40), the multiple testing estimator of �2N is given by

~�2N;T =
2

N(N � 1)
PN

i=2

Pi�1
j=1 ~�

2
ij: (42)

Under the sparsity conditions (30) and (31), it can be shown that (N � 1)
�
~�2N;T � �2N

�
! 0 in

probability and in l1-norm so long as N=T 2 ! 0, (or equivalently if d > 1=2) as N and T !1;
jointly, and if

� >
(2� d)
(1� �)'max, (43)

for some small � > 0, where 'max � 1+
���
2;"� ���, where 
2;"� = E �"4�;it�� 3, "�;it is the ith element

of the N�1 error vector "�;t = Q�1
� �t, with �t = (�1t; �2t; ::::; �Nt)

0.17 The critical value function,
cp (N) ; depends on the nominal level of signi�cance, p, and the choice of �, subject to condition
(43). The test results are unlikely to be sensitive to the choice of p, over the conventional values
in the range of 1 to 10 per cent.18 d determines the relative expansion rate of N and T . The
value of ' depends on the degree of dependence of the errors even if they are uncorrelated. In
the case where the errors, "�;it, are Gaussian 
2;"� = 0 and ' � 1, and it is su¢ cient to set
� = 2 � d. However, in the non-Gaussian case, and given the evidence provided by Longin
and Solnik (2001) and Ang, Chen and Xing (2006) on the degree of nonlinear dependence of
asset returns, higher values of � might be required. In simulations and empirical exercises to be
reported below we set f (N) = N � 1, which is equivalent to setting � = 1, which could be too
low in cases where N is large relative to T .19

14See, for example, Cai and Liu (2011), Fan et al. (2013), Bailey Pesaran and Smith (2017), among others.
15Other thresholding estimators of V proposed in the literature can also be used. The e¢ cacy of using the

estimator ~�2N;T over other estimators in small samples is investigated and the results are summarised in Table
M2 in the Online Supplement (available on request).
16Gagliardini, Ossola and Scaillet (2016) employ Bickel and Levina (2008) thresholding (BL). The �nite sample

evidence in BPS shows that the MT estimator uniformly outperform the BL in all the designs considered in BPS.
17See Theorem 4 in Section 4 and its proof in Appendix A.
18In the Monte Carlo experiments reported below, we set p = 10%.
19The robustness of the Ja test against non-Gaussian and nonlinear error dependence is investigated and

reported in Table 4. These results are generally supportive of setting � = 1.
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Accordingly, we propose the following feasible version of the J� statistic

Ĵ� =
N�1=2PN

i=1

�
t2i � v

v�2
�

�
v
v�2
�q

2(v�1)
(v�4)

�
1 + (N � 1)~�2N;T

� ; (44)

where ti is the t-ratio for testing �i = 0, de�ned by (23), v = T � m � 1, and ~�2N;T is given
by (42). The Ĵ� test is robust to non-Gaussian errors and allows for a relatively high degree of
error cross-sectional dependence. In what follows we provide a formal statement of the conditions
under which Ĵ� tends to a normal distribution.

3.5 The Gagliardini et al (2016, GOS) test

GOS propose the following statistic for testing the hypothesis of zero pricing error (GPS, p.1008-
9)

GOS =
N�1=2PN

i=1 (t
2
i � 1)q

2
�
1 + (N � 1)�̂2BL

� ; (45)

where �̂2BL is an estimator of �
2
N based on Bickel and Levina (2008, BL) threshold estimator of

�ij.
20 As noted in the Introduction GOS is closely related to the Ĵ� test statistic, but also di¤ers

from it in a number of important respects. First, GOS does not employ the degrees of freedom
adjustment for the standardisation of t2i , which we have shown will provide more accurate normal
approximation especially when N is much larger than T . Second, for the estimation of large
variance-covariance matrix, the evidence in BPS shows that the MT estimator outperforms the
BL estimator almost uniformly in their experiments, and our use of MT estimator of �2N turns out
to yield much better results. Third, the BL estimation requires cross-validation, which can be
computationally far more costly than the MT estimation. Finally, we derive limiting distribution
of the Ĵ� test statistic under primitive assumptions with fairly general error covariance structure,
while GOS place high level assumption of asymptotic normality of the test statistic (see their
Assumption A.5) or only consider a restrictive error covariance structure (see their Appendix
F).21 We believe that our error speci�cation is valid more generally in empirical asset pricing
literature where not all factors can be identi�ed and estimated, and in consequence one needs
to allow for a much wider degree of error cross correlations to take account of weak unobserved
e¤ects.

3.6 Survivorship bias

Finally, it is important that the application of the Ĵ� test is not subject to the survivorship bias.
The GRS type tests of alpha considers a relatively small number of portfolios over a relatively
large time period to achieve su¢ cient power. By making use of portfolios rather than individual
securities the GRS test is less likely to su¤er from survivorship bias. By comparison tests such
as the Ĵ� test can su¤er from the survivorship bias due to the fact that they are applied to
individual securities directly and obtain power from increases in N as well as from T . To deal
with the survivorship bias we propose that the Ĵ� test is applied recursively to securities that
have been trading for at least T time periods (days or months) at any given time t. The set
of securities included in the Ĵ� test varies over time and dynamically takes account of exit and
entry of securities in the market. The number of securities, N� , used in the test at any point of

20For more details, see Section M1.2 of the online supplement.
21See Assumptions BD.1-3 in GOS.
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time, � ; depends on the choice of T , and declines as T is increased. It is clearly important that
a balance is struck between T and N� . Since the Ĵ� test is applicable even if N is much larger
than T , and given that the power of the Ĵ� test rises both in N and T , then it is advisable to
set T such that min� (N� )=T 2 is su¢ ciently small. This procedure is followed in the empirical
application discussed in Section 6 below, where we set T = 60 and end up with N� in the range
[464; 487], giving min� (N� )=T 2 = 0:12.

4 Summary of the main theoretical results

In this section we provide the list of assumptions and a formal statement of the theorems for the
size and power of the proposed Ĵ�. First, we state the assumptions for establishing the results.

Assumption 1: Them�1 vector of common observed factors, ft, in the return regressions, (2),
are distributed independently of the errors, uit0 for all i, t and t0. The number of factors,
m, is �xed, and the factors can be strong in the sense that

sup
s

NX
i=1

j�isj = O(N ��); 0 � �� � 1 (46)

and satisfy f 0tft � K < 1; for all t. The (m + 1) � (m + 1) matrix T�1G0G; with
G = (� T ;F) ; is a positive de�nite matrix for all T , and as T ! 1, and � 0TMF� T > 0,
whereMF = IT � F (F0F)�1F0.

Assumption 2: The errors, uit, in (2), have the following mixed weak-factor spatial represen-
tation

uit = 

0
ivt + �it; for i = 1; 2; :::; N ; t = 1; 2; :::; T; (47)

where 
i = (
i1; 
i2; :::; 
ik)
0 is a k � 1 vector of factor loadings, vt = (v1t; v2t; :::; vkt)0 is a

k � 1 vector of unobserved common factors and �it are the idiosyncratic components.

(i) The unobserved factors vt, are serially independent and the k elements are independent
of each other, such that vt s IID(0; Ik), 
2;v = E (v4st) � 3, and sups;tE

�
v8+cst

�
< K, for

some c > 0. The factor loadings, 
is for s = 1; 2; :::; k, are bounded, supi;s j
isj < K, and
the factors, vt, are weak in the sense that

sup
s

NX
i=1

j
isj = O
�
N �


�
, with 0 � �
 < 1=2: (48)

(ii) For any i and j, the T pairs of realizations,
��
�i1; �j1

�
;
�
�i2; �j2

�
; :::;

�
�iT ; �jT

�	
; are inde-

pendent draws from a common bivariate distribution with mean E (�it) = 0; V ar (�it) =
��;ii, 0 < c < ��;ii � K, and the covariance E

�
�it�jt

�
= ��;ij.

Writing the error factor speci�cation, (47), in matrix notation we have

ut = �vt + �t; (49)

where ut = (u1t; u2t; :::; uNt)0, � = (
1;
2; :::;
N)
0, and �t = (�1t; �2t; :::; �Nt)

0. Under Assump-
tion 2, and denoting E (�t�

0
t) = V� = (��;ij), we have

E (utu
0
t) = ��

0 +V� = V = (�ij); with �ij = 
 0i
j + ��;ij: (50)

We now make the following further assumption.
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Assumption 3: The covariance matrices V and V� de�ned by (50) are N � N symmetric,
positive de�nite matrices with �min (V) � �min (V�) � c,

"t = ("1t; "2t; ::::; "Nt)
0 = Q�1ut, and "�;t = ("�;1t; "�;2t; ::::; "�;Nt)0 = Q�1

� �t, (51)

where Q and Q� are the Cholesky factors of V and V�, respectively. Matrix Q� is row
and column bounded in the sense that

kQ�k1 < K, and kQ�k1 < K. (52)

f"itg and f"�;itg are IID processes over i and t, with means zero, unit variances, 
2;"� =
E
�
"4�;it
�
� 3, and supi;tE(j"itj

8+c) � K < 1, and supi;tE(j"�;itj
8+c) � K < 1, for some

c > 0.

Remark 2 The above assumptions allow the returns on individual securities to be strongly cross-
sectionally correlated through the observed factors, ft, and allow for weak error cross-correlations
once the e¤ects of strong factors are removed. Such residual interdependencies could arise due
to spatial or other network type spill-over e¤ects not captured by the observed common factors.

Remark 3 Under condition (52)

kV�k1 �


Q�Q

0
�




1 � kQ�k1 kQ�k1 < K = O(1); (53)

nevertheless due to the weak factors we have

kVk1 = sup
j

NX
i=1

j�ijj = O
�
N �


�
;

and allows the overall error variance matrix, V, to be approximately sparse, in contrast to the
literature that requires kVk1 < K. The relaxation of the sparsity condition on V is particularly
important in �nance where security returns could be a¤ected by weak unobserved factors. Using
principal components does not resolve the problem since, principal components provide consistent
estimates of the factors (up to a rotation matrix) only if the factors are strong.

Remark 4 The high-order moment conditions in Assumption 3 allow us to relax the Gaussianity
assumption whilst at the same time ensuring that our test is applicable even if N is much larger
than T .

Remark 5 Assumptions 2(ii) and 3 ensure that the sample cross correlation coe¢ cients of the
residuals, �̂ij, have an Edgeworth expansion which is needed for consistent estimation of �

2
N ,

de�ned by (38). For further details see Bailey et al (2017).

Our main theoretical results are set out in the following theorems. The proofs of these
theorems are provided in Appendix A, and necessary lemmas for the proofs are given in the
online supplement available upon request.

Theorem 1 Consider the return regressions, (2), and the statistic
PN

i=1 z
2
i de�ned by (20).

Suppose that Assumptions 1-3 hold, and N�1Tr (R2) is bounded in N , where R =
�
�ij
�
, �ij =

E(�it�jt), and �it = uit=�
1=2
ii is the standardized error of the return regression equation (2). Then,

under H0 : �i = 0; in (2) for all i;

qNT = N
�1=2

NX
i=1

�
z2i � 1

�
!d N(0; 2!

2); as N !1 and T !1; jointly, (54)
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where
!2 = lim

N!1
N�1Tr

�
R2
�
= 1 + lim

N!1
(N � 1)�2N ;

with
�2N =

2

N(N � 1)
PN

i=2

Pi�1
j=1 �

2
ij. (55)

Theorem 2 Consider the regression model (2), and the statistics
PN

i=1 z
2
i and

PN
i=1 t

2
i , which

are de�ned by (20) and (22), respectively. Suppose that Assumptions 1-3 hold. Then, under the
null hypothesis, H0 : �i = 0 for all i,

SNT = N
�1=2

NX
i=1

�
z2i � t2i

�
!p 0;

as N ! 1 and T ! 1 jointly, so long as N=T 2 ! 0, 0 � �
 < 1=2, where �
 is de�ned by
(48).

Theorem 3 Consider the regression model (2), and suppose that Assumptions 1-3 hold. Then,
under H0 : �i = 0; for all i;

J�
�
�2N
�
=

N�1=2PN
i=1

�
t2i � v

v�2
�q�

v
v�2
�2 2(v�1)

v�4 [1 + (N � 1)�2N ]
!d N (0; 1) ; (56)

so long as N=T 2 ! 0; and 0 � �
 < 1=2; as N ! 1 and T ! 1; jointly, where ti, �2N and �

are de�ned by (23), (55) and (48), respectively, with v = T �m� 1.

Theorem 4 Let
~�2N;T =

2

N(N � 1)
PN

i=2

Pi�1
j=1 ~�

2
ij, (57)

where
~�ij = �̂ijI

���pv�̂ij�� > cp(N)� ; (58)

�ij = E(�it�jt), �it = uit=�
1=2
ii is the standardized error of the return regression equation (2),

v = T �m� 1, �̂ij is de�ned by (39)

cp(N) = �
�1
�
1� p

2f(N)

�
; (59)

p is the nominal p-value (0 < p < 1), and f(N) = N � and T = cdN
d, where cd, � and d are

�nite positive constants. Suppose that Assumptions 1-3 hold andPN
i;j=1

���ij�� = O(N): (60)

Then (N � 1)E
��~�2N;T � �2N �� ! 0, as N and T ! 1, which implies (N � 1)

�
~�2N;T � �2N

�
!p 0,

if N=T 2 = �
�
N1�2d� ! 0, (or if d > 1=2), and if � > (2�d)

(1��)'max, for some small � > 0, where

'max � 1 +
���
2;"� ���, and 
2;"� = E �"4�;it�� 3 (Assumption 3).
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Theorem 5 Consider the panel regression model (2) in asset returns, and suppose that Assump-
tions 1-3 hold. Consider the statistic

Ĵ� =
N�1=2PN

i=1

�
t2i � v

v�2
�

�
v
v�2
�q

2(v�1)
(v�4)

�
1 + (N � 1)~�2N;T

� ; (61)

where ti is given by (23), v = T � m � 1, ~�2N;T is de�ned by (57), using the threshold cp(N)
given by (59), with p (0 < p < 1), f(N) = N �, T = cdNd, where cd, � and d are �nite positive

constants, � > (2�d)
(1��)'max, for some small � > 0, where 'max � 1+

���
2;"� ���, and 
2;"� = E �"4�;it��3.
Then, under H0 : �i = 0 for all i;

Ĵ� !d N (0; 1) ; (62)

if N=T 2 ! 0, as N and T !1, jointly.

For the power of the Ĵ� test, we consider the local alternatives

H0a : �i =
& i

N1=4T 1=2
; with 0 � j& ij <1, for all i: (63)

Theorem 6 Consider the panel regression model (2) in asset returns, and suppose that condi-
tions of Theorem 5 apply. Then, under the local alternatives, H0�, de�ned by (63),

Ĵ� !d N
�
�2=
p
2; 1
�
; (64)

where �2 = limN!1
1
N

PN
i=1 &

2
i =�ii.

Remark 7 This theorem establishes that the Ĵ� test is consistent (in the sense that its power

tends to unity), if �2 > 0, which is satis�ed if limN!1

�
N�1PN

i=1 &
2
i

�
> 0. It is also interesting

to note that the power of the Ĵ� test increases uniformly with N and T , in contrast to the
power of the GRS test that rises with T , only. The Ĵ� test has power even if

PN
i=1 �

2
i does not

increase with N , so long as N increases su¢ ciently slowly as compared to T . To see this, letPN
i=1 �

2
i = �

�
N ��

�
, and note that under the local alternatives, (63), and setting T = �

�
Nd
�
,

we have
PN

i=1 �
2
i =

�
N�1PN

i=1 &
2
i

�
�
�
N1=2�d� = � �N ��

�
, or

�
N�1PN

i=1 &
2
i

�
= �

�
N ��+d�1=2

�
.

Hence, the proposed test will be consistent so long as �� + d � 1=2. The case of �� = 0 is of
particular interest since it does not require the number of securities with non-zero alphas to rise
with N for the test to have power.

5 Small sample evidence based on Monte Carlo experi-
ments

We examine the �nite sample property of the Ĵ� test by Monte Carlo experiments, and compare
its performance to a number of existing tests. For comparison, we consider the GRS test, the
GOS test, and the feasible versions of the standardised Wald tests, SWPOET and SWLW , which
are discussed in Section 3. We also consider the Fmax test recently proposed by Gungor and
Luger (2016, GL). They propose basing a test of H0 : � = 0 on the simulated distribution of
Fmax = max1�i�N Fi, where Fi is a standard F -statistic for testing �i = 0 in the OLS regression
of yit on an intercept and ft. The simulations are carried out by residual resampling allowing
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for cross-sectional correlations and cross-sectional heteroskedasticity using wild bootstraps. GL
employ a bounds testing approach to allow for unconsidered nuisance parameters, which could
result in having inconclusive test outcomes.22

Computational details of the above tests are given in Section M1.2 of the online supplement
available on request.

5.1 Monte Carlo designs and experiments

We consider the following data generating process (DGP)

rit = �i +
mX
`=1

�`if`t + uit; i = 1; 2; ::; N ; t = 1; 2; :::; T , (65)

and calibrate its parameters to closely match the main features of the time series observations
on individual returns and the three Fama-French factors (market factor, HML and SMB) used
in the literature on tests of market e¢ ciency.23 The Monte Carlo (MC) design is also intended
to match the models used for the empirical applications that follow. Accordingly, we set m = 3
and generate the factors as

f`t = 0:53 + 0:06f`;t�1 +
p
h`t �`t; for ` = 1; (Market factor);

f`t = 0:19 + 0:19f`;t�1 +
p
h`t �`t; for ` = 2; (HML);

f`t = 0:19 + 0:05f`;t�1 +
p
h`t �`t; for ` = 3; (SMB);

where �`t � IIDN(0; 1) and24

h`t = 0:89 + 0:85h`;t�1 + 0:11�
2
`;t�1, for ` = 1; Market;

h`t = 0:62 + 0:74h`;t�1 + 0:19�
2
`;t�1, for ` = 2; HML;

h`t = 0:80 + 0:76h`;t�1 + 0:15�
2
`;t�1, for ` = 3; SMB.

The above processes are generated over the period t = �49;�48; ::::0; 1; 2; ::::; T with f`;�50 = 0
and h`;�50 = 1 for ` = 1; 2; 3. Observations t = 1; 2; :::; T are used in the MC experiments.
To capture the main features of the individual asset returns and their cross correlations,

we generate the idiosyncratic errors, ut = (u1t; u2t; :::; uNt)
0, according to ut = Q"t, where

"t = ("1t; "2t; :::; "Nt)
0, and Q = D1=2P with D = diag(�11; �22; :::; �NN)

0, �ii = V ar(uit), and P
being a Cholesky factor of correlation matrix of ut, R, which is anN�N matrix used to calibrate
the cross correlation of returns. For each i, "it is generated such that uit exhibits skewness and
kurtosis which is typical of individual security returns. To this end, R is generated as

R = IN + bb
0 � �B2; (66)

where b = (b1; b2; ::::; bN)0; and �B = diag(b). The correlation matrixR also arises from the single
factor model, uit = 
ivt + �

1=2
�;ii�it, with vt s IID(0; 1); and �it s IID(0; 1), and bi = 
i=�

1=2
ii ,

22We also considered two distribution-free sign tests of �i = 0, proposed by Gungor and Luger (2009). These
tests, referred to as SS and WS tests, are valid for single factor models with errors that are conditionally
symmetric around zero, but they do allow for non-normal errors, are relatively easy to compute, and are applicable
even when N > T . The results of these simulations are reported in Table M4 of the Online Supplement. These
tests are also outperformed by the Ĵ� test.
23SMB stands for "small market capitalization minus big" and HML for "high book-to-market ratio minus

low". See Fama and French (1993), and Appendix C for further details and data sources.
24The estimates used in the generation of the factors and their volatilities are computed using monthly obser-

vations over the period April 1973 - September 2011.
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where �ii = 
2i +��;ii. To generate di¤erent degrees of error cross-sectional dependence, we draw
the �rst and the last N
 (< N) elements of b as Uniform(0:7; 0:9), and set the remaining middle
elements to 0. We set N
 = bN �
c; where bAc is the largest integer part of A. Using �
, our
assumption mN = o(N

1=2) can be expressed by mN = N
�
 with �
 < 1=2. In our experiments,

we consider the values of exponents �
 = 1=4; 1=2, and 3=5. The case of no error cross-sectional
dependence is obtained when N
 = 0, and the error cross-sectional dependence is weak when
�
 < 1=2. The case of �
 = 3=5 is included to see how the Ĵ� test performs when cross-sectional
error correlations are higher than the threshold value of 1=2 allowed by the theory. To save
space, we omit reporting the results for the case where �
 = 0 as they are qualitatively similar
to the case with �
 = 1=4. The present design focusses on the weak factor error correlations and
assumes the idiosyncratic errors, �it, are cross-sectionally uncorrelated. A more general design
that allows for both forms of error correlations will be considered below.
Recently, Fan, Liao and Yao (2015; FLY) have derived the conditions under which the limiting

normal distribution of SWPOET will be asymptotically justi�ed. Under their assumptions the
SWPOET test allows for N > T . However, FLY�s assumptions are much more restrictive than
ours.25 For example, FLY do not cover cases where 1=4 < �
 � 1=2. When �
 = 1=4, FLY
require that T = O (N ln(N)�), for some � > 2: Thus, when �
 = 1=4, so long as T rises slightly
faster than N , the SWPOET test is asymptotically justi�ed. On the other hand, Ĵ� !d N(0; 1)
so long as T = �

�
Nd
�
with d > 2=3 when �
 = 1=4. Therefore, the Ĵ� test is expected to

provide better �nite sample approximation than the SWPOET test, especially when N is larger
than T and/or when error cross-correlation is not very weak. The simulation results that follow
seem to support these theoretical insights.26

To calibrate the variance, skewness and kurtosis of the simulated returns, we used estimated
values of these measures based on residuals of Fama-French regressions for each security over the
estimation windows � =September 1989,..., September 2011, using sample sizes equal to T = 60
months. Speci�cally, for each i = 1; 2; :::; N� we run the Fama-French regressions ri;�t � rf;�t =
�̂i� + �̂1;i� (rm;�t � rf;�t) + �̂2;i�SMBt� + �̂3iHMLt� + ûi;�t, t = 1; 2; :::; 60; at the end of each

month � =September 1989,..., September 2011, and computed �̂ii;� = m̂2;i� , 
̂1;i;� = m̂3;i�=m̂
3=2
2;i�

and 
̂2;i� = m̂4;i�=m̂
2
2;i� � 3 with m̂s;i� = (60)

�1P60
t=1

�
ûi;�t � ûi;�

�s
, and ûi;� = (60)�1

P60
t=1 ûi;�t:

We ended up with 126,181 di¤erent values of �̂ii;� , 
̂1;i;� and 
̂2;i;� estimated for around 476
securities over 265 di¤erent estimation windows. We discarded estimates that lied below the
2.5% and above the 97.5% quantiles to avoid the calibrated values being dominated by extreme
outliers. The same procedure was applied to the estimated factor loadings, �̂`i:� . The means
and medians of �̂ii;� , 
̂1;i;� , 
̂2;i;� and �̂`i;� for ` = 1; 2; 3; and their 2:5% and 97:5% quantiles
are summarized in Table 1. As can be seen from these results there is a considerable degree
of heterogeneity in estimates of the factor loadings and in the measures of deviations, skewness
and kurtosis, across securities and sample periods. The details of the procedure to generate the
non-normal and cross-correlated errors are described in Appendix B.
To estimate size of the tests, we set �i = 0 for all i. To investigate power, we generated �i

as �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c; �i = 0 for i = N� + 1; N� + 2; :::; N .
We considered the values �� = 0:8; 0:9; 1:0, but the power ended up to be very high even for

25In addition to some regularity conditions, FLY require Assumption A.2. which de�nes their version of
"sparseness": Suppose N1=2 (logN)

�
= o (T ) for some 
 > 2; and (i) min�ij 6=0 j�ij j >>

p
(logN) =T ; (ii) at least

one of the following cases holds: (a) DN = 2
PN

i=2

Pi�1
j=1 I (�ij 6= 0) = O(N1=2) and = O

�
T

N1=2(lnN)�

�
or; (b)

DN = O (N) and m2
N = O (1). Then they show that SWPOET !d N (0; 1) ;as N;T !1 jointly (see Proposition

4.2 of FLY).
26This may also explain why FLY test su¤ers from size-distortion as discussed by Bailey, Pesaran and Yamagata

in Fan, Liao and Mincheva (2013), where N is allowed to increase with T �xed.
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�� = 0:8. Therefore, we only report power estimates for �� = 0:80.
All combinations of T = 60; 100 and N = 50; 100; 200; 500 (and 1; 000, 2; 000, 5; 000 for the

Ĵ� test) are considered. All tests are conducted at a 5% signi�cance level. Experiments are
based on R = 2; 000 replications.

5.2 Size and power

Table 2 reports the size and power of the GRS, Ĵ�, GOS, SWPOET , SWLW and Fmax tests of
Gungor and Luger (2016), in the case of models with three factors, under various degrees of
cross-sectional error correlations, as measured by the exponent, �
.
First, consider Panel A of Table 2 which deals with the case where the errors are normally

distributed but cross-sectionally weakly dependent with �
 = 1=4.27 The GRS test when ap-
plicable (namely when T > N) being an exact test, has the correct size. The empirical size of
the Ĵ� test is also very close to the 5% nominal level for all combinations of N and T . Even
when N = 500, the size of the Ĵ� test lies in the range 5.0% to 5.3% for di¤erent values of T . In
contrast, both GOS and SWPOET tests grossly over-reject the null hypothesis, and the degree
of the over-rejection becomes more serious as N increases for a given T . For example, when
T = 60, increasing N from 50 to 500; the size of the GOS test rises from 10.0% to 16.2% and
that of the SWPOET test rises from 18.3% to 53.1%. In line with the discussion in Section 3.4,
the size distortion is mitigated when T increases. For T = 60 and N = 50 the size of the GOS
test and the SWPOET test are 10.0% and 18.3% but they fall to 8.3% and 12.1% when T = 100
and N = 50, respectively. The size properties of the SWLW test are very similar to those of the
SWPOET test. The size of the Fmax test tends to be substantially smaller than the nominal level
for all combinations of N and T (this is in line with the reported results in Gungor and Luger,
2016). The rejection frequencies range between 0.1% and 0.2%. Furthermore, inconclusive test
outcomes are observed more often, ranging between 2.7% and 4.6% of the outcomes.28 The
power of the Ĵ� test is substantially higher than that of the GRS test. For example, for T = 60
and N = 50 the power of the GRS test is 15.0% as compared to 65.9% for the Ĵ� test, although
both tests have similar sizes (4.6% for the GRS test and 7.4% for the Ĵ� test). This is in line
with our discussion at the end of Section 2, and re�ects the fact that GRS assumes an arbitrary
degree of cross-sectional error correlations and thus relies on a large time dimension to achieve
a reasonably high power. In contrast, the power of the Ĵ� test is driven largely by the cross-
sectional dimension. This can be seen clearly from the tabulated results. Keeping N �xed at 50,
and increasing T from 60 to 100 increases the power of the GRS test from 15.0% to 69.2%, whilst
the power of the Ĵ� test (for example) rises from 65.9% to 87.4%. It is interesting that even in
this case (with T much larger than N) the Ĵ� test still has substantially higher power than the
GRS test, with comparable type I errors. The power comparison of the GOS, SWPOET and
SWLW with other tests seem inappropriate, given their large size-distortions. Having said this,
it is perhaps remarkable that the power of the Ĵ� test is comparable to the unadjusted power
of the GOS, SWPOET and SWLW tests. The power of the Ĵ� test uniformly dominates that of
the Fmax test for all experiments. The low power of the Fmax test is partially explained by the
large proportions of inconclusive results. For T = 60, between 29.3% and 45.5% of inconclusive
results are observed for di¤erent N . For T = 100, the proportion of inconclusive results tends
to decline as N increases. For example, increasing N from 50 to 500 lowers the frequencies of
inconclusive results of the Fmax test from 39.0% to 29.1%.

27In line with our theoretical �ndings (see Section 2), the results of cross-sectionally independent case (with
�
 = 0) is qualitatively similar to the case where �
 = 1=4.
28The frequencies of inconclusive outcomes for the Fmax test for di¤erent combinations of N and T are reported

in Table M1 of the Online Supplement.
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Consider now the case where the errors are normally distributed and cross-sectionally rela-
tively strongly dependent. First let us discuss the results when �
 = 1=2. The Ĵ� test seems
quite robust to cross-sectional error correlations, with its size falling in the range 5.1% to 6.6%.
The size of the Ĵ� test for N = 50 and T = 60 is 6.4%, and its power is 53.6%, which still
exceed the power of the GRS test, which is 20.7%. But, as expected, increasing T from 60 to
100 results in the power of the GRS test to rise to 84.9%, which marginally beats the power of
the Ĵ� test at 82.3%. The size distortion of the GOS test becomes more pronounced as the value
of �
 is increased. For �
 = 1=4, the size of the GOS test increases from 12.0% to 15.4% when
�
 is increased from 1=4 to 1=2 in the case of the sample combinations N = 200 and T = 60,
and increases from 16.2% to 19.0% if we consider the larger sample of N = 500 and T = 60.
It is also interesting that when N = 50, increasing T from 60 to 100 does not improve the size
distortion of GOS and SWPOET tests, which amount to 21.5% and 23.3%, respectively.
When �
 = 3=5 > 1=2, out of all the tests considered, only the GRS test is valid so long as

N < T , and indeed has the correct size in such cases. However, interestingly, the size of the Ĵ�
test is also close to its nominal level (at 5.5%-7.2%) even for such a high value of �
. This seems
to be due to the inclusion of (N � 1)~�2N;T in the denominator of the Ĵ� statistic.
We now consider the empirically most relevant case where the errors are non-normal as

well as being cross-sectionally correlated. The e¤ects of non-normal errors on the tests are
documented in Panel B of Table 2. Consider �rst the case where the errors are non-normal
and cross-sectionally weakly correlated (�
 = 1=4). We see that the size of the GRS test is
hardly a¤ected by the types of departures from Gaussianity observed in the regression residuals.
The robustness of the GRS test to non-normal errors of the type encountered in practice has
also been documented by A­ eck-Graves and McDonald (1989). As to be expected from the
theoretical discussions, the Ĵ� test is reasonably robust to non-Gaussian errors, and exhibit
only a very mild tendency of over-rejecting the null hypothesis, even for relatively large N . For
example, whenT = 60, for N = 50, 100, 200, and 500, the sizes of the Ĵ� test are 6:5%, 6:9%,
5:9%, and 6:6%, respectively. The over-rejection of the GOS test and the SWPOET test tends
to be somewhat magni�ed by non-normality. The e¤ects of non-normality upon the size of the
SWLW is less obvious. The size of the Fmax test is again much smaller than the nominal level,
but on average slightly higher than that under normal errors. For example, the average of the
size of the Fmax test for all the combinations of (N; T ) is 0.14% under normal errors, but under
non-normal errors it is 0.25%. Also, on average the incidence of inconclusive outcomes for the
Fmax test is slightly higher under non-normal errors. For example, the average of the frequencies
of the inconclusive outcomes for all the combinations of (N; T ) is 3.7% under normal errors, but
increases to 4:3% under non-normal. Under non-normal errors, the Ĵ� test continues to maintain
its power superiority over the GRS and the Fmax tests. When �
 = 1=2 and 3=5 the size of the Ĵ�
test is reasonably controlled and lies in the range 6.0%-7.9%. The power comparisons discussed
for the weakly cross-sectionally uncorrelated case (�
 = 1=4) also carry over to the present set
of experiments with the much higher degrees of error cross-sectional correlations (�
 = 1=2 and
3=5).
We also carried out additional experiments with much larger values of N , namely N = 1; 000;

2; 000 and 5; 000; whilst keeping T at 60 and 100. We only considered the Ĵ� test for these
experiments, as it is unlikely that other tests considered, given their relatively poor performance
for values of N � 500, would perform better than the Ĵ� test. The results are summarised in
Table 3. As can be seen, the size is satisfactorily controlled with good power properties, only
showing moderate over-rejection under non-Gaussianity for T = 60, and for relatively strong
error cross correlations. For example, for N = 5; 000, when T = 60 with non-normal errors, the
size of the Ĵ� test for �
 = 1=4; 1=2 and 3=5 are 7.8%, 9.5% and 9.3%, whereas, by increasing T
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to 100; for N = 5; 000 the size of the test drops to 7.1%, 5.9% and 7.1%, respectively.
Finally, we investigated the robustness of the Ĵ� test against possible nonlinear dependence

across security returns, discussed in the literature by Longin and Solnik (2001), and Ang, Chen
and Xing (2006), among others. In the presence of nonlinear dependence, correlation of higher
order moments of errors, such as Corr

�
u2it; u

2
jt

�
, could be non-zero even when uit and ujt are

uncorrelated. Table 4 summarises the size and power of the Ĵ� test when the regression errors
follow multivariate t distribution. Under this design N�c securities� squared errors are cross-
correlated, while the errors themselves are uncorrelated, which give rise to ' � 2:5. As can be
seen, the Ĵ� test continues to perform well, giving the correct size and high power, across all of
the MC designs.

