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Abstract

This paper proposes an estimator of factor strength and establishes its consistency and asymp-
totic distribution. The proposed estimator is based on the number of statistically significant factor
loadings, taking account of the multiple testing problem. We focus on the case where the factors
are observed which is of primary interest in many applications in macroeconomics and finance.
We also consider using cross section averages as a proxy in the case of unobserved common fac-
tors. We face a fundamental factor identification issue when there are more than one unobserved
common factors. We investigate the small sample properties of the proposed estimator by means
of Monte Carlo experiments under a variety of scenarios. In general, we find that the estimator,
and the associated inference, perform well. The test is conservative under the null hypothesis,
but, nevertheless, has excellent power properties, especially when the factor strength is sufficiently
high. Application of the proposed estimation strategy to factor models of asset returns shows that
out of 146 factors recently considered in the finance literature, only the market factor is truly
strong, while all other factors are at best semi-strong, with their strength varying considerably
over time. Similarly, we only find evidence of semi-strong factors in an updated version of the

Stock and Watson (2012) macroeconomic dataset.
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1 Introduction

Interest in the analysis of cross-sectional dependence (CSD), applied to households, firms, markets,
regional and national economies, has become prominent over the past decade, especially so in the
aftermath of the latest financial crisis and its important implications for the global economy. Re-
searchers in many fields have turned to network theory, spatial and factor models, to obtain a better
understanding of the extent, nature and strength of such cross dependencies. Bailey et al. (2016)
(BKP hereafter) give a thorough account of the rationale and motivation behind the need for deter-
mining the extent of CSD, be it in finance, micro or macroeconomics. To estimate the degree of CSD
in a panel dataset, BKP analyse the rate at which the variance of the cross section average of obser-
vations in that panel tends to zero and show that it depends on the degree or exponent of CSD which
they denote by a. They explore a latent factor model setting as a vehicle for characterising strong
and semi-strong covariance structures as defined in Chudik et al. (2011). They relate these to the
degree of pervasiveness of factors in unobserved factor models often used in the literature to model
CSD. In a follow up paper to BKP, Bailey et al. (2019) extend their analysis in two respects. First,
they consider a more generic setting which does not require a common factor representation and
holds more generally for both moderate and sizeable CSD. They achieve this by directly considering
the significance of individual pair-wise correlations and base the estimation of o on the proportion
of statistically significant correlations. Second, they show that their estimator also applies to the
residuals obtained from panel data regressions.

The estimators developed in Bailey et al. (2016, 2019) are helpful as overall measures of CSD, but
they do not provide information on the strength of individual factors which is of interest, for example,
in the pricing of risk in empirical finance and in identifying dominant factors in macroeconomic
fluctuations. This paper relates the estimation of factor strength to the degree to which the factor
in question has pervasive effects on all the units in the dataset. As a simple example consider the
following single factor model

T =ci+vife +uy, 1=1,2,...,n;t=1,2,...,T, (1)

where f, is a known factor, ¢; is the unit-specific effect, u; ~ IID(0,02) is an idiosyncratic error,
and -y; is the factor loading for unit ¢. The strength of f; can be characterised by the degree of
pervasiveness of its effects (i.e. the number of non-zero factor loadings), and measured by the rate
at which > 7" | 42 rises with n. Denoting this rate by a, the standard large n and T latent factor
models assume that o = 1, as required, for example, by Assumption B in Bai and Ng (2002) and Bai
(2003). At the other extreme, a factor is deemed to be weak if 0 < o < 0.5. This case is studied in
Onatski (2012). Similar notions of factor strength are also used in recent financial studies by Lettau
and Pelger (2018) and Anatolyev and Mikusheva (2019). In most empirical applications, the value
of o is unknown. Incorrectly setting it to @ = 1 can result in misleading inference. Also, as we shall
see, it is not possible to identify @ when the factor in question is weak and therefore, in effect, can
be absorbed into the error term with little consequence for the analysis of CSD. In most empirical
applications in finance and macroeconomics, the values of o that are of interest and of consequence,
are within the range o € (0.5,1]. As recently shown by Pesaran and Smith (2019), factor strengths
play a crucial role in the identification of risk premia in arbitrage asset pricing models, and determine
the rates at which risk premia can be estimated. The strength of macroeconomic shocks is also of
special interest, as its value has important bearing on forecasting and policy analysis. Contributions
in terms of factor selection and factor model estimation when « € (0.5,1] include Freyaldenhoven
(2019) and Uematsu and Yamagata (2019).



In this paper we propose an estimator of factor strength and establish its consistency and asymp-
totic distribution when « > 1/2. The proposed estimator is based on the number of statistically
significant factor loadings, taking account of the multiple tests being carried out. We find that it is
a powerful and highly accurate estimator, especially for higher levels of factor strength. Despite its
simplicity, the distribution of the estimator, being based on sums of random variables that follow,
potentially heterogeneous, Bernoulli distributions, is quite complicated and non-standard. While the
parameters of these distributions are hard to pin down, they can be bounded in such a way as to
provide both grounds for the validity of a central limit theorem for the asymptotically dominant part
of the estimator and an upper bound for the asymptotic variance. These two elements allow for the
construction of asymptotically conservative test statistics.

We focus on the case where the factors are observed, which is of primary interest in tackling
the empirical examples mentioned earlier, among many others. We also consider using cross section
averages as a proxy in the case of unobserved common factors. In practice, we face a significant factor
identification issue when there are more than one unobserved common factors. In the case of multiple
unobserved factor models, our contribution is best viewed as providing inferential information about
the exponent of the strongest factor, shared amongst the cross section units.

We investigate the small sample properties of the proposed estimator by means of Monte Carlo
experiments under a variety of scenarios. In general, we find that the estimator, and the associated
inference, perform well. The test is conservative under the null hypothesis, but, nevertheless, has
excellent power properties, especially when « is close to unity, even for moderate sample sizes.

We illustrate the relevance of our proposed estimator by means of two empirical applications,
using well known datasets in finance and macroeconomics. First, we consider a large number of
factors proposed in the finance literature for asset pricing. For example, Harvey and Liu (2019)
document over 400 such factors, and Feng et al. (2020) consider the problem of factor selection using
penalised regressions. In view of recent theoretical results in Pesaran and Smith (2019), our empirical
contribution focuses on the estimation of factor strengths, since factor selection is only meaningful
for asset pricing if the factors under consideration are sufficiently strong. We compute 10-year rolling
estimates of « (together with their standard error bands) for the excess market return (as a measure
of the market factor), and the remaining 145 factors considered by Feng et al. (2020). Out of the 146
factors considered, we find that only the market factor is sufficiently strong over all rolling windows,
with its average strength estimated to be around 0.99 over the full sample (from September 1989
to December 2017). In contrast, none of the other factors achieve strengths exceeding 0.90 over the
full sample, but over the sub-sample that includes the recent financial crisis as many as 48 (out of
145) have average strength estimated to lie between 0.9 and 0.94. Remarkably, the well-known size
and value factors introduced in Fama and French (1993) are not particularly prominent as compared
to cash and leverage factors. Further, of special interest is the high degree of time variation in the
estimates of factor strengths, which cannot be attributed to sampling variation, considering the high
precision with which the factor strengths are estimated, particularly when the true factor strength
is close to unity.

Our second empirical application considers an unobserved factor model and asks if there exists
any strong latent factor shared by the set of macroeconomic variables originally investigated by
Stock and Watson (2012). In particular, we consider an updated version of Stock and Watson
(SW) dataset covering 187 variables over the period 1988Q1-2019Q2. Although it is not possible to
separately identify the strengths of individual latent factors, we are able to show that the strength
of the strongest of the latent factors in the updated SW data set is around 0.94 which is sufficiently



high for the factor to be important for macroeconomic analysis, but yet statistically different from
1, usually assumed in the literature.

The rest of the paper is organised as follows: Section 2 introduces our proposed measure of
factor strength and develops the estimation and inference theory for the single factor case. A general
multi-factor set up is then considered in Section 3 which includes the main theoretical results of the
paper. Section 4 discusses the case of unobserved factors, and after highlighting the identification
problem involved, considers the estimation of the strength of the strongest factor implied by the
model. Sections 5 and 6 provide extensive simulation and empirical evidence of the performance of
our estimator. Section 7 provides some concluding remarks. Mathematical proofs are contained in
an appendix at the end of the document and further simulation and empirical results are provided
in an online supplement.

Notation: Generic positive finite constants are denoted by C;, for ¢ = 1,2,.... They can take
different values at different instances. If {f,} -, is a real sequence and {g,} -, is a sequence of
positive numbers, then f,, = O (gy), if there exists a positive finite constant C such that | f,,| /g, < Co
for all n. f, = o0(gn) if fn/gn — 0asn — oco. If {f,} 2, and {gn},-, are both positive sequences of
real numbers, then f, = © (gy) if there exist Ny > 1 and positive finite constants Cy and C1, such
that inf,>n, (fn/gn) = Co, and sup,,>n, (fn/9n) < C1. —q denotes convergence in distribution as
n, T — oo.

2 Estimation strategy

To illustrate the basic idea behind our estimation strategy we begin with a single factor model where
the factor is observed, and turn subsequently to the cases of multiple, observed or unobserved factors.

Suppose that T' observations are given, on n cross section units, namely {x;,i = 1,2,...,n,t =
1,2,...,T}, and follow the single factor model (1), repeated here for convenience:

Tt = ¢ + Vi ft + wit, (2)
where f;, t = 1,2,...,T is a known factor, ¢; is the unit-specific effect, uy ~ IID(0,0?) is an

idiosyncratic error, and -y; is the factor loading for unit ?. The factor loadings are assumed to be
non-zero for the first [n®] units, and zero for the rest, where [-] denotes the integer part function.
More specifically, suppose that, for some ¢ > 0,

|vi| > cas. fori=1,2,...,[n

“]

; 3)
7| = 0 a.s. for i = [nY] +1,[n% 4+ 2,...,n,

where « is the exponent of cross section dependence discussed in BKP.! The exponent a measures
the degree of pervasiveness or strength of the factor. It is important to reiterate that BKP focus
on estimating an overall measure of cross-sectional dependence in z;, without particular reference
to a single specific factor. They base their estimator on the variance of the cross-sectional average,
while noting the pros and cons of alternative approaches, based on other characteristics of x;;, such
as, e.g., the maximum eigenvalue of the covariance of x;;. Given the prominence of this maximum
eigenvalue as a basis for characterising CSD, they note existing work, as well as reasons for which a
formal eigenvalue analysis may not be promising for this purpose.

"More generally, we can have |vi| = ¢17'~ ™", with |y| < 1 and ¢; > 0, for i = [n®] + 1,[n*] + 2,...,n, in (3). But
for simplicity of exposition, we opt for |y;| = 0 a.s. instead.



As we noted above our aim is different. We wish to determine the strength of pervasiveness of
particular factors and use «, as defined through (3), as a tool for that purpose. To estimate o we
begin by running the least squares regressions of {mit}thl for each i = 1,2,...,n on an intercept and
fi to obtain

Tit = &+ Yir fe + Ui, t=1,2,...,T

where ¢;p and ;7 are the Ordinary Least Squares (OLS) estimates of this regression. Denote by
tir = Yir / s-e. (Jir) the t-statistic corresponding to ~;:

(EMO)Y2 5r  (FMA) Y2 (£ M,x;)

tir = - - , 4
’ oiT oiT )
where M, = I — T~ '77/ 7 is a T x 1 vector of ones, f = (f1, fo, ..., fr), Xi = (i1, Ti2,s - - ., 2iT),
and 6%, = T Zthl 2. Also assume that, for some ¢ > 0, T7'f'M,f > ¢, which is necessary for
identification of ;. Consider the proportion of regressions with statistically significant coefficients

Vi
n
ﬁ'nT = nil Z di,nT7 (5)
=1

where d@nT =1[|tir| > ¢p(n)],1(A) =1if A > 0, and zero otherwise, and the critical value function,

cp(n), is given by
p

cp(n) = &1 (1 - ﬁ) . (6)
Here p is the nominal size of the individual tests, § > 0 is the critical value exponent and ®~1()
denotes the inverse cumulative distribution function of the standard normal distribution.
Suppose that 7,7 > 0, and consider the following estimator of «

s
G =14 7T

Inn

In the rare case where 7,,7 = 0, we then set & = 0. Overall

v, if 7 > 0,
&:{a,lﬂ'T> (7)

0, if #pg = 0.

Clearly & € [0,1] a.s.; also, & and & are asymptotically equivalent since for o« > 0 then P(n 7,7 =
0) = 0 as n — oo.

Remark 1 It is tempting to argue in favour of using the proportion of non-zero loadings, m, instead

of the exponent o. The two measures are clearly related - m = n®~1

, and coincide only when o = 1.
But when o < 1, m becomes smaller and smaller as n — 0o, and eventually tends to 0, for all values
of « < 1. The rate at which m tends to zero with n is determined by o, and hence o is a more
discriminating measure of pervasiveness than w. It is also unclear how a particular value of m should
be chosen as a measure of pervasiveness. Unlike oo which can be chosen to be fixed in n, any choice
of ™ which is fixed in n requires « — 1 as n — oo, albeit at the very slow In(n) rate. Note that when

7 is set to 10 > 0, a fized value, then o = 1+ In(7°) /In(n), and o — 1 if 7¥ is fized in n.



2.1 Asymptotic distribution

Denote the true a by ag, let d? = 1(7; # 0) and note that D = > . d9 = n® (the integer part

i=1"

symbol is dropped for simplicity). Let
n
D1 =nmyr = Z di,nTa (8)
i=1

and note that Dyp /DY = né=0, Taking logs, we obtain

A DnT o ﬁnT —n
(lnn)(a—ao):ln<Do ) =In <1+W>

=In (1 + A, + BnT)
= AnT + BnT + Op (A,QIT) +0 (BELT) + Op (AnTBnT) +..., (9)

where

Apr = — : (10)
Y B (‘ZmT) —n
Byr = v : (11)

To motivate the proposed estimator and to simplify the derivations, here we assume o; is known and
u;; is Gaussian, and turn to the more general multi-factor case with non-Gaussian errors in Section
3. In this simple case we have the following lemmas proven in Appendix A.

Lemma 1 Let the model be given by (2) where (3) holds, o; is known and w; is a Gaussian mar-
tingale difference process for all i. Then, for some C7 > 0,

p(n —n*)

B pu—
nT n6+0¢0

+0 [exp (-T)], (12)

where p is the nominal size of the individual tests, and § is the exponent of the critical value function

defined in (6).

Lemma 2 Let the model be given by (2) where (3) holds, o; is known and u; is a Gaussian mar-
tingale difference process for all i. Then, in the case where ag < 1, for some C1 > 0,

Var (Anr) = Yn(ag) + O [n_a0/2 exp (—Tcl)} , (13)
where
n(ap) = p(n —n) p 020 (1 - %) . (14)

If ag =1, for some Cp > 0,
Var (Apr) = O [exp (—Tcl)] . (15)

As we note from the above lemmas, we need to distinguish between the two cases where ag = 1
and where ag < 1. In the former case, A,r —, 0 exponentially fast in 7', and overall

(Inn) (& —1) = O, [0 " exp (—=CoT)] + O [exp (=C1T)],



for some positive constants C; and Cy. Furthermore, in the case where ag < 1, using (13) and (14),
it follows that

Apr =0 [wn(ao)l/Q] +0 [n_O‘O/Q exp (—ClT/2)}
= 0, (n!/270/2700) 1.0 [~ 2 exp (~C1T/2)] .

Therefore, A, = 0p(1) if 6 > 1 — 20, which is in turn met if § > 0, for all values of oy > 1/2.

Remark 2 It is clear that the distribution of & experiences a form of degeneracy when ag =1, and
& tends to its true value of 1 exponentially fast. We refer to this property as ultraconsistency to
distinguish it from the more usual terminology of superconsistency that refers to rates of convergence
that are faster than the usual one of the square root of the sample size. Usually faster rates are
polynomial in the sample size and not exponential, and therefore the new term reflects this important
difference.

The above results suggest the following scaling of & when ag < 1:
Y2 (Inn) (& — ag) = ¥y Y2 Apr + 152 Bur + 0,(1).

Also, using (A.6) from Appendix A, we have

S (i) e

BnT noo - n5+a0

+ O lexp (—C1T)].
It is also easily seen that B, = o(1) if § > 1 — «.

Remark 3 Since 1/2 < ap < 1 (recall that the case of ag =1 is treated separately), then for values
of ag close to unity (from below) it is sufficient that § > 0, and for values of ag close to 1/2, we
need 6 > 1/2. In the absence of a priori knowledge of v, it is sufficient to set § = 1/2. In
practice, factors that are sufficiently strong with oy falling in the range [2/3,1] are likely to be of
greater interest, and for precise estimation of such factors it would be sufficient to set 6 = 1/4. Our
Monte Carlo results show that the estimates of factor strength are reasonably robust to the choice
of 8, so long as it is not too small and lies in the range 1/4 — 1/2. Alternatively, one can consider
various cross-validation methods to calibrate d.

Also, since [ty (ag)] Y2 App = Op(1), then [thn (crg)] 12 A%, = O, (Anr) = o(1). Using these

results we can now write

[tn(a0)] ™2 (Inn) (& — ag — ) = [Wn(@0)] ™2 Apr + 0p(1),

where
p(n —n°)
(Inn)ndteo’

Cn (040) =

Finally, since u;; are independent across 7, and czmT -F (chT) have zero means, then by a standard

martingale difference central limit theorem, we have (as n and T'— o0)

[¥n(00)] ™% Anp = [tn(a0)] "/ - Zn: [di,nT - K (Czi,nT>:| —a N(0,1).

ne«o
i=1



Hence,
[¥n (o)) % (Inn) [&@ — ag — Ga (@0)] —a N(0, 1), (16)
where

(o (ag) = 22 (a7)

(Inn) ndteo

To test Hy : @ = «g, we utilise the following score statistics where «q in the normalisation part of
the test is replaced by its estimator, &:
70[

Z&:ag —

(Inn) (& —ag) —p (n—n%) n~ (18)

[p(n =t =720 (1= )] 2

The null will be rejected if |z,| > cv, where cv is the critical value of the standard normal distribution
at the desired significance level (which need not be the same as p). For a two sided test at 5% level,
cv = 1.96.

3 A general treatment with a multi-factor model

As a generalisation of the above set up consider the multi-factor regressions
m
Tt = ci—l—Z’yijfjt—i—uit =¢ —I—'y;ft—i—uit, fori=1,2,...,nand t=1,2,...,T (19)
j=1

/ . .
where v, = (vi1, %2, - - - » Vim) » and we assume that the m-dimensional vector, fi= (f1¢, fot, - - fmt)s
is observed. We also assume that, for some unknown ordering of units over i,

|’Y’L‘j‘ > 0 a.S. fOI' Z = 1’27 e [najo]’
sl = 0 aus. for i = [n%9] + 1, [n%%] +2,....,m.

Then the following strategy may be employed to provide inference on «jg, for j = 1,2,...,m. For a
given unit ¢, consider the least squares regression of {xit}thl on the intercept and f;. &7 and 4,7 are
the OLS estimates of this regression. Denote by t;;7 = Jij7 / s.e. (Yij7), the t-statistic corresponding

to vij:
(fyl'oMF—jfj")il/z (f]{OMFiji)

tijT: ~ a]_12 ;Z.:LQ’ 5 1,
aiT
-1
fjo = (fj1, fi2s - - fir)'s xi = (win, @ia, ..., zip), Mp_, =1 —F_; (F',ijj> F.
F_J = (flo, v 7fj—lo; fj+107 v ,fmo)/, &iT =T" 1 Zt:l ﬁ%t, and ﬁit = T4t — éiT - ’%‘Tft-

Consider the total number of factor loadings of factor j, 7;;, that are statistically significant over
i=1,2,...,n

nT,J Zdw nT = Z L{|tijr| > cp(n)],

where 1(A4) = 1 if A > 0, and zero otherwise, and the critical value function that allows for the
multiple testing nature of the problem, ¢,(n), is given by

cp(n) =@~ (1 - %)



As before, p is the nominal size, § > 0 is the critical value exponent and ®~1(-) is the inverse
cumulative distribution function of the standard normal distribution. Let 7,7 ; be the fraction of
significant loadings of factor j, and note that 7,r; = DnT,j /n. As in the single factor case, we
consider the following estimator of o, for j =1,2,...,m

In

lnfrnT 1 . A~
1+ 2 if i >0,
i :{ o (20)

0, if 7pr; = 0.
We make the following assumptions:

Assumption 1 The error terms, u, and demeaned factors £y — E (f;), are martingale difference
processes with respect to Fi'y = o (Uit—1,Uit—2,...) and ftf_l = o (f;,fi_1,...), respectively, and
E{fi-E®)[E - Ef)]} =

ances, 0 < 02 < C < o0.

I,,. uy are independent over i, and of f;, and have constant vari-

Assumption 2 There exist sufficiently large positive constants Cy, Cy,and s > 0 such that
sup; ; Pr (|zi¢| > v) < Coexp (=C1v®), for all v >0, (21)
sup; , Pr (|fje| > v) < Coexp (—=C1v°), for all v > 0. (22)
Then, we have the following theorem:

Theorem 1 Consider model (19) with m observed factors and let Assumptions 1 and 2 hold. Then,
for any ajo <1, j=1,2,...,m,

Ya(ajo) ™% (Inn) (&5 — ajo) =4 N(0,0) (23)
for some C < 1, where
Yalajo) = p(n =m0 =020 (1 L) (24)

The above theorem provides the inferential basis for testing hypotheses on the true value of «;.
The proof of the theorem is provided in Appendix B. In the remarks below we discuss operational
matters concerning the above result and how to relax some of the assumptions of Theorem 1.

Remark 4 A test based on 1y (ajo) /% (Inn) (&; — ajo) will be conservative, in the sense that the
rejection probability under the null hypothesis will be bounded from above by the significance level.
The reason is that in general we cannot get an asymptotic approximation for the variance of &; — oo
but only an upper bound resulting in a conservative test.

