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Abstract

This paper proposes a quasi maximum likelihood (QML) estimator for short 7' dynamic fixed effects
panel data models allowing for interactive effects through a multi-factor error structure. The proposed
estimator is robust to the heterogeneity of the initial values and common unobserved effects, whilst
at the same time allowing for standard fixed and time effects. It is applicable to both stationary and
unit root cases. Order conditions for identification of the number of interactive effects are established,
and conditions are derived under which the parameters are almost surely locally identified. It is shown
that global identification is possible only when the model does not contain lagged dependent variables.
The QML estimator is proven to be consistent and asymptotically normally distributed. A sequential
multiple testing likelihood ratio procedure is also proposed for estimation of the number of factors
which is shown to be consistent. Finite sample results obtained from Monte Carlo simulations show
that the proposed procedure for determining the number of factors performs very well and the QML
estimator has small bias and RMSE, and correct empirical size in most settings. The practical use of
the QML approach is illustrated by means of two empirical applications from the literature on cross
county crime rates and cross country growth regressions.
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1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data models where
the time dimension (7') is short and fixed relative to the cross section dimension (N), which is large.
Both generalized method of moments (GMM) and likelihood approaches have been advanced to estimate
such panel data models. See, for example, Anderson and Hsiao (1981), Arellano and Bond (1991),
Arellano and Bover (1995), Ahn and Schmidt (1995), Blundell and Bond (1998), Hsiao et al. (2002),
Binder et al. (2005) and Moral-Benito (2013). As a natural extension of the traditional two-way error
component model, the recent literature considers the case where individual and time effects are included
in a multiplicative manner. Such a structure is termed time-varying individual effects by Ahn et al. (2001,
2013) or interactive fized effects by Bai (2009), otherwise characterised as a multi-factor error structure.

Main contributions to this literature include the papers by Phillips and Sul (2007) and Sarafidis
and Robertson (2009) who investigate the implications of ignoring the interactive fixed effects for the
behavior of the fixed effects and GMM estimators, respectively.! Ahn et al. (2001) consider a single factor
error structure and propose a quasi-differencing approach to eliminate the factor, subsequently applying
GMM to consistently estimate the parameters. The quasi-differencing transformation was originally
proposed by Chamberlain (1984) and implemented by Holtz-Eakin et al. (1988) in the context of a
bivariate panel autoregression. Nauges and Thomas (2003) follow the same approach, and in addition
to prior first-differencing to eliminate the fixed effects, they also consider a single factor structure for
the errors. Ahn et al. (2013) extend their quasi-differencing approach to a multi-factor error structure.
More recently, Hayakawa (2012) proposes a GMM estimator based on the projection method to deal with
short dynamic panel data models with interactive fixed effects, while Robertson and Sarafidis (2015)
propose an instrumental variable estimation procedure that introduces new parameters to represent the
unobserved covariances between the instruments and the unobserved factors. Comments on the latter
approach are provided by Ahn (2015) and Hayakawa (2016). As an alternative to GMM, Bai (2013)
proposes a quasi-maximum likelihood (QML) approach applied to the original dynamic panel data model
without differencing, treating time effects as free parameters. To deal with possible correlations between
the factor loadings and the regressors Bai follows Mundlak (1978) and Chamberlain (1982) and specifies
linear relationships between the factor loadings and the regressors to be estimated along with the other
parameters. A recent survey of short 1" panel data models with interactive effects can be found in Sarafidis
and Wansbeek (2012).

This paper, building on the work of Hsiao et al. (2002), proposes a transformed QML approach applied
to the short T" dynamic panel data model after first-differencing. In addition to the standard individual
and time fixed effects, we also allow for interactive effects. In this way we directly address the empirical
question of whether inclusion of individual and time effects are sufficient to deal with error cross-sectional
dependence in short T panels. Our approach also accounts for heterogeneity of the initial values and the
common factors in an integrated framework, and allows the initial values to be correlated with the fixed
effects and other model parameters. We establish order conditions for identification of the number of
interactive effects, and derive conditions under which the parameters are almost surely locally identified.
It emerges that global identification is possible only when the model does not contain lagged dependent
variables. These results can be useful for the development of QML theory in the case of more general
models. The QML estimators are shown to be consistent and asymptotically normally distributed both
for stationary and unit root cases. We also propose a sequential multiple testing likelihood ratio (MTLR)
procedure to estimate the number of interactive effects and show that it delivers a consistent estimator of
the true number of factors, and has the added advantage that it does not depend on an arbitrary choice

!For the case of panel models with interactive fixed effects when N and T are both large, see, for example, Pesaran
(2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios et al. (2011).



of a maximum number of factors as required in the large N and T factor literature.

The theoretical results are further supported by means of extensive Monte Carlo experiments, covering
both stationary and unit root cases, showing that the methods proposed for estimating the number
of factors and the unknown parameters of the model perform well in most settings. It is also shown
that the QML estimator compares favourably to the GMM type estimators proposed in the literature,
and interestingly enough is reasonably robust to a number of important departures from its underlying
assumptions. The practical use of the QML approach is illustrated with two empirical applications
from the literature, focussing on the importance of allowing for interactive effects in empirical analysis.
The first application estimates a dynamic version of the panel data model considered by Cornwell and
Trumbull (1994) and Baltagi (2006) to explain the incidence of crime across counties in North Carolina,;
the second application estimates growth regressions using the recent data analysed by Acemoglu et al.
(2019). In the case of both applications we find statistically significant evidence of interactive effects,
even after allowing for fixed and time effects.

Our contribution differs from Bai (2013) in a number of important respects, despite the fact that
both approaches make use of the likelihood framework. First, our procedure applies maximum likelihood
estimation after first-differencing that eliminates the individual effects, whereas Bai (2013) considers the
model in levels. Second, we allow initial values, y;0, ¢ = 1,2, ..., N, to depend on the fixed effects as well as
on other parameters, which is in contrast to Bai’s assumption that requires the initial values to be drawn
independently of the fixed effects and other unknown parameters. Third, we provide a formal treatment
of identification of short T" dynamic panel data models with a multi-factor error structure, and propose
a sequential multiple testing likelihood procedure to consistently estimate the number of factors, topics
that are not addressed by Bai (2013).

The rest of this paper is organised as follows. Section 2 sets out the dynamic panel data model and its
assumptions. Section 3 develops the quasi-likelihood approach and derives a solution using an eigenvalue
approach. Identification of the number of factors and the parameters of the model are discussed in Section
4. Section 5 establishes the consistency of the QML estimator and derives its asymptotic distribution.
Section 6 presents the sequential MTLR procedure for estimating the number of factors. Section 7
describes the Monte Carlo experiments and provides finite sample results on the performance of the
sequential MTLR estimator for the number of factors, and the proposed QML estimator. Empirical
applications are provided in Section 8. The final section presents some concluding remarks. All technical
proofs are provided in the Appendix. Details of alternative GMM estimators used in the Monte Carlo
experiments together with additional Monte Carlo results are provided in an online supplement.

Notations: Let w = (wi,ws,...,w,)" and A = (a;;) be an n x 1 vector and an n x n matrix,

respectively. Denote the Euclidean norm of w and the Frobenius norm of A by [|w| = (E?leiz)l/ 2

|A| = [tr(A’ A)]l/ ? respectively, and the largest and smallest eigenvalue of A by Amaz(A) and Apin(A).
If {yn},2, is any real sequence and {z,}, -, is a sequence of positive real numbers, then y, = O(z,)
if there exists a positive finite constant Cy such that |y,|/x, < Cj for all n. y, = o(xy,) if yp/z, — 0

as n — oo. If {y,} 2, and {z,} -, are both positive sequences of real numbers, then y, = & (z,)
if there exists Ny > 1 and positive finite constants Ko and K; such that inf,>n, (yn/xn) > Ko and
SUp,> N, (Yn/Tn) < Ki. Positive, possibly large, fixed constants will be denoted by K, Ko, K1 and so
on, that could take different values in different equations. Small positive constants will be denoted by e.
Ey(.) denotes expectations taken under the true probability measure. —, and 2% denote convergence in
probability and almost sure (a.s.) convergence, respectively. —, denotes convergence in distribution for

fixed T and as N — o0.

and

2 A dynamic panel data model with interactive error components

We begin with the following standard dynamic panel data model with time and fixed effects
Yit = VYir—1 + B Xt + @i + 04+ Cy, for t =0,1,2,...,T,and : = 1,2, ..., N, (1)



where x;; is a k x 1 vector of regressors that vary both across ¢ and ¢, |y| < K, B is a k x 1 vector
of unknown coefficients, with ||3|| < K, and K denotes a finite positive constant. «; and d; denote
unit-specific fixed effects and time effects, respectively. We consider T' to be fixed, and allow N — oo,
under which the unit root case where |y| = 1 is also covered. It is assumed that the observations
{yit,xit, for t =0,1,....,T;i = 1,2,..., N} are available for estimation of v and 3, which are the parameters
of interest.

Specification (1) is the standard short 7" dynamic panel data model used extensively in the empirical
literature assuming that the errors, (,;, are independently distributed across ¢ and ¢. In this paper we
contribute to this literature by allowing the errors to have the following multi-factor structure

m
Git = ijfjt + it = mft + i, (2)
j=1
where nf; is an interactive effect with f; = (fit, fat, ..., fme)’, an m x 1 vector of unobserved common

factors, and 1; = (M1, M2, -, Mim)’, @0 m x 1 vector of associated factor loadings, with w;; denoting the
remaining idiosyncratic error terms. The above specification includes a number of models considered in
the literature and reviewed in Section 1 as special cases. It also provides a direct generalization of Hsiao
and Tahmiscioglu (2008) who consider estimation of (1) with I/D errors using the transformed MLE
procedure. The model considered by Ahn et al. (2013) allows for errors to have the multi-factor structure
as in (2) with additive individual and time effects subsumed therein for particular values of 7;; and f;;.
They treat the factor loadings as random and allow them to be correlated with the regressors.

We propose an extension of the transformed MLE by treating the unknown factors as fixed parameters
to be estimated for each ¢, but assume the factor loadings to be random and distributed independently of
the errors, u;;. In addition, we contribute to the analysis of identification of short 1" dynamic models with
a multiple factor error structure, and derive order conditions for identification of m and the parameters
of interest, v and (3. Initially, we develop our proposed estimation method assuming that m is known,
and consider the problem of consistent estimation of m in Section 6.1.

We make the following assumptions:

Assumption 1 The idiosyncratic errors, u;, for i = 1,2,..., N are distributed independently across i
and over t with zero means and constant variance, o2, such that 0 < 0 < K, and sup, ; B/ ug |t < K.

Assumption 2 The time effects, 0, fort =1,2,...,T, and the m x 1 vector of factors f;, vary across t,
so that Ady # 0 and g = Afy # 0 at least for some t =2,....,T, m < T, and sup, ||g:| < K.

Assumption 3 The unobserved m x 1 factor loadings, m;, for i = 1,2,..... N are distributed indepen-
dently of uji, for alli, j and t, and are independently and identically distributed across i with zero means,
and a finite covariance matriz, namely, n; ~ 11D(0,82,), where 2, is an m X m symmetric positive
definite matriz with | Q| < K and sup; E ||n;|*** < K.

Assumption 4 The unit specific fixed effects, «;, for i = 1,2,...,N are allowed to be correlated with
Xjt, M, and wje, for all i, j and t, and could be deterministic and uniformly bounded, sup; loy| < K, or
stochastic and uniformly bounded, sup; E |a;| < K.

Assumption 5 The first-difference of the regressors, Ax;, for i = 1,2,...., N follows the multi-factor
model
AXit = (55,;7,5 + Eingﬂf + Vit, f07’ allt=.... — 2, —1, 0, 1, 2, ciey (3)

where v (the idiosyncratic component) follows the general linear stationary process vi; = Z?io Wit j,
0q1 15 a k X 1 vector of time effects, 8+ = (Gz.1t, Gz 2ts s Gomat) 1S @ Mg X 1 vector of common factors,
E; . = (nﬂ’m, Mi2,25 ...,mmz’m) is a k X my matriz of loadings, with n;;, a k X 1 vector associated with



the i factor g, ji, W; for j = 0,1,... are k x k matrices of fized constants such that >0 %5 < K,
sup, [|024|| < K, and sup;; gz jt| < K. Furthermore, E;, is distributed independently over i, and of m;

and uyy for all i,t, and t', E (nij@) =0, F (nijyxngj,@) =V;ifj=j and E (nijxn;j,’m) = 0 for all

4+e€
J#J =12,...,my, sup, ; & Hnij,zH < K, gy ~ I11D(0,1}) with sup, ; E lex||*€ < K for some small
€ > 0, and €; are distributed independently of uy; for all i, t and t'.

Assumptions 1, 2 and 4 are standard in the literature on short 1" dynamic panels. Assumption 1 can
be relaxed to allow for time series heteroskedasticity so that Var(u;) = o2, which is discussed further
in Section 3. Assumption 2 is innocuous and requires time effects and the factors to be time-varying,
otherwise they can not be distinguished from the fixed effects. Otherwise no restrictions are imposed on
g:. Note that the case where §; = ¢ and/or f; = f for all ¢ is already covered by the presence of the
fixed-effects, ;. Assumption 3 imposes strong restrictions on the distribution of the factor loadings, n;,
and is required for identification of the factors and the parameters. This assumption can be somewhat
relaxed as we note below. In contrast, Assumption 4 does not impose any restrictions on the fixed effects,
oy, and allows them to be correlated with the regressors as well as with the composite errors, (;;. In
this way our model specification can be viewed as a direct generalization of the standard time and fixed
effects models considered routinely in the empirical literature. Our specification also differs from the one
considered by Bai (2013) who does not model the fixed effects explicitly but assumes that the fixed effects
can be captured implicitly through the interactive effects, for example, by setting fi; = 1. In the context
of our set up, following this line of reasoning leads to a random coefficient specification, which is likely
to be restrictive in practice. Bai (2013) does consider the possible dependence of 7;; on the regressors,
using the methods of Mundlak (1978) and Chamberlain (1982), whereby it is assumed that the random
component of the individual specific effects, «;, is given by

T
M =Y b} [xi — B (xit)] +ep,,, fori=1,2,.,N, (4)
t=1

where (b}, b5, ...,b%) is aTk x 1 vector of coefficients to be estimated and &,, are mean zero cross-
sectionally independent random variables distributed independently of w;y for all 4,7, and ¢’. This spec-
ification ensures that F (n;;) = 0, as required, but depends on E (x;:) which is unobserved. To make
this scheme operational it is typically assumed that x;; is stationary and E (x;;) being a constant is then
absorbed in an intercept. But in our more general context where x;; could be non-stationary the use of
the Mundlak scheme in (4) could be problematic.

Assumption 5 provides a general linear multi-factor time series specification for Ax;;. This is done
for convenience. We could have equally started with a model for x;;. This assumption postulates that
Ax; is composed of three components, a k x 1 vector of time effects, ., a multifactor component
with m, common factors, g, ; which could be correlated with f;, and a stationary component v;; which
is assumed to be cross-sectionally independent. The first-difference formulation allows x;; to have unit
roots as well as being stationary. The case of stationary x;; arises when d,; = 0, Z;io ¥, = 0, and

f.: = Zi:o 8., is a stationary process, otherwise x;; will be non-stationary. The assumption that the
factor loadings, 1;; .., j = 1,2, ..., m; have zero mean and are uncorrelated over j is made for convenience,
and can be relaxed without any consequences for the subsequent analysis. Assumption 5 also allows Ax;;
to be correlated over time with the errors (;;, through possible non-zero correlations between f; and g ¢,
the common components of ;; and x;;, but requires their idiosyncratic components, u; and v and their
factor loadings, m; and E; ., to be independently distributed over i. The key requirements are therefore
cross-sectional independence of E; ; and 7n;, and the independence of the idiosyncratic components of ;;
and x;;.

Remark 1 Our assumptions allow for non-zero correlation between x;+ and (;; through their dependence
on common factors, but requires u; and vy to be uncorrelated which rules out classical simultaneity



and measurement errors. The assumption that u; and vy and their factor loadings, n; and E; ., are
independently distributed can, however, be relazed by considering a vector autoregressive version of (1)
and (2) where zy = (yit, X;)" is modelled jointly as in Holtz-Eakin et al. (1988) and Binder et al. (2005).
In addition, possible correlations between m; and the regressors Ax; can be dealt with using the Mundlak
device as set out above in the case of the fixed effects. Though we do not pursue this here, we investigate
the effect of such correlations on the proposed QML estimator in the subsequent Monte Carlo experiments.

Finally, while the composite error term, (,;, in (1) is cross-sectionally heteroskedastic through the
presence of the interactive effects, allowing explicitly for the same in the idiosyncratic error, w;, of
(2) can be pursued along the lines of Hayakawa and Pesaran (2015). These authors extend the cross-
sectionally independent homoskedastic idiosyncratic errors of Hsiao et al. (2002) to the heteroskedastic
case. These extensions are not considered here as they are beyond the scope of the present focus of the
paper.

Combining (1) and (2), and eliminating the individual effects by first-differencing we have

Ayt = YAy -1 + B Axip + dy + gim; + Augy, for t =2,3,....,T; i =1,2,..., N, (5)
where d; = Ad; # 0 and gy = Af; # 0 for some ¢t > 2, and
& = gim; + Augg, for t = 2,3, ... T. (6)
For the specification of Ay;; we make the following assumption about the initialization of (5):

Assumption 6 Suppose that for each i, {Ay;y} is started from time t = —S + 1, for some S > 0, with
the nitial first differences, Ay; —s41, as random draws from a distribution such that

E(Ay;—s+1|A%;) = ag + e AX;, (7)

where Ax; = (AX}y, AXly, ..., AX ) is the KT x 1 vector of observations on the regressors, ag is a
fized coefficient that allows for mon-zero means, and mg is the kT x 1 wvector of coefficients, such that
supg |as| < K, and supg ||7s|| < K. Furthermore, let w; = Ay; —s41 — E (Ay;—s41 |A%;), and suppose
that w; ~ IID(0,02), 0 < 02 < K, and sup, E |w;|*** < K.

This assumption is not that restrictive and allows the initial values, y; s and ¥; —s4+1 to depend on
the fixed effects, «;, as well as other parameters. Also it is redundant if || < 1 and S is sufficiently large,
and does not apply if there are no regressors in (1). The main restriction here is the assumed linearity of
(7).

Given the above assumptions, we can now derive an expression for Ay;; that depends on the observ-
ables and the unknown parameters only. This is in contrast to Bai’s initial value assumption that requires
yio for i = 1,2,..., N to be independent draws from a distribution with means and variances that do not
depend on any of the model’s unknown parameters, effectively conditioning the analysis on given values
of yio (see Bai (2013, pp.5-7)).

Using (5), and starting from some arbitrary point in the past at t = —5 + 1 with Ay; g1 as given
we obtain the following expression

5-1 5-1
Ay = Ay; s+ > VB Axi1 - +di+Emi+ Y Y Auiay, (8)
=0 =0

where d; = Zf;ol Ydy—j, and g1 = Zf;ol 7Igi—;. In the case of models without regressors Ay;; is fully
determined under Assumptions 1 to 3. But when the model includes regressors and S > 2, the distribution
of Ay;1 also depends on the k (S — 2) x 1 vector of past observations AxY) = (Ax/, Ax;_l, ey Ax;’_s+3)’,
not available to the researcher. To deal with this missing observation problem, Hsiao et al. (2002) propose



back-casting these missing data points from Ax; which is observed. Following a similar procedure, we
first note that under Assumption 6

My My
AX? = 62 + Z (gg,j & nij,x) + V?> and AXi = 6$ + Z (gz,j ® nij,:p) + Vi, (9)
j=1 j=1

!/
0 _ /8 ! ! /L0 / 0 _ ! ! /
where d,, = ( 2,000z, 15 "'76m,—5+3) 18z = (92,4,05 9z,j,~15 -+ Gu,j,—5+3) s and v = (Vz‘07vi,—17 "'7Vi,—S+3> )

/ / 4 o / _ / / 1\
2150525 057)s 8o = (9u,j1, z,j2s s Gugr)’, ADd Vi = (Viy, Vig, .., Vip) . Also

E (Axg) = 6%, E(Ax;) = 8, and using linear projections, we have

and similarly d, = (

E (AX? |Ax;) = 89 + Qo107 (Ax; — 8,) (10)
where . m
Q= Z (8.8, © Vi) + E (vivi), Qo1 = Z (22,8, ©V;) + E (vivi).
j=1 Jj=1

Since v;; is a stationary process with zero means and variance-covariances that do not depend on i, it
then readily follows that E (v;v}) = Q, 11 and E (V?Vé) = ,,01 that also do not depend on ¢. Now using
(10) along with (7) we have

S—1
FE "ySAyL_S_;,_l + Z ’yj,B’AXi,l_j ‘AXi =a—+ W/AXi, (11)
=0

where a and 7 are fixed parameters that are complicated functions of v and 3, the parameters of the x;;
process as well as the parameters of the initial values. Now let

S-1 S—1
Xi= [P Ayi—si1 + D> VB Axia | —E [ Ayi—si1+ D> VB A1 |A; | (12)
=0 =0

and by construction x; is a martingale difference process. Also in view of Assumptions 5 and 6 and by
application of the Minkowski inequality to both sides of x; we have sup; |x;|*™¢ < K.2 Hence, using (11)
and (12) in (8) we have

Ayn = di + 7' Ax; + &1, (13)
where di = a + Jl,
in = 81M; + vit, (14)
and
5—1
v = >V Auiij+x;. (15)
j=0

In the analysis that follows we treat di, and 7 as unknown parameters to be estimated along with the
parameters of interest v and 3. We also note that v;; ~ I1D(0,wc?), and v;; is distributed independently
of Ax; and m),;. Further, by application of the Minkowski inequality to (15) we have sup; |Ui1‘4+6 < K,
and under Assumptions 5 and 6, sup; Var (x;) < K; as a result 0 < wpin < W < Whpax < 00, where wpin
and wpax are fixed constants. Finally, using (15) we have

—g2 fort=2

0 fort=3,4,....,T (16)

Cov (vi1, Aug) = {

*Note that under Assumption 5 sup, , £ | Axi||*T¢ < K. See Lemma 1.



Remark 2 As noted earlier, in the case where |y <1 and S — oo we have Ay;1 = di + 7' Ax; + &1,
where &;1 is defined by (14), with v;1 given by vy = Z]O'io VI Aui1—j + x;, and

[ee) oo
Xi = Z'}/j,@/AXi,lfj — E Z’yj,BIAXZ"l,j |AX1

J=0 Jj=0

Since Ax;t, m;, and uy are independently distributed for all i, t and t', it then follows that vy is distributed
independently of m; and Ax;, with E (v;1) =0, and

oo
; 202
Var (vi1) = Var ZVJAUM*J' + Var (x;) = + Var(x;) > 0.
= T+~
In the case of pure AR(1) panels, we have the further parametric restriction, Var (v;1) = %, which, if

imposed, can increase estimation efficiency.

We can now combine the processes for Ay;; and Ay;; conditional on Ay; 1, for t = 2,3,...,T to write
down the quasi-likelihood function of the first-differenced model. Writing (5) and (13) in matrix notation
we note that

where Ay; = (Ayi1, Ayia, ..., Ayir)', AW, is the T x (T + Tk + k + 1) matrix given by
10 ...0 Ax 0 0
01 ... 0 0 AXi Ayil
AW, = | | . o , (18)
00 ... 1 0 AX%T Ayi,T—l

Y = (d/,ﬂ,,ﬂ/,"}/)/, with d = (dl,dg, ...,dT)I, G = (gl,gg, ...,gT), r, = (Uﬂ, A'LLZ‘27 veuy A’LLZ'T)I, and El =
<£i1,£i2, e ,{iT> , and recall that ;1 = g\m; + vi1, and &; = gin; + Auy, for t = 2,3,...,T.

In using the first-differenced specification (17), it is first worth noting that despite the presence of com-
mon factors in Ay;; and Axy, the composite errors, £;, and the regressors Ax; = (Ax}, Ax)y, ..., AX} )
are independently distributed over i. This follows since the cross sectional-variation of Ax;, given by (9),
is governed by v; and {nijw, for j=1,2,..., mx} that are assumed to be distributed independently of n,
and Aug for all ¢ and t (see Assumption 5). Furthermore, conditional on the common factors, g, ;, Ax;

are cross-sectionally independent which allows us to apply the law of large numbers to averages of Ax;
and quadratic forms in Ax;.

3 Quasi Maximum Likelihood Estimation

Consider the panel data model given by (17) and note that under Assumption 1, and using (14) and (16),
we have (recall also that v;; ~ I1D(0,wo?))

E(r;r}) = 0%Q, (19)
where
w -1 0
-1 2 0
E(r;r}) = o? =o2Q, (20)
2 -1
0 -1 2



and @ = Q(w). Since || = 1+ T (w— 1), w needs to satisfy w > 1 — 1 to ensure that € is positive
definite. Also, since n; and r; are independently distributed, we have

Var(¢;) = B¢ (¥) = 0’Q + GQ,G'=0" (2 + QQ) (21)

where Q = (1/0)GQ717/2, rank (Q) = m, and ¢ = (w, JQ,UGC(Q)/),. With this normalisation, the quasi-
log-likelihood of the transformed model (17) is given by

N
(N (B) = I (p) =~ (2m) — 5 S ()]~ 5 D0 &) T (4) " Exl) (22)
=1
N N N al _
= men - e’ - Tmle Q|- o, >l (2+QQ) & o)
(23)
where
i) = Ayi — AW,op (24)

and it is assumed that ¢ does not depend on . For fixed m and T, the above log-likelihood function
depends on a fixed number of unknown parameters collected in the [T'(m + k + 1) + k + 3] x 1 vector
0 — (cpl’ 'lﬂ,)/.s

The above log-likelihood function can be readily modified to allow for time series heteroskedasticity,
so that Var(uy) = o2, for t = 1,2,...,T. We only need to replace o2Q by

wo?  —o? 0 -0 0 0
—0? oi+03 -0} . : 0 0
Eex)=| 0 —o3 o3403 - 0 0 , (25)
0 0 0 Oy OF gt 0hy  —0%
0 0 0 e 0 —o2_,  o%_ +o%

with the resultant log-likelihood maximized with respect to w, o2, 03, ..., a% and the remaining parameters.
This extension does not pose additional difficulties noting that T is fixed as N — oo. However, it does
impact the identification conditions to be addressed below.

4 Identification conditions

We shall first derive necessary order conditions on m and T for identification, and then subject to these
order conditions we derive additional conditions under which the parameters are locally identified, and
show that global identification of short T panels with an error multi-factor structure is possible only in
the case of panels without a lagged dependent variable.