5.3 Experiments with mixed factor-spatial error processes

So far we have considered error processes with a weak common factor structure but with cross-
sectionally independent idiosyncratic errors. As we discussed in sub-section 3.2, our test, in-
cluding estimators of the cross-correlation measure (N � 1) �2N , continues to apply when the
eigenvalues of the variance matrix of idiosyncratic errors are bounded. Accordingly, we fur-
ther investigate �nite sample behaviour of the Ĵ� test under the DGPs identical to those
considered for Table 2, except that a spatial autoregressive component is incorporated into
the error generating process. Speci�cally, the error correlation matrix is now given by R =
D
�1=2
� VD�1=2

� , where D� = diag (�ii), V = (�ij), V = 

 0+ (IN � �"W)�1 (IN � �"W0)�1 with


 =
�

1; 
2; :::; 
N
 ; 0; 0; :::; 0

�0
, 
i for i � N
 = bN �
c are drawn from uniform(0.7,0.9) distrib-

ution and 
i = 0 for i = N
 + 1; N
 + 2; ::::; N , �" is a spatial coe¢ cient such that 0 � j�"j < 1,
W0 = (w1;w2; :::;wN) with �

0
Nwi = 1 and its diagonal elements being all zero. Observe that

when N
 = 0, the errors possess pure spatial autoregressive processes, and when �" = 0, the
DGP becomes identical to that for the results reported earlier (in Tables 2 and 3). We have
chosen the values �" = f0:5; 0:8g and a rook form forW = (wij), namely, all elements inW are
zero except wi+1;i = wj�1;j = 0:5 for i = 1; 2; :::; N�2 and j = 3; 4:::; N , with w1;2 = wN;N�1 = 1.
To investigate the importance of allowing for error correlations in the construction of the J� test
we also consider a version of the test that does not control for error cross-correlations. This
version is denoted by J�(0); and obtained by setting �2N = 0 in J�(�

2
N), de�ned by (56). Table

5 reports the results for �" = 0:5, both with and without the weak factor component. In the
latter case 
 = 0, and error cross-correlations are only due to the spatial autregressive e¤ects.
As can be seen from the Panel A of the table, under Gaussianity, the size of the Ĵ� test is well
controlled, with slight over-rejection when T = 60, which disappears when T is increased to 100.
This result holds for all the values of N considered, including N = 5; 000. In contrast, the J�(0)
test over-rejects the null hypothesis, around 10%, for all the combinations of N and T . This
con�rms that using the MT estimator of �2N does a good job at correcting the bias of the J�
test for the spatial error correlations. The over-rejection of the test becomes more pronounced
when the errors are non-Gaussian (see Panel B), but the size distortion becomes rather small
for T = 100, even if N > 1; 000. The results are very similar when the errors have a mixed
spatial-factor models. When �
 = 1=4 and 1=2, there is no noticeable di¤erence in the results
from the case with 
 = 0 for both Gaussian and non-Gaussian errors. When �
 = 3=5, as to be
expected, we observe moderate size distortions, especially when T = 60 and N � 1000. The Ĵ�
test continues to show good power performance for both types of error processes and for di¤erent
values of �
. As noted earlier, there is some loss of power �
 is increased. But the extent of the
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power loss is much smaller than those reported in Table 2.29

5.4 Experiments with time varying betas

We also investigated the robustness of the proposed test to random time variations in �i. In the
case where betas are time-varying (2) can be written as

yit = �it + �
0
itft + uit; (67)

where �it = �+�
0
it(���f ). Suppose that time variations in �it can be modelled by the following

random coe¢ cient model30

�it = �i + �it; (68)

where E (�it) = �i, and �it = (�1;it; �2;it; :::; �m;it)
0 s IID (0;
�;ii) over i and t, and distributed

independently of ujt0 and fs for all i; j; t; t0, and s. Using (68) we now have

yit = �i + �
0
ift +�uit; (69)

where�uit = �0it~ft + uit, and ~ft = ft � �f + �. Suppose that ft is a stationary process with mean
�f and variance 
f . Then for each i, �uit is serially independent with zero means and constant
unconditional variances, namely

E (�uit) = 0, E (�uit�ujt) =
�
��ii = ��;ii + �ii for i = j
��ij = �ij for i 6= j;

where ��;ii = E
�
~f 0t�it�

0
it
~ft

�
= �0
�;ii�+Tr (
f
�;ii). Hence,

Corr (�uit;�ujt) =��ij =
�ij

[1 + (��;ii=�ii)]
1=2 [1 + (��;jj=�jj)]

1=2
; for i 6= j; (70)

and it readily follows that
����ij�� � ���ij��, and the presence of random variations in betas in fact

reduces the degree of error cross sectional dependence. Therefore, the composite errors, �uit,
implied by the time-varying betas satisfy the sparsity conditions (30) and (31). However, the
theoretical analysis become further complicated due to the fact that �uit are now conditionally
heteroskedastic, namely V ar

�
�uit

���~ft� = ~f 0t
�;ii
~ft + �ii. Nevertheless, our preliminary analysis

suggests that the proposed test continues to be applicable in this case so long as ft is stationary
with bounded support and the in-sample mean of ft is su¢ ciently small. A formal proof of
this conjecture is beyond the scope of the present paper. But in support of our conjecture we
provide additional Monte Carlo evidence in Table 6, where we present �nite sample behaviour
of the Ĵ� test under the DGPs identical to those considered for Table 5, except that betas are
now generated to be time varying. Speci�cally, we generated betas as �`it = �`i + �`it with
�`it � IIDN (0; 1), and set yit = �i +

P3
`=1 �`itf`t + uit; i = 1; 2; ::; N ; t = 1; 2; :::; T . The results

summarized in Table 6 are qualitatively similar to those in Table 5, suggesting that allowing for
random time variations in betas do not adversely impact the small sample properties of the Ĵ�
test, and if anything tend to correct the slight over-rejection of the test in the case of models
with time-invariant betas, most likely due to the fact that random-variations in betas reduce
the degree of error cross-correlations.
29The results for �" = 0:8 are qualitatively similar to the results for �" = 0:5, which are summarised in Table

M5 in the Online Supplement (available upon request).
30This set up is su¢ ciently general and accommodates a wide class of random coe¢ cient models considered in

the literature, but it rules out persistent and systematic time variations in betas. In practice, as with the empirical
application discussed in Section 6 below, one can deal with such persistent time variations by considering tests
of LFPM over relatively short time periods, which requires the test to apply in cases where N is much larger
than T .
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6 Empirical Application

6.1 Data description

We consider the application of our proposed Ĵ� test to the securities in the Standard & Poor
500 (S&P 500) index of large cap U.S. equities market. Since the index is primarily intended
as a leading indicator of U.S. equities, the composition of the index is monitored by Standard
and Poor to ensure the widest possible overall market representation while reducing the index
turnover to a minimum. Changes to the composition of the index are governed by published
guidelines. In particular, a security is included if its market capitalization currently exceeds US$
5.3 billion, is �nancially viable and at least 50% of their equity is publicly �oated. Companies
that substantially violate one or more of the criteria for index inclusion, or are involved in merger,
acquisition or signi�cant restructuring are replaced by other companies.
In order to take account for the change to the composition of the index over time, we compiled

returns on all the 500 securities that constitute the S&P 500 index each month over the period
January 1984 to June 2015. The monthly return of security i for month t is computed as
rit = 100(Pit � Pi;t�1)=Pi;t�1 +DYit=12, where Pit is the end of the month price of the security
and DYit is the per cent per annum dividend yield on the security. Note that index i depends
on the month of which the security i is a constituent of S&P 500, � , say, which is suppressed for
notational simplicity.
The time series data on the safe rate of return, and the market factors are obtained from Ken

French�s data library web page. The one-month US treasury bill rate is chosen as the risk-free
rate (rft), the value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from CRSP)
is used as a proxy for the market return (rmt), the average return on the three small portfolios
minus the average return on the three big portfolios (SMBt), and the average return on two
value portfolios minus the average return on two growth portfolios (HMLt). SMB and HML
are based on the stocks listed on the NYSE, AMEX and NASDAQ. All data are measured in
percent per month. See Appendix C for further details.

6.2 Month end test results (September 1989 - June 2015)

Encouraged by the satisfactory performance of the Ĵ� test, even in cases where N is much larger
than T , we apply the Ĵ� test that allows for non-Gaussian and cross-correlated errors to all
securities in the S&P 500 index at the end of each month spanning the period September 1989
to June 2015.31 In this way we minimize the possibility of survivorship bias since the sample
of securities considered at the end of each month is decided in real time. As far as the choice
of T is concerned, to reduce the impact of possible persistence or systematic time variations in
betas, we select a relatively short time period of 60 months. Recall that the experimental results
reported above show that our test is robust to random time variations in betas. Accordingly,
we estimated the CAPM regressions

ri;�t � rf;�t = �̂i� + �̂i� (rm;�t � rf;�t) + ûi;�t; (71)

and the Fama-French (FF) three factor regressions,

ri;�t � rf;�t = �̂i� + �̂1;i� (rm;�t � rf;�t) + �̂2;i�SMBt� + �̂3iHMLt� + ûi;�t; (72)

31In all the empirical applications T < N , and the GRS test can not be computed. We have also decided to
exclude other tests discussed in the Monte Carlo Section on the grounds of their substantial size distortion of the
null and/or low power.
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for t = 1; 2; :::; 60, i = 1; 2; :::; N� , and the month ends, � =September 1989,...,June 2015.
All securities in the S&P 500 index are included except those with less than sixty months of
observations and/or with �ve consecutive zeros in the middle of sample periods.
Table 7 reports summary statistics for p-values of the Ĵ� test, cross-sectional averages of

measures of departure from non-normality and average pair-wise correlations of residuals from
CAPM and FF regressions of securities in the S&P 500 index using �ve year estimation win-
dows (sixty months) at the end of the months of September 1989 to June 2015. The results
con�rm important departures from normality in the residuals. The extent of the departures are
particularly pronounced in the case of kurtosis measures where 
2 = 0 is rejected in 26-29% of
the samples under consideration. Three measures of average pair-wise correlations of residuals
are reported in the last columns of the table, which indicate minor degrees of cross-sectional
correlations. The residuals from FF regressions tend to be cross-sectionally less correlated than
those of CAPM regressions. The p-values range from 0 to 1, with a mean and median of 0:52
and 0:63 for the CAPM model, and 0:46 and 0:50 for the FF model, suggesting important time
variations in the degree of market e¢ ciency.
Figure 1 provides plots of the evolution of p-values of the Ĵ� test based on CAPM and FF

regressions at the end of the months of September 1989 to June 2015. The months at which the
null of market e¢ ciency is rejected at the 5% level based on both CAPM and FF regressions are
August 1998, November 1998-February 1999, August 2007-March 2009 and November 2013-June
2015 (the last data point). The period around August 1998 and December 1998-February 1999
coincide with the Russian �nancial crisis (during August -September 1998) and the subsequent
collapse of Long-Term Capital Management. The period August 2007-March 2009 matches
the recent global �nancial crisis. November 2013-June 2015 corresponds to series of exogenous
economic and �nancial shocks - unrest around Russian, started by the Ukraine crisis, then the
negative oil price shock started around June 2014. In general, the Ĵ� test tends to result in
rejection of the null of market e¢ ciency, in the Sharpe-Lintner sense, during periods of major
�nancial disruptions.

6.3 Long/short equity returns and p-values of the Ĵ� test

As the test results in Figure 1 clearly show important variations in the p-values of the Ĵ� test
over time, it would be interesting to see if such variations are related to the performance of
trading strategies. There are many trading strategies that are designed to exploit non-zero
��s in selection of securities. A prominent example is the long/short equity strategy where
securities are ordered by their predicted returns, from the most positive to the most negative.
The investor then goes long on securities with positive predicted returns and goes short on
securities with negative return predictions. There are many variations in the way that this
strategy is implemented which need not concern us here. What we are interested in is to see if
there are any relationships between the return on long/short (L/S) strategies and the evidence
of market ine¢ ciency as measured by estimated p-values. In time periods where �i = 0 for all i,
the L/S strategy is unlikely to perform better than the market return, and could do even worse
if one allows for transaction costs and management fees. But we would expect a higher return
on the L/S strategies relative to the market if there are positive and negative alphas that the
investor can identify and exploit. Therefore, a priori we would expect an inverse relationship
between p-values and returns on L/S strategies relative to the market.
For return on L/S strategies we used Credit Suisse Long/Short Equity Hedge Fund Index

that are available monthly from December 1993. This is a subset of the Credit Suisse Hedge
Fund Index and provides the aggregate performance of long/short equity funds, and as such is
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not subject to a selection bias. We denote the monthly return on this index by rht and consider
the relationship between ~rht = rh� �rt, where rt is the return on S&P 500 index, and monthly p-
values of the Ĵ� tests, which we denote by �̂t.32 The p-values needed for this purpose are already
reported in Figure 1. Given the considerable volatility of return data, in Figures 2 and 3 we plot
twelve-month moving averages of returns and p-values computed as ~rht(12) = 1

12

P11
j=0 ~rh;t�j,

and �̂t(12) = 1
12

P11
j=0 �̂t�j, respectively. Figure 2 depicts the relationship for p-values computed

using the CAPM regressions, and Figure 3 shows the relationship for the p-values computed
using the FF regressions. There is a signi�cant negative relationship between the p-values and
the excess returns. The value of sample correlation between ~rht(12) and CAPM p-value is -0.28
(s.e. 0.061), giving a t-ratio of -4.6, strongly rejecting the null of zero-correlation.33 The value of
sample correlation between ~rht(12) and FF p-value is almost identical, giving -0.27 (s.e. 0.061)
and a t-ratio of -4.4.

7 Conclusion

In this paper we propose a simple test of Linear Factor Pricing Models (LFPM), the Ĵ� test,
when the number of securities, N , is large relative to the time dimension, T , of the return
series. It is shown that the Ĵ� test is more robust against error cross-sectional correlation
than the standardised Wald tests based on an adaptive thresholding estimator of V, which is
considered by Fan, Liao and Yao (2015). It allows N to be much larger than T , as compared
to alternative tests proposed in the literature. The proposed test also allows for a wide class of
error dependencies including mixed weak-factor spatial autoregressive processes, and is shown
to be robust to random time-variations in betas.
Using Monte Carlo experiments, designed speci�cally to match the correlations, volatilities,

and other distributional features of the residuals of Fama-French three factor regressions of
individual securities in the Standard & Poor 500 index, we show that the proposed Ĵ� test
performs well even when N is much larger than T , and outperform other existing tests such as
the tests of Gagliardini et al (2016), Fan et al (2015) and Gungor and Luger (2016). Also in
cases where N < T and the standard F test due to GRS can be computed, we still �nd that the
Ĵ� test has much higher power, especially when T is relatively small.
Application of the Ĵ� test to all securities in the S&P 500 index with 60 months of return

data at the end of each month over the period September 1989 - June 2015 clearly illustrates
the utility of the proposed test. Statistically signi�cant evidence against Sharpe-Lintner CAPM
and Fama-French three factor models is found during periods of �nancial crisis and market
disruptions. Furthermore, a signi�cant negative correlation is found between a twelve-month
moving average p-values of the Ĵ� test and excess returns of long/short equity strategies over
the period November 1994 to June 2015.

32See Appendix C for further details and the source of the L/S equity hedge fund returns.
33The standard error of the sample correlation �̂T is computed as [(1� �̂2T )=(T � 2)]1=2.
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Table 1: Summary statistics of the estimates used in the Monte Carlo simulations

This table reports the summary statistics for estimated �0s, variance, skewness and kurtosis measures
of residuals from Fama-French (FF) three factor regressions, estimated for all securities in the S&P 500
index with at least sixty months of return data using rolling estimation windows of sixty months, over
the period September 1989 to September 2011. �̂i� is estimated using the FF regressions: ri;�t�rf;�t =
�̂i� + �̂1;i� (rm;�t � rf;�t) + �̂2;i�SMBt� + �̂3iHMLt� + ûi;�t, for i = 1; 2; :::; N� , and t = 1; 2; :::; 60,
where N� denotes the number of securities available at the estimation windows � = September 1989,...,
September 2011. �̂ii;� = m̂2;i� 
̂1;i� = m̂3;i�=m̂

3=2
2;i� and 
̂2;i� = m̂4;i�=m̂

2
2;i� � 3, which are computed

using the FF residuals, where m̂s;i� = (60)�1
P60
t=1

�
ûi;�t � ûi;�

�s
and ûi;� = (60)�1

P60
t=1 ûi;�t, for

s = 2; 3; 4: All securities in the S&P 500 index are included except those with less than sixty months of
observations and/or with �ve consecutive zeros in the middle of sample periods. Under normal errors
we set 
1;i = 
2;i = 0.

Mean Median 2.5% Quantile 97.5% Quantile

�̂ii;� 65.60 44.72 12.81 249.89


̂1;i;� 0.18 0.14 -0.89 1.46


̂2;i;� 1.00 0.38 -0.71 6.74

�̂1;i;� 1.10 0.51 0.24 2.26

�̂2;i;� 0.10 0.04 -0.91 1.47

�̂3;i;� 0.20 0.24 -1.55 1.72
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Table 2: Size and power of GRS, Ĵ�, GOS, SWPOET , SWLW and Fmax tests

This table summarises the size and power of GRS, Ĵ�, GOS, SWPOET , SWLW and Fmax tests of
�i = 0; for i = 1; 2; :::; N , in the case of three-factor models. The observations are generated as
yit = �i +

P3
`=1 �`if`t + uit; i = 1; 2; ::; N ; t = 1; 2; :::; T , f`t = �f` + �f`f`;t�1 +

p
h`t �`t, h`t =

�h` + �1h`h`;t�1 + �2h`�
2
`;t�1, �`t � IIDN(0; 1), t = �49; :::; T with f`;�50 = 0 and h`;�50 = 0, ` =

1; 2; 3, �f` = 0:53; 0:19; 0:19, �f` = 0:06; 0:19; 0:05, �h` = 0:89; 0:62; 0:80, �1h` = 0:85; 0:74; 0:76, �2h` =
0:11; 0:19; 0:15, for ` = 1; 2; 3, respectively. For the size of the test, �i = 0 for all i, and for the power
of the test, �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8, otherwise �i = 0;
where bAc is the largest integer part of A. The idiosyncratic errors, ut = (u1t; u2t; :::; uNt)

0, are
generated as ut = Q"t, where "t = ("1t; "2t; :::; "Nt)

0, andQ = D1=2P withD = diag(�11; �22; :::; �NN )
0,

�ii = E
�
u2it
�
; and P being a Cholesky factor of correlation matrix of ut, R = IN+bb

0� �B2, which is an
N�N matrix used to calibrate the cross correlation of returns, where b = (b1; b2; ::::; bN )0; �B = diag(b).
The �rst and the last N
 (< N) elements of b are generated as Uniform(0:7; 0:9), and the remaining
middle elements are set to 0. We set N
 = bN �
c. We consider the values �
 = 1=4; 1=2 and 3=5. For
the case of non-normal errors, uit are generated following steps 1-4 of the procedure in Appendix B,
using skewness and kurtosis measures, 
1;i and 
2;i. �ii, 
1;i, 
2;i and �`i for ` = 1; 2; 3; are randomly
drawn from their respective empirical distributions, see Subsection 5.1 and Appendix B for details.
GRS is the F test due to Gibbons et al. (1989) which is distributed as FN;T�N�m; and is applicable
when T > N +m + 1. N/A signi�es that the GRS statistic can not be computed. Ĵ� is the propose
large N test which is robust to non-Gaussian errors and cross-sectional correlations; GOS is the test
proposed by Gagliardini et al (2016) de�ned in (45); SWPOET and SWLW are the tests based on the

POET estimator of Fan et al. (2013), V̂
�1
POET , and Ledoit-Wolf (2004) shrinkage estimator, V̂

�1
LW ; as

estimates of V �1 in (17). Fmax is the bounds test of Gungor and Luger (2016), with frequencies of
inconclusive test outcomes reported in Table M1 in the online supplement available on request. Values
of the Ĵ�, GOS, SWPOET and SWLW test statistics are compared to a positive one-sided critical value
of the standard normal distribution. All tests are conducted at the 5% signi�cance level. Experiments
are based on 2,000 replications.

Panel A: Normal Errors
�
 = 1=4 �
 = 1=2 �
 = 3=5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500
Size: �i = 0 for all i

GRS 60 4.6 N/A N/A N/A 5.3 N/A N/A N/A 5.4 N/A N/A N/A
100 5.8 N/A N/A N/A 5.3 N/A N/A N/A 5.5 N/A N/A N/A

Ĵ� 60 7.4 5.3 6.0 5.0 6.4 5.9 5.6 6.1 6.0 5.5 6.7 7.2
100 6.6 5.2 5.5 5.3 6.1 6.6 5.1 5.3 6.7 6.3 5.6 5.8

GOS 60 10.0 10.9 12.0 16.2 11.3 12.6 15.4 19.0 9.8 12.0 14.9 21.4
100 8.3 10.2 9.3 11.7 9.1 9.9 10.6 15.2 8.0 8.9 10.6 13.1

SWPOET 60 18.3 26.2 34.0 53.1 21.5 25.0 30.4 48.6 21.4 23.1 30.6 45.2
100 12.1 14.3 20.4 30.3 23.3 18.7 20.9 27.5 28.9 20.8 24.8 29.0

SWLW 60 17.7 23.3 33.9 56.5 22.3 32.9 46.8 67.6 28.5 50.7 75.0 93.0
100 12.7 16.7 21.6 31.3 16.9 24.1 37.3 50.8 21.6 43.9 76.1 94.0

Fmax 60 0.2 0.1 0.2 0.1 0.3 0.1 0.3 0.2 0.1 0.1 0.1 0.1
100 0.2 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.2 0.1 0.2
Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8, otherwise �i = 0

GRS 60 15.0 N/A N/A N/A 20.7 N/A N/A N/A 24.2 N/A N/A N/A
100 69.2 N/A N/A N/A 84.9 N/A N/A N/A 87.6 N/A N/A N/A

Ĵ� 60 65.9 80.2 93.2 98.8 53.6 67.2 84.1 96.4 42.2 53.9 66.3 82.1
100 87.4 97.4 99.9 100.0 82.3 93.7 98.7 100.0 72.2 86.4 95.0 99.6

GOS 60 72.1 88.0 96.1 99.6 66.1 82.5 94.8 99.6 54.6 70.4 85.9 97.9
100 90.5 97.8 99.8 100.0 86.0 96.0 99.3 100.0 76.6 91.4 97.8 100.0

SWPOET 60 81.9 95.2 99.3 100.0 80.3 91.1 98.6 99.9 77.5 88.3 97.0 99.9
100 93.5 99.3 100.0 100.0 97.3 98.9 99.9 100.0 95.8 97.9 99.8 100.0

SWLW 60 68.8 82.7 93.5 99.7 77.4 89.7 96.7 99.7 86.1 96.4 99.9 100.0
100 86.2 95.1 99.5 100.0 94.3 98.5 99.8 100.0 96.8 99.8 100.0 100.0

Fmax 60 11.5 12.5 17.6 22.2 12.5 15.1 16.6 22.7 11.6 13.8 17.8 24.3
100 29.5 41.3 51.4 67.4 32.2 41.5 51.4 66.4 30.4 40.9 51.9 66.2
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Table 2 � Continued

Panel B: Non-normal Errors
�
 = 1=4 �
 = 1=2 �
 = 3=5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500
Size: �i = 0 for all i

GRS 60 5.5 N/A N/A N/A 5.4 N/A N/A N/A 5.2 N/A N/A N/A
100 4.4 N/A N/A N/A 5.4 N/A N/A N/A 5.3 N/A N/A N/A

Ĵ� 60 6.5 6.9 5.9 6.6 6.0 6.9 6.5 6.3 6.3 7.9 6.4 7.6
100 5.6 6.7 6.4 7.2 6.6 6.2 7.0 7.8 7.8 7.3 6.7 6.9

GOS 60 9.2 10.8 13.3 19.2 11.4 14.0 16.0 20.3 9.5 14.7 14.8 21.8
100 8.1 7.8 9.6 12.1 8.7 10.0 11.2 14.6 8.5 9.8 10.1 13.4

SWPOET 60 18.7 27.2 37.8 56.8 21.6 26.5 34.1 51.6 22.8 27.5 32.2 48.0
100 11.7 17.2 21.6 33.4 30.7 20.5 22.8 31.7 30.6 21.3 23.8 31.2

SWLW 60 17.5 23.2 33.2 56.0 21.2 34.8 47.2 69.3 27.9 49.2 77.2 93.4
100 12.1 17.2 21.6 31.0 15.6 26.3 37.3 53.3 21.4 43.6 78.1 94.6

Fmax 60 0.3 0.2 0.4 0.2 0.2 0.4 0.1 0.1 0.2 0.2 0.2 0.1
100 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.1
Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8, otherwise �i = 0

GRS 60 15.7 N/A N/A N/A 19.0 N/A N/A N/A 23.1 N/A N/A N/A
100 70.9 N/A N/A N/A 83.7 N/A N/A N/A 88.3 N/A N/A N/A

Ĵ� 60 68.4 82.4 93.6 99.5 54.2 69.2 84.4 97.6 42.6 57.1 66.7 84.6
100 88.7 96.7 99.8 100.0 82.2 93.3 99.0 100.0 73.4 86.0 95.3 99.7

GOS 60 75.2 86.7 96.6 99.9 66.8 83.6 94.8 99.7 56.6 71.8 85.6 98.2
100 90.4 98.4 99.9 100.0 85.3 95.3 99.6 100.0 76.4 91.0 97.5 99.9

SWPOET 60 83.8 95.2 99.4 100.0 80.3 92.1 98.7 99.9 74.7 89.1 97.6 100.0
100 93.6 99.4 100.0 100.0 96.7 98.5 99.9 100.0 93.9 98.2 99.9 100.0

SWLW 60 70.4 81.9 93.8 99.7 77.4 90.4 97.1 99.9 84.9 96.1 99.7 100.0
100 87.0 94.8 99.0 99.9 93.6 98.6 99.8 100.0 97.3 99.7 100.0 100.0

Fmax 60 12.1 13.8 19.0 23.9 12.0 15.2 18.8 23.7 12.2 13.1 18.3 23.4
100 31.8 41.4 51.6 67.7 30.9 40.2 53.0 68.5 30.3 40.6 51.8 64.8
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Table 3: Size and power of Ĵ� test for N = 1; 000; 2; 000 and 5; 000 in the case of
models with three factors

This table summarises the size and power of the Ĵ� test in the case of models with three factors with
focus on large values of N . The data is generated as described in the notes to Table 2.

�
 = 1=4 �
 = 1=2 �
 = 3=5

(T;N) 1; 000 2; 000 5; 000 1; 000 2; 000 5; 000 1; 000 2; 000 5; 000

Panel A: Normal Errors
Size: �i = 0 for all i
T = 60 5.9 5.3 6.3 5.9 6.2 6.3 6.5 7.0 8.1
T = 100 4.8 4.8 4.3 7.3 6.4 6.8 7.0 7.0 7.2
Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8, otherwise �i = 0
T = 60 100.0 100.0 100.0 99.2 100.0 100.0 92.6 98.5 100.0
T = 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Panel B: Non-normal Errors
Size: �i = 0 for all i
T = 60 6.3 7.6 7.8 7.7 8.4 9.5 7.5 8.6 9.3
T = 100 4.8 6.0 7.1 6.9 7.0 5.9 8.1 7.0 7.1
Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8, otherwise �i = 0
T = 60 100.0 100.0 100.0 99.6 100.0 100.0 94.6 98.6 99.9
T = 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 5: Size and power of Ĵ� test with mixed spatial-factor models with the value
of spatial parameter �" = 0:5

Data is generated using the same set up as in Table 2, except that an spatial autoregressive component
is added to the error generating process. Speci�cally, the error correlation matrix is given by R =

D
�1=2
� VD

�1=2
� , where D� = diag (�ii), V = (�ij), V = 

 0+(IN � �"W)�1 (IN � �"W0)�1 with 
 =�


1; 
2; :::; 
N
 ; 0; 0; :::; 0
�0
, 
i for i � N
 = bN �
c are drawn from uniform(0.7,0.9) distribution and


i = 0 for i = N
+1; N
+2; ::::; N , �" is spatial coe¢ cient such that 0 � j�"j < 1,W0= (w1;w2; :::;wN )
with � 0Nwi = 1 and its diagonal elements being all zero. Observe that when N
 = 0, errors possess pure
spatial autoregressive processes, and when �" = 0 the DGP becomes identical to that for the results
reported in Table 2. We have chosen the value �" = 0:5 and a rook form for W = (wij), namely, all
elements in W are zero except wi+1;i = wj�1;j = 0:5 for i = 1; 2; :::; N � 2 and j = 3; 4:::; N , with
w1;2 = wN;N�1 = 1. For the purpose of comparison to Ĵ�, we also provide results for J�(0) test de�ned
by (56) with �2N = 0, which does not control for error cross-correlations, evaluated at. Panel A of the
table reports size and power of Ĵ� and J�(0) tests with normal errors, and Panel B reports size and
power with non-normal errors. All tests are conducted at the 5% signi�cance level. Experiments are
based on 2,000 replications. See also the notes to Table 2.

Panel A: Normal Errors with �" = 0:5
Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (
 = 0)
Ĵ� 60 6.8 7.2 7.6 7.7 8.0 6.7 8.9 55.6 72.1 87.0 97.6 99.7 100.0 100.0

100 6.8 6.8 6.1 5.9 5.8 5.8 5.1 82.0 94.4 99.0 100.0 100.0 100.0 100.0
J�(0) 60 10.1 10.5 10.5 11.1 10.8 8.9 10.6 63.9 78.4 91.4 98.3 99.8 100.0 100.0

100 10.9 10.7 9.6 9.9 9.4 9.0 9.7 88.1 96.6 99.4 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=4)
Ĵ� 60 5.9 5.6 6.2 6.3 6.5 7.0 7.9 57.6 70.0 86.0 97.8 99.5 100.0 100.0

100 6.4 6.4 6.8 6.7 4.8 5.8 5.9 82.6 93.6 99.1 100.0 100.0 100.0 100.0
J�(0) 60 9.5 9.7 9.8 9.3 9.2 9.5 9.3 66.4 77.6 89.6 98.6 99.7 100.0 100.0

100 10.5 12.1 10.9 10.4 8.9 9.6 9.9 87.5 96.2 99.6 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=2)
Ĵ� 60 6.9 7.0 7.3 7.5 6.8 7.2 7.0 55.1 70.6 86.4 96.7 99.7 99.9 100.0

100 6.3 6.5 6.7 7.1 5.4 6.9 6.2 82.3 93.9 99.1 100.0 100.0 100.0 100.0
J�(0) 60 10.9 11.1 10.5 10.7 10.4 10.0 9.1 65.1 79.2 90.7 98.0 99.8 100.0 100.0

100 10.5 10.7 11.0 11.5 9.4 11.5 10.6 88.1 96.2 99.6 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 3=5)
Ĵ� 60 6.8 7.5 6.2 8.4 8.8 9.7 9.8 53.5 71.1 84.9 96.4 99.7 100.0 100.0

100 6.3 6.7 6.8 6.8 6.0 7.3 8.6 82.5 92.8 98.5 100.0 100.0 100.0 100.0
J� (0) 60 10.8 12.2 10.1 12.1 11.8 12.4 11.6 63.7 79.0 89.9 97.8 99.9 100.0 100.0

100 11.0 11.3 11.2 11.0 10.8 11.2 12.2 89.3 96.0 99.4 100.0 100.0 100.0 100.0
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Table 5 � Continued

Panel B: Non-normal Errors with �" = 0:5
Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (
 = 0)
Ĵ� 60 7.8 7.2 7.8 8.7 8.8 9.1 10.1 58.9 72.6 88.4 97.5 99.7 100.0 100.0

100 7.2 6.8 6.9 6.4 6.3 7.2 7.3 82.2 93.1 99.1 99.9 100.0 100.0 100.0
J�(0) 60 11.9 11.1 11.7 12.2 11.8 12.0 12.4 68.0 79.0 92.3 98.6 99.9 100.0 100.0

100 10.8 10.9 12.2 10.2 10.6 11.9 11.6 87.7 96.1 99.3 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=4)
Ĵ� 60 7.5 6.8 8.1 7.3 8.2 8.6 10.1 57.9 72.4 87.4 97.8 99.5 100.0 100.0

100 6.9 6.5 7.2 5.4 7.7 7.8 6.8 82.5 93.8 98.9 100.0 100.0 100.0 100.0
J�(0) 60 11.2 9.8 12.1 9.8 11.2 11.8 13.3 66.5 79.3 91.4 98.6 99.6 100.0 100.0

100 10.6 10.9 12.0 9.5 11.8 11.5 11.1 86.9 96.2 99.4 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=2)
Ĵ� 60 7.5 7.9 8.1 8.5 8.2 9.4 11.2 55.8 71.7 85.9 97.0 99.6 99.9 100.0

100 7.9 7.1 8.2 6.7 6.5 7.6 7.3 80.0 94.2 98.7 100.0 100.0 100.0 100.0
J�(0) 60 11.4 12.3 12.5 12.0 11.8 13.0 13.5 65.5 79.6 90.8 98.2 99.8 100.0 100.0

100 11.6 11.2 12.3 11.6 11.2 12.7 12.1 85.6 96.7 99.3 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 3=5)
Ĵ� 60 7.0 7.0 7.5 8.3 10.3 9.5 12.5 53.9 71.5 85.6 96.4 99.5 100.0 100.0

100 6.7 7.5 7.3 6.5 8.4 7.7 8.6 81.3 92.0 98.7 100.0 100.0 100.0 100.0
J�(0) 60 11.5 11.7 11.2 12.9 13.5 12.5 14.8 64.9 78.9 90.3 98.3 99.6 100.0 100.0

100 12.0 12.2 13.1 11.0 13.7 12.8 13.5 87.8 96.1 99.3 100.0 100.0 100.0 100.0
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Table 6: Size and power of Ĵ� test with time-varying beta and mixed spatial-factor
model (spatial parameter �" = 0:5)

The data generating process is yit = �i+
P3
`=1 �`itf`t+uit; i = 1; 2; ::; N ; t = 1; 2; :::; T , �`it = �`i+�`it

with �`it � IIDN (0; 1), which are drawn independently over ` = 1; 2; 3; i and t. See Table 5 and the
notes to Table 2 for further details.

Panel A: Normal Errors
Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (
 = 0)
60 6.0 5.8 6.1 6.3 4.7 4.6 4.1 51.0 64.6 80.3 93.3 98.8 99.5 99.8
100 5.8 5.5 4.5 3.5 3.4 2.9 2.2 78.0 90.4 97.8 99.9 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=4)
60 5.4 5.2 5.5 4.6 4.0 4.6 3.1 50.1 64.0 78.5 93.5 98.5 99.8 99.8
100 5.8 5.4 5.0 4.9 2.9 2.9 2.1 77.0 89.8 98.0 99.9 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=2)
60 6.4 6.0 5.5 5.7 4.7 4.3 3.9 50.0 62.4 79.3 92.4 98.3 99.6 100.0
100 5.8 5.0 5.9 5.5 3.8 3.7 3.1 77.1 89.9 97.4 99.9 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 3=5)
60 6.1 6.8 5.5 6.2 5.6 6.0 5.5 47.3 63.7 77.1 91.8 98.3 99.6 100.0
100 5.8 5.4 5.8 4.8 4.2 4.7 3.7 77.6 88.7 97.1 99.9 100.0 100.0 100.0

Panel B: Non-normal Errors
Pure spatial models (
 = 0)
60 7.1 6.2 6.1 6.4 5.2 5.8 4.7 52.7 65.6 80.3 94.1 98.4 99.6 100.0
100 5.9 5.7 5.8 4.4 3.8 3.9 2.8 77.7 90.4 97.9 99.9 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=4)
60 6.5 5.1 6.1 5.4 5.7 4.5 4.2 51.3 64.1 80.1 93.5 98.1 99.8 100.0
100 5.8 5.6 6.1 4.0 4.9 4.2 2.6 76.7 90.1 97.5 99.9 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=2)
60 6.5 6.5 6.9 6.7 5.3 5.8 5.3 48.8 64.0 78.3 91.9 97.9 99.5 100.0
100 6.6 6.3 5.9 4.8 4.2 4.6 3.0 73.8 90.5 97.2 99.8 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 3=5)
60 6.2 6.9 5.7 5.7 8.2 6.2 6.2 47.3 64.2 77.6 92.4 97.4 99.1 99.9
100 6.2 6.8 6.3 4.8 5.6 4.7 3.8 76.2 88.5 96.8 100.0 100.0 100.0 100.0
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Table 7: Summary Statistics of p-values, departure from non-normality and
average pair-wise correlations of residuals

This table provides summary statistics for p-values of the Ĵ� tests applied to residuals from CAPM and
FF regressions of securities in the S&P 500 index using rolling sixty months estimation windows over the
period from September 1989 to June 2015. The table also reports cross-sectional averages of measures
of departure from non-normality and average pair-wise correlations of the residuals. Results reported in
panel A of the table refer to CAPM regression residuals, ri;�t� rf;�t = �̂i� + �̂1;i� (rm;�t � rf;�t) + ûi;�t,
for t = 1; 2; :::; 60, and i = 1; 2; :::; N� , and the months ending in � =September 1989,..., June
2015. 
̂`� = N�1

�

PN�
i=1 
̂`;i� for ` = 1; 2; 
̂1;i� = m̂3;i�=m̂

3=2
2;i� and 
̂2;i� = m̂4;i�=m̂

2
2;i� � 3 with

m̂s;i� = (60)
�1P60

t=1 û
s
i;�t. Skewness statistic for testing 
1;i� = 0 is SKi� = T 
̂21;i�=3 s �21; and the Kur-

tosis statistic for testing 
2;i� = 0 isKRi� = T 
̂22;i�=24 s �21. Jarque and Bera (1987) statistic for testing

1;i� = 
2;i� = 0 is SKi�+KRi� s �22. Rejection frequency refers to the proportion of normality tests re-

jected out of theN� tests carried at the end of each month, � . �̂� =
2

N(N�1)
PN�1
i=1

PN
j=i+1 �̂�;ij , �̂

2
� N;T =

2
N(N�1)

PN�1
i=1

PN
j=i+1 �̂

2
�;ij with �̂�;ij = û0i:� ûj:�=(û

0
i:� ûi:� )

1=2(û0j:� ûj:� )
1=2, ûi:� = (ûi;�1; ûi;�2:::; ûi;�T )

0,

and ~�2� N;T is the MT estimator de�ned by (57). Results reported in panel B of the table refer to

FF regression residuals: ri;�t � rf;�t = �̂i� + �̂1;i� (rm;�t � rf;�t) + �̂2;i�SMBt� + �̂3iHMLt� + ûi;�t, for
t = 1; 2; :::; 60, and i = 1; 2; :::; N� , and the month ending in � =September 1989,..., June 2015.