Remark 5 Assumptions 1 and 2 can be relaxed. Rather than independence over i for u; in As-
sumption 1, one can assume some spatial mixing condition, which would still allow the central limit
theorem underlying (23), to hold. Further, the thin probability tails in Assumption 2 can be replaced
with a suitable moment condition in order to derive the variance bound needed to construct a test
statistic. We abstract from such complications by maintaining Assumption 2. The martingale dif-
ference assumption for fi simplifies the analysis and allows the use of the theory in the main part
of Chudik et al. (2018). Relaxing this to a mizing assumption is possible at the expense of further
mathematical complexity using, e.g., the results in the online appendiz of Chudik et al. (2018).



Remark 6 Our distributional result is stated only for ajo < 1. Similar arguments would apply for
the variance &; — ajo when ajo = 1. But the upper bound for the variance of &; — ajo would be
a function of nuisance parameters including ~;;. This is the case since the dominant term in the
variance is the one relating to units not affected by f;, when ajo < 1, and for these units, v;; = 0. But
when «jo = 1, the probability bounds that are used to derive the variance bound will not have such a
dominant term, and the remaining terms will contain ;. However, testing under the null hypothesis
that ajo = 1 is further complicated by the fact that ojo = 1 is at the boundary of the parameter space
for ajo. It is well known (see, e.g., Andrews (2001)) that such cases cannot be handled using standard
asymptotic inference, and therefore this case is beyond the scope of the present paper. Nevertheless,
it is clear from Remark 2 that estimation when ag = 1 has some very desirable properties, such as
a very fast rate of convergence, which we have referred to as ultraconsistency. We conjecture that
in the case where ajo = 1 for some values of j, and ajo < 1 for some values of j, the distributional
results presented in Theorem 1 hold for factors for which cjo < 1.

4 Case of unobserved factors

When the factors are unobserved we can only provide practical guidance on the strength of the
strongest factor or factors, and estimating the strength of other factors encounters a significant
identification problem. This is related to the known fact that latent factors are identified only up to
a non-singular m x m rotation matrix, Q = (g;j), where m is the assumed number of factors.

It is instructive to review this fact. Consider the multi-factor model (19) with f; unobserved.
Without loss of generality suppose that m = 2 and assume that factors, f; = (fi, f2:)’, are unobserved
with strengths a; > 1/2 and as > 1/2. Denote the principal component (PC) estimates of these
factors by &; = (g1¢, g2¢)’, and note that under standard regularity conditions in the literature (as n
and T'— o0)

Jie = quigie + q1292¢ + 0p(1), (25)
for = @191t + q22G2t + 0p(1). (26)

Then the estimates of the loadings associated with these PCs are given by

5= ( iy ) - (@M.6)  EMx = (EM,E) @My, + (EM.G)  EMou,

where G = (&,82,- . ,gT)’. Also since Q is non-singular, G —>pFQ_1, and using the above we have
¥i—pQy;. It is now easily seen that the strength of fi; (or fo;) computed using the estimates, 1,
i =1,2,...,n may not provide consistent estimates of the associated factor strengths. To see this
write the result 4,—,Q7; in an expanded format as

Fil = qui7vi1 + q127%i2 + op(1),
Fi2 = @211 + q22%i2 + 0p(1).

Squaring both sides and summing over ¢ we have
n n n n
Z = ah Z Y+ ai Z Vi + 211912 Z Yirviz + 0p(1),
i=1 i=1 i=1 i=1

n n n n
Z i = a5 Z Y+ @3 Z Vi + 2421922 Z YirYiz + 0p(1).
i=1 i=1 i=1 i=1



Now using the definition of factor strength in (3) and assuming that a; > az, in general we have?
n n
>3k = em™), Yo 7h =),
i=1 i=1

namely, using the estimated loadings of the principal components does not allow us to distinguish
between the strength of the two factors, and only the strength of the strongest factor can be identified.
When a1 > a9, identification of ao requires setting go; = 0, and conversely to identify «; when
a1 < ag requires setting g2 = 0. It is worth noting that using covariance eigenvalues does not help
resolve this problem. There are two separate issues — ordering eigenvalues and how to identify the
factors associated with ordered eigenvalues. The eigenvectors associated with the largest eigenvalues
are not uniquely determined and therefore the identification issue remains.

Therefore, in general, we focus on identifying o = max(ay,a2). The exponent o can be estimated
using the estimators proposed in Bailey et al. (2016) and Bailey et al. (2019). The approach of
this paper can also be used to estimate « by computing the strength of the first PC, or that of the
simple cross section average, namely ; = n~! > iy xir. One can also use the weighted cross section
average Ty, = » ., W;Tit, where w; is estimated as the slope of Z; in the OLS regression of x; on
an intercept and z;.3

Accordingly, in the rest of this section we assume that the m unobserved factors are strong and /or
semi-strong with 1/2 < a; < 1, and focus on estimation of & = max;(ca;). At the end of the Section
we provide a remark on how to identify, in theory, the strengths of weaker factors. Reintroducing
a subscript 0 to denote true parameters, we assume that {z;, i =1,2,...,n; t=1,2,...,T} are
generated from the multi-factor model (19) where the factors are unobserved with strengths ;o >
gy > agp > 0 > o > 1/2. Clearly g = ag9. To emphasize the focus on the factor with the
largest «, we recast the model as follows:

Tig =¢i+vift +vi, fori=1,2....,nandt=1,2,...,T (27)
m

vie = Y Yig Fjt + (28)
j=2

where the strongest factor f; has strength « while the rest of the factors have strengths aoy > agg >
<o > o > 1/2. We assume that the m-dimensional vector, f; = (fy, for, ..., fme)’, is unobserved.
We also assume that, for some unknown ordering of units over 4,

|7l > 0 as. fori=1,2,...,[n"], (29)
|7l = 0 a.s. for i = [n*] +1,[n*]+2,...,n.

[vijl > 0 as. fori=1,2,...,[n%], j=2,...,m (30)
vij| = 0 a.s. for i = [n°] + 1, [n*°] +2,...,n, j=2,...,m.

In what follows, we continue to consider that Assumptions 1 and 2 hold for the above represen-
tation, and use the simple cross section average, ; to consistently estimate ag = ajg. Taking the

*Note that |37, yiryie| < sup; [va| (i, [izl) = ©(n2).

3In most applications, o can be estimated consistently using the simple average. But as shown in Pesaran (2015),
pp- 452-454, the weighted average is more appropriate when the loadings of the strong factors have zero means. Also
note that by construction )7, w; = 1.
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first factor to be the strongest is made for convenience (with oy — ajo > 0, for j =2,3,...,m). The
strength of the strongest factor, ayg, is defined by (with 7; denoting the associated loadings)

n
> il =em™),
i=1

and the strengths of the remaining factors by

n
D il =0 n°), for j=2,3,...,m.
=1

In addition, we assume that the non-zero factor loadings have non-zero means, namely

n—o0

n n

. —Q . 3 —Qjy ..

lim n Oz;% #0,and lim n ]OX;%J £ 0,
1= 1=

and hence,
n

F=m=n""Y yi=o @),
i—1

n
v = nflzfyz-j =6 (no‘jofl) ,for j=2,...,m.
i=1

Note that we do not assume any ordering of the zero loadings across the units.

For each i, consider the least squares regression of {wit}thl on an intercept and the cross section
average of x;;, Ty, and denote the resulting estimators by ¢;7 and BiT, respectively. As in the single
factor case, oy = max;(cjo) is estimated by (7), except that when computing the t-statistics, tir,
defined by (4), f is replaced by X = (%1, T9,...,Z7)". Denote by t;7 = BzT/ s.e. (BzT) , the t-statistic
corresponding to v;:

. (®@M,x) Y2 (®M.x;)

tiT = ~ )
a;T

x; = (31, Tio, - - - ,IiT),, and 5’1-2T = T_lnggXi, where Mg = IT—I:I (I:I,I:I)_1 I:I,, with H = (T7,X).
As before, consider the number of regressions with significant slope coefficients:

n n
Doy =N iy = S 1[[fr > ep(m)],
=1 =1

where the critical value function, ¢,(n), is as specified earlier. Then, setting 7,7 = Dy /n, we have

R 1+ BT - if 70 > 0,
o =
0, if 7,7 = 0.

To investigate the limiting properties of & we first consider the value of ¢;7 under (19) and note that

X =ct +F4+ 1, and x; = ¢;77 + Fr, + uy,

where F = (f,fa,....f7), v;= (v, iz, - %im), ¥ = 07 200 vir Wi = (wir, g, - .., ugr)’ and
a=n"! > i ui. Using these results we have

T2 (M, x;) T-Y2(Fy+a) M, (Fvy, + u;)

Fip = - : (31)
Gir (TMLR)? 6 [T (FA+0) M, (Fy+a)] '/
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and
o7 =T~ (Fy; + w) My (Fy; +w). (32)
The following lemmas, which are of fundamental importance, are proven in Appendix A. The first
of the lemmas is auxiliary and technical in nature. It presents rates in probability and probability
tail bounds for the constituent parts of ;7. These results are then used in Lemma 4 to provide
probability bounds for #;7.

Lemma 3 Consider model (27)-(28) with factor loadings given by (29)-(30), where f; is an m x 1
vector of unobserved factors, and let Assumptions 1 and 2 hold. Then,

VT (T 'F'M,F)v; o, (xf ﬁ’m) (33)
¥ (T-'F'MF)5]"/? )"
1/2u/M F,Y 1
3 _ /2—ag
¥ (T-'F'M,F) ]1/2 Op (n )’ (34)
T 1/2u/]_\/_[ +U; -0 (nl/Q—ao) (35)
¥ (T-'F'M,F) 52 7 ’
T-1/28'M,Fu;
1/9 —d N(0,0’?) (36)
¥ (T-1F'M,F)~]"/
Further, for some C,Cy,C1 > 0,
T I'F'M,.F
(fﬂYT(lF’M F) ])1 5 > Cp(n)> = CT if yir =0, and T'/? = o(n®2~), (37)
IF/M F)’Y Cp . a0 —Q 1/2
( ' (T-'F'M,F) 4] /2 > cp(n) | < ne if vi1 # 0, or n®07% = o(T / )s (38)
T-/28'M,F
< M F)’YZ]I/Q > cp(n)> < exp [—CgTOl] , (39)
1/2 /M F\u
( (M E) A cp(n)) sov AT "
T-1/25'F' M, Fu; Cp
( (TEFME) A cp(n)) S w

Lemma 4 Consider model (27)-(28) with factor loadings given by (29)-(30), where f; is unobserved,
and let Assumptions 1 and 2 hold. Then, as long as V/Tn(®20=20) — 0, for some C > 0,

Pr{|tir| > ¢p(n)lyi # 0] > 1 = O [exp(=T)] (42)
and
Pr(ffir] > ep(m)lyi = 0] < 2. (43)

Equations (42) and (43) provide the crucial ingredients for the main result given below, as (42)
ensures that the t-statistic rejects with high probability when a unit contains a factor, while (43)
ensures that the probability of rejection for a unit that does not contain a factor, is small.

Overall, we have the following theorem, proven in Appendix B, justifying the proposed method
for unobserved factors.
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Theorem 2 Consider model (27)-(28) with factor loadings given by (29)-(30), where f; is unob-
served, let Assumptions 1 and 2 hold and denote by aqg the true value of a. Then, as long as
VTn(e20=e0) — 0 for any ag < 1,

Un(ag) V2 (Inn) (& — ag) —4 N(0,0)
for some C < 1, where agg denotes the strength of the second strongest factor, and

Ynlao) =p (n—no0)n=0720 (1- L3,
n
The above theorem provides the inferential basis for testing hypotheses on the true value of «,
in the case of unobserved factors.

Remark 7 While our exposition is based on unobserved factors, it is clear that it can be extended
to a mized case where there are observed and unobserved factors. In that case, x;+ denotes a residual
from a panel regression of the form (19). The initial regression model is used to carry out inference on
the observed factors and, again, a model of the form (27)-(28) is used for inference on the unobserved
factors, where the cross section average is computed using the residuals of first-stage regressions.

Remark 8 The above analysis readily extends to the case where two or more of the unobserved
factors have the same strength. For example, suppose that ag = maz;(ajo) = g = g > agp >
Q40 = ... 2 Qupo. Then it is easily seen that a is consistently estimated by &, even though ag = aog.
What matters for identification of aqg in this case is that V/Tn(®30=) — 0. This case is further
investigated below using Monte Carlo techniques.

Remark 9 Our analysis focuses on ag = a9 = mazj(co). A possible way to provide some infor-
mation on oo, j > 1, may be based on a sequential application of weighted cross section averages.
In particular, once the least squares regression of {wit}thl on an intercept and the cross section av-
erage of x;, Ty, has been fitted, residuals can be obtained. Simple cross section averages of these
restduals are easily seen to be identically equal to zero. However, weighted cross section averages can
be constructed, along the lines discussed in Pesaran (2015), pp. 452-454, and the t-statistics of the
relevant loadings can be used, in a similar way to that discussed above, to construct estimators for
ang and, sequentially via the construction of further sets of residuals, for ajo, j > 2. It is possible
to show that, if VTn(%+107%0) — 0§ > 1, a result similar to that of Theorem 2 holds for ajo,
j > 1. However, this result clearly requires considerable differences between the a’s and/or very large
values for n. Further, Monte Carlo evidence suggests that the estimators perform wvery poorly for
relevant sample sizes. Therefore, we do not pursue this analysis further as it is very clear that it is
not practically relevant.

5 Monte Carlo study

5.1 Design

We investigate the small sample properties of the proposed estimator of o under both observed and
unobserved factors using a number of Monte Carlo simulations. We consider the following two-factor
data generating process (DGP):

Tit = ¢i + i fie + 20 for + i, (44)
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fori=1,2,...,nand t = 1,2,...,T. We generate the unit specific effects as ¢; ~ IIDN (0, 1), for

i =1,2,...,n. The factors, f; = (fi, fo:)', are generated as multivariate normal: f; ~ N (0, 3¢),
where )
= ( h 912012%0]‘2 ) ’
P120f,0f2 O

with o = opp = 1, and p12 = corr (fit, for), using the values pj2 = 0.0,0.3. The factors are
generated as autoregressive processes (considering both stationary and unit root cases):

fir1+ /1= pleqy, if |prl <1
fie = {prfJ’t ! Prcit ‘pr‘ , for t = —49,-48,...,1,...,T
fj,t71+5jt, ifpfj =1

with fj _50 = 0 and €j; ~ i.i.d.N (0,1), j = 1,2. In the stationary case, we set py, = py, = 0.5.

For the innovations, u; we consider two cases: (i) Gaussian, where u;; ~ ITDN(0,0?) for i =
1,2,...,n; (ii) non-Gaussian, where the errors are generated as u; = % <X%,it — 2) , where X%,it for
i=1,2,...,n are independent draws from a chi-squared distribution with 2 degrees of freedom, and
o7 are generated as ITD(1 + x3,;)/3.

In terms of the factor loadings, ;1 and 72, first we generate vy ~ ITDU (py; —0.2, jiy; +0.2), for
i=1,2,...,nand j = 1,2 (such that E (vi;) = pt,;). Next, we randomly assign [n*1°] and [n*°] of
these random variables as elements of vectors v; = (72557255 - - - ,fynj)/, j = 1,2, respectively, where
[.] denotes the integer part operator.* For ajg and asg, we consider values of (a9, aigg) starting with
0.75 and rising to 1 at 0.05 increments, namely 0.75,0.80, ...,0.95, 1.00, comprising of 36 experiments

for all combinations of ajg and agy in the range [0.75, 1.00].5 We set jty, = fty, = 0.71 so that both
2

means are sufficiently different from zero. We then select the error variances, o7, so as to achieve an
average fit across all units of around R? = n~! Yo RZ? ~ 0.34. This coincides with the average fits
of regressions from our finance application. Scaling o2 by 3/4 achieves R2 ~ 0.41. To this end, we
note that:

B h

= T+ =1 - if for the """ unit: both ;1 # 0 and ;2 # 0,

2 .2 2
2 Tatve  whtw
(3

where wfj = 71-2]»/012, for j = 1,2. Similarly, R? = w?/ (1 —I—wl-zl), if 71 # 0 and ;2 = 0, R? =
wi22/ (1 + wZZQ), Y2 # 0 and ;1 = 0, and clearly RZ-2 =0, if y31 =v2 =0.

We consider the following experiments:

EXP 1A: (observed single factor - Gaussian errors): Using (44) with ;2 = 0, for all ¢, and
Gaussian errors.

EXP 1B: (observed single factor - non-Gaussian errors): Using (44) with ;2 = 0, for all 4,

and non-Gaussian errors.

EXP 2A: (two observed factors - Gaussian errors) A two-factor model with correlated ob-
served factors (p12 = 0.3) and Gaussian errors.

EXP 2B: (two observed factors - non-Gaussian errors) A two-factor model with correlated
observed factors (p12 = 0.3) and non-Gaussian errors.

4The randomisation of loadings becomes important when analysing the case of unobserved factors, as discussed in
Section 4.
Results for combinations of a1p and azo below 0.75 are available upon request.

14



EXP 3A: (unobserved single factor - non-Gaussian errors) Using (44) subject to v2 = 0,
for all 4, and non-Gaussian errors with ag = aj39 computed using the simple cross section
average Ty = n 1> 1| Ty

EXP 3B: (two unobserved factors - non-Gaussian errors) Using (44) with p;2 = 0.3 and
non-Gaussian errors, ajg = 0.95,1.00, and agy = 0.51,0.75,0.95,1.00. In this case ag =
max (10, cog) is estimated using the simple cross section average z; = n~* o Tt

Further, we consider the following additional experiment that assumes a misspecified observed
factor model that mirrors the analysis of our empirical finance example in Section 6.1:

EXP 4: (observed misspecified single factor - Gaussian errors) A misspecified single observed
factor model, where the DGP is a two-factor model with correlated factors (p12 = 0.3)
and Gaussian errors in (44), oo = 1, and agy = 0.75,0.80,..., 0.95,1.00. For this experi-
ment we report the estimates of a9 computed based on the misspecified single factor model

it = ¢ + Bifir + et

The factor strengths are estimated using (7), with the nominal size of the associated multiple
tests set to p = 0.10, and the critical value exponent to § = 1/4.6

For all experiments we report bias and RMSE of &;, size and power of tests of Hy : a; = ajo
against o; = ajq, J = 1,2, using the test statistic given by
—5—d;

& cvan =
Gjiao

(Inn) (4 — ajo) —p(n—n%)n =12 (45)

(0 =ty o2 (1= 1)

We consider two-sided tests throughout. Empirical size is computed as

R
sizep = Rilzf (‘Zdj:ajo‘ > c|Hg) , j=1,2.
r=1
The empirical power of the tests of Hy : a; = ajo against the alternative Hy : aj = a4, are
obtained for ajq, = ajo + K, k = —0.05,—-0.045,...,0.045,0.05 (20 alternatives) for all values of
ajo € [0.75,1.00). Here, DGP (44) is generated under H; and the rejection frequency is computed
as

R
powerr = R_IZI (|zdj:aj0‘ > c|H1) , 7=1,2.
r=1

For both size and power, 24, is given by (45). We do not compute size and power when ajo

He )
and/or «j, is equal to unity, si;ce in this case the distribution of the estimator that we propose is
degenerate and the estimator is ultraconsistent.

For all experiments we consider all combinations of n = {100, 200, 500, 1000} and 7" = {120, 200, 500, 1,000},
and set the number of replications per experiment to R = 2,000. The values of ¢; and v;; are redrawn

at each replication.

5We also consider other values of p and §, namely p = 0.05 and § = 1/3 or 1/2, and found the results to be
qualitatively very similar to those obtained when p = 0.10 and 6 = 1/4.
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5.2 MC findings

We start with the single factor model where the factor is observed and report the results in Tables
1 and 2 for experiments 1A and 1B. These tables show bias, RMSE and size for the estimator of
the strength of factor fi, namely &, for different values of aqg, and different (n,7T") combinations.
Table 1 gives the results for Gaussian errors, and Table 2 when the errors are non-Gaussian. Overall,
the outcomes are very similar when the model is generated under normal and non-normal errors. In
both tables, bias and RMSE are universally low and gradually decrease as n, T and a;q rise, as to be
expected. Especially when a9 = 1, bias and RMSE are negligible even when 7' = 120. Moving on to
the rejection probabilities under the null hypothesis, we note that given that our estimator has low
variance, the rejection probabilities are sensitive to the bias of &;. Hence, for smaller values of aqg
the test is considerably oversized, which is expected. However, as the sample size and aqg increase,
the size distortion reduces considerably, resulting in a well behaved test under the null hypothesis.
For a9 = 0.95 correct empirical size is achieved even for moderate values of T', while, as mentioned
earlier, when ajg equals to unity our estimator has an exponential rate of convergence, with the
distribution of the estimator collapsing to its true value at 1. Next, we turn to the power of the test
and consider the rejection probabilities under a sequence of alternative hypotheses. Figures 1 and 2
depict power functions corresponding to the strength of factor f; under Gaussian and non-Gaussian
errors, respectively, for values of a9 = 0.80,0.85,0.90 and 0.95 when T = 200 and as n increases
from 100 to 1,000. These figures clearly show that the proposed estimator is very precisely estimated
for all values of ayg considered, and for all (n,7T") combinations. Also as «jg rises towards unity the
power approaches 1 even for very small deviations from the null. We do not report power results for
a19 = 1, due to the ultraconsistency of the estimator in this case.

The above findings continue to hold when we consider models with two observed factors (ex-
periments 2A and 2B), irrespective of whether the factors are orthogonal (p;2 = 0) or moderately
correlated (p12 = 0.3), or whether the errors are Gaussian. To save space we only give the results
for the non-Gaussian errors when pjs = 0.3 in Table 3. The remaining results are provided in the
online supplement. Corresponding power functions are shown in Figure 3, and give a similar picture
as the one we discussed for the single factor case.

