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Abstract

This paper proposes an estimator of factor strength and establishes its consistency and asymp-

totic distribution. The proposed estimator is based on the number of statistically significant factor

loadings, taking account of the multiple testing problem. We focus on the case where the factors

are observed which is of primary interest in many applications in macroeconomics and finance.

We also consider using cross section averages as a proxy in the case of unobserved common fac-

tors. We face a fundamental factor identification issue when there are more than one unobserved

common factors. We investigate the small sample properties of the proposed estimator by means

of Monte Carlo experiments under a variety of scenarios. In general, we find that the estimator,

and the associated inference, perform well. The test is conservative under the null hypothesis,

but, nevertheless, has excellent power properties, especially when the factor strength is sufficiently

high. Application of the proposed estimation strategy to factor models of asset returns shows that

out of 146 factors recently considered in the finance literature, only the market factor is truly

strong, while all other factors are at best semi-strong, with their strength varying considerably

over time. Similarly, we only find evidence of semi-strong factors in an updated version of the

Stock and Watson (2012) macroeconomic dataset.
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1 Introduction

Interest in the analysis of cross-sectional dependence (CSD), applied to households, firms, markets,

regional and national economies, has become prominent over the past decade, especially so in the

aftermath of the latest financial crisis and its important implications for the global economy. Re-

searchers in many fields have turned to network theory, spatial and factor models, to obtain a better

understanding of the extent, nature and strength of such cross dependencies. Bailey et al. (2016)

(BKP hereafter) give a thorough account of the rationale and motivation behind the need for deter-

mining the extent of CSD, be it in finance, micro or macroeconomics. To estimate the degree of CSD

in a panel dataset, BKP analyse the rate at which the variance of the cross section average of obser-

vations in that panel tends to zero and show that it depends on the degree or exponent of CSD which

they denote by α. They explore a latent factor model setting as a vehicle for characterising strong

and semi-strong covariance structures as defined in Chudik et al. (2011). They relate these to the

degree of pervasiveness of factors in unobserved factor models often used in the literature to model

CSD. In a follow up paper to BKP, Bailey et al. (2019) extend their analysis in two respects. First,

they consider a more generic setting which does not require a common factor representation and

holds more generally for both moderate and sizeable CSD. They achieve this by directly considering

the significance of individual pair-wise correlations and base the estimation of α on the proportion

of statistically significant correlations. Second, they show that their estimator also applies to the

residuals obtained from panel data regressions.

The estimators developed in Bailey et al. (2016, 2019) are helpful as overall measures of CSD, but

they do not provide information on the strength of individual factors which is of interest, for example,

in the pricing of risk in empirical finance and in identifying dominant factors in macroeconomic

fluctuations. This paper relates the estimation of factor strength to the degree to which the factor

in question has pervasive effects on all the units in the dataset. As a simple example consider the

following single factor model

xit = ci + γift + uit, i = 1, 2, . . . , n; t = 1, 2, . . . , T, (1)

where ft, is a known factor, ci is the unit-specific effect, uit ∼ IID(0, σ2
i ) is an idiosyncratic error,

and γi is the factor loading for unit i. The strength of ft can be characterised by the degree of

pervasiveness of its effects (i.e. the number of non-zero factor loadings), and measured by the rate

at which
∑n

i=1 γ
2
i rises with n. Denoting this rate by α, the standard large n and T latent factor

models assume that α = 1, as required, for example, by Assumption B in Bai and Ng (2002) and Bai

(2003). At the other extreme, a factor is deemed to be weak if 0 ≤ α < 0.5. This case is studied in

Onatski (2012). Similar notions of factor strength are also used in recent financial studies by Lettau

and Pelger (2018) and Anatolyev and Mikusheva (2019). In most empirical applications, the value

of α is unknown. Incorrectly setting it to α = 1 can result in misleading inference. Also, as we shall

see, it is not possible to identify α when the factor in question is weak and therefore, in effect, can

be absorbed into the error term with little consequence for the analysis of CSD. In most empirical

applications in finance and macroeconomics, the values of α that are of interest and of consequence,

are within the range α ∈ (0.5, 1]. As recently shown by Pesaran and Smith (2019), factor strengths

play a crucial role in the identification of risk premia in arbitrage asset pricing models, and determine

the rates at which risk premia can be estimated. The strength of macroeconomic shocks is also of

special interest, as its value has important bearing on forecasting and policy analysis. Contributions

in terms of factor selection and factor model estimation when α ∈ (0.5, 1] include Freyaldenhoven

(2019) and Uematsu and Yamagata (2019).
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In this paper we propose an estimator of factor strength and establish its consistency and asymp-

totic distribution when α > 1/2. The proposed estimator is based on the number of statistically

significant factor loadings, taking account of the multiple tests being carried out. We find that it is

a powerful and highly accurate estimator, especially for higher levels of factor strength. Despite its

simplicity, the distribution of the estimator, being based on sums of random variables that follow,

potentially heterogeneous, Bernoulli distributions, is quite complicated and non-standard. While the

parameters of these distributions are hard to pin down, they can be bounded in such a way as to

provide both grounds for the validity of a central limit theorem for the asymptotically dominant part

of the estimator and an upper bound for the asymptotic variance. These two elements allow for the

construction of asymptotically conservative test statistics.

We focus on the case where the factors are observed, which is of primary interest in tackling

the empirical examples mentioned earlier, among many others. We also consider using cross section

averages as a proxy in the case of unobserved common factors. In practice, we face a significant factor

identification issue when there are more than one unobserved common factors. In the case of multiple

unobserved factor models, our contribution is best viewed as providing inferential information about

the exponent of the strongest factor, shared amongst the cross section units.

We investigate the small sample properties of the proposed estimator by means of Monte Carlo

experiments under a variety of scenarios. In general, we find that the estimator, and the associated

inference, perform well. The test is conservative under the null hypothesis, but, nevertheless, has

excellent power properties, especially when α is close to unity, even for moderate sample sizes.

We illustrate the relevance of our proposed estimator by means of two empirical applications,

using well known datasets in finance and macroeconomics. First, we consider a large number of

factors proposed in the finance literature for asset pricing. For example, Harvey and Liu (2019)

document over 400 such factors, and Feng et al. (2020) consider the problem of factor selection using

penalised regressions. In view of recent theoretical results in Pesaran and Smith (2019), our empirical

contribution focuses on the estimation of factor strengths, since factor selection is only meaningful

for asset pricing if the factors under consideration are sufficiently strong. We compute 10-year rolling

estimates of α (together with their standard error bands) for the excess market return (as a measure

of the market factor), and the remaining 145 factors considered by Feng et al. (2020). Out of the 146

factors considered, we find that only the market factor is sufficiently strong over all rolling windows,

with its average strength estimated to be around 0.99 over the full sample (from September 1989

to December 2017). In contrast, none of the other factors achieve strengths exceeding 0.90 over the

full sample, but over the sub-sample that includes the recent financial crisis as many as 48 (out of

145) have average strength estimated to lie between 0.9 and 0.94. Remarkably, the well-known size

and value factors introduced in Fama and French (1993) are not particularly prominent as compared

to cash and leverage factors. Further, of special interest is the high degree of time variation in the

estimates of factor strengths, which cannot be attributed to sampling variation, considering the high

precision with which the factor strengths are estimated, particularly when the true factor strength

is close to unity.

Our second empirical application considers an unobserved factor model and asks if there exists

any strong latent factor shared by the set of macroeconomic variables originally investigated by

Stock and Watson (2012). In particular, we consider an updated version of Stock and Watson

(SW) dataset covering 187 variables over the period 1988Q1-2019Q2. Although it is not possible to

separately identify the strengths of individual latent factors, we are able to show that the strength

of the strongest of the latent factors in the updated SW data set is around 0.94 which is sufficiently
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high for the factor to be important for macroeconomic analysis, but yet statistically different from

1, usually assumed in the literature.

The rest of the paper is organised as follows: Section 2 introduces our proposed measure of

factor strength and develops the estimation and inference theory for the single factor case. A general

multi-factor set up is then considered in Section 3 which includes the main theoretical results of the

paper. Section 4 discusses the case of unobserved factors, and after highlighting the identification

problem involved, considers the estimation of the strength of the strongest factor implied by the

model. Sections 5 and 6 provide extensive simulation and empirical evidence of the performance of

our estimator. Section 7 provides some concluding remarks. Mathematical proofs are contained in

an appendix at the end of the document and further simulation and empirical results are provided

in an online supplement.

Notation: Generic positive finite constants are denoted by Ci, for i = 1, 2, . . .. They can take

different values at different instances. If {fn}∞n=1 is a real sequence and {gn}∞n=1 is a sequence of

positive numbers, then fn = O (gn), if there exists a positive finite constant C0 such that |fn| /gn ≤ C0

for all n. fn = o (gn) if fn/gn → 0 as n→∞. If {fn}∞n=1 and {gn}∞n=1 are both positive sequences of

real numbers, then fn = � (gn) if there exist N0 ≥ 1 and positive finite constants C0 and C1, such

that infn≥N0 (fn/gn) ≥ C0, and supn≥N0
(fn/gn) ≤ C1. →d denotes convergence in distribution as

n, T →∞.

2 Estimation strategy

To illustrate the basic idea behind our estimation strategy we begin with a single factor model where

the factor is observed, and turn subsequently to the cases of multiple, observed or unobserved factors.

Suppose that T observations are given, on n cross section units, namely {xit, i = 1, 2, . . . , n, t =

1, 2, . . . , T}, and follow the single factor model (1), repeated here for convenience:

xit = ci + γift + uit, (2)

where ft, t = 1, 2, . . . , T is a known factor, ci is the unit-specific effect, uit ∼ IID(0, σ2
i ) is an

idiosyncratic error, and γi is the factor loading for unit i. The factor loadings are assumed to be

non-zero for the first [nα] units, and zero for the rest, where [·] denotes the integer part function.

More specifically, suppose that, for some c > 0,

|γi| > c a.s. for i = 1, 2, . . . , [nα], (3)

|γi| = 0 a.s. for i = [nα] + 1, [nα] + 2, . . . , n,

where α is the exponent of cross section dependence discussed in BKP.1 The exponent α measures

the degree of pervasiveness or strength of the factor. It is important to reiterate that BKP focus

on estimating an overall measure of cross-sectional dependence in xit, without particular reference

to a single specific factor. They base their estimator on the variance of the cross-sectional average,

while noting the pros and cons of alternative approaches, based on other characteristics of xit, such

as, e.g., the maximum eigenvalue of the covariance of xit. Given the prominence of this maximum

eigenvalue as a basis for characterising CSD, they note existing work, as well as reasons for which a

formal eigenvalue analysis may not be promising for this purpose.

1More generally, we can have |γi| = c1γ
i−[nα], with |γ| < 1 and c1 > 0, for i = [nα] + 1, [nα] + 2, . . . , n, in (3). But

for simplicity of exposition, we opt for |γi| = 0 a.s. instead.
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As we noted above our aim is different. We wish to determine the strength of pervasiveness of

particular factors and use α, as defined through (3), as a tool for that purpose. To estimate α we

begin by running the least squares regressions of {xit}Tt=1 for each i = 1, 2, . . . , n on an intercept and

ft to obtain

xit = ĉiT + γ̂iT ft + ν̂it, t = 1, 2, . . . , T

where ĉiT and γ̂iT are the Ordinary Least Squares (OLS) estimates of this regression. Denote by

tiT = γ̂iT / s.e. (γ̂iT ) the t-statistic corresponding to γi:

tiT =
(f ′Mτ f)1/2 γ̂iT

σ̂iT
=

(f ′Mτ f)−1/2 (f ′Mτxi)

σ̂iT
, (4)

where Mτ = IT − T−1ττ ′, τ is a T × 1 vector of ones, f = (f1, f2, . . . , fT )′, xi = (xi1, xi2, . . . , xiT )′,

and σ̂2
iT = T−1

∑T
t=1 ν̂

2
it. Also assume that, for some c > 0, T−1f ′Mτ f > c, which is necessary for

identification of γi. Consider the proportion of regressions with statistically significant coefficients

γi:

π̂nT = n−1
n∑
i=1

d̂i,nT , (5)

where d̂i,nT = 1 [|tiT | > cp(n)] , 1 (A) = 1 if A > 0, and zero otherwise, and the critical value function,

cp(n), is given by

cp(n) = Φ−1
(

1− p

2nδ

)
. (6)

Here p is the nominal size of the individual tests, δ > 0 is the critical value exponent and Φ−1(·)
denotes the inverse cumulative distribution function of the standard normal distribution.

Suppose that π̂nT > 0, and consider the following estimator of α

α̃ = 1 +
ln π̂nT
lnn

.

In the rare case where π̂nT = 0, we then set α̃ = 0. Overall

α̂ =

{
α̃, if π̂nT > 0,

0, if π̂nT = 0.
(7)

Clearly α̂ ∈ [0, 1] a.s.; also, α̂ and α̃ are asymptotically equivalent since for α > 0 then P(n π̂nT =

0)→ 0 as n→∞.

Remark 1 It is tempting to argue in favour of using the proportion of non-zero loadings, π, instead

of the exponent α. The two measures are clearly related - π = nα−1, and coincide only when α = 1.

But when α < 1, π becomes smaller and smaller as n→∞, and eventually tends to 0, for all values

of α < 1. The rate at which π tends to zero with n is determined by α, and hence α is a more

discriminating measure of pervasiveness than π. It is also unclear how a particular value of π should

be chosen as a measure of pervasiveness. Unlike α which can be chosen to be fixed in n, any choice

of π which is fixed in n requires α→ 1 as n→∞, albeit at the very slow ln(n) rate. Note that when

π is set to π0 > 0, a fixed value, then α = 1 + ln(π0)/ln(n), and α→ 1 if π0 is fixed in n.
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2.1 Asymptotic distribution

Denote the true α by α0, let d0
i = 1(γi 6= 0) and note that D0

n =
∑n

i=1 d
0
i = nα0 (the integer part

symbol is dropped for simplicity). Let

D̂nT = nπ̂nT =

n∑
i=1

d̂i,nT , (8)

and note that D̂nT /D
0
n = nα̂−α0 . Taking logs, we obtain

(lnn) (α̂− α0) = ln

(
D̂nT

D0
n

)
= ln

(
1 +

D̂nT − nα0

nα0

)
= ln (1 +AnT +BnT )

= AnT +BnT +Op
(
A2
nT

)
+O

(
B2
nT

)
+Op (AnTBnT ) + . . . , (9)

where

AnT =

∑n
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
nα0

, (10)

BnT =

∑n
i=1E

(
d̂i,nT

)
− nα0

nα0
. (11)

To motivate the proposed estimator and to simplify the derivations, here we assume σi is known and

uit is Gaussian, and turn to the more general multi-factor case with non-Gaussian errors in Section

3. In this simple case we have the following lemmas proven in Appendix A.

Lemma 1 Let the model be given by (2) where (3) holds, σi is known and uit is a Gaussian mar-

tingale difference process for all i. Then, for some C1 > 0,

BnT =
p (n− nα0)

nδ+α0
+O

[
exp

(
−TC1

)]
, (12)

where p is the nominal size of the individual tests, and δ is the exponent of the critical value function

defined in (6).

Lemma 2 Let the model be given by (2) where (3) holds, σi is known and uit is a Gaussian mar-

tingale difference process for all i. Then, in the case where α0 < 1, for some C1 > 0,

V ar (AnT ) = ψn(α0) +O
[
n−α0/2 exp

(
−TC1

)]
, (13)

where

ψn(α0) = p (n− na0)n−δ−2α0

(
1− p

nδ

)
. (14)

If α0 = 1, for some C1 > 0,

V ar (AnT ) = O
[
exp

(
−TC1

)]
. (15)

As we note from the above lemmas, we need to distinguish between the two cases where α0 = 1

and where α0 < 1. In the former case, AnT →p 0 exponentially fast in T , and overall

(lnn) (α̂− 1) = Op
[
n−1 exp (−C2T )

]
+O [exp (−C1T )] ,
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for some positive constants C1 and C2. Furthermore, in the case where α0 < 1, using (13) and (14),

it follows that

AnT = Op

[
ψn(α0)1/2

]
+O

[
n−α0/2 exp (−C1T/2)

]
= Op

(
n1/2−δ/2−α0

)
+O

[
n−α0/2 exp (−C1T/2)

]
.

Therefore, AnT = op(1) if δ > 1− 2α0, which is in turn met if δ > 0, for all values of α0 > 1/2.

Remark 2 It is clear that the distribution of α̂ experiences a form of degeneracy when α0 = 1, and

α̂ tends to its true value of 1 exponentially fast. We refer to this property as ultraconsistency to

distinguish it from the more usual terminology of superconsistency that refers to rates of convergence

that are faster than the usual one of the square root of the sample size. Usually faster rates are

polynomial in the sample size and not exponential, and therefore the new term reflects this important

difference.

The above results suggest the following scaling of α̂ when α0 < 1:

ψ−1/2
n (lnn) (α̂− α0) = ψ−1/2

n AnT + ψ−1/2
n BnT + op(1).

Also, using (A.6) from Appendix A, we have

BnT =

∑n
i=1E

(
d̂i,nT

)
− nα0

nα0
=
p (n− nα0)

nδ+α0
+O [exp (−C1T )] .

It is also easily seen that BnT = o(1) if δ > 1− α0.

Remark 3 Since 1/2 < α0 < 1 (recall that the case of α0 = 1 is treated separately), then for values

of α0 close to unity (from below) it is sufficient that δ > 0, and for values of α0 close to 1/2, we

need δ > 1/2. In the absence of a priori knowledge of α0, it is sufficient to set δ = 1/2. In

practice, factors that are sufficiently strong with α0 falling in the range [2/3, 1] are likely to be of

greater interest, and for precise estimation of such factors it would be sufficient to set δ = 1/4. Our

Monte Carlo results show that the estimates of factor strength are reasonably robust to the choice

of δ, so long as it is not too small and lies in the range 1/4 − 1/2. Alternatively, one can consider

various cross-validation methods to calibrate δ.

Also, since [ψn(α0)]−1/2AnT = Op(1), then [ψn(α0)]−1/2A2
nT = Op (AnT ) = o(1). Using these

results we can now write

[ψn(α0)]−1/2 (lnn) (α̂− α0 − ζn) = [ψn(α0)]−1/2AnT + op(1),

where

ζn (α0) =
p (n− nα0)

(lnn)nδ+α0
.

Finally, since uit are independent across i, and d̂i,nT −E
(
d̂i,nT

)
have zero means, then by a standard

martingale difference central limit theorem, we have (as n and T →∞)

[ψn(α0)]−1/2AnT = [ψn(α0)]−1/2 1

nα0

n∑
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
→d N(0, 1).
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Hence,

[ψn(α0)]−1/2 (lnn) [α̂− α0 − ζn (α0)]→d N(0, 1), (16)

where

ζn (α0) =
p (n− nα0)

(lnn)nδ+α0
. (17)

To test H0 : α = α0, we utilise the following score statistics where α0 in the normalisation part of

the test is replaced by its estimator, α̂:

zα̂:α0 =
(lnn) (α̂− α0)− p

(
n− nα̂

)
n−δ−α̂[

p (n− nâ)n−δ−2α̂
(
1− p

nδ

)]1/2 . (18)

The null will be rejected if |zα| > cv, where cv is the critical value of the standard normal distribution

at the desired significance level (which need not be the same as p). For a two sided test at 5% level,

cv = 1.96.

3 A general treatment with a multi-factor model

As a generalisation of the above set up consider the multi-factor regressions

xit = ci +
m∑
j=1

γijfjt + uit = ci + γ ′ift + uit, for i = 1, 2, . . . , n and t = 1, 2, . . . , T (19)

where γi = (γi1, γi2, . . . , γim)′, and we assume that the m-dimensional vector, ft= (f1t, f2t, . . . , fmt)
′,

is observed. We also assume that, for some unknown ordering of units over i,

|γij | > 0 a.s. for i = 1, 2, . . . , [nαj0 ],

|γij | = 0 a.s. for i = [nαj0 ] + 1, [nαj0 ] + 2, . . . , n.

Then the following strategy may be employed to provide inference on αj0, for j = 1, 2, . . . ,m. For a

given unit i, consider the least squares regression of {xit}Tt=1 on the intercept and ft. ĉiT and γ̂iT are

the OLS estimates of this regression. Denote by tijT = γ̂ijT / s.e. (γ̂ijT ), the t-statistic corresponding

to γij :

tijT =

(
f ′j◦MF−j fj◦

)−1/2 (
f ′j◦MF−jxi

)
σ̂iT

, j = 1, 2, . . . ,m; i = 1, 2, . . . , n,

fj◦ = (fj1, fj2, . . . , fjT )′, xi = (xi1, xi2, . . . , xiT )′, MF−j = I− F−j

(
F′−jF−j

)−1
F′−j ,

F−j = (f1◦, . . . , fj−1◦, fj+1◦, . . . , fm◦)
′, σ̂2

iT = T−1
∑T

t=1 û
2
it, and ûit = xit − ĉiT − γ̂ ′iT ft.