Average skewness

& excess kurtosis

measures

Rejection frequency

for normality tests at �

Average pair-wise

correlations

N�
p-value

of Ĵ�

̂1� 
̂2� 
1;i� = 0 
2;i� = 0


1;i� = 0


2;i� = 0
�̂� �̂2� N;T ~�2� N;T

Panel A: CAPM regressions

Mean 479 0.52 0.20 1.20 0.24 0.29 0.32 0.02 0.03 0.01

Median 480 0.63 0.19 1.16 0.24 0.28 0.31 0.01 0.03 0.01

Min 464 0.00 -0.01 0.38 0.13 0.12 0.15 0.01 0.02 0.00

Max 487 1.00 0.37 2.16 0.35 0.46 0.47 0.08 0.05 0.02

stand. dev. 5.9 0.38 0.09 0.46 0.06 0.09 0.08 0.03 0.01 0.00

Panel B: Fama-French regressions

Mean 479 0.46 0.19 1.06 0.22 0.26 0.28 0.01 0.03 0.00

Median 480 0.50 0.20 1.02 0.23 0.25 0.28 0.01 0.03 0.00

Min 464 0.00 0.02 0.38 0.12 0.11 0.14 0.00 0.02 0.00

Max 487 0.98 0.34 1.91 0.31 0.40 0.42 0.03 0.03 0.01

stand. dev. 5.9 0.33 0.09 0.37 0.05 0.07 0.07 0.01 0.00 0.00
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Figure 1: Plots of p-value of the Ĵ� test

This �gure presents plots of the evolution of p-values of the Ĵ� test based on CAPM and FF regressions
of securities in the S&P 500 index using �ve year estimation windows (sixty months) at the end of the
months from September 1989 to June 2015. Reported plots are the p-values of the Ĵ� test, which are
computed using CAPM regressions, ri;�t � rf;�t = �̂i� + �̂i� (rm;�t � rf;�t) + ûi;�t and FF three factor
regressions, ri;�t�rf;�t = �̂i� + �̂1;i� (rm;�t � rf;�t)+ �̂2;i�SMBt� + �̂3iHMLt� + ûi;�t, for t = 1; 2; :::; 60,
and i = 1; 2; :::; N� , of the month ends estimation windows � =September 1989,..., June 2015.
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Figure 2: Plots of Hedge Fund Index relative to S&P 500 returns and p-values of
the Ĵ� test based on CAPM regressions

This �gure presents monthly rate of returns of Credit Suisse Core Long/Short Equity Hedge Fund
Index relative to S&P 500 returns, and p-values of the Ĵ� test applied to CAPM regressions over
the period November 1994 to June 2015. The long/short return variable, ~rht(12), is computed as
~rht(12) =

1
12

P11
j=0 ~rh;t�j , where ~rht = rht � rt, rht is the return on Credit Suisse Core Long/Short

Equity Hedge Fund Index, and rt is the return on S&P 500 index. �̂� (12) = 1
12

P11
j=0 �̂��j , where �̂�

is the p-values of the Ĵ� test at the end of month � ; computed using CAPM regressions estimated on
rolling samples of sixty months. See the notes to Table 7 for details of CAPM regressions.

Figure 3: Plots of Hedge Fund Index relative to S&P 500 returns and p-values of
the Ĵ� test based on FF regressions

This �gure presents monthly rate of return of Credit Suisse Core Long/Short Equity Hedge Fund Index
relative to S&P 500 return, and p-value of the Ĵ� test based on Fama-French regressions over the
period November 1994 to June 2015. See the notes to Figure 2, and the notes to Table 7 for details of
Fama-French regressions.
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Appendices

Appendix A: Proofs of the theorems
In this appendix we provide proofs of the theorems set out in Section 4 of the paper. These proofs
make use of Lemmas which are provided, together with their proofs, in an online supplement available
on request.

For further clarity and convenience we summarize some repeatedly used notations below:

MG = (mtt0) = IT �PG; PG = G
�
G0G

��1
G0, G = (�T ;F) , v = Tr(MG) = T �m� 1; (A.1)

MF =
�
mF;tt0

�
= IT � F

�
F0F

��1
F0, HF = hh

0 = (htht0) (A.2)

with h = (ht) =MF�T , wT = Tr(HF ) = h
0h = � 0TMF�T ,

where F is a T �m matrix, and �T = (1; 1; :::; 1)
0 is a T � 1 vector of ones. Also, before providing a

proof of Theorem 1, we state a theorem due to Kelejian and Prucha (2001) which is used to establish
it.

Lemma 1 (Central Limit Theorem for Linear Quadratic Forms) Consider the following linear quadratic
form

QN = "
0A"+ b0" =

NX
i=1

NX
j=1

aij"i"j +

NX
i=1

bi"i

where f"i, i = 1; 2; :::; Ng are real valued random variables, and aij and bi denote real valued coe¢ cients
of the quadratic and linear forms. Suppose the following assumptions hold: Assumption KP1: "i, for
i = 1; 2; :::; N , have zero means and are independently distributed across i. Assumption KP2: A is
symmetric and supi

PN
j=1 jaij j < K. Also N�1PN

i=1 jbij2+"0 < K for some "0 > 0. Assumption KP3:
supiEj"ij4+"0 < K for some "0 > 0. Then, assuming that N�1V ar (QN ) � c for some c > 0,

QN � E (QN )p
V ar (QN )

!d N(0; 1).

Proof. See Kelejian and Prucha (2001, Theorem 1, p. 227).

Proof of Theorem 1. Noting that HF = hh
0, where h = (h1; h2; :::; hT )0 =MF�T , we can write

z2i = w�1T �
0
iHF �i

with wT = � 0TMF�T . Then,

NX
i=1

z2i = w�1T

NX
i=1

�0iHF �i = w�1T

�XT

t=1
utht

�0
D�1
�

�XT

t=1
utht

�
;

where D� = diag(�11; �22; :::; �NN ). Using (49)

N�1=2
NX
i=1

z2i = w�1T

NX
i=1

N�1=2�0iHF �i

= w�1T

�
N�1=2

XT

t=1
(�vt + �t)ht

�0
D�1
�

�XT

t=1
(�vt + �t)ht

�
= aNT + 2bNT + cNT ; (A.3)
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where

aNT = w�1T N�1=2
�XT

t=1
htv

0
t�
0
�
D�1
�

�XT

t=1
ht�vt

�
;

bNT = w�1T N�1=2
�XT

t=1
htv

0
t�
0
�
D�1
�

�XT

t=1
ht�t

�
, and

cNT = w�1T N�1=2
�XT

t=1
ht�

0
t

�
D�1
�

�XT

t=1
ht�t

�
: (A.4)

Consider the �rst term, aNT , and note that

aNT = w�1T N�1=2
XT

t=1

XT

r=1
hthrv

0
t�
0D�1

� �vr

= w�1T N�1=2
XT

t=1

XT

r=1
hthr

 
NX
i=1

~
 0ivtv
0
r~
i

!
;

where
~
i =


ip
�ii

=

ip


 0i
i + ��;ii
: (A.5)

Equivalently, letting dT = w
�1=2
T

PT
1=1 htvt, and noting that for any conformable real symmetric posi-

tive semi-de�nite matrices A and B, Tr (AB) � Tr (A)�max (B) (this result is repeatedly used below),
we have

aNT = N�1=2
NX
i=1

~
 0i

��
w
�1=2
T

XT

1=1
htvt

��
w
�1=2
T

XT

t=1
htvt

�0�
= N�1=2

NX
i=1

~
 0idTd
0
T ~
i

�
 
N�1=2

NX
i=1

~
 0i~
i

!
�max

�
dTd

0
T

�
�
 
N�1=2

NX
i=1

~
 0i~
i

!�
d0TdT

�
:

But since ht are given constants such that
PT
t=1 h

2
t = wT , and by assumption vt is IID(0; Ik); it then

readily follows that d0TdT !p 1, and hence

aNT = Op

 
N�1=2

NX
i=1

~
 0i~
i

!
:

Also, it is clear from (A.5) that j~
isj � 1 and j~
isj � j
isj, and

N�1=2
NX
i=1

~
 0i~
i = N�1=2
NX
i=1

kX
s=1

~
2is � N�1=2
kX
s=1

 
NX
i=1

j~
isj
!

� N�1=2
kX
s=1

 
NX
i=1

j
isj
!
� N�1=2 sup

s

NX
i=1

j
isj ;

and hence by Assumption 2, N�1=2PN
i=1 ~


0
i~
i = O

�
N �
�1=2

�
, and overall aNT = Op

�
N �
�1=2

�
. Simi-
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larly,

bNT = w�1T N�1=2
�XT

t=1
htv

0
t�
0
�
D�1
�

�XT

t=1
ht�t

�
= w�1T N�1=2

XT

t=1

XT

r=1
hthrv

0
t�
0D�1

� �r

= w�1T N�1=2
XT

t=1

XT

r=1
hthr

NX
i=1

 
�ir

�
1=2
ii

!
~
 0ivt

= N�1=2
�
w
�1=2
T

XT

t=1
htv

0
t

�"
w
�1=2
T

XN

i=1

XT

t=1
ht~
i

 
�it

�
1=2
ii

!#

= N�1=2

"
w
�1=2
T

XT

t=1

XN

i=1
ht
�
d0T ~
i

� �it

�
1=2
ii

!#
:

Since by Assumption, �it and vt (and hence dT ) are independently distributed, it follows that E(bNT ) =
0. Consider now V ar (bNT ), and note that for given values of 
i we have (recall that �it is independent
over t and

PT
t=1 h

2
t = wT )

V ar (bNT ) = N�1w�1T
XT

t=1

XT

r=1

XN

i=1

XN

j=1
hthr

�
~
 0iE

�
dTd

0
T

�
~
j
�
E

 
�it�jr

�
1=2
ii �

1=2
jj

!

= N�1w�1T
XT

t=1

XN

i=1

XN

j=1
h2t
�
~
 0iE

�
dTd

0
T

�
~
j
� ��;ij

�
1=2
ii �

1=2
jj

!

= N�1
XN

i=1

XN

j=1

�
~
 0iE

�
dTd

0
T

�
~
j
� ��;ij

�
1=2
ii �

1=2
jj

!
:

Also E (dTd0T ) = E
h�
w
�1=2
T

PT
1=1 htvt

��
w
�1=2
T

PT
1=1 htv

0
t

�i
= Ik, and

V ar (bNT ) = N�1
XN

i=1

XN

j=1

�
~
 0i~
j

� ��;ij

�
1=2
ii �

1=2
jj

!
:

Further ����� ��;ij

�
1=2
ii �

1=2
jj

����� = j��;ij jr
(
 0i
i + ��;ii)

�

 0j
j + ��;jj

� =
����;ij��r�


0i
i
��;ii

+ 1
��


0j
j
��;jj

+ 1
� � ����;ij�� :

Therefore, (recalling that supj;s
��~
js�� < K, and j~
isj � j
isj)

V ar (bNT ) � N�1
XN

i=1

XN

j=1

��~
 0i~
j�� ����;ij�� � N�1
XN

i=1

XN

j=1

Xk

s=1
j~
isj

��~
js�� ����;ij��
� sup

j;s

��~
js�� �N�1
Xk

s=1

XN

i=1
j~
isj

�XN

j=1

����;ij����
� KN�1

Xk

s=1

XN

i=1
j
isj

�XN

j=1

����;ij��� :
But by condition (52) in Assumption 3 and ��;ii > c > 0 imply supj

PN
i=1

����;ij�� < K (also see (53)),

and by (48) we have sups
PN
i=1 j
isj = O

�
N �


�
. Then it follows that V ar (bNT ) = O

�
N �
�1

�
, and

bNT = O
�
N �
=2�1=2

�
. Therefore, bNT is dominated by aNT and using these results in (A.3) we have

N�1=2
NX
i=1

z2i = w�1T N�1=2
�XT

t=1
ht�

0
t

�
D�1
�

�XT

t=1
ht�t

�
+Op

�
N �
�1=2

�
: (A.6)
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Now using (51) we can express the above as

N�1=2
NX
i=1

z2i = w�1T N�1=2
�XT

t=1
ht"

0
�;tQ

0
�

�
D�1
�

�XT

t=1
htQ�"�;t

�
+Op

�
N �
�1=2

�
:

where "�;t s IID(0; IN ). After some re-arrangement of the terms we now obtain

N�1=2
NX
i=1

�
z2i � 1

�
= N�1=2w�1T

�XT

t=1
ht"

0
�;t

��
Q0�D

�1
� Q�

��XT

t=1
ht"�;t

�
+Op

�
N �
�1=2

�
qNT = N�1=2 �x0TAxT � Tr (A)�+N�1=2 [Tr(A)�N ] +Op

�
N �
�1=2

�
: (A.7)

where
xT = w

�1=2
T

XT

t=1
ht"�;t; and A = Q0�D

�1
� Q�: (A.8)

First consider the deterministic component of qNT , and using (50) and under Assumption 3 we have

R = ~�~�
0
+D�1=2

� Q�Q
0
�D

�1=2
� ; (A.9)

where ~� = (~
1; ~
2; :::; ~
N )
0. Then

Tr (R) = N =
XN

i=1
~
 0i~
i + Tr (A) :

But, as before,

Tr
�
~�~�

0�
=

XN

i=1
~
 0i~
i =

XN

i=1

Xk

s=1
~
2is (A.10)

�
Xk

s=1

XN

i=1
j
isj � k sup

s

XN

i=1
j
isj = O

�
N �


�
:

Hence
N�1=2 [Tr(A)�N ] = O

�
N �
�1=2

�
;

and (A.7) can be written as

qNT = zNT +O
�
N �
�1=2

�
+Op

�
N �
�1=2

�
; (A.11)

where
zNT = N�1=2x0T ~AxT ; with ~A = A�N�1Tr (A) IN : (A.12)

We now apply the Central Limit Theorem for Linear Quadratic Forms due to Kelejian and Prucha
(2001, KP) to zNT , which is reproduced for convenience as Lemma 1 above. We �rst establish the
conditions required by KP�s theorem (see Lemma 1). To this end we �rst note that E (xT ) = 0, and

V ar (xT ) = w�1T E

��XT

t=1
ht"�;t

��XT

t=1
ht"�;t

�0�
= w�1T

XT

t=1
h2tE

�
"�;t"

0
�;t

�
= IN .

Denote the ith element of xT by xi;T and note that it is given by xi;T = w
�1=2
T

PT
t=1 ht"�;it = w

�1=2
T h0"�;i,

where "�;i = ("�;i1 "�;i2; :::; "�;iT )
0, with an abuse of the notation. Then xi;T = w

�1=2
T "0�;iMF�T , and

x2i;T = w�1T "
0
�;iHF"�;i, hence, for a given T , the elements of xT have zero means, a unit variance and

are independently distributed as required by KP�s theorem. Using results on the moments of quadratic

forms it is also easily established that E(x6i;T ) = w�3T E
�
"0�;iHF"�;i

�3
= 15 + O(v�1) � K uniformly
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over i (see Lemma 11), and hence condition KP1 of the KP theorem (Lemma 1) is met. Consider now
matrix ~A de�ned by (A.12) and note that it is symmetric and we have


~A




1
�


A�N�1Tr (A) IN




1 � kAk1 +N

�1Tr (A)

and using (A.8)


~A



1

�


Q0�D�1

� Q�



1 +N

�1Tr
�
Q0�D

�1
� Q�

�
�

�
1

mini(�ii)

�
kQ�k1 kQ�k1 +N

�1Tr
�
Q0�Q�

�
�max

�
D�1
�

�
�

�
1

mini(�ii)

��
kQ�k1 kQ�k1 +N

�1Tr
�
Q0�Q�

��
:

But under condition (52) and noting that �ii > c > 0, then


~A



1
= sup

i

XN

j=1
j~aij j < K,

and condition KP2 of Lemma 1 is met. To establish condition KP3, we note that

Tr
�
~A
�
= 0; T r

�
~A2
�
= Tr

�
A2
�
�N�1 [Tr (A)]2 :

Using (A.9), let B = D�1=2
� Q�Q

0
�D

�1=2
� , and note that

Tr(R2) = Tr
�
B2
�
+ Tr

��
~�0~�
�2�

+ 2Tr
�
~�0B~�

�
: (A.13)

Also
Tr
�
~�0B~�

�
� Tr

�
~�0~�
�
�max (B) ;

and in view of (52) we have

�max (B) = �max
�
Q0�D

�1
� Q�

�
�


�Q0�D�1

� Q�
�


1
�
�

1

mini(�ii)

�
kQ�k1 kQ�k1 < K,

and hence (using (A.10)):

Tr
�
~�0B~�

�
= O

�
N �


�
: (A.14)

Also (recalling that j~
isj � j
isj)

Tr
�
~�0~�
�2

= Tr

�XN

i=1
~
i~


0
i

�2
=
XN

i=1

XN

j=1
Tr
�
~
i~


0
i~
j~


0
j

�
=

XN

i=1

XN

j=1

�
~
 0i~
j

�2
=
Xk

s=1

Xk

s0=1

XN

i=1

XN

j=1

��~
is~
js~
is0~
js0��
�

Xk

s=1

Xk

s0=1

XN

i=1

XN

j=1
j
isj

��
js�� j
is0 j ��
js0��
� k2

�
sup
i

XN

i=1
j
isj

�2
= O

�
N2�


�
: (A.15)

Hence, using (A.14) and (A.15) in (A.13) we have

Tr
�
B2
�
= Tr(R2) +O

�
N2�


�
:

Also in view of (A.8)

Tr
�
B2
�
= Tr

h
D�1=2
� Q�Q

0
�D

�1=2
� D�1=2

� Q�Q
0
�D

�1=2
�

i
= Tr

h�
Q0�D

�1
� Q�

�2i
= Tr

�
A2
�
:
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To summarize
Tr(A) =

p
N +O

�
N �


�
; and Tr

�
A2
�
= Tr(R2) +O

�
N2�


�
;

which also yield

Tr
�
~A2
�

= Tr
�
A2
�
�N�1 [Tr (A)]2

= Tr(R2) +O
�
N2�


�
�N�1

hp
N +O

�
N �


�i2
= Tr(R2) +O

�
N2�


�
+O

�
N2�
�1

�
� 1:

Therefore,

N�1Tr
�
~A2
�
= N�1Tr(R2) +O

�
N2�
�1

�
; (A.16)

which is bounded in N under the assumptions that N�1Tr
�
R2
�
is bounded in N and 0 � �
 < 1=2.

Furthermore, it is readily seen that

N�1Tr
�
R2
�
= N�1

NX
i=1

NX
i=1

�2ij = 1 + (N � 1)�2N :

Finally, using (A.12)

V ar (zNT ) = N�1V ar
�
x0T ~AxT

�
= N�1E

��
x0T ~AxT

�2�
:

Consider

�
x0T ~AxT

�2
= w�2T

 
TX
t=1

TX
t0=1

htht0"
0
�;t
~A"�;t0

!2

= w�2T

TX
t=1

TX
t0=1

TX
r=1

TX
r0=1

htht0hrhr0
�
"0�;t ~A"�;t0

��
"0�;r ~A"�;r0

�
:

Since, by assumption, "�;t are serially independent, then using the results on moments of the quadratic
forms, we have

E

��
"0�;t ~A"�;t

�2�
=

NX
i=1

NX
j=1

NX
i0=1

NX
j0=1

~aij~ai0j0E
�
"�;it"�;jt"�;i0t"�;j0t

�

= 
2;"�

NX
i=1

~a2ii +

 
NX
i=1

~aii

!2
+ 2

NX
i=1

NX
j=1

~aij~aji;

where 
2;"� = E("4�;it)� 3, and by assumption
���
2;"� ��� < K. Also

E
h�
"0�;t ~A"�;t

��
"0�;r ~A"�;r

�i
=
h
Tr
�
~A
�i2

for t 6= r.

For r = t 6= t0 = r0,

E
h�
"0�;t ~A"�;t0

��
"0�;t ~A"�;t0

�i
= E

h�
"0�;t0 ~A"�;t

��
"0�;t ~A"�;t0

�i
= E

�
"0�;t0 ~A~A"�;t0

�
= Tr(~A2):
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Similarly, for r0 = t 6= t0 = r; we have E
h�
"0�;t ~A"�;t0

��
"0�;t0

~A"�;t

�i
= Tr(~A2). Using these results

w2TE

��
x0T ~AxT

�2�
=

 
TX
t=1

h4t

!24
2;"� NX
i=1

~a2ii +

 
NX
i=1

~aii

!2
+ 2

NX
i=1

NX
j=1

~aij~aji

35
+

"
TX
t=1

TX
r=1

h2th
2
r �

 
TX
t=1

h4t

!#h
Tr
�
~A
�i2

+ 2

"
TX
t=1

TX
r=1

h2th
2
r �

 
TX
t=1

h4t

!#
Tr(~A2):

But
�PT

t=1

PT
r=1 h

2
th
2
r

�
=
�PT

t=1 h
2
t

�2
;
PN
i=1 ~aii = Tr(~A) = 0,

PN
i=1

PN
j=1 ~aij~aji = Tr(~A2), and we

have

V ar (zNT ) = N�1E

��
x0T ~AxT

�2�
= 
2;"�w

�2
T

 
N�1

NX
i=1

~a2ii

! 
TX
t=1

h4t

!
+2w�2T

 
TX
t=1

h2t

!2
N�1Tr(~A2);

and, further noting that
PT
t=1 h

2
t = wT ; then

V ar (zNT ) = 2N
�1Tr(~A2) +


2;"�

�PT
t=1 h

4
t

�
w2T

 
N�1

NX
i=1

~a2ii

!
;

and using (A.16)

V ar (zNT ) = 2N
�1Tr(R2) +


2;"�

�PT
t=1 h

4
t

�
w2T

 
N�1

NX
i=1

~a2ii

!
+O

�
N2�
�1

�
;

where by assumption N�1Tr
�
R2
�
is bounded in N . Also, using (S.15) in Lemma 8,

PT
t=1 h

4
t = O(T ),

and���
2;"� ��� �PT
t=1 h

4
t

�
w2T

 
N�1

NX
i=1

~a2ii

!
� K

�PT
t=1 h

4
t

�
w2T

�
N�1Tr(~A2)

�
� K

T

�
N�1Tr(R2)

�
+O

�
T�1N2�
�1

�
= O(T�1) +O

�
T�1N2�
�1

�
:

Therefore
V ar (zNT ) = 2N

�1Tr(R2) +O(T�1) +O
�
N2�
�1

�
: (A.17)

which is bounded for any N and T , so long as N�1Tr
�
R2
�
is bounded in N , and 0 � �
 < 1=2. Also

using (A.11), and under the same conditions, and as N and T !1, in any order,

lim
N;T!1

V ar (qNT ) = 2!
2 > 0;

as required. This result also ensures that condition KP3 of Lemma 1 is satis�ed and therefore, we also
have qNT !d N(0; 2!

2); as N and T !1, in any order.

Proof of Theorem 2. We have

SNT = N�1=2
NX
i=1

�
z2i

�
1� 1

��1ii �̂ii

��
; (A.18)

where z2i = �
0
iHF �i=wT ; with �i = ui:=�

1=2
ii being the standardised error of the return equation (2) and

wT = �
0
TMF�T , and �̂ii = û0i:ûi:=T . Write Xi = ��1ii ~�ii and note that by assumption �ii > 0, and by

construction only securities with �̂ii > c > 0 are included in the Ĵ� test, so that

SNT = N�1=2
NX
i=1

�
z2i

�
1� 1

Xi

��
; (A.19)
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where Xi = �0iMG�i=v; with v = T � m � 1 and MG = (mtt0) ; de�ned by (A.1). Also, by (35),
E
�
t2i
�
= E

�
z2i =Xi

�
= v= (v � 2)+O

�
T�3=2

�
for each i, and by Lemma 11 E

�
z2i
�
= E

�
�0iHF �i=wT

�
=

w�1T Tr (HF ) = 1; for all i. Thus, we have

E (SNT ) = O
�p

N=T 2
�
. (A.20)

Next, for all i = 1; 2; :::; N we have Xi > 0; and (A.19) can be written as

SNT = N�1=2
NX
i=1

z2i

"
(1�Xi) +

(1�Xi)2

Xi

#
= S1;NT + S2;NT ;

where

S1;NT = N�1=2
NX
i=1

z2i (1�Xi) ; (A.21)

and

S2;NT = N�1=2
NX
i=1

z2i (1�Xi)
2

Xi
: (A.22)

But since Xi > c > 0, and z2i (1�Xi)
2 � 0, then

jS2;NT j � c�1N�1=2
NX
i=1

z2i (1�Xi)
2 ;

and
E jS2;NT j � c�1N1=2 sup

i
E
h
z2i (1�Xi)

2
i
: (A.23)

But

E
h
z2i (1�Xi)

2
i
= E

�
z2iX

2
i

�
� 2E

�
z2iXi

�
+ E

�
z2i
�

= v�2w�1T E
h�
�0iHF �i

� �
�0iMG�i

�2i� 2v�1w�1T E
��
�0iHF �i

� �
�0iMG�i

��
+ 1:

Now using results from Lemma 11 we have

E
��
�0iHF �i

� �
�0iMG�i

��
= vwT +O(v);

E
h�
�0iHF �i

� �
�0iMG�i

�2i
= v2wT +O(vwT );

which yields

E
h
z2i (1�Xi)

2
i
= O

�
T�1

�
; uniformly across i. (A.24)

Using this result in (A.23) we obtain

E jS2;NT j � c�1N1=2 sup
i
E
h
z2i (1�Xi)

2
i
= O

 p
N

T

!
;

and by Markov inequality we have S2;NT !p 0, so long as N=T 2 ! 0. Therefore, to establish SNT !p 0;
it is su¢ cient to show that S1;NT !p 0. By Lemma 17 we have

N�1=2
NX
i=1

z2i (Xi � 1) = N�1=2
NX
i=1

z2�;i (X�;i � 1) +Op
�
N �
�1=2

�
,

46



where z2�;i = �0iHF�i= (wT��;ii) > 0, X�;i = �0iMG�i= (v��;ii) > 0. Using results on the moments of
quadratic forms, by Lemma 15, we have

N�1=2
NX
i=1

E
�
z2�;i (X�;i � 1)

�
=

P
t h
2
tmtt

vwT

2;"�N

�1=2
NX
i=1

NX
`=1

~q4�;i`;

where 
2;"� = E("4�;it)� 3 (and
���
2;"� ��� < K by assumption), ~q�;i` = q�;i`=�

1=2
�;ii with q�;i` being such that

Q� = (q�;i`),Q� de�ned by (51). But as 0 � mtt � 1 (MG = (mtt0)) by Lemma 8, v�1w
�1
T

PT
t=1 h

2
tmtt �

v�1w�1T
PT
t=1 h

2
t = v�1 as

PT
t=1 h

2
t = wT , and also that 0 �

PN
`=1 ~q

4
�;i` � 1, as

PN
`=1 ~q

2
�;i` = 1 (sincePN

`=1 q
2
�;i` = ��;ii), and

���
2;"� ��� � K, we have

N�1=2
NX
i=1

E
�
z2�;i (X�;i � 1)

�
= O

�p
N=T

�
.

Furthermore,

V ar

"
N�1=2

NX
i=1

z2�;i (X�;i � 1)
#
=

1

N

X
i

V ar
�
z2�;i (X�;i � 1)

�
+
1

N

X
i6=j

Cov
�
z2�;i (X�;i � 1) ; z2�;j (X�;j � 1)

�
:

We �rst note that

V ar
�
z2�;i (X�;i � 1)

�
= E

h
z4�;i (X�;i � 1)

2
i
�
�
E
�
z2�;i (X�;i � 1)

�	2
.

As has shown above,
E
�
z2�;i (X�;i � 1)

�
= O

�
T�1

�
uniformly over i. Next consider

E
h
z4�;i (X�;i � 1)

2
i
= E

�
z4�;iX

2
�;i

�
� 2E

�
z4�;iX�;i

�
+ E

�
z4�;i
�
. (A.25)

But, using results on the moments of quadratic forms, by Lemma 11, we have

E
�
z4�;i
�
= 3 +O

�
T�1

�
, E
�
z4�;iX�;i

�
= 3 +O

�
T�1

�
and E

�
z4�;iX

2
�;i

�
= 3 +O

�
T�1

�
; (A.26)

uniformly over i. Substituting (A.26) into (A.25) we have

E
h
z4�;i (X�;i � 1)

2
i
= O

�
T�1

�
;

therefore,
V ar

�
z2�;i (X�;i � 1)

�
= O

�
T�1

�
uniformly over i. We conclude that

1

N

X
i

V ar
�
z2�;i (X�;i � 1)

�
= O

�
T�1

�
:

Secondly, by Lemma 16,

1

N

X
i6=j

Cov
�
z2�;i (X�;i � 1) ; z2�;j (X�;j � 1)

�
= O

�
T�1

�
+O(N=T 2):
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In sum, under Assumptions 1-3, SNT !p 0, so long as 0 � �
 < 1=2, N=T 2 ! 0 as N and T ! 1;
jointly.

Proof of Theorem 3. Under Assumptions 1-3, using Theorem 2 we have

N�1=2
NX
i=1

�
z2i � t2i

�
=[2
�
1 + (N � 1)�2N

�
]1=2 !p 0;

where z2i is de�ned by (20), so long as (N �1)�2N = O(1), N=T 2 ! 0; and 0 � �
 < 1=2; as N and T !
1; jointly. Under these conditions, (by Lemma 4) it follows thatN�1=2PN

i=1

�
t2i � v

v�2

�
=[2
�
1 + (N � 1)�2N

�
]1=2

has the same limit distribution as N�1=2PN
i=1

�
z2i � 1

�
=[2
�
1 + (N � 1)�2N

�
]1=2, which is shown to be

standard normal by Theorem 1, and the desired result now follows, observing that limT!1
�

v
v�2

�2
2(v�1)
v�4 =

2.

Proof of Theorem 4. Let  NT =
1
N

PN
i;j=1

�
~�2ij � �2ij

�
, and note that

 NT =
1

N

PN
i;j=1

�
~�ij + �ij

� �
~�ij � �ij

�
;

and since
��~�ij�� < 1 and ���ij�� < 1, it also follows that

j NT j �
2

N

PN
i;j=1

��~�ij � �ij�� : (A.27)

Further, letting Iij = I
����̂ij�� > v�1=2cp(N)

�
, we have

~�ij � �ij = �̂ijIij � �ij =
�
�̂ij � E

�
�̂ij
��
� Iij +

�
E
�
�̂ij
�
� �ij

�
� Iij � �ij (1� Iij) ;

and hence

1

2
E j NT j � 1

N

PN
i;j=1E

����̂ij � E ��̂ij���� Iij�+ 1

N

PN
i;j=1

��E ��̂ij�� �ij��E (Iij)
+
1

N

PN
i;j=1

���ij�� [1� E (Iij)] = A1 +A2 +A3: (A.28)

Now using (39) we note that

�̂ij =
u0i:MGuj:

(u0i:MGui:)
1=2
�
u0j:MGuj:

�1=2 ;
where ûi: = MGui:. Also, since MG is an (T � T ) idempotent matrix of rank v = T �m � 1, there
exists an orthogonal T � T transformation matrix L (LL0 = IT ), de�ned by

LMGL
0 =

 
Iv 0

0 0

!
: (A.29)

Hence, setting
�i: = �

�1=2
ii Lui:; (A.30)

�̂ij can be written equivalently in terms of the �rst v elements of �i: = (�i1; �i2; :::; �iT )
0 as (see Lemma

19)

�̂ij =

Pv
t=1 �it�jt�Pv

t=1 �
2
it

�1=2 �Pv
t=1 �

2
jt

�1=2 ;
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where �it =
PT
t0=1 ltt0�it0 ; and ltt0 is the (t; t

0) element of L. Also as shown in Lemma 19, for each i;
�it�s are independently distributed over t, and

E (�it) = 0, E
�
�2it
�
= 1, E

�
�it�jt

�
= �ij ,

�ij(4; 0) = E(�4it)� 3; �ij(0; 4) = E(�4it)� 3;
�ij(3; 1) = E(�3it�jt)� 3�ij ; �ij(1; 3) = E(�it�

3
jt)� 3�ij ;

�ij(2; 2) = E(�2it�
2
jt)� 2�2ij � 1:

Furthermore, by Lemma 19

E
�
�̂ij
�
= �ij +

aij
v
+O

�
v�2
�
; (A.31)

V ar
�
�̂ij
�
=

bij
v
+O

�
v�2
�
; (A.32)

where

aij = �
1

2
�ij(1� �2ij) +

3

8
�ij [�ij(4; 0) + �ij(0; 4)]�

1

2
[�ij(3; 1) + �ij(1; 3)] +

1

4
�ij�ij(2; 2);

and

bij = (1� �2ij)2 +
1

4
�2ij [�ij(4; 0) + �ij(0; 4)]� �ij [�ij(3; 1) + �ij(1; 3)] +

1

2
(2 + �2ij)�ij(2; 2):

Hence, using (A.31),
��E ��̂ij�� �ij�� � 1

v jaij j+O
�
T�2

�
, and we have the following bound on the second

term of (A.28):

A2 =
1

N

PN
i;j=1

��E ��̂ij�� �ij��E (Iij) � 1

vN

PN
i;j=1 jaij j+O

�
NT�2

�
:

Furthermore, since �ij are bounded, and by assumption
PN
i;j=1

���ij�� = O(N), we have

1

Nv

PN
i;j=1 jaij j

� 1

2

1

Nv

PN
i;j=1

���ij�� ��1� �2ij��+ 38 1

Nv

PN
i;j=1

���ij�� j�ij(4; 0) + �ij(0; 4)j
+
1

4

1

Nv

PN
i;j=1 j�ij(3; 1) + �ij(1; 3)j+

1

2Nv

PN
i;j=1

���ij�� j�ij(2; 2)j
But

1

Nv

PN
i;j=1

���ij�� j�ij(2; 2)j � sup
ij
j�ij(2; 2)j

1

Nv

PN
i;j=1

���ij�� = O(v�1);

and hence
1

Nv

PN
i;j=1 jaij j �

1

4

1

Nv

PN
i;j=1 j�ij(3; 1) + �ij(1; 3)j+O(v

�1): (A.33)

Also

1

Nv

PN
i;j=1 j�ij(3; 1) + �ij(1; 3)j

� 1

Nv

PN
i;j=1

��E(�3it�jt) + E(�it�3jt)��+ 6

Nv

PN
i;j=1

���ij��
=

1

Nv

PN
i;j=1

��E(�3it�jt) + E(�it�3jt)��+O(v�1);
and as established in Lemma 20 (see (S.80) ) we have

1

Nv

PN
i;j=1

��E(�3it�jt) + E(�it�3jt)�� = O
�
T�1N2�
�1

�
+O(T�1);
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which if used in (A.33) yields

1

Nv

PN
i;j=1 jaij j = O

�
v�1N2�
�1

�
+O(v�1):

and overall for the second term of (A.28) we have

A2 =
1

N

PN
i;j=1

��E ��̂ij�� �ij��E (Iij) = O(T�1N2�
�1) +O(v�1) +O
�
Nv�2

�
;

and since by ssumption �
 � 1=2, and N=T 2 ! 0, as N and T !1; then

A2 ! 0: (A.34)

To deal with the �rst and the third terms of (A.28) we need to distinguish between values of
���ij�� that

are strictly away from zero, namely those values that satisfy the condition
���ij�� > �min > 0, and those

values that are zero or very close to zero. Note that for values of
���ij�� su¢ ciently close to zero, in the

sense that
���ij�� � �N��� , for some � > 0 and �� > 1, we have

34

A3 �
1

N

PN
i;j=1

���ij�� � �N1��� ! 0, if �� > 1.

Therefore, without loss of generality, we only consider the case where
���ij�� > �min > 0, for all i and j.