Consider now the experiments where at the estimation stage the number or the identity of factors
are assumed unknown. In the case of experiment 3A, the DGP is generated with a single factor,
whilst in the case of experiment 3B the DGP is generated with two correlated factors. In both of these
experiments the factor strength ap = max(ayg, ) is computed with respect to the pervasiveness
of the simple cross section average, ;. This case is analysed in Section 4. The results for this
case when errors are non-Gaussian are summarised in Table 4 with the associated power functions
in Figure 4. As can be seen, the small sample performance of the estimator of factor strength
deteriorates somewhat as compared to when the factor is known, particularly for values of o that
are not sufficiently close to unity. The empirical size is particularly elevated for values of ag < 0.9
when compared to the case of observed factors. However, for large sample sizes and values for g
close to unity, the proposed estimator seems to be reasonably well behaved. Similar conclusions are
obtained for Gaussian errors. (see Table S14 and Figure S12 in the online supplement).

In the case of two unobserved factors (experiment 3B), we estimate the strength cvy = max (a9, @20),
using the simple cross section average, Iy, first when a9 = 1 and a9 = 0.51,0.75,0.95,1. As shown
in Table 5 under non-Gaussian errors, when agg is set to the lower bound (= 0.51), then bias and
RMSE results are again universally very low and reflect those of the case of one unobserved factor,
which is expected. A slight deterioration in results can be detected as awg is increased towards unity,
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for small values of T', e.g. T = 120, but the size distortions vanish as T increases. The ultracon-
sistency of our estimator when a9 = 1 is evident by the values for both bias and RMSE measures
which are so small that we have scaled them by 10,000 in Table 5. When a9, agp < 1, estimating
g becomes more challenging. This is clear from the bias and RMSE results shown in Table 6, when
a1p = 0.95 and ayp is set to the same values as before (here the scaling of all bias and RMSE values is
returned to 100). In line with the conditions of Theorem 2, namely VTnl20—210) _ () results worsen
for values of ayg relatively close to asg but improve as the distance between ajg and asg widens,
for any given value of n and 7. When a9y = 1, then the estimate of cy = max (a0, @29) becomes
ultraconsistent, as shown in Table 5.7 As before, similar conclusions are obtained for Gaussian errors.
(see Tables S15 and S16 in the online supplement).

Finally, consider experiment 4 designed to reflect the setting of the finance empirical application
presented in subsection 6.1. Here we focus on a DGP with two factors that are correlated, but a
single observed factor model is used for estimating the strength of the first factor, fi. The results
for avyp = 1 are shown in Table 7, and as can be seen, omitting a second relevant and correlated
factor in this case does not unduly affect the performance of the estimator of the strength of the first
factor.® This seems to be the case for all (n,T') combinations and different values of aog.” However,
misspecification is likely to be consequential if the first factor is not sufficiently strong.

6 Empirical applications to finance and macroeconomics

6.1 Identifying risk factors in asset pricing models

The asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), and its multi-factor extension
in the context of the Arbitrage Pricing Theory (APT) developed by Ross (1976) are the leading the-
oretical contributions implemented widely in modern empirical finance to analyse the cross-sectional
differences in expected returns. Both approaches imply that expected returns are linear in asset
betas with respect to fundamental economic aggregates, and the Fama-MacBeth two-pass procedure
(Fama and MacBeth (1973)) is one of the most broadly used methodologies to assess these linear
pricing relationships. The first stage in this approach entails choosing the risk factors to be included
in the asset pricing model. Given the upsurge in the number of factors deemed relevant to asset
pricing in the past few years, a rapidly growing area of the finance literature has been concerned
with evaluating the contribution of potential factors to these models. Harvey and Liu (2019) docu-
ment over 400 such factors published in top ranking academic journals. The primary focus of this
literature has been on factor selection on the basis of performance metrics such as the Gibbons,Ross
and Shanken statistic of Gibbons et al. (1989), or the maximum squared Sharpe ratio of Fama and
French (2018) among many others. More recent contributions further allow for the possibility of false
discovery when the number of potential factors is large and multiple testing issues arise - see Feng
et al. (2020).

Our application focuses on determining the strength of these factors as a means of evaluating
whether their risk can be priced correctly and abstracts from the question of factor selection as

"Using the first principal component (PC) of x;; instead of the cross section average (CSA) produces similar results
when ajo = 1.00, 5 = 1,2, but underperforms in comparison to CSA when ajo < 1.00, as shown in Tables S17 and
S18 of the online supplement. See Section 19.5.1 of Pesaran (2015) where the asymptotic properties of cross section
average and the first PC are compared.

8The bias and RMSE values for this experiment are negligible so that in Table 7 they are reported after scaling
them up by the factor of 10,000.

9Corresponding results for the case of uncorrelated factors (p12 = 0.0) are shown in Table S19 in the online supple-
ment.
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such. As shown by Pesaran and Smith (2019), the APT theory requires that risk factors should be
sufficiently strong if their associated risk premium is to be estimated consistently. The risk premium
of a factor with strength o can be estimated at the rate of n=%?2, where n is the number of individual
securities under consideration. As a result, v/n consistent estimation of the risk premium of a given
factor requires the factor in question to be strong with its « equal to unity. Factors with strength less
than 0.5 cannot be priced and are absorbed in pricing errors. But in principle, it should be possible
to identify the risk premium of semi-strong factors (factors whose « lies in the range 1 > « > 1/2),
but very large number of securities are needed for this purpose. In practice, where n is not sufficiently
large, at best only factors with strength sufficiently close to unity can be priced.'® As an illustration
of their theoretical results, Pesaran and Smith (2019) consider the widely used Fama and French
(1993) three-factor model applied to the constituents of the S&P500 index and assess the strength of
each of the factors included in the model, namely the market, size and value factors. In what follows
we carry out a more comprehensive investigation of this topic, by assessing the strength of a total of
146 factors.

6.1.1 Data

We consider monthly excess returns of the securities included in the S&P 500 index over the period
from September 1989 to December 2017. Since the composition of the index changes over time, we
compiled returns on all 500 securities at the end of each month and included in our analysis only
those securities that had at least 10 years of history in the month under consideration. On average,
we ended up with n = 442 securities at the end of each month. The one-month US treasury bill rate
(in percent) was chosen as the risk-free rate (), and excess returns were computed as 7 = 74 —7 ¢,
where r;; is the return on the " security between months ¢ — 1 and ¢ in the sample, inclusive of
dividend payments (if any).!! In addition to the market factor (measured as the excess market
return) we consider the 145 factors considered by Feng et al. (2020), which are largely constructed
as long/short portfolios capturing a number of different characteristics.!? In order to account for
time variations in factor strength, we use rolling samples (340 in total) of 120 months (10 years).
The choice of the rolling window is guided by the balance between 1" and n, and follows the usual

practice in the finance literature.

10T an early critique of tests of asset pricing theory, Roll (1977) argued that for a test to be valid, it is required
that all assets traded in the economy are included in the empirical analysis. In effect requiring n to be very large, and
much larger than the number of securities traded on exchanges.

UEurther details relating to the construction of this dataset can be found in the online supplement and in Bailey
et al. (2016, 2019).

12The authors would like to thank Dacheng Xiu for providing the dataset that covers all the 146 factors, inclusive
of the market factor. Apart from 15 factors obtained from specific websites, the remaining factors are constructed
using only stocks for companies listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11.
Moreover, financial firms and firms with negative book equity are excluded. For each characteristic, stocks are sorted
using NYSE breakpoints based on their previous year-end values, then long-short value-weighted portfolios (top 30%
- bottom 30% or 1-0 dummy difference) are built and rebalanced every June for a 12-month holding period. Further
details about the construction of this dataset can be found in Feng et al. (2020).

13We also consider rolling samples of size 60 months (5 years). Results are available upon request.
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6.1.2 Factor models for individual securities

We commence with the following regressions:

k
Tit — Tt = Qi + Bim (Tt — Tp) + Zﬁijfjt +uy, fori=1,2,....,n,, (46)
j=1

where n, are the number of securities in 10-year rolling samples from September 1989 to December
2017, with 7 = 1,2, ...,340. 7,,,+ denotes the return on investing in the market portfolio, which here
is approximated by a value weighted average of all CRSP firms incorporated in the US and listed on
the NYSE, AMEX, or NASDAQ that have data for month ¢. As such, this definition of the market
portfolio is wider than one which assumes an average of the 440 or so S&P500 securities considered in
this study. The excess market return, (7, — 7¢), then approximates the market factor. fj; for j =
1,2,...,145 represent the potential risk factors in the active set under consideration. As explained
in Section 5 of Pesaran and Smith (2019), the strength of factor j is defined by Y ", (&j — @-)2 =
© (n%), and once the market factor is included in (46), it is the case that the coefficients are expressed

as deviations of the factor loadings from their means, as required.
Initially, we set k£ = 0 and consider the original CAPM specification of Sharpe (1964) and Lintner

(1965),

Tit = Tft = Qim + ﬁZm (Tmt — T‘ft) + Uit m- (47)

We apply our estimator (7) to the loadings By, i = 1,2,...,n,, and obtain estimates of the strength
of the market factor across the rolling windows, &, -, 7 = 1,2, ..., 340.

Next, in order to assess the effect on the market factor strength estimates of adding more factors
to (47), as well as to quantify the strength of these additional factors, we add the 145 factors to the
CAPM regression, (47), one at a time; namely we run the regressions

Tit —Tft = Qs + 5zm\s (rmt - rft) + Bisfst + Uit,ss i = 17 27 s Nr (48)

for each s = 1,2,...,145, and each rolling window 7 = 1,2, ...,340. Our choice of model is motivated
by the fact that once we have conditioned on the market factor, we can use the One Covariate at
the time Multiple Testing (OCMT) methodology of Chudik et al. (2018) as an additional step for
selecting the factors that ought to be included in our final asset pricing model. Again, we compute
the strength of the market factor, &,, - |, with the sth factor included, as well as the strength of each
of the additional factors, & -, for all 340 rolling windows. As with the Monte Carlo experiments,
in the computation of factor strength we set the nominal size of the associated multiple tests to
p = 0.10, and the critical value exponent to § = 1/4.

6.1.3 Estimates of factor strengths

First, we consider the rolling estimates obtained for the strength of market factor, «,,, when using
the CAPM and the augmented CAPM specifications given by (47) and (48). Figure 5 displays
&, T =1,2,...,340; the 10-year rolling estimates obtained using the CAPM regressions over the
period September 1989 to December 2017. As can be seen, all &,, . are quite close to unity, and
it can be safely concluded that the market factor is strong and its risk premium can be estimated
consistently at the usual rate of y/n. There is some evidence of departure from unity over the
period between December 1999 to January 2011 which saw a number of sizeable financial events
such as the Long-Term Capital Management (LTCM) crisis, the burst of the dot-com bubble and,
more recently, the global financial crisis. &, records its minimum value of 0.958 in August 2008,
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around the time of the Lehman Brothers collapse. As implied by our theoretical results of Section
3, standard errors around these estimates are extremely tight and hard to distinguish graphically
from the point estimates.!® It is also interesting that the estimates of market factor strength are
generally unaffected if we consider the augmented CAPM regressions. For each rolling window we
now obtain 145 estimates of ., denoted by &, s for s = 1,2,...,145. We display the average
of these estimates, namely, Gy, = (1/145) Zif’l G r|s> in Figure 5. Tt is clear that Qym.r closely
track G, .. The two series are almost identical during the periods September 1989 to December
1999 and January 2011 to December 2017. There are some minor deviations between &, ;s and
Q7 during the period December 1999 to January 2011, when they both deviate marginally from
unity, with a maximum deviation of 0.011 in September 2008. The average estimates of «, » also
have very narrow confidence bands, with an average standard error of 0.0038 over the full sample,
taking its maximum value of 0.0099 in September 2008. Overall, it is evident that the inclusion of
an additional factor in (48) has little effect on estimates of the market factor strength, which is in
line with the Monte Carlo evidence for experiment 4 summarised in the previous Section.

We can safely conclude that the market factor is strong with the exception of a short period
during the recent financial crisis. We now consider the 10-year rolling estimates of the strength of
the remaining factors, denoted by a r, using the augmented CAPM regressions. These estimates
together with their 90% confidence bands are shown in Figures S13 to S22 of the online supplement.
They show considerable time variation, especially during December 1999 to January 2011. However,
at no point during the full sample (September 1989 to December 2017) do any of these factors
become strong in the sense that &, is clearly below 1, for all s and 7. The market factor dominates
all other factors in strength. Indeed, in Figure 6 we observe that the proportion of factors (out of
the 145 in total) whose strength exceeds the threshold values of 0.85,0.90 and 0.95 in each rolling
window progressively drops so that there are no factors left whose strength exceeds 0.95 throughout
our sample period. This suggests that only the market factor can be considered to be a risk factor

/2. The role of the remaining 145

whose risk premium can be estimated consistently at a rate of n
factors in the asset pricing models (48) could be to filter out the effects of any additional semi-strong
cross-dependence in asset returns in order to achieve weak enough cross-sectional dependence in the
errors u;, required for consistent estimation of market risk premia.

Next, we rank the 145 factors (plus the market factor) from strongest to weakest in terms of the
percentage of months in our sample period (340 in total) that their strength exceeds the threshold
of 0.90. Table 8 displays the identities of the 65 factors that meet this criterion. As expected, the
market factor ranks first with an average estimated strength of 0.99, followed by factors associated
with leverage, and the ratios of sales to cash, cash flow to price, net debt to price and earnings to
price. The second ranking factor, leverage, has average strength of 0.827, with only 37.9% of the
time being above 0.9. Interestingly, the Fama French value factor (high minus low) ranks 34th in our
table while the size factor (small minus big) does not even enter our ranking, recording values of &
below 0.90 across all rolling windows. For completeness, Table 8 also includes time averages of each
factor strength over the full sample (September 1989 - December 2017), and the three sub-samples:
September 1989 - August 1999, September 1999 - August 2009, and September 2009 - December
2017. While on average, the strengths of these factors are around 0.80 in the first and the last
decade in our sample, in the period between September 1999 to August 2009, the strength of many
factors rises to around 0.91. This rise could be due to non-fundamental factors gaining importance

4The corresponding plot of G, estimates under (47) which includes its standard errors is shown at the top left
corner of Figure S13 in the online supplement.
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over the fundamental factors during the recent financial crisis, and can be viewed as evidence of
market decoupling.!®

Finally, it is of interest to investigate whether the strength of the strongest latent factor implied
by the panel of S&P500 securities’ excess returns coincides with that of the market risk factor, which
we identified as the strongest observed factor under our previous analysis. In line with the discussion
of Section 4, the strength of the strongest unobserved factor will be captured by the strength of the
cross section average of the excess returns in each rolling window. Figure 7 plots the 10-year rolling
Gisa,r estimates implied by the cross section average of excess returns against the 10-year rolling &, -
estimates implied by the simple CAPM regression (47). It is evident that the two series are almost
identical throughout our sample period except for the period between September 1999 to January
2011 where they deviate from each other to some extent. The average correlation between ¢ sq » and
O,z over 7 = 1,2,...,340 stands at 0.93. On this basis, we also computed the rolling correlation
coefficients between the cross section average of individual securities’ excess returns and the observed
market risk factor again over the rolling windows 7 = 1,2,...,340. These are consistently close to
unity apart for the period between September 1999 to January 2011 where they drop slightly towards
0.85.16 The average correlation coefficient across rolling windows stands at 0.95.

6.2 Strength of common macroeconomic shocks

Similar considerations apply to macroeconomic shocks and their pervasive effects on different parts
of the macroeconomy. As discussed in Giannone et al. (2017) and references therein, the advent of
‘high-dimensional’ datasets has led to the development of predictive models that are either based on
shrinkage of useful information inherent across the whole set of data into a finite number of latent
factors (e.g. Stock and Watson (2015) and references therein), or assume that all relevant information
for prediction is captured by a small subset of variables from the larger pool of regressors implied
by these data (e.g. Hastie et al. (2015), Belloni et al. (2011) among others). Such methods are
appealing in macroeconomics since they tend to provide more reliable impulse responses and forecasts
over traditional models, when used for macroeconomic policy analysis and forecasting. However, as
argued in Giannone et al. (2017), it is not evident that either approach is always clearly supported
by the (unknown) structure of the given data and that model averaging might be preferable.

To measure the pervasiveness of the macroeconomic shocks, we make use of an updated version
of the macroeconomic dataset compiled originally by Stock and Watson (2012) and subsequently
extended by McCracken and Ng (2016). Here, we assume that the macroeconomic shocks are un-
observed and estimate the strength of the strongest of such shocks from the updated dataset which
consists of balanced quarterly observations over the period 1988Q1-2019Q2 (7" = 126) on n = 187
out of the 200 macroeconomic variables used in Stock and Watson (2012).}7 Ten out of the 200
macroeconomic variables used in Stock and Watson (2012) are no longer available in the updated
version of the dataset.'® Further details on this dataset can be found in the online supplement.

15The ranking of all 145 factors and their average strengths over different sub-samples are given in Table S20 of the
online supplement.

16Rolling correlation coefficients between the market risk factor and the cross section average of S&P500 securities’
excess returns in shown in Figure S23 of the online supplement.

Y"The raw data, which include both high-level economic and financial aggregates as well as disaggregated
components, are updated regularly and can be found on the Federal Reserve Bank of St Louis website at:
https://research.stlouisfed.org/econ/mccracken/static.html. All variables were screened for outliers and transformed
as required to achieve stationarity. Details about variable definitions, descriptions and transformations can be found
in the accompanying FRED-QD appendix to McCracken and Ng (2016) which links to Stock and Watson (2012) and
is downloadable from the aforementioned website.

8 These are: (1) Construction contracts, (2) Manufacturing and trade inventories, (3) Index of sensitive materials
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6.2.1 Strength estimates of strongest unobserved common shock

As discussed in Section 4, identifying and estimating the strengths of unobserved factors of varying
strengths becomes challenging due to the fact that, in general, factors are identified only up to a
non-singular rotation matrix. However, as argued above we are still able to identify and estimate the
strength () of the strongest shock using the cross section average of the variables in the dataset.
We computed estimates of o for the pre-crisis period, 1988Q1 to 2007Q4, as well as for the full
sample period ending on 2019Q2. The factor strength estimates are shown in Table 9. They are
clustered around 0.94, and are quite robust to the choice of the parameters p and § in the critical
value function (6), as well as to the time period considered. These estimates are consistently below
1, and suggest that whilst there exist strong macroeconomic shocks, the effects of such shocks are
not nearly as pervasive as have been assumed in the factor literature applied to macro variables.
This finding is further corroborated by the estimates of the exponent of cross-sectional dependence
(CSD) of BKP, also shown in Table 9.1

7 Conclusions

Recent work by Bailey et al. (2016, 2019) has focused on the rationale and motivation behind the need
for determining the extent of cross-sectional dependence (CSD), be it in finance or macroeconomics,
and has provided a conceptual framework and tools for estimating the strength of such interdepen-
dencies in economic and financial systems. However, this literature does not address the problem of
estimating the strength of individual factors that underlie such cross dependencies, which can be of
interest, for example, for pricing of risk in empirical finance, or for quantifying the pervasiveness of
macroeconomic shocks.

The current paper addresses this gap. It proposes a novel estimator of factor strength based on
the number of statistically significant t-statistics in a regression of each unit in the panel dataset on
the factor under consideration, and provide inferential theory for the proposed estimator. Detailed
and extensive Monte Carlo and empirical analyses showcase the potential of the proposed method.

The current paper considers estimation and inference when the panel regressions are based on
a finite number of observed factors. Some theoretical evidence is also provided for the case when
the model contains unobserved factors. Further research is required to link our analysis to the
problem of factor selection discussed by Feng et al. (2020). Also, it would be of interest to address
the identification problem when there are multiple unobserved factors. One possibility would be to
exploit the approach recently developed in Kapetanios et al. (2019) to see whether the unobserved
factors can be associated with dominant units or some other observable components.

prices (disc), (4) Spot market price index BLS&CRB: all commodities, (5) NAPM commodity price index, (6) 3m
Eurodollar deposit rate, (7) MED3-TB3MS, (8) GZ-spread, (9) GZ Excess bond premium, and (10) DJIA.