We begin our investigation by considering the order condition for identification of the panel AR(1)
model. Using (5) and (13), we note that in this case

Ay = dy +§£m + vy, fort =1,
Ayt — YAy -1 = di+gm; + Augy, for t = 2,3, ..., T,

3In the Monte Carlo and empirical applications that follow the QML estimates are obtained by maximizing a concen-
trated version of the likelihood function in (23). This is derived using an eigenvalue approach which greatly simplifies the
computations. For details see Section I of the online supplement.



which can be written as B (y) Ay; = d 4+ Gn,+r; = d +§;, for i = 1,2,..., N, where d = (dy, ...,dr)’,
Ay; and &, are as defined above, and

1 0 0
Bo=| Y (26)
0 oy 1
Note also that, |B (v)| =1, and
1 0 0 O
Blo)=| 7 Y (21)
: 0
4T v o1
and hence Ay; = a + B~!(v)&;, where
1 0 0 0 dy dy
asBl(a=| 7L OB T (28)
7T:—l 7. (1) d'T ATy +~4T2d, —|— v Fydr_1 +dr

Since dis a T x 1 unrestricted parameter vector, then a is also unrestricted, namely knowing a does not
help to identify . Therefore, v can only be identified from the T'(T'+1)/2 distinct elements of Var(Ay;)
which is given by

Var(Ay;) = B(y)"'Var(¢)B'(7)~!
— ’B(1)'(R+QQ)B'(7) " =(0,Q),

where o = (y,w,oz),. But since Q enters X (g,Q) as A = QQ’ we need to consider the unknown
elements of the symmetric matrix A under different rank conditions. First it is clear that if A has full
rank, namely if rank(A) = T, then g is not identified. Hence, for identification of @, we must have
rank (A) = rank (Q) = m < T. When rank (Q) = m, Q is identified only up to an m x m non-singular
transformation. However, the number of non-redundant parameters of Q is given by m7'—m(m—1)/2 (see
Hayashi et al. (2007, p.507)).* Hence, the order condition for identification of g and the non-redundant
elements of Q is given by

T(T+1)/2>3+Tm—m(m—1)/2. (29)

This order condition is satisfied if T > 3, for m = 0,1, 2, .., Mmax Where mmay is the largest value of m
that satisfies (29), that is mmax = T — 2. It is easily seen that the above condition is not satisfied if
m =T — 1. The maximized log-likelihood values for the rank deficient cases, m = 0, 1, 2..., mmnax can be
computed using (S.11) in the supplement. In the case where the errors, u;, are heteroskedastic over time
there are an additional T' — 1 new error variances to estimate and the above order condition becomes
T(T+1)/2—(T+2)>Tm—m(m—1)/2, and a larger T is required for identification when m > 0. For
example for m = 1 we need T' > 4, and for m = 2 we need T' > 6.

“Note that m(m + 1)/2 restrictions are imposed by re-writting GQ, G’ as QQ’. To achieve the usual m? restrictions
imposed on Var(Gn,) in traditional factor analysis an additional m(m — 1)/2 restrictions need to be imposed on Q. In
the concentrated version of the loglikelihood of (17) used to obtain all Monte Carlo and empirical results that follow, these
restrictions are imposed on Q. See also Section I of the online supplement.



Consider now the more general case where the panel AR(1) model also contains exogenous regressors,
but to simplify the exposition we continue to assume that U? = ¢ for all t. For this case note that the
system of equations (17) can be written equivalently as

Ayi=a+Z;(7)d+B (7)€, (30)

where a, B~ () and &; are as defined above, § = (7', 8", Z; (v) = B~ (v) Z;, and Z; is the T x (Tk+k)
matrix of observations on the exogenous regressors defined by

Ax] 0
0 AxX
Z,i=| o (31)
0 Ax),

It is clear from (30) that a and &, and hence d and §, are uniquely identified for a given value of 7.
But it is already established that « is identified from the covariance of B! (y)§;, given by X (o, Q) =
o?B(7)"1 (2 + QQ')B/(y)*, if the order condition (29) is met. Note that X (g, Q) does not depend on
d and 4, and hence knowing d and & will not help identification of 7. As a result, the order condition
(29) continues to be sufficient for identification of the parameters of the panel ARX(1) model.

To investigate necessary and sufficient conditions for identification of the parameters, we consider the
average log-likelihood function defined by (22) which we write as

N
In (8) = N"'y (¢,9) = —gln@w) - %m [Ze (¥)] - % D@ () &ile),  (32)
1=1

where 0 = (¢, ¢')’, p = (d', 7', 8,7)" = (N,7)" with A = (&, 7", 8'), ¥ = (w,0%,d)’, and q refers to
the [Tm —m(m — 1)/2] x 1 vector containing the non-reduntant elements of Q. Suppose that A € ©,,
v € ©,, and ¥ € O, and denote the true values of A,y and ¥ by Ao, 7, and 1), respectively. Consider
the set N(7,) defined as follows:

Definition 1 Let N.(vy) be a set in the closed neighbourhood of v, defined by

Ne(vp) = {ve O, [v—l <€},

for some small e > 0, where ©,, is a compact subset of R.

We now show that 8y = (¢f), 9g) = ( 6770:#)6), is identified on ®, = @) x Nc(7() % O. For this
purpose, we require the following additional assumption.

Assumption 7 (i) 0 € ©, = O x Nc(7g) X Oy, where Oy = OyxOrxBO3 and O, = O, xO,x0O,,
®4, O, O and O, are compact subsets of R™, R"~ R", and R", respectively; ®, and O, are
compact subsets of R, where ng =T, ngx = kT, ng =k, and ng = Tm —m(m —1)/2; 6y = (¢}, %) =
(X, 70, 95)" lies in the interior of ©. (i) Te(p) =02 (Q+QQ'), and for some cmax > Cmin > 0,
min < infyco,, Amin [Xe(¥)] < subyce,, Amax [Ee(¥)] < cmax, and (iii) as N — oo

N
Ay (¢) = %ZAwgzg ()P AW, 23 A () uniformly in ©, (33)
=1

where A () = limy_oo N1 25\;1 E <AW;Z§ () * AWZ-) is positive definite for all values of P& ©,.
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The first part of this assumption is standard and rules out parameter values on the boundary of the
parameter space, and since N(7g) is a subset of ®, which is compact, it also follows that @, being the
Cartesian product of compact sets, is itself compact, namely ®, € R, where ng =3+ T(k+ 1)+ k +
Tm—m(m—1)/2. Note also that order condition (29) is taken into account in setting ny. The eigenvalue
conditions on ¢ (%) in the second part of the assumption are required for the proof of the consistency
results. This part of the assumption also holds when the order condition is met and w > 1 — % Recall
that under the latter €2 is a positive definite matrix and Q is rank deficient, and under Assumption 1,
0 < 02 < K. For v we need to distinguish between the case where S is fixed (namely initialization is
from a finite past) and when S — co. Under the former, it is only required that |y| < K, which includes
the unit root case (]| = 1). Under the latter (when S — 00), we must have |y| < 1. Consider now the
third part of Assumption 7, and note that

sup B Hawgzg ()L AW,

2 —1||? 4
< || @) sup B AW < K.

where HEE (¥) " H < K under condition (i) of Assumption 7, and sup; E || AW;||* < K by Lemma 2. Also

under Assumptions 1, 3, and 5, AW, are cross-sectionally independent. This follows since conditional on
8.+, Ax; are independent across ¢ by Assumption 5 (see also the expression for Ax; given by (9)),and
Ay;; being a function of Ax;; and ;; (see (30)) are also cross-sectionally independent noting that ;, are
cross-sectionally independent under Assumptions 1 and 3. Hence, Ay (%) A (1) for every 9 € 0,
(see, for example, Davidson (1994, Theorem 19.4)). Under condition (ii) of Assumption 7 it is trivial to
see that this result also holds uniformly in ®,. Finally, the condition that A (v) is a positive definite
matrix is needed for identification of .
The main identification result is set out in the following proposition:

Proposition 1 Consider the model given by (1) and (2), with the associated log-likelihood function for
first-differences given by (22). Suppose that Assumptions 1-7, and the order condition (29) hold. Then
0o is almost surely locally identified for values of v sufficiently close to 7y, as formalised by Definition 1.

Remark 3 In the absence of lagged dependent variables in (1), Qg is almost surely globally identified
even if m > 0. This can be easily seen from the proof of Proposition 1 in the Appendixz. Similarly -
and B are globally identified when m = 0. Therefore, lack of global identification in short T panels arises
when the panel data model contains both dynamics and latent factors.

5 Asymptotic properties of the QML estimator

The analysis of consistency and asymptotic normality of the QML estimator, 0= arg maxgce, /. NA(O), now
follows by application of standard results from the literature. Almost sure local consistency of 8 follows,
for example, from a straightforward adaptation of Theorem 9.3.1 of Davidson (2000). Specifically: (i) ©.
as a subset of © is compact, (ii) setting Ciy (8) = —2(x (0), and C (0) = Ey[C (6)], under Assumptions
1-7, and using (A.37) and (A.38) in the Appendix we have that Cy (8) “3 C (8) uniformly on ©, and (iii)
09 is the unique minimum of C (8) on O, and is an interior point of @, by assumption. Condition (iii)
follows directly from condition (ii) and Proposition 1 (see Davidson (2000, Theorem 9.3.4)). Therefore,
all three conditions of Theorem 9.3.1 of Davidson are satisfied and 8 %3 0y on the set ©..

The asymptotic distribution of 0 is derived by taking a Taylor expansion of 8£gé9) = 0 at Oy and
checking the asymptotic behaviour of the score function, sy (0) = azge(e)7 and Hessian matrix, Hy(0) =

0000’
from the mean value theorem:

0 =V Nsy(0) = VNsy(0o) — Hy(8)VN(6 — 6y) (34)

_ DU O) Ey [Z]Va(igo)] = 0 and Hy(8) “5 H(8y), the asymptotic normality of the QMLE will follow

11



where 0 lies between 6 and 0y. The resultant asymptotic distribution is summarized in the following
theorem:

Theorem 1 Consider the dynamic panel data model given by (1) with interactive effects as in (2).
Suppose that Assumptzons 1 to 7, the order condition (29) and Proposition 1 “hold.  Denote the QML
estimator of 6y by 0= arg maxgce, {n (0), where £ (0) is given by (32). Then, 0 is almost surely locally
consistent for 8y on O, for values of v sufficiently close to vy as formalised by Definition 1, and

VN (8 — 6) —a N [0,H (80)J (80) H ' (6y)] , (35)

where H(Oy) = limy_,o Eg [— 828%[6(06/0)] and J (0g) = limy_.o Eo [N(%%ggo) 8£N(90):| both assumed to

exist.

When &, (@) is Gaussian VN (8 — 0g) —q4 N [0,H(60)] . A consistent estimator for the variance
in (35) can be obtained by substituting 6 for 6y in the expressions for J (6y) and H(6)).

6 Estimating the number of factors

There are a number of studies that provide information criteria for selecting the number of factors
including Bai and Ng (2002), Onatski (2010), Kapetanios (2010), Ahn and Horenstein (2013), among
others. However, these are not applicable to short T panel data sets, and require both N and T to be
large. In the case of short 7" panels Ahn et al. (2013) estimate the true number of factors, mg, within
a GMM framework using the Sargan-Hansen misspecification statistic in a sequential manner, as well
as information criteria. To ensure consistency of the selected number of factors under the former case,
following Bauer et al. (1988) and Cragg and Donald (1997), Ahn et al. (2013) choose the significance
level by such that by — 0 and —In(by)/N — 0 as N — oo. Using simulations they find that the
sequential method could produce better estimates if the significance level depends also on T (in addition
to N), when the regressors and individual effects are not highly correlated, but do not provide theoretical
details on how best to allow for T" as well as N in their selection procedure. In what follows we consider
a sequential likelihood ratio (LR) testing procedure, but adjust the critical values of the tests to take
account of the multiple testing nature of the procedure in terms of 7', as well as adjusting the critical
values of the tests in terms of IV to ensure consistency of the selected number of factors. We provide a
formal theory that should be of general interest for the analysis of short T factor models.

6.1 A sequential multiple testing likelihood ratio procedure for estimating the num-
ber of factors

We first consider the problem of testing Hy: m = mg against Hi: m = Mmuyax, where my,q, is the largest
value of m that satisfies the order condition (29), namely mpyax = 7" — 2. This is in contrast to the
problem of selecting m in the case of large N and T factor models where it is often based on an arbitrary

choice of mpyax. Under Hyp, the maximized log-likelihood function, £ (am()), is computed by maximizing

(32) subject to rg over-identifying restrictions given by
7"0:T(T—I—l)/2—3—[Tmo—mg(mo—l)/Q]. (36)
The LR statistic for testing Hy: m = myg against Hi: m = Mmpax = 1 — 2, is then given by

LRN (Mmax, Mo) = 2 [EN (émmx) —UN (Emoﬂ , formg=0,1,2,..,T — 3, (37)

where Emmx and §m0 are the QML estimators of @ under m = mg and m = T — 2, respectively, and £ ()
is given by (22). The following theorem provides the asymptotic distribution of LRy (mMmax, M0)-
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Theorem 2 Consider the dynamic panel data model given by (1), and suppose that Assumptions 1 to
7, the order condition (29) and Proposition 1 hold. Denote the constrained QMLE of 8 obtained under
Hy : m = mg by Oy, and its unconstrained estimator by 6. , where Mmax = T — 2. Also let the
restrictions imposed under Hy be given by qo (0) = 0, where qo (6) is the ro X 1 vector function of 6
implied by setting m = mg where ro = T(T +1)/2 — 3 — [T'mg — mo (mo — 1) /2]. Then, as N — oo for
a fivzed Ty, LRN (Mmax, mo) defined by (37) has the following asymptotic distribution

To

2

LRy (mmaxam()) —d § Wiz,
Jj=1

where zj ~ IIDN (0,1), wy, we, ..., w,, are the non-zero (positive) eigenvalues of the symmetric matriz

B _ -1 _
Ao = J5*Hy Q) (QuH, ' Q)) ~ QuH, Ty,

with Jo = J (6y), Ho = H(6g), Qo = Q(00), and Q (0) = dqp (0) /08’ of dimension (rg x ny), with
ng=3+T(k+1)+k+ (T -2)(T+3)/2.

Remark 4 Note that the non-zero eigenvalues of Ag are also the eigenvalues of
(Q()HalQ'O)f1 Qo (HalJoHal) Qf. Hence, if Jo = Hy, this matriz becomes equal to I,, and we have
w; =1,(i =1,2,...,10), which yields the familiar result

ERN (mmaXa mO) —d X%O-

This theorem shows that the use of LR tests in the non-Gaussian setting is non-standard and requires
an explicit derivation of qg (@) = 0. Furthermore, even in the standard case the use of the sequential LR
procedure for estimation of m, is subject to the multiple testing problem and does not guarantee that
mo, the true value of m, will be estimated consistently. This is a well known problem in the sequential
testing literature. In this paper we propose a novel approach for dealing with both of these problems by
letting the overall size of the sequential LR tests decline with N at a suitable rate, which we show yields
the desired result even if the underlying individual LR tests are non-standard.

Theorem 3 Suppose under the null hypothesis Hy, the LR test statistic LR is distributed as Z?:l wixg(l),
where the weights wy > wq > ... > wy, > 0 are finite constants, and X?(l) fori=1,2,...,h are indepen-
dently distributed central chi-squared variates with 1 degree of freedom. Further suppose that under the al-
ternative hypothesis Hy, LRy is distributed as Z?Zl wix2(1, uﬁN), where x?(1, :“?,N) fori=1,2,...,h are
independently distributed non-central chi-squared variates with 1 degree of freedom and non-centrality pa-
rameter, ,u?’N, 1 =1,2,..., h. Denote the non-centrality parameter of the test under Hy by N?\/ = 2?21 u?,N.
Suppose h is a finite integer, and u%, = O(N). Denote type I and II errors of the test by an and By,
respectively, and the critical value of the test by ci/(h). Under Assumptions 1-7, if ¢4 (h) — oo and
p3; — 00 as N — oo such that & (h) /u3; — 0, then both ay and By — 0.

Remark 5 Clearly, the conditions of Theorem 3 are met if ay = p/N°, with & a finite positive constant.
Further, using (A.50) in the Appendix we have

A0 _ 20,2, In ()  2wihln (222) . <51D(N)> | 8)

o I B 13 13

and since by assumption p% = O(N) it follows that 3 (h)/p3 — 0 as required.
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Remark 6 When ay is set as ay = p/N5, the parameter p (0 < p < 1) can be viewed as the nominal
size of the test. Then By — 0 if In N/u3, — 0, which is satisfied in the standard case where p3, = O(N).
The Neyman-Pearson case is obtained if we set 6 = 0. The case of 6 > 0 relates to the Chernoff test
procedure that aims at minimizing Pr(Ho)ay + Pr(Hy)By, where 0 < Pr(Hy) < 1 and 0 < Pr(Hp) < 1
are prior probabilities of Hy and Hy, respectively. When N is finite the solution to this problem depends
on the prior probabilities. But in the case of chi-squared tests, we have Pr(Hp)an + Pr(Hy)By — 0 as
N — oo, irrespective of the prior probabilities Pr(Hy) and Pr(Hy), so long as ay = p/N® for § > 0 and
p > 0.

Remark 7 In finite samples the choice of p and d can matter, though for moderate values of N the
choice of p is likely to be of second order importance. In the simulation results that follow we set § = 1
and p = 5%, and investigate the robustness of the results to other choices of p.

Theorems 2 and 3 can now be used to develop a sequential approach for estimating (selecting) m.
As the true number of factors, myg, is unknown and could be T — 2, we assume the sequential procedure
involves T' — 2 separate tests, although in some applications we might end up stopping the sequential
procedure having carried out a fewer number of tests than 7' — 2. Let the null hypotheses of interest be
HT_Q’O, HT_Q’l, e HT_Q,T_:}, and write the T'— 2 LR tests as

Pr [ﬁRN (mmax =T — 2, moy = t— 1) > CVN7T_27,§_1 ’HT—2,t—1] < PN T—2,t—1, for t = 1, 2, cany T-— 2,

where LR N (Mmax, mo) is given by (37), CV r_2+—1 is the critical value for the test of Hy_94_1, and
PN,T—2,t—1 is the realized p-value for Hy_2;_1. The overall size of the test is now given by the family-wise
error rate (FWER) defined by

FWERy = Pr [utT;f (LRN (Mmax =T — 2,mo =t — 1) > V41 |[Hr—241)] -

Suppose that we wish to control FW ERy to lie below a pre-determined value, p. An exact solution to
this problem depends on the nature of the dependence across the underlying tests, which is generally
difficult to obtain. But one could derive bounds on FW ERy using, for example, the Bonferroni (1936)
or Holm (1979) procedures. Both of these procedures are valid for all possible degrees of dependence
across the individual tests, and as a result tend to be conservative in the sense that the actual size will
be lower than the overall target size of p. Using Boole’s inequality (also known as the union bound) we
have

Pr {U?:12 [,CRN (mmax =T — 2, mo = t— 1) > CVN7T_2¢_1 ‘HT_Q,t_l]}

T-2 T—2
< Z Pr(LRN (Mmax =T —2,mo=1t—1) > CVNr 24 1|Hr241) < ZPN,T72,t71-
t=1 t=1

Hence, to obtain FWERy < p, it is sufficient to set py7-24—1 < p/(T — 2). The individual critical
values, CVr1_2:-1 are based on the asymptotic critical values (as N — o0) of the x? distribution,
namely x2, [p/ (T — 2)], where p/(T — 2) is the right-tail probability of the individual tests.

Utilizing the above results we propose the following sequential testing procedure to estimate m:

m = 0, if LRn (mmax =T —-2,mg= 0) < CVN7T_27()
m=1, LRy (Mmax =T —2,mg =0) > CVNr1—20 and LRy (Mmax =T —2,mp=1) < CVN1—21
m = 2, LRN (Mmax =T —2,m9=0) > CVNr1-20; LRN (Mmax =T —2,mg=1) > CVNr_21
and LRy (mmax =T —2,mg= 2) < CVN,T_QQ.
This sequential procedure is continued until £ = T'— 3. The consistency of m for my is established in the

following theorem:
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Theorem 4 Let m be the number of factors obtained using the sequential likelihood ratio procedure based
on the statistic LRy (Mmax, Mo) given by (37) for which Theorem & holds. Then Pr(m = mg) — 1.

By Theorems 3 and Theorem 4 it follows that m obtained using the sequential MTLR procedure

described above is a consistent estimator of the true number of factors mg. In line with the above, in the

ensuing Monte Carlo results when performing the sequential MTLR procedure we set ay = N(jlf_Q).

7 Small sample properties of the transformed QML estimator

In this section, we investigate the finite sample properties of the proposed estimator using Monte Carlo
(MC) simulations. We start by presenting the MC design.

7.1 Monte Carlo design

The observations on y;; are generated assuming k = 1 (one exogenous regressor) and mg unobserved

factors as
Yie = QG+ 0 +YYir—1+ Brit + (s (39a)
mo
Gt = Z Nei for + wir = mife 4 wir, (39b)
(=1

fori=1,2,....,N and t = 1,2,...,T. Together with the initial observation for ¢ = 0 which will be set
below, this yields T" observations for estimation after first-differencing. The fixed effects «; are generated
as a; ~ IIDN(0,1). The factor loadings, m; = (11;, M2 -+, Nim,.i) are generated as

2
K
N ~ [IDN <0, > , 0=1,2,...,mg. (40)
mo
We have scaled the variance of 7, 0%2, by 1/mg to ensure that the relative importance of the factor
component of (; is not affected by the choice of my. We also consider the case where my = 0 for which
we set Var (n) = 0 for all £. The strength of the factors is controlled by the parameter 2.
The idiosyncratic errors, u;, fort = 0,1,...,T and i = 1,2, ..., N are generated as u; ~ IID\/%(X%—&
where X2 is a chi-square variate with six degrees of freedom. The regressors, x;, for i = 1,2,..., N are
generated as

Mo
it = i+ Y iufo 4 Vie, Vi = ppvie1 + (1 p2
=1

) ey, fort=1,2,..,T, (41)

with p, = 0.95, and ¢ ~ [IDN (O,U\%i). We set m, at m; = 2, but consider different values of
mg. In this way we allow for interactive effects in the {z;} processes for all values of mg, including
when mo = 0. We draw vy from the steady state distribution of v, namely vio ~ IIDN(0,02,), for
i=1,2,..,N. This in turn ensures that Var (vi) = 02,. These error variances are drawn as o2, ~ I1D
i(x% +2)02, thus ensuring that E (J%i) = 02. The factor loadings in the z;; equations, ¥;, are generated
as Jip ~ IIDN(0,0'%%), for £ =1,2,...,m;. To establish that the fit of the model is not affected by the
number of factors (mg and m,) in what follows we set 012% = J?] /my, for all £. Finally, we set a;; = o+,
where v; ~ IIDN(0,1), for all 4. This specification ensures that the fixed effects are correlated with the
regressors.

We generate the time effects, d;, and unobserved common factors, fs, as d; = %(t2 —t), for t =
1,2,...,T, and

fgt - pgff&t_l + (1 — p?cg)l/z Efet, Efor ™~ IIDN(O, 1), for ¢ = 1,2, ceey M, and t = 1,2, ...,T, (42)
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with pgy = py = 0.5, and fyp = 0 for £ = 1,2,...,mg. Setting the initial values of fy to zero is not
restrictive since any non-zero sample means for the f;,s would be absorbed by the values of the fixed
effects, «;, and the estimation results would be invariant to the choice of fyq.

To investigate the performance of our proposed estimator and its robustness to the relative importance
of the common factors in the generation of y;+, we calibrate the variance of z;; relative to the regression
noise, (;, as well as the variance of the factors n}f; to the idiosyncratic components, u;;. More specifically
we consider the following ratios

X NS (T S E) )
fNT = 1 T N ’
NP1y i vy
i N
N _ NTTH Z?:l > e (Tit — i)’ (44
> im1 e Cit

and to simplify the derivations we re-scale the values of the factors such that they are orthonormalized,
namely

T =0, T f2=1 TS fufry =0, forall £and ¢ # /. (45)
Under the above scaling and using (40) we have (for any finite 7') and as N — oo
o _EMmin) _ #°
A= Jim ke = =05 = (46)

Similarly, using (41) and (39b) we have

lim {N‘lT_1 Ethl ZZ]L O Yiefu + Vit)ﬂ

A _ N—->oo

r =
]\}i_r,noo [NilT*l S i (i + uz’t)ﬂ
20’3 20‘3/()‘2

k2402 1+ k%/0? (47)

To control the ratios Ay and A,, without loss of generality, we set 02 = 1, and consider the values of
k? = {1/4,1/2,1,2} and o2 = {1/2,1,3/2}. These combinations allow us to examine the extent to
which the small sample results are dependent on x? and o2 that measure the relative importance of the
unobserved common factors, f;, and the idiosyncratic components of x;;.

To set the initial values, {y;0;7 =1,2,..., N}, we distinguish between the case where |y| < 1, and
the unit-root case where v = 1. Under the former, for each ¢, we generate ;0 from the steady state
distribution of {y;}, and set®

Yio = Mg + 0io (wip/o), fori=1,2,.... N (48)
where ,
_ Git faw o2 2024—%6 o2, +aga; (49)
/"[’ZO 1 . ’Y 9 20 1 — 72 5
1 1+
Lt ap = L1001 (50)
L=p, L—=py
mo My _
ai = g+ B 05+ 28 0 g, (51)
=1 =1

>For the derivation of ;o and o0 see Section S.3 of the online supplement.

16



and u; is generated as above. To check the robustness of our MC analysis to the choice of the initial values,
we also consider generating y;; with u,;q and o0 in (48) replaced by k1,9 and k20,0 and experiment with
the values of k1, k2 = 1.2,0.8. For the remaining parameters we consider 8 = 0 (the pure autoregressive
case) and § = 1, and experiment with medium and high values of v, namely v = 0.4 and 0.8.

In the unit root case (v = 1) we avoid incidental parameters in first differences by first generating
the first-differences and then cumulating them to obtain y;; from some arbitrary values for y;p. The
first-differences are generated as

Ayiir = A0+ BAx; + A, (52)
Ay = Adp +7Ay; -1 + Az + Ay, t =2,3,...,T, (53)

with Ay;,o =0, for i = 1,2, ..., N. The regressors and error processes are generated as above.

7.2 Monte Carlo results

We begin by reporting on the performance of the sequential MTLR procedure for estimating mg, the true
number of latent factors. We then report on the bias and root mean square error (RMSE) of the QML
estimators of the parameters (y and f3), as well as size and power using the number of factors estimated
by the MTLR procedure. Throughout we consider the parameter choices v, = {0.4,0.8} and Sy = 1,
the sample size configurations T' = {5,10} and N = {100, 300, 500, 1000}, and values of my = {0, 1, 2}.
Thereafter we provide results comparing the QML estimator with the GMM quasi-difference (QD) and
first-difference (FD) estimators proposed by Ahn et al. (2013) (ALS), assuming mg is known.® Finally,
we turn to the unit root case (7, = 1), and end with a summary discussion of the main results from our
robustness analysis. In the paper we focus on the baseline case where k? = 02 = 1; results for other
values of k2 = {1/4,1/2,2} and 02 = {1/2,3/2} are provided in the online supplement and are discussed
only briefly to save space. Further, we only resport the results for non-Gaussian errors. The results for
the case of Gaussian errors are available upon request.

Unless otherwise stated, the sequential MTLR procedure is implemented using the LR (mmax, M)
statistic for testing m = mo = {0,1,2,..,T — 3} against m = muyax = T — 2, with significance level
ay = (T_% and p = 0.05, using the critical values of the chi-square distribution with degrees of
freedom as given by (36). The standard errors used for inference are based on equation (35) with all
derivatives computed numerically. All tests are carried out at the 5% significance level and all experiments
are replicated 2000 times.