Consider the total number of factor loadings of factor j, γij , that are statistically significant over

i = 1, 2, . . . , n:

D̂nT,j =

n∑
i=1

d̂ij,nT =

n∑
i=1

1 [|tijT | > cp(n)] ,

where 1 (A) = 1 if A > 0, and zero otherwise, and the critical value function that allows for the

multiple testing nature of the problem, cp(n), is given by

cp(n) = Φ−1
(

1− p

2nδ

)
.
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As before, p is the nominal size, δ > 0 is the critical value exponent and Φ−1(·) is the inverse

cumulative distribution function of the standard normal distribution. Let π̂nT,j be the fraction of

significant loadings of factor j, and note that π̂nT,j = D̂nT,j/n. As in the single factor case, we

consider the following estimator of αj , for j = 1, 2, . . . ,m

α̂j =

{
1 +

ln π̂nT,j
lnn , if π̂nT,j > 0,

0, if π̂nT,j = 0.
(20)

We make the following assumptions:

Assumption 1 The error terms, uit, and demeaned factors ft − E (ft), are martingale difference

processes with respect to Fuit−1 = σ (ui,t−1, ui,t−2, . . .) and Fft−1 = σ (ft, ft−1, . . .), respectively, and

E
{

[ft − E (ft)] [ft − E (ft)]
′} = Im. uit are independent over i, and of ft, and have constant vari-

ances, 0 < σ2
i < C <∞.

Assumption 2 There exist sufficiently large positive constants C0, C1,and s > 0 such that

supi,t Pr (|xit| > ν) ≤ C0 exp (−C1ν
s) , for all ν > 0, (21)

supj,t Pr (|fjt| > ν) ≤ C0 exp (−C1ν
s) , for all ν > 0. (22)

Then, we have the following theorem:

Theorem 1 Consider model (19) with m observed factors and let Assumptions 1 and 2 hold. Then,

for any αj0 < 1, j = 1, 2, . . . ,m,

ψn(αj0)−1/2 (lnn) (α̂j − αj0)→d N(0, C) (23)

for some C < 1, where

ψn(αj0) = p (n− nαj0)n−δ−2αj0
(

1− p

nδ

)
. (24)

The above theorem provides the inferential basis for testing hypotheses on the true value of αj .

The proof of the theorem is provided in Appendix B. In the remarks below we discuss operational

matters concerning the above result and how to relax some of the assumptions of Theorem 1.

Remark 4 A test based on ψn(αj0)−1/2 (lnn) (α̂j − αj0) will be conservative, in the sense that the

rejection probability under the null hypothesis will be bounded from above by the significance level.

The reason is that in general we cannot get an asymptotic approximation for the variance of α̂j−αj0
but only an upper bound resulting in a conservative test.

Remark 5 Assumptions 1 and 2 can be relaxed. Rather than independence over i for uit in As-

sumption 1, one can assume some spatial mixing condition, which would still allow the central limit

theorem underlying (23), to hold. Further, the thin probability tails in Assumption 2 can be replaced

with a suitable moment condition in order to derive the variance bound needed to construct a test

statistic. We abstract from such complications by maintaining Assumption 2. The martingale dif-

ference assumption for ft simplifies the analysis and allows the use of the theory in the main part

of Chudik et al. (2018). Relaxing this to a mixing assumption is possible at the expense of further

mathematical complexity using, e.g., the results in the online appendix of Chudik et al. (2018).

8



Remark 6 Our distributional result is stated only for αj0 < 1. Similar arguments would apply for

the variance α̂j − αj0 when αj0 = 1. But the upper bound for the variance of α̂j − αj0 would be

a function of nuisance parameters including γij. This is the case since the dominant term in the

variance is the one relating to units not affected by ft, when αj0 < 1, and for these units, γij = 0. But

when αj0 = 1, the probability bounds that are used to derive the variance bound will not have such a

dominant term, and the remaining terms will contain γij. However, testing under the null hypothesis

that αj0 = 1 is further complicated by the fact that αj0 = 1 is at the boundary of the parameter space

for αj0. It is well known (see, e.g., Andrews (2001)) that such cases cannot be handled using standard

asymptotic inference, and therefore this case is beyond the scope of the present paper. Nevertheless,

it is clear from Remark 2 that estimation when α0 = 1 has some very desirable properties, such as

a very fast rate of convergence, which we have referred to as ultraconsistency. We conjecture that

in the case where αj0 = 1 for some values of j, and αj0 < 1 for some values of j, the distributional

results presented in Theorem 1 hold for factors for which αj0 < 1.

4 Case of unobserved factors

When the factors are unobserved we can only provide practical guidance on the strength of the

strongest factor or factors, and estimating the strength of other factors encounters a significant

identification problem. This is related to the known fact that latent factors are identified only up to

a non-singular m×m rotation matrix, Q = (qij), where m is the assumed number of factors.

It is instructive to review this fact. Consider the multi-factor model (19) with ft unobserved.

Without loss of generality suppose that m = 2 and assume that factors, ft = (f1t, f2t)
′, are unobserved

with strengths α1 > 1/2 and α2 > 1/2. Denote the principal component (PC) estimates of these

factors by ĝt = (ĝ1t, ĝ2t)
′, and note that under standard regularity conditions in the literature (as n

and T →∞)

f1t = q11ĝ1t + q12ĝ2t + op(1), (25)

f2t = q21ĝ1t + q22ĝ2t + op(1). (26)

Then the estimates of the loadings associated with these PCs are given by

γ̃i =

(
γ̃i1
γ̃i2

)
=
(
Ĝ′MτĜ

)−1
Ĝ′Mτxi =

(
Ĝ′MτĜ

)−1
Ĝ′MτFγi +

(
Ĝ′MτĜ

)−1
Ĝ′Mτui,

where Ĝ = (ĝ1, ĝ2, . . . , ĝT )′. Also since Q is non-singular, Ĝ→pFQ−1, and using the above we have

γ̃i→pQγi. It is now easily seen that the strength of f1t (or f2t) computed using the estimates, γ̃i1,

i = 1, 2, . . . , n may not provide consistent estimates of the associated factor strengths. To see this

write the result γ̃i→pQγi in an expanded format as

γ̃i1 = q11γi1 + q12γi2 + op(1),

γ̃i2 = q21γi1 + q22γi2 + op(1).

Squaring both sides and summing over i we have

n∑
i=1

γ̃2
i1 = q2

11

n∑
i=1

γ2
i1 + q2

12

n∑
i=1

γ2
i2 + 2q11q12

n∑
i=1

γi1γi2 + op(1),

n∑
i=1

γ̃2
i2 = q2

21

n∑
i=1

γ2
i1 + q2

22

n∑
i=1

γ2
i2 + 2q21q22

n∑
i=1

γi1γi2 + op(1).

9



Now using the definition of factor strength in (3) and assuming that α1 > α2, in general we have2

n∑
i=1

γ̃2
i1 = 	(nα1),

n∑
i=1

γ̃2
i2 = 	(nα1),

namely, using the estimated loadings of the principal components does not allow us to distinguish

between the strength of the two factors, and only the strength of the strongest factor can be identified.

When α1 > α2, identification of α2 requires setting q21 = 0, and conversely to identify α1 when

α1 < α2 requires setting q12 = 0. It is worth noting that using covariance eigenvalues does not help

resolve this problem. There are two separate issues – ordering eigenvalues and how to identify the

factors associated with ordered eigenvalues. The eigenvectors associated with the largest eigenvalues

are not uniquely determined and therefore the identification issue remains.

Therefore, in general, we focus on identifying α = max(α1,α2). The exponent α can be estimated

using the estimators proposed in Bailey et al. (2016) and Bailey et al. (2019). The approach of

this paper can also be used to estimate α by computing the strength of the first PC, or that of the

simple cross section average, namely x̄t = n−1
∑n

i=1 xit. One can also use the weighted cross section

average x̄t,γ =
∑n

i=1 ŵixit, where ŵi is estimated as the slope of x̄t in the OLS regression of xit on

an intercept and x̄t.
3

Accordingly, in the rest of this section we assume that the m unobserved factors are strong and/or

semi-strong with 1/2 < αj ≤ 1, and focus on estimation of α = maxj(αj). At the end of the Section

we provide a remark on how to identify, in theory, the strengths of weaker factors. Reintroducing

a subscript 0 to denote true parameters, we assume that {xit, i = 1, 2, . . . , n; t = 1, 2, . . . , T} are

generated from the multi-factor model (19) where the factors are unobserved with strengths α10 >

α20 ≥ α30 ≥ · · · ≥ αm0 > 1/2. Clearly α0 = α10. To emphasize the focus on the factor with the

largest α, we recast the model as follows:

xit = ci + γift + vit, for i = 1, 2, . . . , n and t = 1, 2, . . . , T (27)

vit =
m∑
j=2

γijfjt + uit, (28)

where the strongest factor ft has strength α while the rest of the factors have strengths α20 ≥ α30 ≥
· · · ≥ αm0 > 1/2. We assume that the m-dimensional vector, ft = (ft, f2t, . . . , fmt)

′, is unobserved.

We also assume that, for some unknown ordering of units over i,

|γi| > 0 a.s. for i = 1, 2, . . . , [nα0 ], (29)

|γi| = 0 a.s. for i = [nα0 ] + 1, [nα0 ] + 2, . . . , n.

|γij | > 0 a.s. for i = 1, 2, . . . , [nαj0 ], j = 2, . . . ,m (30)

|γij | = 0 a.s. for i = [nαj0 ] + 1, [nαj0 ] + 2, . . . , n, j = 2, . . . ,m.

In what follows, we continue to consider that Assumptions 1 and 2 hold for the above represen-

tation, and use the simple cross section average, x̄t to consistently estimate α0 = α10. Taking the

2Note that
∣∣∑n

i=1 γi1γi2
∣∣ < supi |γi1|

(∑n
i=1 |γi2|

)
= 	(nα2).

3In most applications, α can be estimated consistently using the simple average. But as shown in Pesaran (2015),
pp. 452-454, the weighted average is more appropriate when the loadings of the strong factors have zero means. Also
note that by construction

∑n
i=1 ŵi = 1.
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first factor to be the strongest is made for convenience (with α0 − αj0 > 0, for j = 2, 3, . . . ,m). The

strength of the strongest factor, α0, is defined by (with γi denoting the associated loadings)

n∑
i=1

|γi| = 	 (nα0) ,

and the strengths of the remaining factors by

n∑
i=1

|γij | = 	 (nαj0) , for j = 2, 3, . . . ,m.

In addition, we assume that the non-zero factor loadings have non-zero means, namely

lim
n→∞

n−α0

n∑
i=1

γi 6= 0, and lim
n→∞

n−αj0
n∑
i=1

γij 6= 0,

and hence,

γ̄ = γ̄1 = n−1
n∑
i=1

γi = 	
(
nα0−1

)
,

γ̄j = n−1
n∑
i=1

γij = 	
(
nαj0−1

)
, for j = 2, . . . ,m.

Note that we do not assume any ordering of the zero loadings across the units.

For each i, consider the least squares regression of {xit}Tt=1 on an intercept and the cross section

average of xit, x̄t, and denote the resulting estimators by ĉiT and β̂iT , respectively. As in the single

factor case, α0 = maxj(αj0) is estimated by (7), except that when computing the t-statistics, tiT ,

defined by (4), f is replaced by x̄ = (x̄1, x̄2, . . . , x̄T )′. Denote by t̄iT = β̂iT / s.e.
(
β̂iT

)
, the t-statistic

corresponding to γi:

t̄iT =
(x̄′Mτ x̄)−1/2 (x̄′Mτxi)

σ̂iT
,

xi = (xi1, xi2, . . . , xiT )′, and σ̂2
iT = T−1x′iMH̄xi, where MH̄ = IT−H̄

(
H̄′H̄

)−1
H̄′, with H̄ = (τT , x̄).

As before, consider the number of regressions with significant slope coefficients:

D̄nT =
n∑
i=1

d̄i,nT =
n∑
i=1

1 [|t̄iT | > cp(n)] ,

where the critical value function, cp(n), is as specified earlier. Then, setting π̄nT = D̄nT /n, we have

α̂ =

{
1 + ln π̄nT

lnn , if π̄nT > 0,

0, if π̄nT = 0.

To investigate the limiting properties of α̂ we first consider the value of t̄iT under (19) and note that

x̄ =c̄τ + Fγ̄ + ū, and xi = ciτT + Fγi + ui,

where F = (f1, f2, . . . , fT )′, γi= (γi, γi2, . . . , γim)′, γ̄ = n−1
∑n

i=1 γi, ui = (ui1, ui2, . . . , uiT )′ and

ū =n−1
∑n

i=1 ui. Using these results we have

t̄iT =
T−1/2 (x̄′Mτxi)

σ̂iT (T−1x̄′Mτ x̄)1/2
=

T−1/2(Fγ̄+ū)′Mτ (Fγi + ui)

σ̂iT
[
T−1(Fγ̄+ū)′Mτ (Fγ̄+ū)

]1/2 , (31)
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and

σ̂2
iT = T−1 (Fγi + ui)

′MH̄ (Fγi + ui) . (32)

The following lemmas, which are of fundamental importance, are proven in Appendix A. The first

of the lemmas is auxiliary and technical in nature. It presents rates in probability and probability

tail bounds for the constituent parts of t̄iT . These results are then used in Lemma 4 to provide

probability bounds for t̄iT .

Lemma 3 Consider model (27)-(28) with factor loadings given by (29)-(30), where ft is an m × 1

vector of unobserved factors, and let Assumptions 1 and 2 hold. Then,
√
T γ̄ ′

(
T−1F′MτF

)
γi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
= 	p

(√
T γ̄ ′γi

(γ̄ ′γ̄)1/2

)
, (33)

T−1/2ū′MτFγi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
= Op

(
n1/2−α0

)
, (34)

T−1/2ū′Mτui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
= Op

(
n1/2−α0

)
, (35)

T−1/2ū′MτFui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
→d N(0, σ2

i ). (36)

Further, for some C,C0, C1 > 0,

Pr

(√
T γ̄ ′

(
T−1F′MτF

)
γi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ Cp

nδ
, if γi1 = 0, and T 1/2 = o(nα20−α0), (37)

Pr

(√
T γ̄ ′

(
T−1F′MτF

)
γi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ Cp

nδ
, if γi1 6= 0, or nα20−α0 = o(T 1/2), (38)

Pr

(
T−1/2ū′MτFγi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ exp

[
−C0T

C1
]
, (39)

Pr

(
T−1/2ū′MτFui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ exp

[
−C0T

C1
]
, (40)

Pr

(
T−1/2γ̄ ′F′MτFui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ Cp

nδ
. (41)

Lemma 4 Consider model (27)-(28) with factor loadings given by (29)-(30), where ft is unobserved,

and let Assumptions 1 and 2 hold. Then, as long as
√
Tn(α20−α0) → 0, for some C > 0,

Pr [|t̄iT | > cp(n)|γi 6= 0] > 1−O
[
exp(−TC)

]
, (42)

and

Pr [|t̄iT | > cp(n)|γi = 0] ≤ Cp

nδ
. (43)

Equations (42) and (43) provide the crucial ingredients for the main result given below, as (42)

ensures that the t-statistic rejects with high probability when a unit contains a factor, while (43)

ensures that the probability of rejection for a unit that does not contain a factor, is small.

Overall, we have the following theorem, proven in Appendix B, justifying the proposed method

for unobserved factors.
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Theorem 2 Consider model (27)-(28) with factor loadings given by (29)-(30), where ft is unob-

served, let Assumptions 1 and 2 hold and denote by α0 the true value of α. Then, as long as√
Tn(α20−α0) → 0, for any α0 < 1,

ψn(α0)−1/2 (lnn) (α̂− α0)→d N(0, C)

for some C < 1, where α20 denotes the strength of the second strongest factor, and

ψn(α0) = p (n− nα0)n−δ−2α0

(
1− p

nδ

)
.

The above theorem provides the inferential basis for testing hypotheses on the true value of α,

in the case of unobserved factors.

Remark 7 While our exposition is based on unobserved factors, it is clear that it can be extended

to a mixed case where there are observed and unobserved factors. In that case, xit denotes a residual

from a panel regression of the form (19). The initial regression model is used to carry out inference on

the observed factors and, again, a model of the form (27)-(28) is used for inference on the unobserved

factors, where the cross section average is computed using the residuals of first-stage regressions.

Remark 8 The above analysis readily extends to the case where two or more of the unobserved

factors have the same strength. For example, suppose that α0 = maxj(αj0) = α10 = α20 > α30 ≥
α40 ≥ .... ≥ αm0. Then it is easily seen that α is consistently estimated by α̂, even though α10 = α20.

What matters for identification of α0 in this case is that
√
Tn(α30−α0) → 0. This case is further

investigated below using Monte Carlo techniques.

Remark 9 Our analysis focuses on α0 = α10 = maxj(αj0). A possible way to provide some infor-

mation on αj0, j > 1, may be based on a sequential application of weighted cross section averages.

In particular, once the least squares regression of {xit}Tt=1 on an intercept and the cross section av-

erage of xit, x̄t, has been fitted, residuals can be obtained. Simple cross section averages of these

residuals are easily seen to be identically equal to zero. However, weighted cross section averages can

be constructed, along the lines discussed in Pesaran (2015), pp. 452-454, and the t-statistics of the

relevant loadings can be used, in a similar way to that discussed above, to construct estimators for

α20 and, sequentially via the construction of further sets of residuals, for αj0, j > 2. It is possible

to show that, if
√
Tn(αj+1,0−αj0) → 0, j > 1, a result similar to that of Theorem 2 holds for αj0,

j > 1. However, this result clearly requires considerable differences between the α’s and/or very large

values for n. Further, Monte Carlo evidence suggests that the estimators perform very poorly for

relevant sample sizes. Therefore, we do not pursue this analysis further as it is very clear that it is

not practically relevant.

5 Monte Carlo study

5.1 Design

We investigate the small sample properties of the proposed estimator of α under both observed and

unobserved factors using a number of Monte Carlo simulations. We consider the following two-factor

data generating process (DGP):

xit = ci + γ1if1t + γ2if2t + uit, (44)
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for i = 1, 2, . . . , n and t = 1, 2, . . . , T . We generate the unit specific effects as ci ∼ IIDN (0, 1), for

i = 1, 2, . . . , n. The factors, ft = (f1t, f2t)
′, are generated as multivariate normal: ft ∼ N (0,Σf ),

where

Σf =

(
σ2
f1

ρ12σf1σf2

ρ12σf1σf2 σ2
f2

)
,

with σf1 = σf2 = 1, and ρ12 = corr (f1t, f2t), using the values ρ12 = 0.0, 0.3. The factors are

generated as autoregressive processes (considering both stationary and unit root cases):

fjt =

{
ρfjfj,t−1 +

√
1− ρ2

fj
εjt, if

∣∣ρfj ∣∣ < 1

fj,t−1 + εjt, if ρfj = 1
, for t = −49,−48, . . . , 1, . . . , T

with fj,−50 = 0 and εjt ∼ i.i.d.N (0, 1), j = 1, 2. In the stationary case, we set ρf1 = ρf2 = 0.5.

For the innovations, uit we consider two cases: (i) Gaussian, where uit ∼ IIDN(0, σ2
i ) for i =

1, 2, . . . , n; (ii) non-Gaussian, where the errors are generated as uit = σi
2

(
χ2

2,it − 2
)
, where χ2

2,it for

i = 1, 2, . . . , n are independent draws from a chi-squared distribution with 2 degrees of freedom, and

σ2
i are generated as IID(1 + χ2

2,i)/3.

In terms of the factor loadings, γi1 and γi2, first we generate vij ∼ IIDU(µvj −0.2, µvj + 0.2), for

i = 1, 2, . . . , n and j = 1, 2 (such that E (vij) = µvj ). Next, we randomly assign [nα10 ] and [nα20 ] of

these random variables as elements of vectors γj = (γ2j , γ2j , . . . , γnj)
′, j = 1, 2, respectively, where

[.] denotes the integer part operator.4 For α10 and α20, we consider values of (α10, α20) starting with

0.75 and rising to 1 at 0.05 increments, namely 0.75, 0.80, . . . , 0.95, 1.00, comprising of 36 experiments

for all combinations of a10 and a20 in the range [0.75, 1.00].5 We set µv1 = µv2 = 0.71 so that both

means are sufficiently different from zero. We then select the error variances, σ2
i , so as to achieve an

average fit across all units of around R̄2
n = n−1

∑n
i=1R

2
i ≈ 0.34. This coincides with the average fits

of regressions from our finance application. Scaling σ2
i by 3/4 achieves R̄2

n ≈ 0.41. To this end, we

note that:

R2
i =

γ2
i1 + γ2

i2

γ2
i1 + γ2

i2 + σ2
i

=
$2
i1 +$2

i2

1 +$2
i1 +$2

i2

, if for the ith unit: both γi1 6= 0 and γi2 6= 0,

where $2
ij = γ2

ij/σ
2
i , for j = 1, 2. Similarly, R2

i = $2
i1/
(
1 +$2

i1

)
, if γi1 6= 0 and γi2 = 0, R2

i =

$2
i2/
(
1 +$2

i2

)
, γi2 6= 0 and γi1 = 0, and clearly R2

i = 0, if γi1 = γi2 = 0.

We consider the following experiments:

EXP 1A: (observed single factor - Gaussian errors): Using (44) with γi2 = 0, for all i, and

Gaussian errors.

EXP 1B: (observed single factor - non-Gaussian errors): Using (44) with γi2 = 0, for all i,

and non-Gaussian errors.

EXP 2A: (two observed factors - Gaussian errors) A two-factor model with correlated ob-

served factors (ρ12 = 0.3) and Gaussian errors.