19Using the Sequential Multiple Testing (SMT) detection procedure developed in Kapetanios et al. (2019), we also
checked to see if any of the unit(s) in the macro dataset can be viewed as pervasive, namely sufficiently influential to
affect all other variables. The SMT procedure could not detect any such variables for all choices pmax = 0,1,...,6,
where pmaez denotes the assumed maximum number of potential factors in the dataset.
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Table 1: Bias, RMSE and Size (x100) of estimating different factor strengths in the case of experi-
ment 1A (observed single factor - Gaussian errors)

Bias (x100) RMSE (x100) Size (x100)
n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10:0.75

100 | 1.23 1.16 1.08 1.07 | 1.58 1.51 146 143 | 3.70 3.10 2.60  2.00
200 | 1.44 140 1.31 1.29 | 160 155 1.47 1.44 | 980 815 745 6.00
500 | 1.30 123 1.14 1.14 |1.38 130 1.21 1.21 |14.00 10.55 7.35 7.65
1000 | 1.26 1.21 1.12 1.11 |1.31 1.25 1.16 1.15 | 1590 1240 7.25 6.95
Q10 = 0.80
100 | 0.73 0.68 064 062 |1.06 1.01 099 095 | 1835 17.25 19.55 18.55
200 | 0.95 093 0.87 0.85|1.09 1.05 1.00 0.98 | 12.65 11.20 9.80 9.00
500 | 0.91 086 0.81 0.81 | 097 091 0.86 0.86 | 12.35 8.60 6.40 6.20
1000 | 0.85 0.82 0.76 0.76 | 0.88 0.85 0.79 0.78 | 16.65 13.50 840 8.25
a1 = 0.85
100 | 0.70 0.68 0.65 0.64 | 0.89 0.87 084 0.83 |10.75 895 850 7.60
200 | 0.60 0.59 054 054|071 069 065 0.64 | 570 400 370 290
500 | 0.52 0.50 0.46 0.46 | 0.57 0.54 0.50 0.50 | 11.05 835 6.85 7.10
1000 | 0.50 0.48 0.45 0.44 | 0.52 0.50 0.46 0.46 | 10.05 8.05 5.15 5.15
a10 = 0.90
100 | 0.41 0.40 0.39 0.38 | 0.57 0.55 0.54 053 | 5.00 3.70 3.60 3.55
200 | 0.27 0.28 0.24 0.24 | 0.37 037 0.34 0.34 | 14.15 1240 12.20 12.85
500 | 0.29 0.28 0.26 0.26 {033 031 029 029 | 970 800 740 6.35
1000 | 0.28 0.28 0.26 0.26 | 0.30 0.29 0.27 0.27 | 10.60 9.45 6.55 6.60
Q10 = 0.95
100 | 0.08 0.08 0.08 0.07 | 026 024 024 024 | 540 340 3.65 240
200 | 0.11 0.12 0.10 0.10 | 0.19 0.18 0.17 0.17 | 740 540 4.10 4.25
500 | 0.12 0.12 0.11 0.11 | 0.14 0.14 0.13 0.13 | 1225 745 800 7.25
1000 | 0.09 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 855 6.10 510 4.35
a1 = 1.00
100 | -0.01 0.00 0.00 0.00 | 0.04 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as follows: for unit specific effects, ¢; ~ IIDN (0, 1),

for i =1,2,...,n. The factor, fi¢, is normally distributed with variance O’?l = 1. The factor assumes

an autoregressive process with correlation coefficient py, = 0.5. The factor loadings are generated

as vi1 ~ IIDU (py;, — 0.2, po; + 0.2), for [n®1°] units, and zero otherwise. vz = 0, for all i. We set

fy, = 0.71. auo ranges between [0.75,1.00] with 0.05 increments. The innovations u;; are Gaussian,
such that u;; ~ ITDN(0,0?), with 67 ~ ITD(1 4 x3,)/3, for i = 1,2,...,n. In the computation of é;
we use p = 0.10 and 6 = 1/4 when setting the critical value. Size is computed under Ho: a1=ao,
using a two-sided alternative. When 19 = 1.00, our estimator is ultraconsistent, hence size results for

this case are not meaningful. The number of replications is set to R = 2000.
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Table 2: Bias, RMSE and Size (x100) of estimating different factor strengths in the case of experi-
ment 1B (observed single factor - non-Gaussian errors)

Bias (x100) RMSE (x100) Size (x100)
n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10=0.75

100 | 1.21 1.17 1.06 1.04 | 1.57 1.52 144 139 | 3.75 3.20 2.65 1.70
200 | 1.47 140 134 130|162 156 149 145 | 9.80 950 6.45 6.50
500 | 1.32 1.24 1.14 1.15 140 131 1.21 1.22 |15.25 11.00 8.20 8.15
1000 | 1.27 1.19 1.13 1.11 |1.31 1.23 1.17 1.15 |17.00 11.30 8.80 7.55
Q10 — 0.80
100 | 0.71 0.69 062 0.60 |1.04 1.02 097 093 |17.60 18.00 19.60 18.15
200 | 0.98 0.93 089 0.86 |1.10 1.07r 1.01 0.99 | 1245 12.00 9.80 9.05
500 | 0.92 087 0.80 0.81 | 098 092 0.86 0.86 | 13.90 890 6.95 7.55
1000 | 0.86 0.81 0.77 0.76 | 0.89 084 0.79 0.79 | 1835 12.75 990 8.70
10 = 0.85
100 | 0.69 0.69 064 0.63 | 088 0.88 0.83 0.82 |10.15 1035 825 7.80
200 | 0.62 059 0.56 0.54 |0.72 069 0.66 0.64 | 550 4.60 3.50 245
500 | 0.53 0.51 0.46 0.46 | 0.58 0.55 0.51 0.50 | 12.65 9.30 8.95 7.65
1000 | 0.50 0.48 045 0.44 | 053 0.50 047 0.46 | 1235 7.55 6.55 5.50
a1 = 0.90
100 | 0.40 040 0.37 0.37 | 0.55 0.55 0.52 0.52 | 455 390 3.30 2.75
200 | 0.28 0.27 0.25 0.24 | 0.38 0.36 0.34 0.33 | 12.35 11.30 11.25 13.80
500 | 0.30 0.29 0.26 0.26 |0.34 032 030 0.30|1095 915 790 7.35
1000 | 0.28 0.27 0.26 0.26 | 0.30 0.29 0.27 0.27 | 12.55 895 7.20 5.80
Q10 = 0.95
100 | 0.07 0.08 0.06 0.07 | 024 0.24 023 023 | 490 4.05 285 2.30
200 | 0.12 0.11 0.10 0.10 | 0.19 0.18 0.17 0.17 | 710 4.60 3.55 4.00
500 | 0.12 0.12 0.11 0.11 | 0.14 0.14 0.13 0.13 | 12.15 885 845 8.20
1000 | 0.09 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 9.10 495 535 5.05
a0 = 1.00
100 | -0.01 0.00 0.00 0.00 | 0.05 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00 |0.04 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.03 0.01 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 1. The innovations u; are
non-Gaussian, such that wi = % (x3,;; — 2), with o7 ~ IID(1 4 x3,)/3, for i = 1,2,...,n.
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Figure 1: Empirical power functions associated with testing different factor strengths in the case of
experiment 1A (observed single factor - Gaussian errors), when n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 1 for details of the data generating process. Power is computed under H;:
Q1a=a10 + k, where kK = —0.05,—0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Figure 2: Empirical power functions associated with testing different factor strengths in the case

of experiment 1B (observed single factor - non-Gaussian errors), when n = 100, 200, 500, 1000 and
T =200
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Notes: See the notes to Table 2 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table 3: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.85

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a1g = 0.75, agg = 0.85
100 | 1.20 1.13 1.08 1.04 | 1.58 150 1.46 141 | 435 280 3.25 2.30
200 | 143 139 130 131|159 154 145 147 |10.00 7.65 7.00 7.55
500 | 1.30 1.23 1.17 1.14 | 138 1.30 1.24 1.21 | 13.55 10.25 8.20 7.20
1000 | 1.27 118 1.12 1.11 | 131 1.22 1.16 1.15 |17.25 11.05 7.45 7.60
Q10 = 0.80, Qon = 0.85
100 | 0.71 0.66 0.63 0.61 | 1.03 1.00 0.96 0.95 | 17.75 18.80 18.15 19.45
200 | 095 093 0.8 0.86 |1.09 1.05 097 0.99 | 13.10 11.35 9.20 9.75
500 | 0.91 086 0.82 0.80 | 0.96 092 0.87 0.86 | 11.80 9.25 595 740
1000 | 0.85 0.81 0.76 0.76 | 0.88 0.83 0.79 0.78 | 18.10 11.00 8.85 7.80
a10 = 0.85, a0 = 0.85
100 | 0.68 0.67 064 062|087 08 083 081 | 970 940 770 7.35
200 | 0.61 0.59 0.54 0.54|072 0.69 0.65 0.65 ]| 595 390 4.10 3.05
500 | 0.51 0.50 0.47 0.46 | 056 0.54 0.51 0.51 1080 7.70 735 7.75
1000 | 0.50 0.47 045 0.44 | 0.52 0.49 047 0.46 | 1245 845 545 540
a1g = 0.90, agy = 0.85
100 | 0.40 0.40 0.38 0.36 | 0.56 0.55 0.53 0.51 | 535 3.7 3.5 3.05
200 | 0.27 026 0.23 0.24 | 038 036 0.33 0.34 | 1495 1245 13.20 13.35
500 | 0.28 0.29 0.27 0.26 | 032 0.32 030 0.29 | 9.85 835 685 6.20
1000 | 0.28 0.27 0.26 0.25 | 0.30 0.28 0.27 0.27 | 12.60 825 6.50 6.05
Q10 = 0.95, Qop = 0.85
100 | 0.06 0.07 0.07 0.06 | 0.25 0.24 0.24 0.22 | 6.70 3.45 3.40 2.75
200 | 0.10 0.11 0.10 0.10 | 0.18 0.18 0.17 0.17 | 9.15 4.05 3.85 4.45
500 | 0.10 0.11 o0.11 0.11 ] 0.13 0.14 0.13 0.13 | 13.35 875 885 7.40
1000 | 0.09 0.09 0.09 0.09 | 0.11 0.11 0.10 0.10 | 11.50 5.75 5.65 5.05
a10 = 1.00, a0 = 0.85
100 | -0.02 0.00 0.00 0.00 | 0.07 0.02 0.00 0.00 - - - -
200 | -0.02 0.00 0.00 0.00 | 0.06 0.01 0.00 0.00 - - - -
500 | -0.02 0.00 0.00 0.00 | 0.03 0.01 0.00 0.00 - - - -
1000 | -0.02 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as follows: for unit specific effects, ¢; ~ IIDN (0, 1),

for i =1,2,...,n. The factors, (fit, f2¢), are multivariate normal with variances O’?l = UJ%Q =1 and
correlation given by pi2 = corr(fi, f2) = 0.3. Each factor assumes an autoregressive process with
correlation coefficients py; = 0.5, j = 1,2. The factor loadings are generated as

vij ~ IIDU (pry; — 0.2, puy; 4 0.2), for [n%7°] units, j = 1,2, respectively, and zero otherwise. We set

fo, = Hv, = 0.71. Both a0 and a0 range between [0.75,1.00] with 0.05 increments. The innovations wi
are non-Gaussian, such that wie = % (X3, — 2), with 67 ~ IID(1+ x3,)/3, for i =1,2,...,n. In the
computation of &;, 7 = 1,2, we use p = 0.10 and = 1/4 when setting the critical value. Size is computed
under Ho: aj=ayjo, for j = 1,2, using a two-sided alternative. When aio = 1.00, our estimator is ultra
consistent, hence size results for this case are not meaningful. The number of replications is set to

R = 2000.
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Figure 3: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second
factor is set to 0.85, n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table 3 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table 4: Bias, RMSE and Size (x100) of estimating the strength of strongest factor in the case of
experiment 3A (unobserved single factor - non-Gaussian errors) using cross section average

Bias (x100) RMSE (x100) Size (x100)
p\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10:0.75

100 | 240 2.79 425 6.73 | 2.84 3.22 460 7.02 |27.05 37.35 73.75 98.40
200 | 2.09 212 2.60 347|232 235 282 3.67 |30.20 34.05 51.60 81.60
500 | 1.62 155 1.59 1.81 | 1.v7 1.68 1.71 1.92 | 30.95 26.65 29.85 44.80
1000 | 1.46 1.39 1.38 1.41 | 154 146 1.44 1.47 | 31.95 26.00 27.70 28.00
10 = 0.80
100 | 1.26 1.47 214 342|161 1.81 243 3.66 | 28.05 3220 5535 87.45
200 | 1.24 124 142 1.76 | 1.39 140 1.57 1.90 | 24.75 27.35 35.40 54.80
500 | 1.03 098 097 1.04 | 1.11 1.05 1.03 1.10 | 21.80 17.75 15.40 21.95
1000 | 092 0.88 085 0.86 | 096 092 089 0.89 |27.00 21.00 1810 16.95
a1 = 0.85
100 | 091 1.00 124 178|111 1.19 144 196 |19.30 24.15 37.10 64.75
200 | 0.72 071 0.76 0.88 | 0.83 0.82 0.88 0.99 | 10.30 10.70 12.75 20.35
500 | 0.57 0.54 0.52 0.54 | 0.63 0.59 0.56 0.59 | 15.25 12.35 10.30 11.90
1000 | 0.52 0.50 048 047 | 0.55 0.52 0.50 0.50 | 15.50 10.15 8.75 7.45
a10 = 0.90
100 | 049 0.51 0.60 0.79 | 0.63 0.67 0.76 0.95 | 6.75 840 12.50 22.90
200 | 0.32 031 0.32 035|042 040 0.42 0.44 | 13.75 11.50 13.50 13.40
500 | 0.31 030 0.28 0.29 | 035 033 031 032 ]1250 995 885  8.50
1000 | 0.29 0.28 0.27 0.27 | 0.31 0.30 0.28 0.28 | 14.50 10.30 8.25 6.95
Q10 = 0.95
100 | 0.10 0.12 0.13 0.18 | 0.26 0.27 0.29 0.34 | 540 525 6.55 11.05
200 | 0.13 0.12 0.12 0.13 | 0.20 0.19 0.18 0.20 | 7.85 5.65 5.35 6.50
500 | 0.12 0.12 0.11 0.11 | 0.15 0.15 0.14 0.14 | 1240 9.10 7.80 8.75
1000 | 0.10 0.10 0.09 0.09 | 0.11 0.11 0.11 0.10 | 875 535 490 4.90
a1 = 1.00
100 | -0.01 0.00 0.00 0.00 | 0.04 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00 |0.03 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 2. ap = ajo is estimated by regressing

; ; ; = —-1
observations, zj, on an intercept and the cross section average of zi, T =n Z?:l xit, for
t=1,2,...,T.

31



Figure 4: Empirical power functions associated with testing different strengths of strongest factor
in the case of experiment 3A (unobserved single factor - non-Gaussian errors) using cross section

average, when n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table 4 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table 5: Bias and RMSE (x10,000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - non-Gaussian errors) using cross section average, when
a0 — 1.00

Bias (x10,000) RMSE (x 10, 000)
n\T | 120 200 500 1000 ‘ 120 200 500 1000
Q10 = 1.00, Qop — 0.51

100 | -0.76 -0.05 0.00 0.00 | 4.20 1.09 0.00 0.00
200 | -0.95 -0.05 0.00 0.00 | 3.14 0.67 0.00 0.00
500 | -1.12 -0.07 0.00 0.00 | 2.39 0.46 0.00 0.00
1000 | -1.25 -0.08 0.00 0.00 | 2.04 0.37 0.00 0.00
a0 = 1.00, a0 = 0.75

100 | -0.92 -0.04 0.00 0.00 | 4.58 0.98 0.00 0.00
200 | -0.94 -0.03 0.00 0.00 | 3.11 0.52 0.00 0.00
500 | -1.12 -0.06 0.00 0.00 | 2.39 0.45 0.00 0.00
1000 | -1.26 -0.09 0.00 0.00 | 2.08 0.38 0.00 0.00
a1g = 1.00, agg = 0.95

100 | -1.44 -0.15 0.00 0.00 | 5.78 1.83 0.00 0.00
200 | -2.056 -0.19 0.00 0.00 | 5.31 1.37 0.00 0.00
500 | -2.08 -0.19 0.00 0.00 | 3.99 0.82 0.00 0.00
1000 | -2.27 -0.23 0.00 0.00 | 3.99 0.82 0.00 0.00
Q10 = 1.007 Qon — 1.00

100 | -0.02 0.00 0.00 0.00 | 0.69 0.00 0.00 0.00
200 | -0.01 0.00 0.00 0.00 | 0.30 0.00 0.00 0.00
500 | -0.02 0.00 0.00 0.00|0.30 0.00 0.00 0.00
1000 | -0.02 0.00 0.00 0.00 | 0.19 0.00 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table 3.

o = max(ai10, a20) is estimated by regressing observations, i,

on an intercept and the cross section average of @iy, Tr =n "1 >

i=1 Lit)
fort=1,2,...,T.
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Table 6: Bias and RMSE (x10,000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - non-Gaussian errors) using cross section average, when
a0 — 0.95

Bias (x100) RMSE (x100)
n\T | 120 200 500 1000 | 120 200 500 1000
Q10 = 0.957 Qop — 0.51
100 | 0.18 0.21 0.40 0.57 | 0.36 0.38 0.55 0.70
200 | 0.16 0.16 0.22 0.30 | 0.23 0.24 0.29 0.38
500 | 0.13 0.13 0.15 0.17 | 0.16 0.16 0.18 0.20
1000 | 0.10 0.10 0.10 0.11 |0.12 0.12 0.12 0.13
a0 = 0.95, a0 = 0.75
100 | 1.27 156 1.73 1.79 | 1.41 1.65 180 1.85
200 | 0.98 1.24 1.52 1.54|1.10 1.31 1.55 1.57
500 | 0.61 0.86 1.19 1.26 |0.72 0.92 1.21 1.27
1000 | 0.42 0.59 095 1.07 | 0.51 0.67 097 1.08
a1g = 0.95, agg = 0.95
100 | 3.98 4.03 4.04 4.05 | 4.00 4.05 4.06 4.07
200 | 3.87 395 395 396 | 3.88 3.96 3.96 3.97
500 | 3.74 3.82 3.84 383|374 382 384 383
1000 | 3.62 3.71 3.72 3.73 | 3.63 3.72 3.72 3.73
Q10 = 0.957 Qon — 1.00
100 | -0.02 0.00 0.00 0.00 | 0.07 0.02 0.00 0.00
200 | -0.02 0.00 0.00 0.00 | 0.06 0.01 0.00 0.00
500 | -0.02 0.00 0.00 0.00 | 0.04 0.01 0.00 0.00
1000 | -0.02 0.00 0.00 0.00 | 0.04 0.01 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table 3.

o = max(ai10, a20) is estimated by regressing observations, i,

on an intercept and the cross section average of z;1, Tt =n"' > 1|

fort=1,2,...,T.
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Table 7: Bias and RMSE (x10,000) of estimating factor strength in the case of experiment 4 (ob-

served misspecified single factor - Gaussian errors) when set to 1.00

Bias (x10,000)

RMSE (10, 000)

n\T | 120 200 500 1000 | 120 200 500 1000
a10 = 1.007 a0 = 0.75
100 | -0.68 -0.01 0.00 0.00 | 4.03 0.49 0.00 0.00
200 | -0.62 -0.03 0.00 0.00 [ 2.55 0.52 0.00 0.00
500 | -0.76 -0.04 0.00 0.00 | 1.86 0.38 0.00 0.00
1000 | -0.76 -0.05 0.00 0.00 | 1.42 0.27 0.00 0.00
ayg = 1.00, azg = 0.80
100 | -0.70 -0.01 0.00 0.00 | 4.03 0.49 0.00 0.00
200 | -0.54 -0.02 0.00 0.00 | 2.38 0.47 0.00 0.00
500 | -0.72 -0.04 0.00 0.00 | 1.82 0.35 0.00 0.00
1000 | -0.71 -0.04 0.00 0.00 | 1.37 0.26 0.00 0.00
Q10 = 1.00, Qop = 0.85
100 | -0.61 -0.01 0.00 0.00 | 3.78 0.49 0.00 0.00
200 | -0.45 -0.01 0.00 0.00 | 2.15 0.37 0.00 0.00
500 | -0.62 -0.04 0.00 0.00 | 1.64 0.35 0.00 0.00
1000 | -0.65 -0.04 0.00 0.00 | 1.27 0.24 0.00 0.00
a10 = 1.00, a0 = 0.90
100 | -0.47 0.00 0.00 0.00 | 3.28 0.00 0.00 0.00
200 | -0.39 -0.01 0.00 0.00 [ 2.02 0.30 0.00 0.00
500 | -0.48 -0.02 0.00 0.00 | 1.42 0.25 0.00 0.00
1000 | -0.51 -0.03 0.00 0.00 | 1.11 0.22 0.00 0.00
a1g = 1.00, agy = 0.95
100 | -0.35 0.00 0.00 0.00 | 2.85 0.00 0.00 0.00
200 | -0.31 -0.01 0.00 0.00 | 1.80 0.30 0.00 0.00
500 | -0.34 -0.01 0.00 0.00 | 1.24 0.16 0.00 0.00
1000 | -0.35 -0.02 0.00 0.00 | 0.88 0.18 0.00 0.00
Q10 = 1.00, Qop = 1.00
100 | -0.16 0.00 0.00 0.00 | 2.01 0.00 0.00 0.00
200 | -0.13 0.00 0.00 0.00 | 1.10 0.00 0.00 0.00
500 | -0.15 0.00 0.00 0.00 | 1.01 0.07 0.00 0.00
1000 | -0.13 0.00 0.00 0.00 | 0.57 0.06 0.00 0.00

Notes: The parameters of the true DGP, (44), are generated

as described in Table S3. We set 19 = 1 and ago in the range

[0.75,1.00] with 0.05 increments. The misspecified model assumes

the existence of factor f; only.
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Figure 5: Comparison of the market factor strength estimates obtained from the original single factor
CAPM (dumn,r) and the average estimates of its strength when computed using 145 two-factor asset
pricing models (A7), over 10-year rolling windows
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Notes: The market factor strength rolling estimates are computed using (7). The market factor strength
average estimates produced from the 145 two-factor CAPMs are computed as &m » = (1/145) 321 (as.7),
for 7 =1,2,...,340 rolling windows.

s=1

Figure 6: Percentage of factors (out of 145) whose estimated strength (&), 7 = 1,2, ..., 340 exceeds
the thresholds of 0.85, 0.90 and 0.95, in each 10-year rolling window
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Notes: The 145 factor strength estimates, &s -, s = 1,2,...,145, are computed using (7).
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Table 8: Ranking of 65 factors in terms of the % of months their estimated strengths exceed the
threshold of 0.90 during the full sample period of September 1989 to December 2017 and correspond-
ing time averages of &, s =1,2,...,65, over different subsamples

% of months when
b7 > 0.90 over: Time averages of &, over:
September 1989 - | September 1999 - | September 2009 -