7.2.1 Selecting the number of factors

Table 1 reports the number of times (in %) that the estimated number of factors, m, is equal to the true
number of factors, mg, following the sequential MTLR procedure outlined in Section 6.1. The results
refer to the baseline case where k2 = 02 = 1 and show that 7 performs well for most parameter values
and sample sizes. Even when N = 100, the true number of factors is estimated quite precisely except
for the ARX(1) model when 7" = 5 and mg = 2. However, by the time N reaches 300 the probability of
selecting the true number of factors approaches 100%, across all parameter values. The results for other
values of xk? and o2 are given in Tables A1(i) and A1(ii) in the online supplement. As to be expected,
the empirical frequency of correctly selecting mg declines as the value of x? (which measures the strength
of the factors relative to the idiosyncratic error) is reduced for small N. However, as N increases the
probability of selecting the true number of factors improves and approaches 100%, as to be expected
given the consistency of the proposed procedure. Table A1(ii) further shows that the performance of m
is not that much affected as other values of o2 are considered.

®The estimation of the number of factors for the GMM type estimators turned out to be time consuming, and to simplify
the comparisons we thought it more instructive to base our comparisons assuming that m is known. Also, as will be seen,
under our approach m is generally well estimated.
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7.2.2 Performance of the QML estimator

We next consider the small sample performance of the QML estimators of «v and 3, after estimating m
by the sequential MTLR procedure.

AR(1) For this model, bias, RMSE, and empirical size for the QML estimator of « are reported in
Table 2. The overall performance of the bias and RMSE is favourable with a few exceptions when
T =5, N <100 and mg = 2. Specifically when vy, = 0.4, we need NN larger than 100, particularly if
mo = 2. The bias and size distortions are more serious when v, = 0.8, and much larger sample sizes
are required. However, as predicted by the asymptotic theory, the results improve as N increases. The
performance of the QML estimator improves considerably as T is increased to T' = 10, and evidence of
size distortions is limited to a few cases where my = 0 and v, = 0.8, and N < 300. The results for
all combinations of k? = {1/4,1/2,1,2} and 02 = {1/2,1,3/2} are reported in Tables A2(i) and A2(ii)
in the online supplement. As with the estimation of m discussed above, the performance of the QML
estimators deteriorates as k2 is reduced towards zero, and large sample sizes (N and/or T') are required
for satisfactory outcomes in the case of the AR(1) specification. The power functions in Figure 1 show
that overall the power is satisfactory. While power is low when v, = 0.8 for small N, it improves as N is
increased. Power functions across alternative values of 2 are shown in Figures A3(i), A3(iv) and A3(vii)
in the online supplement. The shape of these functions becomes quite distorted if the factors are very
weak relative to the signal (namely for small values of k?), particularly when 7' = 5 and ~y, = 0.8, or
Yo = 0.4 and mg = 2.

ARX(1) Simulation results for the ARX(1) model are provided in Table 3, and show the much better
small sample performance as compared to the AR(1) model. This seems to be primarily due to the
additional source of variations from the regressor. The bias and RMSE for the estimators of v and
are both very small in all cases, and empirical sizes are also close to their nominal levels. In addition, as
shown in Figure 2, power is reasonably high. From Table A2(iii) in the online supplement we also note
that biases are very small across all values of k2. As x? reduces, the RMSE of v increases while that of /3
decreases. Differences in RMSE across 2 for each of these parameters tends to decrease as N increases.
Furthermore, Table A2(iv) shows that empirical sizes behave well across all values of x? with only a
couple of exceptions for N = 100 and smaller values of k2. Power functions across the different values
of k2, as shown in Figures A3(ii)-A3(iii), A3(v)-A3(vi) and A3(viii)-A3(ix) of the online supplement, are
similar to those of Figure 2 given below for k* = 1. Results for the other values of 02 (namely 1/2 and
3/2) are very similar to those of 02 = 1, and are available upon request.

7.2.3 Comparison of QML and GMM estimators

Next we present simulation results comparing the QML estimator with the GMM estimators proposed
by ALS. For this set of experiments the number of factors during estimation is set to the true number of
factors. The GMM estimators include the quasi-differenced and first-differenced ALS one step and two
step estimators denoted by QD1, QD2, FD1 and FD2, respectively. The details of how these estimators are
computed are set out in Section II of the online supplement. Results for the ARX(1) model are reported
in Table 4, but to save space the results for the AR(1) model are provided in the online supplement.

For the GMM estimation results, deviation from cross section averages is taken prior to estimation to
remove the time effects. Since the individual effects are the loadings of a constant factor, the number of
factors used for the QD estimators is m = m + 1, while m factors are used for the FD estimators.

Table 4 reports the bias and RMSE of v and g for the QML and GMM estimators, and shows that
the QML estimator has better small sample properties both in terms of bias and RMSE. The same also
follows if we consider the size of the tests based on these estimators summarized in Table 5. For the
GMM estimators, the performance crucially depends on the specific values of v, mo, N and T, and there
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is no GMM estimator that performs well for all combinations, which is in contrast to the QML estimator
that performs well for all cases considered. For instance, when T' = 5, FD1 and FD2 tend to have correct
empirical sizes when N is large. However, they tend to have large size distortions when 7T is increased to
T =10 for mg = 1. QD2 and FD2 tend to have larger size distortions than QD1 and FD1. This is partly
due to the downward bias of the standard errors used in the two-step estimators.”

For the AR(1) model the results are summarized in Table A2(v) of the online supplement, and again
show that the QML estimator performs substantially better than the GMM estimators in terms of bias
and RMSE.® When v, = 0.8, the GMM estimators, especially FD1 and FD2, perform very poorly due
to weak instruments whereas the QML estimator has small bias and RMSE. With regard to size shown
in Table A2(vi), the GMM estimators display substantial size distortions while the QML estimator has
empirical size close to the nominal value, except for the case where 75 = 0.8 and N = 100, for which
minor distortion is observed.

7.2.4 The unit root case

The results for the unit root case are very similar to those already reported for the stationary case. Table
6 reports the number of factors correctly selected (in %) by the sequential MTLR procedure when v, = 1.
As can be seen, the results are uniformly good for all values of mg, N and T'. Also the effects of deviating
from the baseline values of k? and o2 on the empirical frequency of correctly selecting the true number
of factors are similar to the stationary case. See Tables B1(i) and B1(ii) in the online supplement. The
results for bias, RMSE and size of the QML estimator when v, = 1 are summarized in Tables 7 and 8 for
the AR(1) and ARX(1) models respectively. As can be seen, the bias and RMSE are reasonably small,
and the empirical size for = is slightly below the nominal value. The effects of deviating from the baseline
value of k2 are reported in Tables B2(i) and B2(ii) of the online supplement, and show that the bias and
RMSE become smaller as the value of x? is reduced, which is different from the stationary case. Power is
also reasonably high as shown in Figures 3 and 4 for the AR(1) and ARX(1) models, respectively, when
k? = 1. The power plots for other values of x2, namely {1/4,1/2,2}, are given in Figures B3(i), B3(iv),
and B3(vii) of the online supplement for the AR(1) model, and Figures B3(ii)-B3(iii), B3(v)-B3(vi) and
B3(viii)-B3(ix) for the ARX(1).

7.2.5 Robustness of baseline MC results

Lastly we investigate the performance of our selection and estimation strategy under a number of devi-
ations from the baseline model. Specifically, we consider the following scenarios: (i) initial values that
deviate from the steady state distribution, whereby ;o is generated as in (48) but with means and vari-
ances given by k1o and keojo, with k1, ke = 1.2,0.8; (ii) implementing the sequential MTLR procedure
with different p-values, namely p = {0.01,0.10}, instead of our baseline value of p = 0.05; (iii) factor
loadings that are correlated with the regressors; and (iv) factor loadings that are mutually weakly cor-
related. Further details on the data generating process for the last two cases and related results can be
found in Section S.7 of the online supplement.

As shown in Tables C1(i)-C1(iii) of the online supplement, deviating the initial values from those
of the steady state distribution has only a limited effect on the results with the performance of our
estimator remaining reasonably good overall. The only effect observed is for the AR (1) model for which
size distortions are slightly more pronounced for 7' = 5, 7y = 0.8 and N < 500 as compared to the case
where 1,0 are drawn from the steady state distribution. For the rest of the results, including those of
the ARX(1) model bias and RMSE values are still reasonably small with empirical sizes close to their
nominal value across all parameter configurations.

"Since both QD2 and FD2 are nonlinear GMM estimators, it is not straightforward to apply the Windmeijer (2005)
correction.

8The case of T = 5 is not reported for the AR(1) model because the number of unknown parameters exceeds that of the
moment conditions.
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Regarding the use of alternative values of p in implementing the MTLR test, as can be seen from
Tables C2(i)-C2(iii) for p = 0.01 and Tables C2(iv)-C2(vi) for p = 0.10, the results are very similar and
in some cases even better than those obtained in Tables 1-3 for p = 0.05.

When the factor loadings are correlated with the regressor, from Tables C3(i)-C3(iii) of the online
supplement, we find that the sequential MTLR. procedure estimates the number of factors very precisely
across all parameters, the bias is sufficiently small, and empirical size is close to the nominal level, with
one exception, namely, when N = 100, 7' = 5 and -, = 0.8 for the AR(1) model. When the factor
loadings are weakly correlated, as shown in Tables C4(i)-C4(iii) in the online supplement, the results are
very similar to those in Tables 1-3 where such correlation is absent. The same also applies if we consider
the estimates for the ARX(1) model.

8 Empirical applications

We investigate the importance of allowing for interactive effects in empirical analysis by applying our
selection and estimation strategy to two empirical problems addressed in the literature. In the first
application we estimate a dynamic version of the model considered by Cornwell and Trumbull (1994) and
subsequently by Baltagi (2006), to explain the incidence of crime across N = 90 counties in North Carolina
over the period 1981-1987 (T = 6). In the second application, we use the data set recently analysed by
Acemoglu et al. (2019) to estimate output regressions on a balanced panel of N = 82 countries using
T = 5 five-year time intervals over the period 1981-2005. All panel regressions are estimated with fixed
and time effects, and the presence of interactive effects is investigated by first estimating m, the number
of unobserved factors, subject to mmax =1 — 2.

8.1 Cross county crime rate regressions

The crime rate in county ¢, year ¢ (y;) is explained by the deterrent variables, namely the probability of
arrest (P 4), the probability of conviction given arrest (Pj ), the probability of a prison sentence given
a conviction (P, p), average prison sentence in days (5;;), and a number of other variables such as popula-
tion density (Density;;), percent young male (Y M;;), the wage rates in manufacturing (WM Fj;), and the
wage rate in transportation, utilities and communication industries (WTUCj;).” The panel regressions
estimated by Cornwell and Trumbull (1994) and Baltagi (2006) are static and could be misspecified since
jurisdictions with high crime rates in one year are likely to continue to have high crime rates into the
near future. By including lagged crime rates (y;+—1) in the model we account for the possible persistence
of crime rates over time, and by allowing for unobserved common effects we take account of possible
persistence and spill-over effects of crimes across counties.

To investigate the importance of the interactive effects we first estimated m (the number of latent
factors) using the proposed sequential MTLR procedure, with the nominal value of the test, p, set to
5%, and the maximum number of factors, M., = T — 2 = 4 (see Section 6.1). We obtain m = 3 and
reject the null hypothesis that the panel regressions are not subject to interactive effects, despite the
fact that they include country and year fixed effects. The estimate of m is reasonably robust to the
choice of p values and we obtain the same estimate (m = 3) if we set p = 10%, although setting p = 1%
yields m = 2. In Table 9 we report the results for m = 3, along with the estimates without interactive
effects (with m = 0). We first note that irrespective of whether we allow for interactive effects or not,
there is clear evidence of dynamics and the coefficient of the lagged crime rate is highly significant, even
though when we allow for interactive effects this coefficient falls from 0.501 to 0.402, but remains highly
significant. Amongst the x;; = (P, 4, Pit,c, Pit,p, Sit, Density;y, Y My, W M Fy, WTUCj;)" variables, only
the deterrent variables and the wage rate in manufacturing are statistically significant once we allow for

?Cornwell and Trumbull (1994) and Baltagi (2006) also consider wage rates in other industries, as well as a number other
variables, which we exclude to simplify the exposition and to avoid possible endogeneity of the included regressors.
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interactive effects. The results are similar when we do not allow for interactive effects, with the exception
of the WTUCj; variable which is marginally significant when m = 0. It is also worth noting that all the
estimated coefficients that are statistically significant have the correct signs when m = 3.

Table 9: Dynamic panel estimates of crime rates (y;) across 90
counties in North Carolina over the period 1981-1987

(T = 6,N = 90)

Explanatory Variables (y; ¢—1,Xit) m=3 m =20
. 0.402*** 0.501***

Lagged crime rate (y;,¢—1) (0.108) (0.086)

Probability of arrest (P, 4) _((())?Jgé) _(8327(1))
% %k *k * %k k

Probability of conviction given arrest (P c) _(8%]?),3) Egééé)
_ Efkkk _ *okok

Probability of prison given conviction (Pj p) ((())(1]13) ((())(1)21)
B ok sk B *okk

Severity of punishment (S;;) (8(0)?’)?)) (([))(l)i)g)

Population density (Density;: ) (gigg) ?01;11??0)

Wage: transportation, utilities & communication (WTUC;) (?]?)ig) (()000339)

_ =4 * %k k. _ * %k 3k
Wage: manufacturing (WMFG,¢) (gigz) (géi?)é)

0.839 0.601
Percent young male (Y M;;) (0.694)  (0.664)

Note: The estimates allow for county and year fixed effects. T is the number of
time periods used in QML estimation after first differencing. m is the latent factors
estimated using the sequential MTLR procedure described in Section 6.1 with mmax =
T—2=4and any = 0.05/(N(T —2)). The standard errors are computed according to
equation (35). Figures in parentheses are standard errors. *** ** * denote significance
at the 1%, 5% and 10% levels, respectively.

8.2 Cross country growth regressions

There is a large empirical literature on cross country growth regressions, using cross section as well as
panel data sets. Examples include Barro (1991), Mankiw et al. (1992), Sala-i-Martin (1996), Islam (1995),
Caselli et al. (1996) and Lee et al. (1997, 1998). Our application is closest to the panel regressions by
Islam (1995) and Caselli et al. (1996) who estimate dynamic panel regressions with time and fixed effects
using log GDP per capita at five-year time intervals. A similar approach is also used by Acemoglu et al.
(2019) who focus on the effect of democracy on GDP per capita. However, none of these studies allow
for interactive effects. In our empirical application we regress log GDP per capita (y;;) measured over
five-year intervals on y;;—1, log investment-output ratio, log total factor productivity (TFP), log trade
share in GDP, log infant mortality, and a dichotomous democracy variable. As noted above, the data set
used covers N = 82 countries with 7' = 5 five-yearly periods spanning 1981-2005.'°

For this application the number of latent factors (m) was estimated to be m = 2, using the sequential
MTLR procedure with p = 5% and my,q, = T —2 = 3. The same result was obtained setting p = 1% and
10%. The parameter estimates together with their standard errors for m = 2 and m = 0 are summarized
in Table 10. As can be seen, allowing for interactive effects substantially lowers the degree of output
persistence from 0.583 to 0.246, raises the coefficient of log TFP from 0.547 to 0.870, and increases the

"For further information on the data and related sources see Acemoglu et al. (2019).
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size and significance of the coefficient of infant mortality on output from —0.042 (and not significant ) to
—0.075 (and highly significant). The negative and significant effect of infant mortality on GDP is also
found in similar growth regressions by Somé et al. (2019). They explore the impact of healthcare on
economic growth in Africa, but do not allow for error cross-sectional dependence in their analysis. The
trade share and democracy variables both have a positive sign though are found to be insignificant. The
latter finding is in line with recent results by Jacob and Osang (2018) who perform a dynamic panel
analysis using GMM for a sample of more than 160 countries based on 7" = 10 five year averages. In
contrast Acemoglu et al. (2019) find that democracy does cause GDP using an annual panel data of
T = 50 observations without allowing for interactive effects. The only parameter estimate which has not
been affected by the inclusion of interactive effects is the coefficient of the investment-output ratio, which
is estimated at 0.078 when m = 0 as compared to 0.071 when m = 2.

The empirical applications provided suggest that allowing for error cross-sectional dependence in
dynamic panels could be important and ought to be considered in applied research.

Table 10: Dynamic panel regressions for cross
country log per capita output equations (y;)
(1981-2005, five yearly T' =5, N = 82)

Explanatory Variables m=2 m =0
0.246% 0.583%%*
(0.063) (0.042)

Lagged log GDP per capita (y;,¢—1)

sookok ook ok
Log investment output ratio (INV¢) (8(0)111) (([))?)12)

Log total factor productivity (TF P;t) 0-870 0-547

(0.051) (0.059)
Log trade share in GDP (Trade;t) (?](())ig) (ggéi)
_ kK ok _
Log infant mortality (gg’;;) (8333)
Democracy indicator (?)?)ﬁ) (((])(())(ii)

Note: m is the estimated number of factors using the sequential
MTLR procedure described in Section 6.1 with mmax =T —2 = 3
and ay = 0.05/(N(T — 2)). See also the note to Table 9.

9 Conclusion

This paper proposes a quasi maximum likelihood estimator for short dynamic panel data models with
unobserved multiple common factors, where individual and time fixed effects are also explicitly included.
This provides a natural extension of Hsiao et al. (2002) to panel data models with a multi-factor error
structure. Our contribution can also be viewed as extending the standard dynamic panel data models
with fixed and time effects, routinely used in the empirical literature, to allow for error cross sectional
dependence through interactive effects.

We have also contributed to the literature on short T' factor models with regard to identification
and estimation of the number of unobserved factors, as well as parameter identification. Our proposed
sequential multiple testing likelihood ratio (MTLR) procedure can be particularly relevant to the analysis
of short T factor models. Monte Carlo results provide small sample evidence in support of the proposed
QML estimator and show that the sequential MTLR, procedure performs very well in selecting the number
of unobserved factors in most settings. The same is also true for the performance of the QML estimator
in terms of bias, RMSE and empirical size, and power. Empirical applications to cross county crime and
growth regressions suggest that allowing for interactive effects in dynamic panels could be important and
ought to be considered in applied work.
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Although we allow the error variances to vary across units through the differences in factor loadings,
it is assumed that the unit specific errors are cross sectionally homoskedastic, which is rather restrictive.
However, our theoretical derivations can be readily adapted to cover the heteroskedastic error case, as
was done in the recent paper by Hayakawa and Pesaran (2015) for models without unobserved common
factors. It would also be interesting to extend the analysis to panel VAR models with interactive effects.
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Tables and Figures for the Monte Carlo Results

Table 1: Empirical frequency of correctly selecting the true number of factors, my,

using the sequential MTLR procedure (k% = 02 = 1)
T=5 T=10
mo 0 1 2 0 1 2 0 1 2 0 1 2
Y9 = 0.4 Y9 = 0.8 Yo = 0.4 Y9 = 0.8

N _AR(D)

100 99.4 99.7 889 092 998 963 995 99.6 99.7 997 99.5 99.7
300 99.8 100.0 100.0 99.8 100.0 100.0  99.8 100.0 100.0  99.8 100.0 100.0
500 99.9 100.0 100.0 99.9 100.0 100.0  99.9 100.0 100.0  99.9 99.9 100.0
1000 99.9 100.0 100.0  99.9 100.0 100.0  99.7 100.0 100.0  99.6 100.0 100.0

ARX(D)

100 99.7 98.7 31.0 99.6 99.2 33.0 993 99.6 99.7 994 99.6 99.7
300 100.0 100.0 99.5 99.9 100.0 99.5 100.0 100.0 99.9 100.0 99.9 99.9
500 99.9 99.9 100.0 99.9 99.9 100.0  99.9 100.0 100.0  99.9 100.0 100.0
1000 99.9 99.9 100.0  99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: y;; is generated as y;¢ = o +0¢t+YYi,t—1+B2it+C4p, Cip = ZT:Ol Nei for Huit = n;f,g—l—uit, fori =1,2,...,N;t =
1,...,T, with yi0 = p9 + 0io (uio/o) where p;g = (i + Bagzi)/(1 — «) and 0'2 (0'2+a152 " Fagag)/(1 —
72). In addition, ag = (1 +7p,)/(L — 1p,) ay = (L+pp)/(1 - 7py) and a; = S50 o2, + 82 Y7 02, +

2

28 Y mIn(m0me) 1) gy, where ng; ~ TIDN (0 L) 0 =1,2,...mg, D3y ~ IIDN(0,02,), for £ = 1,2,...,m,
with UM = O'\,/mz, for all #, px = 0.95, mz = 2, and ,8 = 1. The idiosyncratic errors are generated as u;; ~
I1ID-< (XG —6) for i =1,2,...,N;t =0,1,..,T where X6 is a chi-square variate with 6 degrees of freedom and
02 = 1 The fixed effects are generated as a; ~ IIDN(0,1). The regressors, x;¢, for i = 1,2,..., N are genemted
as Tip = i + 30020 Viefertvie, with v = ppvii—1 + (1—p2)eir, for t = 1,2, T, e ~ IIDN(0,02,),
vio ~ IIDN(0,02,), for i = 1,2, ..., N, with 02, ~ IID 3 (X2 +2)0 and agz; = a; +v;, wherc v; ~ IIDN(0,1), for
all i. Bach f; is generated once and the same f/s are ueed throughout the replications. In the AR(1) case 8 =0
and under mo = 0, (;; collapses to u;;.

Table 2: Bias(x100), RMSE(x100) and Size (x100) of « for the AR(1) model, using the
estimated number of factors, m (k2 = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo =0.4 Yo = 0.8 Yo =0.4 Yo = 0.8
N mog=0
100 0.42 8.69 6.2 0.65 12.29 21.3 -0.03 3.76 6.5 1.94 7.90 16.4
300 -0.03 4.26 5.4 1.42 9.26 19.2 -0.04 2.18 5.1 0.68 4.62 8.7
500 0.03 3.22 4.8 1.46 7.80 14.6 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.02 6.07 12.1 -0.01 1.22 5.4 0.18 2.24 5.7
mo =1
100 0.41 9.39 5.1 1.42 12.99 19.6 -0.05 4.20 6.1 0.23 4.64 4.9
300 -0.09 4.99 5.1 1.00 9.04 11.9 0.02 2.38 4.5 0.08 2.41 4.7
500 0.05 3.68 3.9 0.96 7.12 7.1 -0.06 1.90 6.0 0.01 1.88 5.4
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 4.9 0.00 1.30 4.2
mo = 2
100 4.09 16.38 11.5 1.82 16.38 19.8 -0.08 5.12 5.8 0.19 5.32 5.3
300 0.20 4.99 3.9 1.38 4.99 10.3 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 3.1 0.98 3.81 6.3 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 3.3 0.45 2.62 4.4 0.00 1.59 4.7 0.01 1.44 4.0

See the note to Table 1.
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Table 3: Bias(x100), RMSE(x100) and Size (x100) of v and 3 for the ARX(1) model,
using the estimated number of factors, m (k? = 02 = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
o
N mog=0
100 -0.15 3.45 5.9 -0.07 3.02 6.6 -0.06 1.95 5.4 -0.03 1.37 5.8
300 -0.04 1.97 5.6 -0.05 1.71 6.1 0.08 1.14 5.3 0.04 0.77 5.1
500 0.02 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.1 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8
mo =1
100 0.09 4.30 5.1 0.23 4.74 5.2 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.83 4.0
500 0.01 1.83 3.8 0.02 1.92 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4
mo = 2
100 0.37 4.70 5.8 0.47 4.99 4.7 -0.09 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1
[E]
mo =0
100 -0.06 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.01 2.58 5.8 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8
mo =1
100 -0.01 5.99 5.6 0.06 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.09 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.88 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7
mo = 2
100 0.27 8.33 6.5 0.41 8.56 5.8 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

See the note to Table 1.
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Table 4: Bias(x100) and RMSE(x100) of v and 3 for QML and GMM estimators in the case of the ARX(1)
model, using the true number of factors, mg (k? = 02 = 1)

Bias(x100) RMSE(x100) Bias(x100) RMSE(x100)
QML GMM QML GMM QML GMM QML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
Y9 =0.4 Yo = 0.8
T=5
0l
N mg=1

100 0.09 17.79 17.50 -12.27 -7.22 4.28 20.97 20.70 14.84 10.08 0.23 6.53 6.56 -13.27 -7.43 4.74 7.64 T7.41 1541 9.75
300 -0.05 13.06 12.97 -5.74 -2.36 2.39 17.65 17.30 7.67 4.16 -0.02 6.09 6.07 -5.83 -2.10 256 7.11 6.79 7.83 3.78
500 0.02 946 9.37 -3.18 -1.24 1.82 14.83 14.46 5.24 2.76 0.02 5.72 561 -3.13 -1.04 1.91 6.76 6.40 5.28 2.51
1000 -0.04 4.88 4.82 -1.65 -0.65 1.35 10.67 10.28 3.58 1.90 -0.02 5.04 4.89 -1.59 -0.54 1.41 6.15 5.81 3.61 1.75
mo = 2
100 0.2 444 443 -2.59 -1.69 4.48 11.80 12.14 8.92 8.00 0.41 2.29 220 -299 -1.97 4.89 6.69 6.93 8.91 8.10
300 0.03 290 2.72 -1.05 -0.65 246 7.98 8.09 5.21 4.48 0.07 221 216 -1.10 -0.62 2.63 5.19 5.26 5.12 4.45
500 0.07 2.38 231 -0.63 -0.29 1.94 6.84 6.87 4.14 3.48 0.09 219 219 -0.56 -0.35 2.10 4.65 4.64 4.02 341
1000 0.05 1.26 1.20 -0.20 -0.16 1.39 490 4.96 2.76 2.47 0.05 2.03 199 -0.22 -0.20 1.47 4.03 4.05 2.66 2.43
B
mo = 1
100 -0.01 -7.21 -6.90 -5.79 -3.95 5.98 15.03 15.98 10.19 8.69 0.06 -5.52 -4.75 -6.64 -4.17 6.16 10.86 10.61 10.69 8.59
300 -0.15 -4.56 -4.08 -2.88 -1.49 3.39 11.48 1245 5.94 4.54 -0.14 -4.34 -3.33 -3.12 -1.37 3.46 8.07 7.44 6.11 4.41
500 0.09 -2.20 -1.85 -1.44 -0.68 2.65 9.32 10.07 4.44 3.37 0.10 -2.81 -2.06 -1.52 -0.58 2.70 6.76 6.04 4.49 3.28
1000 0.05 -0.48 -0.24 -0.61 -0.28 1.87 6.61 7.19 3.10 2.30 0.06 -1.32 -0.57 -0.64 -0.22 1.91 559 5.01 3.13 2.25
mo = 2
100  0.25 5.01 3.88 -1.87 -1.28 8.30 24.95 25.10 29.55 26.36 0.38 2.18 1.88 -0.39 -0.22 8.51 23.47 23.79 29.23 26.58
300 0.17 296 245 -1.23 -0.26 4.61 14.87 14.81 15.97 14.12 0.20 1.19 1.07 -1.09 -0.18 4.66 13.43 13.41 15.97 13.98
500 0.11 2.73 243 -0.86 -0.07 3.556 11.39 11.53 12.32 10.49 0.14 150 1.31 -0.56 0.15 3.63 10.21 10.18 12.52 10.56
1000 -0.06 1.21 1.02 -0.77 -0.42 251 837 825 8.84 748 -0.05 0.78 0.74 -0.45 -0.25 2.55 7.57 7.61 8.79 7.62
T =10