EXP 2B: (two observed factors - non-Gaussian errors) A two-factor model with correlated

observed factors (ρ12 = 0.3) and non-Gaussian errors.

4The randomisation of loadings becomes important when analysing the case of unobserved factors, as discussed in
Section 4.

5Results for combinations of α10 and α20 below 0.75 are available upon request.
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EXP 3A: (unobserved single factor - non-Gaussian errors) Using (44) subject to γi2 = 0,

for all i, and non-Gaussian errors with α0 = α10 computed using the simple cross section

average x̄t = n−1
∑n

i=1 xit.

EXP 3B: (two unobserved factors - non-Gaussian errors) Using (44) with ρ12 = 0.3 and

non-Gaussian errors, α10 = 0.95, 1.00, and α20 = 0.51, 0.75, 0.95, 1.00. In this case α0 =

max (α10, α20) is estimated using the simple cross section average x̄t = n−1
∑n

i=1 xit.

Further, we consider the following additional experiment that assumes a misspecified observed

factor model that mirrors the analysis of our empirical finance example in Section 6.1:

EXP 4: (observed misspecified single factor - Gaussian errors) A misspecified single observed

factor model, where the DGP is a two-factor model with correlated factors (ρ12 = 0.3)

and Gaussian errors in (44), α10 = 1, and α20 = 0.75, 0.80, . . . , 0.95, 1.00. For this experi-

ment we report the estimates of α10 computed based on the misspecified single factor model

xit = ci + βif1t + eit.

The factor strengths are estimated using (7), with the nominal size of the associated multiple

tests set to p = 0.10, and the critical value exponent to δ = 1/4.6

For all experiments we report bias and RMSE of α̂j , size and power of tests of H0 : αj = αj0
against αj = αja, j = 1, 2, using the test statistic given by

zα̂j :αj0 =
(lnn) (α̂j − αj0)− p

(
n− nα̂j

)
n−δ−α̂j[

p
(
n− nâj

)
n−δ−2α̂j

(
1− p

nδ

)]1/2 , j = 1, 2. (45)

We consider two-sided tests throughout. Empirical size is computed as

sizeR = R−1
R∑
r=1

I
(∣∣zα̂j :αj0∣∣ > c |H0

)
, j = 1, 2.

The empirical power of the tests of H0 : αj = αj0 against the alternative H1 : αj = αja, are

obtained for αja = αj0 + κ, κ = −0.05,−0.045, . . . , 0.045, 0.05 (20 alternatives) for all values of

αj0 ∈ [0.75, 1.00). Here, DGP (44) is generated under H1 and the rejection frequency is computed

as

powerR = R−1
R∑
r=1

I
(∣∣zα̂j :αj0∣∣ > c |H1

)
, j = 1, 2.

For both size and power, zα̂j :αj0 is given by (45). We do not compute size and power when αj0
and/or αja is equal to unity, since in this case the distribution of the estimator that we propose is

degenerate and the estimator is ultraconsistent.

For all experiments we consider all combinations of n = {100, 200, 500, 1000} and T = {120, 200, 500, 1, 000},
and set the number of replications per experiment to R = 2, 000. The values of ci and γij are redrawn

at each replication.

6We also consider other values of p and δ, namely p = 0.05 and δ = 1/3 or 1/2, and found the results to be
qualitatively very similar to those obtained when p = 0.10 and δ = 1/4.
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5.2 MC findings

We start with the single factor model where the factor is observed and report the results in Tables

1 and 2 for experiments 1A and 1B. These tables show bias, RMSE and size for the estimator of

the strength of factor f1, namely α̂1, for different values of α10, and different (n, T ) combinations.

Table 1 gives the results for Gaussian errors, and Table 2 when the errors are non-Gaussian. Overall,

the outcomes are very similar when the model is generated under normal and non-normal errors. In

both tables, bias and RMSE are universally low and gradually decrease as n, T and α10 rise, as to be

expected. Especially when α10 = 1, bias and RMSE are negligible even when T = 120. Moving on to

the rejection probabilities under the null hypothesis, we note that given that our estimator has low

variance, the rejection probabilities are sensitive to the bias of α̂1. Hence, for smaller values of α10

the test is considerably oversized, which is expected. However, as the sample size and α10 increase,

the size distortion reduces considerably, resulting in a well behaved test under the null hypothesis.

For α10 = 0.95 correct empirical size is achieved even for moderate values of T , while, as mentioned

earlier, when α10 equals to unity our estimator has an exponential rate of convergence, with the

distribution of the estimator collapsing to its true value at 1. Next, we turn to the power of the test

and consider the rejection probabilities under a sequence of alternative hypotheses. Figures 1 and 2

depict power functions corresponding to the strength of factor f1 under Gaussian and non-Gaussian

errors, respectively, for values of α10 = 0.80, 0.85, 0.90 and 0.95 when T = 200 and as n increases

from 100 to 1, 000. These figures clearly show that the proposed estimator is very precisely estimated

for all values of α10 considered, and for all (n, T ) combinations. Also as α10 rises towards unity the

power approaches 1 even for very small deviations from the null. We do not report power results for

α10 = 1, due to the ultraconsistency of the estimator in this case.

The above findings continue to hold when we consider models with two observed factors (ex-

periments 2A and 2B), irrespective of whether the factors are orthogonal (ρ12 = 0) or moderately

correlated (ρ12 = 0.3), or whether the errors are Gaussian. To save space we only give the results

for the non-Gaussian errors when ρ12 = 0.3 in Table 3. The remaining results are provided in the

online supplement. Corresponding power functions are shown in Figure 3, and give a similar picture

as the one we discussed for the single factor case.

Consider now the experiments where at the estimation stage the number or the identity of factors

are assumed unknown. In the case of experiment 3A, the DGP is generated with a single factor,

whilst in the case of experiment 3B the DGP is generated with two correlated factors. In both of these

experiments the factor strength α0 = max(α10, α20) is computed with respect to the pervasiveness

of the simple cross section average, x̄t. This case is analysed in Section 4. The results for this

case when errors are non-Gaussian are summarised in Table 4 with the associated power functions

in Figure 4. As can be seen, the small sample performance of the estimator of factor strength

deteriorates somewhat as compared to when the factor is known, particularly for values of α0 that

are not sufficiently close to unity. The empirical size is particularly elevated for values of α0 ≤ 0.9

when compared to the case of observed factors. However, for large sample sizes and values for α0

close to unity, the proposed estimator seems to be reasonably well behaved. Similar conclusions are

obtained for Gaussian errors. (see Table S14 and Figure S12 in the online supplement).

In the case of two unobserved factors (experiment 3B), we estimate the strength α0 = max (α10, α20),

using the simple cross section average, x̄t, first when α10 = 1 and α20 = 0.51, 0.75, 0.95, 1. As shown

in Table 5 under non-Gaussian errors, when α20 is set to the lower bound (= 0.51), then bias and

RMSE results are again universally very low and reflect those of the case of one unobserved factor,

which is expected. A slight deterioration in results can be detected as α20 is increased towards unity,
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for small values of T , e.g. T = 120, but the size distortions vanish as T increases. The ultracon-

sistency of our estimator when α10 = 1 is evident by the values for both bias and RMSE measures

which are so small that we have scaled them by 10,000 in Table 5. When α10, α20 < 1, estimating

α0 becomes more challenging. This is clear from the bias and RMSE results shown in Table 6, when

α10 = 0.95 and α20 is set to the same values as before (here the scaling of all bias and RMSE values is

returned to 100). In line with the conditions of Theorem 2, namely
√
Tn(α20−α10) → 0, results worsen

for values of α10 relatively close to α20 but improve as the distance between α10 and α20 widens,

for any given value of n and T . When α20 = 1, then the estimate of α0 = max (α10, α20) becomes

ultraconsistent, as shown in Table 5.7 As before, similar conclusions are obtained for Gaussian errors.

(see Tables S15 and S16 in the online supplement).

Finally, consider experiment 4 designed to reflect the setting of the finance empirical application

presented in subsection 6.1. Here we focus on a DGP with two factors that are correlated, but a

single observed factor model is used for estimating the strength of the first factor, f1. The results

for α10 = 1 are shown in Table 7, and as can be seen, omitting a second relevant and correlated

factor in this case does not unduly affect the performance of the estimator of the strength of the first

factor.8 This seems to be the case for all (n, T ) combinations and different values of α20.9 However,

misspecification is likely to be consequential if the first factor is not sufficiently strong.

6 Empirical applications to finance and macroeconomics

6.1 Identifying risk factors in asset pricing models

The asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), and its multi-factor extension

in the context of the Arbitrage Pricing Theory (APT) developed by Ross (1976) are the leading the-

oretical contributions implemented widely in modern empirical finance to analyse the cross-sectional

differences in expected returns. Both approaches imply that expected returns are linear in asset

betas with respect to fundamental economic aggregates, and the Fama-MacBeth two-pass procedure

(Fama and MacBeth (1973)) is one of the most broadly used methodologies to assess these linear

pricing relationships. The first stage in this approach entails choosing the risk factors to be included

in the asset pricing model. Given the upsurge in the number of factors deemed relevant to asset

pricing in the past few years, a rapidly growing area of the finance literature has been concerned

with evaluating the contribution of potential factors to these models. Harvey and Liu (2019) docu-

ment over 400 such factors published in top ranking academic journals. The primary focus of this

literature has been on factor selection on the basis of performance metrics such as the Gibbons,Ross

and Shanken statistic of Gibbons et al. (1989), or the maximum squared Sharpe ratio of Fama and

French (2018) among many others. More recent contributions further allow for the possibility of false

discovery when the number of potential factors is large and multiple testing issues arise - see Feng

et al. (2020).

Our application focuses on determining the strength of these factors as a means of evaluating

whether their risk can be priced correctly and abstracts from the question of factor selection as

7Using the first principal component (PC) of xit instead of the cross section average (CSA) produces similar results
when αj0 = 1.00, j = 1, 2, but underperforms in comparison to CSA when αj0 < 1.00, as shown in Tables S17 and
S18 of the online supplement. See Section 19.5.1 of Pesaran (2015) where the asymptotic properties of cross section
average and the first PC are compared.

8The bias and RMSE values for this experiment are negligible so that in Table 7 they are reported after scaling
them up by the factor of 10,000.

9Corresponding results for the case of uncorrelated factors (ρ12 = 0.0) are shown in Table S19 in the online supple-
ment.
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such. As shown by Pesaran and Smith (2019), the APT theory requires that risk factors should be

sufficiently strong if their associated risk premium is to be estimated consistently. The risk premium

of a factor with strength α can be estimated at the rate of n−a/2, where n is the number of individual

securities under consideration. As a result,
√
n consistent estimation of the risk premium of a given

factor requires the factor in question to be strong with its α equal to unity. Factors with strength less

than 0.5 cannot be priced and are absorbed in pricing errors. But in principle, it should be possible

to identify the risk premium of semi-strong factors (factors whose α lies in the range 1 > α > 1/2),

but very large number of securities are needed for this purpose. In practice, where n is not sufficiently

large, at best only factors with strength sufficiently close to unity can be priced.10 As an illustration

of their theoretical results, Pesaran and Smith (2019) consider the widely used Fama and French

(1993) three-factor model applied to the constituents of the S&P500 index and assess the strength of

each of the factors included in the model, namely the market, size and value factors. In what follows

we carry out a more comprehensive investigation of this topic, by assessing the strength of a total of

146 factors.

6.1.1 Data

We consider monthly excess returns of the securities included in the S&P 500 index over the period

from September 1989 to December 2017. Since the composition of the index changes over time, we

compiled returns on all 500 securities at the end of each month and included in our analysis only

those securities that had at least 10 years of history in the month under consideration. On average,

we ended up with n = 442 securities at the end of each month. The one-month US treasury bill rate

(in percent) was chosen as the risk-free rate (rft), and excess returns were computed as r̃it = rit−rft,
where rit is the return on the ith security between months t − 1 and t in the sample, inclusive of

dividend payments (if any).11 In addition to the market factor (measured as the excess market

return) we consider the 145 factors considered by Feng et al. (2020), which are largely constructed

as long/short portfolios capturing a number of different characteristics.12 In order to account for

time variations in factor strength, we use rolling samples (340 in total) of 120 months (10 years).

The choice of the rolling window is guided by the balance between T and n, and follows the usual

practice in the finance literature.13

10In an early critique of tests of asset pricing theory, Roll (1977) argued that for a test to be valid, it is required
that all assets traded in the economy are included in the empirical analysis. In effect requiring n to be very large, and
much larger than the number of securities traded on exchanges.

11Further details relating to the construction of this dataset can be found in the online supplement and in Bailey
et al. (2016, 2019).

12The authors would like to thank Dacheng Xiu for providing the dataset that covers all the 146 factors, inclusive
of the market factor. Apart from 15 factors obtained from specific websites, the remaining factors are constructed
using only stocks for companies listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11.
Moreover, financial firms and firms with negative book equity are excluded. For each characteristic, stocks are sorted
using NYSE breakpoints based on their previous year-end values, then long-short value-weighted portfolios (top 30%
- bottom 30% or 1-0 dummy difference) are built and rebalanced every June for a 12-month holding period. Further
details about the construction of this dataset can be found in Feng et al. (2020).

13We also consider rolling samples of size 60 months (5 years). Results are available upon request.
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6.1.2 Factor models for individual securities

We commence with the following regressions:

rit − rft = ai + βim (rmt − rft) +

k∑
j=1

βijfjt + uit, for i = 1, 2, . . . , nτ , (46)

where nτ are the number of securities in 10-year rolling samples from September 1989 to December

2017, with τ = 1, 2, . . . , 340. rmt denotes the return on investing in the market portfolio, which here

is approximated by a value weighted average of all CRSP firms incorporated in the US and listed on

the NYSE, AMEX, or NASDAQ that have data for month t. As such, this definition of the market

portfolio is wider than one which assumes an average of the 440 or so S&P500 securities considered in

this study. The excess market return, (rmt − rft), then approximates the market factor. fjt for j =

1, 2, . . . , 145 represent the potential risk factors in the active set under consideration. As explained

in Section 5 of Pesaran and Smith (2019), the strength of factor j is defined by
∑n

i=1

(
βij − β̄j

)2
=

� (nαj ), and once the market factor is included in (46), it is the case that the coefficients are expressed

as deviations of the factor loadings from their means, as required.

Initially, we set k = 0 and consider the original CAPM specification of Sharpe (1964) and Lintner

(1965),

rit − rft = aim + βim (rmt − rft) + uit,m. (47)

We apply our estimator (7) to the loadings βim, i = 1, 2, . . . , nτ , and obtain estimates of the strength

of the market factor across the rolling windows, α̂m,τ , τ = 1, 2, . . . , 340.

Next, in order to assess the effect on the market factor strength estimates of adding more factors

to (47), as well as to quantify the strength of these additional factors, we add the 145 factors to the

CAPM regression, (47), one at a time; namely we run the regressions

rit − rft = ais + βim|s (rmt − rft) + βisfst + uit,s, i = 1, 2, . . . , nτ (48)

for each s = 1, 2, . . . , 145, and each rolling window τ = 1, 2, . . . , 340. Our choice of model is motivated

by the fact that once we have conditioned on the market factor, we can use the One Covariate at

the time Multiple Testing (OCMT) methodology of Chudik et al. (2018) as an additional step for

selecting the factors that ought to be included in our final asset pricing model. Again, we compute

the strength of the market factor, α̂m,τ |s , with the sth factor included, as well as the strength of each

of the additional factors, α̂s,τ , for all 340 rolling windows. As with the Monte Carlo experiments,

in the computation of factor strength we set the nominal size of the associated multiple tests to

p = 0.10, and the critical value exponent to δ = 1/4.

6.1.3 Estimates of factor strengths

First, we consider the rolling estimates obtained for the strength of market factor, αm, when using

the CAPM and the augmented CAPM specifications given by (47) and (48). Figure 5 displays

α̂m,τ , τ = 1, 2, . . . , 340; the 10-year rolling estimates obtained using the CAPM regressions over the

period September 1989 to December 2017. As can be seen, all α̂m,τ are quite close to unity, and

it can be safely concluded that the market factor is strong and its risk premium can be estimated

consistently at the usual rate of
√
n. There is some evidence of departure from unity over the

period between December 1999 to January 2011 which saw a number of sizeable financial events

such as the Long-Term Capital Management (LTCM) crisis, the burst of the dot-com bubble and,

more recently, the global financial crisis. α̂m,τ records its minimum value of 0.958 in August 2008,
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around the time of the Lehman Brothers collapse. As implied by our theoretical results of Section

3, standard errors around these estimates are extremely tight and hard to distinguish graphically

from the point estimates.14 It is also interesting that the estimates of market factor strength are

generally unaffected if we consider the augmented CAPM regressions. For each rolling window we

now obtain 145 estimates of αm, denoted by α̂m,τ |s for s = 1, 2, . . . , 145. We display the average

of these estimates, namely, α̂m,τ = (1/145)
∑145

s=1 α̂m,τ |s , in Figure 5. It is clear that α̂m,τ closely

track α̂m,τ . The two series are almost identical during the periods September 1989 to December

1999 and January 2011 to December 2017. There are some minor deviations between α̂m,τ |s and

α̂m,τ during the period December 1999 to January 2011, when they both deviate marginally from

unity, with a maximum deviation of 0.011 in September 2008. The average estimates of αm,τ also

have very narrow confidence bands, with an average standard error of 0.0038 over the full sample,

taking its maximum value of 0.0099 in September 2008. Overall, it is evident that the inclusion of

an additional factor in (48) has little effect on estimates of the market factor strength, which is in

line with the Monte Carlo evidence for experiment 4 summarised in the previous Section.

We can safely conclude that the market factor is strong with the exception of a short period

during the recent financial crisis. We now consider the 10-year rolling estimates of the strength of

the remaining factors, denoted by αs,τ , using the augmented CAPM regressions. These estimates

together with their 90% confidence bands are shown in Figures S13 to S22 of the online supplement.

They show considerable time variation, especially during December 1999 to January 2011. However,

at no point during the full sample (September 1989 to December 2017) do any of these factors

become strong in the sense that α̂s,τ is clearly below 1, for all s and τ . The market factor dominates

all other factors in strength. Indeed, in Figure 6 we observe that the proportion of factors (out of

the 145 in total) whose strength exceeds the threshold values of 0.85, 0.90 and 0.95 in each rolling

window progressively drops so that there are no factors left whose strength exceeds 0.95 throughout

our sample period. This suggests that only the market factor can be considered to be a risk factor

whose risk premium can be estimated consistently at a rate of n1/2. The role of the remaining 145

factors in the asset pricing models (48) could be to filter out the effects of any additional semi-strong

cross-dependence in asset returns in order to achieve weak enough cross-sectional dependence in the

errors uit, required for consistent estimation of market risk premia.

Next, we rank the 145 factors (plus the market factor) from strongest to weakest in terms of the

percentage of months in our sample period (340 in total) that their strength exceeds the threshold

of 0.90. Table 8 displays the identities of the 65 factors that meet this criterion. As expected, the

market factor ranks first with an average estimated strength of 0.99, followed by factors associated

with leverage, and the ratios of sales to cash, cash flow to price, net debt to price and earnings to

price. The second ranking factor, leverage, has average strength of 0.827, with only 37.9% of the

time being above 0.9. Interestingly, the Fama French value factor (high minus low) ranks 34th in our

table while the size factor (small minus big) does not even enter our ranking, recording values of α̂

below 0.90 across all rolling windows. For completeness, Table 8 also includes time averages of each

factor strength over the full sample (September 1989 - December 2017), and the three sub-samples:

September 1989 - August 1999, September 1999 - August 2009, and September 2009 - December

2017. While on average, the strengths of these factors are around 0.80 in the first and the last

decade in our sample, in the period between September 1999 to August 2009, the strength of many

factors rises to around 0.91. This rise could be due to non-fundamental factors gaining importance

14The corresponding plot of α̂m,τ estimates under (47) which includes its standard errors is shown at the top left
corner of Figure S13 in the online supplement.
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over the fundamental factors during the recent financial crisis, and can be viewed as evidence of

market decoupling.15

Finally, it is of interest to investigate whether the strength of the strongest latent factor implied

by the panel of S&P500 securities’ excess returns coincides with that of the market risk factor, which

we identified as the strongest observed factor under our previous analysis. In line with the discussion

of Section 4, the strength of the strongest unobserved factor will be captured by the strength of the

cross section average of the excess returns in each rolling window. Figure 7 plots the 10-year rolling

α̂csa,τ estimates implied by the cross section average of excess returns against the 10-year rolling α̂m,τ
estimates implied by the simple CAPM regression (47). It is evident that the two series are almost

identical throughout our sample period except for the period between September 1999 to January

2011 where they deviate from each other to some extent. The average correlation between α̂csa,τ and

α̂m,τ over τ = 1, 2, . . . , 340 stands at 0.93. On this basis, we also computed the rolling correlation

coefficients between the cross section average of individual securities’ excess returns and the observed

market risk factor again over the rolling windows τ = 1, 2, . . . , 340. These are consistently close to

unity apart for the period between September 1999 to January 2011 where they drop slightly towards

0.85.16 The average correlation coefficient across rolling windows stands at 0.95.

6.2 Strength of common macroeconomic shocks

Similar considerations apply to macroeconomic shocks and their pervasive effects on different parts

of the macroeconomy. As discussed in Giannone et al. (2017) and references therein, the advent of

‘high-dimensional’ datasets has led to the development of predictive models that are either based on

shrinkage of useful information inherent across the whole set of data into a finite number of latent

factors (e.g. Stock and Watson (2015) and references therein), or assume that all relevant information

for prediction is captured by a small subset of variables from the larger pool of regressors implied

by these data (e.g. Hastie et al. (2015), Belloni et al. (2011) among others). Such methods are

appealing in macroeconomics since they tend to provide more reliable impulse responses and forecasts

over traditional models, when used for macroeconomic policy analysis and forecasting. However, as

argued in Giannone et al. (2017), it is not evident that either approach is always clearly supported

by the (unknown) structure of the given data and that model averaging might be preferable.