Factor Full sample Full sample August 1999 August 2009 December 2017
Market 100.0 0.990 0.999 0.974 0.997
Leverage 37.9 0.827 0.739 0.932 0.808
Sales to cash 37.9 0.817 0.716 0.936 0.793
Cash flow-to-price 37.9 0.832 0.765 0.933 0.792
Net debt-to-price 37.9 0.838 0.753 0.936 0.823
Earnings to price 37.9 0.811 0.743 0.935 0.745
Net payout yield 37.6 0.844 0.769 0.932 0.829
Years since first Compustat coverage 37.6 0.828 0.724 0.935 0.823
Cash flow to price ratio 37.6 0.818 0.737 0.934 0.775
Quick ratio 374 0.835 0.782 0.936 0.777
Altman’s Z-score 37.4 0.828 0.740 0.931 0.808
Payout yield 37.1 0.851 0.785 0.932 0.831
Earnings volatility 37.1 0.852 0.779 0.936 0.840
Change in shares outstanding 37.1 0.805 0.671 0.932 0.815
Enterprise book-to-price 36.8 0.830 0.741 0.933 0.812
Cash holdings 36.8 0.826 0.740 0.935 0.797
Dividend to price 36.5 0.846 0.789 0.932 0.811
Depreciation /| PP&E 36.5 0.851 0.813 0.930 0.801
Kaplan-Zingales Index 36.2 0.822 0.731 0.930 0.801
R&D-to-sales 36.2 0.815 0.731 0.923 0.786
Cash flow volatility 36.2 0.783 0.617 0.924 0.812
Accrual volatility 36.2 0.779 0.613 0.926 0.803
Current ratio 35.9 0.846 0.815 0.926 0.785
Idiosyncratic return volatility 35.6 0.851 0.799 0.923 0.828
Debt capacity/firm tangibility 35.6 0.829 0.735 0.920 0.832
Maximum daily return 35.3 0.838 0.764 0.927 0.821
Bid-ask spread 35.3 0.847 0.786 0.931 0.821
Cash productivity 35.3 0.819 0.751 0.911 0.789
Return volatility 34.7 0.844 0.786 0.922 0.820
Robust Minus Weak 34.7 0.773 0.694 0.910 0.705
Whited-Wu Index 34.7 0.781 0.697 0.913 0.724
New equity issue 34.7 0.756 0.620 0.912 0.732
Sales to price 34.7 0.832 0.768 0.919 0.804
High Minus Low 34.4 0.830 0.757 0.926 0.802
Vol. of liquidity (share turnover) 34.4 0.846 0.786 0.920 0.830
Market Beta 34.1 0.859 0.824 0.921 0.828
Zero trading days 34.1 0.855 0.808 0.918 0.836
Share turnover 34.1 0.857 0.815 0.917 0.834
Advertising Expense-to-market 34.1 0.810 0.707 0.914 0.809
Net equity finance 34.1 0.841 0.797 0.916 0.803
Asset turnover 34.1 0.788 0.643 0.911 0.815
Net external finance 32.1 0.827 0.781 0.900 0.793
Absolute accruals 31.8 0.818 0.750 0.903 0.799
Growth in long-term debt 31.5 0.767 0.678 0.902 0.711
Industry-adjusted book to market 30.9 0.810 0.771 0.901 0.748
Working capital accruals 30.6 0.812 0.748 0.900 0.783
HML Devil 30.3 0.820 0.747 0.905 0.805
Change in Net Financial Assets 29.4 0.697 0.581 0.907 0.583
Chg in Current Oper. Liabilities 28.2 0.773 0.710 0.904 0.690
Sin stocks 27.6 0.749 0.603 0.884 0.762
Sales to receivables 27.4 0.820 0.781 0.896 0.777
Employee growth rate 22.6 0.773 0.710 0.898 0.699
Net Operating Assets 16.8 0.778 0.664 0.900 0.767
HXZ Investment 13.2 0.797 0.739 0.892 0.753
Chg in Net Non-current Oper. Assets 8.2 0.791 0.729 0.886 0.753
Financial statements score 7.9 0.738 0.700 0.885 0.605
R&D Expense-to-market 7.6 0.804 0.770 0.883 0.751
R&D increase 5.3 0.742 0.676 0.873 0.664
Industry momentum 2.9 0.772 0.748 0.840 0.721
Abnormal Corporate Investment 2.9 0.674 0.497 0.866 0.654
Sales growth 2.4 0.761 0.706 0.876 0.690
Conservative Minus Aggressive 1.8 0.766 0.716 0.860 0.714
Momentum 1.2 0.755 0.715 0.793 0.758
Change in Short- term Investments 0.3 0.625 0.377 0.801 0.712
Return on net operating assets 0.3 0.764 0.645 0.877 0.773
Notes: Factor strength estimates, &, -, where s = 1,2,...,65, are computed using (7) for 10-year rolling windows 7 = 1,2, ..., 340. Remaining factors whose

estimated strength resides below 0.9 throughout the sample period can be found in Table S20 of the online supplement.
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Figure 7: Comparison of the market factor strength estimates obtained from the original single factor
CAPM (Gyy,-) and those from using the cross section average (CSA) of S&P500 securities’ excess
returns (Gesq,r), over 10-year rolling windows
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Notes: The market factor and CSA of S&P500 securities’ excess returns strength estimates over 7 =
1,2,...,340 rolling windows are computed using (7).

Table 9: Strength estimates of the strongest unobserved factor using the cross section average (CSA)
of the Stock and Watson (2012) dataset (n = 187 variables) and the corresponding exponent of cross
section dependence (CSD)

Q1 1988 - Q4 2007 Q1 1988 - Q2 2019
(T = 80) (T = 126)
&5.05 a a595 | X005 a &5.95
p=0.10
Strength of CSA (6 =1/4) 0.962 0.964 0.966 | 0.928 0.930 0.933
Strength of CSA (6 =1/2) 0.957 0.958 0.959 | 0.918 0.920 0.922
Exponent of CSD 0.833 0.873 0.913 | 0.858 0.920 0.981
p=0.05
Strength of CSA (6 =1/4) 0.962 0.964 0.966 | 0.927 0.929 0.931
Strength of CSA (6 =1/2) 0.957 0.958 0.959 | 0.912 0.914 0.915
Exponent of CSD 0.833 0.873 0.913 | 0.856 0.918 0.979

Notes: *90% confidence bands. In the computation of the strength of CSA,
parameters p and § are used when setting the critical value (6).

The exponent of CSD corresponds to the most robust estimator of cross-
sectional dependence proposed in Bailey et al. (2016) and corrects for both
serial correlation in the factors and weak cross-sectional dependence in the

error terms.
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Appendix A Proofs of Lemmas
Proof of Lemma 1
We have that
E (diyr ) = mipr = Pr[ltir] > ¢p(n)]
=@ (—¢y(n) + VT0ir) + @ (—cyl(n) = VT00r)

and

Tinr =1 — @ <—\/T0iT + cp(n)> + @ (—cp(n) — \FTHiT) (A.1)
e Oir = (vi/oi) (T M, £) " (A.2)
Then,
iE (CZ”LT) = i 1(v; #0) [1 - & (_\/TOiT + cp(n)) + @ (—\/T&T — cp(n))}
=1 =1
+ (n=n") 2@ (—cp(n))] -
Note that
[ (—cp(m)] = 1= [@ (cp(n))] = 1 — @ | @~ (1= L )] (A.3)
Hence,
zn: E (dipr) =n + Zn: 10 #0) [ (~VTbir = cp(n)) = @ (—VT0ir + ¢,(n))|
i=1 i=1
L p(n—n) ,

§
n
where ;7 is defined by (A.2). Note also that

® (—\/:FeiT - cp(n)) — % (—\/:FeiT + cp(n)>
= [1 - ® (\/T&T + cp(n))} - [1 - (\/TGZ-T - cp(n))}
= (ﬁﬁiT — cp(n)> —® (\/THZT + cp(n)> .
Hence
o (—\/Teﬁ - cp(n)) ) (—\/TGZ-T + cp(n))
s (—ﬁyeﬁ\ - cp(n)) —® (—ﬁyem + cp(n)> . (A.4)

Also since ¢p(n) > 0, for small p and § > 0, then & (—ﬁwiﬂ - cp(n)) <P (—\/T|9iT| + cp(n)),

and we have

Zn: 1(8;7 # 0) [qn (—ﬁeiT . cp(n)) B (—\/:FeiT + cp(n))}
=1
- zn: 1(0;7 #0) [cp (—\/:me - cp(n)) — 3 (—ﬁ ;7| + cp(n))] .

=1
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Suppose now that there exists Ty such that for all T > Ty, and some i, |#;7| > 0, we have —/T |6;7|+
cp(n) < 0. Such a Tj exists since c,(n)/vVT — 0 as n,T — oo, jointly, for § > 0 - for a proof see
result (a) in Lemma 2 of the supplement to Bailey et al. (2019). Also

® (VT bl + () < (2 exp { 5 [V = ] | = 1/ { L0 = ﬁ“;l]} |

(A'5)
and
316 £0) [0 (VTbir — eylm) @ (VT -+ )| |

=1

< f: 1(6:r #0) [0 (=VT izl = cp(m) +® (—VT 104z | + cp(n) ) | <0 supexp { ~T6% [1 ¢(n) ]2} |
=1

7 2 \/T’@ZT‘
Overall,
Y B (‘ZZ nT) —n —T6> cp(n) 2 _ o
_ - ' _ i |9 % p(n—n)
Bur = neo = Co sgp P 2 [1 \/T|92T|:| * ndtao (A-6)
Proof of Lemma 2
Consider the first term of (9) and note that
1 n
AnT = W Z [di,nT - F (dz,nT>} .
i=1
Under the assumption that wu; are cross-sectionally independently distributed, z;,7 = cZ,;’nT —

E (me> are uncorrelated across i and

Var (zinr) = Var (dir ) = miar(1 = minr) <1/2,
where 7; 7 is defined by (A.1). Then

1

Var (Ant) = —4- Zﬂz‘,nT(l — TinT)-
i1

-
Now, using (A.1), first we note that (using (A.4))
1 — Tinr| = \cp (—\/:FeiT + cp(n)) — 9 (—cp(n) - ﬁeﬁﬂ
- ‘@ (—cp(n) - \/TeiT> ) (-ﬁen + cp(n))(
- ‘cp (~VT 10l = ep(n)) = @ (=T |6ir| + cp(n))\
<@ (VT ir] = cy(n)) + @ (—VT o] + ep(n) ) < 20 (—VT6iz| + ()
and hence using (A.5) we have

’1 — Wi,nT‘ =0 [exp (—ClT)] s if sz‘ > 0,
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and when ;7 = 0, using (A.3), we have

L= 7inr = ®[cp(n)] = @ [=cp(n)]

=1-20[—cy(n)] =1— %.
Overall, .
Var (Aur) = — {(n — pao) % (1 - %) + %00 [exp (—CQT)]} . (A7)

Proof of Lemma 3

We note that V"5 — 0, (1), YIRS — 0,(1), and E[f; — B (£)] [fi — B (£)] = I,n. Then
: VT (T7'F'M.F)y;  T-Y/25/M,Fy, T-1/25'F' M, u;
the orders of the four terms given by T EME? T EMER T (T M, F)]

177, in the statement of the lemma, are as follows,

T-1/2'M,Fu;
¥ (T~1F'M.F)7]

VIV (T'FMF) Y, (VT (A.8)
5 (T EMF) A T\ ) '
T-125'M F~, n~ /2 (%) n—1/2 1/
T i = = O _— = O n Qo y Ag
5 (TEMF) A [y (TEMCE) 5 () (1) @)
T=1/25" M., n—1/2 (7\/5‘_‘%7‘11') L2
T = =0, (n'/*7). A.10
5 (T FMF) 5] (5 (T FMF) 5] () ()

Also, since by Assumption 1, u; is distributed independently of «,; and F, we also have

T_l/QF_Y/F/MTul T—]./Q,—Y/F/MTul ~ )
E ~/! —1Rv —11/2 - 07 Var —/ LY _11/2 |F)7 =0;- (All)
¥ (T-'F'M-F) 7] (¥ (T-1F'M,F) 7]

It readily follows that so long as a = «; > 1/2 then

T-125'M,.Fu,;
7' (T-1F'M, F) 5]"/2

—d N(O,U?).

proving the first set of probability order results.

Next we provide a more refined analysis to obtain exponential probability inequalities for each
of (A.8)-(A.11). We start with (A.8). First we handle the denominator. Let 7, ; = no% o Yijs
ji=1,2,...,m,

1 _ 1 _ 1 1 1
fZ’Ya,Za s fm'Ya,m) = 2y

1
Fy——  (f A —— - -
R nl—ao( 17e1) o0 —020 Nne0—mo nlfao( a1’ pap—azo Nne0—mo a’m)

where f, j = (fi,a4,---» nya,j)’ . Note now that f; o ; are covariance stationary, martingale difference
processes with non-zero, finite second moment, O‘J%% i Then by Lemma A9 of Chudik et al. (2018),

T4 (T-'F'M,F)~, 1-a1 /T (T-'F'M,F)
m(f“’( )7 >Cp<n>) <P (” el )i

> c,(n) | +exp (=CoTC) .
[‘_y’(Tle’MTF)?y]l/Q Oy, a )> p(~CoT™)

(A.12)
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A similar result holds for (A.9)-(A.11). We proceed to analyse the first term on the RHS of (A.12).
For some 0 < 7 < 1, it follows that

1—ap T~ T—lF/MTF )
Pr (n VT ( )i > cp(n))

O fy,1

(A.13)

m . m —1/2 arg—QQ T _r Y P N _f o fo
S ZZPI‘ (T n thl(ft,a,r fa,r)(ft,s7zs fs’}’zs) E [(ft,oa,r fa,r)(ft,sf)/zs fS/Y’LS)] > ﬂ_cp(n))

r=1 s=1 Tfr1
(A.14)
meon [Tl/Znaro—ao—l 2?11 YirYis
+ ; Z; Pr ( p— > (1—m)ep(n) |, (A.15)

where fa7r and f, are the sample averages of ft.ar and fi s respectively. By Lemma A10 of Chudik
et al. (2018),

o T_1/2 ro—ao T— om"_iom" sis_; is) — E ar_iar sz‘s_is 5
ggp< n@r0=90 S (fraoor — Jor)) (fis %ﬁv ) = B((fror — far) (frstis — Foris)) >m,,<n)>
C
<

For (A.15), we consider two cases - v; = 0, and y; # 0. If v;; = 0, (A.15) is bounded from below by
1—exp [—CoTol] , if n%0~220 = o(7T"/2) and bounded from above by exp (—CoTol) if not. If 7; # 0,
(A.15) is bounded from below by 1 — exp (—CoT“"), in any case.

Identical arguments can be used to show that

. ( T-1/20' M, Fry,
&

(T-1F'M,F)~]"/? > CP(”)> < exp (=CoT),

and

7128 M,y
Pr ([_' (T—1F/M.F) 2_}1/2 > Cp(n)> < exp (—COTCI) .
gl F) 75

Finally, and again using similar arguments,

T-125'F' M, u; Cp
Pr{ — = i cp(n) | < —5,
¥ (T~'F'M,F)7] n

completing the proof of the lemma.

Proof of Lemma 4

We proceed by considering ¢;7 under (27) and note that
X =ctr + F4+1, and x; = ¢;77 + Fy, + u,.

Then,
T-Y2(xM,x;) T~ Y3Fy+a)M, (Fy, +w;)
Gir (TMLR)? 6y [T (FF+0) M, (Fy+a)]

tir =

(A.16)
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and
o7 =T 1 (Fy; +u) My (Fy; + w) .
Consider first the denominator of (A.16) and note that
T~ F5+0)M. (Fy+a) =% (T 'FM,F) 7 + 2T 'a'M. Fy+T'a'M,u.
Under our assumptions, s P = T~'F'M.F is a positive definite matrix and

Mwin (21) (77) <7 (T FMF) 5 < (75) Aax (£ ) -

Since 0 < Amin (flf) < Amax (ﬁf) < (O, it follows that 5/ (T_IF’MTF) 4 and 4’4 have the same
order in n. Recalling that ag > a9 ...,

3 (T7'FM,F)3 =6, (nQ(ao—U) .
Also using results from Pesaran (2006) we have T-1a'M,a :Op(n_l), and T7'9'M,F5 = Op(n_1/2+°‘0_1).
Therefore, overall

1/2

[T (Fy-+0) M, (Fy+a)] "

= [7 (17'F'MF) 3] {14 0,(n!/270) 4 0, (n'2) }
But since ag > 1/2 then

1 (FF+2) M, (Fy+3)]* = [7 (T F'MF) 3] 1+ 0,(1)).
Using this result in (A.16) we now have

_ TVR(Fy+8)' M, (Fy, + w)
oiT
VTS (T~F'M,F)~, T~'/?w' M, Fy,
_ F(TEMFA]Y? (T MAF))

tir

T_1/2'_Y/F/M7—ui + T—1/2ﬁ/MTFui

N it V2 N Ay X0 U

oiT
Then the result of the lemma follows by Lemma 3.
Appendix B Proofs of Theorems

Proof of Theorem 1

We abstract from the subscript j in what follows. We consider the following relations

A DnT o DnT —n
(lnn)(a—a@-ln(Dg ) =In <1+W>

=In (1 + Anr + BnT)
= Apr + Bur + Oy (A1) + O (B2r) + Op (AurBur) + . . .,

where

doic [di,nT —-F (CimTﬂ

Apr = nao ’
Z?:l E (Czi,nT) —n A
BnT _ a0 s with d@nT =1 HtiT’ > Cp(n)] .
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Note that E (a?mT) = minr = Pr{|tir| > ¢,(n)]. Then, we wish to determine

Byr = Z?ZI Pr{ltir| > ¢p(n)] —n® _ ZEZlO} Pr [|tir]| > cp(n)|yi # 0] — no° N
n nao nao
Y pmeopr Prltir| > cp(n)lyi = 0]

neo

Under regularity conditions and by Lemma A.10 of Chudik et al. (2018),
Pr[|tir| > cp(n)|vi #0] >1 -0 [exp(—Tc)] , for some C > 0.

So
S P [[tir] > cp(n)|yi # 0] — 0o
neo

Again by Lemma A.10 of Chudik et al. (2018),

=0 [exp(—Tc)] :

Cp
Prftir| > ¢p(n))yi = 0] < 5

So, for some C' > 0,

Z?:[naO]Jrl Pr[[tir| > cp(n)|vi = 0] < Cp(n—n*) o (n1—5—ao>
noo — n5+a0 - :

Overall,
B,r =0 (nl_‘s_ao) +0 [exp(—Tc)} .
Next, note that

= 153 [ 8 i)

=1
Under the assumption that u;; are cross-sectionally independently distributed, a martingale difference
central limit theorem holds for z; ,7 = d; 7 — E (di,nT and further

Var (Zi,nT> =Var (dLnT) = ﬂ—i,nT(l — 7ri,nT)-

Then,
R 1 &
Var (AnT) = a0 ; 7Ti,nT(1 — 7Tz’,nT) < m ; TinT =
1 [n®0] 1 n
nQO‘O Z T nT + % Z TnT = @) [exp(—TC)] + O <n1_5—2060> .
i=1 i=[n0]+1

So, Apr = O, (n1/2_5/2_0‘0), and further v, (ag)~ Y24, —q N(0,C), for some C' < 1, where
Ynlag) = p(n — n®%)n=9-20 (1-5).

n

Proof of Theorem 2
To prove this theorem it is sufficient to retrace the proof of Theorem 1 using
Pr(|tir| > cp(n)|yi #0] >1 -0 [exp(—Tc)] , for some C > 0, (B.17)
d
an Cp
nd’
Both (B.17) and (B.18) follow from Lemmas 3 and 4, proving the result.

Priffir| > cpn) = 0] < (B.18)
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Introduction

This online supplement is composed of two subsections which provide additional Monte Carlo and
empirical results.

Additional Monte Carlo results

The Monte Carlo results provided in the tables and plots below are based on the designs set out in
Section 5 of the paper.

Table S1: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.75

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
10 = 0,757 Qo = 0.75
100 | 1.18 1.19 1.08 1.03 | 156 156 142 139 | 3.35 3.8 235 2.05
200 | 1.43 136 132 131|159 1.51 147 146 | 930 815 6.10 6.25
500 | 1.31 124 116 1.14 |1.39 1.31 123 1.21 |13.65 11.00 825 7.70
1000 | 1.26 1.19 1.13 1.11 |1.31 123 117 1.15 | 1635 11.05 7.95 6.90
o109 = 0.807 Qoo = 0.75
100 | 0.71 0.69 0.62 0.61 | 1.04 1.02 0.95 0.93 | 1830 18.65 17.10 17.10
200 | 0.96 0.91 0.88 0.87 | 1.09 1.04 1.01 0.99 | 13.15 11.20 10.10 9.45
500 | 0.92 087 082 0.80 |098 092 0.87 0.86 |13.20 9.25 7.05 6.40
1000 | 0.86 0.81 0.77 0.75|0.89 0.84 0.80 0.78 | 1740 1245 9.15 8.15
10 = 0,85, o = 0.75
100 | 0.71 0.69 0.64 0.61 [091 0.89 0.83 0.80 |11.65 11.10 8.00 6.70
200 | 0.61 0.58 0.55 055|071 0.68 065 0.65 | 535 4.00 320 3.60
500 | 0.53 0.50 046 046 | 0.58 0.54 0.51 0.50 [ 12.00 8.60 6.95 7.80
1000 | 0.50 0.47 045 044|052 050 047 046 | 995 805 5.75 5.70
Q10 = 0.907 Qoo = 0.75
100 | 0.40 040 0.38 0.36 | 0.56 0.55 0.53 0.51 | 480 4.00 3.25 270
200 | 0.27 0.26 0.25 0.24 | 038 036 034 033 |13.80 12,60 1210 12.90
500 | 0.30 0.29 0.27 0.26 | 033 032 030 0.29 | 880 840 6.10 6.00
1000 | 0.28 0.27 0.26 0.25 | 0.30 0.29 0.27 0.27 | 11.80 8.65 590 6.60
10 = 0.95, Qo = 0.75
100 | 0.07 0.08 0.07 0.06 | 0.25 0.24 0.23 0.23 | 525 3.55 260 2.50
200 | 0.11 0.11 0.11 0.10 | 0.18 0.18 0.17 0.17 | 6.45 4.65 4.10 4.00
500 | 0.12 0.12 0.11 0.10 | 0.14 0.14 0.13 0.13 | 1095 9.25 810 7.70
1000 | 0.10 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 9.20 6.50 5.30 4.15
Q10 = 1007 Qo0 = 0.75
100 | -0.01 0.00 0.00 0.00 | 0.05 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 |0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) of the main paper are generated as follows: for unit specific effects,

¢i ~IIDN (0,1), for = 1,2,...,n. The factors, (fi¢, f2+), are multivariate normal with variances

L= U;Q =1 and correlation given by p12 = corr(f1, f2) = 0.3. Each factor assumes an autoregressive

process with correlation coefficients py; = 0.5, j = 1,2. The factor loadings are generated as

vij ~ IIDU (pro; — 0.2, po; +0.2), for [n®9°] units, j = 1,2, respectively, and zero otherwise. We set

Hy, = floy = 0.71. Both aip and a0 range between [0.75,1.00] with 0.05 increments. The innovations wu;;
are Gaussian, such that u;; ~ ITDN(0,07?), with o ~ IID(1 + x2,)/3, for i = 1,2,...,n. In the
computation of &;, j = 1,2, we use p = 0.10 and § = 1/4 when setting the critical value. Size is computed
under Ho: aj=ajo, for j = 1,2, using a two-sided alternative. When a19 = 1.00, our estimator is ultra
consistent, hence size results for this case are not meaningful. The number of replications is set to