In this case we have

A3 =
1

N

PN
i;j=1;j�ijj>�min

���ij��E (1� Iij) � 1

N

PN
i;j=1;j�ijj>�min E (1� Iij) : (A.35)

Further, since E (1� Iij) = Pr
����̂ij�� � v�1=2cp(N)

�
, then using result (A.7) in Lemma 4 of BPS (2017,

supplement) we have (for some small � > 0)

Pr
h���̂ij�� � v�1=2cp(N)

���ij 6= 0i � Ke
�(1��)

2

v

�
j�ijj� cp(N)p

v

�2
bij [1 + o(1)] :

Using this result in (A.35) now yields

A3 � KNe
�(1��)

2

v

�
�min�

cp(N)p
v

�2
bmax [1 + o(1)] :

where bmax = supij bij < K, which can be written equivalently as

A3 � Ke
�v(1��)

2

"�
�min�

cp(N)p
v

�2
� 2 ln(N)
v(1��)

#
bmax [1 + o(1)] :

Noting that c2p(N)=v and ln(N)=v have the same rate of convergence and both ! 0, as N and T !1,
it then follows that35

A3 ! 0; for some �min > 0: (A.36)

Finally, consider the �rst term of (A.28) and write it as

A1 =
1

N

PN
i;j=1E

����̂ij � E ��̂ij���� Iij� = 1

N

PN
i;j=1

q
V ar(�̂ij)E (jzij j � Iij) ; (A.37)

34Note that the sparsity condition given by (60) can be violated if �� < 1.
35Note that since by assumption T = cdN

d, with d > 1=2, then ln(N)=v = (T=(T �m� 1)) c�1d N�d ln(N)! 0,
as N !1. Recall that m, the number of factors, is �xed as T !1.
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where zij =
�
�̂ij � E(�̂ij)

�
=
q
V ar

�
�̂ij
�
, and V ar

�
�̂ij
�
is given by (A.32). Also by Cauchy�Schwarz

inequality (noting that E
�
z2ij

�
= 1)

E (jzij j � Iij) = E
�
jzij j I

h���̂ij�� > v�1=2cp(N)
i�
�
h
E
�
jzij j2

�i1=2 �
E
n
I
h���̂ij�� > v�1=2cp(N)

io�1=2
�

n
Pr
h���̂ij�� > v�1=2cp(N)

io1=2
� 1:

Using this result and V ar
�
�̂ij
�
from (A.32) in (A.37) and distinguishing between non-zero and near

zero values of �ij ; we have

A1 = N�1
NP

i;j=1
E
����̂ij � E ��̂ij���� Iij� �

N�1

 r
bmax
v

+O
�
v�1
�!PN

i;j=1

n
Pr
h���̂ij�� > v�1=2cp(N)

i �����ij�� = 0o1=2
+N�1

 r
bmax
v

+O
�
v�1
�!PN

i;j=1

n
Pr
h���̂ij�� > v�1=2cp(N)

�����ij�� > �min

io1=2
= A11 +A12:

Under the sparsity conditions, (30) and (31), the maximum number of non-zero
���ij�� is given by m2

N ,
and we have

A12 �
1

N

�p
bmaxp
v

+O
�
v�1
��
m2
N = O

�
m2
N

N
p
v

�
; (A.38)

where mN = O(N ��). Hence, since by assumption �� < 1=2, then it follows that A12 ! 0, as N and
v !1. For A11, which relates to the near zero values of

���ij��, making use of result (A.5) in Lemma 4
of BPS (2017, supplement) we have

A11 � K

�
N2 �m2

N

�
N

�p
bmaxp
v

+O
�
v�1
��
exp

 
� (1� �)

4

c2p(N)

'max

!
[1 + o(1)] ;

where 'max = maxij 'ij < K. Then for A1 to tend to zero it is su¢ cient that (note that N�1m2
N ! 0,

since �� < 1=2)

Np
v
exp

 
� (1� �)

4

c2p(N)

'

!
! 0, as N and v !1. (A.39)

To obtain a su¢ cient condition for (A.39) to hold, set T = cdN
d and note that (recall that v = T�m�1

and T=(T �m� 1) < K, since m is �xed as T !1)

Np
v
exp

 
� (1� �)

4

c2p(N)

'

!
�

r
T

T �m� 1 exp
 
� (1� �)

4

c2p(N)

'
+ (1� d=2) log(N)

!

=

r
T

T �m� 1 exp

0@� log(N)
24 (1��)

4

c2p(N)

' � (1� d=2) log(N)
log(N)

351A :

But by result (b) of Lemma 2 of BPS (2017, supplement), limN!1 c2p(N)= log(N) = 2�; and condition

(A.39) is met if � (1� �) =2'max� (1�d=2) > 0; or equivalently if � >
(2�d)
(1��)'max. Therefore, under this

condition, A11 ! 0, and together with (A.38) establishes that A1 ! 0. Therefore, using this result,
(A.34) and (A.36) in (A.28) we have E j NT j ! 0; as required, and in turn implies  NT !p 0, by

51



Markov inequality. Finally, using (S.79) established in Lemma 20, and setting 
i = 0, for all i, and
��;ij = 0, for all i 6= j, to ensure that �ij = 0, for all i 6= j, we have

'ij = E(�2it�
2
jt

���ij = 0) = 
2;"�

 
TX
r=1

l4tr

!�XN

`=1
��1ii �

�1
jj q

2
�;i`q

2
�;j`

�
+ ��1ii �

�1
jj ��;ii��;jj ,

where ltr is the (t; r) element of the T � T orthonormal matrix L de�ned by (A.29), q�;i` is such that

Q� = (q�;i`), Q� de�ned by (51). Also, j��;ii=�iij � 1,
PT
r=1 l

4
tr �

�PT
r=1 l

2
tr

�2
� 1,

PN
`=1 ~q

2
�;i` =PN

`=1 q
2
�;i`=��;ii = 1; and�XN

`=1
��1ii �

�1
jj q

2
�;i`q

2
�;j`

�
=

����XN

`=1
~q2�;i`~q

2
�;j`

���� � �XN

`=1
~q4�;i`

�1=2�XN

`=1
~q4�;j`

�1=2
� 1:

Hence, supij 'ij � 1 +
���
2;"� ���, as required.

Proof of Theorem 5. By Theorem 3, J�
�
�2N
�
!d N(0; 1) so long as N=T 2 ! 0; and 0 � �
 < 1=2;

as N !1 and T !1; jointly, where J�(�2N ) and �
 are de�ned by (56) and (48), respectively. Since
Theorem 4 ensures that Ĵ� � J�(�

2
N ) !p 0; as (N � 1)

�
~�2N;T � �2N

�
!p 0 when d > 2=3, as N and

T !1; and � > (2�d)
(1��)'max, for some small � > 0, where 'max � 1+

���
2;"� ���, under these conditions, Ĵ�
has the same limit distribution as J�

�
�2N
�
(by Lemma 4), which establishes the result.

Proof of Theorem 6. The steps in the proof are similar to the ones in deriving the limiting
distribution of Ĵ� under the null hypothesis. First, Lemma 22 provides the proof of the result, under

Assumptions 1-3, and under the local alternatives (63), N�1=2PN
i=1

�
z2i;a � 1

�
!d N(�

2; 2!2); as N !
1 and T ! 1; jointly, where z2i;a de�ned by (S.97), !2 = 1 + limN!1(N � 1)�2N ; �2N is de�ned by

(55). Also, by Lemma 23 we have N�1=2PN
i=1

�
z2i;a � t2i

�
= op (1). Finally Ĵ� � J� = op (1), since the

consistency result of the MT estimator ~�2N;T given by Theorem 4 will not be a¤ected by the introduction
of local alternatives, as the MT estimator is obtained based on the regression residuals of the alternative
model. This completes the proof of Theorem 6.

Appendix B: Generating non-Gaussian errors

To generate non-normal correlated errors, u(r)it , with given skewness and kurtosis, we use the following
procedure (see Section M1.1 in online supplement for full details). For each replication, r,

1. We generate N random draws �(r)ii , 

(r)
1;i and 


(r)
2;i , i = 1; 2; :::; N; as described in Section M1.1 and

set

m
(r)
3;i =

h
�
(r)
ii

i3=2


(r)
1;i ; and m

(r)
4;i =

h
�
(r)
ii

i2 �


(r)
2;i + 3

�
:

2. We then set m(r)
";1 = 0 and m

(r)
";2 = 1, and derive m

(r)
";3;i and m

(r)
";4;i as

m
(r)
";3 = Q

(r)�1
(3) m

(r)
3 ; �(r)" = Q

(r)�1
(4) �(r);

where ,m(r)
";3 = (m

(r)
";3;1;m

(r)
";3;2; ::::;m

(r)
";3;N ),Q

(r)
(3) = Q

(r)�Q(r)�Q(r),m(r)
3 = (m

(r)
3;1;m

(r)
3;2; ::::;m

(r)
3;N )

0,

�
(r)
" = (�

(r)
"1 ; �

(r)
"2 ; :::; �

(r)
"N )

0, Q(r)(4) = Q(r)�Q(r)�Q(r)�Q(r), and �(r) = (�
(r)
1 ; �

(r)
2 ; :::; �

(r)
N )

0 with

�
(r)
"i = m

(r)
";4;i�3 and �

(r)
i = m

(r)
4;i �3�

2(r)
ii , Q(r)= D(r)1=2P

(r)
, with D(r) = diag(�

(r)
11 ; �

(r)
22 ; :::; �

(r)
NN )

0

and P(r) being a Cholesky factor of correlation matrix R(r). The correlation matrix, R, is de�ned
by (66). The operator � denotes the Hadamard or element-wise multiplication.
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3. Following Fleishman (1978), we then generate "it, t = 1; 2; :::; T as (suppressing the superscript
r for notational convenience)

"it = ai + bi�it + ci�
2
it + di�

3
it; i = 1; 2; :::; N;

where �it s IIDN(0; 1) and the coe¢ cients ai; bi; ci and di are determined so that E("it) = 0;
E("2it) = 1, E("3it) = m";3;i and E("4it) � 3 = �"i. This involves solving the following system of
equations for ai; bi; ci and di:

ai + ci = 0;

b2i + 6bidi + 2c
2
i + 15d

2
i = 1;

2ci(b
2
i + 24bidi + 105d

2
i + 2) = m";3;i;

24[bidi + c
2
i (1 + b

2
i + 28bidi) + d

2
i (12 + 48bidi + 141c

2
i + 225d

2
i )] = �"i:

4. Finally, we set u(r)it =
PN
j=1 q

(r)
ij "

(r)
jt , where q

(r)
ij is the (i; j) element of Q(r); and "(r)jt is the r

th

draw from the DGP in step 3 above.

Appendix C: Data sources and their descriptions
We downloaded price and dividend data on all 500 securities included in the S&P 500 index at close of
each month from September 1989 to June 2015 (inclusive) using Datastream.36 For example, the code
LS&PCOMP1210 will give the 500 constituents of S&P 500 index as of December 2010.To construct our
security return data, the security price (P ) and dividend yield (DY ) are obtained from Datastream, as
speci�ed the table below. We adopted the following rules in selecting individual securities for inclusion
in our analysis. At the end of each month under consideration, we downloaded historical return series
on all 500 securities included in the S&P 500 index at the time. We then dropped all securities with
less than 60 months of observations and/or with �ve consecutive zeros in the middle of sample periods.

36We could only download data for 499 securities on September 30, 2008, and it is con�rmed on Standard &
Poor�s website that the S&P 500 index on this day was based on 499 securities.
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Variable Description Source (Code)

Pit
Price of security i at the market close of the last day of

the month (t), adjusted for subsequent capital actions.
Datastream (LS&PCOMP, P)

DYit

Dividend per share as a percentage of the share price

based on an anticipated annual dividend and excludes

special or once-o¤ dividends.

Datastream (LS&PCOMP, DY)

Pt S&P 500 price index at close of the �nal day of the month (t). Datastream (S&PCOMP, PI)

DYt �Dividend yield�on S&P 500 as a percentage of Pt.
Datastream (S&PCOMP, DY,

up to Oct. 2012, S&PCOMZ,

DY, Nov. 2012 onwards)

SMBt
Average return in per cent on the three small portfolios

minus the average return on the three big portfolios.

Ken French�s data library

(up to Jan. 2016)

HMLt
Average return in per cent on two value portfolios minus

the average return on two growth portfolios.

Ken French�s data library

(up to Jan. 2016)

rit
Monthly return of security i in month t in per cent,

computed as 100(Pit � Pi;t�1)=Pi;t�1 +DYit=12.
Datastream

rft
One-month US treasury bill rate in per cent in month t

as the risk-free asset return from Ibbotson Associates.

Ken French�s data library

(up to Jan. 2016)

rmt
Value-weight return on all NYSE, AMEX, and NASDAQ

stocks (from CRSP) in per cent.

Ken French�s data library

(up to Jan. 2016)

rt
Monthly return of S&P 500 portfolio at month t

in per cent, computed as 100(Pt � Pt�1)=Pt�1 +DYt=12.
Datastream

rht
Monthly rate of return of Dow Jones Credit Suisse Core

Long/Short Equity Hedge Fund (the end of the month)

Credit Suisse (ROR), up to May

2016 http://www.hedgeindex.com

~rht rht � rt:
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Supplement to "Testing for Alpha in Linear Factor Pricing Models with a Large
Number of Securities"

by

M. Hashem Pesaran and Takashi Yamagata

This supplement consists of two parts. The �rst part establishes a number of lemmas used in the proofs of
theorems in Section 4 of the paper. The second part provides additional documentation of the Monte Carlo
experiments, speci�cally regarding the simulation of multivariate non-Gaussian random variables, details of the
alternative test statistics considered in Section 5, and additional Monte Carlo results.

Notations
We use K and c to denote �nite and small positive constants. If fftg1t=1 is any real sequence and fgtg

1
t=1

is a sequences of positive real numbers, then ft = O(gt), if there exists a positive �nite constant K such
that jftj =gt � K for all t. ft = o(gt) if ft=gt ! 0 as t ! 1. For two N � N matrices A = (aij) and
B = (bij), the Hadamard product A � B = B � A is an N � N matrix with elements given by aijbij . The
minimum and maximum eigenvalues of matrix A is denoted by �min(A) and �max(A), respectively, its trace

by Tr(A), its maximum absolute column and row sum matrix norms by kAk1 = max1�i�N

nPN
j=1 jaij j

o
,

and,kAk1 = max1�j�N

nPN
i=1 jaij j

o
, respectively, its Frobenius and spectral norms by kAkF =

p
Tr(A0A),

and kAk = �1=2max(A
0A), respectively. For an N � 1 dimensional vector, �, k�k = (�0�)1=2. We set

MG = (mtt0) = IT �PG; PG = G (G0G)
�1
G0, G = (�T ;F) , v = Tr(MG) = T �m� 1; (S.1)

MF = (mF;tt0) = IT � F (F0F)�1F0, HF = hh
0 = (htht0) (S.2)

with h = (ht) =MF �T , wT = Tr(HF ) = h
0h = � 0TMF �T ,

where F is a T �m matrix, and �T = (1; 1; :::; 1)
0 is a T �1 vector of ones. To simplify the algebra all derivations

are made conditional on F.

S1 Statement of lemmas and their proofs
Lemma 2 (Moments of linear functions) Consider w =

PN
i=1 ai�i, which is a linear combination of indepen-

dently distributed random variables, �i, for i = 1; 2; :::; N , with mean zero and a unit variance, and the weights,
ai, that satisfy

PN
i=1 a

2
i = 1. Then, the r

th moment of w exists if �i has the rth moment.

Proof. We �rst note that since
PN

i=1 a
2
i = 1, then it must be that jaij � 1, and hence jaij

r � jaij ; for r � 1.
Therefore, XN

i=1
a3i �

XN

i=1
jaij3 �

XN

i=1
a2i = 1,

XN

i=1
a4i �

XN

i=1
a2i = 1;

or more generally,
PN

i=1 jaij
r � 1, for r = 2; 3; ::::. Consider now moments of w, and note that E(w) = 0;

E(w2) =
PN

i=1 a
2
i = 1,

E(w3) = E

�XN
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ai�i
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Note that E (�ri ) need not be the same across i, it is only required that E (�
r
i ) < K <1.
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Again noting that E(�2i ) = 1 and
PN

i=1 a
2
i = 1, we have, after some simpli�cations,

E(w6) = 15 + 10

 
NX
i=1

a3i
�
E(�3i )

�!2
+ 15

NX
i=1

a4i
�
E(�4i )� 3

�
+"

NX
i=1

a6iE(�
6
i ) + 30

NX
i=1

a6i � 10
NX
i=1

a6i
�
E(�3i )

�2 � 15 NX
i=1

a6iE(�
4
i )

#
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� 15 + 15 sup
i

�
E(�4i )� 3

� NX
i=1

a4i + 10 sup
i

�
E(�3i )

�2 NX
i=1

a3i

!2
+

sup
i

h
E(�6i )� 10

�
E(�3i )

�2 � 15 �E(�4i )� 3�� 15i NX
i=1

a6i

� 15 + 15 sup
i

�
E(�4i )� 3

�
+ 10 sup

i

�
E(�3i )

�2
+ sup

i

n
E(�6i )� 10

�
E(�3i )

�2 � 15 �E(�4i )� 3�� 15o .
The processes can be continued for higher order moments.

Lemma 3 Under Assumptions 1-3,

(i) �it = uit=�
1=2
ii � IID(0; 1) for all t and E(j�itjr) � K <1, where uit is de�ned by (2) and �ii = V ar (uit),

and;

(ii) ~�it = �it=�
1=2
�;ii � IID(0; 1) for all t and E(j~�itjr) � K <1, where �it is de�ned by (2) and ��;ii = V ar (�it),

for all i and t, r = 1; 2; :::; 8.

Proof. We have uit =
XN

j=1
qij"jt, for i = 1; 2; :::; N; t = 1; 2; :::; T , where "jt is de�ned by (51), and qij

is the (i; j) element of Q which is de�ned by (51). Note that "it is IID(0; 1) across i and t, E("8it) exists,

�it = uit=�
1=2
ii =

XN

j=1
~q2ij"jt, where ~qij = qij=�

1=2
ii = qij=

�XN

j=1
q2ij

�1=2
, and

XN

j=1
~q2ij = 1. Then applying

Lemma 2 to
XN

j=1
~qij"jt yields the required result. For part (ii), a similar discussion for ~�it =

XN

j=1
~q�;ij"�;jt will

lead to the required result, where "�;jt is de�ned by (51), ~q�;ij = �
1=2
�;ii = q�;ij=

�XN

j=1
q2�;ij

�1=2
,
XN

j=1
~q2�;ij = 1,

q�;ij is the (i; j) element of Q� which is de�ned by (51).

Lemma 4 Consider the sequences of random variables fXNg and fYNg. If XN �YN !p 0; and YN !d Z, then
XN !d Z.

Proof. See Rao (1973, p.122).

Lemma 5 (Lieberman 1994) Let � be a T � T symmetric matrix and � a positive de�nite T � T matrix, and
suppose that � � IID(0; IT ), where � = (�1; �2; :::; �T )

0. Denote the pth cumulant of �0�� by �p, and the m+ 1
order, m+r degree generalized cumulant of (�0��)r(�0��) by �rm, and assume that the following conditions hold:

� Condition 1: For p = 1; 2; :::; �p = O(T ):

� Condition 2: For r = 1; 2; :::; �r0 = E(�0��)r = O(T r):

� Condition 3: For r;m = 1; 2; :::; �rm = O(T `), with ` � r.

Then the Laplace approximate expansion for the rth moment of �0��=�0�� is given by

E

��
�0��

�0��

�r�
=
E[(�0��)r]

[E(�0��)]r
+  rT +O(T

�2); (S.3)

where

 rT =
r(r + 1)

2

(
E
�
(�0��)r

�
�2

[E(�0��)]r+2

)
� r

�
�r1

[E(�0��)]r+1

�
; (S.4)

and
�r1 = E[(�0��)r�0��]� E[(�0��)r]E(�0��): (S.5)

Proof. See Lieberman (1994).
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Lemma 6 (Moments of products of quadratic forms under non-Gaussianity): Suppose that � � IID(0; IT ),
where � = (�1; �2; :::; �T )

0, with 
1 = E(�3t ), 
2 = E(�4t )� 3, 
3 = E(�5t )� 10
1, 
4 = E
�
�6t
�
� 15
2 � 10
21 � 15

and 
6 = E
�
�8t
�
� 28
4 � 56
3
1 � 35
22 � 210
2 � 280
21 � 105 for all t = 1; 2; :::; T; and suppose that Aj,

j = 1; 2; 3; 4 are T � T real symmetric matrices, and �T is a T � 1 vector of ones. Then

E
�
�0A1�

�
= Tr(A1); (S.6)

E
�
�0A1� �

0� = 
1�
0 (I�A1)

0

E
��
�0A1�

� �
�0A2�

��
= 
2Tr [(A1 �A2)] + Tr (A1)Tr(A2) + 2Tr (A1A2) ; (S.7)

E
��
�0A1�

� �
�0A2�

�
�
�
= 
3 (I�A1 �A2) � + 
1f4 [I� (A1A2)] �

+2A1 (I�A2) �+2A2 (I�A1) �+Tr (A1) (I�A2) �+Tr (A2) (I�A1) �g

E
��
�0A1�

� �
�0A2�

� �
�0A3�

��
= 
4Tr (A1 �A2 �A3) + 
2Tr (A1)Tr (A2 �A3) (S.8)

+
2Tr (A2)Tr (A1 �A3) + 
2Tr (A3)Tr (A1 �A2) + 4
2Tr [A1 � (A2A3)]

+4
2Tr [A2 � (A1A3)] + 4
2Tr [A3 � (A1A2)] + 2

2
1 [�

0
T (IT �A1)A2 (IT �A3) �T ]

+2
21 [�
0
T (IT �A1)A3 (IT �A2) �T ] + 2


2
1 [�

0
T (IT �A2)A1 (IT �A3) �T ]

+4
21 [�
0
T (A1 �A2 �A3) �T ] + Tr (A1)Tr (A2)Tr (A3) + 2Tr (A1)Tr (A2A3)

+2Tr (A2)Tr (A1A3) + 2Tr (A3)Tr (A1A2) + 8Tr (A1A2A3) ;

E
��
�0A1�

� �
�0A2�

� �
�0A3�

� �
�0A4�

��
= Tr (A1)Tr (A2)Tr (A3)Tr (A4) (S.9)

+2[Tr (A1)Tr (A2)Tr (A3A4) + Tr (A1)Tr (A3)Tr (A2A4) + Tr (A1)Tr (A4)Tr (A2A3)

+Tr (A2)Tr (A3)Tr (A1A4) + Tr (A2)Tr (A4)Tr (A1A3) + Tr (A3)Tr (A4)Tr (A1A2)]

+4[Tr (A1A2)Tr (A3A4) + Tr (A1A3)Tr (A2A4) + Tr (A1A4)Tr (A2A3)]

+8[Tr (A1)Tr (A2A3A4) + Tr (A2)Tr (A1A3A4) + Tr (A3)Tr (A1A2A4) + Tr (A4)Tr (A1A2A3)]

+16[Tr (A1A3A4A2) + Tr (A1A4A2A3) + Tr (A1A4A3A2)]

+
2f
2 + 
4f
4 + 
6f
6 + 

2
1f
21 + 


2
2f
22 + 
1
3f
1
3 :

Expressions for f
2 , f
4 , f
6 , f
21 , f
22 and f
1
3 are provided in Bao and Ullah (2010).

Proof. For (S.6) and (S.7), see Ullah (2004, Appendix A.5). Result (S.8) was provided to us through a private
communication by Yong Bao. Result (S.9) is given in Bao and Ullah (2010).

Lemma 7 Let A be a real symmetric T � T matrix. Then �min(A) � att � �max(A); where att is the tth

diagonal element of A.

Proof. See Theorem 14 in Chapter 11 of Magnus and Neudecker (1999, p.211-212).

Lemma 8 Denote the (t; r) elements of matricesMF , MG; and PG (de�ned by (S.2) and (S.1)), by mF;tr, mtr

and ptr, respectively, and denote tth element of h = MF �T by ht =
PT

r=1mF;tr. Then, under Assumption 1,
for all t we have

0 � mF;tt =
XT

r=1
m2
F;tr � 1, (S.10)

0 � mtt =
XT

r=1
m2
tr � 1, (S.11)

0 � ptt =
XT

r=1
p2tr � 1, (S.12)����XT

r=1
mF;tr

���� = jhtj � K <1; (S.13)

XT

r=1
mtr = 0; (S.14)
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and for any �nite p XT

t=1

�XT

r=1
mF;tr

�p
=
XT

t=1
hpt = O (T ) : (S.15)

Proof. (S.10), (S.11) and (S.12) follow immediately using Lemmas 7, since MF , MG and PG are idempotent
and real symmetric matrices, with eigenvalues that are either one or zero. Next we note that

MF �T = �T � F
�
F0F

T

��1
F0�T
T

;

where by Assumption 1 all elements of
�
F0F
T

��1
and F0�T

T are bounded. Let wF;T =
�
F0F
T

��1
F0�T
T , and note

that the m elements of wF;T , being the OLS estimates of the coe¢ cients in the regression of 1 on ft, are bounded,
and hence

Pm
`=1 jwF;T;`j

2 � K <1, for all T . Then, the tth element of MF �T can be written asXT

r=1
mF;tr = 1� f 0twF;T = 1�

Xm

`=1
ft;`wF;T;`:

����XT

r=1
mF;tr

���� � 1 + ���Xm

`=1
ft;`wF;T;`

��� ;
and by Assumption 1;

Pm
`=1 jft;`j

2 � K <1 ; and hence for all t we have���Xm

`=1
ft;`wF;T;`

��� �rXm

`=1
jft;`j2

rXm

`=1
jwF;T;`j2 � K <1:

Therefore, we have
���PT

r=1mF;tr

��� � K <1, as required. (S.14) follows fromMG�T = 0. Finally, (S.15) follows

from (S.13) since
PT

t=1(
PT

r=1mF;tr)
p �

PT
t=1 j

PT
r=1mF;trjp �

PT
t=1K

p = O(T ), for p �nite.

Lemma 9 Suppose that Aj = (aj;tr), for j = 1; 2; 3; 4 are T � T real symmetric matrices, and �T is a T � 1
vector of ones. Then,

Tr (A1 �A2 �A3 �A4) =
XT

t=1
a1;tta2;tta3;tta4;tt; (S.16)

� 0TA1A2A3�T =
XT

t=1

XT

r=1

XT

v=1

XT

u=1
a1;tra2;rva3;vu; (S.17)

and
� 0T (A1�A2) �T = Tr (A1A

0
2) =

XT

t=1

XT

r=1
a1;tra2;tr: (S.18)

Proof. (S.16) and (S.17) follow from direct derivations and (S.18) see Magnus and Neudecker (1999; p.46).

Lemma 10 Consider the matrices MG; PG and HF , de�ned by (S.2) and (S.1), and v = T �m � 1. Then,
under Assumption 1 we have

Tr (HF �HF �MG) = O (T ) , (S.19)

Tr (HF �MG) = O (T ) , (S.20)

Tr (HF �HF ) = O (T ) ; (S.21)

Tr (MG �MG) = O (T ) ; (S.22)

Tr (PG �PF ) = O(1); (S.23)

Tr (PG �HF ) = O(T 1=2); (S.24)

� 0T (IT �HF )HF (IT �MG) �T = O
�
T 2
�
, (S.25)

� 0T (IT �HF )MG (IT �HF ) �T = O(T 3=2); (S.26)

� 0T (HF �MG �MG) �T = O(T 3=2), � 0T (HF �HF �MG) �T = O(T 3=2); (S.27)

� 0T (HF �HF ) �T = O(T 2), � 0T (HF �MG) �T = 0, � 0T (MG �MG) �T = T;

Tr
�
MG �H2

F

�
= O

�
T 2
�
, � 0T

�
IT �H2

F

�
(IT �MG) �T = O

�
T 2
�
;

� 0T (IT �HF ) (HF �MG) �T = 0, � 0T (IT �MG) (HF �MG) �T = 0 (S.28)
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Tr (HF �MG �MG) = O (T ) ;

� 0T (HF �HF )MG (IT �MG) �T = O
�
T 2
�
, � 0T (HF �MG)HF (IT �MG) �T = 0;

� 0T (HF �MG)MG (IT �HF ) �T = 0f , � 0T (MG �MG)HF (IT �HF ) �T = O
�
T 2
�
;

T r (HF �HF �MG �MG) = O (T ) ;

� 0T (IT �HF )MG (IT �MG) �T = O(T 3=2), ; � 0T (IT �MG)HF (IT �MG) �T = O(T 2);

� 0T (IT �HF )MG (IT �HF ) �T = O(T 3=2), � 0T (IT �HF )HF (IT �MG) �T = O(T 2);

T r
�
H2
F (MG �MG)

�
= O(T 5=2), Tr [MG (HF �HF )] = O(T 3=2);

� 0T (IT �HF ) (HF �MG) (IT �MG) �T = O(T 3=2);

� 0T (IT �HF ) (MG �MG) (IT �HF ) �T = O(T 3=2);

� 0T (IT �MG) (HF �HF ) (IT �MG) �T = O(T 2);

� 0T (HF �HF �MG �MG) �T = O(T 3=2);

� 0T (IT �HF )HF (IT �MG �MG) �T = O(T 2), � 0T (IT �HF )MG (IT �HF �MG) �T = O(T 3=2);

� 0T (IT �MG)HF (IT �HF �MG) �T = O(T 2), � 0T (IT �MG)MG (IT �HF �HF ) �T = O(T 3=2);

� 0T (IT �HF ) (HF �MG �MG) �T = O(T 3=2), � 0T (IT �MG) (HF �HF �MG) �T = O(T 3=2);

T r (HF �HF �HF ) = O (T ) , � 0T (IT �HF )HF (IT �HF ) �T = O
�
T 2
�
;

� 0T (HF �HF �HF ) �T = O
�
T 2
�
;

T r (MG �MG �MG) = O(T ); T r (MG �MG �MG �MG) = O(T )

Tr [(I�MG)MG] = O(T ), Tr [(MG �MG)MG] = O(T )

� 0T (MG �MG �MG) �T = O (T ) , � 0T (MG �MG �MG �MG) �T = O (T )

� 0T (IT �MG)MG (IT �MG) �T = O(T 3=2), � 0T (MG �MG)MG (IT �MG) �T = O(T 3=2)

� 0T (IT �MG)MG (IT �MG �MG) �T = O(T 3=2), � 0T (IT �MG) (MG �MG �MG) �T = O(T ),

� 0T (IT �MG) (MG �MG) (IT �MG) �T = O(T ), � 0T (IT �MG) (IT �MG) �T = O(T ).

Proof. Denote the (t; r) element of matrices MF , MG and PG by mF;tr, mtr and ptr, respectively, and observe

that the (t; r) element of HF = hh
0 is

�PT
l=1mF;tl

��PT
l=1mF;rl

�
= hthr. The proofs below follow straightfor-

wardly from application of Lemmas 8 and 9, and making use of Cauchy-Schwarz inequality, and the fact that
MGMF =MG, MGHF = 0. First

Tr (HF �HF �MG) =
X
t

h4tmtt �
X
t

h4t = O (T ) ;

as 0 � mtt � 1 (by Lemma 8) and
P

t h
4
t = O(T ). Similarly, we have

Tr (HF �MG) =
X
t

h2tmtt = O (T ) ; T r (HF �HF ) =
X
t

h4t = O (T ) ;

and
Tr (MG �MG) =

X
t

m2
tt �

XT

t=1
mtt = O (T ) :

Result (S.23) follows since Tr (PG �PF ) =
PT

t=1 pF;ttptt �
PT

t=1 ptt = m + 1; recalling that 0 � pF;tt � 1 by
(S.12).

Tr (PG �HF ) =
X
t

p2tth
2
t �

rXT

t=1
p2tt

rXT

t=1
h4t = O(T 1=2);
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since 0 � p2tt � ptt � 1, then
PT

t=1 p
2
tt �

PT
t=1 ptt = m + 1. Further, using (S.17) in Lemma 9 and results in

Lemma 8 we have
j� 0T (IT �HF )HF (IT �MG) �T j �

X
t

��h3t ��X
r

jhrmrrj = O(T 2).

Similarly, noting that
P

rm
2
tr = mtt and 0 � mtt � 1 and that 0 �

P
rm

4
tr �

P
rm

2
tr � 1, we have

j� 0T (IT �HF )MG (IT �HF ) �T j �
X
t

h2t
X
r

��mtrh
2
r

�� �X
t

h2t

sX
r

m2
tr

sX
r

h4r (S.29)

�
X
t

h2t

sX
r

h4r = O(T 3=2);

j� 0T (IT �MG)HF (IT �MG) �T j �
X
t

jmtthtj
X
r

jmrrhrj �
X
t

jhtj
X
r

jhrj = O(T 2)

j� 0T (HF �MG �MG) �T j �
X
t

X
r

��hthrm2
tr

�� �X
t

jhtj
sX

r

m4
tr

sX
r

h2r

�
X
t

jhtj
sX

r

h2r = O
�
T 3=2

�
:

Also
� 0T (HF �HF �MG) �T = �

0
T (IT �HF )MG (IT �HF ) �T = O(T 3=2): (S.30)

Using (S.18) we have
� 0T (HF �HF ) �T = Tr

�
H2
F

�
= [Tr (HF )]

2
= O(T 2);

� 0T (HF �MG) �T = Tr (HFMG) = 0;

and
� 0T (MG �MG) �T = Tr (MG) = v:

Also
Tr
�
MG �H2

F

�
= Tr (HF )Tr (MG �HF ) = O

�
T 2
�
;

and

� 0T
�
IT �H2

F

�
(IT �MG) �T = Tr (HF ) �

0
T (IT �HF ) (IT �MG) �T = Tr (HF )Tr (MG �HF ) = O

�
T 2
�
:

Since
P

r hrmtr = 0 for any t 6= r

� 0T (IT �HF ) (HF �MG) �T =
X
r

X
t

h3thrmtr = 0;

� 0T (IT �MG) (HF �MG) �T =
X
r

X
t

mtththrmtr = 0:

Similarly to the above derivations, we have

Tr (HF �MG �MG) =
X
t

m2
tth

2
t = O (T ) ;

j� 0T (HF �HF )MG (IT �MG) �T j �
X
t

X
u

X
r

��h2th2umurmrr

��
�
X
t

X
u

h2th
2
u

sX
r

m2
ur �

X
t

h2t
X
u

h2u = O
�
T 2
�
;

and noting MG and HF are symmetric and MGHF = 0,
P

t hrhtmtu for any t 6= r and t 6= u

� 0T (HF �MG)HF (IT �MG) �T =
X
t

X
u

X
r

hth
2
umtuhrmrr = 0
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� 0T (HF �MG)MG (IT �HF ) �T =
X
t

X
u

X
r

hthumtumurh
2
r = 0

j� 0T (MG �MG)HF (IT �HF ) �T j �
X
u

X
t

m2
tu jhuj

X
r

��h3r��
=
X
u

muu jhuj
X
r

��h3r�� = O
�
T 2
�
;

T r (HF �HF �MG �MG) =
X
t

m2
tth

4
t = O (T ) ;

j� 0T (IT �HF )MG (IT �MG) �T j �
X
t

h2t
X
r

jmtrjmrr

�
X
t

h2t

sX
r

m2
tr

sX
r

m2
rr �

X
t

h2t

sX
r

mrr = O
�
T 3=2

�
;

j� 0T (IT �MG)HF (IT �MG) �T j �
X
t

jmtthtj
X
r

jhrmrrj = O
�
T 2
�
;

j� 0T (IT �HF )MG (IT �HF ) �T j �
X
t

X
r

h2t jmtrjh2r

�
X
t

h2t

sX
r

m2
tr

sX
r

h4r �
X
t

h2t

sX
r

h4r = O
�
T 3=2

�
;

j� 0T (IT �HF )HF (IT �MG) �T j �
X
t

��h3t ��X
r

jhrjmrr = O
�
T 2
�
;

T r
�
H2
F (MG �MG)

�
= Tr (HF )Tr [HF (MG �MG)] = Tr (HF ) �

0
T (HF �MG �MG) �T = O

�
T 5=2

�
;

T r [MG (HF �HF )] = �
0
T (HF �HF �MG) �T = O

�
T 3=2

�
;

j� 0T (IT �HF ) (HF �MG) (IT �MG) �T j �
X
r

X
t

��h3thrmtrmrr

��
�

X
t

��h3t ��sX
r

h2r

sX
r

m2
tr = O

�
T 3=2

�
;

� 0T (IT �HF ) (MG �MG) (IT �HF ) �T =
X
r

X
t

h2tm
2
trh

2
r

�
X
t

h2t

sX
r

h4r = O
�
T 3=2

�
= O

�
T 3=2

�
;

� 0T (IT �MG) (HF �HF ) (IT �MG) �T =
X
t

mtth
2
t

X
r

h2rmrr = O
�
T 2
�
;

� 0T (HF �HF �MG �MG) �T =
X
t

X
r

h2th
2
rm

2
tr = O

�
T 3=2

�
j� 0T (IT �HF )HF (IT �MG �MG) �T j �

X
t

��h3t ��X
r

h2r = O
�
T 2
�
;

j� 0T (IT �HF )MG (IT �HF �MG) �T j �
X
t

h2t
X
r

��mtrh
2
rmrr

��
�

X
t

h2t

sX
r

h4r = O
�
T 3=2

�
;
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j� 0T (IT �MG)HF (IT �HF �MG) �T j �
X
t

jmtthtj
X
r

��h3rmrr

�� = O
�
T 2
�
;

j� 0T (IT �MG)MG (IT �HF �HF ) �T j �
X
t

mtt

X
r

��mtrh
4
r

��
�

X
t

mtt

sX
r

m2
tr

sX
r

h8r �
X
t

mtt

sX
r

h8r = O
�
T 3=2

�
;

j� 0T (IT �HF ) (HF �MG �MG) �T j �
X
t

��h3t ��X
r

��m2
trhr

�� �X
t

��h3t ��sX
r

h2r = O
�
T 3=2

�
;

j� 0T (IT �MG) (HF �HF �MG) �T j �
X
t

mtth
2
t

X
r

��mtrh
2
r

�� �X
t

h2t

sX
r

h4r = O
�
T 3=2

�
;

T r (HF �HF �HF ) =
X
t

h6tt = O(T )

j� 0T (IT �HF )HF (IT �HF ) �T j �
X
t

��h3t ��X
r

��h3r�� = O
�
T 2
�
;

� 0T (HF �HF �HF ) �T = �
0
T (IT �HF )HF (IT �HF ) �T = O

�
T 2
�
;

T r (MG �MG �MG) =
X
t

m3
tt = O(T ); T r (MG �MG �MG �MG) =

X
t

m4
tt = O(T )

Tr [(I�MG)MG] =
X
t

m2
tt = O(T ), jTr [(MG �MG)MG]j �

X
t

X
r

��m3
tr

�� �X
t

mtt = O(T )

j� 0T (MG �MG �MG) �T j �
X
t

X
r

��m3
tr

�� �X
t

mtt = O (T ) ,

� 0T (MG �MG �MG �MG) �T =
X
t

X
r

m4
tr �

X
t

mtt = O (T )

j� 0T (IT �MG)MG (IT �MG) �T j �
X
t

X
r

jmttmtrmrrj �
X
t

p
mtt

sX
r

mrr = O(T 3=2),

j� 0T (MG �MG)MG (IT �MG) �T j �
X
t

X
r

X
u

��m2
tumurmrr

�� �X
r

X
u

jmuumurmrrj = O(T 3=2)

j� 0T (IT �MG)MG (IT �MG �MG) �T j �
X
t

X
r

��mttmtrm
2
rr

�� = O(T 3=2),

j� 0T (IT �MG) (MG �MG �MG) �T j �
X
t

X
r

��mttm
3
tr

�� = O(T ),

� 0T (IT �MG) (MG �MG) (IT �MG) �T =
X
t

X
r

mttm
2
trmrr �

X
t

X
r

mttm
2
tr = O(T )

� 0T (IT �MG) (IT �MG) �T =
X
t

m2
tt = O(T ).