To measure the pervasiveness of the macroeconomic shocks, we make use of an updated version

of the macroeconomic dataset compiled originally by Stock and Watson (2012) and subsequently

extended by McCracken and Ng (2016). Here, we assume that the macroeconomic shocks are un-

observed and estimate the strength of the strongest of such shocks from the updated dataset which

consists of balanced quarterly observations over the period 1988Q1-2019Q2 (T = 126) on n = 187

out of the 200 macroeconomic variables used in Stock and Watson (2012).17 Ten out of the 200

macroeconomic variables used in Stock and Watson (2012) are no longer available in the updated

version of the dataset.18 Further details on this dataset can be found in the online supplement.

15The ranking of all 145 factors and their average strengths over different sub-samples are given in Table S20 of the
online supplement.

16Rolling correlation coefficients between the market risk factor and the cross section average of S&P500 securities’
excess returns in shown in Figure S23 of the online supplement.

17The raw data, which include both high-level economic and financial aggregates as well as disaggregated
components, are updated regularly and can be found on the Federal Reserve Bank of St Louis website at:
https://research.stlouisfed.org/econ/mccracken/static.html. All variables were screened for outliers and transformed
as required to achieve stationarity. Details about variable definitions, descriptions and transformations can be found
in the accompanying FRED-QD appendix to McCracken and Ng (2016) which links to Stock and Watson (2012) and
is downloadable from the aforementioned website.

18These are: (1) Construction contracts, (2) Manufacturing and trade inventories, (3) Index of sensitive materials
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6.2.1 Strength estimates of strongest unobserved common shock

As discussed in Section 4, identifying and estimating the strengths of unobserved factors of varying

strengths becomes challenging due to the fact that, in general, factors are identified only up to a

non-singular rotation matrix. However, as argued above we are still able to identify and estimate the

strength (α) of the strongest shock using the cross section average of the variables in the dataset.

We computed estimates of α for the pre-crisis period, 1988Q1 to 2007Q4, as well as for the full

sample period ending on 2019Q2. The factor strength estimates are shown in Table 9. They are

clustered around 0.94, and are quite robust to the choice of the parameters p and δ in the critical

value function (6), as well as to the time period considered. These estimates are consistently below

1, and suggest that whilst there exist strong macroeconomic shocks, the effects of such shocks are

not nearly as pervasive as have been assumed in the factor literature applied to macro variables.

This finding is further corroborated by the estimates of the exponent of cross-sectional dependence

(CSD) of BKP, also shown in Table 9.19

7 Conclusions

Recent work by Bailey et al. (2016, 2019) has focused on the rationale and motivation behind the need

for determining the extent of cross-sectional dependence (CSD), be it in finance or macroeconomics,

and has provided a conceptual framework and tools for estimating the strength of such interdepen-

dencies in economic and financial systems. However, this literature does not address the problem of

estimating the strength of individual factors that underlie such cross dependencies, which can be of

interest, for example, for pricing of risk in empirical finance, or for quantifying the pervasiveness of

macroeconomic shocks.

The current paper addresses this gap. It proposes a novel estimator of factor strength based on

the number of statistically significant t-statistics in a regression of each unit in the panel dataset on

the factor under consideration, and provide inferential theory for the proposed estimator. Detailed

and extensive Monte Carlo and empirical analyses showcase the potential of the proposed method.

The current paper considers estimation and inference when the panel regressions are based on

a finite number of observed factors. Some theoretical evidence is also provided for the case when

the model contains unobserved factors. Further research is required to link our analysis to the

problem of factor selection discussed by Feng et al. (2020). Also, it would be of interest to address

the identification problem when there are multiple unobserved factors. One possibility would be to

exploit the approach recently developed in Kapetanios et al. (2019) to see whether the unobserved

factors can be associated with dominant units or some other observable components.

prices (disc), (4) Spot market price index BLS&CRB: all commodities, (5) NAPM commodity price index, (6) 3m
Eurodollar deposit rate, (7) MED3-TB3MS, (8) GZ-spread, (9) GZ Excess bond premium, and (10) DJIA.

19Using the Sequential Multiple Testing (SMT) detection procedure developed in Kapetanios et al. (2019), we also
checked to see if any of the unit(s) in the macro dataset can be viewed as pervasive, namely sufficiently influential to
affect all other variables. The SMT procedure could not detect any such variables for all choices pmax = 0, 1, . . . , 6,
where pmax denotes the assumed maximum number of potential factors in the dataset.
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Table 1: Bias, RMSE and Size (×100) of estimating different factor strengths in the case of experi-
ment 1A (observed single factor - Gaussian errors)

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75

100 1.23 1.16 1.08 1.07 1.58 1.51 1.46 1.43 3.70 3.10 2.60 2.00
200 1.44 1.40 1.31 1.29 1.60 1.55 1.47 1.44 9.80 8.15 7.45 6.00
500 1.30 1.23 1.14 1.14 1.38 1.30 1.21 1.21 14.00 10.55 7.35 7.65
1000 1.26 1.21 1.12 1.11 1.31 1.25 1.16 1.15 15.90 12.40 7.25 6.95

α10 = 0.80

100 0.73 0.68 0.64 0.62 1.06 1.01 0.99 0.95 18.35 17.25 19.55 18.55
200 0.95 0.93 0.87 0.85 1.09 1.05 1.00 0.98 12.65 11.20 9.80 9.00
500 0.91 0.86 0.81 0.81 0.97 0.91 0.86 0.86 12.35 8.60 6.40 6.20
1000 0.85 0.82 0.76 0.76 0.88 0.85 0.79 0.78 16.65 13.50 8.40 8.25

α10 = 0.85

100 0.70 0.68 0.65 0.64 0.89 0.87 0.84 0.83 10.75 8.95 8.50 7.60
200 0.60 0.59 0.54 0.54 0.71 0.69 0.65 0.64 5.70 4.00 3.70 2.90
500 0.52 0.50 0.46 0.46 0.57 0.54 0.50 0.50 11.05 8.35 6.85 7.10
1000 0.50 0.48 0.45 0.44 0.52 0.50 0.46 0.46 10.05 8.05 5.15 5.15

α10 = 0.90

100 0.41 0.40 0.39 0.38 0.57 0.55 0.54 0.53 5.00 3.70 3.60 3.55
200 0.27 0.28 0.24 0.24 0.37 0.37 0.34 0.34 14.15 12.40 12.20 12.85
500 0.29 0.28 0.26 0.26 0.33 0.31 0.29 0.29 9.70 8.00 7.40 6.35
1000 0.28 0.28 0.26 0.26 0.30 0.29 0.27 0.27 10.60 9.45 6.55 6.60

α10 = 0.95

100 0.08 0.08 0.08 0.07 0.26 0.24 0.24 0.24 5.40 3.40 3.65 2.40
200 0.11 0.12 0.10 0.10 0.19 0.18 0.17 0.17 7.40 5.40 4.10 4.25
500 0.12 0.12 0.11 0.11 0.14 0.14 0.13 0.13 12.25 7.45 8.00 7.25
1000 0.09 0.10 0.09 0.09 0.11 0.11 0.10 0.10 8.55 6.10 5.10 4.35

α10 = 1.00

100 -0.01 0.00 0.00 0.00 0.04 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1),

for i = 1, 2, . . . , n. The factor, f1t, is normally distributed with variance σ2
f1

= 1. The factor assumes

an autoregressive process with correlation coefficient ρf1 = 0.5. The factor loadings are generated

as vi1 ∼ IIDU(µv1 − 0.2, µv1 + 0.2), for [nα10 ] units, and zero otherwise. vi2 = 0, for all i. We set

µv1 = 0.71. α10 ranges between [0.75, 1.00] with 0.05 increments. The innovations uit are Gaussian,

such that uit ∼ IIDN(0, σ2
i ), with σ2

i ∼ IID(1 + χ2
2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂1

we use p = 0.10 and δ = 1/4 when setting the critical value. Size is computed under H0: α1=α10,

using a two-sided alternative. When α10 = 1.00, our estimator is ultraconsistent, hence size results for

this case are not meaningful. The number of replications is set to R = 2000.
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Table 2: Bias, RMSE and Size (×100) of estimating different factor strengths in the case of experi-
ment 1B (observed single factor - non-Gaussian errors)

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75

100 1.21 1.17 1.06 1.04 1.57 1.52 1.44 1.39 3.75 3.20 2.65 1.70
200 1.47 1.40 1.34 1.30 1.62 1.56 1.49 1.45 9.80 9.50 6.45 6.50
500 1.32 1.24 1.14 1.15 1.40 1.31 1.21 1.22 15.25 11.00 8.20 8.15
1000 1.27 1.19 1.13 1.11 1.31 1.23 1.17 1.15 17.00 11.30 8.80 7.55

α10 = 0.80

100 0.71 0.69 0.62 0.60 1.04 1.02 0.97 0.93 17.60 18.00 19.60 18.15
200 0.98 0.93 0.89 0.86 1.10 1.07 1.01 0.99 12.45 12.00 9.80 9.05
500 0.92 0.87 0.80 0.81 0.98 0.92 0.86 0.86 13.90 8.90 6.95 7.55
1000 0.86 0.81 0.77 0.76 0.89 0.84 0.79 0.79 18.35 12.75 9.90 8.70

α10 = 0.85

100 0.69 0.69 0.64 0.63 0.88 0.88 0.83 0.82 10.15 10.35 8.25 7.80
200 0.62 0.59 0.56 0.54 0.72 0.69 0.66 0.64 5.50 4.60 3.50 2.45
500 0.53 0.51 0.46 0.46 0.58 0.55 0.51 0.50 12.65 9.30 8.95 7.65
1000 0.50 0.48 0.45 0.44 0.53 0.50 0.47 0.46 12.35 7.55 6.55 5.50

α10 = 0.90

100 0.40 0.40 0.37 0.37 0.55 0.55 0.52 0.52 4.55 3.90 3.30 2.75
200 0.28 0.27 0.25 0.24 0.38 0.36 0.34 0.33 12.35 11.30 11.25 13.80
500 0.30 0.29 0.26 0.26 0.34 0.32 0.30 0.30 10.95 9.15 7.90 7.35
1000 0.28 0.27 0.26 0.26 0.30 0.29 0.27 0.27 12.55 8.95 7.20 5.80

α10 = 0.95

100 0.07 0.08 0.06 0.07 0.24 0.24 0.23 0.23 4.90 4.05 2.85 2.30
200 0.12 0.11 0.10 0.10 0.19 0.18 0.17 0.17 7.10 4.60 3.55 4.00
500 0.12 0.12 0.11 0.11 0.14 0.14 0.13 0.13 12.15 8.85 8.45 8.20
1000 0.09 0.10 0.09 0.09 0.11 0.11 0.10 0.10 9.10 4.95 5.35 5.05

α10 = 1.00

100 -0.01 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.04 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 1. The innovations uit are

non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with σ2

i ∼ IID(1 + χ2
2,i)/3, for i = 1, 2, . . . , n.
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Figure 1: Empirical power functions associated with testing different factor strengths in the case of
experiment 1A (observed single factor - Gaussian errors), when n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 1 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Figure 2: Empirical power functions associated with testing different factor strengths in the case
of experiment 1B (observed single factor - non-Gaussian errors), when n = 100, 200, 500, 1000 and
T = 200

Notes: See the notes to Table 2 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table 3: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.85

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 1.20 1.13 1.08 1.04 1.58 1.50 1.46 1.41 4.35 2.80 3.25 2.30
200 1.43 1.39 1.30 1.31 1.59 1.54 1.45 1.47 10.00 7.65 7.00 7.55
500 1.30 1.23 1.17 1.14 1.38 1.30 1.24 1.21 13.55 10.25 8.20 7.20
1000 1.27 1.18 1.12 1.11 1.31 1.22 1.16 1.15 17.25 11.05 7.45 7.60

α10 = 0.80, α20 = 0.85

100 0.71 0.66 0.63 0.61 1.03 1.00 0.96 0.95 17.75 18.80 18.15 19.45
200 0.95 0.93 0.85 0.86 1.09 1.05 0.97 0.99 13.10 11.35 9.20 9.75
500 0.91 0.86 0.82 0.80 0.96 0.92 0.87 0.86 11.80 9.25 5.95 7.40
1000 0.85 0.81 0.76 0.76 0.88 0.83 0.79 0.78 18.10 11.00 8.85 7.80

α10 = 0.85, α20 = 0.85

100 0.68 0.67 0.64 0.62 0.87 0.86 0.83 0.81 9.70 9.40 7.70 7.35
200 0.61 0.59 0.54 0.54 0.72 0.69 0.65 0.65 5.95 3.90 4.10 3.05
500 0.51 0.50 0.47 0.46 0.56 0.54 0.51 0.51 10.80 7.70 7.35 7.75
1000 0.50 0.47 0.45 0.44 0.52 0.49 0.47 0.46 12.45 8.45 5.45 5.40

α10 = 0.90, α20 = 0.85

100 0.40 0.40 0.38 0.36 0.56 0.55 0.53 0.51 5.35 3.75 3.55 3.05
200 0.27 0.26 0.23 0.24 0.38 0.36 0.33 0.34 14.95 12.45 13.20 13.35
500 0.28 0.29 0.27 0.26 0.32 0.32 0.30 0.29 9.85 8.35 6.85 6.20
1000 0.28 0.27 0.26 0.25 0.30 0.28 0.27 0.27 12.60 8.25 6.50 6.05

α10 = 0.95, α20 = 0.85

100 0.06 0.07 0.07 0.06 0.25 0.24 0.24 0.22 6.70 3.45 3.40 2.75
200 0.10 0.11 0.10 0.10 0.18 0.18 0.17 0.17 9.15 4.05 3.85 4.45
500 0.10 0.11 0.11 0.11 0.13 0.14 0.13 0.13 13.35 8.75 8.85 7.40
1000 0.09 0.09 0.09 0.09 0.11 0.11 0.10 0.10 11.50 5.75 5.65 5.05

α10 = 1.00, α20 = 0.85

100 -0.02 0.00 0.00 0.00 0.07 0.02 0.00 0.00 - - - -
200 -0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
500 -0.02 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
1000 -0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1),

for i = 1, 2, . . . , n. The factors, (f1t, f2t), are multivariate normal with variances σ2
f1

= σ2
f2 = 1 and

correlation given by ρ12 = corr(f1, f2) = 0.3. Each factor assumes an autoregressive process with

correlation coefficients ρfj = 0.5, j = 1, 2. The factor loadings are generated as

vij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set

µv1 = µv2 = 0.71. Both α10 and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit

are non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with σ2

i ∼ IID(1 + χ2
2,i)/3, for i = 1, 2, . . . , n. In the

computation of α̂j , j = 1, 2, we use p = 0.10 and δ = 1/4 when setting the critical value. Size is computed

under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. When α10 = 1.00, our estimator is ultra

consistent, hence size results for this case are not meaningful. The number of replications is set to

R = 2000.
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Figure 3: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second
factor is set to 0.85, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 3 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table 4: Bias, RMSE and Size (×100) of estimating the strength of strongest factor in the case of
experiment 3A (unobserved single factor - non-Gaussian errors) using cross section average

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75

100 2.40 2.79 4.25 6.73 2.84 3.22 4.60 7.02 27.05 37.35 73.75 98.40
200 2.09 2.12 2.60 3.47 2.32 2.35 2.82 3.67 30.20 34.05 51.60 81.60
500 1.62 1.55 1.59 1.81 1.77 1.68 1.71 1.92 30.95 26.65 29.85 44.80
1000 1.46 1.39 1.38 1.41 1.54 1.46 1.44 1.47 31.95 26.00 27.70 28.00

α10 = 0.80

100 1.26 1.47 2.14 3.42 1.61 1.81 2.43 3.66 28.05 32.20 55.35 87.45
200 1.24 1.24 1.42 1.76 1.39 1.40 1.57 1.90 24.75 27.35 35.40 54.80
500 1.03 0.98 0.97 1.04 1.11 1.05 1.03 1.10 21.80 17.75 15.40 21.95
1000 0.92 0.88 0.85 0.86 0.96 0.92 0.89 0.89 27.00 21.00 18.10 16.95

α10 = 0.85

100 0.91 1.00 1.24 1.78 1.11 1.19 1.44 1.96 19.30 24.15 37.10 64.75
200 0.72 0.71 0.76 0.88 0.83 0.82 0.88 0.99 10.30 10.70 12.75 20.35
500 0.57 0.54 0.52 0.54 0.63 0.59 0.56 0.59 15.25 12.35 10.30 11.90
1000 0.52 0.50 0.48 0.47 0.55 0.52 0.50 0.50 15.50 10.15 8.75 7.45

α10 = 0.90

100 0.49 0.51 0.60 0.79 0.63 0.67 0.76 0.95 6.75 8.40 12.50 22.90
200 0.32 0.31 0.32 0.35 0.42 0.40 0.42 0.44 13.75 11.50 13.50 13.40
500 0.31 0.30 0.28 0.29 0.35 0.33 0.31 0.32 12.50 9.95 8.85 8.50
1000 0.29 0.28 0.27 0.27 0.31 0.30 0.28 0.28 14.50 10.30 8.25 6.95

α10 = 0.95

100 0.10 0.12 0.13 0.18 0.26 0.27 0.29 0.34 5.40 5.25 6.55 11.05
200 0.13 0.12 0.12 0.13 0.20 0.19 0.18 0.20 7.85 5.65 5.35 6.50
500 0.12 0.12 0.11 0.11 0.15 0.15 0.14 0.14 12.40 9.10 7.80 8.75
1000 0.10 0.10 0.09 0.09 0.11 0.11 0.11 0.10 8.75 5.35 4.90 4.90

α10 = 1.00

100 -0.01 0.00 0.00 0.00 0.04 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 2. α0 = α10 is estimated by regressing

observations, xit, on an intercept and the cross section average of xit, x̄t = n−1∑n
i=1 xit, for

t = 1, 2, . . . , T .
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Figure 4: Empirical power functions associated with testing different strengths of strongest factor
in the case of experiment 3A (unobserved single factor - non-Gaussian errors) using cross section
average, when n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 4 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table 5: Bias and RMSE (×10, 000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - non-Gaussian errors) using cross section average, when
α10 = 1.00

Bias (×10, 000) RMSE (×10, 000)

n\T 120 200 500 1000 120 200 500 1000

α10 = 1.00, α20 = 0.51

100 -0.76 -0.05 0.00 0.00 4.20 1.09 0.00 0.00
200 -0.95 -0.05 0.00 0.00 3.14 0.67 0.00 0.00
500 -1.12 -0.07 0.00 0.00 2.39 0.46 0.00 0.00
1000 -1.25 -0.08 0.00 0.00 2.04 0.37 0.00 0.00

α10 = 1.00, α20 = 0.75

100 -0.92 -0.04 0.00 0.00 4.58 0.98 0.00 0.00
200 -0.94 -0.03 0.00 0.00 3.11 0.52 0.00 0.00
500 -1.12 -0.06 0.00 0.00 2.39 0.45 0.00 0.00
1000 -1.26 -0.09 0.00 0.00 2.08 0.38 0.00 0.00

α10 = 1.00, α20 = 0.95

100 -1.44 -0.15 0.00 0.00 5.78 1.83 0.00 0.00
200 -2.05 -0.19 0.00 0.00 5.31 1.37 0.00 0.00
500 -2.08 -0.19 0.00 0.00 3.99 0.82 0.00 0.00
1000 -2.27 -0.23 0.00 0.00 3.99 0.82 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -0.02 0.00 0.00 0.00 0.69 0.00 0.00 0.00
200 -0.01 0.00 0.00 0.00 0.30 0.00 0.00 0.00
500 -0.02 0.00 0.00 0.00 0.30 0.00 0.00 0.00
1000 -0.02 0.00 0.00 0.00 0.19 0.00 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table 3.