Y
N mgog=1
100 -0.10 - - - - 2.15 - - - - -0.07 - - - - 1.53 - - - -
300 0.03 23.02 20.54 -36.09 -29.68 1.20 23.20 20.83 39.30 32.20 0.02 9.00 8.38 -30.82 -25.17 0.82 9.02 8.42 38.40 30.66
500 -0.02 23.53 20.57 -31.31 -23.92 0.92 23.68 20.84 36.43 27.44 -0.01 9.08 8.34 -22.91 -17.22 0.65 9.10 8.38 33.64 23.99
1000 0.01 23.54 20.25 -22.35 -15.88 0.67 23.68 20.55 31.55 21.37 0.00 9.17 841 -13.70 -9.64 0.46 9.19 8.46 27.53 17.10
mo = 2
100 -0.10 20.28 19.91 1.39 1.39 2.33 21.79 21.58 5.99 5.75 -0.06 885 879 -2.28 -2.15 1.58 9.07 9.03 5.30 4.99
300 -0.06 14.83 13.15 1.59 1.18 1.33 18.67 18.42 3.44 251 -0.02 836 7.78 -0.08 -0.05 091 8.66 8.17 2.65 1.64
500 -0.03 8.70 6.57 1.16 0.72 0.98 13.32 13.16 2.63 1.68 -0.01 7.69 6.73 0.11 0.05 0.69 8.17 7.37 2.07 1.13
1000 0.02 2.06 0.63 0.61 0.33 0.70 4.38 340 1.81 1.02 0.01 5.25 391 0.10 0.06 0.48 6.43 5.19 1.49 0.69
B
mo = 1
100 0.10 - - - - 3.98 - - - - 0.07 - - - - 3.98 - - - -
300 0.01 -14.30 -10.49 -25.76 -20.57 2.29 15.53 12.16 27.96 22.35 0.02 -17.89 -13.42 -29.17 -23.31 2.28 18.46 14.37 34.13 27.09
500 0.00 -15.12 -10.59 -24.08 -17.52 1.74 16.08 12.02 26.81 19.45 0.00 -18.52 -13.21 -25.03 -17.96 1.72 19.01 14.25 31.59 22.36
1000 0.03 -14.75 -9.88 -19.83 -13.18 1.21 15.62 11.10 24.54 15.68 0.04 -19.25 -13.74 -18.97 -12.15 1.20 19.73 14.94 28.02 17.16
mo = 2
100 0.15 -14.47 -14.06 -0.75 -0.97 6.27 20.18 20.19 12.90 12.64 0.15 -18.71 -18.27 -0.17 -0.21 6.25 21.62 21.42 12.59 12.31
300 0.09 -11.44 -10.77 -0.70 -0.71 3.63 19.80 20.12 8.52 7.14 0.08 -16.43 -13.14 0.17 0.07 3.61 18.99 16.88 8.34 6.98
500 0.02 -6.51 -5.81 -0.41 -0.38 2.85 16.45 1548 7.30 5.41 0.01 -13.57 -891 0.19 0.03 2.84 16.99 1391 7.22 5.34
1000 0.04 -0.65 -0.48 -0.28 -0.15 1.96 9.53 5.32 5.22 3.51 0.05 -6.33 -1.72 -0.01 -0.01 1.95 11.87 7.71 5.20 3.49

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first- difference ALS one step and two step estimators respectively computed as
described in Section II of the supplementary material. "-" signifies that results are not available which is due to the number of moment conditions
exceeding the sample size. See also the note to Table 1.
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Table 5: Size(x100) of v and (3 for the QML and GMM estimators in the case of the ARX(1) model,
using the true number of factors, mg (k? = 02 = 1)

T=5 T =10
QML GMM QML GMM QML GMM QML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
Yo =0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
o
N mg=1

100 5.1 87.1 89.3 41.2 42.2 5.2  93.0 95.8 48.8 48.0 6.0 - - - . - - - -
300 44 693 709 235 17.3 5.1 89.5 90.8 24.6 17.3 5.2 99.9 100.0 96.5 99.8 4.0 100.0 100.0 96.6 100.0
500 3.7 54.2 558 13.7 9.9 3.9 859 86.8 13.0 9.5 5.5 999 99.9 97.1 100.0 5.1 100.0 100.0 96.8 100.0
1000 4.5 344 35.7 10.0 8.7 4.5 774 776 9.9 8.9 5.4 100.0 100.0 96.0 100.0 5.4 100.0 100.0 96.4 100.0

mo = 2

100 49 213 26.8 5.7 10.6 4.4 38.0 42.6 10.3 5.8 93.7 98.0 9.2 74.0 59 979 99.3 11.7 78.2
300 4.1 172 206 3.2 6.7 4.8 404 426 45 6.3 54 721 753 9.8 34.5 4.8 954 96.1 54 293
500 3.6 174 198 3.0 54 46 39.8 41.7 3.0 5.6 4.3 51.1 48.7 9.6 23.6 4.7 905 89.9 5.1 19.1
1000 3.6 9.5 11.7 23 44 42 356 372 21 4.2 43 187 16.1 7.1 13.7 41 694 651 4.6 11.1

ot
[oe]

B

mo =1

100 5.6 36.8 48.9 15.2 20.7 5.5 221 31.1 18.0 21.1 6.3 - - - - - -
300 4.9 451 53.3 103 11.3 4.9 335 35.1 10.5 11.0 6.0 89.0 89.3 924 96.1 5.6 98.9 98.0 83.5 91.2
500 5.5 41.0 486 83 88 53 36.2 362 7.5 85 5.2 93.2 92.0 83.0 93.5 52 98.8 96.5 T74.5 84.7
1000 5.5 295 342 55 79 5.7 393 424 55 74 4.4 945 933 783 84.0 4.7 98.4 959 64.3 76.1

mo = 2

100 6.1 155 20.0 10.2 17.6 5.7 11.7 18.2 10.0 18.0 49 528 83.6 83 651 5.0 69.0 90.5 8.7 64.4
300 5.1 126 16.0 6.3 123 52 10.2 134 6.4 115 5.3 526 635 7.2 258 54 754 751 6.6 25.1
500 5.0 11.8 13.6 6.0 8.7 5.0 8.8 10.3 5.9 9.0 5.7 349 409 7.1 19.6 59 69.0 626 7.1 19.1
1000 4.9 10.1 109 6.3 8.4 5.2 8.3 103 6.7 9.3 5.3 11.8 16.3 5.6 11.6 5.3 41.8 343 53 11.7

See the note to Table 4.

Table 6: Empirical frequency of correctly selecting the true number of factors, mg,
using the sequential MTLR procedure when 74 = 1 (k2 = 02 = 1)

T=5 T=10
mo 0 T 2 0 1 2
N AR()
100 995 996 965 095 006 09.6
300 99.8 99.9 100.0 100.0 99.9 100.0
500 99.8 100.0 100.0 100.0 99.9 100.0
1000 99.9 100.0 100.0  99.9 100.0 100.0
ARX(1)
100 996 999 972 ~ 9093 997 99.8
300 100.0 100.0 100.0 100.0 100.0 99.9
500 99.9 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 99.9 100.0

Note: First-differences are generated as Ay;; = Ady + YAy t—1 + BAxi + Ay, t = 2,3,...,T, with A(,; =
22101 Nei A for + Augy = N, Afy 4+ Auge, Aysn = Ad1+BAz; + A and Ayo =0, fori=1,2,...,N,andy=5=1.
The first-differences are then cumulated and y;; is obtained using arbitrary values for y;o. The idiosyncratic errors

are generated as wu;z ~ IID\/%(xg —6) for s = 1,2,...,N;t = 0,1,...,T where X% is a chi-square variate with

6 degrees of freedom and 02 = 1. The fixed effects are generated as a; ~ ITDN(0,1) and the factor loadings

2
are specified as 0y, ~ IIDN <0, ;To) , £ = 1,2,...,mp. The regressors, z;¢, for ¢ = 1,2,..., N are generated as
1/2 .

Tit = agi + 2008 Yiefotvit, Vie = ppvig—1 + (1 — p2) 2y, for t = 1,2,..,T, with py = 0.95 mg = 2,
¢ ~ IIDN(0,0%,), for £ = 1,2, ..., mg, and 02, = 02 /my for all £, ~ IIDN(0,02,), vio ~ IIDN(0,02,), for
i=1,2,..., N, with 0'32- ~ IID %(X% +2)02 and ag; = a; + v;, where v; ~ ITDN(0,1), for all 5. The remaining
parameters are generated as described in Section 7.1. Each f; is generated once and the same f/s are used throughout
the replications. In the AR(1) case 8 = 0 and under mg = 0, {;; collapses to w;s.
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Table 7: Bias(x100), RMSE(x100) and

Size (x100) of v for the AR(1) model, using
the estimated number of factors, m (k? = 1)

T=5 T=10
Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100)  (x100) (x100) (x100)
mo =0
100 1.49 2.74 3.8 -0.53 T.24 3.3
300 -0.89 1.69 3.1 -0.33 0.50 4.2
500 -0.67 1.08 2.6 -0.26 0.37 2.5
1000  -0.53 1.25 2.4 -0.20 0.33 3.0
mo =1
100 -2.99 5.70 5.4 -0.61 1.01 3.0
300 -1.83 3.43 4.9 -0.39 0.95 2.8
500 -1.34 2.25 3.7 -0.31 0.46 2.9
1000  -0.97 1.64 3.4 -0.24 0.33 2.4
mo = 2
100 -3.00 5.00 5.1 -0.61 1.01 3.8
300 -1.70 2.93 3.9 -0.39 0.95 2.3
500 -1.37 2.30 3.2 -0.31 0.46 2.4
1000 -0.99 1.65 3.3 -0.24 0.33 2.1
See the note to Table 6.
Table 8: Bias(x100), RMSE(x100) and
Size(x100) of v and g for the ARX(1)
model, using the estimated number of
factors, m (k% = 02 = 1)
T=5 T =10
Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100)  (x100) (x100) (x100)
Y
mo =20
100 128 217 3.7 -0.43 0.67 33
300 -0.77 1.27 3.4 -0.26 0.37 2.1
500 -0.58 0.94 3.2 -0.22 0.30 2.5
1000 -0.46 0.70 3.3 -0.18 0.23 2.9
mo =1
100 -2.00 3.46 3.9 -0.53 0.84 3.6
300 -1.24 2.05 2.3 -0.31 0.46 2.3
500 -0.97 1.61 2.3 -0.26 0.37 2.8
1000  -0.75 1.23 3.5 -0.20 0.26 2.2
mo = 2
100 2.02 3.52 35 -0.50 0.80 24
300 -1.19 2.06 3.0 -0.32 0.47 2.1
500 -0.97 1.61 2.5 -0.27 0.39 2.5
1000  -0.71 1.16 2.8 -0.20 0.26 2.0
8
mo =0
100 -0.58 147 55 -0.13 3.01 6.2
300 -0.30 2.55 5.0 -0.09 1.72 5.6
500 -0.21 1.94 4.0 -0.05 1.33 5.3
1000  -0.18 1.39 4.4 -0.03 0.95 4.8
mo =1
100 -0.97 5.95 15 -0.02 3.95 6.0
300 -0.69 3.38 4.2 -0.04 2.27 5.3
500 -0.36 2.62 4.5 -0.05 1.72 4.5
1000  -0.27 1.87 4.4 0.00 1.20 3.8
mo = 2
100 -0.59 3.26 5.1 0.28 6.25 5.2
300 -0.29 4.61 4.5 0.17 3.60 5.0
500 -0.27 3.56 3.9 0.09 2.83 5.8
1000  -0.34 2.54 4.6 0.11 1.95 4.7

See the note to Table 6.
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Figure 1: Power functions for estimation of y in the AR(1) model with different values of m and N
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Note: ——N=100 =-=--=-N=300 - N=500 =-=-- N=1000. is estimated using the sequential MTLR procedure

described in Section 6.1 with an=p/N(T-2) and p=0.05; y is the coefficient of the lagged dependent variable given
in (1) in the absence of the xit regressors. See also the note to Table 1.
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Figure 2a: Power functions for estimation of y in the ARX(1) model with different values of m and N

Panel A: T=5
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Note: ——N=100 =-=-==N=300 e N=500 === N=1000. s estimated using the sequential MTLR procedure

described in Section 6.1 with an=p/N(T-2) and p=0.05; y and [ are the coefficients of the lagged dependent
variable and the xit regressor given in (1). See also the note to Table 1.
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Figure 2b: Power functions for estimation of 3 in the ARX(1) model with different values of m and N
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Note: ——N=100 =--=--N=300 -ww=-N=500 =-=-- N=1000. See also the note to Figure 2a.
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Figure 3: Power functions for estimation of y in the AR(1) model with different values of m and N

Panel A: T=5

100.0 100.0
80.0 80.0
60.0 60.0
40.0 40.0
20.0 20.0
0.0 0.0
Sehecees888Rb0G N
Panel B: T=10
100.0 100.0
80.0 80.0
60.0 60.0
40.0 40.0
20.0 20.0
0.0 0.0
Note: ——N=100 ====N=300 e N=500 =:=-= N=1000. is estimated using the sequential MTLR procedure

described in Section 6.1 with an=p/N(T-2) and p=0.05; v is the coefficient of the lagged dependent variable given
in (1) in the absence of the xi; regressors. See also the note to Table 4.
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Figure 4a: Power functions for estimation of y in the ARX(1) model with different values of m and N
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is estimated using the sequential MTLR procedure

described in Section 6.1 with an=p/N(T-2) and p=0.05; y and B are the coefficients of the lagged dependent
variable and the xit regressor given in (1). See also the note to Table 4.

Figure 4b: Power functions for estimation of § in the ARX(1) model with different values of m and N
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Appendix

A.1 Lemmas and their proofs

Lemma 1 Consider the composite random variable, £;;, i = 1,2,...,N, fort = 1 defined by (14), and for
t=2,3,...,T defined by (6). Then under Assumptions 1, 2, 3, 5, and 6, the following moment conditions
hold:
sup E (|git|4+€) <K, fort=1,2,..T, (A1)
(2

and
sup B (||Axit||4+e) < K. (A.2)

Proof. Result (A.1) follows by applying Minkowski’s inequality to the elements of &, = (£;1, &9, &) -
Specifically, for t = 2,3,..., T, &;; = gin; + Au;; and we have

1 1
€\ 4+e 4 d+e
(E |§i1t|4+ )4+ = (E \gfmi + Auit} +6) o
1 1
< (Blem] ™) + (Blawlt) T
1 1
< el (Bllmal ) ™+ (B lAual*) ™

Under Assumptions 1, 2 and 3 sup, ||g:| < K, sup; E |n,[|*** < K and sup; ; E |Au|*"™ < K. Similarly
fort =1, &, = g m; +vi1, and ||g1]| < K and sup; E |v;1|*" < K (see (15) and related results). Hence,
1

(E \git]4+5> <K, fort=1,2,..,T and (A.1) follows as required. To establish condition (A.2), using
(3) we first note that

My 00
A%l < N6 ell + D 1ge el [0 + D 195l lewi—ll

j=1 j=0
and by the Minkowski inequality for infinite sums we have
1 1
(B A%l )P < 180l + D 1gw el (B [y, + 371950 (B leis—s17)7,
j=1 j=0
for any p > 1. Set p = 4 + ¢, and note that under Assumption 5, sup; [[d..¢|| < K,sup;,[g.ji| < K,
4+-€ 4+e 00 4+e 1/(4+e)

sup; ; ¥ HnUmH < K, sup;; I lleit]] < K, and ijo |®;|| < K. Therefore, (E | Ax; ]| ) <
K, and (A.2) follows as required. m

Lemma 2 Consider the T x 1 vector of composite errors &€, = (£;1,&9, &), where &1 is defined by
(14) and &, fort =2,3,...,T are defined by (6). Suppose that the conditions of Lemma 1 hold and T is
fizxed. Then
sup B &' < K < oo, (A.3)
K3

sup E ||Z||* < K, sup E ||Ayi||* < K, and sup E |[AW||* < K < . (A4)
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Proof. To obtain (A.3) note that

I&:11* = (|67 = tr (&:€16.:€0) = (€6¢,)% = <i@%> :

Then by Minkowski’s inequality we have

E|&]* = (ig) < (i B ( Zt)]m)z,

and since sup; B(|€;|*™) < K for t = 1,2,...,T from result (A.1) of Lemma 1, result (A.3) follows
noting that T is fixed. To establish (A.4), note that AW, = (Ip,Z;,Ay;_1) = (IT7 Z;,LAy;), where
Ay -1 =(0,Ayq, ..., Ayir—1), Z; and Ay; are given by (31) and (30), and

0
1

_= O O

0

with ||L||* = T — 1. Tt is now easily seen that [|[AW;||* < T+]|Z;||*+ (T — 1) | Ay;|?, and by Minkowski’s
inequality we obtain

(e1aw ) <7+ (e1zd*) " + @ - (Elay)

Also [|Z:i? = JAxal® + 237, |Axi|>, and since by result (A.2) of Lemma 1
sup; ; B (\|Axit\|4+€> < K, it then follows that sup; E ||Z||* < K. Similarly, using (30), we have

1Ay:l < flall + B~ ([ 1811Z:l + B~ (M 1€l

and by assumption |a| < K, [|d]] < K, and HB_l (’y)H < K. Also by result (A.1) of Lemma 1
sup; ; I €,:]*T¢ < K, and it is already established that sup, E ||Z;||* < K. Hence,

1/4 1/4 1/4
(Blavil) " < llall+ B ()l 18] (B1zl*) " + B (] (Bllel*)
and it follows that sup; E || Ay;||* < K, as required. m

Lemma 3 Consider the model given by (17) and let

() =Ayi — AW, B¢ () = E[€,(9) & ()] -

Define
di(9h, ) = AW/ ()7 & (o), (A.6)
and suppose that Assumptions 1-6 and parts (i)-(ii) of Assumption 7 hold. Then
EO [dz(’d)7 ‘PO)] =b (¢7 (100) = [0’ 07 -k (szv 'd)[))], 9 (A7)
where
K (1, 1) = tr{[Ze (¥) — B¢ (1ho)] C (¥,70)} (A.8)

A2



and

0 0 .- 00
1 0 .- 00
Cy) =) | NP (A.9)
FI8 T4 g g
fYOT 2 f),g S ... 10
Furthermore
Eq[d;i(vpy, p9)] =0, fori=1,2,...,N, (A.10)
N
N (%, o) Z (%, 9) = b (¥, 0) =[0,0,—r (¥, %)]', (A.11)
b (g, ¢o) =N Z AWISe (99) 1 €, (o) “3 0, (A.12)
=1
and
1  as.
Ene (Po) = I ZEi (o) &i (Po) = ¢ (o) - (A.13)
i=1
Proof. Under (17),
€ (pg) = Ayi — AW 5 = Gong;+roi, (A.14)

where Go, 1¢;, and rg; denote the values of G, n; and r; evaluated at ¥ = 1. It is now easily seen
that Eo [€; (¢g)] = 0, and Var [€; (¢g)] = Eo [&; (v0) & (vo)] = B¢ (). Also under Assumptions 1-6,
& (p) = Gn,+r; are independently distributed over 4 for all values of 8 € ©., and Ax;; is independently
distributed from u; and n;. Partition AW, as AW; = (I, Z;, Ay; 1), where Iy is the identity matrix
of order T,

Ax] 0 0
0 Ax), _ Ayir
Z; = : : ’ s Ay 1 = : ;
0 Axl, Ay 1

and note that Ay; _1 = LAy;, where L is given by (A.5). Also, using (30) and evaluating it at 8 = 6 we
have

Ayi =B (79) ™" (Zibo + do) + B (10) ' &; (0) , (A.15)
where § = (ﬂ",,@l)/, and B () is defined by (26). Consider now (A.6), and note that

E§ (’lb) 52 (‘PO) dll (d’? 900)
di(¥, ) = AW S (1) 7 & (o) = Z3 ()& (o) = | da2i (¥.0) |- (A.16)
Ay'L’Eg (%)~ & (o) d3; (v, o)
Further, using (A.15), write ds; (¢, ) as
dsi (¥, p0) = [B (70) " (Zido + do) + B (7)€, (‘Po)]/leﬁ ()" & (o) (A.17)

= (Z;ido + do)/ B (Wo)/_l leg (¢)_1 &i (wo) + & (¢o) B (70)/_1 leﬁ (¢)_1 & (¢o) -

Also under Assumptions 1, 3, and 5, Z; and &; () are cross-sectionally independently distributed, and
Eo [€; (#o)] = 0. Hence

EO [dh (’l,b, QOO)} = 0, and Eg [dgl ('lb, QOO)] = 07 for all i, (A18)

A3



and
Eo [dsi (%, 90)] = Bo [& (o) B (10) " L'Se () ' & (o)
= tr{B(30) " L'Se () ! Bo [€ (o) & (90)] }
= tr|Z¢ (%) Ze (¥) LB (3) ] -

Also, using (27) and (A.5), we have

0 0 - 00
1 0 00
LB (7o) ' = : : Lo
M, 9, 00
Yo O Yo 1 0

Hence, tr [LB (”yo)*l} =0, and Ey [ds; (¥, ()] can be written as

Eo [dsi (%, po)] = — tr {[Ze () — T (40)] C (¥,70)} = —r (¥, 90) , (A.19)
where C (1,7,) = 3¢ (4) ' LB (7,) . Using (A.19) and (A.18) now yields (A.7), as required. Result
(A.10) then follows immediately, noting that Eo [dsi (Y, ¢0)] =

tr [2,5 () B (1) ' LB (fyo)—l} = tr [LB (70)—1] = 0. To establish (A.11), we first note that £, (),
for i = 1,2,..., N are independently distributed, and therefore conditional on Z;, d;(v, ¢,) are also in-
dependently distributed across i. Hence to show that by (¢, ¢y) = % Zf\i 1 di(9, ) converges almost
surely to imy .00 % Zf\il Eq[d;(vp, ¢y)] , it is sufficient to show that

sup; Eo ||d; (1, ¢,)||> < K. Consider each of the three terms of d;(1), ¢,) in turn. First, from result (A.3)
and Liapunov’s inequality we have that E ||¢,||* < K < oo and noting that by assumption 7(ii) e (¢) 7!
is positive definite for all ¢ € ©,,, then

2
sup Eo i (%, 00)|I” < |[Se ()7 sup Fo 1€ (o) < K. (A-20)
Similarly, using in addition result (A.4) we have
2
sup Bo [|da: (%, o) > < sup B |[Z” | B¢ ()| sup Bo l€; (o) < K. (A.21)

Finally, applying the Minkowski inequality to (A.17) we have

[Eolastw. o] < {EO | i+ do) B (o) L () w\ﬂ :

1/2

€ (o) B O LE) sl |

+ [EO(

2 Py —1]|?
Fo |Zi6o + do* B (7o)~ 'S¢ (w) |
X Eyp [|€; (800)”2 ;
2 2
€ (p0) B(10) ' L'Sc (o) & (o) < B (o) LS ()| Eo g (o)1

2
Ey H (Zi6o + do)' B (70) ' L'S¢ (1)1 &; (00) H

IN

N

Eo‘

A4



2 2 2
But HB(%)HL'E£ (zp)—lH < Hzg (zp)—lH L2 HB(%)*H , and it is easily seen that ||L|2 = T —
1, and HB(’yO)_lH < ST ol < K. Also, by results of Lemma 2, sup; Eo||&; (wo)||* < K, and

HZg (1/))_1H < K, by assumption. Further, Eq || Z;80 + do||* < ||00|* E ||Zs]|* + ||do]|* which is uniformly
bounded under results (A.4) of Lemma 2, noting that §y and do are defined on a compact set and are

bounded as well. Therefore, sup; Ey ||dsi (1, <,oo)||2 < K. Now using this result together with (A.20) and
(A.21) in (A.16) we have

2
sup Fo [|di (1, 00) | = sup Eo || AW S ()1 & (0)|| < K,

which establishes that d;(1), o) is uniformly Lo-bounded, besides being cross-sectionally independent.
Hence,

N
by (1, 9) = N7! ;diw, o) = Jim N Z Ep [di(t, o) = [0,0, = (3, %),
which establishes (A.11). Result (A.12) follows from the above by setting ¢ = 1, and noting from (A.10)

that Ey [di(thg, ¢o)] = 0. Finally, since sup; Eg ||€; () & (ch)H2 < K, for a finite T (see result (A.3) of
Lemma 2), and by assumption &, (¢,) & (@) are distributed independently over i, then

N

jas 1o :
YN (Po) = Zfz P0) &i (po) = lim — > Eo (€ (o) &i (#0)]
i=1
and result (A.13) follows, since Ej [51 (o) & (cpo)] =3¢ (1Pg). m

Lemma 4 Consider the average log-likelihood function

N

In(O)=ln (o) =~ M 2m) ~ L[Se ()]~ 5 D& (@) S () &(0)  (A22)
=1

In(0) = N7YN (0) and ly (0) is defined by (22). Then under Assumptions 1-7 we have

7 a.s. T 1 T
U (6) = 5 In (27) — B log [X¢ (Yo)] — bk (A.23)
and
— as. 1 1 1 _1
v (0) ™5~ T 2m) = L 3 () — Lo [ () B () (A1)

f% (¢ — o) A () (¢ — o) — (v —70) K (¥, %) ,

where k (P, 1) is defined by (A.8). Also

In (80) —In (0) %3 JimEy [Cn (80) — In (0)] >0, (A.25)
where
lim Ey [l (60) — In (0 = lulsew) s “Lig(m p) L
Jim Ey [€n (60) = En (0)] = 3 r[ ¢ () s(wo)] 5 108 (| (%o)l /135 (¥)1) — 5
50— o0 AW) (0~ 00 + (1 - %)k (@abe). (A26)

A5



Proof. Result (A.23) follows by evaluating (A.22) under 8 = 6y, and using (A.13) from Lemma 3. To
establish (A.24) we first note that for any 6 € O, &; (¢) = &; (o) — AW, (¢ — ¢¢), and using this result
n (A.22) we have

N ] _ ! -1
In () = —%ln (2m) — llnmﬁ (¥)] - % [ 2=t [Ei ({ZO()QO_O)A“X\(;Z ((:’0)303]5 W) ]
tr ( ¢ (zp)*l lzﬁil & (v0) & (o)
= _gln@ﬂ_%lnmf (¢)|_% ( —2 (‘P[]_V‘Po)/bN (¥, %) D ’
+ (o — o) An (1) (¢ — ¥g)
(A.27)
where . | N

Ay (¥) = NZAW;EE ()" AW, by (3, @) NZ (¥, ), (A.28)

=1

and d;(vy,p,) = AW 3, (¥) 1€, (¢o), as defined by (A.6). Result (A.24) follows using (A.11) and
(A.13) from Lemma 3 in (A.27) evaluated at 6g and 8, respectively. Results (A.25) and (A.26) follow
from the sure convergence property of (A.23) and (A.24), and the Kullback-Leibler type information
inequality. m

Lemma 5 Consider the average log-likelihood function defined by (32) and (24):

T 1 1 &
In(0) = -5 ()~ 5T () —m;a(soms ()" &),
Ei(p) = Ayi— AW;p,

and suppose that Assumptions 1 to 6 and parts (i)-(ii) of Assumption 7 hold. Denote the average score
function by sy () = 0l (0) /06. Then

sy (0g) 230, (A.29)
VNsy (80) —a N 0,3 (6o)], (A.30)
where

J (6y) = lim —ZE w; (B) W (69)] , (A.31)
w; (60) = ( AWézgy(:p((‘)g)O; &i(o) > ’ (A.32)

with the j*" element of v; (0g) given by

1 (9D 1 ox
iy 60) = 5610V e (W) 5P e (o) i) - o [Ze o) L (4
J J

A consistent estimator of J (0¢) is given by

3(0) = % Yo (8) ok 0). (A3)

where 6 = arg maxgce, N (0).
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/ /
Proof. Let 5y (0) = (5,1\/,@(0):53\7,11;(9)) = (zpl,%,....,zpw) , where ny, = dim(h) = 1 + T'm —
m(m — 1)/2, and note that

= N
sa(®) = Z3 LY AWE ) o)
=1
e~ OO 10mB@) OBy
SNy, (0) = o0, 2 o9, 2NZ£ v, Se () &ilp),

for j =1,2,...,ny. Using (A.6), and result (A.12) of Lemma 3, it then readily follows that

Sn,x(00) = NZd (09) 3 0, (A.35)
=1
Also 5% (%0) _—
Bo [0 Ze (o) TP 5 (o) il | = tr [Be () T
N, o

and using well known results on the partial derivatives of the determinants, we have (see, for example,
Magnus and Neudecker (1988, p.151)).