Lemma 11 Suppose that � � IID(0; IT ), where � = (�1; �2; :::; �T )
0, with 
1 = E(�3t ), 
2 = E(�4t ) � 3, 
3 =

E(�5t )� 10
1, 
4 = E
�
�6t
�
� 15
2� 10
21� 15 and 
6 = E

�
�8t
�
� 28
4� 56
3
1� 35
22� 210
2� 280
21� 105 for

all t = 1; 2; :::; T . Consider the matrices MG; PG and HF = hh0, de�ned by (S.2) and (S.1), wT = � 0TMF �T
and v = T �m� 1. Then, under Assumptions 1 and 3, we have

E
�
�0HF �

�
= Tr(HF ) = wT , E

�
�0MG�

�
= Tr(MG) = v;

E
h�
�0MG�

�2i
= 
2Tr (MG �MG) + v (v + 2) = v (v + 2) +O (T ) ;
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E
��
�0HF �

� �
�0MG�

��
= 
2Tr (MG �HF ) + v(�

0
TMF �T ) = vwT +O (T ) ;

E
h�
�0HF �

�2i
= 
2Tr (HF �HF ) + 3 (�

0
TMF �T )

2
= 3w2T +O (T ) ;

E
h�
�0HF �

�2 �
�0MG�

�i
= 
4Tr (HF �HF �MG) + 2
2Tr (HF )Tr (HF �MG)

+
2Tr (MG)Tr (HF �HF ) + 4
2Tr
�
MG �H2

F

�
+ 4
21 [�

0
T (IT �HF )HF (IT �MG) �T ]

+2
21 [�
0
T (IT �HF )MG (IT �HF ) �T ] + 4


2
1 [�

0
T (HF �HF �MG) �T ] + 3 [Tr (HF )]

2
Tr (MG)

= 3w2T v +O
�
T 2
�
;

E
h�
�0HF �

� �
�0MG�

�2i
= 
4Tr (HF �MG �MG) + 
2Tr (HF )Tr (MG �MG)

+2
2Tr (MG)Tr (HF �MG) + 4
2Tr (HF �MG) + 4

2
1 [�

0
T (IT �HF )MG (IT �MG) �T ]

+2
21 [�
0
T (IT �MG)HF (IT �MG) �T ] + 4


2
1 [�

0
T (HF �MG �MG) �T ]

+Tr (HF ) [Tr (MG)]
2
+ 2Tr (HF )Tr (MG) = wT v

2 +O
�
T 2
�
;

E
h�
�0HF �

�3i
= 
4Tr (HF �HF �HF ) + 15
2Tr (HF )Tr (HF �HF )

+6
21 [�
0
T (IT �HF )HF (IT �HF ) �T ] + 4


2
1 [�

0
T (HF �HF �HF ) �T ] + 15 [Tr (HF )]

3

= 15w3T +O
�
T 2
�
;

E
h�
�0MG�

�3i
= 
4Tr (MG �MG �MG) + 3
2vTr (MG �MG)

+12
2Tr (MG �MG) + 6

2
1 [�

0
T (IT �MG)MG (IT �MG) �T ]

+4
21 [�
0
T (MG �MG �MG) �T ] + v

3 + 6v2 + 8v = v3 +O(T 2)

E
h
("0HF")

2
("0MG")

2
i
= [Tr (HF )]

2
[Tr (MG)]

2

+2 [Tr (HF )]
2
Tr (MG) + 2 [Tr (MG)]

2
Tr
�
H2
F

�
+ 4Tr

�
H2
F

�
Tr (MG)

+
2f
2 + 
4f
4 + 
6f
6 + 

2
1f
21 + 


2
2f
22 + 
1
3f
1
3

= 3w2T v
2 +O

�
T 3
�
;

where

f
2 = [Tr (HF )]
2
Tr (MG �MG) + 4Tr (HF )Tr (MG)Tr (HF �MG) + [Tr (MG)]

2
Tr (HF �HF )

+2� 0T (HF �HF ) �TTr (MG �MG) + 2�
0
T (MG �MG) �TTr (HF �HF )

+8Tr (HF )Tr (HF �MG) + 8Tr (MG)Tr
�
MG �H2

F

�
+ 16� 0T

�
IT �H2

F

�
(IT �MG) �T

= O
�
T 3
�
;

f
4 = 2Tr (HF )Tr (HF �MG �MG) + 2Tr (MG)Tr (HF �HF �MG)

+4Tr (HF �HF �MG) + 4Tr
�
MG �MG �H2

F

�
= O

�
T 2
�
;

f
6 = Tr (HF �HF �MG �MG) = O (T ) ;

f
21 = 8� 0T (IT �HF )MG (IT �MG) �TTr (HF ) + 4�
0
T (IT �MG)HF (IT �MG) �TTr (HF )

4� 0T (IT �HF )MG (IT �HF ) �TTr (MG) + 8�
0
T (IT �HF )HF (IT �MG) �TTr (MG)

8� 0T (IT �HF )MG (IT �HF ) �T + 8�
0
T (IT �MG)H

2
F (IT �MG) �T

8� 0T (HF �MG �MG) �TTr (HF ) + 8�
0
T (HF �HF �MG) �TTr (MG)

+16� 0T (HF �HF )MG (IT �MG) �T + 32�
0
T (HF �MG)HF (IT �MG) �T

+32� 0T (HF �MG)MG (IT �HF ) �T + 16�
0
T (MG �MG)HF (IT �HF ) �T

+16Tr
�
H2
F (MG �MG)

�
+ 16Tr [MG (HF �HF )]

= O
�
T 3
�
;
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f
22 = Tr (HF �HF )Tr (MG �MG) + 2 [Tr (HF �MG)]
2

+16� 0T (IT �HF ) (HF �MG) (IT �MG) �T

+4� 0T (IT �HF ) (MG �MG) (IT �HF ) �T

+4� 0T (IT �MG) (HF �HF ) (IT �MG) �T

+8� 0T (HF �HF �MG �MG) �T

= O
�
T 2
�
;

f
1
3 = 4� 0T (IT �HF )HF (IT �MG �MG) �T + 8�
0
T (IT �HF )MG (IT �HF �MG) �T

+8� 0T (IT �MG)HF (IT �HF �MG) �T + 4�
0
T (IT �MG)MG (IT �HF �HF ) �T

+16� 0T (IT �HF ) (HF �MG �MG) �T + 16�
0
T (IT �MG) (HF �HF �MG) �T

= O
�
T 2
�
;

and

E
h�
�0MG�

�4i
= [Tr (MG)]

4
+ 12 [Tr (MG)]

2
Tr (MG) + 12 [Tr (MG)]

2

+32Tr (MG)Tr (MG) + 48Tr (MG)


2g
2 + 
4g
4 + 
6g
6 + 

2
1g
21 + 


2
2g
22 + 
1
3g
1
3

= v4 +O(T 3);

with

g
2 = 6 [Tr(MG)]
2
Tr (MG �MG) + 12�

0
T (MG �MG) �TTr (MG �MG)

+48Tr(MG)Tr (MG �MG) + 96Tr [(IT �MG)MG] + 48�
0
T (IT �MG) (IT �MG) �T ;

g
4 = 4Tr(MG)Tr (MG �MG �MG) + 24Tr (MG �MG �MG) ;

g
6 = Tr (MG �MG �MG �MG) ;

g
21 = 24� 0T (IT �MG)MG (IT �MG) �TTr (MG) + 48�
0
T (IT �MG)MG (IT �MG) �T

+16� 0T (MG �MG �MG) �TTr (MG) + 96�
0
T (MG �MG)MG (IT �MG) �T

+96Tr [(MG �MG)MG] ;

g
22 = 3 [Tr (MG �MG)]
2
+ 24� 0T (IT �MG) (MG �MG) (IT �MG) �T

+8� 0T (MG �MG �MG �MG) �T ;

g
1
3 = 24�
0
T (IT �MG)MG (IT �MG �MG) �T + 32�

0
T (IT �MG) (MG �MG �MG) �T :

Proof. These results are obtained by using the results established in Lemmas 6 and 10, together with the fact
that E(�rt ) for r = 1; 2; :::; 8 are time invariant (which is ensured by Assumption 3), and noting thatMGHF = 0

(since MFMG =MG and MG�T = 0), H
j
F = HF [Tr(HF )]

j�1 for j > 1.

Lemma 12 Suppose that � � IID(0; IT ), where � = (�1; �2; :::; �T )
0, with 
1 = E(�3t ), 
2 = E(�4t ) � 3, 
3 =

E(�5t )� 10
1 and 
4 = E
�
�6t
�
� 15
2� 10
21� 15 for all t = 1; 2; :::; T . Consider the matrices MG; PG and HF ,

de�ned by (S.2) and (S.1), and v = T �m� 1. Then, under Assumptions 1 and 3 we have

�2 = E
�
(�0MG�)

2
�
�
�
E(�0MG�)

�2
= 
2Tr (MG �MG) + 2v = O(T ); (S.31)

�11 = E[(�0HF �)
�
�0MG�

�
]� E(�0HF �)E(�

0MG�)

= 
2Tr [(MG �HF )] = O(T ); (S.32)

and

�21 = E
h�
�0HF �

�2 �
�0MG�

�i
� E[(�0HF �)

2]E(�0MG�)

= 6
2 (�
0
TMF �T )Tr (MG �HF ) + 4


2
1 [�

0
T (IT �HF )HF (IT �MG) �T ]

+6
21 [�
0
T (IT �HF )MG (IT �HF ) �T ] +O(T ) = O(T 2): (S.33)
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Proof. The results (S.31) and (S.32) follow immediately from Lemmas 11 and 10, together with the fact
that E(�rt ) for r = 1; 2; 3; 4 are time invariant, which is ensured by Assumption 3. The result (S.33) follows
using Lemmas 11 and 10 and the equality (S.30), noting that Tr

�
H2
F

�
= [Tr (HF )]

2, and Tr
�
MG �H2

F

�
=

Tr (HF )Tr (MG �HF ) ; since H2
F = Tr (HF )HF .

Lemma 13 Suppose "t = ("it), where "it � IID (0; 1), with 
1;" = E("3it), 
2;" = E("4it) � 3, 
3;" = E("5it) �
10
1;" and 
4;" = E

�
"6it
�
� 15
2;" � 10
21;" � 15, and qi = (qi`). Then,

E ("0tqiq
0
i"t) =

X
`
q2i`; E

�
"0tqiq

0
j"t
�
=
X

`
qi`qj`; (S.34)

E ("0tqiq
0
i"t"

0
tqi) = 
1;"

X
`
q3i`, E

�
"0tqjq

0
j"t"

0
tqi
�
= 
1;"

X
`
qi`q

2
j`;

E
h
("0tqiq

0
i"t)

2
i
= 
2;"

�X
`
q4i`

�
+ 3

�X
`
q2i`

�2
;

E
h�
"0tqiq

0
j"t
�2i

= 
2;"

�X
`
q2i`q

2
j`

�
+
�X

`
q2i`

��X
`
q2j`

�
+ 2

�X
`
qi`qj`

�2
;

E
�
("0tqiq

0
i"t)

�
"0tqiq

0
j"t
��
= 
2;"

�X
`
q3i`qj`

�
+ 3

�X
`
q2i`

��X
`
qi`qj`

�
;

E
�
q0i"t ("

0
tqiq

0
i"t)

�
"0tqjq

0
j"t
��

= 
3;"
X

`
q3i`q

2
j` + 
1;"

h
6
�X

`
qi`qj`

��X
`
q2i`qj`

�
+3
�X

`
q2i`

��X
`
qi`q

2
j`

�
+
�X

`
q2j`

��X
`
q3i`

�i
; (S.35)

E
h
q0i"t

�
"0tqjq

0
j"t
�2i

= 
3;"
X

`
qi`q

4
j` + 
1;"

h
4
�X

`
qi`

��X
`
q4j`

�
+4
�X

`
qi`qj`

��X
`
q3j`

�
+ 2

�X
`
q2j`

��X
`
q2j`qi`

�i
; (S.36)

E
h
("0tqiq

0
i"t)

2 �
"0tqjq

0
j"t
�i
= 
4;"

�X
`
q4i`q

2
j`

�
+ 6
2;"

�X
`
q2i`

��X
`
q2i`q

2
j`

�
(S.37)

+
2;"

�X
`
q4i`

��X
`
q2j`

�
+ 8
2;"

�X
`
qi`qj`

��X
`
q3i`qj`

�
+ 4
21;"

�X
`
q3i`

��X
`
qi`q

2
j`

�
+6
21;"

�X
`
q2i`qj`

�2
+ 3

�X
`
q2i`

�2 �X
`
q2j`

�
+ 12

�X
`
q2i`

��X
`
qi`qj`

�2
; (S.38)

E
�
("0tqiq

0
i"t)

�
"0tqiq

0
j"t
� �
"0tqjq

0
j"t
��
= 
4;"

�X
`
q3i`q

3
j`

�
+ 5
2;"

X
`
q2i`

�X
`
qi`q

3
j`

�
(S.39)

+5
2;"
X

`
qi`qj`

�X
`
q2i`q

2
j`

�
+ 5
2;"

X
`
q2j`

�X
`
q3i`qj`

�
+ 2
21;"

�X
`
q3i`

��X
`
q3j`

�
+2
21;"

�X
`
q2i`qj`

��X
`
qi`q

2
j`

�
+ 2
21;"

�X
`
q2i`qj`

��X
`
qi`q

2
j`

�
+4
21;"

�X
`
q2i`qj`

�2
+ 2

�X
`
qi`qj`

�3
+ 13

�X
`
q2i`

��X
`
q2j`

��X
`
qi`qj`

�
:

Proof. Applying Lemma 6, the results follow.

Lemma 14 Let ~
is = 
is=�
1=2
ii and ~q�;i` = q�;i`=�

1=2
�;ii, where 
is is the s

th element of the k � 1 vector of factor
loadings, 
i, de�ned by (47), �ii = 


0
i
i+��;ii, and q�;i` is the (i; `) element of Q�, where Q� is de�ned by (51).

(a) For any �nite M , �p and rp; p = 1; 2; :::;M , at least one of �p is non-zero and at least one of rp is
non-zero, then

NX
i=1

NX
j=1

MY
p

�Xk

s=1
~

�p
is ~


rp
js

�
= O

�
N2�


�
.

(b) Further, for any �nite L, �h and rh; h = 1; 2; :::; L, where �h � 0 and rh � 0,

NX
i=1

NX
j=1

LY
h

�XN

`=1
~q�h�;i`~q

rh
�;j`

� MY
p

�X
s
~

�p
is ~


rp
js

�
= O

�
N2�


�
.
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(c) Further, for any �nite u � 1 and � � 1,

NX
i=1

NX
j=1

�XN

`=1
~qu�;i`~q

�
�;j`

� LY
h

�XN

`=1
~q�h�;i`~q

rh
�;j`

�
= O (N) .

Proof. Consider part (a) �rst. Noting that j~
isj � 1 for all i and s, j~
isj
�p � j~
isj and sups

PN
i=1 j~
isj = O

�
N �


�
by (48), we have

NX
i=1

NX
j=1

MY
p

���X
s
~

�p
is ~


rp
js

��� � NX
i=1

NX
j=1

MY
p

X
s
j~
isj

�p
��~
js��rp

�
NX
i=1

NX
j=1

MY
p

X
s
j~
isj

��~
js�� � NX
i=1

NX
j=1

MY
p

k

�
sup
s
j~
isj sup

s

��~
js���

�
NX
i=1

NX
j=1

kM
�
sup
s
j~
isj sup

s

��~
js���M � kM

 
sup
s

NX
i=1

j~
isj
!0@sup

s

NX
j=1

��~
js��
1A

= O
�
N2�


�
,

as required. Now consider part (b). By Cauchy-Schwarz

NX
i=1

NX
j=1

LY
h

����XN

`=1
~q�h�;i`~q

rh
�;j`

���� MY
p

����Xk

s=1
~

�p
is ~


rp
js

����
�

NX
i=1

NX
j=1

LY
h

�����
rXN

`=1
j~q�;i`j2�h

rXN

`=1
j~q�;j`j2rh

�����
MY
p

����Xk

s=1
~

�p
is ~


rp
js

���� ,
but, as

PN
`=1 j~q�;i`j

2
= 1,

PN
`=1 j~q�;i`j

2 �
PN

`=1 j~q�;i`j
r for r � 2, together with part (a) we have

NX
i=1

NX
j=1

LY
h

�����
rXN

`=1
j~q�;i`j2�h

rXN

`=1
j~q�;j`j2rh

�����
MY
p

����Xk

s=1
~

�p
is ~


rp
js

����
�

NX
i=1

NX
j=1

kM

 
sup
s

NX
i=1

j~
isj
!0@sup

s

NX
j=1

��~
js��
1A = O

�
N2�


�
.

Observe that the result holds when all of �h and/or all of rh are zero. Now consider part (c). Similarly, using
Cauchy-Schwarz

NX
i=1

NX
j=1

����XN

`=1
~qu�;i`~q

�
�;j`

���� LY
h

����XN

`=1
~q�h�;i`~q

rh
�;j`

����
�

NX
i=1

NX
j=1

XN

`=1
j~q�;i`ju j~q�;j`j�

LY
h

rXN

`=1
j~q�;i`j2�h

rXN

`=1
j~q�;j`j2rh

�
XN

`=1

NX
i=1

j~q�;i`ju
NX
j=1

j~q�;j`j�

but
PN

`=1 ~q
2
�;i` = 1 implies j~q�;i`j � 1, hence, j~q�;i`j

r � j~q�;i`j for r � 1, we have

XN

`=1

NX
i=1

j~q�;i`ju
NX
j=1

j~q�;j`j� �
XN

`=1

NX
i=1

j~q�;i`j
NX
j=1

j~q�;j`j

� N

 
sup
`

NX
i=1

j~q�;i`j
!0@sup

`

NX
j=1

j~q�;j`j

1A = O (N) ,

as required, where the �nal line follows from sup`
PN

i=1 j~q�;i`j � K for all i (by (52)).
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Lemma 15 Consider the regression model (2), and suppose that Assumptions 1 and 3 hold. Let z2�;i = �
0
iHF�i= (wT��;ii)

and X�;i = �0iMG�i= (v��;ii), where �i = (�i1; �i2; :::; �iT )
0, wT = � 0TMF �T , and HF = (htht0), MF and

MG are de�ned by (S.2), and v = T � m � 1: Denote ~�it = �it=�
1=2
�;ii, and set D�� = diag (��;ii), so that

D
�1=2
�� �t = ~�t = ~Q�"�;t; where ~Q� = D

�1=2
�� Q�, and ~q0�;i = (~q�;i1; ~q�;i2; :::; ~q�;iN ) is the i

th row of ~Q�. Also, set
��;ij = Cov

�
~�it; ~�jt

�
, 
1;"� = E

�
"3�;it

�
and 
2;"� = E

�
"4�;it

�
� 3: Then we have

E
�
z2�;i
�
= 1, E (X�;i) = 1, (S.40)

'�;ij = E
�
~�2it~�

2
jt

�
= 1 + 2�2�;ij + 
2;"�

NX
`=1

~q2�;i`~q
2
�;j`; (S.41)

E
�
z2�;iz

2
�;j

�
=
�
1 + 2�2�;ij

�
+ 
2;"�

�P
t h

4
t

w2T

� NX
`=1

~q2�;i`~q
2
�;j`

!
; (S.42)

E (X�;iX�;j) = 1 +
2�2�;ij
v

+ 
2;"�

�P
tm

2
tt

v2

� NX
`=1

~q2�;i`~q
2
�;j`; (S.43)

E
�
z2�;iX�;i

�
= 1 +

P
t h

2
tmtt

vwT

�

2;"�

X
`
~q4�;i`

�
; (S.44)

E
�
z2�;iX�;iz

2
�;j

�
=

�
1 + 2�2�;ij

�
+

P
t h

2
tmtt

vwT

2;"�

�X
`
~q4�;i`

�
+

P
t h

4
t

w2T

2;"�

�X
`
~q2�;i`~q

2
�;j`

�
+

 
1

w2T v

X
t

X
r

h3thrmrr + 3
1

w2T v

X
t

X
r

h2th
2
rmtr

!

21;"�

�X
`
~q�;i`~q

2
�;j`

��X
`
~q3�;i`

�
+2

 
1

w2T v

X
t

X
r

h3thrmrr + 2
1

w2T v

X
t

X
r

h2th
2
rmtr

!

21;"�

�X
`
~q2�;i`~q�;j`

�2
+

 
1

wT v

X
t

h2tmtt

!h

2;"�

�X
`
~q2�;i`~q

2
�;j`

�i
+4��;ij

 
1

wT v

X
t

h2tmtt

!h

2;"�

�X
`
~q3�;i`~q�;j`

�i
+O

�
T�2

�
, (S.45)

E
�
z2�;iX�;iz

2
�;jX�;j

�
=

�
1 + 2�2�;ij

�
+

�P
t h

2
tmtt

vwT

�

2;"�

�X
`
~q4�;j` +

X
`
~q4�;i`

�
+

P
t h

4
t

w2T

2;"�

�X
`
~q2�;i`~q

2
�;j`

�
+2�2�;ij

 
� 1

w2T

X
t

h4t �
18

vwT

X
t

h2tmtt �
2

v2

X
t

m2
tt +

1

v

!

+2�4�;ij

 
2

v
� 2

v2

X
t

m2
tt

!

+

 
2

v2wT

X
t

X
r

hrhtmrrmtt +
1

v2wT

X
t

X
r

h2tmrrmtr +
2

vw2T

X
t

X
r

h3rhtmtt

!
�
21;"�

h�X
`
~q2�;i`~q�;j`

��X
`
~q3�;j`

�
+
�X

`
~q3�;i`

��X
`
~q�;i`~q

2
�;j`

�i
+
21;"���;ij

 
4

v2wT

X
t

X
r

hrhtmrrmtt

!�X
`
~q3�;j`

��X
`
~q3�;i`

�
+

 
4

1

v2wT

X
t

X
r

hrhtm
2
rt +

1

v2wT

X
t

X
r

h2tmrrmtr + 2
1

vw2T

X
t

X
r

h3rhtmtt

!

�
��X

`
~q�;i`~q

2
�;j`

�2
+
�X

`
~q2�;i`~q�;j`

�2�
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+

 
4

1

v2wT

X
t

X
r

hrhtmrrmtt + 16
1

v2wT

X
t

X
r

hrhtm
2
rt + 8

1

v2wT

X
t

X
r

h2tmrrmtr

!
�
21;"���;ij

�X
`
~q2�;i`~q�;j`

��X
`
~q�;i`~q

2
�;j`

�

+��;ij

 
4
1

vwT

X
t

h2tmtt

!h

2;"�

�X
`
~q3�;i`~q�;j`

�
+ 3��;ij

i
+

 
2
1

vwT

X
t

h2tmtt +
1

v2

X
t

m2
tt

!

�
h

2;"�

�X
`
~q2�;i`~q

2
�;j`

�
+ 2�2�;ij

i
+ 2�2�;ij

1

w2T

X
t

h4t

+�2�;ij

 
2
1

v2

X
t

m2
tt

!h

2;"�

�X
`
~q2�;i`~q

2
�;j`

�
+
�
1 + 2�2�;ij

�i
+��;ij

 
4
1

vwT

X
t

h2tmtt

!h

2;"�

�X
`
~q3�;i`~q�;j`

�
+ 3��;ij

i
+O

�
T�2

�
: (S.46)

Proof. First, E
�
z2�;i
�
= 1 since E (�0iHF�i=��;ii) = Tr (HF ) = wT and E (X�;i) = 1 since E (�0iMG�i=��;ii) =

Tr (MG) = v (see Lemma 11). Noting that ~�it = "
0
�;t~q�;i we have

'�;ij = E
�
~�2it~�

2
jt

�
= E

��
"0�;t~q�;i~q

0
�;i"�;t

� �
"0�;t~q�;j~q

0
�;j"�;t

��
;

and since "�;t s IID(0; IN ), then using (S.7) in Lemma 6, and noting that
P

` ~q�;i`~q�;j` = ~q
0
�;i~q�;j = ��;ij , andPN

`=1 ~q
2
�;i` = ~q

0
�;i~q�;i = 1, we have

'�;ij = 
2;"�Tr
�
~q�;i~q

0
�;i � ~q�;j~q0�;j

�
+ Tr

�
~q�;i~q

0
�;i

�
Tr
�
~q�;j~q

0
�;j

�
+Tr

�
~q�;i~q

0
�;i~q�;j~q

0
�;j

�
;

which establishes (S.41). Next, noting z2�;i = ~�
0
iHF ~�i =

P
t

P
t0 htt0

�
�it=�

1=2
�;ii

��
�it0=�

1=2
�;ii

�
=
P

t

P
t0 htt0~�it~�it0

and ~�it = "
0
�;t~q�;i, we have

E
�
z2�;iz

2
�;j

�
=

1

w2T

X
t

X
t0

X
r

X
r0

htht0hrhr0E
��
"0�;t~q�;i~q

0
�;i"�;t0

� �
"0�;r~q�;j~q

0
�;j"�;r0

��
,

and note that there are the following combinations of indices ft; t0; r; r0g to take into account. There is one
t = t0 = r = r0, and three relevant pairs, t = t0 and r = r0 (t 6= r), t = r0 and t0 = r (t 6= r), and t = r and t0 = r0

(t 6= t0). Thus,

E
�
z2�;iz

2
�;j

�
=

1

w2T

X
t

h4tE
h�
"0�;t~q�;i~q

0
�;j"�;t

�2i
(for t = t0 = r = r0)

+
1

w2T

X
t6=r

h2th
2
rE
��
"0�;t~q�;i~q

0
�;i"�;t

� �
"0�;r~q�;j~q

0
�;j"�;r

��
(for t0 = t; r0 = r, t 6= r)

+
1

w2T

X
t6=r

hthrhrhtE
��
"0�;t~q�;i~q

0
�;j"�;t

� �
"0�;r~q�;i~q

0
�;j"�;r

��
(for r0 = t; t0 = r, t 6= r)

+
1

w2T

X
t6=t0

htt0htt0E
��
"0�;t~q�;i~q

0
�;j"�;t

� �
"0�;t0~q�;i~q

0
�;j"�;t0

��
(for r = t; r0 = t0; t 6= t0):

Hence

E
�
z2�;iz

2
�;j

�
=

1

w2T

X
t

h4tE
h�
"0�;t~q�;i~q

0
�;j"�;t

�2i
+

1

w2T

X
t6=r

h2th
2
rE
��
"0�;t~q�;i~q

0
�;i"�;t

� �
"0�;r~q�;j~q

0
�;j"�;r

��
+2

1

w2T

X
t6=t0

h2th
2
t0E

��
"0�;t~q�;i~q

0
�;j"�;t

� �
"0t0~q�;i~q

0
�;j"t0

��
.
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Observing that the ordering of htht0hrhr0 is arbitrary, we have

E
�
z2�;iz

2
�;j

�
=

1

w2T

X
t

h4tE
h�
"0�;t~q�;i~q

0
�;j"�;t

�2i
+
1

w2T

X
t6=r

h2th
2
r

n
E
�
"0�;t~q�;i~q

0
�;i"�;t

�
E
�
"0�;r~q�;j~q

0
�;j"�;r

�
+ 2

�
E
�
"0�;t~q�;i~q

0
�;j"�;t

��2o
.

Also note that E
�
"0�;t~q�;i~q

0
�;j"�;t

�2
is given by (S.41), E

�
"0�;t~q�;i~q

0
�;i"�;t

�
= 1 and E

�
"0�;t~q�;i~q

0
�;j"�;t

�
= ��;ij ,

and
P

t6=r h
2
th
2
r =

P
t

P
r h

2
th
2
r �

P
t h

4
t = w2T �

P
t h

4
t . Then, after some simpli�cations we obtain

E
�
z2�;iz

2
�;j

�
=

P
t h

4
t

w2T

 

2;"�

NX
`=1

~q2�;i`~q
2
�;j` + 1 + 2�

2
�;ij

!
+

P
t

P
r h

2
th
2
r �

P
t h

4
t

w2T

�
1 + 2�2�;ij

�
= 1 + 2�2�;ij +

P
t h

4
t

w2T

2;"�

 
NX
`=1

~q2�;i`~q
2
�;j`

!
,

as required. Next, similarly,

E (X�;iX�;j) =
1

v2

X
t

X
t0

X
r

X
r0

mtt0mrr0E
��
"0�;t~q�;i~q

0
�;i"�;t0

� �
"0�;r~q�;j~q

0
�;j"�;r0

��
=

1

v2

X
t

m2
ttE

h�
"0�;t~q�;i~q

0
�;j"�;t

�2i
+
1

v2

X
t6=r

mttmrrE
�
"0�;t~q�;i~q

0
�;i"�;t

�
E
�
"0�;r~q�;j~q

0
�;j"�;r

�
+
1

v2
2
X
t6=r

m2
trE

�
E
�
"0�;t~q�;i~q

0
�;j"�;r

��2
= 1 +

2�2�;ij
v

+

P
tm

2
tt

v2

 

2;"�

NX
`=1

~q2�;i`~q
2
�;j`

!
:

Next consider

E
�
z2�;iX�;i

�
=

1

vwT

X
t

X
t0

X
r

X
r0

htt0mrr0E
��
"0�;t~q�;i~q

0
�;i"�;t0

� �
"0�;r~q�;i~q

0
�;i"�;r0

��

=
1

vwT

X
t

h2tmttE
h�
"0�;t~q�;i~q

0
�;i"�;t

�2i
+

1

vwT

 X
t

X
r

h2tmrr + 2
X
t

X
r

hthrmtr � 3
X
t

h2tmtt

!�
E
�
"0�;t~q�;i~q

0
�;i"�;t

��2
.

But
P

t

P
r hthrmtr = Tr (MGHF ) = 0,

P
t

P
r h

2
tmrr = vwT , and E

h�
"0�;t~q�;i~q

0
�;i"�;t

�2i
= 
2;"�

PN
`=1 ~q

4
�;i`+3,

E
�
"0�;t~q�;i~q

0
�;i"�;t

�
= 1 by Lemma 13 we have

E
�
z2�;iX�;i

�
= 1 +

P
t h

2
tmtt

vwT

2;"�

NX
`=1

~q4�;i`.

Next, consider

E
�
z2�;iX�;iz

2
�;j

�
= w�2T v�1

X
t

X
t0

X
r

X
r0

X
u

X
u0

htht0hrhr0muu0E
��
"0�;t~q�;i~q

0
�;i"�;t0

� �
"0�;r~q�;j~q

0
�;j"�;r0

� �
"0�;u~q�;i~q

0
�;i"�;u0

��
.

In addition to the case of t = t0 = r = r0 = u = u0, three combinations of six indices ft; t0; r; r0; u; u0g are to be
considered: three pairs, two of threes, and fours and twos, which are with superscripts (2; 2; 2), (3; 3) and (4; 2),
respectively. As the groups�ordering does not matter when the number of group members are the same, we
have

�
6!
2!4!

� �
4!
2!2!

�
1
3! = 15 di¤erent combinations of (2; 2; 2),

�
6!
3!3!

�
1
2! = 10 of (3; 3), and

6!
2!4! = 15 of (4; 2). After
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considering of all the combinations, and observing that the ordering of htht0hrhr0 and fu; u0g in muu0 is arbitrary
(as MG is symmetric), after some algebra, we have

E
�
z2�;iX�;iz

2
�;j

�
=

�
A(2;2;2) + 2B(2;2;2)

� �
E
�
"0�;t~q�;i~q

0
�;i"�;t

��2
E
�
"0�;r~q�;j~q

0
�;j"�;r

�
+2
�
A(2;2;2) + 5B(2;2;2)

�
E
�
"0�;t~q�;i~q

0
�;i"�;t

� �
E
�
"0�;r~q�;i~q

0
�;j"�;r

��2
+
�
A(3;3) + 3B(3;3)

�
E
�
"0�;t~q�;i~q

0
�;j"�;t"

0
�;t~q�;j

�
E
�
~q0�;i"�;r"

0
�;r~q�;i~q

0
�;i"�;r

�
+2
�
A(3;3) + 2B(3;3)

� �
E
�
"0�;t~q�;i~q

0
�;i"�;t"

0
�;t~q�;j

��2
+
�
A(2;4) + 4B(2;4) + C(2;4)

�
E
��
"0�;t~q�;i~q

0
�;i"�;t

� �
"0�;t~q�;j~q

0
�;j"�;t

��
E
�
"0�;r~q�;i~q

0
�;i"�;r

�
+4
�
B(2;4) + C(2;4)

�
E
��
"0�;t~q�;i~q

0
�;i"�;t

� �
"0�;t~q�;i~q

0
�;j"�;t

��
E
�
"0�;r~q�;i~q

0
�;j"�;r

�
+C(2;4)E

h�
"0�;t~q�;i~q

0
�;i"�;t

�2i
E
�
"0�;r~q�;j~q

0
�;j"�;r

�
+w�2T v�1

X
t

h4tmttE
h�
"0�;t~q�;i~q

0
�;i"�;t

�2 �
"0�;t~q�;j~q

0
�;j"�;t

�i
where

A(2;2;2) = w�2T v�1
X
t6=r 6=u

h2th
2
rmuu, B(2;2;2) = w�2T v�1

X
t6=r 6=u

h2thrhumru; (S.47)

A(3;3) = w�2T v�1
X
t6=r

h3thrmrr, B(3;3) = w�2T v�1
X
t6=r

h2th
2
rmtr; (S.48)

A(2;4) = w�2T v�1
X
t6=r

h4tmrr, B(2;4) = w�2T v�1
X
t6=r

h3thrmtr, C(2;4) = w�2T v�1
X
t6=r

h2th
2
rmtt; (S.49)

and noting that
P

t6=r 6=u h
2
th
2
rmuu =

P
t

P
r

P
u h

2
th
2
rmuu�

P
t

P
r h

4
tmrr�

P
t

P
r h

2
th
2
rmtt�

P
t

P
r h

2
th
2
rmrr+

2
P

t h
4
tmtt,

A(2;2;2) = 1� w�2T
X
t

h4t � 2w�1T v�1
X
t

h2tmtt +O(T
�2),

since
P

t h
2
t = wT and

P
tmtt = v, and

P
t h

4
tmtt �

P
t h

4
t = O(T ), and noting that, as MG and HF are

symmetric and MGHF = 0,
P

t hrhtmtu for any t 6= r and t 6= u we have

B(2;2;2) = �w�1T v�1
X
t

h2tmtt +O
�
T�2

�
;

A(3;3) = w�2T v�1
X
t

X
r

h3thrmrr +O
�
T�2

�
, B(3;3) = w�2T v�1

X
t

X
r

h2th
2
rmtr +O

�
T�2

�
A(2;4) = w�2T

X
r

h4t +O
�
T�2

�
, B(2;4) = O

�
T�2

�
, C(2;4) = w�1T v�1

X
t

h2tmtt +O
�
T�2

�
.

Using the result in Lemma 13 and noting that E
�
j~�itj8

�
is uniformly bounded by Lemma 3, we have

E
�
z2�;iX�;iz

2
�;j

�
= 1 + 2�2�;ij +

1

wT v

X
t

h2tmtt

h

2;"�

�X
`
~q4�;i`

�i
+

 
1

w2T v

X
t

X
r

h3thrmrr + 3
1

w2T v

X
t

X
r

h2th
2
rmtr

!