α0 = max(α10, α20) is estimated by regressing observations, xit,

on an intercept and the cross section average of xit, x̄t = n−1∑n
i=1 xit,

for t = 1, 2, . . . , T .
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Table 6: Bias and RMSE (×10, 000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - non-Gaussian errors) using cross section average, when
α10 = 0.95

Bias (×100) RMSE (×100)

n\T 120 200 500 1000 120 200 500 1000

α10 = 0.95, α20 = 0.51

100 0.18 0.21 0.40 0.57 0.36 0.38 0.55 0.70
200 0.16 0.16 0.22 0.30 0.23 0.24 0.29 0.38
500 0.13 0.13 0.15 0.17 0.16 0.16 0.18 0.20
1000 0.10 0.10 0.10 0.11 0.12 0.12 0.12 0.13

α10 = 0.95, α20 = 0.75

100 1.27 1.56 1.73 1.79 1.41 1.65 1.80 1.85
200 0.98 1.24 1.52 1.54 1.10 1.31 1.55 1.57
500 0.61 0.86 1.19 1.26 0.72 0.92 1.21 1.27
1000 0.42 0.59 0.95 1.07 0.51 0.67 0.97 1.08

α10 = 0.95, α20 = 0.95

100 3.98 4.03 4.04 4.05 4.00 4.05 4.06 4.07
200 3.87 3.95 3.95 3.96 3.88 3.96 3.96 3.97
500 3.74 3.82 3.84 3.83 3.74 3.82 3.84 3.83
1000 3.62 3.71 3.72 3.73 3.63 3.72 3.72 3.73

α10 = 0.95, α20 = 1.00

100 -0.02 0.00 0.00 0.00 0.07 0.02 0.00 0.00
200 -0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.00
500 -0.02 0.00 0.00 0.00 0.04 0.01 0.00 0.00
1000 -0.02 0.00 0.00 0.00 0.04 0.01 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table 3.

α0 = max(α10, α20) is estimated by regressing observations, xit,

on an intercept and the cross section average of xit, x̄t = n−1∑n
i=1 xit,

for t = 1, 2, . . . , T .
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Table 7: Bias and RMSE (×10, 000) of estimating factor strength in the case of experiment 4 (ob-
served misspecified single factor - Gaussian errors) when set to 1.00

Bias (×10, 000) RMSE (×10, 000)

n\T 120 200 500 1000 120 200 500 1000

α10 = 1.00, α20 = 0.75

100 -0.68 -0.01 0.00 0.00 4.03 0.49 0.00 0.00
200 -0.62 -0.03 0.00 0.00 2.55 0.52 0.00 0.00
500 -0.76 -0.04 0.00 0.00 1.86 0.38 0.00 0.00
1000 -0.76 -0.05 0.00 0.00 1.42 0.27 0.00 0.00

α10 = 1.00, α20 = 0.80

100 -0.70 -0.01 0.00 0.00 4.03 0.49 0.00 0.00
200 -0.54 -0.02 0.00 0.00 2.38 0.47 0.00 0.00
500 -0.72 -0.04 0.00 0.00 1.82 0.35 0.00 0.00
1000 -0.71 -0.04 0.00 0.00 1.37 0.26 0.00 0.00

α10 = 1.00, α20 = 0.85

100 -0.61 -0.01 0.00 0.00 3.78 0.49 0.00 0.00
200 -0.45 -0.01 0.00 0.00 2.15 0.37 0.00 0.00
500 -0.62 -0.04 0.00 0.00 1.64 0.35 0.00 0.00
1000 -0.65 -0.04 0.00 0.00 1.27 0.24 0.00 0.00

α10 = 1.00, α20 = 0.90

100 -0.47 0.00 0.00 0.00 3.28 0.00 0.00 0.00
200 -0.39 -0.01 0.00 0.00 2.02 0.30 0.00 0.00
500 -0.48 -0.02 0.00 0.00 1.42 0.25 0.00 0.00
1000 -0.51 -0.03 0.00 0.00 1.11 0.22 0.00 0.00

α10 = 1.00, α20 = 0.95

100 -0.35 0.00 0.00 0.00 2.85 0.00 0.00 0.00
200 -0.31 -0.01 0.00 0.00 1.80 0.30 0.00 0.00
500 -0.34 -0.01 0.00 0.00 1.24 0.16 0.00 0.00
1000 -0.35 -0.02 0.00 0.00 0.88 0.18 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -0.16 0.00 0.00 0.00 2.01 0.00 0.00 0.00
200 -0.13 0.00 0.00 0.00 1.10 0.00 0.00 0.00
500 -0.15 0.00 0.00 0.00 1.01 0.07 0.00 0.00
1000 -0.13 0.00 0.00 0.00 0.57 0.06 0.00 0.00

Notes: The parameters of the true DGP, (44), are generated

as described in Table S3. We set α10 = 1 and α20 in the range

[0.75, 1.00] with 0.05 increments. The misspecified model assumes

the existence of factor f1 only.
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Figure 5: Comparison of the market factor strength estimates obtained from the original single factor
CAPM (α̂m,τ ) and the average estimates of its strength when computed using 145 two-factor asset
pricing models (α̂m,τ ), over 10-year rolling windows

Notes: The market factor strength rolling estimates are computed using (7). The market factor strength
average estimates produced from the 145 two-factor CAPMs are computed as α̂m,τ = (1/145)

∑145
s=1(α̂s,τ ),

for τ = 1, 2, . . . , 340 rolling windows.

Figure 6: Percentage of factors (out of 145) whose estimated strength (α̂s,τ ), τ = 1, 2, . . . , 340 exceeds
the thresholds of 0.85, 0.90 and 0.95, in each 10-year rolling window

Notes: The 145 factor strength estimates, α̂s,τ , s = 1, 2, . . . , 145, are computed using (7).
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Table 8: Ranking of 65 factors in terms of the % of months their estimated strengths exceed the
threshold of 0.90 during the full sample period of September 1989 to December 2017 and correspond-
ing time averages of α̂s,τ , s = 1, 2, . . . , 65, over different subsamples

% of months when
α̂s,τ > 0.90 over: Time averages of α̂s,τ over:

September 1989 - September 1999 - September 2009 -
Factor Full sample Full sample August 1999 August 2009 December 2017

Market 100.0 0.990 0.999 0.974 0.997
Leverage 37.9 0.827 0.739 0.932 0.808
Sales to cash 37.9 0.817 0.716 0.936 0.793
Cash flow-to-price 37.9 0.832 0.765 0.933 0.792
Net debt-to-price 37.9 0.838 0.753 0.936 0.823
Earnings to price 37.9 0.811 0.743 0.935 0.745
Net payout yield 37.6 0.844 0.769 0.932 0.829
Years since first Compustat coverage 37.6 0.828 0.724 0.935 0.823
Cash flow to price ratio 37.6 0.818 0.737 0.934 0.775
Quick ratio 37.4 0.835 0.782 0.936 0.777
Altman’s Z-score 37.4 0.828 0.740 0.931 0.808
Payout yield 37.1 0.851 0.785 0.932 0.831
Earnings volatility 37.1 0.852 0.779 0.936 0.840
Change in shares outstanding 37.1 0.805 0.671 0.932 0.815
Enterprise book-to-price 36.8 0.830 0.741 0.933 0.812
Cash holdings 36.8 0.826 0.740 0.935 0.797
Dividend to price 36.5 0.846 0.789 0.932 0.811
Depreciation / PP&E 36.5 0.851 0.813 0.930 0.801
Kaplan-Zingales Index 36.2 0.822 0.731 0.930 0.801
R&D-to-sales 36.2 0.815 0.731 0.923 0.786
Cash flow volatility 36.2 0.783 0.617 0.924 0.812
Accrual volatility 36.2 0.779 0.613 0.926 0.803
Current ratio 35.9 0.846 0.815 0.926 0.785
Idiosyncratic return volatility 35.6 0.851 0.799 0.923 0.828
Debt capacity/firm tangibility 35.6 0.829 0.735 0.920 0.832
Maximum daily return 35.3 0.838 0.764 0.927 0.821
Bid-ask spread 35.3 0.847 0.786 0.931 0.821
Cash productivity 35.3 0.819 0.751 0.911 0.789
Return volatility 34.7 0.844 0.786 0.922 0.820
Robust Minus Weak 34.7 0.773 0.694 0.910 0.705
Whited-Wu Index 34.7 0.781 0.697 0.913 0.724
New equity issue 34.7 0.756 0.620 0.912 0.732
Sales to price 34.7 0.832 0.768 0.919 0.804
High Minus Low 34.4 0.830 0.757 0.926 0.802
Vol. of liquidity (share turnover) 34.4 0.846 0.786 0.920 0.830
Market Beta 34.1 0.859 0.824 0.921 0.828
Zero trading days 34.1 0.855 0.808 0.918 0.836
Share turnover 34.1 0.857 0.815 0.917 0.834
Advertising Expense-to-market 34.1 0.810 0.707 0.914 0.809
Net equity finance 34.1 0.841 0.797 0.916 0.803
Asset turnover 34.1 0.788 0.643 0.911 0.815
Net external finance 32.1 0.827 0.781 0.900 0.793
Absolute accruals 31.8 0.818 0.750 0.903 0.799
Growth in long-term debt 31.5 0.767 0.678 0.902 0.711
Industry-adjusted book to market 30.9 0.810 0.771 0.901 0.748
Working capital accruals 30.6 0.812 0.748 0.900 0.783
HML Devil 30.3 0.820 0.747 0.905 0.805
Change in Net Financial Assets 29.4 0.697 0.581 0.907 0.583
Chg in Current Oper. Liabilities 28.2 0.773 0.710 0.904 0.690
Sin stocks 27.6 0.749 0.603 0.884 0.762
Sales to receivables 27.4 0.820 0.781 0.896 0.777
Employee growth rate 22.6 0.773 0.710 0.898 0.699
Net Operating Assets 16.8 0.778 0.664 0.900 0.767
HXZ Investment 13.2 0.797 0.739 0.892 0.753
Chg in Net Non-current Oper. Assets 8.2 0.791 0.729 0.886 0.753
Financial statements score 7.9 0.738 0.700 0.885 0.605
R&D Expense-to-market 7.6 0.804 0.770 0.883 0.751
R&D increase 5.3 0.742 0.676 0.873 0.664
Industry momentum 2.9 0.772 0.748 0.840 0.721
Abnormal Corporate Investment 2.9 0.674 0.497 0.866 0.654
Sales growth 2.4 0.761 0.706 0.876 0.690
Conservative Minus Aggressive 1.8 0.766 0.716 0.860 0.714
Momentum 1.2 0.755 0.715 0.793 0.758
Change in Short- term Investments 0.3 0.625 0.377 0.801 0.712
Return on net operating assets 0.3 0.764 0.645 0.877 0.773

Notes: Factor strength estimates, α̂s,τ , where s = 1, 2, . . . , 65, are computed using (7) for 10-year rolling windows τ = 1, 2, . . . , 340. Remaining factors whose

estimated strength resides below 0.9 throughout the sample period can be found in Table S20 of the online supplement.

37



Figure 7: Comparison of the market factor strength estimates obtained from the original single factor
CAPM (α̂m,τ ) and those from using the cross section average (CSA) of S&P500 securities’ excess
returns (α̂csa,τ ), over 10-year rolling windows

Notes: The market factor and CSA of S&P500 securities’ excess returns strength estimates over τ =
1, 2, . . . , 340 rolling windows are computed using (7).

Table 9: Strength estimates of the strongest unobserved factor using the cross section average (CSA)
of the Stock and Watson (2012) dataset (n = 187 variables) and the corresponding exponent of cross
section dependence (CSD)

Q1 1988 - Q4 2007
(T = 80)

Q1 1988 - Q2 2019
(T = 126)

α̂∗0.05 α̂ α̂∗0.95 α̂∗0.05 α̂ α̂∗0.95

p = 0.10

Strength of CSA (δ = 1/4) 0.962 0.964 0.966 0.928 0.930 0.933
Strength of CSA (δ = 1/2) 0.957 0.958 0.959 0.918 0.920 0.922
Exponent of CSD 0.833 0.873 0.913 0.858 0.920 0.981

p = 0.05

Strength of CSA (δ = 1/4) 0.962 0.964 0.966 0.927 0.929 0.931
Strength of CSA (δ = 1/2) 0.957 0.958 0.959 0.912 0.914 0.915
Exponent of CSD 0.833 0.873 0.913 0.856 0.918 0.979

Notes: *90% confidence bands. In the computation of the strength of CSA,

parameters p and δ are used when setting the critical value (6).

The exponent of CSD corresponds to the most robust estimator of cross-

sectional dependence proposed in Bailey et al. (2016) and corrects for both

serial correlation in the factors and weak cross-sectional dependence in the

error terms.
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Appendix A Proofs of Lemmas

Proof of Lemma 1

We have that

E
(
d̂i,nT

)
= πi,nT = Pr [|tiT | > cp(n)]

= Φ
(
−cp(n) +

√
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)
+ Φ

(
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√
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)
,

and

πi,nT = 1− Φ
(
−
√
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)
+ Φ

(
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√
TθiT

)
(A.1)

where

θiT = (γi/σi)
(
T−1f ′Mτ f

)1/2
. (A.2)

Then,
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E
(
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=
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Also since cp(n) > 0, for small p and δ > 0, then Φ
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Suppose now that there exists T0 such that for all T > T0, and some i, |θiT | > 0, we have −
√
T |θiT |+

cp(n) < 0. Such a T0 exists since cp(n)/
√
T → 0 as n, T → ∞, jointly, for δ ≥ 0 - for a proof see

result (a) in Lemma 2 of the supplement to Bailey et al. (2019). Also

Φ
(
−
√
T |θiT |+ cp(n)

)
≤ (1/2) exp

{
−1

2

[√
TθiT − cp(n)

]2
}

= (1/2) exp

{
−Tθ2

iT

2

[
1− cp(n)√

TθiT

]2
}
,

(A.5)

and∣∣∣∣∣
n∑
i=1

1(γi 6= 0)
[
Φ
(
−
√
TθiT − cp(n)

)
− Φ

(
−
√
TθiT + cp(n)

)]∣∣∣∣∣
≤

n∑
i=1

1(θiT 6= 0)
[
Φ
(
−
√
T |θiT | − cp(n)

)
+ Φ

(
−
√
T |θiT |+ cp(n)

)]
≤ nα0 sup

i
exp

{
−Tθ2

iT

2

[
1− cp(n)√

T |θiT |

]2
}
.

Overall,

BnT =

∑n
i=1E

(
d̂i,nT

)
− nα0

nα0
= C0 sup

i
exp

{
−Tθ2

iT

2

[
1− cp(n)√

T |θiT |

]2
}

+
p (n− nα0)

nδ+α0
. (A.6)

Proof of Lemma 2

Consider the first term of (9) and note that
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and when θiT = 0, using (A.3), we have
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Proof of Lemma 3

We note that
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Also, since by Assumption 1, ui is distributed independently of γi and F, we also have
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It readily follows that so long as α = α1 > 1/2 then
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proving the first set of probability order results.

Next we provide a more refined analysis to obtain exponential probability inequalities for each

of (A.8)-(A.11). We start with (A.8). First we handle the denominator. Let γ̄α,j = 1
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A similar result holds for (A.9)-(A.11). We proceed to analyse the first term on the RHS of (A.12).

For some 0 < π < 1, it follows that
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where f̄α,r and f̄s are the sample averages of ft,α,r and ft,s respectively. By Lemma A10 of Chudik

et al. (2018),
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For (A.15), we consider two cases - γi = 0, and γi 6= 0. If γi1 = 0, (A.15) is bounded from below by
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Identical arguments can be used to show that
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Finally, and again using similar arguments,
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completing the proof of the lemma.

Proof of Lemma 4

We proceed by considering t̄iT under (27) and note that
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and
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Consider first the denominator of (A.16) and note that
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(
T−1F′MτF

)
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Using this result in (A.16) we now have
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Then the result of the lemma follows by Lemma 3.

Appendix B Proofs of Theorems

Proof of Theorem 1

We abstract from the subscript j in what follows. We consider the following relations

(lnn) (α̂− α0) = ln

(
D̂nT

D0
n

)
= ln

(
1 +

D̂nT − nα0

nα0

)
= ln (1 +AnT +BnT )

= AnT +BnT +Op
(
A2
nT

)
+O

(
B2
nT

)
+Op (AnTBnT ) + . . . ,

where

AnT =

∑n
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
nα0

,

BnT =

∑n
i=1E

(
d̂i,nT

)
− nα0

nα0
, with d̂i,nT = 1 [|tiT | > cp(n)] .
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Note that E
(
d̂i,nT

)
= πi,nT = Pr [|tiT | > cp(n)]. Then, we wish to determine

BnT =

∑n
i=1 Pr [|tiT | > cp(n)]− nα0

nα0
=

∑[nα0 ]
i=1 Pr [|tiT | > cp(n)|γi 6= 0]− nα0

nα0
+∑n

i=[nα0 ]+1 Pr [|tiT | > cp(n)|γi = 0]

nα0
.

Under regularity conditions and by Lemma A.10 of Chudik et al. (2018),

Pr [|tiT | > cp(n)|γi 6= 0] > 1−O
[
exp(−TC)

]
, for some C > 0.

So ∑[nα0 ]
i=1 Pr [|tiT | > cp(n)|γi 6= 0]− nα0

nα0
= O

[
exp(−TC)

]
.

Again by Lemma A.10 of Chudik et al. (2018),

Pr [|tiT | > cp(n)|γi = 0] ≤ Cp

nδ
.

So, for some C > 0,∑n
i=[nα0 ]+1 Pr [|tiT | > cp(n)|γi = 0]

nα0
≤ Cp (n− nα0)

nδ+α0
= O

(
n1−δ−α0

)
.

Overall,

BnT = O
(
n1−δ−α0

)
+O

[
exp(−TC)

]
.

Next, note that

AnT =
1

nα0

n∑
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
.

Under the assumption that uit are cross-sectionally independently distributed, a martingale difference

central limit theorem holds for zi,nT = d̂i,nT − E
(
d̂i,nT

)
and further

V ar (zi,nT ) = V ar
(
d̂i,nT

)
= πi,nT (1− πi,nT ).

Then,

V ar (AnT ) =
1

n2α0

n∑
i=1

πi,nT (1− πi,nT ) ≤ 1

n2α0

n∑
i=1

πi,nT =

1

n2α0

[nα0 ]∑
i=1

πi,nT +
1

n2α0

n∑
i=[nα0 ]+1

πi,nT = O
[
exp(−TC)

]
+O

(
n1−δ−2α0

)
.

So, AnT = Op
(
n1/2−δ/2−α0

)
, and further ψn(α0)−1/2AnT →d N(0, C), for some C < 1, where

ψn(α0) = p (n− na0)n−δ−2α0
(
1− p

nδ

)
.

Proof of Theorem 2

To prove this theorem it is sufficient to retrace the proof of Theorem 1 using

Pr [|t̄iT | > cp(n)|γi 6= 0] > 1−O
[
exp(−TC)

]
, for some C > 0, (B.17)

and

Pr [|t̄iT | > cp(n)|γi = 0] ≤ Cp

nδ
. (B.18)

Both (B.17) and (B.18) follow from Lemmas 3 and 4, proving the result.
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Introduction

This online supplement is composed of two subsections which provide additional Monte Carlo and

empirical results.

Additional Monte Carlo results

The Monte Carlo results provided in the tables and plots below are based on the designs set out in

Section 5 of the paper.