O01n [ (o)

_ —1 0% (¥o)

and hence Sy, (0) can be written alternatively as

N
_ Oln (80) 1
SN,ij (00) % — N Z
J i=1

where

1 03¢ ()
o,

B _ SN, (90) — ZZ d
sn(6o) = < gN:(GO) > B ( NZ; Vi(eo) ) ’

where V; (00) = (Vil (00) , V2 (90) g vooy V@nw (00)),.

vis (80) = €i(0) Be (o)™ (4.36)

Ze (o) i) — 5 tr [Be ) P00

Therefore,

)

Ty
sup E ||v; (60)||* = sup E (v} (80) vi (60)) = > _sup E (v}; (60)) < nyy SupElvm (60)I?,
(] 1 ] 1

and application of Minkowski’s inequality to (A.36) yields

21| 0%¢ (1)

1
sup E |vi; (8o)|” < 1 90,
i J

1/2 2
= wo) ! (swEleeolt) <l .

where C' = tr [25 (¢0)_1 MgT@O)} . But under Assumption 7(ii) and noting that n, is finite, we also
J
have ngiu(j()) < K, and H25 (z,bo)_lH < K, and from result (A.3) sup; E[|€;(¢,)||* < K. Therefore,

AT



sup; E ||lv; (60)]|* < K. Also recall that &;(¢,) are independently distributed over i, which implies

that v; are also independently distributed across i. Therefore, v; have zero means (by construction), are

independently distributed over ¢ and have bounded second-order moments, which ensure that 5y (6o) 3

0, and together with (A.35) yields Sy(0) %3 0, as required. Consider now the limiting distribution of
V' N§x(8p) and note that

o (VN0 Y _ 1 (SN di8y) | 1 e
msN(””‘(\/NgN,Z(eo))‘m(zﬁifme%))‘m; o)

where w; (69) = (d}(6,), V] (00)),, and it is already established that w; (6y) are independently distrib-
uted over ¢, have zero means and bounded second-order moments. Therefore, by the Liapounov central
limit theorem and the Cramér-Wold device we have!! v/N8x(80) —q N [0,J (8¢)] ,where J (8p) is given

by (A.31), as required. Consistency of J (5) for J (0g) follows from consistency of 6 for By, and the

independence of w; (6p) over i. m

A.2 Proofs of Propositions and Theorems

Proof of Proposition 1.
Recall that 8 = (¢/, w’)/, and ¢ = ()\',*y)/, and using (32) note that

N

In (A7) = —g In(2m) — (S ()] — 50 D €A De () 60
i=1
Using results (A.25) and (A.26)) in Lemma 4 we have
In (X0,70,%0) — In (A1, ) 5 A}{noo Eo [In (X0, 70, %0) — I (A7, %)] >0, (A.37)
2]\}51100 Eo [In (Xos70:%0) — In (Ayy, )] = x (%, g) + (0 — o) A () (9 — o) + 2 (v — 7o) 5(¥, y),
(A.38)
where
(36, 0) = tr [ S ()7 e ()] — In (1B (W)l /1B () ~ 7 (4.39)
and
r (3.160) = tr { [ (1) — B¢ (10)] e () ' LB (7). (A.40)

with B (y,) " given by (27) evaluated at -y, L is a matrix lag operator defined by (A.5) and A (¢) is
defined by (33). Denote the eigenvalues of 3¢ (1py) and 3¢ (1) by Aot and s (¢ = 1,2,...,T'), respectively
(note that Aoz > 0 and A\ > 0) and write x (¢, 1) as

X (¥, %) = Z Mot/ M) — In (Nor/Ae) — 1]
t=1

Also note that (Agt/A) — In(Age/A) — 1 > 0 with the equality holding if and only if Aoy = A, for all ¢,
or equivalently if and only if ¥ = 1,.!2 Therefore, x (¥,1,) > 0, with equality holding if and only if
1 = 1. Furthermore, since by Assumption 7 (iii) A () is a positive definite matrix, then

(@ —00) A (W) (¢ — ©0) > Amin [A ()] (¢ — ©0) (¢ — ©0)

"See, for example, White (2001, Theorem 5.10).
Note that for any z > 0, In (z) < x — 1. Here z = Aot/ A > 0.
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where Amin [A (¢0)] > 0. It is clear that the first two terms of (A.38) can not be negative, but the
same is not true of the third term, (v —7,) k(¥, %), and therefore, global identification of 7, can not
be guaranteed. Consider now the almost sure probability limit of £y (¢q, %) — In (p,7) on the set
O, = O, x N(7g) x Oy, for some small positive €, where N(v) is defined by Definition 1. We now
establish that there exists € > 0 for which this limit can be zero if and only if @ = 8y. To see this consider
the first and the third terms of (A.38) together, and note that x (¥, 1g) + 2 (v — 7o) (¥, 9y) = 0 if
P = 1. In such a case

Amin [A (1h)] (¢ — ‘PO), (P —¥0)

[\3\*—‘

2 im Eo [ (0, %0) = I (0,%0)] =

and Iy (@g, %) — In (¢, g) =5 0, if and only if Amin [A ()] (¢ — ¢o)’ (¢ — ¢g) = 0, which implies
® = @q, as required since by assumption Apin [A (¢y)] > 0. Consider now the case where ¥ # 1, and
note that x (¥, 1) > 0, and |k(2),9y)| > 0, and therefore on @, we have

|(v = 70) £, %)l < 1(v = 7o)l k(W o)| < €lr(®p, )] -

Also note that under Assumptions 1, 2 and 3, ||3¢ (¢)|| < K for all ¥ € ©,;,, and it is readily seen that
|k(, 1) < K. Hence, on ©, there must exist € > 0, such that x (¢, %) +2 (v — 79) k(¥,%¥y) > 0, and
hence

2 lim Fo [£n (0, %0) = In (¢, 9)] > ; min [A ()] (¢ — @) (¢ = @p) -

Once again since by assumption Apin [A ()] > 0 for all values of ¢ € ©,,, then on ©, there exists € > 0
such that ¢ = ¢, and hence ¥ = ¢, almost surely. m

Proof of Theorem 1. For the proof of consistency it suffices to show here that under the assumptions
of the theorem, Cy (0) = —20y (8) “3 C (0) uniformly on ©, (see Section 5). From results in Lemma 4
(see (A.25) and (A.26)) it follows that Cy (8) = =20y (0) “3 C (8) for every 0 € ©, where

Cn (8) = Cn (p,%) = T'n (27) +In |3¢ (¢ ZEZ 51( )

and

C(0) = C (@, %) = x (¥, %) + (¢ = 90) A (%) (¢ — ) + 2 (7 — 70) 5(¥h, %) + C (o),

and the term C (1)) does not depend on 6. Since under our assumptions ¢ (6) is continuous in 6, this
pointwise result holds uniformly on ®, by the uniform law of large numbers, so long as the dominance
condition

FE sup
0e®,

E()Ze (1) &:(p) + T (27) +1In |5 ()| < o0

holds; see for example Potscher and Prucha (2001, Theorem 23). Since T is finite, it is sufficient to show
that

() Ze () &) + In| e <¢>|\ < 0.
0c®,

We have

E sup [€(#)Se () ' €i() +In [Se (9)]| < B sup
0O, 0cO,

E1(9)Ze (¥) " &i(9)| + sup [In S ().
PYeEBy,
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Starting with the second term and using Assumption 7(ii) and the property that for any positive definite
real n x n matrix A, In|A| < tr(A) —n,

sup |In | ()|| < sup tr[Se ()] - T
w€®,¢ ’l/JE@w

< swp (L, NS (w)) -7
7/)6@#,
< T sup (Amax[Ze (¥)]) =T < T(cmax — 1) < 0.
’lbe@w

For the first term, defining ®, = @) x N(v,), we have

E sup [€/@)S () &le)| < B sup [ulei(e)el o) ()7

0cO, 0cO,
< B sup ua[Se (1) 1€:(0) 7}
0cO,
< E sup Amax([Ze (%) E sup [|&(o)]
PEBy, PpEB®,
—1
< <mf At [T <w>1) E sup |60
Ye® PEB®,
< E sup [|€;(0)]?.
Cmin €@,
Further
E sup [&(p)|° = E sup [|Ay; — AW,
pEO, pEB,
< E|Ayi|*+ E AW sup [lo]®.

PEB,

But given that © is a compact set sup ce, ||| is bounded. Furthermore, from result (A.4) of Lemma
2 and Liapunov’s inequality we have that E ||Ay;||* < K < co and E |[AW;|? < K < oc. Since ¢ L

is bounded by Assumption 7(ii) it follows that Esupyce, ‘ﬁg(cp)Eg (¥) 1 €,(p)| < oo and hence the

dominance condition holds.
To establish asymptotic normality of 8, by application of the mean value theorem to ¢y (6) around
0 = 0, we first note that

Tx (8) — T (80) = (0 — 60)'5x(60) — % (0 — 0,) Hy(8) (6 — 6) (A.41)

where 5y (0) = 0lx (0) /00, Hy(0) = —0%(x (0) /0000’, and 0 lies on a line segment joining @ and 6.
By result (A.29) of Lemma 5, and combining (A.37) and (A.38) we have

SN (00) = 0,
2 [In (80) — In (8)] =5 X (¥,%b0) + (¢ — o) A () (¥ — o) +2 (v — 7o) K(%, %0)-
Hence, in view of (A.41) we must also have
N (0) (8 —00) =5 x (¥, %9) + (¢ — o) A (%) (p — po) +2 (7 —70) k(W %hg).  (A.42)

But it has aleardy been established by Proposition 1 that on ©. the right hand side of (A.42) can be
equal to zero if and only if 8 = @y, and hence we must also have

(6—60)H

Hy(0) “3 H(0y), (A.43)
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where H(6g) must be a positive definite matrix given by H(6y) = limy_oo Eo [-0*(n (80) /0600'].
Applying the mean value theorem to §N(§) around 6 = 6 we have

0 = vV N5y () = VNsn(6y) — Hy(0)VN(8 — 6,)
where 8 lies on a line segment joining 0 and 6y. Then,

VN(6 - 00) = Hy (9) [\/NsN(ao)} .

Since @ lies between 6 and 6y and 0 is almost surely locally consistent for @y on the set ©, so is
6, and as in (A.43) above Hy(0) “% H(6p). In addition, using result (A.30) of Lemma 5, we have
V N5y (89) —4 N [0,J (6¢)], where J (0g) is given by (A.31). Hence

VN6 — 85) —a N (0, Vy).
where Vg has the familiar sandwich form
Vo =H"(80)J (60) H ' (8y).
- .

Proof of Theorem 2. Denote the exactly identified estimator of 8 (under Hi) by 6,,,.. with its
dimension njy = 3 +T(k + 1)+ k+ (T —2)(T + 3)/2, and the constrained estimator of 8 under Hy :

m =mg < T — 2 by 0p,,. The latter estimator is obtained under qg (6) = 0, where qq (0) is the rg x 1
vector of restrictions on £y (@), the log-likelihood function defined by (22), implied by setting m = my.
Since /G\mo is the constrained estimator of @ under Hy : qp (6) = 0, by using the results from constrained
optimization (see, for example, Davidson (2000, pp.289-290)), we have

VN (Emo - 90) % _Fov/Nay (60) (A.44)
where Sy is the score function in Lemma 5 which satisfies

VNsy (60) % N (0,J,) (A.45)

and
_ _ _ -1 _
Fo=H, t- H, le) (QoHo 1Q6) QoH, g

Also for the unconstrained estimator 6 using result (34) in Section 5, we have

Mmax?

VN (ﬁmmax—eo) % Hy'VNsy (6o) (A.46)

Consider now the mean value expansion of £y <0m0> around 0 = 0,,_ ..

5 (0) = 05 () (502 ) ()

Lo o V(PO (5 5
*3 (O~ B 9600’ (B = B

given by

where 0 lies between Emo and 5mmax. Since émmx is the unconstrained ML estimator, we have 9¢y (6) /065
0 and
2 o (B00) o (Br)] = —VF (B ~) (222N U5 (3, A7
|:N( mO) - N( mmax):| - ( mo mmax) WW ( mo mmax) . ( . )
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Since 6 and 6,,, — 6y under m = my, we have 8 — 0y and

2 i (B ) — £ (B)] &V (B — ) HoVN (B — ).

Using (A.44) and (A.46), we have the following result:

Mmax

VN (émmax - émo) < (Hy' — Fo) VNsy (60) = (Hy' — Fo) Jb/ %2, (60) (A.48)

where z,, (0y) = Jal/Q\/N@v (6o) 4N (0,1,,,), which follows from (A.45). Then, using (A.48) in (A.47),

we have o
2 [KN (ammx) —In <§mo>] ~ 25, (60)" Aozn (60)
where
Ao =J)? (Hy' — Fo) Hy (Hy' — Fo) I/% = 3)/°H; 'Q) (QoHy ' Q) QoH, 3y
Since JéﬂHal is full rank, then, rank (Ag) = rank (Qo) = ro, and, hence, only ry eigenvalues of A are

non-zero. Since Ag is symmetric and positive semi-definite, the rg eigenvalues of Ay are positive, which
are denoted by wi,ws, ..., wy, > 0. Then, using the spectral decomposition of Ay, we obtain the following

result o
2 [0 (O ) = O (B ) | & D w22
j=1

where z; ~ IIDN (0,1), as required. m
Proof of Theorem 3. Consider the type I error of the test and note that

aN:Pr(XN>cN( |Ho) = (Zwlz > X (h )

where z; ~ IIDN(0,1). Now using Lemma A1 of the theory supplement to Chudik et al. (2018) we have

h h
ay = Pr (Z wiz? > c%(h)) < ZPr (wiz? > htex(h)).

=1 =1

Therefore, since w; > 0

h
Z (z > (hw;) ™ C%V(h)) < hsup Pr (212 > Q?C%v(h)) ) (A.49)

where 62 = (hw;) "' > 0. But since z; ~ N(0,1), then

Pr (27 > 02} (h)) = 1—Pr(=0;len(h)| < 2z < 0;len(h)))
= 20 (—bicn(R)]).

Using this result in (A.49) we have
ay < 2hsup @ (=0; [en (h)]) = 252 (~Omin |en ()] = 21 [ = @ (Omin [ex (R)D]
where 62, = h~Vinf; w; ' = A~ tw;t > 0. Hence ® (Oin cn(R)]) < 1 — an/2h, and
ay < 2h[1 = @ (Omin [en (h)])] = 2h® (—Omin [en (R)]) -
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Since Omin ey (h)| > 0, then by (A.1) in Lemma 1 of Bailey et al. (2019, BPS)

B (O en()]) < (1/2) exp [ Ly & (h)} ,

and it follows that

2 (h
any < hexp |: 012nm (h):| = heXp |:_c2]\;L’(w):| )
1

which ensures that as N — oo, ay — 0, so long as c3;(h) — oo. Also due to the monotonicity property of

®(.), we have (for ay sufficiently small) Oy ey (h)] < @71 ( — ﬁ) or cN (h) < Gm?n [ o1 ( — %)]2
But by Lemma 3 of BPS, [071 (1 - $%)]* < 2In (L), and

A (h) <202 In ( L > = 2wihln <h> : (A.50)
an an

Consider now the type II error of the test and note that

h
By = Pr(Xy<c(h)|Hy)=Pr (Z wixg (L, g ) < ¢ (h)>

(sz : u@,ﬁs(:mh)).

. 2 2
Since w1 = max;(w;), then 2?21 w; (z, — Mi,N) <y Z? 1 ( — 1 N) , and

h 2 .,
= (Z (2 — Mz‘,N)z <X (h)> =Pr (Xz(h,ﬂ?v) <N (h)> ,

w1

where x2(h, /ﬁv) is a non-central chi-squared random variable with h degrees of freedom and the non-
centrality parameter, ,u?v = Z?Zl F‘?,N' To obtain the rate at which S tends to zero with N, we use the

normal approximation proposed by Sankaran (1959) for non-central chi-square distributions given by!3

B )T (s A s — 1052~ sx) A B)])

& (h)> ~ D <W1(h+u?v
w1 SN\/QAN(l + 0.5ANBN) ’

By < Pr (x2<h, 1) <

where

2 (h+p%) (h+3u3)

SN = -5 )
3 (h2)’
h + 242
Ay = 7"% By = (sy — 1)(1 — 3sy).
(h+#N)

Since, h and w; are fixed in N, then Ay = ©(uy?), sy = 1/2+ O(uy?), By = 1/4 + O(uy?) and it
readily follows that as N — oo, By — 0 if ¢ (k) /u% — 0 as ¢y (k) and py — co. m

3 Also see Patnaik (1949) and Abdel-Aty (1954) for other approximations.
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Proof of Theorem 4. Consider the event {m > mg} where my is the true number of factors. For this
event to be true it must be the case that for some ¢t € {1,2,...,7 — 2}, at a certain stage in the sequential
estimation the null hypothesis of the true number of factors is rejected. That is,

Pr(m > mg) < P(3t, mg is rejected |[Hp_24—1)
T—2

< ) PrLRN(T —2,t—1) > X o 1 () |Hro24-1),
t=1

where C?V,T—2,t—1(h) denotes the critical value of the test. For any given ¢, using the result for the type I
error of the test in Theorem 3, as N — oo, we have

h
ay =Pr(LRN(T = 2,t = 1) > {y oy 1(h) [Hr—24-1) = Pr (Z w;z} > C%V,T2,t1(h)> — 0,
i=1
if C?\/,T—Q,t—l(h) — 00, from which it follows that (recall that z; ~ ITDN(0,1))

Pr(m >mo) < (T —2) max P [LRN(T —2,t = 1) > A p 941 (h) [Hr—24-1] — 0. (A.51)

Next consider the event {m < mp}, and note that

Pr(m =P T—2,t—1)<cX h) |Hp 9, 1 is fal
(i < o) = Pr (i CR(T =20 = 1) < chppy () [Hraioa I e

T—2
< Z Pr(LRN (T —2,t—1) < C?V’T,u,l (k) [Hp_o4—1 is false) . (A.52)
t=1

From Theorem 3 for the type II error of the test we have that as N — oo

By = Pr(LRy(T—-2,t—1)< C?V’T,Z’t,I (h) [Hp_g;4-1 is false)

h
S PSSR ) B

i=1

But from (A.52), it readily follows that since Sy — 0 as N — oo, Pr(m < mg) — 0 which together with
(A.51) establishes the desired result. m
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S.1 Introduction

This supplement is organised as follows: Section S.2 outlines the eigenvalue approach used for computing
the QML estimator. Section S.3 gives the derivations of the initial values used for the Monte Carlo (MC)
analysis. Section S.4 provides details for the computation of the GMM estimators. Sections S.5 and
S.6 give additional MC results for the stationary and unit root cases, respectively. To save space the
results for the ARX(1) model are given only for the case where 02 = 1. The results for other values,
03 = {0.5,1.5}, are very similar and are available upon request.

Section S.7 gives the details of the MC experiments we carried out for the robustness analysis and
the associated results, covering the effects of initial values deviating from the steady state distribution
(applicable only for the stationary case), the use of alternative p-values (p = 0.01, p = 0.10) in imple-
menting the MTLR test, allowing for non-zero correlation of the factor loadings and the regressors, and
for weakly cross-correlated factor loadings. The last three experiments are presented for the stationary
case. Qualitatively similar results were obtained for the unit root case and are available upon request. All
results are given for f; = 1 and are based on 2000 replications. Also, all MC results are obtained using
the Multiple Testing Likelihood Ratio (MTLR) test for selecting the number of factors with p = 0.05
unless otherwise stated.

S.2 An eigenvalue approach for computing the QML estimator

To compute the QML estimators consider the log-likelihood function given by (23) and note that since
Q is a positive definite matrix and QQ' is rank deficient (recall that m < T'), we have |Q + QQ'| =
12 [1,,+Q'27'Q|, and using the Woodbury matrix identity

Ql-o'Qr,.+Qe'QlQa! (S.1)
Q_l _ Q_lQA_lQ,Q_l,

(@+QQ)"

where A is a non-singular matrix defined by

A=1,+QQ'qQ. (S.2)
Using the above results in (23), and after some simplification the quasi-log-likelihood function can be
written as
-1 T 2 1 1 1 -1 -1 -1/0-1
NN (0) x —5111(0 ) — iln]m — §1n|A| ~ 5,2 [tr (BNQ ') —tr (BNQT'QAT'Q'Q7Y)], (S.3)
where || =1+T (w—1), and
N
By(p) = N1 &i(9)€i(p). (S.4)
i=1

For analytical convenience we further define P = Q~1/ 2QAfl/ 2. Note that since A and Q are non-

singular matrices, then rank (P) = m, as well. Further, it is easily seen that
I,—PP=1I, - A2QQ QA1
and using Q'Q7!1Q = A — I, from (S.2), we have
A™l=1,-PP. (S.5)

Similarly,
tr (By27'QATIQQ!) = o’ tr [P'Cy (¢) P],
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where

Cy (¢) =0 2Q '/ ?By(p)Q /2, (S.6)

and ¢ = (¢/,w, 02
Using the above results, the quasi-log-likelihood function given by (S.3) can now be written as
-1 T 2 1 1 / 1 !

N7y (¢, P) x =5 In(0%) =5 In[1 + T (w — 1)]+§1n\1m —P'P| -5 {tr[CN (¢)] — tr [P'Cn (¢)P]}.
(S.7)

While, as mentioned earlier, the transformation from Qto P is carried out for analytical convenience,

P is still not identified. It is easily seen that the value of (y (¢, P) is invariant to the orthonormal

transformation of P. To see this consider the transformation P = PE, where ZE is an m X m orthonormal

matrix such that 22 = I,,. Then it is readily verified that N~y (¢,P) = N~y <¢, f’) Hence, P

(or 15) is identified only up to an m x m orthonormal rotation matrix. Let P = (p;, p2, ..., Pm), where p;
is the t*" column of P, and p; is a T' x 1 vector of unknown parameters. Since rank (P) = m, then P'P
can be diagonalised by an orthonormal transformation, and without loss of generality we can impose the
following m(m — 1)/2 orthogonality conditions

pips =0, forall s £t =1,2,...,m. (S.8)

Under these restrictions the quasi-log-likelihood function, (S.7), simplifies to

T 1 1 &
-1 2
N~y (¢.P) o — 5 In(0®) ~ g n[L+ T (w = D]+ ;1 — pipi)+ ZptCN pt—ftr [Cx (¢)].
(S.9)
Taking first derivatives with respect to p; and setting these derivatives to zero now yields
~ 1 —~
CN (¢)pt— ]._ﬁ Pt :0, fort: 1,2,...,m, (SIO)

where Py is the quasi-maximum likelihood estimator of p; (in terms of ¢). Therefore, p; is the eigenvector
of Cy (¢) associated with the first m largest non-zero eigenvalues of Cy (¢), which we denote by A\ (¢p) >
A2 (@) > ... > A (@) > 0. Note that Cy (¢) is a symmetric positive definite matrix with all real
eigenvalues A\ (¢p) > 0, for t =1,2,...,T. We also have

3(@) = o and BCx ()P =M (0) - L

Hence, the concentrated quasi log-likelihood function in terms of ¢ can be written as

m

. T o, 1 1 & 1 1 <
N eN(¢;m>O<—§ln(U )—§1n[1—|—T(w—1)]—521n[)\t(¢)]+52[)\t(¢)—1]—52/\t(¢)
t=1 t=1

t=1
(S.11)
where \; (@) is the ' eigenvalue of Cy (¢), given by (S. 6) This concentrated quasi log-likelihood
function can now be maximised with respect to ¢ = (¢’,w,0?)’. The QML estimators, Py (¢), can then
be computed using the QML estimator of ¢ and their corresponding variance covariance matrix can be
computed using the delta method.
With regard to the computation of p; it is important to bear in mind that standard eigenvector rou-
tines provide eigenvectors that are typically orthonormalised. Whilst in the above analysis, p1, P2, ----, Pm
are orthogonal to each other, their length is not unity and is given by pjp: =1 — 1/ () .
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S.3 Steady state distribution of y;; in the stationary case

Consider the panel data model

Yit = o+ 0p +YYir—1 + B + C, Y] < 1,

where .
Cit = Zwifft + wit, (S.12)
=1
My
Tip = i + Y Veifer + Vit (S.13)
=1
fori=1,2,..., Nand t=1,2,...;T. Also
1/2
vit = povie1 + (1= p2) P eir, |pl <1, fort =1,..,T, (S.14)

eit ~ IIDN(0,02), and vig ~ IIDN(0,02),

which ensures that Var(vy) = 0’ . Further,

1/2
Joo = popfoa—1+ (1 — pfcg) / efu, €foe ~ ITDN(0,1),

with feo =0, for £ =1,2,...,m, and t = 1,..,T. Also to simplify the derivations we set p;y = p; for all
£. From the above specifications of v;; and f; it readily follows that

E(vit) =0, E(f) =0, Cov (vig—jvis—j) = o2, p97'l and Cov (f—f_j) = p'fﬁjI'Im. (S.15)

Due to the dependence of x;; and (,; on the same unobserved factors, the regressors and the errors
of the above regression are correlated. Following Pesaran and Smith (1994) we base the derivation of the
steady state distribution of y;; on the following reduced form regressions

Yit = 0 + 0 +YYie—1 + Bvie + cify + wit, (S.16)
where
a; = a;+ Bog;, (S.17)
m My max(m,my)
it = Y nafu+BY Vufu= D, cufu (5.18)
(=1 =1 /=1

where ¢y; for all ¢ and ¢ = 1,2,...,max(m, m;), are defined implicitly. Using the results in (S.15), and
noting that f;, u;» and v;s are mutually uncorrelated for all values of ¢,¢ and s, it then follows, conditional
on a; and c¢;, that (without loss of generality we set d; = 0)
E (yit|ai,ci) = YE (Yit—1]|as, ¢i) + a; (S.19)
Var (yalai,¢;) = ¥*Var (yir—1|ai, ¢;) + B2Var (virai, ¢;) + c;Cov (f:£)) ¢; + o (S.20)
+2vCov (yi -1, Cifi|as, ¢i) + 2yBCov (yit—1, Vit i, ¢;) -

Also, the steady state values of the covariances in the above expression are given by (upon using

(S.15))

- (chei) p
Cov (i1, cift|as, ¢i) = Z’VJCE £ 1f]) ¢; = (clc; Z U R i

= L —py
o Bp.o
Cov (yig—1,vaeldi,ei) = Bog, Y AE (Vig—j-1vit) = Z,O]H 7= JCWZV-
— X
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Using the above results in (S.20) and noting that in steady state E(yi|as,ci) = E(yiolau,ci) and
Var(yit|ai, c;) = Var(yio|a, c;) we have

~ oy + PO
E (yit|ai, €i) = pio = Zl_ﬁfym, (S.21)
2 2 2
~ o° +agp0;, +ara;
Var(yulai,¢i) = o= "”f_ 72 A (S.22)
where . .
(=1 =1
and . .
ag = < +'yp$> ;and ap = ( 7pf> . (S.24)
L=p, L—py

S.4 The GMM approach

Let us consider a GMM approach to estimate the dynamic panel data model with interactive effects:
Vit = a; + W8 + Ny + et (i=1,2,...,N;t=1,2,....T) (S.25)

where wit = (yit—1,%), 6 = (7,8, Ai = Miis oo Aons)” and fr = (fiy, ..., fmt)' are (m x 1) vectors and
€4+ are cross-sectionally and temporally uncorrelated. The individual specific effects A; are allowed to be
correlated with x;;, while x;; is assumed to be strictly or weakly exogenous. A similar model is considered
in Ahn et al. (2013), but there are two differences. The first is that the model under consideration is
a dynamic model whereas Ahn et al. (2013) considers a static model. This difference does not cause
a serious problem in implementing GMM estimation: minor corrections when selecting the instruments
suffice. The second difference is that the current model contains time-invariant fixed effects «; whereas
the model considered in Ahn et al. (2013) does not. Thus the method by Ahn et al. (2013) cannot be
applied directly in this case. Hence, we consider two approaches to use the method proposed by Ahn
et al. (2013). The first approach is to regard the time-invariant fixed effects as an additional factor to
be estimated. The second approach is to take the first-differences prior to applying the quasi-difference
approach by Ahn et al. (2013), which is similar to Nauges and Thomas (2003). In the following, we
describe each approach.