21;"�

�X
`
~q�;i`~q

2
�;j`

��X
`
~q3�;i`

�
+2

 
1

w2T v

X
t

X
r

h3thrmrr + 2
1

w2T v

X
t

X
r

h2th
2
rmtr

!

21;"�

�X
`
~q2�;i`~q�;j`

�2
+

 
1

w2T

X
r

h4t +
1

wT v

X
t

h2tmtt

!h

2;"�

�X
`
~q2�;i`~q

2
�;j`

�i
+4��;ij

 
1

wT v

X
t

h2tmtt

!h

2;"�

�X
`
~q3�;i`~q�;j`

�i
+O

�
T�2

�
.
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Next consider

E
�
z2�;iX�;iz

2
�;jX�;j

�
= w�2T v�2

X
t

X
t0

X
r

X
r0

X
�

X
�0

X
u

X
u0

htht0hrhr0m��0muu0

�E
��
"0�;t~q�;i~q

0
�;i"�;t0

� �
"0�;r~q�;j~q

0
�;j"�;r0

� �
"0�;�~q�;i~q

0
�;i"�;�0

� �
"0�;u~q�;j~q

0
�;j"�;u0

��
:

In addition to the case of t = t0 = r = r0 = � = �0 = u = u0, �ve combinations of eight indices ft; t0; r; r0; �; �0; u; u0g
are to be considered, which are subscripted by (2; 6), (3; 5), (4; 4) ; (2; 3; 3), (4; 2; 2), and (2; 2; 2; 2). As the groups�
ordering does not matter when the number of group members are the same, we have 8!

2!6! = 28 of di¤erent com-
binations of (2; 6), 8!

3!5! = 56 of (3; 5), 8!
4!4!

1
2! = 35 of (4; 4), 8!

2!6!

�
6!
3!3!

1
2!

�
= 280 of (2; 3; 3), 8!

4!4!

�
4!
2!2!

1
2!

�
= 210

of (4; 2; 2), and 8!
2!6!

6!
2!4!

4!
2!2!

1
4! = 105 of (2; 2; 2; 2), respectively. After considering of all the combinations, and

observing that the ordering of htht0hrhr0 and fu; u0g of muu0 are arbitrary, after tedious algebra, we have

E
�
z2�;iX�;iz

2
�;jX�;j

�
=
�
A(2;2;2;2) + 4C(2;2;2;2) + 4E(2;2;2;2)

� �
E
�
"0�;t~q�;i~q

0
�;i"�;t

��2 �
E
�
"0�;r~q�;j~q

0
�;j"�;r

��2
+2
�
A(2;2;2;2) +B(2;2;2;2) + 10C(2;2;2;2) + 16D(2;2;2;2) + 8E(2;2;2;2)

� �
E
�
"0�;t~q�;i~q

0
�;i"�;t

��2 �
E
�
"0�;r~q�;i~q

0
�;j"�;r

��2
+2
�
2B(2;2;2;2) + 8D(2;2;2;2) + 2E(2;2;2;2)

� �
E
�
"0�;r~q�;i~q

0
�;j"�;r

��4
+
�
E(2;2;4) + 2G(2;2;4)

�
E
h�
"0�;t~q�;j~q

0
�;j"�;t

�2i �
E
�
"0�;t~q�;i~q

0
�;i"�;t

��2
+
�
4C(2;2;4) + 8D(2;2;4) + 4E(2;2;4) + 4F(2;2;4) + 8G(2;2;4) + 8H(2;2;4) + 12I(2;2;4)

�
�E

��
"0�;t~q�;j~q

0
�;j"�;t

� �
"0�;t~q�;j~q

0
�;i"�;t

��
E
�
"0�;t~q�;i~q

0
�;i"�;t

�
E
�
"0�;t~q�;i~q

0
�;j"�;t

�
+
�
A(2;2;4) + 8C(2;2;4) + 2E(2;2;4) + 16H(2;2;4) + 8I(2;2;4) + J(2;2;4)

�
�E

��
"0�;t~q�;j~q

0
�;j"�;t

� �
"0�;t~q�;i~q

0
�;i"�;t

��
E
�
"0�;t~q�;i~q

0
�;i"�;t

�
E
�
"0�;t~q�;j~q

0
�;j"�;t

�
+
�
2B(2;2;4) + 16D(2;2;4) + 16F(2;2;4) + 4G(2;2;4) + 16H(2;2;4) + 16I(2;2;4) + 2J(2;2;4)

�
�E

��
"0�;t~q�;j~q

0
�;j"�;t

� �
"0�;t~q�;i~q

0
�;i"�;t

�� �
E
�
"0�;t~q�;i~q

0
�;j"�;t

��2
+
�
4C(2;2;4) + 8D(2;2;4) + 4E(2;2;4) + 4F(2;2;4) + 8G(2;2;4) + 8H(2;2;4) + 12I(2;2;4)

�
�E

��
"0�;t~q�;i~q

0
�;j"�;t

� �
"0�;t~q�;i~q

0
�;i"�;t

��
E
�
"0�;t~q�;i~q

0
�;j"�;t

�
E
�
"0�;t~q�;j~q

0
�;j"�;t

�
+
�
E(2;2;4) + 2G(2;2;4)

�
E
h�
"0�;t~q�;i~q

0
�;i"�;t

�2i �
E
�
"0�;t~q�;j~q

0
�;j"�;t

��2
+
�
2A(3;3;2) + C(3;3;2) + 9D(3;3;2) + 8E(3;3;2) + 2G(3;3;2) + 2I(3;3;2)

�
�
�
E
�
"0�;t~q�;i~q

0
�;i"�;t

�
E
�
"0�;r~q�;i~q

0
�;i"�;r"

0
�;r~q�;j

�
E
�
~q0�;j"�;u"

0
�;u~q�;j~q

0
�;j"�;u

�
+E

�
"0�;t~q�;j~q

0
�;j"�;t

�
E
�
"0�;r~q�;i~q

0
�;i"�;r"

0
�;r~q�;i

�
E
�
~q0�;i"�;u"

0
�;u~q�;j~q

0
�;j"�;u

��
+
�
4A(3;3;2) + 8D(3;3;2) + 4J(3;3;2)

�
E
�
"0�;t~q�;i~q

0
�;j"�;t

�
E
�
"0�;r~q�;i~q

0
�;i"�;r"

0
�;r~q�;i

�
E
�
~q0�;j"�;u"

0
�;u~q�;j~q

0
�;j"�;u

�
+
�
4B(3;3;2) + C(3;3;2) + 5D(3;3;2) + 16E(3;3;2) + 4F(3;3;2) + 2G(3;3;2) + 4I(3;3;2)

�
�
n
E
�
"0�;t~q�;i~q

0
�;i"�;t

� �
E
�
"0�;r~q�;j~q

0
�;j"�;r"

0
�;r~q�;i

��2
+ E

�
"0�;t~q�;j~q

0
�;j"�;t

� �
E
�
"0�;r~q�;i~q

0
�;i"�;r"

0
�;r~q�;j

��2o
+
�
4A(3;3;2) + 16B(3;3;2) + 8C(3;3;2) + 24D(3;3;2) + 48E(3;3;2) + 8F(3;3;2) + 16H(3;3;2) + 20J(3;3;2)

�
�E

�
"0�;t~q�;i~q

0
�;j"�;t

�
E
�
"0�;r~q�;i~q

0
�;j"�;r"

0
�;r~q�;i

�
E
�
~q0�;i"�;u"

0
�;u~q�;j~q

0
�;j"�;u

�
+
�
A(2;6) + 4B(2;6) + C(2;6)

�
E
h
E
�
"0�;t~q�;i~q

0
�;i"�;t

� �
"0�;t~q�;j~q

0
�;j"�;t

�2i
E
�
"0�;r~q�;i~q

0
�;i"�;r

�
+4
�
A(2;6) + 2B(2;6) +D(2;6)

�
E
�
E
�
"0�;t~q�;i~q

0
�;i"�;t

� �
"0�;t~q�;i~q

0
�;j"�;t

� �
"0�;t~q�;j~q

0
�;j"�;t

��
E
�
"0�;r~q�;i~q

0
�;j"�;r

�
+
�
A(2;6) + 4B(2;6) + C(2;6)

�
E
h
E
�
"0�;t~q�;i~q

0
�;i"�;t

�2 �
"0�;t~q�;j~q

0
�;j"�;t

�i
E
�
"0�;r~q�;j~q

0
�;j"�;r

�
+2
�
B(3;5) + C(3;5)

�
E
�
"0�;r~q�;i~q

0
�;i"�;r"

0
�;r~q�;i

�
E
h
~q0�;i"�;t

�
"0�;t~q�;j~q

0
�;j"�;t

�2i
+2
�
A(3;5) + 5B(3;5) + C(3;5) + 4D(3;5) + E(3;5)

�
�E

�
"0�;r~q�;i~q

0
�;i"�;r"

0
�;r~q�;j

�
E
��
~q0�;j"�;t

� �
"0�;t~q�;j~q

0
�;j"�;t

� �
"0�;t~q�;i~q

0
�;i"�;t

��
+2
�
A(3;5) + 5B(3;5) + C(3;5) + 4D(3;5) + E(3;5)

�
�E

�
"0�;r~q�;i"

0
�;r~q�;j~q

0
�;j"�;r

�
E
��
~q0�;i"�;t

� �
"0�;t~q�;i~q

0
�;i"�;t

� �
"0�;t~q�;j~q

0
�;j"�;t

��
+2
�
B(3;5) + C(3;5)

�
E
h�
"0�;t~q�;i~q

0
�;i"�;t

�2
"0�;t~q�;j

i
E
�
~q0�;j"�;r

�
"0�;r~q�;j~q

0
�;j"�;r

��
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+B(4;4)E
��
"0�;r~q�;i~q

0
�;i"�;r

� �
"0�;r~q�;i~q

0
�;i"�;r

��
E
��
"0�;t~q�;j~q

0
�;j"�;t

� �
"0�;t~q�;j~q

0
�;j"�;t

��
+4
�
2C(4;4) +D(4;4) +B(4;4)

�
E
��
"0�;r~q�;i~q

0
�;i"�;r

� �
"0�;r~q�;i~q

0
�;j"�;r

��
E
��
"0�;t~q�;i~q

0
�;j"�;t

� �
"0�;t~q�;j~q

0
�;j"�;t

��
+
�
A(4;4) +B(4;4) + 8C(4;4) + 8D(4;4)

� �
E
��
"0�;r~q�;i~q

0
�;i"�;r

� �
"0�;r~q�;j~q

0
�;j"�;r

��	2
+v�2w�2T

X
t

h4tm
2
ttE

h�
"0�;t~q�;i~q

0
�;i"�;t

�2 �
"0�;t~q�;j~q

0
�;j"�;t

�2i
;

where

A(2;2;2;2) = w�2T v�2
X

t6=r 6=� 6=u
h2th

2
rm��muu, B(2;2;2;2) = w�2T v�2

X
t6=r 6=� 6=u

h2th
2
rm

2
�u (S.50)

C(2;2;2;2) = w�2T v�2
X

t6=r 6=� 6=u
h2thrh�mr�muu, D(2;2;2;2) = w�2T v�2

X
t6=r 6=� 6=u

h2thrh�m�umur,

E(2;2;2;2) = w�2T v�2
X

t6=r 6=� 6=u
htuhrh�mr�mtu;

A(2;2;4) = w�2T v�2
X
t6=r 6=u

h4tmrrmuu, B(2;2;4) = w�2T v�2
X
t6=r 6=u

h4tm
2
ru,

C(2;2;4) = w�2T v�2
X
t6=r 6=u

h3thrmtrmuu, D(2;2;4) = w�2T v�2
X
t6=r 6=u

h3thumtrmru,

E(2;2;4) = w�2T v�2
X
t6=r 6=u

h2th
2
rmttmuu, F(2;2;4) = w�2T v�2

X
t6=r 6=u

h2th
2
rm

2
tu

G(2;2;4) = w�2T v�2
X
t6=r 6=u

h2thrhumttmru, H(2;2;4) = w�2T v�2
X
t6=r 6=u

h2thrhumtrmtu,

I(2;2;4) = w�2T v�2
X
t6=r 6=u

hthuh
2
rmttmtu, J(2;2;4) = w�2T v�2

X
t6=r 6=u

h2rh
2
um

2
tt,

A(3;3;2) = w�2T v�2
X
u 6=r 6=t

h2uhrhtmrrmtt, B(3;3;2) = w�2T v�2
X
u 6=r 6=t

h2uhrhtm
2
rt,

C(3;3;2) = w�2T v�2
X
u 6=r 6=t

h2uh
2
tmrrmtr, D(3;3;2) = w�2T v�2

X
u 6=r 6=t

h2rhuhtmurmtt,

E(3;3;2) = w�2T v�2
X
u 6=r 6=t

h2rhuhtmrtmut, F(3;3;2) = w�2T v�2
X
u 6=r 6=t

h3rhumutmtt,

G(3;3;2) = w�2T v�2
X
u 6=r 6=t

h3rhtmuumtt, H(3;3;2) = w�2T v�2
X
u 6=r 6=t

h3rhtm
2
ut,

I(3;3;2) = w�2T v�2
X
u 6=r 6=t

h2rh
2
tmuumtr, J(3;3;2) = w�2T v�2

X
u 6=r 6=t

h2rh
2
tmtumur, (S.51)

A(2;6) = w�2T v�2
X
t6=r

h2th
2
rm

2
rr, B(2;6) = w�2T v�2

X
t6=r

hth
3
rmtrmrr,

C(2;6) = w�2T v�2
X
t6=r

h4rmttmrr, D(2;6) = w�2T v�2
X
t6=r

h4rm
2
tr;

A(3;5) = w�2T v�2
X
t6=r

h3thrm
2
rr, B(3;5) = w�2T v�2

X
t6=r

h2th
2
rmtrmrr,

C(3;5) = w�2T v�2
X
t6=r

hth
3
rmttmrr, D(3;5) = w�2T v�2

X
t6=r

hth
3
rm

2
tr,

E(3;5) = w�2T v�2
X
t6=r

h4rmrtmtt,
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A(4;4) = w�2T v�2
X
t6=r

h4rrm
2
tt, B(4;4) = w�2T v�2

X
t6=r

h2rh
2
tmrrmtt,

C(4;4) = w�2T v�2
X
t6=r

h3rhtmrtmtt, D(4;4) = w�2T v�2
X
t6=r

h2rh
2
tm

2
rt. (S.52)

But observing that the ordering of indices in htht0hrhr0 and fu; u0g of muu0 are arbitrary, and noting that as
MG and HF are symmetric and MGHF = 0,

P
t

P
r

P
u hrhtmtu for any t 6= r and t 6= u, a similar discussion

for the proof of Lemma 10 will give

A(2;2;2;2) = 1�
1

w2T

X
t

h4t � 4
1

vwT

X
t

h2tmtt �
1

v2

X
t

m2
tt +O(T

�2); (S.53)

B(2;2;2;2) =
1

v
� 1

v2

X
t

m2
tt +O(T

�2);

C(2;2;2;2) = �
1

vwT

X
t

h2tmtt +O(T
�2);

D(2;2;2;2) = O(T�2), E(2;2;2;2) = O(T�2);

so that �
A(2;2;2;2) + 4C(2;2;2;2) + 4E(2;2;2;2)

�
= 1� 1

w2T

X
t

h4t �
8

vwT

X
t

h2tmtt �
1

v2

X
t

m2
tt +O(T

�2):

Next
A(3;3;2) =

1

v2wT

X
t

X
r

hrhtmrrmtt +O(T
�2);

B(3;3;2) =
1

v2wT

X
t

X
r

hrhtm
2
rt +O(T

�2);

C(3;3;2) =
1

v2wT

X
t

X
r

h2tmrrmtr+O(T
�2);

D(3;3;2) = O(T�2), E(3;3;2) = O(T�2), F(3;3;2) = O(T�2);

G(3;3;2) =
1

vw2T

X
t

X
r

h3rhtmtt+O(T
�2);

H(3;3;2) = O(T�2), I(3;3;2) = O(T�2), J(3;3;2) = O(T�2);

A(2;2;4) =
1

w2T

X
t

h4t+O(T
�2);

B(2;2;4) = O(T�2);C(2;2;4) = O(T�2); D(2;2;4) = O(T�2);

E(2;2;4) =
1

vwT

X
t

h2tmtt+O(T
�2);

F(2;2;4) = O(T�2), G(2;2;4) = O(T�2), H(2;2;4) = O(T�2), I(2;2;4) = O(T�2);

J(2;2;4) =
1

v2

X
t

m2
tt +O(T

�2): (S.54)

Since the functions with subscripts (2; 6), (3; 5) and (4; 4) are all O(T�2), and v�2w�2T
P

t h
4
tm

2
tt �

v�2w�2T
P

t h
4
tm

2
tt

P
t h

4
t = O(T�3), noting that E

�
"8�;it

�
is uniformly bounded, using the results in Lemma

13 we have

E
�
z2�;iX�;iz

2
�;jX�;j

�
= 1 + 2�2�;ij +

 
1

vwT

X
t

h2tmtt

!

2;"�

�X
`
~q4�;j` +

X
`
~q4�;i`

�
+2�2�;ij

 
� 1

w2T

X
t

h4t �
18

vwT

X
t

h2tmtt �
2

v2

X
t

m2
tt +

1

v

!

+2�4�;ij

 
2

v
� 2

v2

X
t

m2
tt

!
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+

 
2

v2wT

X
t

X
r

hrhtmrrmtt +
1

v2wT

X
t

X
r

h2tmrrmtr +
2

vw2T

X
t

X
r

h3rhtmtt

!
�
21;"�

h�X
`
~q2�;i`~q�;j`

��X
`
~q3�;j`

�
+
�X

`
~q3�;i`

��X
`
~q�;i`~q

2
�;j`

�i
+
21;"���;ij

 
4

v2wT

X
t

X
r

hrhtmrrmtt

!�X
`
~q3�;j`

��X
`
~q3�;i`

�
+

 
4

1

v2wT

X
t

X
r

hrhtm
2
rt +

1

v2wT

X
t

X
r

h2tmrrmtr + 2
1

vw2T

X
t

X
r

h3rhtmtt

!

�
��X

`
~q�;i`~q

2
�;j`

�2
+
�X

`
~q2�;i`~q�;j`

�2�
+

 
4

1

v2wT

X
t

X
r

hrhtmrrmtt + 16
1

v2wT

X
t

X
r

hrhtm
2
rt + 8

1

v2wT

X
t

X
r

h2tmrrmtr

!
�
21;"���;ij

�X
`
~q2�;i`~q�;j`

��X
`
~q�;i`~q

2
�;j`

�

+��;ij

 
4
1

vwT

X
t

h2tmtt

!h

2;"�

�X
`
~q3�;i`~q�;j`

�
+ 3��;ij

i
+

 
1

w2T

X
t

h4t + 2
1

vwT

X
t

h2tmtt +
1

v2

X
t

m2
tt

!
�
h

2;"�

�X
`
~q2�;i`~q

2
�;j`

�
+ 2�2�;ij

i
+�2�;ij

 
2
1

v2

X
t

m2
tt

!h

2;"�

�X
`
~q2�;i`~q

2
�;j`

�
+
�
1 + 2�2�;ij

�i
+��;ij

 
4
1

vwT

X
t

h2tmtt

!h

2;"�

�X
`
~q3�;i`~q�;j`

�
+ 3��;ij

i
+O

�
T�2

�
:

Lemma 16 Consider the regression model (2), and suppose that Assumptions 1-3 hold. Let z2�;i =
�0iHF�i
��;iiwT

and

X�;i =
�0iMG�i
��;iiv

where wT = � 0TMF �T , where �i = (�i1; �i2; :::; �iT )
0, wT = h0h with h =MF �T , and HF =

hh0 = (htht0), MF = (mF;tt0), and MG = (mtt0) are de�ned by (S.2), and v = T �m� 1. Then we have
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where ��;ij = Cov
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and
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. (S.55)

Next, using Lemma 15 we have
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But the second term is O(T�1) as above. Consider the third term. Using Lemma 10 we have
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and noting also
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In a similar manner, the fourth term is O
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By symmetry
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Next, consider
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and together with (S.46) we have
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As established earlier, the second term is O(T�1). Noting that 0 <
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Using (S.55), (S.56), (S.57), and (S.58), we conclude
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as required, since the terms N�1P
i 6=j 2�

2
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Lemma 17 Consider the return regressions, (2), and suppose that Assumptions 1-3 hold. Let z2i = �
0
iHF �i=wT >

0 and Xi = �0iMG�i=v > 0, where HF = (htht0) and MG = (mtt0) are de�ned by (S.2), wT = � 0TMF �T ,
v = T � m � 1, �i = (�i1; �i2; :::; �iT )

0, �it = uit=�
1=2
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2
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where
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Using the above results we obtain

z2i (1�Xi) =

�
��;ii
�ii

z2�;i +Ai

��
1�X�;i +X�;i

�
1� ��;ii

�ii

�
�Bi

�
;
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Also since HF = hh0, h =MF �T ; and noting that for any conformable real symmetric positive semi-de�nite
matrices A and B, Tr (AB) � Tr (A)�max (B) � Tr (A)Tr (B) (this result is repeatedly used below), we have
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and therefore
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and taking expectations of both sides and noting that ~
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AlsoV = (v1;v2; :::;vk), vs = (vs1; vs2; :::; vsT )0 and by assumption E (vsv0s0) = 0, for s 6= s0, and E (vsv0s) = IT .
Then E

�
VV0� = kIT ; and E

�
Tr
�
w�1T V0HFV

��
= kw�1T Tr (HF ) = k. Hence

E jDN;1j �
Kp
N

"
NX
i=1

~
0i~
i + k
NX
i=1

�
~
0i~
i

�2
+ k1=2

NX
i=1

�
~
0i~
i

�3=2#
:

Finally, since ~
0i~
i =
Pk

s=1 ~

2
is, and j~
isj � 1, then

�
~
0i~
i

�2 � k

 
kX
s=1

~
2is

!
;
�
~
0i~
i

�3=2 � k1=2

 
kX
s=1

~
2is

!
;
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and

E jDN;1j �
K(k2 + k + 1)

�PN
i=1 ~


0
i~
i

�
p
N

� K1p
N
sup
s

NX
i=1

~
2is �
K1p
N
sup
s

NX
i=1

j~
isj = O
�
N �
�1=2

�
;

and by Markov theorem DN;1 = Op
�
N �
�1=2

�
. Similarly, for DN;2, we �rst note that

AiBi =

"
~
0iV

0HFV~
i
wT

+ 2

�
��;ii
�ii

�1=2
~
0iV

0HF ~�i
wT

#"
~
0iV

0MGV~
i
v

+ 2

�
��;ii
�ii

�1=2
~
0iV

0MG~�i
v

#

=
~
0iV

0HFV~
i
wT

~
0iV
0MGV~
i
v

+ 2

�
��;ii
�ii

�1=2
~
0iV

0HFV~
i
wT

~
0iV
0MG~�i
v

+2

�
��;ii
�ii

�1=2
~
0iV

0HF ~�i
wT

~
0iV
0MGV~
i
v

+ 4

�
��;ii
�ii

�
~
0iV

0HF ~�i
wT

~
0iV
0MG~�i
v

:

Also

z2�;iBi = z2�;i

"
~
0iV

0MGV~
i
v

+ 2

�
��;ii
�ii

�1=2
~
0iV

0MG~�i
v

#
;

and

jDN;2j �
1p
N

NX
i=1

�
jAiBij+

��z2�;iBi��� :
Consider the terms involving AiBi. Since 0 <

��;ii
�ii

� 1, note that

jAiBij �
�
~
0i~
i

�2
�max

�
v�1V0MGV

�
�max

�
w�1T V0HFV

�
+2
�
~
0i~
i

�
�max

�
w�1T V0HFV

� ����~
0iV0MG~�i
v

����
+2
�
~
0i~
i

�
�max

�
v�1V0MGV

� ����~
0iV0HF ~�i
wT

����
+4
~
0iV

0HF ~�i~�
0
iMGV~
i

vwT

�
�
~
0i~
i

�2
�max

�
v�1V0MGV

�
�max

�
w�1T V0HFV

�
+2
�
~
0i~
i

�
�max

�
w�1T V0HFV

� ����~
0iV0MG~�i
v

����
+2
�
~
0i~
i

�
�max

�
v�1V0MGV

� ����~
0iV0HF ~�i
wT

����
+

4

vwT

�
~
0i~
i

� �
~�0iMGVV

0HF ~�i
�
;

and hence (again noting that ~�i and V are distributed independently and MGHF =MGMF �T �
0
TMF = 0)

E jAiBij �
�
~
0i~
i

�2
E
��
Tr
�
v�1V0MGV

�� �
Tr
�
w�1T V0HFV

��	
+2
�
~
0i~
i

�
E

�
�max

�
w�1T V0HFV

� ����~
0iV0MG~�i
v

�����
+2
�
~
0i~
i

�
E

�
�max

�
v�1V0MGV

� ����~
0iV0HF ~�i
wT

����� ;
where

E

�
�max

�
w�1T V0HFV

� ����~
0iV0MG~�i
v

�����
� E

"
�max

�
w�1T V0HFV

� ����~
0iV0MGV~
i
v

����1=2X1=2
�;i

#
�

�
~
0i~
i

�1=2
E
�
X
1=2
�;i

�
E
h
Tr
�
w�1T V0HFV

�
Tr
�
v�1V0MGV

�1=2i
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and

E

�
�max

�
v�1V0MGV

� ����~
0iV0HF ~�i
wT

�����
� E

"
�max

�
v�1V0MGV

� ����~
0iV0HFV~
i
wT

����1=2 z�;i
#

�
�
~
0i~
i

�1=2
E (z�;i)E

h
Tr
�
v�1V0MGV

�
Tr
�
w�1T V0HFV

�1=2i
;

so that

E jAiBij �
�
~
0i~
i

�2
E
��
Tr
�
v�1V0MGV

�� �
Tr
�
w�1T V0HFV

��	
+2
�
~
0i~
i

�3=2
E
�
X
1=2
�;i

�
E
h
Tr
�
w�1T V0HFV

�
Tr
�
v�1V0MGV

�1=2i
+2
�
~
0i~
i

�3=2
E (z�;i)E

h
Tr
�
v�1V0MGV

�
Tr
�
w�1T V0HFV

�1=2i
:

Since
Tr
�
w�1T V0HFV

�
= w�1T

X
`

X
t

X
s

hthsvt`vs`;

noting that all the elements of V are independent of each other by assumption, we have

E
�
Tr
�
w�1T V0HFV

��2
= w�2T

X
`

X
`0

X
t

X
s

X
t0

X
s0

hthsht0hs0E (vt`vs`vt0`0vs0`0) .

= w�2T k
X
t

h4tE
�
v4t`
�
+ w�2T k2

X
t

h4t
�
E
�
v2t`
��2

+w�2T k2
X
t

X
s

h2th
2
s

�
E
�
v2t`
��2

+w�2T 2k
X
t

X
s

h2th
2
s

�
E
�
v2t`
��2

= w�2T
X
t

h4tk
�
E
�
v4t`
�
+ k
�
+ k (k + 2) ; (S.62)

since
P

t h
4
tw

�2
T = O(T�1), E

�
v2t`
�
= 1, and w�2T

P
t

P
s h

2
th
2
s = 1, which is bounded as E

�
v4s`
�
� K (by

assumption). Similarly, as
Tr
�
v�1V0MGV

�
= v�1

X
`

X
t

X
s

mtsvt`vs`,

we have
E
�
Tr
�
v�1V0MGV

��
= k;

E
h
Tr
�
v�1V0MGV

�2i
= v�2

X
`

X
`0

X
t

X
s

X
t0

X
s0

hthsht0hs0E (vt`vs`vt0`0vs0`0) . (S.63)

= v�2
X
t

m2
ttk
�
E
�
v4t`
�
+ k
�
+ k (k + 2) ;

as v�2
P

tm
2
tt � v�2

P
tmtt = v�1 and v�2

P
t

P
sm

2
ts = v�1, which is bounded. Using these results, we have

E
��
Tr
�
v�1V0MGV

�� �
Tr
�
w�1T V0HFV

��	
�

�
E
n�
Tr
�
v�1V0MGV

��2o�1=2 �
E
n�
Tr
�
w�1T V0HFV

��2o�1=2 � K;

E
�
X
1=2
�;i

�
E
h
Tr
�
w�1T V0HFV

�
Tr
�
v�1V0MGV

�1=2i
� E

�
X
1=2
�;i

��
E
n�
Tr
�
w�1T V0HFV

��2o�1=2
k1=2 � K
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as E
�
X
1=2
�;i

�
� K since E (X�;i) = 1,

E (z�;i)E
h
Tr
�
v�1V0MGV

�
Tr
�
w�1T V0HFV

�1=2i
� E (z�;i)

�
E
n�
Tr
�
v�1V0MGV

��2o�1=2
k1=2

� K

as E (z�;i) � K since E
�
z2�;i
�
= 1, so that

E jAiBij � K
h�
~
0i~
i

�2
+
�
~
0i~
i

�3=2i
.

Further, as 0 < ��;ii
�ii

� 1,

��z2�;iBi�� �
��z2�;i�� ����~
0iV0MGV~
i

v

����+ 2 ����z2�;i ~
0iV0MG~�i
v

����
� ~
0i~
i

��z2�;i�� �����max�V0MGV

v

�����+ 2 ��z2�;i�� ����~
0iV0MG~�i
v

����
and taking expectation we have

E
��z2�;iBi�� � ~
0i~
iE

�
z2�;i
�
E
�
Tr
�
v�1V0MGV

��
+
�
~
0i~
i

�1=2 �
E
��z2�;i��2�1=2 �E �v�2~�0iMGVV

0MG~�i
��1=2

but as E
��z2�;i��2 is bounded (see Lemma 15), E �Tr �v�1V0MGV

��
= k,

E
�
v�2~�0iMGVV

0MG~�i
�
= v�2Tr

�
E
�
~�i~�

0
i

�
MGE

�
VV0�MG

�
= v�1;

we have
E
��z2�;iBi�� � K

h�
~
0i~
i

�
+
�
~
0i~
i

�1=2i
:

Thus

jDN;2j � 1p
N

NX
i=1

�
jAiBij+

��z2�;iBi���
� 1p

N
K

NX
i=1

h�
~
0i~
i

�2
+
�
~
0i~
i

�3=2
+ ~
0i~
i +

�
~
0i~
i

�1=2i
= O(N �
�1=2).

Similarly, for DN;3,

jDN;3j �
1p
N

NX
i=1

jAi (1�X�;i)j �
1p
N

NX
i=1

(jAij+ jAiX�;ij) .

Noting 0 < ��;ii
�ii

� 1 and HF = hh
0,

E jAij � E
��w�1T ~
0iV

0HFV
0~
i
��+ 2E ��w�1T ~
0iV

0HF ~�i
��

�
�
~
0i~
i

�
E
�
�max

�
w�1T V0HFV

��
+ 2

�
E
��w�1T ~
0iV

0HFV~
i
���1=2 �E ��z2�;i���1=2

�
�
~
0i~
i

�
E
�
Tr
�
w�1T V0HFV

��
+ 2

�
~
0i~
i

�1=2 �
E
�
Tr
�
w�1T V0HFV

��	1=2 �
E
��z2�;i���1=2

� K
h�
~
0i~
i

�
+
�
~
0i~
i

�1=2i
;

as E
�
Tr
�
w�1T V0HFV

��
= k and E

��z2�;i�� = E
�
z2�;i
�
= 1. Similarly, noting the independence between V and �i,

E jAiX�;ij �
�
~
0i~
i

�
E
�
Tr
�
w�1T V0HFV

��
E (X�;i)

+2
�
~
0i~
i

�1=2 �
E
�
X2
�;i

��1=2 �
E
�
w�2~�0iHFVV

0HF ~�i
�	1=2

= K
h�
~
0i~
i

�
+
�
~
0i~
i

�1=2i
,
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as E
�
v�2~�0iHFVV

0HF ~�i
�
E
�
X2
�;i

�
is bounded (by Lemma 15) and

E
�
w�2~�0iHFVV

0HF ~�i
�
= w�2Tr

�
E
�
~�i~�

0
i

�
HFE

�
VV0�HF

�
= w�2Tr

�
H2
F

�
= 1.

Thus,

jDN;3j �
1p
N

NX
i=1

K
h�
~
0i~
i

�
+
�
~
0i~
i

�1=2i
= O(N �
�1=2).

Finally,

1p
N

NX
i=1

�
1� ��;ii

�ii

�
E
��z2�;i (1�X�;i)

�� � 1p
N

NX
i=1

�
~
0i~
i

� ��
E
��z2�;i��2�1=2 �E j1�X�;ij2

�1=2�

= O

 
1p
N

NX
i=1

�
~
0i~
i

�!
= O

�
N �
�1=2

�
;

as E
��z2�;i��2 � K and E jX�;ij2 � K from Lemma 15. Therefore, we have

1p
N

NX
i=1

z2i (1�Xi) =
1p
N

NX
i=1

z2�;i (1�X�;i) +Op

�
N �
�1=2

�
,

as required.

Lemma 18 Consider the regression model (8), and suppose that Assumptions 1-3 hold. Under H0 : �i = 0; in
(2) for all i,

�2N � (N � 1)�2N ! 0 (S.64)

as N and T !1; so long as 0 < �
 < 1=2; and N=T 2 ! 0; where �2N , �
2
N , and �
 are de�ned by (29), (55) and

(6), respectively.

Proof. Theorem 1 ensures that N�1=2P
i

�
z2i � 1

�
=
�
2(1 + (N � 1)�2N

�1=2 !d N (0; 1) for
�
2(1 + (N � 1)�2N

�
=

O (1). Then, Theorem 2 ensures that N�1=2P
i

�
t2i � z2i

�
!p 0, so long as �
 < 1=2 and N=T 2 ! 0 as N and

T ! 1, which ensures that (from Lemma 21) V ar
�
N�1=2P

i t
2
i

�
=

��
v
v�2

�2
2(v�1)
(v�4) +O

�
T�1

�� �
1 + �2N

�
=

O (1) and V ar
�
N�1=2P

i t
2
i

�
� V ar

�
N�1=2P

i z
2
i

�
! 0, since

�
v
v�2

�2
2(v�1)
(v�4) = 2 + O

�
T�1

�
, which establishes

the required result.

Lemma 19 Consider the panel regression model (2), and suppose that Assumptions 1-3 hold. Denote the OLS
residuals from the regression of yit on G = (�T ;F) by ûi: = (ûi1; ûi2; :::; ûiT )

0, and denote the correlation
coe¢ cient of ûi: and ûj: by

�̂ij =
û0i:ûj:

(û0i:ûi:)
1=2 �

û0j:ûj:
�1=2 : (S.65)

Then

�̂ij =

Pv
t=1 �it�jt�Pv

t=1 �
2
it

�1=2 �Pv
t=1 �

2
jt

�1=2 ; (S.66)

where v = T �m� 1;

�it =
TX
t0=1

ltt0�it0 ; (S.67)

�it = uit=�
1=2
ii , ltt0 is the (t; t

0) element of the T � T orthonormal matrix L
�
LL0 = IT

�
, de�ned by

LMGL
0 =

 
Iv 0

0 0

!
: (S.68)

S30



Then

E
�
�̂ij
�
= �ij +

aij
v
+O

�
T�2

�
; (S.69)

V ar
�
�̂ij
�
=

bij
v
+O

�
T�2

�
; (S.70)

where �ij = E
�
�it�jt

�
= E

�
�it�jt

�
,

aij = �
1

2
�ij(1� �2ij) +

1

8

�
3�ij [�ij(4; 0) + �ij(0; 4)]� 4 [�ij(3; 1) + �ij(1; 3)] + 2�ij�ij(2; 2)

	
; (S.71)

bij = (1� �2ij)2 +
1

4

�
�2ij [�ij(4; 0) + �ij(0; 4)]� 4�ij [�ij(3; 1) + �ij(1; 3)] + 2(2 + �2ij)�ij(2; 2)

	
; (S.72)

and

�ij(4; 0) = E(�4it)� 3; �ij(0; 4) = E(�4it)� 3; (S.73)

�ij(3; 1) = E(�3it�jt)� 3�ij ; �ij(1; 3) = E(�it�
3
jt)� 3�ij ; (S.74)

�ij(2; 2) = E(�2it�
2
jt)� 2�2ij � 1: (S.75)

Proof. First note that ûi: = [IT �G (G0G)
�1
G]ui: =MGui:, and

�̂ij =
û0i:ûj:

(û0i:ûi:)
1=2 �

û0j:ûj:
�1=2 = u0i:MGuj:

(u0i:MGui:)
1=2 �

u0j:MGuj:
�1=2 :

Also, since MG is an (T � T ) idempotent matrix of rank v = T � m � 1, there exists an orthogonal T � T
transformation matrix L

�
LL0 = IT

�
, de�ned by (S.68). Hence, setting

�i: = �
�1=2
ii Lui:; (S.76)

then �̂ij can be written equivalently in terms of the �rst v elements of �i: = (�i1; �i2; :::; �iT )
0 as

�̂ij =

Pv
t=1 �it�jt�Pv

t=1 �
2
it

�1=2 �Pv
t=1 �

2
jt

�1=2 :
Noting that

�it = �
�1=2
ii

TX
t0=1

ltt0uit0 =
TX
t0=1

ltt0�it0 ; (S.77)

it now follows that (under Assumption 3), E (�it) = 0 and E
�
�2it
�
= 1, �ij = E

�
�it�jt

�
, for all i,j, and t; and

for each i; �it�s are independently distributed over t. Note that
PT

t0=1 l
2
tt0 = 1, where ltt0 is the (t; t

0) element of
L. Now consider

E
�
�6it
�
= E

 
TX
t0=1

ltt0�it0

!6
, for t = 1; 2; :::; v; (S.78)

and recall that by Lemma 3, �it are independent over t with, E(�it) = 0, E(�
2
it) = 1, and E

�
�8it
�
< K <1. Then

application of Lemma 2 to (S.78) ensures that E
�
�6it
�
< K < 1; uniformly over i and t, as required. Results

(S.69) and (S.70) now follow immediately from Proposition 1 in Bailey, Pesaran and Smith (2017).