Table S1: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.75

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.75

100 1.18 1.19 1.08 1.03 1.56 1.56 1.42 1.39 3.35 3.85 2.35 2.05
200 1.43 1.36 1.32 1.31 1.59 1.51 1.47 1.46 9.30 8.15 6.10 6.25
500 1.31 1.24 1.16 1.14 1.39 1.31 1.23 1.21 13.65 11.00 8.25 7.70
1000 1.26 1.19 1.13 1.11 1.31 1.23 1.17 1.15 16.35 11.05 7.95 6.90

α10 = 0.80, α20 = 0.75

100 0.71 0.69 0.62 0.61 1.04 1.02 0.95 0.93 18.30 18.65 17.10 17.10
200 0.96 0.91 0.88 0.87 1.09 1.04 1.01 0.99 13.15 11.20 10.10 9.45
500 0.92 0.87 0.82 0.80 0.98 0.92 0.87 0.86 13.20 9.25 7.05 6.40
1000 0.86 0.81 0.77 0.75 0.89 0.84 0.80 0.78 17.40 12.45 9.15 8.15

α10 = 0.85, α20 = 0.75

100 0.71 0.69 0.64 0.61 0.91 0.89 0.83 0.80 11.65 11.10 8.00 6.70
200 0.61 0.58 0.55 0.55 0.71 0.68 0.65 0.65 5.35 4.00 3.20 3.60
500 0.53 0.50 0.46 0.46 0.58 0.54 0.51 0.50 12.00 8.60 6.95 7.80
1000 0.50 0.47 0.45 0.44 0.52 0.50 0.47 0.46 9.95 8.05 5.75 5.70

α10 = 0.90, α20 = 0.75

100 0.40 0.40 0.38 0.36 0.56 0.55 0.53 0.51 4.80 4.00 3.25 2.70
200 0.27 0.26 0.25 0.24 0.38 0.36 0.34 0.33 13.80 12.60 12.10 12.90
500 0.30 0.29 0.27 0.26 0.33 0.32 0.30 0.29 8.80 8.40 6.10 6.00
1000 0.28 0.27 0.26 0.25 0.30 0.29 0.27 0.27 11.80 8.65 5.90 6.60

α10 = 0.95, α20 = 0.75

100 0.07 0.08 0.07 0.06 0.25 0.24 0.23 0.23 5.25 3.55 2.60 2.50
200 0.11 0.11 0.11 0.10 0.18 0.18 0.17 0.17 6.45 4.65 4.10 4.00
500 0.12 0.12 0.11 0.10 0.14 0.14 0.13 0.13 10.95 9.25 8.10 7.70
1000 0.10 0.10 0.09 0.09 0.11 0.11 0.10 0.10 9.20 6.50 5.30 4.15

α10 = 1.00, α20 = 0.75

100 -0.01 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) of the main paper are generated as follows: for unit specific effects,

ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n. The factors, (f1t, f2t), are multivariate normal with variances

σ2
f1

= σ2
f2 = 1 and correlation given by ρ12 = corr(f1, f2) = 0.3. Each factor assumes an autoregressive

process with correlation coefficients ρfj = 0.5, j = 1, 2. The factor loadings are generated as

vij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set

µv1 = µv2 = 0.71. Both α10 and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit

are Gaussian, such that uit ∼ IIDN(0, σ2
i ), with σ2

i ∼ IID(1 + χ2
2,i)/3, for i = 1, 2, . . . , n. In the

computation of α̂j , j = 1, 2, we use p = 0.10 and δ = 1/4 when setting the critical value. Size is computed

under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. When α10 = 1.00, our estimator is ultra

consistent, hence size results for this case are not meaningful. The number of replications is set to

R = 2000.
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Figure S1: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.75, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S2: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.80

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.80

100 1.20 1.18 1.08 1.03 1.58 1.54 1.44 1.39 4.55 3.45 2.05 2.00
200 1.45 1.36 1.34 1.30 1.61 1.52 1.49 1.46 10.30 8.10 6.85 7.05
500 1.31 1.24 1.15 1.14 1.39 1.31 1.22 1.22 14.55 10.50 8.90 8.75
1000 1.26 1.19 1.13 1.12 1.31 1.24 1.17 1.15 16.30 12.35 7.90 7.35

α10 = 0.80, α20 = 0.80

100 0.72 0.71 0.63 0.61 1.06 1.04 0.95 0.94 19.05 18.70 17.30 17.70
200 0.96 0.91 0.89 0.87 1.10 1.04 1.01 1.00 12.95 10.60 9.00 9.45
500 0.91 0.87 0.82 0.80 0.97 0.92 0.87 0.86 12.00 9.60 6.70 6.80
1000 0.85 0.81 0.77 0.76 0.88 0.84 0.80 0.78 17.05 12.00 8.15 7.95

α10 = 0.85, α20 = 0.80

100 0.69 0.71 0.64 0.63 0.89 0.90 0.82 0.82 10.80 10.60 6.85 7.60
200 0.60 0.57 0.55 0.53 0.70 0.67 0.65 0.64 5.10 4.40 3.10 2.90
500 0.53 0.50 0.46 0.46 0.58 0.54 0.51 0.50 10.55 8.50 7.55 7.80
1000 0.50 0.48 0.45 0.44 0.52 0.50 0.47 0.46 10.90 7.75 5.25 4.75

α10 = 0.90, α20 = 0.80

100 0.40 0.40 0.37 0.36 0.55 0.56 0.51 0.50 4.80 4.80 2.75 2.60
200 0.28 0.26 0.24 0.25 0.38 0.35 0.33 0.34 13.45 11.70 12.00 11.35
500 0.30 0.28 0.26 0.26 0.33 0.31 0.30 0.30 9.85 7.85 6.85 7.00
1000 0.28 0.27 0.26 0.26 0.30 0.29 0.27 0.27 11.80 8.15 6.50 6.35

α10 = 0.95, α20 = 0.80

100 0.08 0.08 0.07 0.07 0.25 0.25 0.23 0.23 5.95 4.00 2.90 2.70
200 0.12 0.11 0.10 0.10 0.19 0.18 0.18 0.17 6.95 4.65 4.90 3.85
500 0.12 0.12 0.11 0.11 0.14 0.14 0.13 0.13 11.45 8.60 7.65 7.30
1000 0.10 0.10 0.09 0.09 0.11 0.11 0.10 0.10 7.90 5.45 5.95 5.40

α10 = 1.00, α20 = 0.80

100 -0.01 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S2: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.80, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S3: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.85

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 1.20 1.17 1.07 1.02 1.59 1.53 1.44 1.38 4.85 3.35 2.70 2.30
200 1.44 1.37 1.33 1.31 1.60 1.52 1.48 1.46 9.50 7.70 7.45 6.65
500 1.31 1.23 1.16 1.13 1.39 1.30 1.22 1.21 13.95 11.30 8.10 9.20
1000 1.26 1.20 1.13 1.11 1.31 1.24 1.17 1.15 16.50 11.75 8.30 7.15

α10 = 0.80, α20 = 0.85

100 0.70 0.70 0.62 0.58 1.04 1.03 0.95 0.91 18.20 17.80 16.90 18.00
200 0.96 0.90 0.87 0.86 1.09 1.03 0.99 0.98 14.20 10.65 9.15 9.30
500 0.91 0.87 0.82 0.80 0.97 0.92 0.87 0.86 13.10 9.10 7.20 6.70
1000 0.85 0.81 0.77 0.76 0.88 0.84 0.79 0.78 18.10 13.00 7.95 7.65

α10 = 0.85, α20 = 0.85

100 0.69 0.69 0.64 0.63 0.89 0.89 0.82 0.81 11.30 10.65 7.85 7.70
200 0.61 0.57 0.57 0.54 0.72 0.68 0.67 0.65 6.45 4.20 3.35 3.55
500 0.53 0.50 0.47 0.46 0.58 0.55 0.51 0.50 12.30 9.60 6.60 7.95
1000 0.49 0.47 0.45 0.44 0.52 0.50 0.47 0.46 10.95 8.05 5.95 5.10

α10 = 0.90, α20 = 0.85

100 0.41 0.40 0.40 0.37 0.56 0.54 0.54 0.51 5.20 3.20 3.30 2.60
200 0.27 0.26 0.25 0.24 0.37 0.36 0.35 0.34 13.55 13.15 12.60 12.60
500 0.30 0.29 0.27 0.26 0.33 0.32 0.30 0.30 9.70 8.45 7.10 7.85
1000 0.28 0.28 0.26 0.26 0.30 0.29 0.28 0.27 10.75 9.45 6.65 6.00

α10 = 0.95, α20 = 0.85

100 0.07 0.08 0.07 0.07 0.26 0.24 0.23 0.23 6.20 3.95 2.80 3.05
200 0.11 0.11 0.11 0.10 0.19 0.18 0.17 0.17 8.15 5.50 4.00 4.10
500 0.11 0.12 0.11 0.11 0.14 0.14 0.13 0.13 13.20 8.05 7.45 7.70
1000 0.09 0.10 0.09 0.09 0.10 0.11 0.10 0.10 9.80 6.70 5.30 5.10

α10 = 1.00, α20 = 0.85

100 -0.01 0.00 0.00 0.00 0.06 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.04 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S3: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.85, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S4: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.90

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.90

100 1.19 1.18 1.05 1.02 1.58 1.54 1.41 1.39 4.55 3.70 2.30 2.45
200 1.44 1.36 1.32 1.30 1.60 1.51 1.47 1.45 9.25 8.20 6.75 6.50
500 1.31 1.24 1.15 1.14 1.39 1.31 1.22 1.21 14.35 11.20 7.50 8.90
1000 1.27 1.19 1.13 1.11 1.31 1.23 1.17 1.15 16.15 11.40 7.50 6.75

α10 = 0.80, α20 = 0.90

100 0.71 0.69 0.61 0.61 1.05 1.02 0.95 0.94 19.15 18.80 18.55 18.85
200 0.95 0.90 0.88 0.87 1.08 1.03 1.01 1.00 12.75 10.55 9.60 11.55
500 0.92 0.87 0.81 0.81 0.98 0.92 0.86 0.86 13.50 9.20 6.95 6.60
1000 0.86 0.81 0.77 0.76 0.89 0.84 0.80 0.79 18.35 12.70 8.90 8.60

α10 = 0.85, α20 = 0.90

100 0.68 0.69 0.64 0.61 0.89 0.88 0.83 0.80 11.10 9.50 8.30 6.30
200 0.61 0.57 0.55 0.54 0.72 0.68 0.65 0.64 6.65 3.90 2.95 2.50
500 0.53 0.50 0.47 0.45 0.57 0.54 0.51 0.50 10.35 9.60 7.00 7.35
1000 0.50 0.48 0.45 0.44 0.52 0.50 0.47 0.46 11.15 7.85 5.80 5.20

α10 = 0.90, α20 = 0.90

100 0.41 0.40 0.38 0.37 0.57 0.55 0.53 0.52 5.80 3.50 3.40 3.45
200 0.28 0.26 0.24 0.24 0.38 0.35 0.33 0.33 13.15 12.70 12.15 12.55
500 0.30 0.29 0.27 0.27 0.33 0.32 0.30 0.30 10.60 7.95 6.75 7.05
1000 0.28 0.27 0.26 0.25 0.30 0.29 0.27 0.27 11.75 8.70 7.70 5.50

α10 = 0.95, α20 = 0.90

100 0.08 0.08 0.07 0.07 0.25 0.24 0.24 0.23 5.20 3.70 3.25 3.35
200 0.11 0.11 0.10 0.10 0.19 0.18 0.17 0.17 7.85 5.05 4.20 3.95
500 0.11 0.12 0.11 0.11 0.14 0.14 0.13 0.13 12.75 7.90 8.60 7.40
1000 0.10 0.10 0.09 0.09 0.11 0.11 0.10 0.10 9.00 5.25 3.90 4.80

α10 = 1.00, α20 = 0.90

100 -0.01 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S4: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.90, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S5: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.95

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.95

100 1.19 1.17 1.06 1.01 1.56 1.53 1.42 1.37 3.75 3.25 1.95 2.00
200 1.45 1.35 1.32 1.30 1.60 1.51 1.47 1.45 10.55 8.10 6.70 6.65
500 1.31 1.24 1.15 1.13 1.39 1.31 1.22 1.21 14.45 10.95 7.95 8.50
1000 1.26 1.20 1.13 1.11 1.31 1.24 1.17 1.15 16.70 11.35 7.40 6.45

α10 = 0.80, α20 = 0.95

100 0.71 0.70 0.61 0.60 1.06 1.04 0.94 0.93 18.20 19.50 18.35 17.30
200 0.96 0.92 0.88 0.87 1.09 1.05 1.01 0.99 13.10 10.95 9.85 9.00
500 0.91 0.87 0.81 0.81 0.97 0.93 0.86 0.86 12.90 9.40 6.90 7.40
1000 0.85 0.81 0.77 0.75 0.89 0.84 0.79 0.78 17.40 11.95 8.35 8.05

α10 = 0.85, α20 = 0.95

100 0.71 0.69 0.64 0.62 0.91 0.88 0.82 0.80 11.40 9.40 7.95 7.70
200 0.60 0.57 0.56 0.54 0.71 0.67 0.66 0.64 6.05 3.60 3.45 2.90
500 0.53 0.50 0.47 0.45 0.58 0.54 0.51 0.50 10.85 8.10 8.05 6.90
1000 0.50 0.48 0.45 0.44 0.52 0.50 0.47 0.46 10.75 9.00 5.45 5.65

α10 = 0.90, α20 = 0.95

100 0.40 0.41 0.38 0.36 0.55 0.55 0.53 0.51 5.10 3.80 3.50 2.60
200 0.28 0.25 0.25 0.24 0.37 0.35 0.34 0.34 12.40 11.70 11.65 12.65
500 0.30 0.29 0.27 0.26 0.34 0.31 0.30 0.29 11.85 7.20 6.90 7.40
1000 0.28 0.28 0.26 0.26 0.30 0.29 0.27 0.27 11.55 9.95 6.95 6.85

α10 = 0.95, α20 = 0.95

100 0.07 0.08 0.07 0.06 0.24 0.25 0.23 0.23 4.35 4.35 2.55 2.40
200 0.11 0.11 0.10 0.10 0.18 0.18 0.17 0.17 7.55 4.85 4.05 3.60
500 0.12 0.12 0.11 0.11 0.14 0.14 0.13 0.13 11.05 7.60 7.00 8.05
1000 0.09 0.10 0.09 0.09 0.11 0.11 0.10 0.10 9.05 6.55 4.60 5.40

α10 = 1.00, α20 = 0.95

100 -0.01 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S5: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.95, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S6: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 1.00

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 1.00

100 1.20 1.18 1.06 1.03 1.58 1.56 1.43 1.38 4.15 3.90 2.55 1.65
200 1.45 1.35 1.33 1.31 1.61 1.51 1.48 1.47 9.90 8.30 6.35 6.45
500 1.31 1.24 1.16 1.14 1.39 1.31 1.23 1.21 13.50 10.95 7.40 8.35
1000 1.27 1.20 1.13 1.11 1.31 1.24 1.17 1.15 16.45 11.40 7.05 6.65

α10 = 0.80, α20 = 1.00

100 0.70 0.68 0.61 0.60 1.06 1.01 0.96 0.95 20.15 17.45 18.80 19.25
200 0.96 0.91 0.89 0.86 1.08 1.04 1.01 0.98 12.30 11.00 10.75 9.65
500 0.92 0.87 0.82 0.81 0.98 0.92 0.87 0.86 12.80 8.85 7.35 7.45
1000 0.85 0.81 0.77 0.75 0.89 0.84 0.79 0.78 17.45 12.30 8.90 7.90

α10 = 0.85, α20 = 1.00

100 0.70 0.69 0.65 0.63 0.90 0.87 0.83 0.81 11.45 9.10 8.20 7.25
200 0.62 0.57 0.56 0.54 0.72 0.67 0.65 0.64 5.70 3.90 3.50 3.00
500 0.54 0.50 0.47 0.46 0.58 0.54 0.51 0.50 10.60 8.90 7.55 7.90
1000 0.50 0.48 0.45 0.44 0.52 0.50 0.47 0.46 10.20 7.90 5.15 4.85

α10 = 0.90, α20 = 1.00

100 0.41 0.40 0.37 0.36 0.56 0.55 0.51 0.50 4.65 4.00 2.80 2.30
200 0.28 0.26 0.25 0.24 0.38 0.36 0.35 0.33 12.40 12.00 13.05 12.15
500 0.30 0.28 0.27 0.26 0.33 0.32 0.30 0.29 10.15 8.50 6.10 6.95
1000 0.28 0.27 0.26 0.26 0.30 0.29 0.28 0.27 12.65 9.45 6.50 6.55

α10 = 0.95, α20 = 1.00

100 0.08 0.07 0.06 0.06 0.25 0.24 0.22 0.22 6.00 3.15 2.30 2.50
200 0.10 0.11 0.10 0.10 0.18 0.18 0.17 0.17 6.95 4.65 4.20 3.35
500 0.12 0.12 0.11 0.11 0.14 0.14 0.13 0.13 11.25 8.95 7.40 7.80
1000 0.10 0.10 0.09 0.09 0.11 0.11 0.10 0.10 9.55 6.30 4.75 5.15

α10 = 1.00, α20 = 1.00

100 -0.01 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S6: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 1.00, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H1:
α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S7: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.75

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.75

100 1.16 1.13 1.08 1.02 1.53 1.51 1.46 1.39 4.10 3.55 3.00 2.45
200 1.45 1.39 1.29 1.30 1.61 1.54 1.45 1.46 10.10 8.00 7.05 7.20
500 1.29 1.23 1.17 1.14 1.37 1.31 1.24 1.21 12.65 9.75 8.05 6.85
1000 1.26 1.19 1.12 1.11 1.30 1.23 1.16 1.15 16.55 10.25 7.45 6.85

α10 = 0.80, α20 = 0.75

100 0.68 0.67 0.61 0.59 1.03 1.01 0.96 0.93 19.85 19.00 19.55 18.15
200 0.95 0.92 0.86 0.86 1.09 1.04 0.99 0.98 13.85 10.80 10.45 10.15
500 0.90 0.86 0.82 0.81 0.96 0.92 0.88 0.86 11.80 8.80 7.25 6.05
1000 0.86 0.81 0.76 0.76 0.89 0.83 0.79 0.78 17.80 12.05 8.45 8.50

α10 = 0.85, α20 = 0.75

100 0.68 0.68 0.65 0.62 0.88 0.87 0.84 0.82 10.95 10.15 8.10 8.65
200 0.60 0.59 0.54 0.55 0.71 0.69 0.64 0.65 5.95 3.75 3.05 3.45
500 0.52 0.50 0.47 0.46 0.56 0.54 0.51 0.50 10.65 8.65 6.80 7.00
1000 0.49 0.47 0.44 0.44 0.52 0.49 0.46 0.46 10.30 7.75 5.35 5.25

α10 = 0.90, α20 = 0.75

100 0.39 0.40 0.38 0.36 0.55 0.55 0.53 0.51 5.05 3.60 2.95 2.60
200 0.27 0.26 0.23 0.24 0.38 0.35 0.33 0.34 15.30 10.70 12.90 12.90
500 0.29 0.28 0.27 0.26 0.32 0.31 0.30 0.29 11.20 7.65 6.80 7.35
1000 0.28 0.27 0.26 0.26 0.29 0.29 0.27 0.27 13.00 8.20 7.25 6.10

α10 = 0.95, α20 = 0.75

100 0.06 0.07 0.06 0.06 0.24 0.23 0.22 0.23 6.30 3.40 2.95 3.10
200 0.11 0.11 0.10 0.10 0.18 0.18 0.17 0.17 8.80 5.10 3.25 3.75
500 0.11 0.11 0.11 0.11 0.14 0.13 0.13 0.13 14.50 9.40 8.80 8.10
1000 0.09 0.10 0.09 0.09 0.10 0.11 0.10 0.10 9.50 4.95 4.35 5.00

α10 = 1.00, α20 = 0.75

100 -0.02 0.00 0.00 0.00 0.07 0.02 0.00 0.00 - - - -
200 -0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
500 -0.02 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
1000 -0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S7: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second
factor is set to 0.75, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is
computed under H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications
is set to R = 2000.
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Table S8: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.80

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.80

100 1.17 1.14 1.07 1.03 1.52 1.50 1.45 1.41 3.05 3.35 2.70 2.50
200 1.46 1.39 1.28 1.28 1.62 1.55 1.44 1.44 10.35 8.85 6.60 6.65
500 1.29 1.23 1.17 1.14 1.37 1.31 1.24 1.21 12.35 9.95 8.45 7.85
1000 1.27 1.18 1.12 1.11 1.32 1.22 1.16 1.15 17.10 10.95 6.90 7.05

α10 = 0.80, α20 = 0.80

100 0.70 0.67 0.62 0.58 1.04 1.00 0.97 0.93 18.25 18.40 19.45 18.85
200 0.96 0.92 0.86 0.86 1.09 1.05 0.99 0.99 14.15 12.20 9.10 10.50
500 0.90 0.87 0.83 0.80 0.96 0.92 0.88 0.85 12.10 8.75 7.25 6.55
1000 0.85 0.80 0.77 0.76 0.88 0.83 0.79 0.78 18.30 11.95 9.65 7.70

α10 = 0.85, α20 = 0.80

100 0.68 0.67 0.63 0.63 0.89 0.86 0.83 0.82 11.20 9.35 8.30 7.60
200 0.60 0.59 0.55 0.54 0.70 0.68 0.65 0.65 4.95 3.60 3.85 3.20
500 0.51 0.50 0.47 0.46 0.56 0.55 0.51 0.50 10.95 8.50 7.35 7.20
1000 0.50 0.47 0.44 0.44 0.52 0.49 0.46 0.46 12.30 8.90 5.65 5.40

α10 = 0.90, α20 = 0.80

100 0.38 0.39 0.38 0.36 0.54 0.54 0.52 0.51 5.00 3.55 3.10 2.75
200 0.27 0.27 0.24 0.24 0.37 0.36 0.33 0.34 14.00 12.30 12.95 12.50
500 0.29 0.28 0.27 0.26 0.32 0.32 0.30 0.29 11.20 8.95 7.00 7.05
1000 0.28 0.27 0.26 0.25 0.29 0.29 0.27 0.27 12.00 8.05 6.50 6.45

α10 = 0.95, α20 = 0.80

100 0.07 0.07 0.07 0.07 0.25 0.23 0.24 0.23 6.75 3.30 3.20 2.90
200 0.11 0.11 0.10 0.10 0.19 0.18 0.17 0.17 9.45 4.80 4.00 4.05
500 0.11 0.12 0.11 0.11 0.14 0.14 0.13 0.13 13.95 8.90 8.45 8.80
1000 0.09 0.10 0.09 0.09 0.10 0.11 0.10 0.10 11.55 5.80 4.20 4.45

α10 = 1.00, α20 = 0.80

100 -0.02 0.00 0.00 0.00 0.07 0.01 0.00 0.00 - - - -
200 -0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
500 -0.02 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
1000 -0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S8: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second
factor is set to 0.80, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is
computed under H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications
is set to R = 2000.
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Table S9: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.90

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.90

100 1.18 1.12 1.08 1.04 1.54 1.49 1.44 1.41 3.60 3.30 2.70 2.40
200 1.43 1.41 1.29 1.28 1.60 1.56 1.44 1.44 10.15 8.40 7.65 6.00
500 1.29 1.23 1.17 1.13 1.37 1.31 1.24 1.20 14.05 10.60 7.15 7.90
1000 1.27 1.18 1.13 1.11 1.31 1.22 1.17 1.15 17.55 10.80 7.70 6.55

α10 = 0.80, α20 = 0.90

100 0.69 0.64 0.62 0.59 1.03 0.98 0.96 0.93 18.70 18.45 18.35 18.40
200 0.96 0.92 0.85 0.85 1.09 1.04 0.98 0.98 13.30 9.05 9.90 9.05
500 0.90 0.87 0.83 0.81 0.96 0.92 0.87 0.86 11.60 9.90 6.90 6.30
1000 0.86 0.81 0.76 0.75 0.89 0.84 0.79 0.78 18.35 12.60 7.95 7.40

α10 = 0.85, α20 = 0.90

100 0.68 0.65 0.63 0.62 0.89 0.84 0.83 0.82 11.45 8.30 8.40 7.20
200 0.60 0.59 0.54 0.54 0.71 0.69 0.64 0.65 5.95 4.20 3.40 3.65
500 0.52 0.50 0.47 0.46 0.57 0.55 0.51 0.51 10.85 8.65 6.75 7.85
1000 0.49 0.47 0.45 0.44 0.52 0.49 0.47 0.46 11.55 7.20 5.50 5.65

α10 = 0.90, α20 = 0.90

100 0.39 0.40 0.39 0.37 0.55 0.55 0.54 0.52 5.25 4.00 4.00 3.40
200 0.28 0.26 0.24 0.24 0.38 0.35 0.34 0.33 12.85 12.95 13.60 12.55
500 0.29 0.28 0.27 0.26 0.32 0.32 0.30 0.30 10.65 8.35 6.30 7.95
1000 0.28 0.27 0.26 0.26 0.30 0.29 0.27 0.27 12.60 7.75 7.15 6.35

α10 = 0.95, α20 = 0.90

100 0.07 0.08 0.07 0.05 0.25 0.24 0.23 0.22 7.05 3.45 3.05 2.35
200 0.11 0.11 0.10 0.10 0.19 0.18 0.17 0.17 8.85 5.15 3.70 4.10
500 0.11 0.11 0.11 0.10 0.14 0.14 0.13 0.13 13.15 9.55 7.85 7.65
1000 0.09 0.09 0.09 0.09 0.10 0.11 0.10 0.10 10.85 4.90 4.75 5.35

α10 = 1.00, α20 = 0.90

100 -0.02 0.00 0.00 0.00 0.07 0.01 0.00 0.00 - - - -
200 -0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
500 -0.02 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
1000 -0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.