Approach 1: Quasi-differencing

By incorporating «; into Aif; in (S.25), we have the following alternative expression
~f~
Yir = Wi + N+ cur,
where \; = (iy My ooy Ami)| and f, = (1, fit, ---, fmt)"- The model in matrix notation can be written as
yi= W0 +FX; + ¢, (S.26)

where y; = (Y1, -, vir)'s Wi = (Wi, ..., wir)', € = (g1, ..., €i7)" and F :~(f17 "'7?2)/ is a T' x m matrix.
Define ¥ = FF~! where F = (fr—m+1, -, fr)'. To separately identify F from A, m? restrictions are
imposed on the factors such that F = L‘I” ,I7) where Wis a (T'—m)xm matrix of unrestricted parameters
obtained as the first 7 — m rows of W. Let Ho= (I;_~,—¥)’, so that HOF = (Ip_5,—9)(¥'.15) =
O(7—f)xm- Then, pre-multiplying equation (S.26) by Hb removes the unobservable effects so that

H,le' = H,QWZJ + H,QEZ‘,
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or

Vi = Wid+ Uy, — OW.6 4 & — W, (5.27)

= Wo+ (Ir_m @ F)) vec(®) — (vec(Wi)/ ® IT_m) vee(d' ® W) + & — WE,

where i = (Vi1 -, Yir—)s ¥i = Wit —nits o UiT)'s Wi = (Wit oo Wiz ), Wi = (Wi, -y Wir) s
v'= (017 E3) OT—ﬁ’L)v é’b = (5i17 "‘7€i,T—77L)/7 and éz = (8i,T—Tﬁ+1) "'75’iT)/'
The t*" equation is given by

Yir = 8'wip + 5 — YLWiS + v, (i=1,..,N;t=1,...,T —m), (S.28)

where vy = (g4 — 0}€;). Since x;; is strictly exogenous, a large number of moment conditions are
available. However, as using many instruments causes a large finite sample bias, we consider (k +
(T —m)(T —m+1)/2 + k(T — m)m moment conditions given by E[z;v;] = 0, for t = 1,...,T — m,

where zi; = (Yi0, - Yit—1, X1, "'7X;th;,T4ﬁ+1v ...y X,p)'. In addition to the commonly used instruments

(Yi0y s Yit—1,X}q, - Xy ), We also use X;,T—Fn—i—l""’x;T as instruments since they are included in the

regressor W. In matrix notation the moment conditions can be written as E [Z!v;(0)] = 0, where Z; =
diag(zjy, - 2y p_7), vi(0) = (vit, ., vi7—7)" and 6 = (6',4")" with ¥ = vec(WP).
Then the one-step and two-step GMM estimators are given respectively by

. 1 Y 1Y T &
0op1 = arg;nin (N ; Vi(O)IZi) (N ; Z;Zi> (N ; Z;vi(0)> , (S.29)
and
R L | R R -1 |
002 = argarnin (N ;vi(e)z) (N ; z;vi(eQDl)vi(eQm)'zZ) (N ; Z;vi(0)> . (S.30)

The asymptotic covariance matrix of the above estimators is given, respectively, by

~ ~ —~ ~ -1 o~ i~ —~ ~ ~ —~ ~ -1
Var(@gp1) = Nt (G,QDlw_lGQpl) G’QD1W‘1QQD1W‘1GQD1 (G’QmW‘lGQm) (S.31)

~ ~ ~ ~ -1
Var(6gpz2) = N7 (G’QDQQé}nGQDz) , (S.32)

where (A}j: 8@(@-)/80/ for j = QD1,QD2, with gi(aj) = ngi(aj) and g(éj) = NN gi(aj),

W =N"! ZZ]L Z!Z;, and ﬁj:N_l Zf\il gi(aj)gi(Oj)’. The derivatives involved in G; are computed nu-
merically.

Approach 2: Quasi-differencing after first-differencing

Taking the first-differences of model (S.25) to remove a; we have
Ay = Aw;té + )\;Aft + Aey, (Z =1,2,...,N;t=2,3, ,T)
where Aw;, = (Ay;¢—1, AxL,), 6 = (v, B, and Af; = f; — f;_;. The model in notation can be written as
Ay; = AW;6 + AF\; + Ag;, (S.33)

where Ayi = (Ayig, veuy AyiT)’, AWZ = (AWZ‘Q, veey AWiT),, AEZ' = (AEiQ, veuy AEiT), and AF = (Afg, cony AfT),
is a (T'— 1) x m matrix. Define ® = AF (ﬁ)_l where AF = (Afr 41, ..., Afr)’. To separately iden-
tify AF from A;, m? restrictions are imposed on the factors such that AF = (®',1,,) where ® is a
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(T — 1 — m) x m matrix of unrestricted parameters obtained as the first T — 1 — m rows of ®. Let
Hp= Iy ,_,,,—®), so that H)AF = (I, , ,—®)(®1,) = O(7—1—m)xm- Then, pre-multiplying
equation (S.33) by H’, removes the unobservable effects so that

/DAyi = H’DAW16 + H/DAEZ‘,
or

Ay; = AW+ BAY;, — BAW,6 + &, — PAE;
= AW,;6+ (IT,1,m ® Ay;) vec(®) — (Uec(AWi)/ ® IT,1,m> vec(d ® ®) + Aé; — PAE;,

where Ay; = (Ayio, ..., AYir—m)'s AVi = (AYim—mt1, ., Ayir), AW; = (AWga, ..., AW 7_p,), AW; =
(Awi,T—m—i-l? ) AWiT),a P'= (¢2a Sx) ¢T7m)> Aé; = (A5i27 ) Agi,T—m),a and
AEZ = (Agi,T—m—i-l, cany AEiT),.

The t*" equation is given by

Ayit :(SIAWZt—|—¢;Ay@—¢2AW25+A’UZt, (Z = 1,...,N;t:2,...,T—m), (834)

where Av;y = (Agyy — ¢£Aé‘i). Since x;; is strictly exogenous, a large number of moment conditions
are available. However, since using many instruments causes a large finite sample bias, we consider
(k+1)(T—1—m)(T—m)/2+ k(T —1—m)m~+k(T —1—m) moment conditions given by F[z;;Av;] = 0, for
t =2,...,T —m, where zy = (Yi0, -, Yit—1, Xigs Xiq -y Xig x;T_mH, ..., X,)". In addition to the commonly
used instruments (Yio, ..., Yit—1, Xjg, --» Xjz), We also use X; 7, 41,...,X;p as instruments since they are

included in the regressor AW. Also, compared to the quasi-difference approach, we additionally use x;o
as instruments. This is because without x;, the local identification assumption is not satisfied for the
linear GMM estimator which is used as the starting value to obtain nonlinear GMM estimators. In matrix
notation the moment conditions can be written as E[Z;Av;(0)] = 0, where Z; = diag(ziy, ..., 2} 1_,,)

Av;i(0) = (Aviz, ..., Avi7—p,)" and 0 = (&', ¢')’ with ¢ = vec(®).
Then the one-step and two-step GMM estimators are given respectively by

R 1 N 1 N 1 1 N
— : . Iy Iy . ! .
Orp1 = arg;nln (N ZE 1 AVZ(H) Z2> ( ; 1 ZZZ1> ( ZE 1 ZZAV1(0)> , (S.35)

and

N N -1 N
. (1 1 -~ ~ 1
Orp2 = arg min (N > AVi(0>/Zi> (N > Z;AVi(eFDl)AVi(aFDlyzz') (N > ZQAV¢(9)> :
i=1 i=1 i=1
(S.36)
The asymptotic covariance matrix of the above estimators is given, respectively, by

o~ ~ —~ ~ -1 < — —~ — —~ —~ — ~ -1
Var(BFDl) =N"1 < /FD1W71GFD1> G%DlwilﬂFDlwflGFDl (G/FDlwflepl) (8.37)

~ ~ —~ —~ —1
Var(@pps) = N ( ,FDQQE}D2GFD2> , (S.38)

where G;= 0g(8;)/00 for j = FD1, FD2, with g:(8;) = ZAvi(8;) and g(8;) = N7' Y, &:(8;),

W=N"! ZfL Z'Z;, and ﬁj:N_l Zfil gi(0;)gi(0;). The derivatives involved in éj are computed nu-
merically.
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Starting values

For the computation of the above nonlinear GMM estimators, starting values are required. When the
number of moment conditions is greater than the unknown reduced form parameters we use the linear
GMM estimator by Hayakawa (2012) as the starting value. This can reduce the computational time
compared to employing several random starting values which we use in the alternative case.

To define the linear GMM estimator, let us define L1 = Ly = 1 for m = 1, and L; = (I,05) and
Lo = (07, 15) for m > 1. Also, define y; = (yi’T_m,yLT_mH, ..,yiT), = (yLT_m,j?;),. Then, noting that

. L . ! . - .o -~
W, = (Yi,beit) where ¥; 1= (Yi. 17— Yi T—it1s - YiT—1) » ¥i = Lo¥; and §¥; 1 = L1¥;, we have

Vi = Wid+ 0§, — W0 +¢& — U,
= W0+ PLyy, — ¥ (7L1$/i + Xﬁ) +& — Wg;
= Wid+% (Lo —qL1)y; — X8 +v;
= W, 0+7Yy,—IX,8+v;
= W0+ (Ir_im @ §;) vee(X') — (vec()"(i)' ® IT_m> vec(B @ ) + v;
= Xﬂr +v;

where Y= (L, —~L1), X; = (W I ®F1), — (vec(Xi)’ ® IT_m)> and w=

(8", vec(X")  vec(B' ® \Il)')/ = (m, wh, ) with 1 = 8,7y = vec(X'), w3 = vec(B' @ ¥). We consider
this particular model rather than the original model (S.27) because perfect multicollinearity between
i and W; occurs in (S.27) when m > 1. Since this is a linear model in 7 with moment conditions
E|Z)v;(m)] = 0, a closed form solution is obtained as

1L 1 Y T

7= |[=SXzZ ) (=S 22 N ZX;
(v5%a) () (v32%)
% <1§:f{’.z,> <1§:z(z<>l <1§:z(y.>

Ni:1 o Niil o Ni:l e

Hence, 71 and 7r5 are consistent estimates of § and vec(Y’), respectively. To recover ¥ from the estimate
of Y, since

-1

vec (Y') =vec ((Ly — 7L1)' ¥') = (Ir—7 ® (L2 — vL1)') vec (¥') = Avec (V')

vec (') is obtained as vec (¥') = (A’A)"" Avec(X’). In the computation of the nonlinear GMM es-
timators, estimates of § and vec (¥’) are obtained from 7r; and 72 and are used as the starting values
of the numerical optimization. For those cases where random starting values are used v is generated as
U(-0.999,0.999), B as U(—1,1) and v, as ¥,o x U(0.9,1.1) where 1;, denotes the true value of 1;, jth
element of vec (¥').

The same procedure can be used in approach 2 by replacing the y;’s and W,’s with their first differ-
ences.

The AR(1) model

Estimation of the AR(1) model is exactly the same as above after removing all x’s from both the model
and instruments. However, for the starting value, we cannot use the linear estimator since the number of

S7



moment conditions is always smaller than that of the unknown reduced form parameters. Hence in the
Monte Carlo simulations for this case we use random starting values. Specifically, we use

for approach 1 and

for approach 2 where v, ; is the true value of ;.

S.5 Monte Carlo Results for the Stationary Case

A1: Selecting the number of factors

Table A1(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure in
the case of the AR(1)

K2 0.25 0.5 1 2

mo 0 1 2 0 1 2 0 1 2 0 1 2
T=5

N 7, =04

100 994 255 0.9 994 882 17.1 994 99.7 889 994 99.7 99.9
300 99.8 93.7 16.5 99.8 100.0 95.4 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 56.1 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 100.0 99.2 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
Yo =0.8
100 99.2 534 1.5 99.2 987 28.7 99.2 998 96.3 99.2 99.7 100.0
300 99.8 99.6 23.3 99.8 100.0 98.9 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 65.2 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 100.0 99.7 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
T =10

Y9 = 0.4
100 99.5 97.1 13.2 99.5 99.6 90.8 99.5 99.6 99.7 99.5 99.6 99.7
300 99.8 100.0 95.4 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 99.9 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.7 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0
Yo = 0.8
100 99.7 96.6 15.1 99.7 99.5 93.5 99.7 99.5 99.7 99.7 99.6 99.7
300 99.8 100.0 96.7 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 99.9
500 99.9 99.9 100.0 99.9 99.9 100.0 99.9 99.9 100.0 99.9 99.9 100.0
1000 99.6 100.0 100.0 99.6 100.0 100.0 99.6 100.0 100.0 99.6 100.0 100.0

Note: m is estimated using the sequential MTLR procedure described in Section 6.1

with ay = W and p = 0.05. See also the note to Table 1.
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Table A1(ii): Empirical frequency of correctly selecting the true number of factors, mg, using the
sequential MTLR procedure in the case of the ARX(1)

T=5
k2 =0.25 k2 =05
mo 0 1 2 0 1 2
0'\2,. 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
N 7v9=04
100 99.7 99.7 99.8 46.3 51.5 52.6 1.1 1.2 1.2 99.2 99.3 99.3 97.9 98.1 98.1 17.7 18.3 18.5
300 99.9 100.0 100.0 99.7 99.9 100.0 21.9 23.5 233 99.4 100.0 100.0 100.0 100.0 100.0 97.2 97.6 97.7
500 99.8 99.9 99.9 99.9 99.9 999 67.4 69.0 69.1 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 99.6 99.7 99.7 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Y =08
100 99.7 99.6 99.6 56.2 56.9 574 1.4 1.6 1.7 99.4 994 994 97.9 98.0 98.0 19.2 189 19.0
300 99.9 999 99.9 100.0 100.0 100.0 24.8 24.7 24.5 100.0 100.0 100.0 100.0 100.0 100.0 98.2 98.1 98.1
500 99.9 999 99.9 99.9 99.9 99.9 71.1 711 711 99.9 99.9 999 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 999 99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
k2 =1 K2 =2
mo 0 1 2 0 1 2
a% 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
N o, =04
100  99.7 99.7 99.8 97.8 98.7 99.0 29.4 31.0 31.0 99.2 99.3 99.3 99.5 99.6 99.6 93.5 94.2 944
300 99.9 100.0 100.0 100.0 100.0 100.0 98.9 99.5 994 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 99.8 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Yo =038
100 99.7 99.6 99.6 99.1 99.2 99.3 32.6 33.0 33.1 99.4 994 994 99.5 99.6 99.6 94.4 94.7 944
300 999 99.9 99.9 100.0 100.0 100.0 99.5 99.5 99.5 100.0 100.0 100.0 100.0 99.9 99.9 99.8 99.8 99.8
500 99.9 99.9 999 99.9 99.9 99.9 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T =10
®2 = 0.25 k2 =05
mo 0 1 2 0 1 2
0\2, 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
N 79=04
100 99.2 99.3 99.3 97.9 98.1 98.1 17.7 18.3 18.5 99.2 99.3 99.3 99.5 99.6 99.6 93.5 94.2 944
300 99.4 100.0 100.0 100.0 100.0 100.0 97.2 97.6 97.7 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 999
500 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Yo = 0.8
100 99.4 994 994 97.9 98.0 98.0 19.2 189 19.0 99.4 994 994 99.5 99.6 99.6 94.4 94.7 944
300 100.0 100.0 100.0 100.0 100.0 100.0 98.2 98.1 98.1 100.0 100.0 100.0 100.0 99.9 99.9 99.8 99.8 99.8
500 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
k2 =1 K2 =2
mo 0 1 2 0 1 2
03 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
N 7, =04
100 99.2 99.3 99.3 99.5 99.6 99.7 99.8 99.7 99.7 99.2 99.3 99.3 99.7 99.6 99.6 99.7 99.7 99.7
300 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Yo =0.8
100 99.4 994 99.4 99.5 99.6 99.6 99.7 99.7 99.7 99.4 994 994 99.5 99.6 99.6 99.7 99.7 99.7
300 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 999 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 999
500 99.9 999 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 999 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

See the note to Table AL(i).
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A2: Bias, RMSE

and Size

A2(i): Bias(x100) and RMSE(x100) of v for the AR(1) model, using the estimated

number of factors, m

Bias(x100) RMSE(x100) Bias(x100) RMSE(%x100)
K2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2
Yo =0.4 Y =08
T=5
N mg=0
100 0.42 0.42 0.42 0.42 8.69 8.69 8.69 8.69 0.65 0.65 0.65 0.65 12.29 12.29 12.29 12.29
300 -0.03 -0.03 -0.03 -0.03 4.26 4.26 4.26 4.26 142 1.42 1.42 142 9.26 9.26 9.26 9.26
500 0.03 0.03 0.03 0.03 3.22  3.22 3.22 3.22 1.46 1.46 1.46 1.46 7.80 7.80 7.80 7.80
1000 0.00 0.00 0.00 0.00 2.29 229 229 229 1.02 1.02 1.02 1.02 6.07 6.07 6.07 6.07
mo =1
100 24.98 5.19 0.41 0.23 33.05 18.36 9.39 7.79 7.22 1.11 1.42 1.38 15.51 13.99 12.99 11.19
300 1.96 -0.05 -0.09 -0.11 11.04 5.64 4.99 4.17 1.20 1.28 1.00 0.46 11.06 10.41 9.04 6.86
500 0.15 0.10 0.05 0.01 4.53 4.17 3.68 3.07 1.68 1.46 0.96 0.40 9.48 8.64 7.12 5.09
1000 0.05 0.05 0.04 0.03 3.25 3.02 2.67 2.22 1.43 1.13 0.61 0.27 7.70 6.77 5.08 3.56
mo = 2
100 6.61 13.75 4.09 0.34 13.61 25.13 16.38 7.89 7.09 5.07 1.82 1.50 14.00 15.66 16.38 11.31
300 543 1.25 0.20 0.13 10.92 849 4.99 4.14 6.76 1.81 1.38 0.81 13.80 10.54 4.99 6.82
500 3.12 0.08 0.05 0.04 8.58 4.36 3.81 3.16 4.31 1.50 0.98 0.49 11.71 8.74 3.81 5.12
1000 0.12 0.04 0.02 0.01 3.38 298 262 2.18 1.23 0.89 0.45 0.19 743 6.34 2.62 3.45
T =10
N mg=
100 -0.03 -0.03 -0.03 -0.03 3.76 3.76 3.76 3.76 1.94 1.94 1.94 1.94 7.90 7.90 7.90 7.90
300 -0.04 -0.04 -0.04 -0.04 2.18 2.18 2.18 2.18 0.68 0.68 0.68 0.68 4.62 4.62 4.62 4.62
500 -0.01 -0.01 -0.01 -0.01 1.70 1.70 1.70 1.70 0.26 0.26 0.26 0.26 3.09 3.09 3.09 3.09
1000 -0.01 -0.01 -0.01 -0.01 1.22 1.22 1.22 1.22 0.18 0.18 0.18 0.18 2.24 224 224 224
mo =1
100 0.11 -0.04 -0.05 -0.06 4.87 4.52 4.20 3.75 1.08 0.50 0.23 0.08 7.05 5.83 4.64 3.48
300 0.03 0.02 0.02 0.01 2.67 255 238 2.13 0.24 0.15 0.08 0.04 3.563 298 241 1.89
500 -0.05 -0.06 -0.06 -0.05 2.11 2.03 1.90 1.70 0.07 0.04 0.01 -0.01 2.58 2.28 1.88 1.49
1000 -0.03 -0.02 -0.01 -0.01 1.48 1.42 1.32 1.17 0.00 0.00 0.00 0.00 1.74 1.55 1.30 1.03
mo = 2
100 5.48 0.66 -0.08 -0.05 8.23 6.57 5.12 4.48 7.57 1.11 0.19 0.04 11.64 7.58 5.32 3.93
300 0.26 0.02 0.04 0.05 3.568 3.07 2.81 2.46 0.51 0.16 0.08 0.06 4.62 3.44 2.66 2.06
500 -0.12 -0.11 -0.10 -0.09 2.50 2.35 2.16 1.90 -0.06 -0.08 -0.09 -0.08 2.98 2.51 2.06 1.61
1000 -0.02 -0.01 0.00 0.00 1.84 1.74 1.59 1.39 0.03 0.03 0.01 0.00 2.02 1.75 144 1.11

Note: ~ is the

coefficient of the lagged dependent variable given in (1) in the

See also the note to Table 1.

absence of the x;; regressors.

A2(ii): Size(x100) of v for the AR(1) model, using the

estimated number of factors, m

T=5 T =10
K2 0.25 0.5 1 2 025 05 1 2 0.25 0.5 1 2 025 05 1 2
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
N mog=0
100 6.2 6.2 6.2 6.2 21.3 21.3 21.3 21.3 6.5 6.5 6.5 6.5 164 16.4 164 164
300 54 54 54 54 192 19.2 19.2 19.2 51 5.1 5.1 5.1 87 87 87 87
500 48 48 48 48 146 14.6 14.6 14.6 59 5.9 59 5.9 6.7 6.7 6.7 6.7
1000 4.5 4.5 45 45 121 121 121 12.1 54 54 54 54 5.7 5.7 5.7 5.7
mo =1
100 52.6 15.7 5.1 6.2 54.3 21.6 19.6 12.6 6.9 6.0 6.1 5.7 121 76 49 49
300 93 3.8 51 59 169 17.0 11.9 6.7 40 43 45 5.1 43 43 47 52
500 26 3.3 39 45 127 123 71 45 54 5.7 6.0 6.1 45 51 54 5.5
1000 3.2 42 47 52 100 8.1 4.7 4.5 4.7 49 49 5.0 4.5 4.6 42 4.1
mo = 2
100 8.6 26.2 11.5 4.7 422 43.0 19.8 11.4 33.6 9.6 5.8 6.3 379 102 53 6.2
300 232 6.1 39 45 493 159 103 54 5.8 4.4 4.6 5.0 48 33 4.0 45
500 246 25 3.1 38 312 114 6.3 3.3 3.4 42 49 4.9 3.1 41 47 53
1000 26 2.6 3.3 3.8 78 6.6 44 3.9 3.4 4.0 4.7 4.9 3.6 40 40 43

See the note to Table A2(i).
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Table A2(

iii): Bias(x100) and RMSE(x100) of v and § for the ARX(1)
model, using the estimated number of factors, m (02 = 1)