Lemma 20 Consider �it de�ned by �it = �
1=2
ii

PT
t0=1 ltt0uit0 ; where ltt0 is the (t; t

0) element of the orthonormal
matrix, L, de�ned by (S.68), and uit = 
0ivt+ �it. Let 
2;v = E

�
v4st
�
� 3, and 
2;"� = E

�
"4�;it

�
� 3, and suppose

that Assumptions 1-3 hold. Then

��1ii �
�1
jj E

�
�2it�

2
jt

�
= 
2;v

 
TX
r=1

l4tr

!�X
s

2is


2
js

�
+ 2

�

0i
j

�2
+ (
0i
i)

�

0j
j

�
(S.79)

+(
0i
i)��;jj +
�

0j
j

�
��;ii + 4

�

0i
j

�
��;ij +

+
2;"�

 
TX
r=1

l4tr

!�X
`
q2�;i`q

2
�;j`

�
+ 2�2�;ij + ��;ii��;jj,

and
1

Nv

PN
i;j=1

��E(�3it�jt) + E(�it�3jt)�� = O
�
T�1N2�
�1

�
+O(T�1): (S.80)
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Proof. Under Assumption 3, ~�it = �
�1=2
ii �it = �

�1=2
ii q0�;i"�;t, where q�;i is the i

th row of Q�. Also note that

q0�;iq�;j = ��;ij , for all i and j, and supj
PN

i=1 jq�;ij j < K. Then using these results in (S.67) we have

�it = �
�1=2
ii

�

0idt;T + q

0
�;igt;T

�
;

where dt;T =
PT

t0=1 ltt0vt0 = (d1;t;T ; d2;t;T ; :::; dk;t;T )
0, and gt;T =

PT
t0=1 ltt0"�;t0 = (g1;t;T ; g2;t;T ; :::; gN;t;T )

0. But
since

PT
t0=1 l

2
tt0 = 1,

PT
t0=1 ltt0 lst0 = 0 for all t 6= s, vt s IID(0; Ik) and "�;t s IID(0; IN ) by assumption, then

it follows that dt;T s IID(0; Ik), and gt;T s IID(0; IN ). Since vst, for s = 1; 2; :::; k and "i;�;t, for i = 1; 2; :::; N
are assumed to have at least �nite fourth order moments, then by Lemma 2 we also have E(d4i;t;T ) < K and
E(g4i;t;T ) < K. We now write �it as

�it = ait + bit;

where

ait = ~
0idt;T =
kX
s=1

~
isds;t;T , and bit = ~q
0
�;igt;T ;

~
i = 
i=�
1=2
ii , ~q�;i = q�;i=�

1=2
ii ;

and hence

�ii = 
0i
i + ��;ii; ~��;ii = ��;ii=�ii � 1;
E (�it) = 0; E

�
�2it
�
= 1, ~q0�;i~q�;i = ~��;ii � 1, ~q0�;i~q�;j = ��;ij=�

1=2
ii �

1=2
jj = ~��;ij :

It is clear that ait and bjt0 are distributed independently for all i, j; t and t0. Then

E
�
�2it�

2
jt

�
= E

h
(ait + bit)

2
(ajt + bjt)

2
i

= E
��
a2it + 2aitbit + b

2
it

� �
a2jt + 2ajtbjt + b

2
jt

��
= E

�
a2ita

2
jt

�
+ E

�
a2it
�
E
�
b2jt
�
+ 4E (aitajt)E (bitbjt)

+E
�
a2jt
�
E
�
b2it
�
+ E

�
b2itb

2
jt

�
.

Also (using results in Lemma 6),

E (aitajt) = ~

0
i~
j , E (bitbjt) = ~q

0
�;i~q�;j ;

E
�
a2ita

2
jt

�
= 
2;d

�Xk

s=1
~
2is~


2
js

�
+
�
~
0i~
i

� �
~
0j~
j

�
+ 2

�
~
0i~
j

�2
;

E
�
b2itb

2
jt

�
= 
2;g

�XN

`=1
~q2�;i`~q

2
�;j`

�
+
�
~q0�;i~q�;i

� �
~q0�;j~q�;j

�
+ 2

�
~q0�;i~q�;j

�2
;

where 
2;d = E(d4s;t;T )� 3, and 
2;g = E(g4i;t;T )� 3. Hence,

E
�
�2it�

2
jt

�
= 
2;d

�Xk

s=1
~
2is~


2
js

�
+
�
~
0i~
i

� �
~
0j~
j

�
+ 2

�
~
0i~
j

�2
(S.81)

+
�
~
0i~
i

� �
~q0�;j~q�;j

�
+ 4

�
~
0i~
j

�
E
�
~q0�;i~q�;j

�
+
�
~
0j~
j

� �
~q0�;i~q�;i

�
+
2;g

�XN

`=1
~q2�;i`~q

2
�;j`

�
+
�
~q0�;i~q�;i

� �
~q0�;j~q�;j

�
+ 2

�
~q0�;i~q�;j

�2
,

Further we note that

E(d4s;t;T ) = E

 
TX
r=1

ltrvsr

!4
=

TX
r=1

TX
r0=1

TX
p=1

TX
p0=1

ltrltr0 ltpltp0E(vsrvsr0vspvsp0)

=
TX
r=1

l4trE(v
4
sr) + 3

TX
r 6=p

l2trl
2
tpE(v

2
sr)E(v

2
sp)

=
TX
r=1

l4trE(v
4
sr) + 3

 
TX
r=1

l2tr

!�
E(v2sr)

�2 � 3 TX
r=1

l4tr
�
E(v2sr)

�2
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and since
PT

r=1 l
2
tr = 1 and E(v

2
sr) = 1, we have


2;d = E(d4s;t;T )� 3 =
TX
r=1

l4tr
�
E
�
v4sr
�
� 3
�
=

 
TX
r=1

l4tr

!

2;v;

where 
2;v = E(v4sr)� 3. Similarly, 
2;g =
�PT

r=1 l
4
tr

�

2;"� , where 
2;"� = E

�
"4�;it

�
� 3: Then, the result (S.79)

follows by substituting these expressions for 
2;d and 
2;g in (S.81). Consider now E
�
�3it�jt

�
. Again using results

in Lemma 6, we have

E
�
a3itajt

�
= E

��
d0t;T ~
i~


0
idt;T

� �
d0t;T ~
i~


0
jdt;T

��
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~
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0
i

�
�
�
~
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0
j

��
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�
~
0i~
i

� �
~
0i~
j

�
E
�
b3itbjt

�
= E

��
g0t;T ~q�;i~q

0
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� �
g0t;T ~q�;i~q

0
�;jgt;T

��
= 
2;gTr

��
~q�;i~q

0
�;i

�
�
�
~q�;i~q

0
�;j

��
+ 3

�
~q0�;i~q�;i

� �
~q0�;j~q�;i

�
E
�
a2it
�
E (bjtbit) =

�
~
0i~
i

�
~q0�;i~q�;j ; E (aitajt)E

�
b2jt
�
= ~��;ii

�
~
0i~
j

�
where as before 
2;d = E(d4i;t;T )� 3,and 
2;g = E(g4i;t;T )� 3. Hence

E
�
�3it�jt

�
= 
2;d

kX
s=1

~
3is~
js + 3
�
~
0i~
i

� �
~
0i~
j

�
+
2;g

NX
s=1

~q3�;is~q�;js + 3
�
~q0�;i~q�;i

� �
~q0�;i~q�;j

�
+3
�
~
0i~
i

�
~q0�;i~q�;j + 3~��;ii

�
~
0i~
j

�
;

or since ~q0�;i~q�;j = ~��;ij

E
�
�3it�jt

�
= 
2;d

kX
s=1

~
3is~
js + 3
�
~
0i~
i

� �
~
0i~
j

�
+
2;g

NX
s=1

~q3�;is~q�;js + 3~��;ii~��;ij

+3
�
~
0i~
i

�
~��;ij + 3~��;ii

�
~
0i~
j

�
;

and ������
X
i;j

E
�
�3it�jt

������� �
��
2;d�� kX

s=1

X
i;j

j~
isj
3 ��~
js��+ 3X

i;j

�
~
0i~
i

� ��~
0i~
j��+ 3~��;iiX
i;j

��~
0i~
j��
��
2;g�� NX

s=1

X
i;j

j~q�;isj3 j~q�;jsj+ 3
X
i;j

~��;ii j~��;ij j+ 3
X
i;j

�
~
0i~
i

�
j~��;ij j :

But ~
0i~
j =
Pk

s=1 ~
is~
js; and recall that
��
2;d�� < K,

��
2;g�� < K, supj
PN

i=1 j~q�;ij j < K, j~
isj � 1, and ~��;ii � 1.
Also

kX
s=1

X
i;j

j~
isj
3 ��~
js�� �

kX
s=1

 X
i

j~
isj
!2

= O
�
N2�


�
;

X
i;j

�
~
0i~
i

� ��~
0i~
j�� � sup
i

�
~
0i~
i

� kX
s=1

X
i;j

j~
isj
��~
js�� = O

�
N2�


�
;

~��;ii
X
i;j

��~
0i~
j�� �
kX
s=1

X
i;j

j~
isj
��~
js�� = kX

s=1

 X
i

j~
isj
!2

= O
�
N2�


�
;

~��;ij =
�
��;ij=�

1=2
�;ii�

1=2
�;jj

� �1=2�;ii�
1=2
�;jj

�
1=2
ii �

1=2
jj

!
= ~�

1=2
�;ii~�

1=2
�;jj��;ij ;

j~��;ij j �
����;ij�� ; and by assumption X

i;j

����;ij�� = O(N):
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kX
s=1

X
i;j

j~q�;isj3 j~q�;jsj �
kX
s=1

X
i;j

j~q�;isj2 j~q�;jsj �
kX
s=1

X
i

j~q�;jsj < K

X
i;j

~��;ii j~��;ij j �
X
i;j

����;ij�� = O(N);

X
i;j

�
~
0i~
i

�
j~��;ij j � sup

i

�
~
0i~
i

�X
i;j

j~��;ij j = O(N):

Hence ������
X
i;j

E
�
�3it�jt

������� � O
�
N2�


�
+O(N);

and
N�1

X
i;j

E
�
�3it�jt

�
= O

�
N2�
�1

�
+O(1):

Similarly N�1P
i;j E

�
�3jt�it

�
= O

�
N2�
�1

�
, and overall

1

Nv

PN
i;j=1

��E(�3it�jt) + E(�it�3jt)�� = O
�
T�1N2�
�1

�
+O(T�1);

as required.

Lemma 21 Consider the regression model (8), and suppose that Assumptions 1-3 hold. Then for each i

E
�
t2i
�
=

v

v � 2 +O(T
�3=2); (S.82)

and

V ar
�
t2i
�
=

�
v

v � 2

�2
2 (v � 1)
(v � 4) +O(T

�1); (S.83)

where t2i is de�ned by (23), and v = T �m� 1.

Proof. Below we use matricesG,MF ,MG, PG;HF , which are de�ned by (S.2) and (S.1), and also 
1;i = E(�3it),


2;i = E(�4it)� 3; 
3;i = E(�5it)� 10
1;i, 
4;i = E(�6it)� 10
21;i � 15
2;i � 15 for all t, where �it = uit=�
1=2
ii , and

by assumption E(�6it) < K. Furthermore,

(� 0TMF �T )
�1
= O(T�1). (S.84)

Using (23), we can write

t2i =
v

� 0TMF �T

�
�0iHF �i
�0iMG�i

�
, (S.85)

where �i = (�i1; �i2; :::; �iT )
0, with �i � IID(0; IT ) for all i (see Lemma 3). Using a slightly extended version of

Laplace approximation of moments of the ratio of quadratic forms by Lieberman (1994), that allows � de�ned in
Lemma 5 to be a positive semi-de�nite matrix, and substituting � = HF and � =MG into Lemma 5, we have
(conditional on F)

E
�
t2i
�
=

v

� 0TMF �T

"
E
�
�0iHF �i

�
E
�
�0iMG�i

� +  i;1v
#
+O(T�2); (S.86)

where

 i;1v =

�
E(�0iHF �i)�i;2

[E(�0iMG�i)]
3

�
�
�

�i;11

[E(�0iMG�i)]
2

�
;

�i;2 = E
�
(�0iMG�i)

2
�
�
�
E(�0iMG�i)

�2
;

and
�i;11 = E[(�0iHF �i)

�
�0iMG�i

�
]� E(�0iHF �i)E(�

0
iMG�i).

Using Lemmas 11 and 12, it is easily seen that

v

� 0TMF �T

E
�
�0iHF �i

�
E
�
�0iMG�i

� = 1
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and

v i;1v
� 0TMF �T

=
v

� 0TMF �T

�
E(�0iHF �i)�i;2

[E(�0iMG�i)]
3
� �i;11

[E(�0iMG�i)]
2

�
=

v

� 0TMF �T

 
(� 0TMF �T )

�

2;iTr (MG �MG) + 2v

�
v3

�

2;iTr (MG �HF )

v2

!

=
2

v
+ 
2;iKv;

where

Kv =
1

v

�
Tr (MG �MG)

v
� Tr (MG �HF )

� 0TMF �T

�
: (S.87)

Noting that MG = IT � PG with PG = G (G0G)
�1
G0, where G = (�T ;F), the �rst term of (S.87) can be

written as

Tr (MG �MG)

v
=

1

v
Tr [(IT �PG)� (IT �PG)] (S.88)

=
1

v
[T � 2Tr (PG) + Tr (PG �PG)] = 1�

Tr (PG)

v
+
Tr (PG �PG)

v
:

Similarly, for the second term of (S.87) we have

Tr (MG �HF )

� 0TMF �T
=

1

� 0TMF �T
Tr [(IT �PG)�HF ] (S.89)

=
1

� 0TMF �T
[Tr (HF )� Tr (PG �HF )] = 1�

Tr (PG �HF )

� 0TMF �T
:

Substituting (S.88) and (S.89) into (S.87), then using Tr (PG �PG) = O(1) and Tr (PG �HF ) = O(T 1=2);
which are established by (S.23) and (S.24) in Lemma 10, we have

Kv =
1

v3=2
v1=2Tr (PG �HF )

� 0TMF �T
+
1

v2
Tr (PG �PG)�

1

v2
Tr (PG) =

S0v
v3=2

+O(T�2);

where

S0v =
v1=2Tr (PG �HF )

(� 0TMF �T )
;

which is O(1) by (S.24) and (S.84), so that

E
�
t2i
�
= 1 +

2

v
+ 
2;i

S0v
v3=2

+O(T�2): (S.90)

However, since
v

v � 2 �
�
1 +

2

v

�
=

4

v (v � 2) = O(T�2);

and using Lemma 12 ensures that the three conditions in Lieberman�s lemma are satis�ed. Result in Lieberman
(1994; p.683) now implies that the last term can be rewritten as v�2W0;iv, where W0;iv is a function of 
`;i, F,
and v, for ` = 1; 2; 3; 4. Since under Assumption 3, supi j
`;ij � K <1, for ` = 1; 2; 3; 4, all i, then

E
�
t2i
�
=

v

v � 2 + 
2;i
S0v
v3=2

+
W0;iv

v2
=

v

v � 2 +O(T
�3=2); (S.91)

which establishes (S.82). To prove (S.83), we �rst note that

E
�
t4i
�
=

v2

(� 0TMF �T )
2E

"�
�0iHF �i
�0iMG�i

�2#
: (S.92)

But by Lemmas 5 and 11 we have

E
�
t4i
�
=

v2

(� 0TMF �T )
2

8<:E
h�
�0iHF �i

�2i�
E
�
�0iMG�i

��2 +O(T�1)
9=; = 3 +


2;iTr (HF �HF )

(� 0TMF �T )
2 +O(T�1): (S.93)
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Since Tr (HF �HF ) = O(T ) by Lemma 11, Lemma 5 implies that the last two terms can be rewritten as
v�1W1;iv, where W1;iv is a function of 
`;i, F, and v, with ` = 1; 2; 3; 4. Again under Assumption 2, supi j
`;ij �
K <1, for ` = 1; 2; 3; 4 and all i, we obtain

E
�
t4i
�
= 3 +O(T�1): (S.94)

Using (S.91) and (S.94), and noting that"
3�

�
1 +

2

v

�2#
�
�

v

v � 2

�2
2 (v � 1)
(v � 4) = O(T�1);

then for each i we have

V ar
�
t2i
�
= E

�
t4i
�
�
�
E
�
t2i
��2

=

�
v

v � 2

�2
2 (v � 1)
(v � 4) +O(T

�1);

which completes the proof.

Lemma 22 Consider the regression model (2), and let z2i;a = �̂2iwT =�ii, where wT = �
0
TMF �T , HF and MF

are de�ned by (S.2), and �̂i is the OLS estimate of �i given by (11). Suppose that Assumptions 1-3 hold, and
N�1Tr

�
R2
�
is bounded in N , where R =

�
�ij
�
. Then under the local alternatives de�ned by (63)

N�1=2
NX
i=1

�
z2i;a � 1

�
!d N(�

2; 2!2); (S.95)

as N !1 and T !1; jointly, where

�2 = lim
N!1

1

N

NX
i=1

&2i
�ii

; and !2 = lim
N!1

N�1Tr
�
R2
�
= 1 + lim

N!1
(N � 1)�2N ;

�ij = E(uitujt); Corr(uitujt) = �ij, and �
2
N is de�ned by (55).

Proof. Using (11) and (12), we �rst note that

z2i;a =
�
w
1=2
T ~�i + w

�1=2
T � 0TMF �i

�2
;

where �i is de�ned by (34), and ~�i = �i=�
1=2
ii , and under (63)

~�i =
~&i

N1=4T 1=2
; (S.96)

where ~&i = &i=�
1=2
ii are given and bounded. Then

z2i;a = z2i + wT ~�
2
i + 2~�i�

0
TMF �i; (S.97)

where z2i = �
0
iHF �i=wT . Hence

1p
N

NX
i=1

�
z2i;a � 1

�
=

1p
N

NX
i=1

�
z2i � 1

�
+ �2NT + 2bNT ; (S.98)

where

�2NT =
wTp
N

NX
i=1

~�2i =
wT
T

 
N�1

NX
i=1

~&2i

!
; (S.99)

and

bNT =
1

T 1=2N3=4

NX
i=1

~&i�
0
TMF �i: (S.100)
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Also, for given values of j&ij < K, �2NT � 0, and we have

lim
N;T!1

�
�2NT

�
= �2 = lim

N!1

 
1

N

NX
i=1

~&2i

!
� min

i
(1=�ii) lim

N!1

 
1

N

NX
i=1

&2i

!
: (S.101)

Since �ii > 0, then �
2 > 0, if N�1PN

i=1 &
2
i tends to strictly positive limit. Consider now bNT , and note that for

given values of &i we haveS1

bNT =
1

T 1=2N3=4

NX
i=1

~&i�
0
TMF �i =

1

T 1=2N3=4

NX
i=1

~&i�
0
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V
i + �i

�
1=2
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!

=
1

T 1=2N3=4
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i=1

~&i�
0
TMFV~
i +

1

T 1=2N3=4

NX
i=1

�
��;ii
�ii

�1=2
~&i�

0
TMF ~�i;

b1;NT + b2;NT ;

where ~
i = 
i=�
1=2
ii , and ~�i = �i=�

1=2
�;ii. For given values of ~&i, it is easily seen that E (b1;NT ) = 0; and

V ar (b1;NT ) =
1

TN3=2

NX
i=1

NX
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~&i~&j�
0
TMFE

�
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i~


0
jV
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=
1
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j=1

~&i~&j~

0
jMF �T �

0
TMF ~
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1
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NX
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0
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0
TMF ~
i
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0
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0
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i �
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�
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j

1A0

:

However,
���PN

i=1 ~&i~
i

��� � Kk sups
PN

i=1 j~
isj = O
�
N �


�
, and since wT =T = O(1), then V ar (b1;NT ) = O

�
N2�
�3=2

�
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b1;NT !p 0, if �
 < 3=4. Similarly, E (b2;NT ) = 0; and

V ar (b2;NT ) =
1
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NX
i=1

NX
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�
��;ii
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0
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0
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NX
j=1
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��;ii
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E
�
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�
=
� 0TMF �

N3=2T
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i=1

NX
j=1

&i&j�ij

�
1=2
ii �

1=2
jj

:

But since j&ij < K, and 0 < �ii < K, for all i, and � 0TMF � = O(T ), then

V ar (b2;NT ) � K

0@ 1

N3=2

NX
i=1

NX
j=1

���ij��
1A � K

0@ 1

N1=2
sup
i

NX
j=1

���ij��
1A = O

�
N �
�1=2

�
;

and V ar (b2;NT )! 0, if �
 < 1=2:Hence, bNT !p 0, and in view of (S.98) 1p
N

PN
i=1

�
z2i;a � 1

�
and 1p

N

PN
i=1

�
z2i � 1

�
+

�2 will have the same asymptotic distributions as N and T !1, jointly and mN = o(N1=2). But in view of (54),
1p
N

PN
i=1

�
z2i � 1

�
!d N(0; 2!

2); and therefore it also follows that under local alternatives 1p
N

PN
i=1

�
z2i;a � 1

�
!d

N(�2; 2!2).

S1The same results follow if &i are random but distributed independently of �i.
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Lemma 23 Consider the regression model (2), and let z2i;a = wT �̂
2
i =�ii, where wT = �

0
TMF �T , HF and MF

are de�ned by (S.2), and �̂i is the OLS estimate of �i given by (11). Suppose that Assumptions 1-3 hold, and
N�1Tr

�
R2
�
is bounded in N , where R =

�
�ij
�
. Then under the local alternatives de�ned by (63)

SNT = N�1=2
NX
i=1

�
z2i;a � t2i

�
!p 0;

if N=T 2 ! 0 and 0 � �
 < 1=2, as N !1 and T !1; jointly.

Proof. As with the proof of Theorem 2, we �rst note that

z2i;a � t2i =
wT �̂

2
i

�ii
� wT �̂

2
i

T�1y0i:MGy0i:
= z2i;a

�
1� 1

Xi

�
;

where Xi = �
0
iMG�i=v; v = T �m� 1, �it = uit=�

1=2
ii . Using (S.97), we note that

z2i;a = z2i + gi;

gi = wT ~�
2
i + 2~�i�

0
TMF �i

where ~�i =
~&i

N1=4T 1=2
; and ~&i = &i=�

1=2
ii . Consider

SNT = N�1=2
NX
i=1

�
z2i;a

�
1� 1

��1ii ~�ii

��
:

Write Xi = ��1ii ~�ii and note that by assumption �ii > 0, and by construction only securities with ~�ii > c > 0

are included in the Ĵ� test. Hence, for all i = 1; 2; :::; N we have Xi > 0; and (A.18) can be written as

SNT = N�1=2
NX
i=1

z2i;a

"
(1�Xi) +

(1�Xi)
2

Xi

#
= S1;NT + S2;NT ;

where

S1;NT = N�1=2
NX
i=1

z2i;a (1�Xi) ;

and

S2;NT = N�1=2
NX
i=1

z2i;a (1�Xi)
2

Xi
:

But since Xi > c > 0, and z2i;a (1�Xi)
2 � 0, then

jS2;NT j � c�1N�1=2
NX
i=1

z2i;a (1�Xi)
2
;

and
E jS2;NT j � c�1N1=2 sup

i
E
h
z2i;a (1�Xi)

2
i
:

E
h
z2i;a (1�Xi)

2
i
� E

���z2i (1�Xi)
2
���+ E ���gi (1�Xi)

2
��� . (S.102)

From (A.24) we have

E
h
z2i (1�Xi)

2
i
= O

�
1

T

�
; (S.103)

uniformly across i. Next,

E
���gi (1�Xi)

2
��� � wT ~�

2
iE
h
(1�Xi)

2
i
+ 2E

���~�i� 0TMF �i (1�Xi)
2
��� ;
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but by Lemma 11 we have

E
h
(1�Xi)

2
i
= E

�
X2
i

�
� 1 = O(T�1),

as E
h�
�0iMG�i

�2i
= v2 +O (T ), so that

wT ~�
2
iE
h
(1�Xi)

2
i
= O(~�2i ).

Next

E
���~�i� 0TMF �i (1�Xi)

2
��� � j~�ij

�
E
�
�0iHF �i

��1=2 n
E
h
(1�Xi)

4
io1=2

= j~�ijw1=2T

n
E
h
(1�Xi)

4
io1=2

:

Noting that, since, by Lemma 11, E
��
�0iMG�i

�r�
= vr + O

�
T r�1

�
and E

�
�0iMG�i

�
= v, we have E (Xr

i ) =

1 +O
�
T�(r�1)

�
for r = 2; 3; 4 and E (Xi) = 1 uniformly over i,

E(1�Xi)
4 = E

�
X4
i

�
� 4E

�
X3
i

�
+ 6E

�
X2
i

�
� 4E (Xi) + 1 = O(T�1).

Thus, E
���~�i� 0TMF �i (1�Xi)

2
��� = O (j~�ij) = O

�
N�1=4T�1=2

�
and

E
���gi (1�Xi)

2
��� = O

�
j~�ij2

�
+O (j~�ij) = O (j~�ij) = O

�
N�1=4T�1=2

�
. (S.104)

Substituting (S.103) and (S.104) into (S.102), we have

E
h
z2i;a (1�Xi)

2
i
= O

�
1

T

�
+O

�
N�1=4T�1=2

�
uniformly across i, so that

E jS2;NT j � c�1N1=2 sup
i
E
h
z2i;a (1�Xi)

2
i
= O

 p
N

T

!
+O

�
N1=4

T 1=2

�
.

By Markov inequality we have S2;NT !p 0, so long as N=T 2 ! 0. Therefore, to establish SNT !p 0; it is
su¢ cient to show that S1;NT !p 0. Now

S1;NT = N�1=2
NX
i=1

z2i;a (1�Xi)

= N�1=2
NX
i=1

z2i (1�Xi)�N�1=2
NX
i=1

gi (Xi � 1) .

Consider

N�1=2
NX
i=1

gi (Xi � 1) =
�wT
T

�
N�1

NX
i=1

~&2i (Xi � 1) + 2T�1=2N�3=4
NX
i=1

~&i�
0
TMF �i (Xi � 1) . (S.105)

By (S.60), Xi =
��;ii
�ii

X�;i +Bi, where Bi =
~
0iV

0MGV~
i
v + 2

�
��;ii
�ii

�1=2
~
0iV

0MG~�i
v , and we have

N�1=2
NX
i=1

~&2i (Xi � 1) = KN�1=2
NX
i=1

~&2i

�
X�;i � 1 +

�
��;ii
�ii

� 1
�
X�;i +Bi

�

= KN�1=2
NX
i=1

~&2i
�
(X�;i � 1)�

�
~
0i~
i

�
X�;i +Bi

�
.

First, as supi j~&ij � K and 0 < ��;ii
�ii

� 1,

N�1=2
NX
i=1

E
��~&2iBi�� � KN�1=2

NX
i=1

E jBij ;
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but

N�1=2
NX
i=1

E jBij � KN�1=2
NX
i=1

��v�1~
0iV0MGV~
i
��+ 2KN�1=2

NX
i=1

��v�1~
0iV0MG~�i
��

� KN�1=2
NX
i=1

�
~
0i~
i

�
E
��Tr �v�1V0MGV

���
+2KN�1=2

NX
i=1

�
E
�
v�2~
0iV

0MG~�i~�
0
iMGV~
i

��1=2
= KN�1=2

NX
i=1

k
�
~
0i~
i

�
+ 2v�1k

�
~
0i~
i

�1=2
= O

�
N �
�1=2

�
,

since E (V0V) = Ik, V and ~�i are independent, E
��Tr �v�1V0MGV

��� = k and

E
�
v�2~
0iV

0MG~�i~�
0
iMGV~
i

�
� v�2

�
~
0i~
i

�
Tr
�
E
�
V0MG~�i~�

0
iMGV

��
= v�2

�
~
0i~
i

�
Tr (MG) = v�1

�
~
0i~
i

�
.

Similarly, noting E jX�;ij = E (X�;i) = 1,

N�1=2
NX
i=1

E
��~&2i �~
0i~
i�X�;i

�� � KN�1=2
NX
i=1

�
~
0i~
i

�
E jX�;ij

= KN�1=2
NX
i=1

�
~
0i~
i

�
= O

�
N �
�1=2

�
.

Hence,

KN�1=2
NX
i=1

~&2i (Xi � 1) = KN�1=2
NX
i=1

~&2i (X�;i � 1) +Op
�
N �
�1=2

�
.

Next, E
h
N�1=2PN

i=1 ~&
2
i (X�;i � 1)

i
= 0 and

E

8<:
"
N�1=2

NX
i=1

~&2i (X�;i � 1)
#29=; = N�1

NX
i=1

NX
j=1

~&2i~&
2
jE (X�;iX�;j � 1) .

Noting E (X�;iX�;j) = 1 +
2�2�;ij
v + 
2;"�

�P
tm

2
tt

v2

�PN
`=1 ~q

2
�;i`~q

2
�;j` (from (S.43)), we have

N�1
NX
i=1

NX
j=1

~&2i~&
2
j

"
2�2�;ij
v

+ 
2;"�

�P
tm

2
tt

v2

� NX
`=1

~q2�;i`~q
2
�;j`

#
;

but
PN

`=1 ~q
2
�;i`~q

2
�;j` � 1 and �2�;ij � 1, for all i; j, and also

P
tm

2
tt �

P
tmtt = v, we have

E

8<:
"
N�1=2

NX
i=1

~&2i (X�;i � 1)
#29=; � N�1

NX
i=1

NX
j=1

v�1~&2i~&
2
j

�
2 +

���
2;"� ����
= O (N=T ) .

Therefore, KN�1=2PN
i=1 ~&

2
i (X�;i � 1) = Op

�p
N=T

�
. Thus,

�wT
v

�
N�1

NX
i=1

~&2i (X�;i � 1) = Op
�
N �
�1

�
+Op

�
T�1=2

�
. (S.106)

Next, using (S.60) and noting �i = V~
i +
�
��;ii
�ii

�1=2
�i we have

N�3=4
NX
i=1

v�1=2~&i�
0
TMF �i (Xi � 1)

= N�3=4
NX
i=1

v�1=2~&i�
0
TMF

"
V~
i +

�
��;ii
�ii

�1=2
~�i

# �
(X�;i � 1)�

�
~
0i~
i

�
X�;i +Bi

�
.
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Noting supi j~&ij � K, v�1Tr [E (V0HFV)] = k (wT =v), MF �T = h, HF = hh
0 and E jX�;ij2 � K by (S.43), we

have

N�3=4
NX
i=1

E
���v�1=2~&i� 0TMFV~
i (X�;i � 1)

��� � N�3=4K

NX
i=1

E
���v�1=2� 0TMFV~
i (X�;i � 1)

���
� N�3=4K

NX
i=1

�
~
0i~
i

�1=2 �
v�1Tr [E (V0HFV)]

	1=2 �
E jX�;i � 1j2

�1=2
� KN�3=4

NX
i=1

�
~
0i~
i

�1=2�kwT
v

�1=2
= O

�
N �
�3=4

�
:

Similarly

N�3=4
NX
i=1

�
~
0i~
i

�
E
���v�1=2~&i� 0TMFV~
iX�;i

��� � N�3=4K

NX
i=1

�
~
0i~
i

�3=2 �
v�1Tr [E (V0HFV)]

	1=2 �
E jX�;ij2

�1=2
� KN�3=4

NX
i=1

�
~
0i~
i

�3=2�kwT
v

�1=2
= O

�
N �
�3=4

�
.

N�3=4
NX
i=1

E
���v�1=2~&i� 0TMFV~
iBi

��� � KN�3=4
NX
i=1

E
���v�3=2� 0TMFV~
i~


0
iV

0MGV~
i

���
+2KN�3=4

NX
i=1

E
���v�3=2� 0TMFV~
i~


0
iV

0MG~�i

��� .
First, by (S.63), noting that E

n�
v�1Tr (V0MGV)

�2o
= v�2

P
tm

2
ttk
�
E
�
v4t`
�
+ k
�
+ k (k + 2) � K, we have

N�3=4
NX
i=1

E
���v�3=2� 0TMFV~
i~


0
iV

0MGV~
i

���
� N�3=4

NX
i=1

�
E
��v�1~
0iV0HFV~
i

��	1=2 nE ��v�1~
0iV0MGV~
i
��2o1=2

� N�3=4
NX
i=1

�
~
0i~
i

�1=2 �
E
��v�1Tr (V0HFV)

��	1=2 �~
0i~
i�nE ��v�1Tr (V0MGV)
�2�o1=2

� KN�3=4
NX
i=1

�
~
0i~
i

�3=2�kwT
v

�1=2
= O

�
N �
�3=4

�
.

Similarly

N�3=4
NX
i=1

E
���v�3=2� 0TMFV~
i~


0
iV

0MG~�i

���
� N�3=4

NX
i=1

�
E
��v�1~
0iV0HFV~
i

���1=2 �E ��v�2~
0iV0MG~�i~�
0
iMGV

0~
i
���1=2

� N�3=4
NX
i=1

�
~
0i~
i

�1=2 �
E
��v�1Tr (V0HFV)

���1=2 �~
0i~
i�1=2 �v�2Tr �E �VV0�MGE
�
~�i~�

0
i

�
MG

�	1=2
= N�3=4

NX
i=1

�
~
0i~
i

� h
k
�wT
v

�
+ v�1

i1=2
= O

�
T�1=2N �
�3=4

�
.
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Next, noting that j~&ij < K, 0 < ��;ii
�ii

� 1, E
��z2�;i�� = 1 and E jX�;i � 1j2 � K, we have

N�3=4
NX
i=1

E

�����v�1=2~&i� 0TMF

�
��;ii
�ii

�1=2
~�i (X�;i � 1)

����� � N�3=4K

NX
i=1

E
���v�1=2� 0TMF ~�i (X�;i � 1)

���
� N�3=4K

NX
i=1

n�wT
v

�
E
��z2�;i��o1=2 �E jX�;i � 1j2

�1=2
= O

�
N�1=2

�
:

Similarly

NX
i=1

�
~
0i~
i

�
E

�����v�1=2~&i� 0TMF

�
��;ii
�ii

�1=2
~�iX�;i

����� � N�3=4K

NX
i=1

�
~
0i~
i

� h�wT
v

�
E
��z2�;i��i1=2 �E jX�;ij2

�1=2
� KN�3=4

NX
i=1

�
~
0i~
i

� �wT
v

�1=2
= O

�
N �
�3=4

�
.