S17



Figure S9: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second
factor is set to 0.90, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is
computed under H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications
is set to R = 2000.
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Table S10: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.95

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.95

100 1.18 1.14 1.08 1.03 1.54 1.50 1.46 1.41 4.00 3.10 2.60 2.55
200 1.44 1.38 1.30 1.29 1.61 1.53 1.45 1.45 10.75 7.60 6.55 7.00
500 1.30 1.23 1.16 1.14 1.37 1.30 1.23 1.21 13.45 10.40 8.25 8.20
1000 1.26 1.18 1.12 1.11 1.31 1.22 1.16 1.15 17.90 11.30 7.10 7.40

α10 = 0.80, α20 = 0.95

100 0.69 0.65 0.63 0.60 1.03 0.99 0.97 0.94 18.80 18.20 18.70 19.40
200 0.96 0.93 0.85 0.86 1.09 1.05 0.98 0.98 13.75 11.15 9.35 9.45
500 0.91 0.86 0.82 0.81 0.96 0.91 0.87 0.86 11.45 8.85 6.60 6.65
1000 0.85 0.81 0.77 0.76 0.88 0.83 0.79 0.78 17.05 13.00 8.70 8.65

α10 = 0.85, α20 = 0.95

100 0.68 0.67 0.64 0.61 0.87 0.86 0.83 0.80 9.45 9.35 8.05 7.20
200 0.60 0.59 0.54 0.54 0.71 0.69 0.64 0.64 5.60 4.20 3.00 3.20
500 0.52 0.50 0.47 0.46 0.57 0.54 0.51 0.50 11.20 9.00 8.25 7.25
1000 0.50 0.47 0.44 0.44 0.52 0.49 0.46 0.46 11.55 8.25 5.30 6.35

α10 = 0.90, α20 = 0.95

100 0.40 0.38 0.37 0.37 0.54 0.52 0.52 0.52 4.80 3.20 3.40 3.00
200 0.27 0.26 0.23 0.24 0.37 0.36 0.33 0.33 14.60 11.60 12.85 12.80
500 0.29 0.28 0.27 0.27 0.32 0.32 0.30 0.30 10.80 7.65 6.75 7.00
1000 0.27 0.27 0.26 0.25 0.29 0.29 0.27 0.27 12.25 8.95 7.85 6.80

α10 = 0.95, α20 = 0.95

100 0.07 0.07 0.07 0.07 0.25 0.23 0.23 0.23 6.80 3.30 3.35 2.80
200 0.11 0.10 0.11 0.10 0.19 0.17 0.17 0.17 8.55 4.00 3.70 3.30
500 0.11 0.12 0.11 0.11 0.14 0.14 0.13 0.13 14.80 8.95 6.70 7.35
1000 0.09 0.10 0.09 0.09 0.11 0.11 0.10 0.10 11.75 5.75 4.80 4.35

α10 = 1.00, α20 = 0.95

100 -0.02 0.00 0.00 0.00 0.07 0.01 0.00 0.00 - - - -
200 -0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
500 -0.02 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
1000 -0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S10: Empirical power functions associated with testing different strengths of first factor in
the case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the
second factor is set to 0.95, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is
computed under H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications
is set to R = 2000.
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Table S11: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 1.00

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 1.00

100 1.17 1.12 1.06 1.03 1.55 1.49 1.43 1.41 4.15 3.10 2.30 2.45
200 1.46 1.38 1.29 1.29 1.62 1.54 1.44 1.45 9.65 7.95 7.55 7.10
500 1.29 1.23 1.16 1.13 1.37 1.30 1.23 1.20 13.75 10.25 7.35 7.75
1000 1.27 1.18 1.12 1.11 1.31 1.22 1.16 1.15 17.75 11.15 7.65 7.20

α10 = 0.80, α20 = 1.00

100 0.67 0.66 0.62 0.58 1.01 1.00 0.98 0.94 19.20 18.10 19.10 20.15
200 0.96 0.94 0.86 0.86 1.10 1.06 0.99 0.99 13.25 11.60 10.95 10.60
500 0.90 0.87 0.82 0.80 0.96 0.93 0.88 0.85 12.30 10.10 7.70 6.70
1000 0.85 0.81 0.77 0.76 0.88 0.84 0.79 0.79 16.75 12.35 8.30 8.10

α10 = 0.85, α20 = 1.00

100 0.67 0.65 0.64 0.62 0.87 0.84 0.83 0.81 10.60 8.50 8.35 8.00
200 0.60 0.59 0.54 0.55 0.71 0.69 0.65 0.65 5.60 4.55 3.55 3.30
500 0.51 0.50 0.47 0.46 0.56 0.54 0.51 0.50 10.95 8.90 8.10 7.05
1000 0.50 0.47 0.45 0.44 0.52 0.49 0.47 0.46 11.75 7.20 5.75 6.20

α10 = 0.90, α20 = 1.00

100 0.39 0.39 0.37 0.35 0.55 0.54 0.52 0.50 5.65 3.65 2.75 2.80
200 0.27 0.26 0.24 0.23 0.37 0.36 0.33 0.33 14.10 12.75 12.50 12.65
500 0.28 0.28 0.27 0.26 0.32 0.31 0.30 0.29 9.20 7.95 6.35 6.50
1000 0.28 0.27 0.26 0.26 0.30 0.29 0.27 0.27 12.25 8.50 6.60 6.80

α10 = 0.95, α20 = 1.00

100 0.07 0.07 0.07 0.06 0.26 0.24 0.23 0.23 7.40 3.60 3.15 3.35
200 0.10 0.11 0.10 0.10 0.19 0.18 0.17 0.16 9.20 5.05 3.75 3.50
500 0.11 0.12 0.11 0.11 0.13 0.14 0.13 0.13 14.55 10.20 8.40 8.10
1000 0.09 0.09 0.09 0.09 0.11 0.11 0.10 0.10 11.40 5.80 5.25 5.15

α10 = 1.00, α20 = 1.00

100 -0.02 0.00 0.00 0.00 0.07 0.01 0.00 0.00 - - - -
200 -0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
500 -0.02 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
1000 -0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S11: Empirical power functions associated with testing different strengths of first factor in
the case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the
second factor is set to 1.00, n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is
computed under H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications
is set to R = 2000.
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Table S12: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case
of experiment 2A (two observed (uncorrelated) factors - Gaussian errors), when the strength of the
second factor is set to 0.85

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 1.20 1.17 1.07 1.02 1.59 1.53 1.44 1.38 4.75 3.35 2.70 2.30
200 1.45 1.37 1.33 1.31 1.61 1.52 1.48 1.46 9.40 7.70 7.45 6.65
500 1.32 1.23 1.16 1.13 1.39 1.31 1.22 1.21 14.05 11.35 8.10 9.20
1000 1.27 1.20 1.13 1.11 1.31 1.24 1.17 1.15 16.90 11.75 8.30 7.15

α10 = 0.80, α20 = 0.85

100 0.71 0.70 0.62 0.58 1.04 1.03 0.95 0.91 17.90 17.75 16.90 18.00
200 0.97 0.90 0.87 0.86 1.10 1.03 0.99 0.98 14.20 10.65 9.15 9.30
500 0.92 0.87 0.82 0.80 0.98 0.92 0.87 0.86 13.05 9.10 7.20 6.70
1000 0.85 0.81 0.77 0.76 0.89 0.84 0.79 0.78 18.70 13.00 7.95 7.65

α10 = 0.85, α20 = 0.85

100 0.69 0.69 0.64 0.63 0.89 0.89 0.82 0.81 11.20 10.65 7.85 7.70
200 0.61 0.57 0.57 0.54 0.72 0.68 0.67 0.65 6.55 4.20 3.35 3.55
500 0.53 0.50 0.47 0.46 0.58 0.55 0.51 0.50 12.30 9.55 6.60 7.95
1000 0.50 0.47 0.45 0.44 0.52 0.50 0.47 0.46 11.25 8.10 5.95 5.10

α10 = 0.90, α20 = 0.85

100 0.41 0.40 0.40 0.37 0.56 0.54 0.54 0.51 5.00 3.20 3.30 2.60
200 0.28 0.26 0.25 0.24 0.38 0.36 0.35 0.34 13.05 13.15 12.60 12.60
500 0.30 0.29 0.27 0.26 0.33 0.32 0.30 0.30 9.50 8.40 7.10 7.85
1000 0.28 0.28 0.26 0.26 0.30 0.29 0.28 0.27 11.10 9.45 6.65 6.00

α10 = 0.95, α20 = 0.85

100 0.08 0.08 0.07 0.07 0.25 0.24 0.23 0.23 5.30 3.90 2.80 3.05
200 0.11 0.11 0.11 0.10 0.19 0.18 0.17 0.17 7.25 5.50 4.00 4.10
500 0.12 0.12 0.11 0.11 0.14 0.14 0.13 0.13 12.15 8.15 7.45 7.70
1000 0.09 0.10 0.09 0.09 0.11 0.11 0.10 0.10 8.05 6.55 5.30 5.10

α10 = 1.00, α20 = 0.85

100 -0.01 0.00 0.00 0.00 0.05 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S3 of the main paper. The factors,

f1, f2, have correlation given by ρ12 = corr(f1, f2) = 0.0.
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Table S13: Empirical power functions associated with testing different strengths of first factor in
the case of experiment 2B (two observed (uncorrelated) factors - non-Gaussian errors), when the
strength of the second factor is set to 0.85, n = 100, 200, 500, 1000 and T = 200

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 1.20 1.13 1.08 1.04 1.58 1.50 1.46 1.41 4.25 2.80 3.25 2.30
200 1.43 1.39 1.30 1.31 1.60 1.55 1.45 1.47 9.85 7.70 7.00 7.55
500 1.31 1.23 1.17 1.14 1.38 1.30 1.24 1.21 13.50 10.25 8.20 7.20
1000 1.27 1.18 1.12 1.11 1.32 1.22 1.16 1.15 17.40 11.05 7.45 7.60

α10 = 0.80, α20 = 0.85

100 0.71 0.66 0.63 0.61 1.03 1.00 0.96 0.95 17.60 18.75 18.15 19.45
200 0.96 0.93 0.85 0.86 1.09 1.05 0.97 0.99 13.05 11.35 9.20 9.75
500 0.91 0.87 0.82 0.80 0.97 0.92 0.87 0.86 12.00 9.25 5.95 7.40
1000 0.86 0.81 0.76 0.76 0.89 0.83 0.79 0.78 18.50 11.00 8.85 7.80

α10 = 0.85, α20 = 0.85

100 0.69 0.67 0.64 0.62 0.88 0.86 0.83 0.81 9.65 9.40 7.70 7.35
200 0.62 0.59 0.54 0.54 0.72 0.69 0.65 0.65 5.95 3.90 4.10 3.05
500 0.52 0.50 0.47 0.46 0.56 0.54 0.51 0.51 10.60 7.70 7.35 7.75
1000 0.50 0.47 0.45 0.44 0.53 0.49 0.47 0.46 12.45 8.40 5.45 5.40

α10 = 0.90, α20 = 0.85

100 0.40 0.40 0.38 0.36 0.56 0.55 0.53 0.51 5.10 3.70 3.55 3.05
200 0.28 0.26 0.23 0.24 0.39 0.36 0.33 0.34 14.55 12.45 13.20 13.35
500 0.29 0.29 0.27 0.26 0.32 0.32 0.30 0.29 9.45 8.35 6.85 6.20
1000 0.28 0.27 0.26 0.25 0.30 0.28 0.27 0.27 12.90 8.25 6.50 6.05

α10 = 0.95, α20 = 0.85

100 0.07 0.08 0.07 0.06 0.25 0.24 0.24 0.22 5.70 3.40 3.40 2.75
200 0.11 0.11 0.10 0.10 0.18 0.18 0.17 0.17 8.30 4.00 3.85 4.45
500 0.11 0.12 0.11 0.11 0.14 0.14 0.13 0.13 11.90 8.60 8.85 7.40
1000 0.10 0.10 0.09 0.09 0.11 0.11 0.10 0.10 9.65 5.55 5.65 5.05

α10 = 1.00, α20 = 0.85

100 -0.01 0.00 0.00 0.00 0.06 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.04 0.01 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper. The factors,

f1, f2, have correlation given by ρ12 = corr(f1, f2) = 0.0.
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Table S14: Bias, RMSE and Size (×100) of estimating the strength of strongest factor in the case of
experiment 3A (unobserved single factor - with Gaussian errors instead) using cross section average

Bias (×100) RMSE (×100) Size (×100)

n\T 120 200 500 1000 120 200 500 1000 120 200 500 1000

α10 = 0.75

100 2.35 2.75 4.29 6.62 2.80 3.17 4.66 6.90 26.05 35.45 71.55 97.70
200 2.04 2.14 2.59 3.48 2.29 2.37 2.81 3.68 29.70 33.55 51.10 82.55
500 1.61 1.55 1.58 1.82 1.75 1.68 1.69 1.93 30.70 28.60 29.25 44.95
1000 1.47 1.41 1.36 1.42 1.57 1.48 1.42 1.48 31.60 27.70 24.85 29.30

α10 = 0.80

100 1.27 1.44 2.16 3.30 1.63 1.77 2.48 3.54 28.25 31.65 55.20 86.05
200 1.21 1.25 1.41 1.78 1.38 1.40 1.56 1.91 25.05 26.20 35.15 55.40
500 1.02 0.98 0.97 1.05 1.10 1.05 1.03 1.11 20.50 17.80 15.60 22.45
1000 0.93 0.89 0.85 0.86 0.97 0.92 0.88 0.89 25.05 21.70 15.55 18.35

α10 = 0.85

100 0.92 0.99 1.25 1.71 1.12 1.19 1.45 1.89 19.25 23.20 38.35 61.50
200 0.71 0.72 0.75 0.89 0.83 0.83 0.86 1.00 10.55 10.55 11.50 19.95
500 0.56 0.54 0.52 0.54 0.61 0.59 0.56 0.58 14.60 11.85 8.65 9.85
1000 0.52 0.50 0.47 0.48 0.55 0.53 0.49 0.50 14.30 11.40 6.20 7.55

α10 = 0.90

100 0.50 0.52 0.62 0.77 0.65 0.67 0.77 0.91 7.70 8.15 13.50 21.55
200 0.31 0.32 0.32 0.36 0.41 0.42 0.40 0.45 13.85 12.50 10.85 13.05
500 0.31 0.30 0.28 0.29 0.34 0.33 0.31 0.31 11.70 8.60 6.55 7.10
1000 0.29 0.29 0.27 0.27 0.31 0.30 0.28 0.28 12.55 10.60 7.90 7.65

α10 = 0.95

100 0.11 0.11 0.15 0.18 0.27 0.27 0.30 0.33 6.05 5.25 7.30 9.25
200 0.13 0.13 0.12 0.13 0.20 0.20 0.19 0.20 7.80 6.40 5.95 6.80
500 0.12 0.12 0.11 0.11 0.15 0.14 0.13 0.13 12.45 8.00 7.80 7.85
1000 0.10 0.10 0.09 0.09 0.11 0.11 0.10 0.10 8.20 6.30 4.75 4.40

α10 = 1.00

100 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 - - - -
200 -0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 - - - -
500 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -
1000 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 1. α0 = α10 is estimated by regressing

observations, xit, on an intercept and the cross section averages of xit, x̄t = n−1∑n
i=1 xit, for

t = 1, 2, . . . , T .

S25



Figure S12: Empirical power functions associated with testing different strengths of strongest factor
in the case of experiment 3A (unobserved single factor - with Gaussian errors instead) using cross
section average, when n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is
computed under H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications
is set to R = 2000.
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Table S15: Bias and RMSE (×10, 000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - with Gaussian errors instead) using cross section average,
when α10 = 1.00

Bias (×10, 000) RMSE (×10, 000)

n\T 120 200 500 1000 120 200 500 1000

α10 = 1.00, α20 = 0.51

100 -0.58 -0.02 0.00 0.00 3.55 0.69 0.00 0.00
200 -0.88 -0.03 0.00 0.00 3.16 0.52 0.00 0.00
500 -0.84 -0.05 0.00 0.00 2.00 0.42 0.00 0.00
1000 -0.89 -0.05 0.00 0.00 1.67 0.26 0.00 0.00

α10 = 1.00, α20 = 0.75

100 -0.71 -0.08 0.00 0.00 4.00 1.29 0.00 0.00
200 -0.90 -0.02 0.00 0.00 3.18 0.47 0.00 0.00
500 -0.84 -0.06 0.00 0.00 2.00 0.44 0.00 0.00
1000 -0.88 -0.05 0.00 0.00 1.63 0.27 0.00 0.00

α10 = 1.00, α20 = 0.95

100 -1.45 -0.16 0.00 0.00 5.96 1.89 0.00 0.00
200 -1.74 -0.15 0.00 0.00 4.89 1.20 0.00 0.00
500 -1.91 -0.17 0.00 0.00 3.72 0.83 0.00 0.00
1000 -1.86 -0.18 0.00 0.00 3.72 0.83 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -0.01 0.00 0.00 0.00 0.49 0.00 0.00 0.00
200 -0.01 0.00 0.00 0.00 0.30 0.00 0.00 0.00
500 -0.01 0.00 0.00 0.00 0.14 0.00 0.00 0.00
1000 -0.01 0.00 0.00 0.00 0.13 0.00 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table S3.

α0 = max(α10, α20) is estimated by regressing observations, xit,

on an intercept and the cross section average of xit, x̄t = n−1∑n
i=1 xit,

for t = 1, 2, . . . , T .
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Table S16: Bias and RMSE (×10, 000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - with Gaussian errors instead) using cross section average,
when α10 = 0.95

Bias (×100) RMSE (×100)

n\T 120 200 500 1000 120 200 500 1000

α10 = 0.95, α20 = 0.51

100 0.18 0.23 0.38 0.58 0.35 0.40 0.54 0.71
200 0.15 0.17 0.22 0.31 0.24 0.25 0.30 0.38
500 0.13 0.13 0.14 0.16 0.16 0.16 0.17 0.20
1000 0.11 0.11 0.10 0.11 0.12 0.12 0.12 0.13

α10 = 0.95, α20 = 0.75

100 1.28 1.53 1.74 1.78 1.42 1.62 1.81 1.85
200 0.98 1.26 1.51 1.55 1.10 1.33 1.54 1.58
500 0.61 0.83 1.19 1.27 0.71 0.91 1.21 1.28
1000 0.41 0.60 0.95 1.07 0.51 0.67 0.97 1.08

α10 = 0.95, α20 = 0.95

100 3.99 4.05 4.04 4.06 4.01 4.06 4.06 4.08
200 3.88 3.94 3.95 3.96 3.89 3.95 3.96 3.97
500 3.74 3.82 3.83 3.83 3.74 3.82 3.83 3.83
1000 3.63 3.71 3.73 3.72 3.63 3.72 3.73 3.73

α10 = 0.95, α20 = 1.00

100 -0.02 0.00 0.00 0.00 0.06 0.02 0.00 0.00
200 -0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.00
500 -0.02 0.00 0.00 0.00 0.04 0.01 0.00 0.00
1000 -0.02 0.00 0.00 0.00 0.03 0.01 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table S3.