Bias(x100) RMSE(%x100) Bias(x100) RMSE(x100)
k2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2
Yo = 0.4 Y9 = 0.8
T=5
y
N mog=0
100 -0.15 -0.15 -0.15 -0.15 3.45 3.45 3.45 3.45 -0.07 -0.07 -0.07 -0.07 3.02 3.02 3.02 3.02
300 -0.04 -0.04 -0.04 -0.04 1.97 1.97 197 197 -0.05 -0.05 -0.05 -0.05 1.71 1.71 1.71 1.71
500 0.02 0.02 0.02 0.02 1.47 147 147 147 0.00 0.00 0.00 0.00 1.27 1.27 1.27 1.27
1000 -0.05 -0.05 -0.05 -0.05 1.08 1.08 1.08 1.08 -0.03 -0.03 -0.03 -0.03 0.93 0.93 0.93 0.93
mo =1
100 245 0.21 0.09 0.08 5.82 4.49 4.30 4.10 0.96 0.28 0.23 0.21 4.91 4.91 4.74 4.53
300 -0.03 -0.04 -0.05 -0.06 2.45 242 2.39 231 -0.02 -0.02 -0.02 -0.03 2.64 2.60 2.56 2.47
500 0.02 0.02 0.01 0.01 1.86 1.86 1.83 1.75 0.01 0.02 0.02 0.02 1.98 1.96 1.92 1.85
1000 -0.05 -0.05 -0.04 -0.04 1.37 1.37 1.35 1.29 -0.02 -0.02 -0.02 -0.02 1.44 1.43 1.41 1.36
mo = 2
100 1.29 1.49 0.37 0.21 4.21 5.39 4.70 4.27 0.57 0.69 0.47 0.36 3.78 4.90 4.99 4.60
300 0.78 0.03 0.03 0.04 2.87 2.51 2.46 2.35 0.24 0.07 0.07 0.08 2.60 2.70 2.63 2.52
500 0.31 0.07 0.07 0.07 2.16 1.96 1.94 1.87 0.11 0.09 0.10 0.10 2.12 2.13 2.10 2.03
1000 0.06 0.05 0.05 0.05 1.41 1.41 1.39 1.33 0.05 0.05 0.05 0.05 1.51 1.49 1.47 1.41
B
N mog=0
100 -0.06 -0.06 -0.06 -0.06 4.44 4.44 4.44 4.44 -0.06 -0.06 -0.06 -0.06 4.55 4.55 4.55 4.55
300 0.02 0.02 0.02 0.02 2.53 2.53 2.53 2.53 0.01 0.01 0.01 0.01 2.58 2.58 2.58 2.58
500 0.04 0.04 0.04 0.04 1.92 1.92 1.92 1.92 0.04 0.04 0.04 0.04 1.97 197 197 197
1000 0.00 0.00 0.00 0.00 1.38 1.38 1.38 1.38 0.00 0.00 0.00 0.00 1.40 1.40 1.40 1.40
mo =1
100 0.39 0.01 -0.01 -0.01 548 5.69 5.99 6.19 0.33 0.07 0.06 0.04 5.67 5.90 6.16 6.33
300 -0.10 -0.13 -0.15 -0.16 3.00 3.20 3.39 3.52 -0.10 -0.12 -0.14 -0.15 3.11 3.29 3.46 3.57
500 0.09 0.09 0.09 0.08 2.35 251 2.65 2.75 0.10 0.10 0.09 0.08 2.43 2.58 2.70 2.79
1000 0.04 0.04 0.05 0.06 1.66 1.77 1.88 1.95 0.04 0.05 0.06 0.07 1.71 1.82 1.91 1.97
mo = 2
100 0.27 0.29 0.27 0.33 5.73 6.85 8.33 10.58 0.28 0.38 0.41 044 5.88 7.11 8.56 10.75
300 0.22 0.15 0.18 0.20 3.23 3.75 4.62 5.89 0.22 0.18 0.20 0.23 3.32 3.84 4.67 591
500 0.10 0.09 0.11 0.14 2.49 2.90 3.55 4.51 0.11 0.12 0.14 0.17 2.60 3.00 3.63 4.57
1000 -0.03 -0.04 -0.06 -0.09 1.77 2.05 2.51 3.18 -0.02 -0.03 -0.05 -0.07 1.83 2.11 2.55 3.21
T =10
~
N mog=0
100 -0.06 -0.06 -0.06 -0.06 1.95 1.95 1.95 1.95 -0.03 -0.03 -0.03 -0.03 1.37 1.37 1.37 1.37
300 0.08 0.08 0.08 0.08 1.14 1.14 1.14 1.14 0.04 0.04 0.04 0.04 0.77 0.77 0.77 0.77
500 -0.01 -0.01 -0.01 -0.01 0.86 0.86 0.86 0.86 0.00 0.00 0.00 0.00 0.58 0.58 0.58 0.58
1000 0.00 0.00 0.00 0.00 0.62 0.62 0.62 0.62 0.00 0.00 0.00 0.00 0.42 0.42 0.42 0.42
mo =1
100 -0.07 -0.10 -0.10 -0.11 2.23 2.19 2.15 2.09 -0.06 -0.07 -0.07 -0.07 1.60 1.57 1.54 1.49
300 0.03 0.03 0.03 0.03 1.23 1.22 1.20 1.16 0.02 0.02 0.02 0.02 0.85 0.84 0.83 0.79
500 -0.02 -0.02 -0.02 -0.02 0.94 0.93 0.92 0.90 -0.01 -0.01 -0.01 -0.01 0.67 0.66 0.65 0.63
1000 0.01 0.01 0.01 0.01 0.68 0.68 0.67 0.65 0.00 0.00 0.00 0.01 0.47 0.47 0.46 0.44
mo = 2
100 1.17 0.02 -0.09 -0.08 2.81 2.43 2.33 2.27 0.31 -0.02 -0.05 -0.05 1.68 1.63 1.59 1.53
300 -0.04 -0.07 -0.06 -0.06 1.37 1.35 1.33 1.29 -0.02 -0.03 -0.02 -0.02 0.94 0.93 0.91 0.88
500 -0.03 -0.03 -0.03 -0.03 1.00 1.00 0.98 0.96 -0.01 -0.01 -0.01 -0.02 0.71 0.70 0.69 0.67
1000 0.02 0.02 0.02 0.02 0.71 0.71 0.70 0.69 0.01 0.01 0.01 0.01 0.49 0.49 048 0.47
B
N mog=0
100 -0.01 -0.01 -0.01 -0.01 3.04 3.04 3.04 3.04 -0.02 -0.02 -0.02 -0.02 3.02 3.02 3.02 3.02
300 -0.05 -0.05 -0.05 -0.05 1.73 1.73 1.7r3 1.73 -0.03 -0.03 -0.03 -0.03 1.71 1.71 1.71 1.71
500 0.00 0.00 0.00 0.00 1.34 1.34 1.34 1.34 0.00 0.00 0.00 0.00 1.33 1.33 1.33 1.33
1000 0.01 0.01 0.01 0.01 0.96 0.96 0.96 0.96 0.01 0.01 0.01 0.01 0.95 0.95 0.95 0.95
mo =1
100 0.09 0.09 0.09 0.10 3.73 3.87 3.98 4.04 0.07 0.08 0.07 0.08 3.73 3.87 3.98 4.04
300 0.01 0.01 0.01 0.01 2.15 2.24 2.29 2.32 0.02 0.02 0.02 0.02 2.14 2.22 2.28 2.31
500 0.01 0.01 0.00 0.00 1.61 1.69 1.74 1.78 0.01 0.00 0.00 -0.01 1.59 1.66 1.72 1.76
1000 0.03 0.03 0.03 0.03 1.13 1.18 1.21 1.23 0.03 0.03 0.04 0.04 1.12 1.17 1.20 1.22
mo = 2
100 -0.20 0.09 0.15 0.15 4.55 5.25 6.27 7.46 0.12 0.13 0.13 0.15 4.51 5.23 6.24 7.42
300 0.10 0.10 0.09 0.08 2.55 3.02 3.63 4.29 0.10 0.09 0.08 0.07 2.53 3.00 3.61 4.27
500 0.01 0.01 0.02 0.03 1.99 2.36 2.85 3.36 0.01 0.01 0.01 0.03 1.98 2.36 2.84 3.35
1000 0.01 0.02 0.04 0.06 1.38 1.63 1.96 2.32 0.02 0.03 0.05 0.07 1.37 1.63 1.95 2.31

Note: v and g are the coefficients of the lagged dependent variable and the x;+ regressor given in (1).
See also the note to Table A2(i).
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Table A2(iv): Size(x100) of v and /3 for the ARX(1) model,
using the estimated number of factors, m (02 = 1)

T=5 T=10
K2 025 05 1 2 025 0.5 1 2 025 0.5 1 2 025 0.5 1 2
Y9 = 0.4 Y9 = 0.8 Yo = 0.4 Y9 = 0.8
~
N mog=0
100 59 5.9 5.9 59 6.6 6.6 6.6 6.6 54 5.4 5.4 54 5.8 5.8 5.8 5.8
300 5.6 5.6 5.6 5.6 6.1 6.1 6.1 6.1 5.3 5.3 5.3 5.3 5.1 5.1 5.1 5.1
500 5.1 5.1 5.1 5.1 4.4 44 4.4 4.4 4.5 4.5 4.5 4.5 4.3 4.3 4.3 4.3
1000 5.1 5.1 5.1 5.1 5.8 5.8 5.8 5.8 49 49 49 49 5.8 5.8 5.8 5.8
mo =1
100 14.8 4.6 5.1 5.7 54 44 52 58 5.8 5.7 6.0 6.1 5.8 6.3 6.5 6.6
300 3.0 3.8 44 49 3.2 44 5.1 54 54 54 52 5.6 3.7 42 4.0 4.0
500 2.3 3.0 3.8 3.9 24 34 39 4.1 5.3 5.4 55 5.3 48 5.0 5.1 54
1000 3.2 41 45 5.0 3.5 4.1 45 438 5.1 5.2 54 5.2 5.0 53 54 54
mo = 2
100 7.5 88 5.8 5.7 6.2 45 4.7 5.1 11.1 53 5.8 6.5 6.6 5.3 5.9 6.3
300 8.0 3.3 4.1 44 44 3.7 48 5.3 4.0 5.1 54 5.5 34 44 48 438
500 5.6 2.9 3.6 4.3 3.0 3.3 4.6 5.1 3.4 3.8 43 49 3.7 44 4.7 5.0
1000 2.6 3.0 3.6 4.3 2.6 3.6 42 44 3.7 4.1 43 4.5 34 38 4.1 44
B
N mog=0
100 5.6 5.6 5.6 5.6 54 54 54 54 6.5 6.5 6.5 6.5 6.6 6.6 6.6 6.6
300 5.7 5.7 5.7 5.7 5.8 5.8 5.8 5.8 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
500 52 5.2 5.2 5.2 52 5.2 5.2 5.2 5.7 5.7 5.7 5.7 56 5.6 5.6 5.6
1000 5.0 5.0 5.0 5.0 4.9 49 49 4.9 5.6 5.6 5.6 5.6 5.8 5.8 5.8 5.8
mo = 1
100 4.8 5.1 5.6 5.6 4.9 5.3 5.5 5.6 6.2 6.4 6.3 6.1 59 6.3 6.2 64
300 4.8 44 4.9 5.0 4.6 4.8 4.9 5.2 6.4 6.5 6.0 5.6 59 6.1 5.6 54
500 5.2 5.7 5.5 54 4.9 5.1 53 5.3 49 5.0 5.2 54 5.2 5.2 5.2 54
1000 5.1 5.6 5.5 5.8 5.2 5.4 5.7 5.6 44 45 4.4 44 4.6 4.7 4.7 4.6
mo = 2
100 6.4 6.1 6.5 6.8 6.5 6.2 5.8 6.7 5.1 4.3 4.9 5.8 5.0 4.1 5.0 5.7
300 45 49 5.2 54 45 55 5.3 5.2 44 5.1 53 5.7 4.7 54 54 56
500 4.0 46 5.0 5.2 45 49 50 5.3 5.7 5.9 5.7 5.6 5.8 6.1 5.9 5.5
1000 5.4 53 49 4.9 48 5.1 5.2 4.8 5.9 5.7 53 4.9 6.2 6.0 5.3 5.0

See the note to Table A2(i).
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QML and GMM estimates: Bias, RMSE and Size for the AR(1) Case

In what follows results are only reported for T' = 10 as the GMM estimators are not computable for the
case of T'= 5 due to failure of the order condition.

Table A2(v): Bias(x100) and RMSE(x100) of ~ for the
QML and GMM estimators in the case of the AR(1) model,
using the true number of factors, mg (T = 10, % = 1)

Bias (x100) RMSE (x100)
QML GMM QML GMM
QD1 QD2 FD1  FD2 QD1 QD2 FD1 FD2

mo 1
N Yo = 0.4
100 -0.06 47.59 46.28 -77.87 -T1.71 4.37 48.52 47.71 79.19 73.47
300 -0.05 48.22 45.18 -67.05 -55.28 2.46 49.30 47.25 68.19 56.85
500 0.00 47.26 42.83 -62.18 -48.23 1.86 48.63 45.64 62.83 49.40
1000 -0.03 44.17 37.98 -55.13 -39.34 1.32 46.17 42.08 55.69 40.28
Yo = 0.8
100 0.26 17.82 17.85 -103.25 -100.24 4.80 17.86 17.89 104.33 102.19
300 0.03 17.83 17.74 -89.22 -77.41 2.48 18.18 18.07 90.14 79.44
500 0.06 17.57 17.44 -81.44 -65.55 1.83 18.90 18.81 82.30 67.37
1000 -0.02 17.50 17.35 -72.58 -52.73 1.33 18.87 18.82 73.30 54.20
mo 2
N v9=04
100 -0.06 36.71 36.04 -31.72 -28.39 5.12  42.41 4249 56.67 55.29
300 -0.11 31.22 29.25 -11.99 -7.84 2.82 40.23 38.88 37.23 32.67
500 -0.09 25.70 23.64 -1.81 0.31 2.16 36.29 34.28 23.75 19.81
1000 0.04 16.64 14.62 2.66 2.90 1.57 28.58 26.14 10.95 8.99
Yo = 0.8
100 0.18 14.76 14.79 -97.44 -97.95 5.08 2292 23.33 110.76 112.19
300 -0.01 15.15 15.00 -68.59 -67.07 2.75 2347 23.67 89.36 88.73
500 -0.04 16.02 15.94 -46.19 -43.19 2.11 21.06 21.08 71.95 69.03
1000 0.05 14.93 14.81 -27.04 -23.18 1.48 22.68 22.72 53.52 48.06

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first-difference
ALS one step and two step estimators respectively computed as described in Sec-
tion II. See also the note to Table A2(ii).

Table A2(vi): Size(x100) of v for the QML and
GMM estimators in the case of the AR(1) model,
using the true number of factors, mg (T' = 10, xk? = 1)

QML GMM QML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
mo 1 2
N ~v9=04

100 6.5 955 984 97.7 1000 4.8 739 818 515 71.0
300 58 953 98.7 97.9 100.0 4.9 64.2 70.2 34.1 50.2
500 5.3 951 99.6 97.8 100.0 3.7 54.5 61.8 22.5 38.0
1000 53 922 99.5 97.8 100.0 5.3 41.1 484 150 27.3
Y =08
100 7.2 99.8 100.0 98.8 100.0 44 958 97.3 80.2 364
300 5.0 100.0 100.0 98.3 100.0 4.7 96.7 97.2 62.1 72.0
500 4.8 99.9 100.0 98.2 100.0 5.1 96.8 97.3 46.6 58.3
1000 4.6 99.8 100.0 98.7 100.0 4.7 954 96.3 32.4 43.8

See the note to Table A2(v).
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A3: Power Functions

Figure A3(i): Power functions for estimation of y in the AR(1) model with different
values of m and N (k?=0.25)
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Note: ——N=100 ----N=300 -« N=500 =---- N=1000. is estimated using the sequential MTLR procedure

described in Section 6.1 with an=p/N(T-2) and p=0.05; v is the coefficient of the lagged dependent variable given
in (1) in the absence of the xit regressors. See also the note to Table 1.
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Figure A3(ii): Power functions for estimation of y in the ARX(1) model with different values of m and
N (k2=0.25)

Panel A: T=5

100.0 100.0
80.0 80.0
60.0 60.0
40.0 40.0
20.0 20.0

0.0 0.0
100.0 100.0
80.0 80.0
60.0 60.0
40.0 40.0
20.0 : 20.0

0.0 ’ 0.0

GNbEEEtEEEE8588
Panel B: T=10
100.0 100.0
80.0 80.0
60.0 60.0
40.0 40.0
20.0 20.0
0.0 0.0
100.0 100.0
80.0 80.0
60.0 60.0
40.0 40.0
20.0 20.0
0.0 0.0
Note: ——N=100 =-==N=300 === N=500 =-=-= N=1000. s estimated using the sequential MTLR procedure

described in Section 6.1 with an=p/N(T-2) and p=0.05; y and B are the coefficients of the lagged dependent
variable and the xit regressor given in (1). See also the note to Table 1.
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Figure A3(iii): Power functions for estimation of 3 in the ARX(1) model with different values of m and

Panel A: T=5
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Figure A3(iv): Power functions for estimation of y in the AR(1) model with different

values of m and N (k2=0.5)
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Figure A3(v): Power functions for estimation of y in the ARX(1) model with different values of m and
N (k2=0.5)
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Figure A3(vi): Power functions for estimation of 3 in the ARX(1) model with different values of m and
N (k?=0.5)
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Figure A3(vii): Power functions for estimation of y in the AR(1) model with different

values of m and N (?=2)
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Figure A3(viii): Power functions for estimation of y in the ARX(1) model with different values of m

and N (k?=2)
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Figure A3(ix): Power functions for estimation of 3 in the ARX(1) model with different values of m and
N (k%=2)
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S.6 Unit Root Case (7, =1)

B1: Selecting the number of factors

Table B1(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure in the
case of the AR(1)

K2 0.25 0.5 1 2
mo 0 1 2 0 1 2 0 1 2 0 1 2
N T=5

100 99.5 58.8 1.4 99.5 988 321 99.5 99.6 96.5 99.5 99.6 100.0
300 99.8 100.0 29.7 99.8 99.9 98.9 99.8 99.9 100.0  99.8 99.9 100.0
500 99.8 100.0 74.7  99.8 100.0 100.0  99.8 100.0 100.0  99.8 100.0 100.0
1000 99.9 100.0 100.0  99.9 100.0 100.0  99.9 100.0 100.0  99.9 100.0 100.0
T =10
100  99.5 97.6 187  99.5 99.6 94.8 99.5 99.6 99.6 99.5 99.6 99.6
300 100.0 99.9 97.8 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0
500 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0
1000 99.9 100.0 100.0  99.9 100.0 100.0  99.9 100.0 100.0  99.9 100.0 100.0

Note: m is estimated using the sequential MTLR procedure described in Section 6.1 with
an = W and p = 0.05. See also the note to Table 6.

Table B1(ii): Empirical frequency of correctly selecting the true number of factors, mg, using the

sequential MTLR procedure in the case of the ARX(1)

T=5
N k2 =0.25 k2 =05
mo 0 1 2 0 1 2
a2 05 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
100 995 99.6 99.6 57.8 57.7 57.6 13 13 12 995 996 99.6 99.2 99.3 992 325 323 323
300 100.0 100.0 100.0 100.0 100.0 100.0 26.3 26.4 26.4 100.0 100.0 100.0 100.0 100.0 100.0  99.5 99.5 99.5
500 99.9 99.9 99.9 100.0 100.0 100.0 71.3 71.5 715 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
k2 =1 KZ =2
mo 0 1 2 0 1 2
a2 05 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 05 1 1.5 0.5 1 1.5
100 995 99.6 99.6 999 999 999 ~97.3 97.2 97.3 995 99.6 99.6 999 99.9 99.9 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T =10
k2 =0.25 k2 =05
mo 0 1 2 0 1 2
o2 05 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 05 1 1.5
100 99.3 99.3 99.3 981 982 98.2 20.1 19.95 19.7 99.3 99.3 99.3  99.7 99.7 99.7 95.05 94.9 94.9
300 100.0 100.0 100.0 100.0 100.0 100.0 98.3 98.3 98.3 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0  99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9 100.0 100.0 100.0
,iz — K,z =
mo 0 1 2 0 1 2
a2 05 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
100 99.3 99.3 99.3 ~99.7 99.7 99.7 100.0 99.8 99.8 ~99.3 99.3 99.3 ~99.7 99.7 99.7 ~99.6 99.6 99.7
300 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0  99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

See the note to Table B1(i).
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B2: Bias, RMSE and Size

B2(i): Bias(x100), RMSE(x100) and Size(x100) of v for the
AR(1) model, using the estimated number of factors, m

Bias(x100) RMSE(x100) Size(x100)
K2 0.25 0.5 1 2 0.25 0.5 1 2 025 05 1 2
T=5
N mog=0

100 -1.49 -1.49 -1.49 -1.49 2.74 2.74 2.74 2.74 3.8 3.8 3.8 3.8
300 -0.89 -0.89 -0.89 -0.89 1.69 1.69 1.69 1.69 3.1 3.1 3.1 3.1
500 -0.67 -0.67 -0.67 -0.67 1.08 1.08 1.08 1.08 26 2.6 2.6 2.6
1000 -0.53 -0.53 -0.53 -0.53 1.25 1.25 1.25 1.25 24 24 24 24
mo =1
100 -2.81 -3.04 -2.99 -2.97 544 580 5.70 5.66 4.3 44 54 6.0
300 -1.87 -1.84 -1.83 -1.82 3.48 3.45 3.43 3.42 2.8 4.0 4.9 5.2
500 -1.38 -1.35 -1.34 -1.34 2.34 2.27 2.25 2.24 2.8 34 3.7 3.9
1000 -0.99 -0.98 -0.97 -0.97 1.67 1.65 1.64 1.64 2.2 3.3 34 3.9
mo = 2
100 -2.01 -2.93 -3.00 -2.91 3.64 5.57 5.09 4.90 42 35 5.1 5.9
300 -1.65 -1.75 -1.70 -1.68 3.39 3.05 2.93 2.88 2.3 3.0 39 45
500 -1.43 -1.39 -1.37 -1.36 2.53 2.34 2.30 2.28 1.1 2.3 3.2 3.9
1000 -1.01 -0.99 -0.99 -0.98 1.70 1.66 1.65 1.65 14 25 3.3 3.7
T =10

N mog=0
100 -0.53 -0.53 -0.53 -0.53 1.24 1.24 1.24 1.24 3.3 3.3 3.3 3.3
300 -0.33 -0.33 -0.33 -0.33 0.50 0.50 0.50 0.50 4.2 4.2 4.2 4.2
500 -0.26 -0.26 -0.26 -0.26  0.37 0.37 0.37 0.37 2.5 25 2.5 2.5
1000 -0.20 -0.20 -0.20 -0.20 0.33 0.33 0.33 0.33 3.0 3.0 3.0 3.0

mo =1
100 -0.63 -0.62 -0.61 -0.61 1.03 1.01 1.01 1.00 2.3 2.7 3.0 3.2
300 -0.40 -0.40 -0.39 -0.39 0.99 0.96 0.95 0.95 2.4 2.7 2.8 2.8
500 -0.31 -0.31 -0.31 -0.31 0.46 0.46 0.46 0.46 2.1 2.7 29 3.1
1000 -0.24 -0.24 -0.24 -0.24 0.33 0.33 0.33 0.33 2.2 23 24 26

mo = 2
100 -0.67 -0.68 -0.65 -0.65 1.43 1.41 1.11 1.10 3.2 3.3 3.8 4.0
300 -0.39 -0.38 -0.39 -0.38 0.61 0.60 0.59 0.59 1.5 19 23 28
500 -0.32 -0.32 -0.31 -0.32 0.48 0.48 0.48 0.48 1.8 2.2 24 238
1000 -0.24 -0.24 -0.24 -0.24 0.33 0.33 0.33 0.33 1.4 1.8 2.1 2.2

Note: ~ is the coefficient of the lagged dependent variable given in (1) in the
absence of the x;; regressors. See also the note to Table B1(i).
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Table B2(ii): Bias(x100), RMSE(x100) and Size(x100) of
v and f for the ARX(1) model, using the estimated number
of factors, m (02 = 1)

Bias(x100) RMSE(%100) Size(x100)
k2 025 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2
T=5
5
N mog=0

100 -1.28 -1.28 -1.28 -1.28 2.17 2.17 2.17 2.17 3.7 3.7 3.7 3.7
300 -0.77 -0.77 -0.77 -0.77 1.27 1.27 1.27 1.27 34 34 34 34
500 -0.58 -0.58 -0.58 -0.58 0.94 0.94 094 0.94 3.2 3.2 3.2 3.2
1000 -0.46 -0.46 -0.46 -0.46 0.70 0.70 0.70 0.70 3.3 3.3 3.3 3.3

mo =1

100 -1.84 -1.98 -2.00 -2.02 3.16 3.42 3.46 3.49 2.9 29 39 45
300 -1.19 -1.22 -1.24 -1.26 1.97 2.01 2.05 2.08 1.8 2.3 2.3 2.9
500 -0.93 -0.95 -0.97 -0.98 1.54 1.58 1.61 1.63 23 26 23 3.0
1000 -0.70 -0.73 -0.75 -0.76 1.15 1.19 1.23 1.25 2.7 3.3 3.5 3.7

100 -1.56 -1.96 -2.02 -2.07 2.68 3.38 3.52 3.59 4.2 3.2 3.5 4.2
300 -1.06 -1.16 -1.19 -1.22 1.81 2.01 2.06 2.11 1.8 2.6 3.0 3.5
500 -0.90 -0.94 -0.97 -1.00 1.51 1.56 1.61 1.66 1.3 1.9 25 2.7
1000 -0.66 -0.69 -0.71 -0.73 1.08 1.12 1.16 1.20 1.9 24 28 3.1

B

N mog=0

100 -0.58 -0.58 -0.58 -0.58  4.47 4.47 4.47 4.47 5.5 5.5 5.5 5.5
300 -0.30 -0.30 -0.30 -0.30 2.55 2.55 2.55 2.55 5.0 5.0 5.0 5.0
500 -0.21 -0.21 -0.21 -0.21 1.94 194 194 1.94 4.0 4.0 4.0 4.0
1000 -0.18 -0.18 -0.18 -0.18 1.39 1.39 1.39 1.39 44 44 44 44

mo =1

100 -0.84 -0.95 -0.97 -0.99 5.44 5.68 5.95 6.15 4.2 4.1 45 438
300 -0.62 -0.66 -0.69 -0.72 3.04 3.21 3.38 3.50 3.8 4.0 42 3.9
500 -0.32 -0.34 -0.36 -0.38 2.36 2.49 2.62 2.71 4.7 4.9 45 4.3
1000 -0.26 -0.27 -0.27 -0.27 1.68 1.78 1.87 1.94 3.9 41 44 45

mo = 2

100 -0.61 -0.69 -0.59 -0.47 5.70 6.84 8.26 10.46 5.8 5.1 5.1 6.3
300 -0.30 -0.32 -0.29 -0.23 3.25 3.77 4.61 5.86 3.7 4.0 45 4.6
500 -0.30 -0.29 -0.27 -0.21 2,51 291 3.56 4.50 3.1 34 39 43
1000 -0.31 -0.33 -0.34 -0.35 1.81 2.09 2.54 3.20 4.2 45 4.6 4.3

T =10

i

N mog=0

100 -0.43 -0.43 -0.43 -0.43 0.67 0.67 0.67 0.67 3.3 3.3 3.3 3.3
300 -0.26 -0.26 -0.26 -0.26 0.37 0.37 0.37 0.37 2.1 21 21 21
500 -0.22 -0.22 -0.22 -0.22 0.30 0.30 0.30 0.30 2.5 25 25 2.5
1000 -0.18 -0.18 -0.18 -0.18 0.23 0.23 0.23 0.23 2.9 29 29 29

mo = 1

100 -0.53 -0.53 -0.53 -0.53 0.84 0.84 0.84 0.84 3.0 3.6 3.6 3.6
300 -0.30 -0.30 -0.31 -0.31 045 0.45 0.46 0.46 1.9 2.0 2.3 2.1
500 -0.26 -0.26 -0.26 -0.26 0.37 0.37 0.37 0.37 2.0 25 2.8 2.5
1000 -0.20 -0.20 -0.20 -0.20 0.26 0.26 0.26 0.26 1.9 22 22 23

mo = 2

100 -0.50 -0.49 -0.50 -0.50 0.79 0.79 0.80 0.81 2.7 20 2.4 28
300 -0.31 -0.31 -0.32 -0.32 0.46 047 047 0.48 2.0 2.0 2.1 1.9
500 -0.26 -0.26 -0.27 -0.27 0.37 0.38 0.39 0.39 23 24 25 28
1000 -0.19 -0.20 -0.20 -0.20 0.25 0.26 0.26 0.27 1.5 1.7 2.0 2.0

B

N mog=0

100 -0.13 -0.13 -0.13 -0.13 3.01 3.01 3.01 3.01 6.2 6.2 6.2 6.2
300 -0.09 -0.09 -0.09 -0.09 1.72 1.72 1.72 1.72 5.6 56 5.6 5.6
500 -0.05 -0.05 -0.05 -0.05 1.33 1.33 1.33 1.33 5.3 5.3 5.3 5.3
1000 -0.03 -0.03 -0.03 -0.03 0.95 0.95 0.95 0.95 4.8 48 4.8 4.8

mo =1

100 -0.04 -0.02 -0.02 -0.02 3.70 3.84 3.95 4.01 5.6 59 6.0 6.1
300 -0.05 -0.04 -0.04 -0.04 2.13 2.22 2.27 231 5.5 5.8 5.3 5.0
500 -0.04 -0.05 -0.05 -0.05 1.59 1.66 1.72 1.75 4.7 4.8 4.5 4.7
1000 -0.01 0.00 0.00 0.00 1.12 1.17 1.20 1.22 4.3 41 3.8 4.2

mo = 2

100 0.00 0.14 0.28 0.42 4.51 5.22 6.25 7.44 4.6 4.2 52 5.1
300 0.07 0.11 0.17 0.24 2.52 2.99 3.60 4.27 4.4 49 5.0 5.0
500 -0.01 0.03 0.09 0.18 1.98 2.35 2.83 3.35 5.1 5.6 5.8 5.0
1000 0.00 0.05 0.11 0.18 1.37 1.63 1.95 2.31 5.5 4.9 4.7 4.0

Note: v and [ are the coefficients of the lagged dependent variable and the x;;
regressor given in (1). See also the note to Table B1(i).
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B3: Power Functions

Figure B3(i): Power functions for estimation of y in the AR(1) model with different
values of m and N (?=0.25)
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Figure B3(ii): Power functions for estimation of y in the ARX(1) model with different
values of m and N (k?=0.25)
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described in Section 6.1 with an=p/N(T-2) and p=0.05; y and B are the coefficients of the lagged dependent
variable and the xi: regressor given in (1). See also the note to Table 4.