N�3=4
NX
i=1

E

�����v�1=2~&i� 0TMF

�
��;ii
�ii

�1=2
~�iBi

����� � KN�3=4
NX
i=1

E
���v�3=2� 0TMF ~�i~


0
iV

0MGV~
i

���
+2KN�3=4

NX
i=1

E
���v�3=2� 0TMF ~�i~


0
iV

0MG~�i

��� .
First, by (S.63), noting that E

��
v�1Tr (V0MGV)

�2�
= v�2

P
tm

2
ttk
�
E
�
v4t`
�
+ k
�
+ k (k + 2) � K, we have

N�3=4
NX
i=1

E
���v�3=2� 0TMF ~�i~


0
iV

0MGV~
i

���
� N�3=4

NX
i=1

h�wT
v

�
E
��z2�;i��i1=2 �E ��v�1~
0iV0MGV~
i

��2�1=2
� N�3=4

NX
i=1

h�wT
v

�
E
��z2�;i��i1=2 �~
0i~
i� �E n�v�1Tr (V0MGV)

�2o�1=2
� KN�3=4

NX
i=1

�
~
0i~
i

� �wT
v

�1=2
= O

�
N �
�3=4

�
.

N�3=4
NX
i=1

E
���v�3=2� 0TMF ~�i~


0
iV

0MG~�i

���
� N�3=4

NX
i=1

h�wT
v

�
E
��z2�;i��i1=2 �E ��v�2~
0iV0MG~�i~�

0
iMGV

0~
i
���1=2

� N�3=4
NX
i=1

n�wT
v

�
E
��z2�;i��o1=2 �~
0i~
i�1=2 �E �v�2Tr �E �VV0�MGE

�
~�i~�

0
i

�
MG

�	�1=2
� KN�3=4

NX
i=1

�
~
0i~
i

�1=2 �wT
v

�1=2
v�1 = O

�
T�1=2N �
�3=4

�
.

To sum, we have

N�3=4
NX
i=1

v�1=2~&i�
0
TMF �i (Xi � 1) = O

�
N �
�3=4

�
+O

�
N�1=2

�
. (S.107)

Substituting the results (S.106) and (S.107) into (S.105),

N�1=2
NX
i=1

gi (Xi � 1) = O
�
N �
�3=4

�
+O

�
N�1=2

�
+O

�
T�1=2

�
.
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Finally, by applying Theorem 2,

N�1=2
NX
i=1

z2i (1�Xi) = Op

�
N �
�1=2

�
+Op

�
T�1=2

�
+Op(

p
N=T );

thus,

S1;NT = Op

�
N �
�1=2

�
+Op(

p
N=T ) +Op

�
T�1=2

�
+Op

�
N�1=2

�
;

which establishes the required result.
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M1 Monte Carlo Supplement
M1.1 Simulating multivariate non-Gaussian random variates
The objective is to generate N random variables ui, i = 1; 2; :::; N such that (in population) E(ui) = 0,
E(u2i ) = �ii, E(u3i ) = m3i, E(u4i ) = m4i and E(uiuj) = �ij ; i 6= j for i; j = 1; 2; ::::; N .

The problem of generating multivariate non-normal random variables have been addressed in the
literature by Vale and Maurelli (1983) and further discussed by Harwell and Serlin (1989) and Headrick
and Sawilowsky (1999). Following Fleishman (1978), Vale and Maurelli (1983, VM) propose generating
ui as,

ui = ai + bi"i + ci"
2
i + di"

3
i ; i = 1; 2; :::; N;

where "i s IIDN(0; 1) and E("i"j) = �";ij . The unknown parameters ai,bi, ci, di, �";ij are obtained
using the following relationships (see equations (2)-(5) in VM)

ai + ci = 0; (M.1)

b2i + 6bidi + 2c
2
i + 15d

2
i = �ii; (M.2)

2ci(b
2
i + 24bidi + 105d

2
i + 2) = m3i; (M.3)

24[bidi + c
2
i (1 + b

2
i + 28bidi) + d

2
i (12 + 48bidi + 141c

2
i + 225d

2
i )] = m4i; (M.4)

for i = 1; 2; :::; N , and (see equation (11) in VM)

�ij = �";ij(bibj + 3bidj + 3dibj + 9didj) + �
2
";ij(2cicj) + �

3
";ij(6didj); (M.5)

for i 6= j = 1; 2; :::; N:
The VM procedure is shown to work reasonably well for non-extreme values of skewness and kurtosis

and when N is small. But even if one follows VM�s two step procedure where the equations (M.1)-(M.4)
are solved �rst, the procedure still requires solving a large number of cubic equations, and hoping that
the solution of (M.5) for �";ij lies in the admissible range of [�1; 1]. No proof is provided that such a
solution exists.

In what follows we propose a new more compact algorithm for generation of non-normal correlated
random variables as a generalization of the standard Cholesky factor approach used routinely to generate
correlated normal random variables. Let u = (u1; u2; :::; uN )0, " = ("1; "2; :::; "N )0, and write each ui as a
linear combination of "

ui =
XN

j=1
qij"j ; for i = 1; 2; :::; N;

or in matrix notation u = Q", where qij is the (i; j) element of Q.
We begin by generating "j ; j = 1; 2; :::; N; as independent draws from non-normal distributions

with E("j) = 0; E("2j ) = 1; E("3j ) = m";3j and E("4j ) = m";4j : Note also that �ij is determined by Q

and is given by the (i; j) element of QQ0 scaled by �1=2ii �
1=2
jj , where �ii =

XN

j=1
q2ij . For given values

of �ij and �ii; Q can be obtained as the Cholesky factor of E(uu0) = V. In such a case Q can be a
lower or an upper triangular matrix with strictly positive diagonal elements. It is assumed that V is
non-singular, and as a result Q will also be non-singular.

Consider now the problem of generating "0js such that E(u
3
i ) = mi3 and E(u4i ) = mi4 . To this end

note that

m2i = �ii = E(u2i ) =
XN

j=1
q2ij , for i = 1; 2; :::; N;

m3i = E(u3i ) = E

0@X
j

X
j0

X
`

X
`0

qijqij0qi`"j"j0"`

1A =
XN

j=1
q3ijm";3j , for i = 1; 2; :::; N;

M1



and

m4i = E(u4i ) = E

0@X
j

X
j0

X
`

X
`0

qijqij0qi`qi`0"j"j0"`"`0

1A :

But since "0js are independent draws with mean 0 and a unit variance we have

E
�
"j"j0"`"`0

�
= m";4j ; if j = j0 = ` = `0

= 1, if j = j0 and ` = `0 or if j = ` and j0 = `0 or if j = `0 and j0 = `

= 0 otherwise.

Hence, it readily follows that

m4i =
NX
j=1

q4ijm";4j + 3
X
j 6=`

q2ijq
2
i`: (M.6)

But X
j 6=`

q2ijq
2
i` =

NX
j=1

NX
`=1

q2ijq
2
i` �

NX
j=1

q4ij =

0@ NX
j=1

q2ij

1A2 � NX
j=1

q4ij = �4i �
NX
j=1

q4ij :

Therefore, (M.6) can be written as

m4i � 3�2ii =
XN

j=1
q4ij (m";4j � 3) :

Let �"j = m";4j � 3 and �i = m4i � 3�4i ; and write the above relations in matrix notation, namely

�u = Q(4)�";

where � = (�1; �2; :::; �N)
0, �" = (�"1; �"2; :::; �"N )

0 and Q(4) = Q�Q�Q�Q, where � is the
Hadamard matrix operator (or element-wise operator). Similarly, for the third moments we have

m3 = Q(3)m";3;

where m3 = (m3;1;m3;2; ::::;m3;N ), and m";3 = (m";3;1;m";3;2; ::::;m";3;N ). Since Q is a triangular
matrix with strictly positive diagonal elements it follows that Q(3) and Q(4) are also non-singular and
hence invertible. Thus

m";3 = Q�1(3)m3 (M.7)

�" = Q�1(4)�u: (M.8)

Denoting � = (�11; �22; :::; �NN )0 we also have � = Q(2)�N .
Having computed m";3i and m";4i we can now generate "i as

"i = ai + bi�i + ci�
2
i + di�

3
i ; i = 1; 2; :::; N; (M.9)

where �i s IIDN(0; 1) and the coe¢ cients ai; bi; ci and di are determined so that E("i) = 0; E("2i ) = 1,
E("3i ) = m";3i and E("4i ) = m";4i, using Fleishman�s formula

ai + ci = 0; (M.10)

b2i + 6bidi + 2c
2
i + 15d

2
i = 1; (M.11)

2ci(b
2
i + 24bidi + 105d

2
i + 2) = m";3i; (M.12)

24[bidi + c
2
i (1 + b

2
i + 28bidi) + d

2
i (12 + 48bidi + 141c

2
i + 225d

2
i )] = �"i: (M.13)

M2



Accordingly, in order to mimic as far as possible the main characteristics of observed security

returns, for each replication, r, we generate �(r)ii , 

(r)
1;i , 


(r)
2;i ,

n
�
(r)
`;i , for ` = 1; 2; 3

o
, as random draws

from their respective empirical distributions. For example, to generate �(r)ii over r and i, we �rst place
the estimates �̂ii;� ; for i = 1; 2; :::; N� , and � = 1; 2; :::; 265, that lie in the 2:5% to 97:5% quantile range,
into 10 bins and then randomly select a bin with probability equal to the proportion of the estimates
in each bin, and then draw randomly a value for �(r)ii from the selected bin. This procedure is repeated
over i = 1; 2; :::; N and replications r = 1; 2; :::; R.

M1.2 Details of the test statistics considered in the MC experiments
in Section 5

The GOS test
The GOS test statistic employs the BL estimator of �2N;T , which is de�ned by

�̂2BL =
2

N(N � 1)
PN
i=2

Pi�1
j=1 �̂

2
BL;ij ; (M.14)

where �̂BL;ij = �̂BL;ij= (�̂BL;ii�̂BL;jj)
1=2, �̂BL;ij is such that V̂BL = (�̂BL;ij), with

�̂BL;ij = �̂ijI

"
j�̂ij j � C

r
ln (N)

T

#
, (M.15)

where �̂ij is de�ned by (39), and the value of C > 0 is typically chosen by cross-validation, procedure
of which is described below.

Standardised Wald tests, SWLW and SWPOET

First we present how to compute the estimates of N � N variance matrix V which is used to
construct the feasible versions of the Standardised Wald statistic de�ned by (17). We considered two
estimates, proposed by Ledoit and Wolf (2004), and the POET estimates of Fan et al (2013, FLM).

Ledoit and Wolf (2004, LW) considered a shrinkage estimator for regularisation which is based on
a linear combination of the covariance matrix, V̂ , and an identity matrix IN , and provide formulae for
the appropriate weights. The LW shrinkage is expressed as

V̂ LW = �̂1IN + �̂2V̂ ; (M.16)

with the estimated weights given by

�̂1 = mT b
2
T =d

2
T , �̂2 = a2T =d

2
T

where

mT = N�1 tr
�
V̂
�
; d2T = N�1 tr

�
V̂
2
�
�m2

T ;

a2T = d2T � b2T ; b2T = min(�b2T ; d2T );

and

�b2T =
1

NT 2

TX
t=1




ûtû0t � V̂ 


2
F
=

1

NT 2

TX
t=1

tr
��
ûtû

0
t

� �
ûtû

0
t

��
� 2

NT 2

TX
t=1

tr
�
û0tV̂ ût

�
+

1

NT
tr
�
V̂
2
�
;

and noting that
PT

t=1 tr
�
û0tV̂ ût

�
= T

PT
t=1 tr

�
V̂
2
�
, we have

�b2T =
1

NT 2

TX
t=1

 
NX
i=1

û2it

!2
� 1

NT
tr
�
V̂
2
�
;
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with ût = (û1t; û2t; : : : ; ûNt)
0. V̂LW is positive de�nite by construction. Thus, the inverse V̂�1

LW exists
and is well conditioned.

Extending the CL approach, FLM propose the POET estimator

V̂POET =
�
�̂ijs� ij [j�̂ij j � � ij ]

�
; i = 1; 2; : : : ; N � 1; j = i+ 1; i+ 2; : : : ; N; (M.17)

where � ij > 0 is an entry-dependent adaptive threshold such that � ij =
p
'̂ij!̂T ;with '̂

2
ij = T�1

PT
i=1(ûitûjt�

�̂ij)
2 and !̂T = Ĉ

p
log (N) =T ; for some constant Ĉ > 0, setting a lower bound on the cross-validation

grid when searching for C such that the minimum eigenvalue of their threshold estimator is positive,

�min

�
V̂POET

�
> 0. The consistency rate of the POET estimator is C0mN

p
log (N) =T under the

spectral norm of the error matrix
�
V̂POET � V

�
.

Cross-validation for BL and POET
We perform a grid search for the choice of C over a speci�ed range: C = fc : Cmin � c � Cmaxg.

For BL, we set Cmin = jminij �̂ij j
q

T
ln(N) , Cmax = jmaxij �̂ij j

q
T

ln(N) , and impose increments of

(Cmax � Cmin) =N . For POET, we set Cmin = 0 and Cmax = 4; and impose increments of c=N . In
each point of this range, c; we use ûit; i = 1; 2; : : : ; N; t = 1; 2; : : : ; T and select the N � 1 column
vectors ût = (û1t; û2t; : : : ; ûNt)

0 ; t = 1; 2; : : : ; T which we randomly reshu­ e over the t-dimension. This

gives rise to a new set of N � 1 column vectors û(s)t =
�
û
(s)
1t ; û

(s)
2t ; : : : ; û

(s)
Nt

�0
for the �rst shu­ e s = 1.

We repeat this reshu­ ing S times in total where we set S = 20 (as suggested by FLM). We consider

this to be su¢ ciently large. In each shu­ e s = 1; 2; : : : ; S, we divide û(s) =
�
û
(s)
1 ; û

(s)
2 ; : : : ; û

(s)
T

�
into two subsamples of size N � T1 and N � T2; where T2 = T � T1 where we set T1 = 2T

3 and

T2 =
T
3 . Let V̂

(s)
1 =

�
�̂
(s)
1;ij

�
; with elements �̂(s)1;ij = T�11

PT1
t=1 û

(s)
it û

(s)
jt ; and V̂

(s)
2 =

�
�̂
(s)
2;ij

�
with ele-

ments �̂(s)2;ij = T�12
PT
t=T1+1

û
(s)
it û

(s)
jt ; i; j = 1; 2; : : : ; N; denote the sample covariance matrices generated

using T1 and T2 respectively, for each split s. We threshold V̂
(s)
1 as in (M.14) or (M.17) using I (:) as

the thresholding function, where for POET both '̂ij and !T are adjusted to

'̂
(s)
1;ij =

1

T1

PT1
t=1(û

(s)
it û

(s)
jt � �̂

(s)
1;ij)

2;

and

!T1 (c) = c

s
log (N)

T1
:

Then (M.17) becomes

V̂
(s)
1 (c) =

�
�̂
(s)
1;ijI

h����̂(s)1;ij��� � �
(s)
1;ij (c)

i�
for each c; where

�
(s)
1;ij (c) =

q
'̂
(s)
1;ij!T1 (c) > 0;

and '̂(s)1;ij and !T1 (c) are de�ned above.
The following is then computed for BL or POET:

Ĝ (c) =
1

S

SX
s=1




V̂(s)
1 (c)� V̂(s)

2




2
F
; (M.18)

for each c. For BL
Ĉ = arg min

Cmin�c�Cmax
Ĝ (c) : (M.19)
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If several values of c attain the minimum of (M.19), then Ĉ is chosen to be the smallest. For POET,

Ĉ = arg min
Cpd+��c�Cmax

Ĝ (c) ; (M.20)

where Cpd is the lowest c such that �min
�
V̂POET (Cpd)

�
> 0 (To ensure that the threshold estimator

is positive de�nite) and � is a small positive constant. We do not conduct thresholding on the diagonal
elements of the covariance matrices which remain intact.

Gungor and Luger (2009) SS and WS tests
These tests allow the error distribution to be non-normal but require it to be conditionally symmetric

around zero.M1 These tests are relatively easy to compute and are applicable even when N > T .
However, they are constructed for models with a single factor and their validity is established only
under N < T .

The SS test is based on the sign statistic

SSN =
XN

i=1
S2i ; (M.21)

where

Si =

hPT
t=1 I (zit > 0)

i
� T =2p

T =4
;

I (A) is the indicator function as de�ned by (57),

zit =

�
yi;t+T
ft+T

� yit
ft

��
ft � ft+T
ftft+T

�
, t = 1; 2; :::; T ;

T is the nearest integer part of T=2. The WS test is based on the Wilcoxon signed rank statistic

WSN =
XN

i=1
W2
i ; (M.22)

where

Wi =

hPT
t=1 I (zit > 0)Rank(jzitj)

i
� T (T + 1) =4p

T (T + 1) (2T + 1) =24
;

Rank(jzitj) is the rank (natural number) of jzitj when jzi1j; jzi2j; :::; jziT j are placed in an ascending
order of magnitude. Gungor and Luger (2009) show that under the null hypothesis, �i = 0 for all i, both
Si and Wi statistics have limiting (as T ! 1) standard normal distributions. Under the additional
assumption that the errors in the CAPM regressions are cross-sectionally independent, conditional on
the values of the single factor (f1; f2; :::; fT ), SSN and WSN follow �2N distributions.

Gungor and Luger (2016) Fmax test
Their test is based on the F -statistic

Fi =
RRSSi � URSSi

URSSi= (T �m� 1)
;

where RRSSi and URSSi are restricted (imposing �i = 0 for all i) and unrestricted sum of squared
residuals of the ith regression. They consider various versions of the test, and recommend the use of
the maximum test

Fmax = max
1�i�N

Fi,

M1See equation (13) in Gungor and Luger (2009) for the de�nition of SS and WS test statistics.

M5



which we will consider in our Monte Carlo exercise.M2 They claim that their resampling test procedure
is robust against non-normality and cross-sectional dependence in speci�c errors. Their test is e¤ectively
based on wild bootstrap resampling in such a way that the sample residual cross-sectional correlation
will be preserved, and unconsidered nuisance parameters are dealt with introduction of bounds test.
Their test procedure is computable where N > T and it allows the error distribution to be non-normal.

Speci�cally, their test procedure is as follows:

1. Obtain the N � 1 bth bootstrap error vector u(b)t = ~ut�t, where ~ut = (~u1t; ~u2t; :::; ~uNt)
0 is the

residual vector consisting of the restricted regression (imposing no intercept), yit = f 0t~�i + ~uit,
and �t is IID random variable over t which takes +1 or -1 with 1/2 chance, b = 1; 2; :::; B � 1.
Then, obtain the bootstrap sample using y(b)t = f 0t~�i + u

(b)
t .

2. Compute the liberal p-value (pL) and the conservative p-value (pC), where pC = B�RC+1
B and

pL = B�RL+1
B with RC = 1+

PB�1
b=1 I

h
Fmax > F

(b)
Cmax

i
+
PB�1
b=1 I

h
Fmax = F

(b)
Cmax

i
� I [UB > Ub],

RL = 1+
PB�1
b=1 I

h
Fmax > F

(b)
Lmax

i
+
PB�1
b=1 I

h
Fmax = F

(b)
Lmax

i
�I [UB > Ub], where Ub � i:i:d:Uniform[0; 1],

b = 1; 2; :::; B, F (b)Cmax = max1�i�N F
(b)
i;C , with F

(b)
i;C =

RRSSi�URSS(b)i
URSS

(b)
i =(T�m�1)

, F (b)Lmax = max1�i�N F
(b)
i;L

with F (b)i;L =
RRSS

(b)
i �URSS(b)i

URSS
(b)
i =(T�m�1)

, RRSSi =
PT
t=1 ~u

2
it, RRSS

(b) and URSS(b) are bootstrap restricted

and unrestricted sum of squared residuals.

3. Follow the bounds test procedure: "Reject" H0 if conservative bootstrap p-value, pC � �, "ac-
cept"H0 if liberal bootstrap p-value, pL > �, otherwise "inconclusive", where � is the signi�cance
level.

M2We are grateful to Richard Luger for sharing the code to compute the resampling test discussed in Gungor
and Luger (2016).
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M1.3 Supplementary Monte Carlo results

Table M1: Frequencies of Inconclusive Results of Gungor and Luger (2016) test
for Table 2

Panel A: Normal Errors

�
 = 1=4 �
 = 1=2 �
 = 3=5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: �i = 0 for all i
Fmax 60 3.3 3.1 4.6 2.7 3.2 3.7 4.3 3.5 4.2 3.0 3.4 3.7

(Inconclusive) 100 4.2 3.8 4.0 3.9 3.6 3.9 3.9 3.8 3.7 3.8 4.3 3.3

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8 otherwise �i = 0
Fmax 60 29.3 35.9 40.3 45.5 30.6 34.1 39.6 44.5 27.4 36.3 38.9 46.0

(Inconclusive) 100 39.0 40.0 36.7 29.1 36.8 39.0 37.7 29.4 37.0 39.9 35.8 29.3

Panel B: Non-normal Errors

�
 = 1=4 �
 = 1=2 �
 = 3=5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: �i = 0 for all i
Fmax 60 4.2 3.7 4.8 5.2 4.5 4.8 4.0 4.9 4.3 3.8 4.8 5.1

(Inconclusive) 100 4.4 3.6 5.0 3.8 4.3 4.0 4.4 5.0 4.5 3.9 4.8 5.0

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8 otherwise �i = 0
Fmax 60 31.1 35.8 40.1 46.0 30.7 34.9 39.8 46.5 28.6 34.5 39.6 45.5

(Inconclusive) 100 37.3 39.1 37.7 28.6 39.0 38.8 35.8 27.9 37.5 38.9 36.1 31.7

See notes to Table 2 in the body paper.
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Table M2: Size of the Ĵ� test using the estimator of (N � 1)�2N;T based on the
elements in V̂POET

This table summarises the size of the Ĵ� test using the estimator of (N � 1)�2N;T based on the
elements in POET estimator of V proposed by FLM. Speci�cally, the test statistic is de�ned by

N�1=2PN
i=1

�
t2i � v

v�2

�
/f
�

v
v�2

�q
2(v�1)
(v�4)

�
1 + (N � 1)�̂2POET

�
g, where �̂2POET = 2

N(N�1)
PN
i=2

Pi�1
j=1 �̂

2
POET;ij

with �̂POET;ij =
�̂POET;ijp

�̂POET;ii
p
�̂POET;jj

where V̂POET = f�̂POET;ijg. The data is generated as described
in the notes to Table 2. Values of the tests are compared to a positive one-sided critical value of the
standard normal distribution. The test is conducted at the 5% signi�cance level. Experiments are
based on 2,000 replications.

�
 = 1=4 �
 = 1=2 �
 = 3=5

(T;N) 50 100 200 500 50 100 200 500 50 100 200 500

Normal Errors

T = 60 7.6 5.6 6.2 5.3 10.3 9.5 9.4 10.1 12.5 12.2 15.0 17.1

T = 100 6.8 5.3 5.5 5.6 6.8 9.5 9.3 9.7 9.0 14.0 15.7 15.7

Non-normal Errors

T = 60 6.7 7.0 6.1 6.9 10.4 10.9 11.6 11.8 13.6 15.0 14.6 18.1

T = 100 5.8 6.9 6.7 7.5 8.2 10.2 11.3 12.6 11.9 14.5 15.3 16.2

Table M3: Size of the Ĵ� test when the mean of the average of squared t-ratios is
set to one

This table summarises the size of Ĵ� test using unity as the average of squared t-ratios. Speci�cally,

the test statistic is de�ned by N�1=2PN
i=1

�
t2i � 1

�
=f
�

v
v�2

�r
2(v�1)
(v�4)

h
1 + (N � 1)~�2N;T

i
g. The data is

generated as described in the notes to Table 2. Values of the tests are compared to a positive one-sided
critical value of the standard normal distribution. The test is conducted at the 5% signi�cance level.
Experiments are based on 2,000 replications.

�
 = 1=4 �
 = 1=2 �
 = 3=5

(T;N) 50 100 200 500 50 100 200 500 50 100 200 500

Normal Errors

T = 60 8.4 8.8 9.9 14.8 7.5 8.4 9.5 11.7 8.0 8.0 8.6 8.8

T = 100 7.4 7.6 8.5 10.3 7.7 8.2 8.2 7.8 6.9 7.7 7.5 8.4

Non-normal Errors

T = 60 7.4 9.0 10.3 15.1 8.2 8.1 9.0 13.1 7.5 8.7 8.8 10.1

T = 100 7.9 7.9 8.5 10.2 6.9 7.0 8.7 8.1 7.1 8.1 7.7 7.3
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Table M4: Size and power of SS and WS tests in the case of models with a single
factor

The data is generated as yit = �i + �1if1t + uit; i = 1; 2; ::; N ; t = 1; 2; :::; T , f1t = �f1 + �f1f1;t�1 +p
h1t �1t, h1t = �h1 + �1h1h1;t�1 + �2h1�

2
1;t�1, �1t � IIDN(0; 1), t = �49; :::; 0; 1; :::; T with f1;�50 =

h1;�50 = 0, �f1 = 0:53, �f1 = 0:06, �h1 = 0:89, �1h1 = 0:85, �2h1 = 0:11. For the size of the test, �i = 0
for all i, and for the power of the test, �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8,
otherwise �i = 0; where bAc is the largest integer part of A. We generate the idiosyncratic errors,
ut = (u1t; u2t; :::; uNt)

0, according to ut = Q"t, where "t = ("1t; "2t; :::; "Nt)
0, and Q = D1=2P with

D = diag(�21; �
2
2; :::; �

2
N )

0 andP being a Cholesky factor of correlation matrix of ut,R, which is anN�N
matrix used to calibrate the cross correlation of returns. R = IN +bb

0� �B2;where b = (b1; b2; ::::; bN )0;
�B = diag(b), we draw the �rst and the last N
 (< N) elements of b as Uniform(0:7; 0:9), and set
the remaining middle elements to 0. We set N
 = bN �
c. We examine �
 = 1=4; 1=2 and 3=5. For
non-normal case, uit are generated following steps 1-4 of the procedure in Appendix B. SS and WS
are the signed and singed rank tests of Gungor and Luger (2009), which are distributed as �2N and
applicable for one-factor model (see Section M1.2 for more details) All tests are conducted at the 5%
signi�cance level. Experiments are based on 2,000 replications.

Panel A: With Single Factor, Normal Errors

�
 = 1=4 �
 = 1=2 �
 = 3=5

(T;N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: �i = 0 for all i

SS 60 4.3 5.2 4.3 5.1 7.0 7.7 8.5 7.8 9.1 9.7 12.6 12.4

100 4.5 4.7 5.3 5.1 7.4 7.9 8.3 7.7 10.5 10.0 11.5 12.2

WS 60 4.3 4.8 4.4 4.6 7.6 8.2 9.0 8.6 9.8 9.9 13.1 13.2

100 3.8 5.3 5.2 5.1 7.9 8.1 8.1 7.8 10.4 11.4 12.9 13.4

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8 otherwise �i = 0.
SS 60 20.8 26.2 34.9 47.9 22.2 25.5 35.2 48.9 21.1 28.2 35.4 45.7

100 36.6 47.0 62.8 80.7 35.1 45.6 59.9 77.9 35.3 44.5 56.8 72.6

WS 60 23.4 32.3 43.0 59.2 25.4 30.8 40.4 58.2 25.5 32.4 41.3 52.1

100 44.3 58.7 74.0 90.3 42.0 55.3 70.9 87.6 41.5 51.9 67.2 83.3

Panel B: With Single Factor, Non-normal Errors

Size: �i = 0 for all i
SS 60 10.3 13.8 19.9 33.4 11.8 14.0 18.5 33.4 11.8 17.4 22.8 32.2

100 16.3 23.7 35.2 63.3 15.5 21.3 33.8 57.2 18.4 24.5 32.6 49.9

WS 60 8.3 11.5 16.5 24.9 12.7 12.7 16.9 26.8 13.1 16.5 19.1 28.7

100 14.0 18.3 27.1 51.6 16.0 18.6 28.2 44.1 17.2 20.8 28.3 39.0

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, �� = 0:8 otherwise �i = 0.
SS 60 31.8 43.5 57.7 83.2 30.6 42.1 57.0 79.8 29.2 41.0 54.8 74.1

100 55.9 73.6 90.6 99.2 51.5 67.1 88.0 98.8 50.6 64.7 81.8 97.5

WS 60 33.3 46.2 62.6 87.1 32.2 44.6 61.2 81.5 32.3 43.3 55.8 76.1

100 59.1 77.2 92.6 99.6 55.4 70.5 90.7 99.3 52.5 68.3 84.6 98.0
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Table M5: Size and power of Ĵ� test with mixed spatial-factor models with the
value of spatial parameter �" = 0:8

DGP is identical to that for the results reported in Table 5 except �" = 0:8. Also see notes to Table 2.

Panel A: Normal Errors with �" = 0:8
Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (
 = 0)
Ĵ� 60 6.6 7.0 7.3 7.8 7.5 6.6 7.3 38.6 52.1 68.9 86.8 96.5 99.2 99.8

100 7.0 7.1 6.9 6.4 5.5 5.6 5.7 68.1 82.8 94.5 99.5 100.0 100.0 100.0
J�(0) 60 15.8 18.5 17.8 19.1 18.4 16.5 19.0 61.4 73.6 87.6 95.1 99.2 99.8 99.9

100 18.3 17.4 16.7 17.1 16.7 16.5 17.6 84.9 94.3 98.5 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=4)
Ĵ� 60 5.8 6.0 6.5 7.0 5.7 7.3 6.6 39.4 51.3 67.5 87.4 96.4 99.5 100.0

100 7.0 7.8 6.7 7.1 5.4 6.0 6.1 66.6 81.6 94.8 99.4 100.0 100.0 100.0
J�(0) 60 16.3 16.4 16.3 17.7 16.5 16.9 16.8 61.8 72.4 84.7 95.6 98.6 100.0 100.0

100 17.2 18.9 17.6 17.4 15.3 18.1 17.8 84.8 93.5 98.8 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=2)
Ĵ� 60 6.6 7.6 6.9 7.1 6.0 6.7 5.8 39.1 50.7 66.6 85.8 95.6 98.8 100.0

100 6.8 6.1 7.2 6.7 6.1 6.9 6.3 66.4 83.1 94.4 99.6 100.0 100.0 100.0
J�(0) 60 17.2 17.9 16.8 18.9 18.0 17.7 16.5 60.0 72.9 86.1 95.2 99.4 99.8 100.0

100 17.5 17.6 17.6 19.4 17.0 18.9 18.6 85.3 94.5 98.6 100.0 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 3=5)
Ĵ� 60 6.4 7.5 5.8 7.6 7.8 7.9 7.5 38.2 51.3 67.5 85.2 96.2 99.3 99.9

100 6.8 6.4 7.0 7.0 5.5 6.4 5.9 67.9 82.4 94.3 99.7 100.0 100.0 100.0
J� (0) 60 15.7 18.7 16.8 19.5 17.3 19.1 18.3 60.0 74.1 85.6 95.4 99.1 99.9 100.0

100 17.5 17.3 18.2 17.3 17.7 17.7 18.1 86.2 93.5 98.8 100.0 100.0 100.0 100.0
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Table M5 � Continued

Panel B: Non-normal Errors with �" = 0:8
Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (
 = 0)
Ĵ� 60 8.9 7.5 7.5 6.9 8.1 8.0 8.6 35.5 45.3 60.0 78.7 91.4 97.0 99.7

100 7.3 6.0 7.0 6.4 7.1 6.4 6.4 57.8 72.1 89.2 97.8 99.8 100.0 100.0
J�(0) 60 18.7 18.2 18.4 18.3 18.1 20.3 20.2 57.1 66.0 79.0 91.9 97.1 99.5 99.8

100 16.6 17.1 18.5 18.9 18.8 20.2 17.9 78.9 88.7 96.5 99.7 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=4)
Ĵ� 60 7.4 6.4 8.4 7.1 7.0 7.4 7.5 35.9 43.0 58.7 77.5 89.3 97.0 99.7

100 6.3 6.3 7.1 5.4 6.2 7.1 6.9 58.3 73.6 87.5 98.4 99.6 100.0 100.0
J�(0) 60 16.5 16.2 19.6 18.1 18.0 19.1 19.2 56.4 65.0 79.8 92.3 96.9 99.4 99.9

100 16.3 16.6 17.7 17.5 19.0 18.8 19.0 77.2 88.4 96.4 99.7 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 1=2)
Ĵ� 60 8.2 6.9 7.3 7.0 7.0 8.3 7.6 32.9 43.3 57.7 77.8 90.9 97.1 99.7

100 6.8 6.7 7.0 7.1 6.5 7.1 7.0 55.7 73.5 88.1 98.2 99.8 100.0 100.0
J�(0) 60 16.7 16.8 18.8 18.8 21.2 20.5 20.1 54.5 66.1 78.0 91.0 97.2 99.3 100.0

100 17.8 17.0 18.3 18.8 19.9 19.1 20.5 76.9 89.5 97.0 99.8 100.0 100.0 100.0
Mixed spatial-factor models (�
 = 3=5)
Ĵ� 60 7.2 7.9 6.4 6.4 8.4 7.4 7.8 31.8 44.0 58.1 76.9 89.8 96.9 99.6

100 7.2 6.6 7.9 6.6 6.9 7.0 6.7 58.0 73.0 86.7 98.5 99.7 100.0 100.0
J�(0) 60 16.7 18.0 18.0 18.9 20.9 18.6 19.9 54.5 67.0 79.2 91.0 96.5 99.0 100.0

100 17.7 16.4 18.7 18.1 19.2 19.3 18.6 77.9 88.9 96.0 99.8 100.0 100.0 100.0
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Table M6: Size and power of GRS and J� tests in the case of models with a single
factor under GARCH(1,1) idiosyncratic errors

The data is generated as described in the note to Table M4 for Panel A and Table 2 for three fac-
tors, except that the idiosyncratic errors follow a class of MGARCH model, which is known as CCC
(constant conditional correlation) model proposed by Bollerslev (1990), as below. The error vec-
tor ut = (u1t; u2t; :::; uNt)

0 is generated according to ut = Qt"t, where "t = ("1t; "2t; :::; "Nt)
0 with

"it � IIDN(0; 1), Qt= D
1=2
t P so that V (utjIt�1) = D1=2

t RD
1=2
t , t = 1; 2; :::; T , where R = PP0 is the

(unconditional) correlation matrix de�ned as before, Dt = diag (h1t; h2t; :::; hNt)
0,with hit being uni-

variate GARCH(1,1) process de�ned as hit = �i0 + �i1u
2
i;t�1 + �i1hi;t�1, t = �49;�48; :::; T .with

u�50 = h�50 = 0. We generate the value of unconditional variance �ii �rst as described in the
note to Table 2 then we choose the value of �i0 = �ii (1� �i1 � �i1). �i1 � IIDU [0:05; 0:15] and
�i1 � IIDU [0:7; 0:8] are generated in each replication.

Panel A: With Single Factor

N �
 �
 = 1=4 �
 = 1=2 �
 = 3=5

(T;N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: �i = 0 for all i
GRS 60 5.5 N/A N/A N/A 5.0 N/A N/A N/A 5.3 N/A N/A N/A

100 5.0 N/A N/A N/A 5.4 N/A N/A N/A 4.9 N/A N/A N/A

Ĵ� 60 5.6 6.7 6.1 5.2 6.1 5.9 5.7 5.5 6.7 7.0 7.3 5.3

100 5.5 6.1 6.4 5.1 6.7 6.0 7.0 5.9 5.8 6.7 6.6 6.4

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN ��c, otherwise �i = 0.
GRS 60 22.8 N/A N/A N/A 33.4 N/A N/A N/A 38.0 N/A N/A N/A

100 82.5 N/A N/A N/A 90.6 N/A N/A N/A 94.2 N/A N/A N/A

Ĵ� 60 78.9 90.1 98.5 100.0 69.3 83.5 95.9 99.8 59.2 70.8 85.1 96.7

100 94.8 98.7 100.0 100.0 90.0 97.8 99.9 100.0 83.4 95.5 98.9 100.0

Panel B: With Three Factors

Size: �i = 0 for all i
GRS 60 4.7 N/A N/A N/A 4.8 N/A N/A N/A 4.1 N/A N/A N/A

100 5.4 N/A N/A N/A 4.6 N/A N/A N/A 5.2 N/A N/A N/A

Ĵ� 60 6.5 5.6 5.5 4.2 6.5 5.9 6.7 5.8 6.3 7.1 5.9 6.0

100 6.6 6.1 5.8 5.5 6.4 5.9 6.5 6.2 6.5 6.6 6.4 6.2

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN ��c, otherwise �i = 0.
GRS 60 15.6 N/A N/A N/A 22.0 N/A N/A N/A 25.2 N/A N/A N/A

100 71.7 N/A N/A N/A 83.8 N/A N/A N/A 90.0 N/A N/A N/A

Ĵ� 60 69.0 82.4 93.4 99.4 56.8 72.5 87.4 97.2 47.3 57.8 69.7 86.3

100 89.7 97.4 99.6 100.0 82.8 93.6 99.1 100.0 74.2 88.4 95.8 99.8
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