R = 2000.
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Figure S1: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.75, n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S2: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.80

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 0.80
100 | 1.20 1.18 1.08 1.03 | 1.58 1.54 1.44 1.39 | 4.55 3.45 2.05 2.00
200 | 1.45 136 134 1.30 | 161 1.52 1.49 1.46 |10.30 810 6.85 7.05
500 | 1.31 1.24 1.15 1.14 |139 131 1.22 1.22 |14.55 1050 890 8.75
1000 | 1.26 1.19 1.13 1.12 | 1.31 1.24 1.17 1.15 |16.30 12.35 7.90 7.35
a1g = 0.80, ag = 0.80
100 | 0.72 0.71 063 061 | 1.06 1.04 095 094 |19.05 1870 17.30 17.70
200 | 0.96 091 089 0.87 |1.10 1.04 1.01 1.00 | 12.95 10.60 9.00 9.45
500 | 0.91 087 0.82 0.80 | 097 0.92 0.87 0.86 | 12.00 9.60 6.70 6.80
1000 | 0.85 0.81 0.77 0.76 | 0.88 0.84 0.80 0.78 | 17.05 12.00 8.15 7.95
a9 = 0.85, agg = 0.80
100 | 0.69 0.71 0.64 0.63 | 0.89 0.90 0.82 0.82 |10.80 10.60 6.85  7.60
200 | 0.60 0.57 0.55 0.53 | 0.70 0.67 0.65 0.64 | 510 440 3.10 2.90
500 | 0.53 0.50 046 0.46 | 0.58 0.54 0.51 0.50 | 10.55 &850 7.55  7.80
1000 | 0.50 0.48 045 0.44 | 0.52 0.50 047 0.46 | 1090 7.75 525 4.75
a0 = 0.90, a0 = 0.80
100 | 0.40 040 0.37 0.36 | 0.55 0.56 0.51 0.50 | 480 480 2.75 2.60
200 | 0.28 0.26 0.24 0.25 |0.38 035 0.33 0.34 | 1345 11.70 12.00 11.35
500 | 0.30 0.28 0.26 0.26 {033 031 030 030 | 98 785 685 7.00
1000 | 0.28 0.27 0.26 0.26 | 0.30 0.29 0.27 0.27 | 11.80 8.15 6.50 6.35
a10 = 0.95, a0 = 0.80
100 | 0.08 0.08 0.07 0.07 | 025 0.25 023 023 | 595 4.00 290 2.70
200 | 0.12 0.11 0.10 0.10 | 0.19 0.18 0.18 0.17 | 6.95 4.65 490 3.85
500 | 0.12 0.12 0.11 0.11 |0.14 0.14 0.13 0.13 | 1145 860 7.65 7.30
1000 | 0.10 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 790 545 595 540
ag = 1.00, azg = 0.80
100 | -0.01 0.00 0.00 0.00 | 0.05 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S2: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.80, n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S3: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.85

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 0.85
100 | 1.20 1.17 1.07 1.02 | 1.59 1.53 144 1.38 | 4.85 3.35 2.70 2.30
200 | 1.44 137 133 1.31 | 160 1.52 148 1.46 | 9.50 7.70 745 6.65
500 | 1.31 1.23 1.16 1.13 |139 130 1.22 1.21 |13.95 11.30 810 9.20
1000 | 1.26 1.20 1.13 1.11 | 1.31 1.24 1.17 1.15 |16.50 11.75 8.30 7.15
a1g = 0.80, azg = 0.85
100 | 0.70 0.70 0.62 0.58 | 1.04 1.03 095 091 | 1820 17.80 16.90 18.00
200 | 0.96 0.90 087 0.86 |1.09 1.03 0.99 0.98 | 14.20 10.65 9.15 9.30
500 | 0.91 087 0.82 0.80 | 097 092 0.87 0.8 | 13.10 9.10 7.20 6.70
1000 | 0.85 0.81 0.77 0.76 | 0.88 0.84 0.79 0.78 | 1810 13.00 7.95 7.65
a9 = 0.85, agg = 0.85
100 | 0.69 0.69 064 063|089 0.89 082 081 |11.30 10.65 7.85 7.70
200 | 0.61 0.57 0.57 0.54 |0.72 0.68 0.67 0.65 | 645 420 3.35 3.55
500 | 0.53 0.50 047 0.46 | 0.58 0.55 0.51 0.50 | 12.30 9.60 6.60  7.95
1000 | 0.49 047 045 0.44 | 0.52 050 047 0.46 | 1095 8.05 595 5.10
a0 = 0.90, a0 = 0.85
100 | 0.41 040 0.40 0.37 | 0.56 0.54 054 051 | 520 3.20 3.30 2.60
200 | 0.27 0.26 0.25 0.24 | 0.37 036 0.35 0.34 | 13.55 13.15 12.60 12.60
500 | 0.30 0.29 0.27 0.26 | 033 032 030 030 | 970 845 710 7.85
1000 | 0.28 0.28 0.26 0.26 | 0.30 0.29 0.28 0.27 | 10.75 9.45 6.65 6.00
a10 = 0.95, a0 = 0.85
100 | 0.07 0.08 0.07 0.07 | 026 0.24 023 023 | 6.20 3.95 280 3.05
200 | 0.11 0.11 0.11 0.10 | 0.19 0.18 0.17 0.17 | 8.15 5.50 4.00 4.10
500 | 0.11 0.12 0.11 0.11 |0.14 0.14 0.13 0.13 | 13.20 805 745 7.70
1000 | 0.09 0.10 0.09 0.09 | 0.10 0.11 0.10 0.10 | 980 6.70 530 5.10
ag = 1.00, azg = 0.85
100 | -0.01 0.00 0.00 0.00 | 0.06 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00|0.04 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S3: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.85, n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S4: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.90

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 0.90
100 | 1.19 1.18 1.05 1.02 | 1.58 1.54 141 1.39 | 4.55 3.70 2.30 2.45
200 | 1.44 136 132 1.30 | 1.60 1.1 1.47 1.45 | 9.25 820 6.75 6.50
500 | 1.31 1.24 1.15 1.14 139 131 1.22 1.21 | 1435 11.20 7.50 8.90
1000 | 1.27 1.19 1.13 1.11 |1.31 1.23 1.17 1.15 | 16.15 11.40 7.50 6.75
a1g = 0.80, azg = 0.90
100 | 0.71 0.69 061 061 |1.05 1.02 095 094 | 19.15 18.80 18.55 18.85
200 | 0.95 0.90 088 0.87 |1.08 1.03 1.01 1.00 |12.75 10.55 9.60 11.55
500 | 0.92 087 0.81 0.81 | 098 092 0.86 0.86 | 13.50 9.20 6.95 6.60
1000 | 0.86 0.81 0.77 0.76 | 0.89 0.84 0.80 0.79 | 1835 12.70 890 8.60
a9 = 0.85, agg = 0.90
100 | 0.68 0.69 064 0.61 | 089 0.88 083 0.80 |11.10 9.50 830 6.30
200 | 0.61 0.57 055 0.54 |0.72 068 0.65 0.64 | 6.65 390 295 2.50
500 | 0.53 0.50 047 0.45 | 0.57 0.54 0.51 0.50 | 10.35 9.60 7.00 7.35
1000 | 0.50 0.48 045 0.44 | 0.52 0.50 047 0.46 | 11.15 785 580 5.20
a0 = 0.90, a0 = 0.90
100 | 0.41 040 0.38 0.37 | 0.57 0.55 0.53 0.52 | 580 3.50 3.40 3.45
200 | 0.28 0.26 0.24 0.24 | 038 035 0.33 0.33 | 13.15 12.70 12.15 12.55
500 | 0.30 0.29 0.27r 0.27 | 0.33 032 030 0.30 |10.60 795 6.75 7.05
1000 | 0.28 0.27 0.26 0.25 | 0.30 0.29 0.27 0.27 | 11.75 870 7.70  5.50
a10 = 0.95, a0 = 0.90
100 | 0.08 0.08 0.07 0.07 | 025 0.24 024 023 | 520 3.70 3.25 3.35
200 | 0.11 0.11 0.10 0.10 | 0.19 0.18 0.17 0.17 | 7.85 5.05 420 3.95
500 | 0.11 0.12 0.11 0.11 | 0.14 0.14 0.13 0.13 | 12.75 790 8.60 7.40
1000 | 0.10 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 9.00 525 3.90 4.80
ag = 1.00, azg = 0.90
100 | -0.01 0.00 0.00 0.00 | 0.05 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00 |0.03 0.00 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S4: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.90, n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S5: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 0.95

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 0.95
100 | 1.19 1.17 1.06 1.01 | 1.56 1.53 142 1.37 | 3.75 3.25 1.95 2.00
200 | 1.45 135 1.32 1.30 | 1.60 1.1 1.47 1.45 |10.55 810 6.70 6.65
500 | 1.31 1.24 1.15 1.13 |139 131 1.22 1.21 | 1445 1095 7.95 8.50
1000 | 1.26 1.20 1.13 1.11 | 1.31 1.24 1.17 1.15 | 16.70 11.35 7.40 6.45
a1g = 0.80, agg = 0.95
100 | 0.71 0.70 0.61 0.60 | 1.06 1.04 094 093 | 1820 19.50 1835 17.30
200 | 0.96 0.92 0.88 0.87 |1.09 1.05 1.01 0.99 | 13.10 1095 985 9.00
500 | 0.91 087 0.81 0.81 | 097 093 0.86 0.86 |12.90 940 6.90 7.40
1000 | 0.85 0.81 0.77 0.75 | 0.89 084 0.79 0.78 | 1740 11.95 835 8.05
a9 = 0.85, agg = 0.95
100 | 0.71 0.69 064 062|091 088 082 080 |11.40 940 795 7.70
200 | 0.60 0.57 0.56 0.54 | 0.71 0.67 0.66 0.64 | 6.05 3.60 345 2.90
500 | 0.53 0.50 047 0.45 | 0.58 0.54 0.51 0.50 | 10.85 &8.10 8.05 6.90
1000 | 0.50 0.48 045 0.44 | 0.52 0.50 047 0.46 | 10.75 9.00 545 5.65
a0 = 0.90, a0 = 0.95
100 | 0.40 041 0.38 0.36 | 0.55 0.55 0.53 0.51 | 510 3.80 3.50 2.60
200 | 0.28 0.25 0.25 0.24 | 037 035 0.34 0.34 | 1240 11.70 11.65 12.65
500 | 0.30 0.29 0.27 0.26 | 034 031 030 0.29 |11.85 7.20 690 7.40
1000 | 0.28 0.28 0.26 0.26 | 0.30 0.29 0.27 0.27 | 11.55 9.95 6.95 6.85
a10 = 0.95, a0 = 0.95
100 | 0.07 0.08 0.07 0.06 | 024 0.25 023 023 | 435 435 255 240
200 | 0.11 0.11 0.10 0.10 | 0.18 0.18 0.17 0.17 | 7.55 4.85 4.05 3.60
500 | 0.12 0.12 0.11 0.11 |0.14 0.14 0.13 0.13 | 11.056 7.60 7.00 8.05
1000 | 0.09 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 9.05 6.55 4.60 540
ag = 1.00, azg = 0.95
100 | -0.01 0.00 0.00 0.00 | 0.05 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S5: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 0.95, n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S6: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is
set to 1.00

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 1.00
100 | 1.20 1.18 1.06 1.03 | 1.58 1.56 1.43 1.38 | 415 3.90 2.55 1.65
200 | 1.45 135 133 1.31 |161 1.51 148 147 | 990 830 6.35 6.45
500 | 1.31 1.24 1.16 1.14 139 131 1.23 1.21 |13.50 1095 740 835
1000 | 1.27 1.20 1.13 1.11 | 1.31 1.24 1.17 1.15 | 16.45 11.40 7.05 6.65
a1g = 0.80, ag = 1.00
100 | 0.70 0.68 0.61 0.60 | 1.06 1.01 096 095 |20.15 1745 1880 19.25
200 | 096 091 0.89 0.86 | 1.08 1.04 1.01 0.98 | 12.30 11.00 10.75 9.65
500 | 0.92 087 0.82 0.81 | 098 092 0.87 0.8 | 12.80 885 735 745
1000 | 0.85 0.81 0.77 0.75 | 0.89 084 0.79 0.78 | 1745 1230 890 7.90
ag = 0.85, azg = 1.00
100 | 0.70 0.69 0.65 0.63 | 090 0.87 083 081 |11.45 9.10 820 7.25
200 | 0.62 0.57 0.56 0.54 |0.72 067 0.65 0.64 | 570 390 3.50 3.00
500 | 0.54 0.50 0.47 0.46 | 0.58 0.54 0.51 0.50 | 10.60 890 7.55 7.90
1000 | 0.50 0.48 0.45 0.44 | 0.52 0.50 047 0.46 | 10.20 790 5.15 4.85
a0 = 0.90, a0 = 1.00
100 | 0.41 0.40 0.37 0.36 | 0.56 0.55 0.51 0.50 | 4.65 4.00 2.80 2.30
200 | 0.28 0.26 0.25 0.24 | 0.38 0.36 0.35 0.33 | 1240 12.00 13.05 12.15
500 | 0.30 0.28 0.27 0.26 | 0.33 032 030 0.29 | 10.15 850 6.10 6.95
1000 | 0.28 0.27 0.26 0.26 | 0.30 0.29 0.28 0.27 | 12.65 945 6.50 6.55
a10 = 0.95, a0 = 1.00
100 | 0.08 0.07 0.06 0.06 | 025 0.24 0.22 0.22 | 6.00 3.15 230 2.50
200 | 0.10 0.11 0.10 0.10 | 0.18 0.18 0.17 0.17 | 6.95 4.65 420 3.35
500 | 0.12 0.12 0.11 0.11 |0.14 0.14 0.13 0.13 | 11.25 895 740 7.80
1000 | 0.10 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 955 6.30 475 5.15
a0 = 1.00, o) = 1.00
100 | -0.01 0.00 0.00 0.00 | 0.05 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S1.
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Figure S6: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2A (two observed factors - Gaussian errors), when the strength of the second
factor is set to 1.00, n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table S1 for details of the data generating process. Power is computed under H;:
a1=010 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S7: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.75

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 0.75
100 | 1.16 1.13 1.08 1.02 | 1.53 1.51 146 139 | 410 3.55 3.00 2.45
200 | 1.45 139 129 1.30 | 161 154 1.45 1.46 |10.10 8&8.00 7.05 7.20
500 | 1.29 1.23 1.17 1.14 | 137 131 124 1.21 |12.65 9.7 8.05 6.85
1000 | 1.26 1.19 1.12 1.11 |1.30 1.23 1.16 1.15 |16.55 10.25 7.45 6.85
a1p = 0.80, agg = 0.75
100 | 0.68 0.67 061 059 |1.03 1.01 096 093 |19.85 19.00 19.55 18.15
200 | 0.95 0.92 086 0.86 |1.09 1.04 0.99 0.98 | 13.85 10.80 10.45 10.15
500 | 0.90 086 0.82 0.81 | 096 092 0.88 0.86 | 11.80 880 7.25 6.05
1000 | 0.86 0.81 0.76 0.76 | 0.89 083 0.79 0.78 | 17.80 12.05 845 8.50
a9 = 0.85, agg = 0.75
100 | 0.68 0.68 0.65 0.62 | 0.88 0.87 0.84 0.82 |10.95 10.15 &8.10 8.65
200 | 0.60 0.59 054 055|071 069 064 065 | 595 3.7 3.05 345
500 | 0.52 0.50 047 0.46 | 0.56 0.54 0.51 0.50 | 10.65 8&8.65 6.80  7.00
1000 | 0.49 047 044 0.44 | 0.52 049 046 0.46 | 10.30 7.75 535 5.25
a10 = 0.90, a0 = 0.75
100 | 0.39 040 0.38 0.36 | 0.55 0.55 0.53 0.51 | 5.06 3.60 295 2.60
200 | 0.27 0.26 0.23 0.24 | 0.38 0.35 0.33 0.34 | 15.30 10.70 12.90 12.90
500 | 0.29 0.28 0.27 0.26 | 0.32 031 030 0.29 |11.20 7.65 680 7.35
1000 | 0.28 0.27 0.26 0.26 | 0.29 0.29 0.27 0.27 | 13.00 820 7.25 6.10
a10 = 0.95, a0 = 0.75
100 | 0.06 0.07 0.06 0.06 | 024 0.23 022 023 | 630 340 295 3.10
200 | 0.11 0.11 0.10 0.10 | 0.18 0.18 0.17 0.17 | 880 5.10 3.25 3.75
500 | 0.11 0.11 o0.11 0.11 |0.14 0.13 0.13 0.13 | 1450 9.40 880 8.10
1000 | 0.09 0.10 0.09 0.09 | 0.10 0.11 0.10 0.10 | 950 495 435 5.00
ag = 1.00, agg = 0.75
100 | -0.02 0.00 0.00 0.00 | 0.07 0.02 0.00 0.00 - - - -
200 | -0.02 0.00 0.00 0.00|0.05 0.01 0.00 0.00 - - - -
500 | -0.02 0.00 0.00 0.00 | 0.03 0.01 0.00 0.00 - - - -
1000 | -0.02 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S7: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second
factor is set to 0.75, n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is

computed under Hi: aiq=a10 + Kk, where K = —0.05, —0.045,...,0.045,0.05. The number of replications
is set to R = 2000.
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Table S8: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.80

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 0.80
100 | 1.17 1.14 1.07 1.03 | 1.52 1.50 1.45 1.41 | 3.05 3.35 2.70 2.50
200 | 1.46 1.39 128 1.28 |1.62 1.55 144 1.44 |10.35 885 6.60 6.65
500 | 1.29 1.23 1.17 1.14 | 137 131 124 1.21 | 1235 995 845 7.85
1000 | 1.27 1.18 1.12 1.11 132 1.22 1.16 1.15 | 17.10 10.95 6.90 7.05
a1g = 0.80, ag = 0.80
100 | 0.70 0.67 0.62 0.58 | 1.04 1.00 097 093 | 18.25 1840 1945 18.85
200 | 0.96 092 0.8 0.86 |1.09 1.05 099 0.99 | 14.15 1220 9.10 10.50
500 | 0.90 087 0.83 0.80 | 0.96 092 0.88 0.85 | 12.10 875 7.25 6.55
1000 | 0.85 0.80 0.77 0.76 | 0.88 0.83 0.79 0.78 | 1830 11.95 9.65 7.70
a9 = 0.85, agg = 0.80
100 | 0.68 0.67 0.63 0.63 | 0.89 0.86 083 0.82 |11.20 9.35 830 7.60
200 | 0.60 0.59 0.55 0.54 | 070 0.68 0.65 0.65 | 495 3.60 3.8 3.20
500 | 0.51 0.50 047 0.46 | 0.56 0.55 0.51 0.50 | 10.95 &850 7.35 7.20
1000 | 0.50 0.47 044 0.44 | 052 049 046 0.46 | 1230 890 5.65 5.40
a0 = 0.90, a0 = 0.80
100 | 0.38 0.39 0.38 0.36 | 0.54 0.54 0.52 0.51 | 5.00 3.55 3.10 2.75
200 | 0.27 0.27 024 0.24 | 037 036 0.33 0.34 | 14.00 1230 12.95 12.50
500 | 0.29 0.28 0.27 0.26 | 0.32 032 030 0.29 |11.20 895 7.00 7.05
1000 | 0.28 0.27 0.26 0.25 | 0.29 0.29 0.27 0.27 | 12.00 8.05 6.50 6.45
a10 = 0.95, a0 = 0.80
100 | 0.07 0.07 0.07 0.07 | 025 0.23 024 023 | 6.75 330 3.20 2.90
200 | 0.11 0.11 0.10 0.10 | 0.19 0.18 0.17 0.17 | 9.45 4.80 4.00 4.05
500 | 0.11 0.12 0.11 0.11 | 0.14 0.14 0.13 0.13 | 13.95 890 845 8.80
1000 | 0.09 0.10 0.09 0.09 | 0.10 0.11 0.10 0.10 | 11.55 5.80 4.20 4.45
ag = 1.00, azg = 0.80
100 | -0.02 0.00 0.00 0.00 | 0.07 0.01 0.00 0.00 - - - -
200 | -0.02 0.00 0.00 0.00|0.05 0.01 0.00 0.00 - - - -
500 | -0.02 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
1000 | -0.02 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S8: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second
factor is set to 0.80, n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is
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is set to R = 2000.
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Table S9: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.90