α0 = max(α10, α20) is estimated by regressing observations, xit,

on an intercept and the cross section averages of xit, x̄t = n−1∑n
i=1 xit,

for t = 1, 2, . . . , T .
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Table S17: Bias and RMSE (×10, 000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - non-Gaussian errors) using first principal component, when
α10 = 1.00

Bias (×10, 000) RMSE (×10, 000)

n\T 120 200 500 1000 120 200 500 1000

α10 = 1.00, α20 = 0.51

100 -11.87 -8.37 -5.52 -4.55 55.32 41.65 28.74 23.02
200 -5.53 -4.60 -3.53 -2.85 30.40 26.61 21.33 16.85
500 -1.86 -2.60 -1.38 -1.14 14.03 16.97 10.93 9.44
1000 -0.97 -0.65 -0.66 -0.74 8.56 6.59 6.82 6.32

α10 = 1.00, α20 = 0.75

100 -9.97 -7.43 -4.27 -3.26 45.05 39.65 24.70 20.09
200 -5.93 -3.70 -2.84 -1.80 32.39 22.91 17.11 12.37
500 -2.28 -2.15 -1.50 -1.07 14.43 15.43 10.93 8.00
1000 -1.01 -1.11 -0.67 -0.41 8.14 8.54 6.04 4.27

α10 = 1.00, α20 = 0.95

100 -2.20 -0.44 -0.01 0.00 13.29 6.06 0.49 0.00
200 -1.93 -0.34 -0.04 0.00 6.36 3.26 1.94 0.00
500 -1.67 -0.21 -0.03 -0.01 5.01 2.00 1.39 0.36
1000 -1.61 -0.23 0.00 0.00 5.01 2.00 1.39 0.36

α10 = 1.00, α20 = 1.00

100 -0.57 0.00 0.00 0.00 15.11 0.00 0.00 0.00
200 -0.03 0.00 0.00 0.00 1.11 0.00 0.00 0.00
500 -0.02 0.00 0.00 0.00 0.23 0.00 0.00 0.00
1000 -0.02 0.00 0.00 0.00 0.16 0.00 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table 3.

α0 = max(α10, α20) is estimated by regressing observations, xit,

on an intercept and the first principal component of xit, i = 1, 2, . . . , n,

t = 1, 2, . . . , T .
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Table S18: Bias and RMSE (×10, 000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - non-Gaussian errors) using first principal component, when
α10 = 0.95

Bias (×100) RMSE (×100)

n\T 120 200 500 1000 120 200 500 1000

α10 = 0.95, α20 = 0.51

100 3.15 3.34 3.72 3.94 3.32 3.49 3.83 4.03
200 3.50 3.65 3.94 4.14 3.59 3.73 4.00 4.18
500 3.70 3.90 4.17 4.33 3.78 3.96 4.20 4.36
1000 3.86 4.02 4.28 4.43 3.93 4.07 4.31 4.45

α10 = 0.95, α20 = 0.75

100 3.29 3.46 3.78 3.98 3.42 3.57 3.86 4.05
200 3.54 3.70 4.01 4.19 3.62 3.77 4.05 4.22
500 3.77 3.97 4.22 4.38 3.83 4.01 4.25 4.40
1000 3.89 4.07 4.34 4.48 3.95 4.10 4.35 4.49

α10 = 0.95, α20 = 0.95

100 4.15 4.17 4.16 4.17 4.17 4.19 4.18 4.20
200 4.12 4.14 4.13 4.13 4.14 4.15 4.14 4.14
500 4.12 4.12 4.15 4.17 4.13 4.14 4.17 4.19
1000 4.11 4.15 4.20 4.26 4.12 4.17 4.22 4.27

α10 = 0.95, α20 = 1.00

100 -0.02 0.00 0.00 0.00 0.16 0.05 0.00 0.00
200 -0.02 0.00 0.00 0.00 0.06 0.02 0.00 0.00
500 -0.02 0.00 0.00 0.00 0.04 0.04 0.00 0.00
1000 -0.02 0.00 0.00 0.00 0.03 0.02 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table 3.

α0 = max(α10, α20) is estimated by regressing observations, xit,

on an intercept and the first principal component of xit, i = 1, 2, . . . , n,

t = 1, 2, . . . , T .
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Table S19: Bias and RMSE (×10, 000) of estimating factor strength in the case of experiment 4
(observed misspecified single factor - Gaussian errors) when set to 1.00 and true DGP contains two
uncorrelated factors

Bias (×10, 000) RMSE (×10, 000)

n\T 120 200 500 1000 120 200 500 1000

α10 = 1.00, α20 = 0.75

100 -1.88 -0.10 -0.01 0.00 7.53 1.46 0.49 0.00
200 -1.61 -0.09 0.00 0.00 4.82 0.99 0.00 0.00
500 -1.51 -0.09 0.00 0.00 3.94 0.62 0.07 0.00
1000 -1.48 -0.09 0.00 0.00 2.88 0.38 0.00 0.00

α10 = 1.00, α20 = 0.80

100 -2.14 -0.12 0.00 0.00 8.37 1.62 0.00 0.00
200 -1.83 -0.14 0.00 0.00 5.43 1.20 0.00 0.00
500 -1.71 -0.11 0.00 0.00 4.81 0.65 0.00 0.00
1000 -1.71 -0.11 0.00 0.00 3.65 0.45 0.00 0.00

α10 = 1.00, α20 = 0.85

100 -2.67 -0.14 -0.01 0.00 10.25 1.76 0.49 0.00
200 -2.20 -0.14 0.00 0.00 6.41 1.36 0.00 0.00
500 -2.12 -0.15 0.00 0.00 6.36 0.86 0.07 0.00
1000 -2.05 -0.12 0.00 0.00 4.83 0.52 0.00 0.00

α10 = 1.00, α20 = 0.90

100 -2.90 -0.13 0.00 0.00 10.30 1.69 0.00 0.00
200 -2.37 -0.17 0.00 0.00 7.26 1.37 0.00 0.00
500 -2.46 -0.15 0.00 0.00 7.97 1.00 0.07 0.00
1000 -2.52 -0.14 0.00 0.00 6.40 0.56 0.00 0.00

α10 = 1.00, α20 = 0.95

100 -3.32 -0.17 -0.01 0.00 11.90 1.95 0.49 0.00
200 -2.99 -0.21 0.00 0.00 9.07 1.60 0.00 0.00
500 -3.00 -0.20 0.00 0.00 10.90 1.23 0.00 0.00
1000 -3.22 -0.19 0.00 0.00 9.01 0.76 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -3.93 -0.26 -0.01 0.00 13.64 2.39 0.49 0.00
200 -3.72 -0.23 0.00 0.00 11.47 1.72 0.00 0.00
500 -3.87 -0.24 0.00 0.00 15.24 1.28 0.00 0.00
1000 -4.13 -0.25 0.00 0.00 12.18 0.98 0.00 0.00

Notes: The parameters of the true DGP, (44), are generated

as described in Table S3 of the main paper. The factors, f1, f2, have

correlation given by ρ12 = corr(f1, f2) = 0.0. We set α10 = 1 and

α20 in the range [0.75, 1.00] with 0.05 increments. The misspecified model

assumes the existence of factor f1 only.

S31



Data construction and additional empirical results

S&P500 security returns

As reference country for this study we pick the United States and as equity market index of preference

we opt for the Standard & Poor’s (S&P) 500 index. In this respect, we consider the distinct monthly

composites of the S&P500 index from September 1989 to December 2017. Our analysis is based on

a rolling window sample scheme. We work with security returns defined as

rit = 100

(
Pit − Pi,t−1

Pit−1

)
+
DYit
12

, for i = 1, 2, . . . , nτ and t = 1, 2, . . . , T,

where Pit and DYit stand for the price and dividend yield of security i at time t, and τ = 1, 2, . . . , 340

denote the 10-year rolling samples of security returns.

Historical end-of month security price and dividend yield data, Pit andDYit, for i = 1, 2, . . . , nτ and t =

1, 2, . . . , T, are obtained from Thompson Reuters Datastream. We are grateful to Takashi Yama-

gata for providing part of the constructed dataset which is used in Pesaran and Yamagata (2017).

nτ represents all 500 stocks per monthly composition of the S&P500 from 09/1989 to 12/2017 as

displayed at the end of each month and T expands from 31/01/1950 to 31/12/2017. For exam-

ple, code LS&PCOMP1210 will give the 500 constituents of the S&P500 index as of December

2010. Pit is the price of security i at the market close of the last day of the month (t), ad-

justed for subsequent capital actions. DYit is the dividend per share as a percentage of the share

price based on an anticipated annual dividend and excludes special or one-off dividends. Both

Pit and DYit, for i = 1, 2, . . . , nτ , t = 1, 2, . . . , T and τ = 1, 2, . . . , 340 are obtained at the de-

fault 4 decimal places for the US market. The codes used are DPL#(CFM#(x(P#S),VAL),4) and

DPL#(CFM#(x(DY#S),VAL),4) for price and dividend yield respectively. Note that 499 securities

were downloaded for November 20, 1999 and September 30, 2008. It is confirmed on Standard &

Poor’s website that the S&P 500 index on these days was based on 499 securities.

SW macroeconomic dataset

The SW macroeconomic dataset that we use extends from 1959Q1-2019Q2 and is an updated version

of the dataset compiled originally by Stock and Watson (2012). We opted for a time dimension

commencing in 1988Q1 in order to obtain a balanced panel. We excluded three variables as they

recorded missing values beyond 1988Q1. These are: (1) Manufacturers’ new orders, consumer goods

and materials, (2) Case-Shiller 10 City average deflated by PCEPILFE, and (3) Case-Shiller 20 City

average deflated by PCEPILFE.

Additional empirical results

The table and graphs that follow show estimates of factor strengths associated with the asset pricing

models considered in Section 6 of the main paper:
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Table S20: Ranking of all 145 factors (plus the market factor) in terms of the % of months their
estimated strengths exceed the threshold of 0.90 during the full sample period of September 1989 to
December 2017 and corresponding time averages of α̂s,τ , s = 1, 2, . . . , 145, over different subsamples

% of months when
α̂s,τ > 0.90 over: Time averages of α̂s,τ over:

September 1989 - September 1999 - September 2009 -
Factor Full sample Full sample August 1999 August 2009 December 2017
Market 100.0 0.990 0.999 0.974 0.997
Leverage 37.9 0.827 0.739 0.932 0.808
Sales to cash 37.9 0.817 0.716 0.936 0.793
Cash flow-to-price 37.9 0.832 0.765 0.933 0.792
Net debt-to-price 37.9 0.838 0.753 0.936 0.823
Earnings to price 37.9 0.811 0.743 0.935 0.745
Net payout yield 37.6 0.844 0.769 0.932 0.829
Years since first Compustat coverage 37.6 0.828 0.724 0.935 0.823
Cash flow to price ratio 37.6 0.818 0.737 0.934 0.775
Quick ratio 37.4 0.835 0.782 0.936 0.777
Altman’s Z-score 37.4 0.828 0.740 0.931 0.808
Payout yield 37.1 0.851 0.785 0.932 0.831
Earnings volatility 37.1 0.852 0.779 0.936 0.840
Change in shares outstanding 37.1 0.805 0.671 0.932 0.815
Enterprise book-to-price 36.8 0.830 0.741 0.933 0.812
Cash holdings 36.8 0.826 0.740 0.935 0.797
Dividend to price 36.5 0.846 0.789 0.932 0.811
Depreciation / PP&E 36.5 0.851 0.813 0.930 0.801
Kaplan-Zingales Index 36.2 0.822 0.731 0.930 0.801
R&D-to-sales 36.2 0.815 0.731 0.923 0.786
Cash flow volatility 36.2 0.783 0.617 0.924 0.812
Accrual volatility 36.2 0.779 0.613 0.926 0.803
Current ratio 35.9 0.846 0.815 0.926 0.785
Idiosyncratic return volatility 35.6 0.851 0.799 0.923 0.828
Debt capacity/firm tangibility 35.6 0.829 0.735 0.920 0.832
Maximum daily return 35.3 0.838 0.764 0.927 0.821
Bid-ask spread 35.3 0.847 0.786 0.931 0.821
Cash productivity 35.3 0.819 0.751 0.911 0.789
Return volatility 34.7 0.844 0.786 0.922 0.820
Robust Minus Weak 34.7 0.773 0.694 0.910 0.705
Whited-Wu Index 34.7 0.781 0.697 0.913 0.724
New equity issue 34.7 0.756 0.620 0.912 0.732
Sales to price 34.7 0.832 0.768 0.919 0.804
High Minus Low 34.4 0.830 0.757 0.926 0.802
Vol. of liquidity (share turnover) 34.4 0.846 0.786 0.920 0.830
Market Beta 34.1 0.859 0.824 0.921 0.828
Zero trading days 34.1 0.855 0.808 0.918 0.836
Share turnover 34.1 0.857 0.815 0.917 0.834
Advertising Expense-to-market 34.1 0.810 0.707 0.914 0.809
Net equity finance 34.1 0.841 0.797 0.916 0.803
Asset turnover 34.1 0.788 0.643 0.911 0.815
Net external finance 32.1 0.827 0.781 0.900 0.793
Absolute accruals 31.8 0.818 0.750 0.903 0.799
Growth in long-term debt 31.5 0.767 0.678 0.902 0.711
Industry-adjusted book to market 30.9 0.810 0.771 0.901 0.748
Working capital accruals 30.6 0.812 0.748 0.900 0.783
HML Devil 30.3 0.820 0.747 0.905 0.805
Change in Net Financial Assets 29.4 0.697 0.581 0.907 0.583
Chg in Current Oper. Liabilities 28.2 0.773 0.710 0.904 0.690
Sin stocks 27.6 0.749 0.603 0.884 0.762
Sales to receivables 27.4 0.820 0.781 0.896 0.777
Employee growth rate 22.6 0.773 0.710 0.898 0.699
Net Operating Assets 16.8 0.778 0.664 0.900 0.767
HXZ Investment 13.2 0.797 0.739 0.892 0.753
Chg in Net Non-current Oper. Assets 8.2 0.791 0.729 0.886 0.753
Financial statements score 7.9 0.738 0.700 0.885 0.605
R&D Expense-to-market 7.6 0.804 0.770 0.883 0.751
R&D increase 5.3 0.742 0.676 0.873 0.664
Industry momentum 2.9 0.772 0.748 0.840 0.721
Abnormal Corporate Investment 2.9 0.674 0.497 0.866 0.654
Sales growth 2.4 0.761 0.706 0.876 0.690
Conservative Minus Aggressive 1.8 0.766 0.716 0.860 0.714
Momentum 1.2 0.755 0.715 0.793 0.758
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Table S20 continued from previous page

% of months when
α̂s,τ > 0.90 over: Time averages of α̂s,τ over:

September 1989 - September 1999 - September 2009 -
Factor Full sample Full sample August 1999 August 2009 December 2017
Change in Short- term Investments 0.3 0.625 0.377 0.801 0.712
Return on net operating assets 0.3 0.764 0.645 0.877 0.773
Investment Growth 0.0 0.627 0.565 0.698 0.617
Seasonality 0.0 0.743 0.648 0.844 0.735
Illiquidity 0.0 0.549 0.433 0.578 0.652
Liquidity 0.0 0.674 0.624 0.632 0.787
Small Minus Big 0.0 0.774 0.766 0.846 0.697
Number of earnings increases 0.0 0.738 0.658 0.883 0.659
HXZ Profitability 0.0 0.778 0.748 0.835 0.746
Share price 0.0 0.706 0.721 0.673 0.727
Industry-adj. cash flow to price ratio 0.0 0.672 0.592 0.766 0.655
Industry-adjust. chg in employees 0.0 0.626 0.599 0.684 0.588
Change in 6-month momentum 0.0 0.642 0.654 0.602 0.676
Earnings announcement return 0.0 0.514 0.511 0.556 0.468
Revenue surprise 0.0 0.702 0.654 0.818 0.620
Return on assets 0.0 0.691 0.699 0.764 0.594
Betting Against Beta 0.0 0.767 0.645 0.872 0.787
Quality Minus Junk 0.0 0.793 0.774 0.855 0.740
Dollar trading volume 0.0 0.723 0.611 0.864 0.688
Vol. of liquidity (dollar trading volume) 0.0 0.619 0.580 0.647 0.632
Price delay 0.0 0.763 0.770 0.778 0.737
Book Asset Liquidity 0.0 0.833 0.811 0.866 0.821
Abnormal earnings announc. volume 0.0 0.763 0.728 0.806 0.751
Unexpected quarterly earnings 0.0 0.632 0.636 0.619 0.641
Cash flow to debt 0.0 0.690 0.645 0.747 0.674
% change in current ratio 0.0 0.606 0.448 0.817 0.541
% change in quick ratio 0.0 0.595 0.445 0.783 0.549
% change sales-to-inventory 0.0 0.574 0.500 0.756 0.446
Sales to inventory 0.0 0.770 0.832 0.728 0.746
% change in depreciation 0.0 0.647 0.430 0.834 0.683
Capital turnover 0.0 0.773 0.795 0.771 0.749
% chg in gross margin - % chg in sales 0.0 0.581 0.534 0.626 0.585
% chg in sales - % chg in inventory 0.0 0.571 0.536 0.704 0.453
% chg in sales - % chg in A/R 0.0 0.621 0.568 0.749 0.529
% chg in sales - % chg in SG&A 0.0 0.579 0.522 0.663 0.545
Effective Tax Rate 0.0 0.531 0.551 0.478 0.569
Labor Force Efficiency 0.0 0.568 0.517 0.573 0.623
Ohlson’s O-score 0.0 0.690 0.645 0.733 0.694
Industry adjg % chg in capital expend. 0.0 0.642 0.467 0.786 0.678
Change in inventory 0.0 0.677 0.744 0.684 0.588
Change in tax expense 0.0 0.670 0.640 0.708 0.659
Growth in long term net oper. assets 0.0 0.659 0.589 0.645 0.759
Order backlog 0.0 0.783 0.717 0.831 0.806
Chg in Long-term Net Operating Assets 0.0 0.731 0.639 0.834 0.719
Corporate investment 0.0 0.710 0.650 0.803 0.672
Changes in Net Operating Assets 0.0 0.529 0.481 0.577 0.528
Tax income to book income 0.0 0.693 0.544 0.848 0.686
Growth in common shareholder equity 0.0 0.757 0.697 0.814 0.761
Chg in Current Operating Assets 0.0 0.723 0.760 0.802 0.584
Chg in Net Non-cash Working Capital 0.0 0.639 0.691 0.671 0.536
Chg in Non-current Operating Assets 0.0 0.725 0.651 0.811 0.709
Chg in Non-current Oper. Liabilities 0.0 0.711 0.638 0.768 0.732
Total accruals 0.0 0.659 0.585 0.769 0.616
Change in Financial Liabilities 0.0 0.648 0.604 0.797 0.523
Change in Book Equity 0.0 0.776 0.706 0.857 0.764
Financial statements score 0.0 0.729 0.681 0.759 0.751
Growth in capital expenditures 0.0 0.622 0.566 0.602 0.713
Three-year Investment Growth 0.0 0.749 0.664 0.819 0.766
Composite Equity Issuance 0.0 0.784 0.774 0.833 0.737
Net debt finance 0.0 0.668 0.603 0.844 0.535
Revenue Surprises 0.0 0.622 0.692 0.583 0.584
Industry Concentration 0.0 0.821 0.820 0.870 0.763
Return on invested capital 0.0 0.734 0.754 0.827 0.600
Chg in PPE and Inventory-to-assets 0.0 0.697 0.663 0.675 0.763
Composite Debt Issuance 0.0 0.696 0.738 0.735 0.597
Profit margin 0.0 0.773 0.798 0.761 0.758
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Table S20 continued from previous page

% of months when
α̂s,τ > 0.90 over: Time averages of α̂s,τ over:

September 1989 - September 1999 - September 2009 -
Factor Full sample Full sample August 1999 August 2009 December 2017
Industry-adj. change in asset turnover 0.0 0.616 0.650 0.618 0.573
Industry-adj. change in profit margin 0.0 0.521 0.427 0.583 0.559
Capital expenditures and inventory 0.0 0.702 0.664 0.688 0.765
Industry-adj. Real Estate Ratio 0.0 0.810 0.751 0.872 0.807
Percent accruals 0.0 0.727 0.704 0.792 0.678
Operating Leverage 0.0 0.801 0.784 0.817 0.803
Inventory Growth 0.0 0.626 0.714 0.552 0.608
Percent Operating Accruals 0.0 0.755 0.726 0.824 0.707
Enterprise multiple 0.0 0.722 0.742 0.704 0.719
Gross profitability 0.0 0.774 0.792 0.774 0.754
Organizational Capital 0.0 0.787 0.785 0.784 0.791
Convertible debt indicator 0.0 0.767 0.798 0.809 0.680
Long-Term Reversal 0.0 0.565 0.518 0.590 0.591
1-month momentum 0.0 0.714 0.767 0.647 0.732
6-month momentum 0.0 0.646 0.515 0.727 0.706
36-month momentum 0.0 0.732 0.726 0.798 0.660
Growth in advertising expense 0.0 0.622 0.501 0.812 0.540

Notes: All factor strength estimates, α̂s,τ , where s = 1, 2, . . . , 145, are computed using (7) for 10-year rolling windows
τ = 1, 2, . . . , 340.
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Figure S23: Correlation coefficients between the market risk factor and the cross section average of
S&P500 securities’ excess returns over 10-year rolling windows

Notes: The correlation coefficients are computed over τ = 1, 2, . . . , 340 rolling windows.

.

S46