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 0.90
100 | 1.18 1.12 1.08 1.04 | 1.54 149 144 141 | 3.60 3.30 2.70 2.40
200 | 1.43 141 129 1.28 |1.60 1.56 1.44 1.44 |10.15 840 7.65 6.00
500 | 1.29 1.23 1.17 1.13 137 131 1.24 1.20 | 14.056 10.60 7.15 7.90
1000 | 1.27 1.18 1.13 1.11 |1.31 1.22 1.17 1.15 | 17.55 10.80 7.70  6.55
a1g = 0.80, azg = 0.90
100 | 0.69 0.64 062 059 | 1.03 098 096 093 |18.70 1845 1835 18.40
200 | 0.96 0.92 085 0.85|1.09 1.04 098 098 |13.30 9.05 990 9.05
500 | 0.90 087 0.83 0.81 | 096 092 0.87 0.8 |11.60 990 6.90 6.30
1000 | 0.86 0.81 0.76 0.75 | 0.89 084 0.79 0.78 | 1835 12.60 7.95 7.40
a9 = 0.85, agg = 0.90
100 | 0.68 0.65 0.63 0.62 |0.89 0.84 083 082 |11.45 830 840 7.20
200 | 0.60 0.59 054 054|071 069 064 065 | 595 420 340 3.65
500 | 0.52 0.50 047 0.46 | 0.57 0.55 0.51 0.51 | 10.85 8.65 6.75 7.85
1000 | 0.49 047 045 0.44 | 052 049 047 0.46 | 11.55 7.20 550 5.65
a0 = 0.90, a0 = 0.90
100 | 0.39 040 0.39 0.37 | 0.55 0.55 0.54 0.52 | 525 4.00 4.00 3.40
200 | 0.28 0.26 0.24 0.24 | 038 035 0.34 0.33 | 12.85 12.95 13.60 12.55
500 | 0.29 0.28 0.27 0.26 | 0.32 032 030 0.30 | 1065 835 630 7.95
1000 | 0.28 0.27 0.26 0.26 | 0.30 0.29 0.27 0.27 | 12.60 7.75 7.15 6.35
a10 = 0.95, a0 = 0.90
100 | 0.07 0.08 0.07 0.05 025 024 023 022 | 705 345 3.05 235
200 | 0.11 0.11 0.10 0.10 | 0.19 0.18 0.17 0.17 | 8.85 5.15 3.70  4.10
500 | 0.11 0.11 o0.11 0.10 | 0.14 0.14 0.13 0.13 | 13.15 9.55 785 7.65
1000 | 0.09 0.09 0.09 0.09 | 0.10 0.11 0.10 0.10 | 10.85 490 475 5.35
ag = 1.00, azg = 0.90
100 | -0.02 0.00 0.00 0.00 | 0.07 0.01 0.00 0.00 - - - -
200 | -0.02 0.00 0.00 0.00|0.05 0.01 0.00 0.00 - - - -
500 | -0.02 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
1000 | -0.02 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S9: Empirical power functions associated with testing different strengths of first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second
factor is set to 0.90, n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is

computed under Hi: aiq=a10 + Kk, where K = —0.05, —0.045,...,0.045,0.05. The number of replications
is set to R = 2000.
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Table S10: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 0.95

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 0.95
100 | 1.18 1.14 1.08 1.03 | 1.54 150 1.46 1.41 | 4.00 3.10 2.60 2.55
200 | 1.44 138 1.30 1.29 | 161 1.53 145 1.45 |10.75 7.60 6.55 7.00
500 | 1.30 1.23 1.16 1.14 | 137 130 1.23 1.21 |13.45 1040 825 8.20
1000 | 1.26 1.18 1.12 1.11 | 131 1.22 1.16 1.15 |17.90 11.30 7.10 7.40
a1g = 0.80, agg = 0.95
100 | 0.69 0.65 0.63 0.60 | 1.03 0.99 097 094 | 1880 18.20 18.70 19.40
200 | 0.96 0.93 085 0.86 | 1.09 1.05 0.98 0.98 |13.75 11.15 9.35 945
500 | 0.91 086 0.82 0.81 | 096 091 0.87 0.8 | 11.45 885 6.60 6.65
1000 | 0.85 0.81 0.77 0.76 | 0.88 0.83 0.79 0.78 | 17.05 13.00 870 8.65
a9 = 0.85, agg = 0.95
100 | 0.68 0.67 064 0.61 | 0.87 0.8 083 080 | 945 935 805 7.20
200 | 0.60 0.59 054 054|071 069 064 0.64 | 560 420 3.00 3.20
500 | 0.52 0.50 047 0.46 | 0.57 0.54 0.51 0.50 | 11.20 9.00 8.25 7.25
1000 | 0.50 0.47 044 044 | 052 049 046 0.46 | 11.55 825 530 6.35
a0 = 0.90, a0 = 0.95
100 | 0.40 0.38 0.37 0.37 | 0.54 052 0.52 052 | 480 3.20 3.40 3.00
200 | 0.27 0.26 0.23 0.24 | 0.37 0.36 0.33 0.33 | 14.60 11.60 12.85 12.80
500 | 0.29 0.28 0.27r 0.27 | 032 032 030 0.30|10.80 7.65 6.75 7.00
1000 | 0.27 0.27 0.26 0.25 | 0.29 0.29 0.27 0.27 | 12.25 895 7.85 6.80
a10 = 0.95, a0 = 0.95
100 | 0.07 0.07 0.07 0.07 | 025 0.23 023 023 | 6.80 3.30 3.35 2.80
200 | 0.11 0.10 0.11 0.10 | 0.19 o0.17 0.17 0.17 | 855 4.00 3.70 3.30
500 | 0.11 0.12 0.11 0.11 | 0.14 0.14 0.13 0.13 | 1480 895 6.70 7.35
1000 | 0.09 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 11.75 5.75 480 4.35
ag = 1.00, azg = 0.95
100 | -0.02 0.00 0.00 0.00 | 0.07 0.01 0.00 0.00 - - - -
200 | -0.02 0.00 0.00 0.00|0.05 0.01 0.00 0.00 - - - -
500 | -0.02 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
1000 | -0.02 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S10: Empirical power functions associated with testing different strengths of first factor in
the case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the
second factor is set to 0.95, n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is

computed under Hi: aiq=a10 + Kk, where K = —0.05, —0.045,...,0.045,0.05. The number of replications
is set to R = 2000.
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Table S11: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor
is set to 1.00

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10 = 0.75, a0 = 1.00
100 | 1.17 1.12 1.06 1.03 | 1.55 149 143 141 | 415 3.10 230 245
200 | 1.46 138 1.29 1.29 | 162 154 144 145 | 9.65 795 7.55 7.10
500 | 1.29 1.23 1.16 1.13 |137 130 1.23 1.20 |13.75 10.25 7.35 7.75
1000 | 1.27 1.18 1.12 1.11 131 1.22 1.16 1.15 |17.75 11.15 7.65 7.20
a1g = 0.80, ag = 1.00
100 | 0.67 0.66 0.62 058 | 1.01 1.00 098 094 |19.20 18.10 19.10 20.15
200 | 0.96 094 0.86 0.86 | 1.10 1.06 0.99 0.99 | 13.25 11.60 10.95 10.60
500 | 0.90 087 0.82 0.80 | 096 0.93 0.88 0.8 |12.30 10.10 7.70 6.70
1000 | 0.85 0.81 0.77 0.76 | 0.88 0.84 0.79 0.79 | 16.75 12.35 830 8.10
ag = 0.85, azg = 1.00
100 | 0.67 0.65 0.64 0.62 | 087 0.84 083 081 |10.60 &850 835 8.00
200 | 0.60 0.59 0.54 0.55 (071 069 065 0.65 | 560 455 3.55 3.30
500 | 0.51 0.50 0.47 0.46 | 0.56 0.54 0.51 0.50 | 10.95 890 8.10 7.05
1000 | 0.50 0.47 045 0.44 | 0.52 049 047 046 | 11.75 720 5.75 6.20
a0 = 0.90, a0 = 1.00
100 | 0.39 0.39 037 035|055 054 052 050 | 565 3.65 2.75 2.80
200 | 0.27 0.26 0.24 0.23 | 037 036 0.33 0.33 | 14.10 12.75 12.50 12.65
500 | 0.28 0.28 0.27 0.26 | 0.32 031 030 029 | 920 795 6.35 6.50
1000 | 0.28 0.27 0.26 0.26 | 0.30 0.29 0.27 0.27 | 12.25 850 6.60 6.80
a10 = 0.95, a0 = 1.00
100 | 0.07 0.07 0.07 0.06 | 026 0.24 023 023 | 740 3.60 3.15 3.35
200 | 0.10 0.11 0.10 0.10 | 0.19 0.18 0.17 0.16 | 920 5.05 3.75 3.50
500 | 0.11 0.12 0.11 0.11 | 0.13 0.14 0.13 0.13 | 1455 10.20 840 8.10
1000 | 0.09 0.09 0.09 0.09 |0.11 0.11 0.10 0.10 | 11.40 580 525 5.15
a0 = 1.00, o) = 1.00
100 | -0.02 0.00 0.00 0.00 | 0.07 0.01 0.00 0.00 - - - -
200 | -0.02 0.00 0.00 0.00|0.05 0.01 0.00 0.00 - - - -
500 | -0.02 0.00 0.00 0.00 | 0.03 0.01 0.00 0.00 - - - -
1000 | -0.02 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper.
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Figure S11: Empirical power functions associated with testing different strengths of first factor in
the case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the
second factor is set to 1.00, n = 100, 200, 500, 1000 and 7" = 200

oy = 0.80
1 = —
N i
N ;
) I
0.8 \ !
I
0.6
04
N =100
o2t ——— N =200
———— N=500
N=1000 '
0
0.75 0.78 0.80 0.83 0.85
gy = 0.90
1 =
0.8
0.6
04
o2l —— N =200
———-- N=500
N = 1000
0
0.85 0.88 0.90 0.93 0.95

o= 0.85
1 = ™
N ]
= i
A ;o
2\ ;
0.8 3 {
0.6
04
N =100
02f - N =200
————N=500 ;
N=1000 ¥
0
0.80 0.82 0.85 0.88 0.90
o= 0.95
1 H
08¢
06
04r
02t ——— N =200
————N=500
N = 1000
0
0.90 0.92 0.95 0.97 1.00

Notes: See the notes to Table 3 of the main paper for details of the data generating process. Power is

computed under Hi: aiq=a10 + Kk, where K = —0.05, —0.045,...,0.045,0.05. The number of replications
is set to R = 2000.
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Table S12: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case
of experiment 2A (two observed (uncorrelated) factors - Gaussian errors), when the strength of the
second factor is set to 0.85

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a0 = 0.75, Qo0 = 0.85
100 | 1.20 1.17 1.07 1.02 | 1.59 1.53 144 138 | 475 335 270 230
200 | 1.45 137 133 1.31 | 161 152 148 1.46 | 9.40 7.70 745 6.65
500 | 1.32 1.23 1.16 1.13 |139 131 1.22 1.21 |14.05 11.35 &8.10 9.20
1000 | 1.27v 1.20 1.13 1.11 |1.31 1.24 1.17 1.15 |16.90 11.75 830 7.15
a9 = 0.80, ag = 0.85
100 | 0.71 0.70 0.62 0.58 | 1.04 1.03 095 091 | 1790 17.75 16.90 18.00
200 | 0.97 090 087 0.86 |1.10 1.03 0.99 0.98 |14.20 10.65 9.15 9.30
500 | 0.92 087 0.82 0.80 | 098 0.92 0.87 0.86 | 13.056 9.10 7.20 6.70
1000 | 0.85 0.81 0.77 0.76 | 0.89 0.84 0.79 0.78 | 1870 13.00 7.95 7.65
Q10 = 0.857 Qop — 0.85
100 | 0.69 0.69 064 0.63 |0.89 0.89 082 081 |11.20 10.65 7.85 7.70
200 | 0.61 0.57 0.57 0.54 | 0.72 0.68 0.67 0.65 | 6.55 420 3.35 3.55
500 | 0.53 0.50 047 0.46 | 0.58 0.55 0.51 0.50 | 12.30 9.55 6.60  7.95
1000 | 0.50 0.47 045 0.44 | 0.52 0.50 047 0.46 | 11.25 810 5.95 5.10
a1 = 0.90, a0 = 0.85
100 | 0.41 0.40 040 037 | 0.56 0.54 054 051 | 5.00 320 3.30 2.60
200 | 0.28 0.26 0.25 0.24 | 038 0.36 0.35 0.34 | 13.05 13.15 12.60 12.60
500 | 0.30 0.29 0.27 0.26 | 0.33 032 030 030 | 950 840 7.10 7.85
1000 | 0.28 0.28 0.26 0.26 | 0.30 0.29 0.28 0.27 | 11.10 9.45 6.65 6.00
a1g = 0.95, agg = 0.85
100 | 0.08 0.08 0.07 0.07 | 025 0.24 023 023 | 530 390 280 3.05
200 | 0.11 0.11 0.11 0.10 | 0.19 0.18 0.17 0.17 | 725 550 4.00 4.10
500 | 0.12 0.12 0.11 0.11 | 0.14 0.14 0.13 0.13 | 12.15 815 745 7.70
1000 | 0.09 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 805 6.55 530 5.10
a0 = 1.007 o) = 0.85
100 | -0.01 0.00 0.00 0.00 | 0.05 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00|0.03 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table S3 of the main paper. The factors,

f1, f2, have correlation given by pi2 = corr(fi, f2) = 0.0.
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Table S13: Empirical power functions associated with testing different strengths of first factor in
the case of experiment 2B (two observed (uncorrelated) factors - non-Gaussian errors), when the
strength of the second factor is set to 0.85, n = 100, 200, 500, 1000 and T = 200

Bias (x100) RMSE (x100) Size (x100)

n\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a0 = 0.75, Qo0 = 0.85
100 | 1.20 1.13 1.08 1.04 | 1.58 1.50 146 141 | 425 280 3.25 2.30
200 | 1.43 139 130 1.31 | 160 1.55 1.45 147 | 9.85 7.70 7.00 7.55
500 | 1.31 1.23 1.17 1.14 | 138 130 1.24 1.21 |13.50 10.25 820 7.20
1000 | 1.27v 1.18 1.12 1.11 |1.32 1.22 1.16 1.15 |17.40 11.05 7.45 7.60
a9 = 0.80, ag = 0.85
100 | 0.71 0.66 0.63 0.61 | 1.03 1.00 096 0.95 |17.60 1875 18.15 19.45
200 | 0.96 093 0.85 0.86 | 1.09 1.05 0.97 0.99 | 13.05 11.35 9.20 9.75
500 | 0.91 087 0.82 0.80 | 097 0.92 0.87 0.86 | 12.00 9.25 595 7.40
1000 | 0.86 0.81 0.76 0.76 | 0.89 0.83 0.79 0.78 | 1850 11.00 8.85 7.80
Q10 = 0.857 Qop — 0.85
100 | 0.69 0.67 064 062|088 0.8 083 081 | 9.65 940 770 7.35
200 | 0.62 059 054 054|072 069 065 065 | 595 390 410 3.05
500 | 0.52 0.50 0.47 0.46 | 0.56 0.54 0.51 0.51 | 10.60 7.70 735 7.75
1000 | 0.50 0.47 045 0.44 | 0.53 0.49 047 0.46 | 12.45 840 5.45 5.40
a1 = 0.90, a0 = 0.85
100 | 0.40 040 0.38 0.36 | 0.56 0.55 0.53 0.51 | 510 3.70 3.55 3.05
200 | 0.28 0.26 0.23 0.24 | 0.39 0.36 0.33 0.34 | 14.55 1245 13.20 13.35
500 | 0.29 0.29 0.27 0.26 | 032 032 030 029 | 945 835 685 6.20
1000 | 0.28 0.27 0.26 0.25 | 0.30 0.28 0.27 0.27 | 1290 825 6.50 6.05
a1g = 0.95, agg = 0.85
100 | 0.07 0.08 0.07 0.06 | 025 0.24 024 022 | 570 340 340 275
200 | 0.11 0.11 0.10 0.10 | 0.18 0.18 0.17 0.17 | 830 4.00 3.85 4.45
500 | 0.11 0.12 0.11 0.11 | 0.14 0.14 0.13 0.13 | 11.90 8&8.60 885 7.40
1000 | 0.10 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 9.65 555 5.65 5.05
a0 = 1.007 o) = 0.85
100 | -0.01 0.00 0.00 0.00 | 0.06 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00 |0.04 0.01 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.03 0.01 0.00 0.00 - - -

1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - -

Notes: Parameters of DGP (44) are generated as described in Table 3 of the main paper. The factors,

f1, f2, have correlation given by pi2 = corr(fi, f2) = 0.0.
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Table S14: Bias, RMSE and Size (x100) of estimating the strength of strongest factor in the case of
experiment 3A (unobserved single factor - with Gaussian errors instead) using cross section average

Bias (x100) RMSE (x100) Size (x100)
p\T | 120 200 500 1000 | 120 200 500 1000 | 120 200 500 1000
a10:0.75

100 | 2.35 2.75 429 6.62 | 2.80 3.17 4.66 6.90 | 26.05 3545 71.55 97.70
200 | 2.04 2.14 259 348|229 237 281 3.68 | 29.70 33.55 51.10 82.55
500 | 1.61 155 1.58 1.82 | 1.75 1.68 1.69 1.93 |30.70 28.60 29.25 44.95
1000 | 1.47 141 1.36 1.42 | 1.57 148 1.42 1.48 | 31.60 27.70 24.85 29.30
10 = 0.80
100 | 1.27 1.44 216 3.30 | 1.63 1.77 248 3.54 | 2825 31.65 5520 86.05
200 | 1.21 125 1.41 1.78 | 1.38 140 1.56 1.91 | 25.05 26.20 35.15 55.40
500 | 1.02 098 097 1.05| 110 1.05 1.03 1.11 | 20.50 17.80 15.60 22.45
1000 | 093 0.89 085 0.86 | 097 092 088 0.89 | 25.05 21.70 15.55 18.35
a1 = 0.85
100 | 092 099 125 1.71 |1.12 1.19 145 1.89 |19.25 23.20 3835 61.50
200 | 0.71 0.72 0.75 0.89 | 0.83 0.83 0.86 1.00 | 10.55 10.55 11.50 19.95
500 | 0.56 0.54 0.52 0.54 | 0.61 0.59 0.56 0.58 | 14.60 11.85 8.65 9.85
1000 | 0.52 0.50 047 048 | 0.55 0.53 049 0.50 | 14.30 11.40 6.20 7.55
a10 = 0.90
100 | 0.50 0.52 0.62 0.77 | 0.65 0.67 077 091 | 770 815 13.50 21.55
200 | 0.31 032 032 0.36 | 041 042 0.40 0.45 | 13.85 12,50 10.85 13.05
500 | 0.31 030 0.28 0.29 | 034 033 031 031 |11.70 860 6.55 7.10
1000 | 0.29 0.29 0.27 0.27 | 031 030 0.28 0.28 | 12.55 10.60 7.90 7.65
Q10 = 0.95
100 | 0.11 0.11 0.15 0.18 | 0.27 0.27 030 033 | 6.056 525 730 9.25
200 | 0.13 0.13 0.12 0.13 | 0.20 0.20 0.19 0.20 | 7.80 6.40 5.95 6.80
500 | 0.12 0.12 0.11 0.11 | 0.15 0.14 0.13 0.13 | 12.45 8.00 7.80 7.85
1000 | 0.10 0.10 0.09 0.09 | 0.11 0.11 0.10 0.10 | 820 6.30 4.75  4.40
a1 = 1.00
100 | 0.00 0.00 0.00 0.00 | 0.03 0.01 0.00 0.00 - - - -
200 | -0.01 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 - - - -
500 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -
1000 | -0.01 0.00 0.00 0.00 | 0.02 0.00 0.00 0.00 - - - -

Notes: Parameters of DGP (44) are generated as described in Table 1. ap = ajo is estimated by regressing

; ; ; = —1
observations, zi;, on an intercept and the cross section averages of z, Ty = n ZLI x;t, for
t=1,2,...,T.
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Figure S12: Empirical power functions associated with testing different strengths of strongest factor
in the case of experiment 3A (unobserved single factor - with Gaussian errors instead) using cross
section average, when n = 100, 200, 500, 1000 and T" = 200
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0.85 0.88 0.90 0.93 0.95 0.90 0.92 0.95 0.97 1.00

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is

computed under Hi: aiq=a10 + Kk, where K = —0.05, —0.045,...,0.045,0.05. The number of replications
is set to R = 2000.
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Table S15: Bias and RMSE (x10,000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - with Gaussian errors instead) using cross section average,
when a9 = 1.00

Bias (x 10, 000) RMSE (x 10, 000)
n\T | 120 200 500 1000 ‘ 120 200 500 1000
Q10 = 1.00, Qop — 0.51

100 | -0.58 -0.02 0.00 0.00 | 3.55 0.69 0.00 0.00
200 | -0.88 -0.03 0.00 0.00 | 3.16 0.52 0.00 0.00
500 | -0.84 -0.05 0.00 0.00 | 2.00 0.42 0.00 0.00
1000 | -0.89 -0.05 0.00 0.00 | 1.67 0.26 0.00 0.00
a0 = 1.00, a0 = 0.75

100 | -0.71 -0.08 0.00 0.00 | 4.00 1.29 0.00 0.00
200 | -0.90 -0.02 0.00 0.00 | 3.18 0.47 0.00 0.00
500 | -0.84 -0.06 0.00 0.00 | 2.00 0.44 0.00 0.00
1000 | -0.88 -0.05 0.00 0.00 | 1.63 0.27 0.00 0.00
a1g = 1.00, agg = 0.95

100 | -145 -0.16 0.00 0.00 | 596 1.89 0.00 0.00
200 | -1.74 -0.15 0.00 0.00 | 4.89 1.20 0.00 0.00
500 | -1.91 -0.17 0.00 0.00 | 3.72 0.83 0.00 0.00
1000 | -1.86 -0.18 0.00 0.00 | 3.72 0.83 0.00 0.00
Q10 = 1.00, Qop — 1.00

100 | -0.01 0.00 0.00 0.00 | 0.49 0.00 0.00 0.00
200 | -0.01 0.00 0.00 0.00 | 0.30 0.00 0.00 0.00
500 | -0.01 0.00 0.00 0.00|0.14 0.00 0.00 0.00
1000 | -0.01 0.00 0.00 0.00 | 0.13 0.00 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table S3.

@ = max(ai10, 20) is estimated by regressing observations, i,

n

on an intercept and the cross section average of z, Tr = n " A

fort=1,2,...,T.

Tit,
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Table S16: Bias and RMSE (x10,000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - with Gaussian errors instead) using cross section average,
when a9 = 0.95

Bias (x100) RMSE (x100)
n\T | 120 200 500 1000 ‘ 120 200 500 1000
Q10 = 0.957 Qop — 0.51
100 | 0.18 0.23 0.38 0.58 | 0.35 040 0.54 0.71
200 | 0.15 0.17 0.22 0.31 |{0.24 0.25 0.30 0.38
500 | 0.13 0.13 0.14 0.16 | 0.16 0.16 0.17 0.20
1000 | 0.11 0.11 0.10 0.11 | 0.12 0.12 0.12 0.13
a0 = 0.95 a0 = 0.75
100 | 1.28 1.3 1.74 178 | 1.42 1.62 1.81 1.85
200 | 0.98 1.26 1.51 1.55 |1.10 1.33 1.54 1.58
500 | 0.61 0.83 1.19 1.27 |0.71 091 1.21 1.28
1000 | 0.41 0.60 0.95 1.07 | 0.51 0.67 0.97 1.08
a1 = 0.95, agg = 0.95
100 | 3.99 4.05 4.04 4.06 | 4.01 4.06 4.06 4.08
200 | 3.88 394 395 396|389 395 396 397
500 | 3.74 3.82 3.83 383|374 382 383 383
1000 | 3.63 3.71 3.73 3.72 | 3.63 3.72 3.73 3.73
Q10 = 0.95 Qop — 1.00
100 | -0.02 0.00 0.00 0.00 | 0.06 0.02 0.00 0.00
200 | -0.02 0.00 0.00 0.00 |0.05 0.01 0.00 0.00
500 | -0.02 0.00 0.00 0.00 | 0.04 0.01 0.00 0.00
1000 | -0.02 0.00 0.00 0.00 | 0.03 0.01 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table S3.

ap = max(ai0, a20) is estimated by regressing observations, z;,

on an intercept and the cross section averages of z, Ty = n " S @,
fort=1,2,...,T.
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Table S17: Bias and RMSE (x10,000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - non-Gaussian errors) using first principal component, when
a10 = 1.00

Bias (x10,000) RMSE (x 10, 000)

n\T 120 200 500 1000 ‘ 120 200 500 1000
Q10 = 1.00, Qop — 0.51

100 | -11.87 -8.37 -5.52 -4.55 | 55.32 41.65 28.74 23.02
200 | -5.53 -4.60 -3.53 -2.8530.40 26.61 21.33 16.85
500 | -1.86 -2.60 -1.38 -1.14 | 14.03 16.97 10.93 9.44
1000 | -0.97 -0.65 -0.66 -0.74 | 856 6.59 6.82 6.32
a0 = 1.00, a0 = 0.75

100 | -9.97 -7.43 -4.27 -3.26 | 45.05 39.65 24.70 20.09
200 | -5.93 -3.70 -2.84 -1.80 | 32.39 2291 17.11 12.37
500 | -2.28 -2.15 -1.50 -1.07 | 14.43 15.43 10.93 8.00
1000 | -1.01 -1.11 -0.67 -0.41 | 814 854 6.04 4.27
ayo = 1.00, aze = 0.95

100 | -2.20 -0.44 -0.01 0.00 | 13.29 6.06 049 0.00
200 | -1.93 -0.3¢ -0.04 0.00 | 6.36 3.26 1.94 0.00
500 | -1.67 -0.21 -0.03 -0.01 | 5.01 2.00 1.39 0.36
1000 | -1.61 -0.23 0.00 0.00 | 5.01 2.00 1.39 0.36
Q10 = 1.007 Qon — 1.00

100 | -0.57 0.00 0.00 0.00 | 15.11 0.00 0.00 0.00
200 | -0.03 0.00 0.00 0.00 | 1.11  0.00 0.00 0.00
500 | -0.02 0.00 0.00 0.00 | 0.23 0.00 0.00 0.00
1000 | -0.02 0.00 0.00 0.00 | 0.16 0.00 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table 3.

ap = max(ai0, a20) is estimated by regressing observations, z;,

on an intercept and the first principal component of x;, i = 1,2,...,n,
t=1,2,...,T.
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Table S18: Bias and RMSE (x10,000) of estimating the strength of strongest factor in the case of
experiment 3B (two unobserved factors - non-Gaussian errors) using first principal component, when
a0 — 0.95

Bias (x100) RMSE (x100)
p\T | 120 200 500 1000 | 120 200 500 1000
Q10 = 0.95, Qop — 0.51
100 | 3.15 3.34 3.72 394 | 3.32 349 3.83 4.03
200 | 3.50 3.65 3.94 4.14 | 359 3.73 4.00 4.18
500 | 3.70 3.90 4.17 433 | 3.78 3.96 4.20 4.36
1000 | 3.86 4.02 4.28 4.43 | 3.93 4.07 431 4.45
a0 = 0.95, a0 = 0.75
100 | 3.29 346 3.78 3.98 | 3.42 3.57 3.86 4.05
200 | 3.54 3.70 4.01 4.19 | 3.62 3.77 4.05 4.22
500 | 3.77 397 422 438|383 4.01 4.25 440
1000 | 3.89 4.07 4.34 4.48 | 3.95 4.10 4.35 4.49
a1g = 0.95, agg = 0.95
100 | 4.15 4.17 4.16 4.17 | 417 419 4.18 4.20
200 | 4.12 414 413 4.13 | 414 415 4.14 4.14
500 | 4.12 4.12 4.15 4.17 | 413 4.14 417 4.19
1000 | 4.11  4.15 4.20 4.26 | 4.12 4.17 4.22 4.27
Q10 = 0.957 Qop — 1.00
100 | -0.02 0.00 0.00 0.00 [ 0.16 0.05 0.00 0.00
200 | -0.02 0.00 0.00 0.00 | 0.06 0.02 0.00 0.00
500 | -0.02 0.00 0.00 0.00 | 0.04 0.04 0.00 0.00
1000 | -0.02 0.00 0.00 0.00 | 0.03 0.02 0.00 0.00

Notes: Parameters of DGP (44) are generated as described in Table 3.

o = max(ai10, a20) is estimated by regressing observations, i,

on an intercept and the first principal component of z;;, i = 1,2,...,n,

t=1,2,...,T.
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Table S19: Bias and RMSE (x10,000) of estimating factor strength in the case of experiment 4
(observed misspecified single factor - Gaussian errors) when set to 1.00 and true DGP contains two
uncorrelated factors

Bias (x 10, 000) RMSE (x 10, 000)
p\T | 120 200 500 1000 | 120 200 500 1000
ag = 1.00, agg = 0.75

100 | -1.88 -0.10 -0.01 0.00 | 7.53 1.46 0.49 0.00
200 | -1.61 -0.09 0.00 0.00 | 4.82 0.99 0.00 0.00
500 | -1.51 -0.09 0.00 0.00 | 3.94 0.62 0.07 0.00
1000 | -1.48 -0.09 0.00 0.00 | 2.88 0.38 0.00 0.00
a0 = 1.00, a0 = 0.80

100 | -2.14 -0.12 0.00 0.00 | 837 1.62 0.00 0.00
200 | -1.83 -0.14 0.00 0.00 | 543 1.20 0.00 0.00
500 | -1.v1 -0.11 0.00 0.00 | 481 0.65 0.00 0.00
1000 | -1.71 -0.11 0.00 0.00 | 3.65 0.45 0.00 0.00
a10 = ]..007 a0 = 0.85

100 | -2.67 -0.14 -0.01 0.00 | 10.25 1.76 0.49 0.00
200 | -2.20 -0.14 0.00 0.00 | 641 1.36 0.00 0.00
500 | -2.12 -0.15 0.00 0.00 | 6.36 0.86 0.07 0.00
1000 | -2.05 -0.12 0.00 0.00 | 483 0.52 0.00 0.00
ag = 1.00, azg = 0.90

100 | -2.90 -0.13 0.00 0.00 | 10.30 1.69 0.00 0.00
200 | -2.37 -0.17 0.00 0.00 | 726 1.37 0.00 0.00
500 | -2.46 -0.15 0.00 0.00 | 7.97 1.00 0.07 0.00
1000 | -2.52 -0.14 0.00 0.00 | 6.40 0.56 0.00 0.00
Q10 = 1.00, Qon = 0.95

100 |-3.32 -0.17 -0.01 0.00 | 11.90 1.95 0.49 0.00
200 | -2.99 -0.21 0.00 0.00 | 9.07 1.60 0.00 0.00
500 | -3.00 -0.20 0.00 0.00 {10.90 1.23 0.00 0.00
1000 | -3.22 -0.19 0.00 0.00 | 9.01 0.76 0.00 0.00
a10 = 1.007 a0 = 1.00

100 | -3.93 -0.26 -0.01 0.00 | 13.64 2.39 0.49 0.00
200 | -3.72 -0.23 0.00 0.00 | 11.47 1.72 0.00 0.00
500 | -3.87 -0.24 0.00 0.00 | 15.24 1.28 0.00 0.00
1000 | -4.13 -0.25 0.00 0.00 | 12.18 0.98 0.00 0.00

Notes: The parameters of the true DGP, (44), are generated

as described in Table S3 of the main paper. The factors, f1, f2, have
correlation given by pi2 = corr(fi, f2) = 0.0. We set a10 = 1 and
ago in the range [0.75,1.00] with 0.05 increments. The misspecified model

assumes the existence of factor f; only.
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Data construction and additional empirical results

S&P500 security returns

As reference country for this study we pick the United States and as equity market index of preference
we opt for the Standard € Poor’s (S€P) 500 index. In this respect, we consider the distinct monthly
composites of the S&P500 index from September 1989 to December 2017. Our analysis is based on
a rolling window sample scheme. We work with security returns defined as

Py — P11 i DY
Pi 127

rit—100( fori=1,2,....,n;and t =1,2,...,T,
where Py and DY}, stand for the price and dividend yield of security i at time ¢, and 7 =1,2,...,340
denote the 10-year rolling samples of security returns.

Historical end-of month security price and dividend yield data, P;; and DY}, fori =1,2,... n,andt =
1,2,...,T, are obtained from Thompson Reuters Datastream. We are grateful to Takashi Yama-
gata for providing part of the constructed dataset which is used in Pesaran and Yamagata (2017).
n, represents all 500 stocks per monthly composition of the S&P500 from 09/1989 to 12/2017 as
displayed at the end of each month and 7' expands from 31/01/1950 to 31/12/2017. For exam-
ple, code LS&PCOMP1210 will give the 500 constituents of the S&P500 index as of December
2010. Py is the price of security ¢ at the market close of the last day of the month (t), ad-
justed for subsequent capital actions. DY} is the dividend per share as a percentage of the share
price based on an anticipated annual dividend and excludes special or one-off dividends. Both
Py and DYy, for i = 1,2,....n, t = 1,2,...,7T and 7 = 1,2,...,340 are obtained at the de-
fault 4 decimal places for the US market. The codes used are DPL#(CFM#(x(P#3S),VAL),4) and
DPL#(CFM#(x(DY#S),VAL),4) for price and dividend yield respectively. Note that 499 securities
were downloaded for November 20, 1999 and September 30, 2008. It is confirmed on Standard &
Poor’s website that the S&P 500 index on these days was based on 499 securities.

SW macroeconomic dataset

The SW macroeconomic dataset that we use extends from 1959Q1-2019Q2 and is an updated version
of the dataset compiled originally by Stock and Watson (2012). We opted for a time dimension
commencing in 1988Q1 in order to obtain a balanced panel. We excluded three variables as they
recorded missing values beyond 1988Q1. These are: (1) Manufacturers’ new orders, consumer goods
and materials, (2) Case-Shiller 10 City average deflated by PCEPILFE, and (3) Case-Shiller 20 City
average deflated by PCEPILFE.

Additional empirical results

The table and graphs that follow show estimates of factor strengths associated with the asset pricing
models considered in Section 6 of the main paper:
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Table S20: Ranking of all 145 factors (plus the market factor) in terms of the % of months their
estimated strengths exceed the threshold of 0.90 during the full sample period of September 1989 to
December 2017 and corresponding time averages of é&s -, s = 1,2,...,145, over different subsamples

% of months when
Gs,r > 0.90 over:

Time averages of &z, over:

September 1989 -

September 1999 -

September 2009 -

Factor Full sample Full sample August 1999 August 2009 December 2017
Market 100.0 0.990 0.999 0.974 0.997
Leverage 37.9 0.827 0.739 0.932 0.808
Sales to cash 37.9 0.817 0.716 0.936 0.793
Cash flow-to-price 37.9 0.832 0.765 0.933 0.792
Net debt-to-price 37.9 0.838 0.753 0.936 0.823
Earnings to price 37.9 0.811 0.743 0.935 0.745
Net payout yield 37.6 0.844 0.769 0.932 0.829
Years since first Compustat coverage 37.6 0.828 0.724 0.935 0.823
Cash flow to price ratio 37.6 0.818 0.737 0.934 0.775
Quick ratio 374 0.835 0.782 0.936 0.777
Altman’s Z-score 37.4 0.828 0.740 0.931 0.808
Payout yield 37.1 0.851 0.785 0.932 0.831
Earnings volatility 37.1 0.852 0.779 0.936 0.840
Change in shares outstanding 37.1 0.805 0.671 0.932 0.815
Enterprise book-to-price 36.8 0.830 0.741 0.933 0.812
Cash holdings 36.8 0.826 0.740 0.935 0.797
Dividend to price 36.5 0.846 0.789 0.932 0.811
Depreciation / PP&E 36.5 0.851 0.813 0.930 0.801
Kaplan-Zingales Index 36.2 0.822 0.731 0.930 0.801
R&D-to-sales 36.2 0.815 0.731 0.923 0.786
Cash flow volatility 36.2 0.783 0.617 0.924 0.812
Accrual volatility 36.2 0.779 0.613 0.926 0.803
Current ratio 35.9 0.846 0.815 0.926 0.785
Idiosyncratic return volatility 35.6 0.851 0.799 0.923 0.828
Debt capacity/firm tangibility 35.6 0.829 0.735 0.920 0.832
Maximum daily return 35.3 0.838 0.764 0.927 0.821
Bid-ask spread 35.3 0.847 0.786 0.931 0.821
Cash productivity 35.3 0.819 0.751 0.911 0.789
Return volatility 34.7 0.844 0.786 0.922 0.820
Robust Minus Weak 34.7 0.773 0.694 0.910 0.705
Whited-Wu Index 34.7 0.781 0.697 0.913 0.724
New equity issue 34.7 0.756 0.620 0.912 0.732
Sales to price 34.7 0.832 0.768 0.919 0.804
High Minus Low 34.4 0.830 0.757 0.926 0.802
Vol. of liquidity (share turnover) 34.4 0.846 0.786 0.920 0.830
Market Beta 34.1 0.859 0.824 0.921 0.828
Zero trading days 34.1 0.855 0.808 0.918 0.836
Share turnover 34.1 0.857 0.815 0.917 0.834
Advertising Expense-to-market 34.1 0.810 0.707 0.914 0.809
Net equity finance 34.1 0.841 0.797 0.916 0.803
Asset turnover 34.1 0.788 0.643 0.911 0.815
Net external finance 32.1 0.827 0.781 0.900 0.793
Absolute accruals 31.8 0.818 0.750 0.903 0.799
Growth in long-term debt 31.5 0.767 0.678 0.902 0.711
Industry-adjusted book to market 30.9 0.810 0.771 0.901 0.748
Working capital accruals 30.6 0.812 0.748 0.900 0.783
HML Devil 30.3 0.820 0.747 0.905 0.805
Change in Net Financial Assets 29.4 0.697 0.581 0.907 0.583
Chg in Current Oper. Liabilities 28.2 0.773 0.710 0.904 0.690
Sin stocks 27.6 0.749 0.603 0.884 0.762
Sales to receivables 27.4 0.820 0.781 0.896 0.777
Employee growth rate 22.6 0.773 0.710 0.898 0.699
Net Operating Assets 16.8 0.778 0.664 0.900 0.767
HXZ Investment 13.2 0.797 0.739 0.892 0.753
Chg in Net Non-current Oper. Assets 8.2 0.791 0.729 0.886 0.753
Financial statements score 7.9 0.738 0.700 0.885 0.605
R&D Expense-to-market 7.6 0.804 0.770 0.883 0.751
R&D increase 5.3 0.742 0.676 0.873 0.664
Industry momentum 2.9 0.772 0.748 0.840 0.721
Abnormal Corporate Investment 2.9 0.674 0.497 0.866 0.654
Sales growth 2.4 0.761 0.706 0.876 0.690
Conservative Minus Aggressive 1.8 0.766 0.716 0.860 0.714
Momentum 1.2 0.755 0.715 0.793 0.758
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Table S20 continued from previous page

% of months when
Gs,r > 0.90 over:

Time averages of &, over:

Factor

Full sample

Full sample

September 1989 -
August 1999

September 1999 -
August 2009

September 2009 -
December 2017

Change in Short- term Investments
Return on net operating assets
Investment Growth

Seasonality

Illiquidity

Liquidity

Small Minus Big

Number of earnings increases

HXZ Profitability

Share price

Industry-adj. cash flow to price ratio
Industry-adjust. chg in employees
Change in 6-month momentum
Earnings announcement return
Revenue surprise

Return on assets

Betting Against Beta

Quality Minus Junk

Dollar trading volume

Vol. of liquidity (dollar trading volume)
Price delay

Book Asset Liquidity

Abnormal earnings announc. volume
Unexpected quarterly earnings

Cash flow to debt

% change in current ratio

% change in quick ratio

% change sales-to-inventory

Sales to inventory

% change in depreciation

Capital turnover

% chg in gross margin - % chg in sales
% chg in sales - % chg in inventory
% chg in sales - % chg in A/R

% chg in sales - % chg in SG&A
Effective Tax Rate

Labor Force Efficiency

Ohlson’s O-score

Industry adjg % chg in capital expend.
Change in inventory

Change in tax expense

Growth in long term net oper. assets
Order backlog

Chg in Long-term Net Operating Assets
Corporate investment

Changes in Net Operating Assets
Tax income to book income

Growth in common shareholder equity
Chg in Current Operating Assets
Chg in Net Non-cash Working Capital
Chg in Non-current Operating Assets
Chg in Non-current Oper. Liabilities
Total accruals

Change in Financial Liabilities
Change in Book Equity

Financial statements score

Growth in capital expenditures
Three-year Investment Growth
Composite Equity Issuance

Net debt finance

Revenue Surprises

Industry Concentration

Return on invested capital

Chg in PPE and Inventory-to-assets
Composite Debt Issuance

Profit margin

0.3

0.625
0.764
0.627
0.743
0.549
0.674
0.774
0.738
0.778
0.706
0.672
0.626
0.642
0.514
0.702
0.691
0.767
0.793
0.723
0.619
0.763
0.833
0.763
0.632
0.690
0.606
0.595
0.574
0.770
0.647
0.773
0.581
0.571
0.621
0.579
0.531
0.568
0.690
0.642
0.677
0.670
0.659
0.783
0.731
0.710
0.529
0.693
0.757
0.723
0.639
0.725
0.711
0.659
0.648
0.776
0.729
0.622
0.749
0.784
0.668
0.622
0.821
0.734
0.697
0.696
0.773
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0.377
0.645
0.565
0.648
0.433
0.624
0.766
0.658
0.748
0.721
0.592
0.599
0.654
0.511
0.654
0.699
0.645
0.774
0.611
0.580
0.770
0.811
0.728
0.636
0.645
0.448
0.445
0.500
0.832
0.430
0.795
0.534
0.536
0.568
0.522
0.551
0.517
0.645
0.467
0.744
0.640
0.589
0.717
0.639
0.650
0.481
0.544
0.697
0.760
0.691
0.651
0.638
0.585
0.604
0.706
0.681
0.566
0.664
0.774
0.603
0.692
0.820
0.754
0.663
0.738
0.798

0.801
0.877
0.698
0.844
0.578
0.632
0.846
0.883
0.835
0.673
0.766
0.684
0.602
0.556
0.818
0.764
0.872
0.855
0.864
0.647
0.778
0.866
0.806
0.619
0.747
0.817
0.783
0.756
0.728
0.834
0.771
0.626
0.704
0.749
0.663
0.478
0.573
0.733
0.786
0.684
0.708
0.645
0.831
0.834
0.803
0.577
0.848
0.814
0.802
0.671
0.811
0.768
0.769
0.797
0.857
0.759
0.602
0.819
0.833
0.844
0.583
0.870
0.827
0.675
0.735
0.761

0.712
0.773
0.617
0.735
0.652
0.787
0.697
0.659
0.746
0.727
0.655
0.588
0.676
0.468
0.620
0.594
0.787
0.740
0.688
0.632
0.737
0.821
0.751
0.641
0.674
0.541
0.549
0.446
0.746
0.683
0.749
0.585
0.453
0.529
0.545
0.569
0.623
0.694
0.678
0.588
0.659
0.759
0.806
0.719
0.672
0.528
0.686
0.761
0.584
0.536
0.709
0.732
0.616
0.523
0.764
0.751
0.713
0.766
0.737
0.535
0.584
0.763
0.600
0.763
0.597
0.758



Table S20 continued from previous page

% of months when
Gs,r > 0.90 over: Time averages of &, over:
September 1989 - | September 1999 - | September 2009 -

Factor Full sample Full sample August 1999 August 2009 December 2017
Industry-adj. change in asset turnover 0.0 0.616 0.650 0.618 0.573
Industry-adj. change in profit margin 0.0 0.521 0.427 0.583 0.559
Capital expenditures and inventory 0.0 0.702 0.664 0.688 0.765
Industry-adj. Real Estate Ratio 0.0 0.810 0.751 0.872 0.807
Percent accruals 0.0 0.727 0.704 0.792 0.678
Operating Leverage 0.0 0.801 0.784 0.817 0.803
Inventory Growth 0.0 0.626 0.714 0.552 0.608
Percent Operating Accruals 0.0 0.755 0.726 0.824 0.707
Enterprise multiple 0.0 0.722 0.742 0.704 0.719
Gross profitability 0.0 0.774 0.792 0.774 0.754
Organizational Capital 0.0 0.787 0.785 0.784 0.791
Convertible debt indicator 0.0 0.767 0.798 0.809 0.680
Long-Term Reversal 0.0 0.565 0.518 0.590 0.591
1-month momentum 0.0 0.714 0.767 0.647 0.732
6-month momentum 0.0 0.646 0.515 0.727 0.706
36-month momentum 0.0 0.732 0.726 0.798 0.660
Growth in advertising expense 0.0 0.622 0.501 0.812 0.540
Notes: All factor strength estimates, &s,,, where s = 1,2,...,145, are computed using (7) for 10-year rolling windows

r=1,2,...,340.
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Figure S23: Correlation coefficients between the market risk factor and the cross section average of
S&P500 securities’ excess returns over 10-year rolling windows

1 —
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Correlation between market risk factor and CSA of S&P500 securities excess returns
08 1 1 1 1 |
Sep-89 Apr-95 Dec-00 Aug-06 Apr-12 Dec-17
Notes: The correlation coefficients are computed over 7 = 1,2,. .., 340 rolling windows.
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