Figure B3(iii): Power functions for estimation of 3 in the ARX(1) model with different
values of m and N (?=0.25)
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Figure B3(iv): Power functions for estimation of y in the AR(1) model with different
values of m and N (k2=0.5)
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Figure B3(v): Power functions for estimation of y in the ARX(1) model with different
values of m and N (k2=0.5)

Panel A: T=5
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Figure B3(vi): Power functions for estimation of § in the ARX(1) model with different
values of m and N (k2=0.5)
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Figure B3(vii): Power functions for estimation of y in the AR(1) model with different
values of m and N (k2=2)

Panel A: T=5
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Figure B3(viii): Power functions for estimation of y in the ARX(1) model with different
values of m and N (2=2)
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Note: ——N=100 =---=N=300 == N=500 =:=-- N=1000. See also the note to Figure B3(ii).
Figure B3(ix): Power functions for estimation of 3 in the ARX(1) model with different
values of m and N (k?=2)
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S.7 Monte Carlo experiments for the robustness analysis

C1: Initial values deviating from the steady state distribution

Table C1(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure

(62=1,K%=1)
T=5 T =10
mo 0 1 2 0 1 2 0 1 2 0 1 2
Yo =0.4 Y9 = 0.8 Y9 =0.4 Y9 = 0.8
N AR(1)
100 994 99.7 87.8 99.2 99.7 96.2 99.7 99.5 99.7 99.6 99.5 99.7
300 99.7 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.8 100.0 100.0
1000 99.9 100.0 100.0 99.8 100.0 100.0 99.9 100.0 100.0 99.5 100.0 100.0
ARX(1)
100 99.7 100.0 96.5 99.5 99.9 96.8 99.4 99.6 99.7 99.6 99.6 99.8
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 99.8
500 99.9 99.9 100.0 99.9 99.9 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 99.9 100.0 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note: y;; is generated as v = a; + 0¢ + Yyi,e—1 + Bzt + (40 Cip = 'r]éft + wu;¢ for

1=1,2,..,N;t=1,..,T with y;0 = K1t;9 + K200 (ui0/0) and k1, k2 = 1.2,0.8. Under
mo = 0, ¥t = o + 0t + YYi,t—1 + Bxit + uie. In the case of the AR(1) model, 8 = 0.
m is estimated using the sequential MTLR procedure described in Section 6.1 with

anN =

D
N(T—2)

and p = 0.05. See also the note to Table 1.

Table C1(ii): Bias(x100), RMSE(x100) and Size(x100) of « for the AR(1) model, using the

estimated number of factors, m (k2 = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
N mog=0
100 0.56 9.26 6.4 0.74 12.46 22.0 -0.02 3.83 6.1 1.91 7.86 15.4
300 -0.01 4.47 5.5 1.17 9.10 19.2 -0.05 2.22 5.3 0.71 4.73 8.3
500 0.02 3.36 4.7 1.39 7.73 15.4 -0.01 1.72 5.8 0.24 3.03 6.4
1000 0.01 2.41 4.7 1.04 6.07 11.2 -0.01 1.25 5.6 0.20 2.39 6.0
mo =1
100 0.73 11.21 5.7 1.27 13.68 24.2 -0.04 4.52 5.9 0.38 5.37 6.6
300 -0.08 5.71 5.0 1.16 9.98 16.7 0.01 2.55 4.8 0.08 2.73 4.9
500 0.09 4.19 3.7 1.35 8.22 11.5 -0.06 2.06 6.4 0.02 2.15 5.4
1000 0.04 3.07 5.2 0.91 6.22 7.8 -0.03 1.42 4.8 -0.02 1.46 4.9
mo = 2
100 4.81 17.79 14.6 1.69 14.06 23.8 -0.13 5.57 5.1 0.34 6.25 7.0
300 0.28 5.72 3.2 1.63 9.90 14.2 0.02 3.07 4.8 0.09 3.16 3.7
500 0.08 4.36 2.9 1.34 8.16 9.6 -0.10 2.35 4.6 -0.08 2.36 4.3
1000 0.03 2.99 3.6 0.75 5.82 5.8 0.00 1.75 4.7 0.03 1.65 4.4

Note: « is the coefficient of the lagged dependent variable given in (1) in the absence of the x;; regressors. See also the note

to Table C1(i).
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Table C1(

): Bias(x100), RMSE(x100) and Size(x100) of v and /3 for the ARX(1) model,

using the estimated number of factors, m (02 =1, k? = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
o
N mog=0
100 -0.12 3.64 5.7 -0.05 3.15 6.8 -0.06 1.99 5.7 -0.03 1.41 6.8
300 -0.04 2.08 6.1 -0.06 1.79 5.7 0.07 1.17 6.1 0.03 0.80 5.7
500 0.02 1.55 5.3 0.01 1.34 5.1 -0.01 0.88 5.3 0.00 0.60 5.1
1000 -0.05 1.14 5.6 -0.04 0.98 5.6 0.00 0.64 5.6 0.00 0.44 5.6
mo =1
100 0.12 4.60 5.4 0.26 4.98 5.4 -0.10 2.22 6.1 -0.07 1.60 6.4
300 -0.04 2.56 4.6 0.01 2.68 4.2 0.03 1.25 5.7 0.03 0.87 4.7
500 0.02 1.97 4.0 0.03 2.03 3.7 -0.02 0.96 5.1 -0.02 0.69 5.5
1000 -0.06 1.44 5.0 -0.04 1.48 4.7 0.01 0.69 5.5 0.00 0.49 5.4
mo = 2
100 0.41 5.09 6.1 0.52 5.27 4.9 -0.10 2.42 6.0 -0.06 1.66 5.4
300 0.04 2.64 4.1 0.08 2.78 4.0 -0.06 1.38 5.4 -0.02 0.96 4.9
500 0.07 2.09 4.6 0.10 2.22 4.9 -0.03 1.02 4.2 -0.01 0.73 4.5
1000 0.05 1.49 4.0 0.05 1.54 4.5 0.02 0.73 4.4 0.01 0.51 4.4
B
mo =0
100 -0.05 4.45 5.8 -0.04 4.57 5.8 -0.02 3.03 5.8 -0.02 3.02 5.8
300 0.02 2.53 5.7 0.00 2.58 5.6 -0.05 1.73 5.7 -0.03 1.71 5.6
500 0.04 1.92 5.1 0.04 1.97 4.8 0.00 1.34 5.1 0.00 1.33 4.8
1000 0.00 1.38 5.1 0.00 1.41 5.1 0.01 0.96 5.1 0.01 0.95 5.1
mo =1
100 0.01 6.02 5.7 0.08 6.19 5.5 0.09 3.98 6.2 0.08 3.98 6.2
300 -0.14 3.41 4.9 -0.12 3.48 5.1 0.01 2.29 5.8 0.02 2.28 5.5
500 0.09 2.67 5.4 0.10 2.73 5.2 0.00 1.74 5.1 0.00 1.72 5.1
1000 0.04 1.88 5.8 0.05 1.92 5.5 0.03 1.21 4.3 0.04 1.20 4.7
mo = 2
100 0.28 8.34 6.3 0.43 8.59 5.9 0.14 6.26 5.2 0.15 6.24 5.2
300 0.18 4.62 5.3 0.21 4.68 5.3 0.09 3.63 5.4 0.08 3.61 5.5
500 0.12 3.56 5.1 0.15 3.64 5.2 0.02 2.84 5.9 0.01 2.84 5.8
1000 -0.06 2.51 4.7 -0.05 2.55 5.0 0.04 1.96 5.3 0.05 1.95 5.4
Note: v and 8 are the coefficients of the lagged dependent variable and the x;+ regressor given in (1). See also the note to

Table C1(i).

C2: Alternative p-values (p = 0.01, p = 0.10) for implementing the MTLR test
» Results for p = 0.01

Table C2(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure
(02=1,Kk2=1)

T=5 T =10
mo 0 1 2 0 1 2 0 1 2 0 1 2
Yo =04 Y5 =038 Yo =04 Yo = 0.8

N AR(D)

100 99.7 99.9 804 99.7 999 931 999 998 99.9 100.0 99.8 99.9

300 99.9 100.0 100.0  99.9 100.0 100.0  99.8 100.0 100.0  99.9 100.0 100.0

500 100.0 100.0 100.0 100.0 100.0 100.0  99.9 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0  99.8 100.0 100.0  99.8 100.0 100.0
ARX(1)

100 100.0 100.0 93.3 100.0 100.0 943 998 99.7 99.9 99.8 99.7 99.9

300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

500 100.0 99.9 100.0  99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: m is estimated using the sequential MTLR procedure described in Section 6.1
with any = ﬁ and p = 0.01. See also the note to Table 1.
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Table C2(ii): Bias(x100), RMSE(x100) and Size (x100) of « for the AR(1) model,
using the estimated number of factors, m (k? = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo =0.4 Yo = 0.8 Yo =0.4 Yo = 0.8
N mg=0
100 0.44 8.64 6.1 0.73 12.11 21.2 -0.02 3.75 6.4 1.96 7.89 16.3
300 -0.03 4.26 5.4 1.41 9.26 19.2 -0.04 2.18 5.1 0.69 4.61 8.7
500 0.03 3.22 4.8 1.48 7.7 14.5 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.02 6.07 12.1 -0.01 1.22 5.4 0.22 2.37 5.8
mo =1
100 0.45 9.32 5.1 1.43 13.00 19.6 -0.04 4.19 6.1 0.25 4.61 4.9
300 -0.10 4.98 5.1 0.99 9.04 11.9 0.02 2.38 4.5 0.08 2.41 4.7
500 0.05 3.68 3.9 0.96 7.12 7.1 -0.05 1.91 6.0 0.01 1.88 5.4
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 4.9 0.00 1.30 4.2
mo = 2
100 6.94 20.36 17.9 1.93 13.52 20.9 -0.09 5.13 5.9 0.19 5.32 5.3
300 0.20 4.99 3.9 1.38 8.97 10.3 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 3.1 0.98 7.06 6.3 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 3.3 0.45 4.81 4.4 0.00 1.59 4.7 0.01 1.44 4.0
Note: « is the coefficient of the lagged dependent variable given in (1) in the absence of the x;¢ regressors. See also
the note to Table C2(i).
Table C2(iii): Bias(x100), RMSE(x100) and Size (x100) of v and g for the ARX(1)
model, using the estimated number of factors, m (02 =1, k% = 1)
T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo =04 Yo =08 Yo =04 Yo =08
o
N mg=0
100 -0.14 3.45 5.9 -0.07 2.98 6.6 -0.05 1.94 5.4 -0.03 1.36 5.9
300 -0.04 1.97 5.6 -0.05 1.70 6.0 0.08 1.14 5.3 0.04 0.77 5.0
500 0.02 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.2 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8
mo =1
100 0.09 4.28 5.1 0.23 4.74 5.2 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.82 4.0
500 0.01 1.83 3.8 0.03 1.91 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4
mo = 2
100 0.46 4.84 6.3 0.48 4.99 4.6 -0.09 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1
B
mo =0
100 -0.06 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.00 2.58 5.8 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8
mo =1
100 -0.01 5.98 5.6 0.05 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.10 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.87 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7
mo = 2
100 0.27 8.35 6.4 0.41 8.57 5.9 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

Note: v and (8 are the coefficients of the lagged dependent variable and the x;+ regressor given in (1). See also the

note to Table C2(i).
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» Results for p =0.10

Table C2(iv): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure

(62=1,K%>=1)
T=5 T =10
mg O 1 2 0 1 2 0 1 2 0 1 2
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8

N AR(D)
100 99.4 99.5 91.7 99.0 995 97.5  99.3 99.4 99.4  99.3 995 99.4
300 99.7 99.9 100.0 99.7 100.0 100.0  99.7 99.9 99.9  99.7 100.0 99.9
500 99.9 100.0 100.0 99.6 100.0 100.0  99.8 99.9 100.0  99.9 99.9 100.0
1000 99.9 100.0 100.0 99.8 100.0 100.0 ~ 99.6 100.0 100.0  99.5 100.0 100.0

ARX(1)
100 99.5 99.8 97.6 99.4 99.7 98.0 99.2 99.4 99.6 99.1 99.4 99.6
300 99.8 100.0 100.0 99.7 100.0 100.0 100.0 99.9 99.7 100.0 99.9 99.8
500 99.8 99.9 100.0 99.9 99.9 100.0  99.9 100.0 100.0  99.9 100.0 100.0
1000 99.9 99.9 100.0 99.8 99.9 100.0  99.9 100.0 100.0  99.9 100.0 100.0

Note: m is estimated using the sequential MTLR procedure described in Section 6.1

with ay = ﬁ

and p = 0.10. See also the note to Table 1.

Table C2(v): Bias(x100), RMSE(x100) and Size (x100) of v for the AR(1) model,
using the estimated number of factors, m (k2 = 1)

T=5 T=10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
N mog=0
100 0.40 8.71 6.2 0.59 12.38 21.3 -0.03 3.77 6.4 1.94 7.91 16.4
300 -0.02 4.26 5.4 1.39 9.32 19.2 -0.04 2.18 5.1 0.67 4.60 8.7
500 0.03 3.22 4.8 1.42 7.85 14.6 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.00 6.08 12.1 -0.01 1.22 5.4 0.18 2.24 5.7
mo =1
100 0.41 9.41 5.1 1.34 13.23 19.7 -0.05 4.21 9.6 0.23 4.64 19.3
300 -0.08 5.02 5.1 1.00 9.04 11.9 0.02 2.38 3.9 0.08 2.41 10.3
500 0.05 3.68 3.9 0.94 7.16 7.1 -0.05 1.91 3.1 0.01 1.88 6.3
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 3.3 0.00 1.30 4.4
mo = 2
100 3.15 14.91 6.1 1.76 13.30 4.9 -0.08 5.13 5.9 0.18 5.33 5.3
300 0.20 4.99 4.5 1.38 8.97 4.7 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 6.0 0.98 7.06 5.4 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 4.9 0.45 4.81 4.2 0.00 1.59 4.7 0.01 1.44 4.0

Note: « is the coefficient of the lagged dependent variable given in (1) in the absence of the x;¢ regressors. See also

the note to Table C2(iv).
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Table C2(vi): Bias(x100), RMSE(x100) and Size (x100) of v and 8 for the ARX(1)
model, using the estimated number of factors, m (02 =1, 2 = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
o
N mog=0
100 -0.14 3.45 5.9 -0.07 3.03 6.6 -0.06 1.95 5.4 -0.03 1.37 5.8
300 -0.04 1.97 5.6 -0.05 1.74 6.1 0.08 1.14 5.3 0.04 0.77 5.1
500 0.01 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.1 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8
mo =1
100 0.10 4.30 5.1 0.23 4.76 5.3 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.83 4.0
500 0.01 1.83 3.8 0.02 1.92 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4
mo = 2
100 0.34 4.68 5.7 0.45 4.97 4.7 -0.08 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1
[E]
mo =0
100 -0.05 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.00 2.58 5.9 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8
mo =1
100 -0.01 5.99 5.6 0.06 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.09 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.88 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7
mo = 2
100 0.27 8.33 6.4 0.41 8.55 5.8 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

Note: v and (8 are the coefficients of the lagged dependent variable and the x;+ regressor given in (1). See also the
note to Table C2(iv).

C3: Correlation of factor loadings and regressors

In this experiment we allow the factor loadings n, in the Monte Carlo design outlined in Section 7.1 to
be correlated with the regressors x;; according to

N = “\/mTO [(VT%i/ou) + v for £=1,2,....mo (S.39)

where ¥; = T—1 ZtT:1Vit7 with v;; representing the idiosyncratic component of x;;, defined by (41), and
vie ~ IIDN (0,1), for £ = 1,2,...,mg. The above formulation ensures that Var (n,) = ;--, as in the
baseline case where the loadings are uncorrelated with the regressors. The rest of the parameters are as
described in Section 7.1.
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Table C3(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure

(62=1,Kk2=1)
T=5 T =10

mo 1 2 1 2 1 2 1 2

Y9 = 0.4 Y9 = 0.8 Y9 = 0.4 Y9 = 0.8
N AR(1)
100 99.7 100.0 99.6 100.0 99.6 99.8 99.5 99.7
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ARX(T)
100  99.9 100.0  99.9 100.0 99.6 99.7 99.6 99.7
300 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.8
500 99.9 100.0  99.9 100.0 100.0 100.0 100.0 100.0
1000 99.9 100.0  99.9 100.0 100.0 100.0 100.0 100.0

Note: y;¢ is generated as y;t = g + 0t + YWit—1 + Bxie + Cip, Cop = Mife + gy for
1=1,2,..,N;t =1,..,T with yjo = p;9+0io0 (uio/o). The factor loadings are generated
as 1, = m/mio [(\/T\’/i/crv) +’Uig], for £ = 1,2,...,mg where v; = T_lz;rzlvit,
and vy ~ IIDN (0,1), for £ = 1,2,...,mo. In the case of the AR(1) model, 8 = 0.
m is estimated using the sequential MTLR procedure described in Section 6.1 with

aN —

P
N(T—2)

and p = 0.05. See also the note to Table 1.

Table C3(ii): Bias(x100), RMSE(x100) and Size(x100) of v for the AR(1) model, using the
estimated number of factors, m, and the true number, mg (k% = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100)  (x100) (x100) (x100) (x100) (x100) (x100)  (x100) (x100) (x100)
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
N mg=1
100 0.20 7.36 6.4 1.21 10.81 10.5 -0.05 3.68 5.6 0.08 3.41 5.5
300 -0.13 3.96 5.6 0.30 6.30 6.4 0.01 2.09 4.9 0.04 1.83 5.0
500 0.02 2.91 4.7 0.34 4.67 4.1 -0.06 1.67 5.8 -0.01 1.43 5.3
1000 0.04 2.11 5.5 0.24 3.27 4.8 -0.01 1.16 5.3 0.00 1.00 4.6
mo = 2
100 0.23 7.37 5.1 1.33 10.68 9.3 -0.05 4.40 6.5 0.02 3.79 6.3
300 0.12 3.91 4.3 0.67 6.22 5.0 0.05 2.43 5.3 0.06 2.00 4.5
500 0.03 3.01 4.2 0.38 4.65 3.6 -0.09 1.87 4.8 -0.08 1.56 5.4
1000 0.01 2.06 4.2 0.17 3.15 3.7 -0.01 1.36 5.0 0.00 1.07 4.0

Note: « is the coefficient of the lagged dependent variable given in (1) in the absence of the x;; regressors. See also the note

to Table C3(i).
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Table C3(iii): Bias(x100), RMSE(x100) and Size(x100) of v and  for the ARX(1) model,
using the estimated number of factors, m, and the true number, mg (02 = 1, K2 = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
i
N mo=1
100 0.02 4.01 5.9 0.10 4.49 5.8 -0.08 2.09 6.4 -0.05 1.51 6.3
300 -0.12 2.28 5.6 -0.14 2.48 6.4 0.04 1.16 5.4 0.04 0.80 4.2
500 -0.06 1.74 4.2 -0.11 1.85 4.2 -0.01 0.90 5.4 0.01 0.63 5.5
1000 -0.11 1.28 4.8 -0.15 1.36 5.2 0.02 0.65 5.5 0.03 0.45 5.5
mo = 2
100 0.07 4.27 5.8 0.19 4.73 5.7 -0.07 2.28 6.6 -0.02 1.57 6.2
300 -0.04 2.33 4.4 -0.06 2.55 5.0 -0.06 1.30 5.9 0.00 0.90 4.9
500 -0.04 1.84 4.4 -0.08 2.04 5.8 -0.03 0.96 5.1 0.01 0.68 5.5
1000 -0.06 1.32 4.6 -0.12 1.44 5.2 0.02 0.69 4.7 0.03 0.48 4.2
B
N mp=1
100 0.01 6.20 5.3 0.04 6.34 5.5 0.07 4.05 6.2 0.06 4.06 6.3
300 -0.15 3.53 5.1 -0.18 3.59 5.2 -0.01 2.33 5.6 0.00 2.32 5.5
500 0.07 2.77 5.6 0.04 2.81 5.3 -0.02 1.78 5.5 -0.02 1.76 5.4
1000 0.09 1.97 5.9 0.06 1.99 5.4 0.01 1.23 4.3 0.02 1.22 4.6
mo = 2
100 0.49 11.19 6.8 0.56 11.35 6.5 -0.18 7.56 5.5 -0.17 7.53 5.6
300 0.38 6.24 5.5 0.37 6.27 5.0 -0.27 4.37 5.4 -0.28 4.35 5.3
500 0.28 4.74 5.0 0.26 4.80 5.5 -0.30 3.43 6.0 -0.31 3.43 5.8
1000 0.02 3.35 5.1 -0.02 3.38 5.3 -0.26 2.36 4.7 -0.26 2.34 4.7
Note: v and S are the coefficients of the lagged dependent variable and the x;¢ regressor given in (1). See also the note to

Table C3(i).

C4: Weakly cross-correlated factor loadings

Here we generate the factor loadings, 7,,, in the Monte Carlo design outlined in Section 7.1 to follow a
first-order spatial autoregressive process defined by

n,=aWn,+e, (=1,2,..,mo, (S.40)
where 1y = (114, D205 - Ine)'s
0 1 0 0 0
1/2 0 1/2 0 0
0 1/2 0
W = , (S.41)
0 0 1/2 0
: 1/2 0 1/2
0 0 . 0 1 0

and eg = (e1s, €a¢, ..., ene)’. For each i and ¢, e;p are drawn as IIDN (0, 02,). To ensure N~* Zf\il Var (n;) =

%, for £ = 1,2,...,mp (which corresponds to the case of cross-sectionally independent factor loadings)
we set

02<n2> N
el — \
mo tr[aN~—avvy4(1N-avvq—1

(S.42)

The rest of the parameters are as described in Section 7.1.
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Table C4(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure
(62=1,Kk2=1)

T=5 T =10
mo 1 2 1 2 T 2 1 2
Y9 = 0.4 Y9 = 0.8 Y9 = 0.4 Y9 = 0.8

N AR(D)
100 99.6 86.3 998 95.6 99.6 99.7 09.5 99.8
300 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0  99.9 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ARX(D)
100 999 95.6 999 966 99.6 998 99.5 99.8
300 100.0 100.0 100.0 100.0 100.0 99.9  99.9 99.9
500 99.9 100.0  99.9 100.0 100.0 100.0 100.0 100.0
1000 99.9 100.0  99.9 100.0 100.0 100.0 100.0 100.0

Note: y;; is generated as y;y = oy + 6t + Yyi,e—1 + Bxit + (i, Cip = Tléft +
Uit for i = 1,2,...,N;t = 1,.‘.,T with Yio = Mo + oo (uqo/a) The factor
loadings 1, = (N1g,Ma¢s--Mne) are generated as m, = aWmn, + e, for £ =
1,2,...,mg, where e, = (e1e,€2¢,-..,en¢)’, with a = 0.4 and W is specified as in
equation (S.41). For each ¢ and ¢, e;p are drawn as IIDN(O,J‘EZ) with Uge =
(LZ) {N/ tr [(IN —aW) Iy — aW’)_l] } . In the case of the AR(1) model, § = 0.
m is estimated using the sequential MTLR procedure described in Section 6.1 with

any = m and p = 0.05. See also the note to Table 1.

Table C4(ii): Bias(x100), RMSE(x100) and Size(x100) of v for the AR(1) model, using the
estimated number of factors, m, and the true number, mg (k% = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo =04 Yo = 0.8 Yo =04 Y0 =08
N mog=1
100 0.43 9.46 5.1 1.35 12.86 18.9 -0.06 4.22 5.8 0.23 4.70 5.1
300 -0.08 4.99 5.4 1.03 9.07 11.6 0.03 2.39 4.5 0.09 2.43 4.9
500 0.05 3.68 3.8 0.97 7.16 6.8 -0.06 1.90 5.5 0.01 1.88 5.5
1000 0.03 2.67 4.8 0.61 5.09 4.7 -0.02 1.32 5.3 0.00 1.30 4.5
mo = 2
100 5.11 17.99 13.7 1.99 13.35 19.6 -0.09 5.10 6.0 0.20 5.24 5.1
300 0.30 5.00 3.4 1.73 9.31 10.7 0.01 2.84 5.2 0.04 2.68 4.1
500 -0.01 3.85 3.8 0.89 7.17 7.0 -0.07 2.15 4.3 -0.06 2.05 4.3
1000 0.02 2.62 3.7 0.44 4.76 4.6 0.00 1.59 4.8 0.02 1.44 4.5

Note: « is the coefficient of the lagged dependent variable given in (1) in the absence of the x;; regressors. See also the note
to Table C4(i).
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Table C4(

): Bias(x100), RMSE(x100) and Size(x100) of v and /5 for the ARX(1) model,

using the estimated number of factors, m, and the true number, mg (02 = 1, K2 = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
Yo = 0.4 Yo = 0.8 Yo = 0.4 Yo = 0.8
i
N mog=1
100 0.09 4.30 5.0 0.22 4.73 5.6 -0.10 2.15 6.4 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.01 2.56 5.1 0.03 1.20 5.3 0.02 0.82 3.9
500 0.01 1.84 3.5 0.02 1.93 3.8 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.40 4.4 0.01 0.67 5.3 0.00 0.46 5.4
mo = 2
100 0.35 4.77 5.7 0.43 4.98 4.4 -0.08 2.31 5.5 -0.05 1.58 5.2
300 0.01 2.41 3.4 0.05 2.59 4.2 -0.08 1.33 5.3 -0.04 0.91 4.6
500 0.06 1.94 3.9 0.09 2.11 4.3 -0.03 0.97 4.6 -0.01 0.69 4.2
1000 0.06 1.36 3.2 0.06 1.45 3.8 0.02 0.70 4.7 0.01 0.48 4.1
B
N mg=1
100 0.00 6.01 5.5 0.06 6.18 5.3 0.09 3.97 6.3 0.08 3.98 6.0
300 -0.15 3.37 4.9 -0.14 3.44 5.2 0.01 2.29 5.4 0.02 2.28 5.7
500 0.09 2.66 5.7 0.09 2.71 5.4 0.00 1.74 5.0 0.00 1.72 4.8
1000 0.06 1.88 5.7 0.06 1.92 5.5 0.03 1.21 4.5 0.04 1.20 4.5
mo = 2
100 0.08 8.17 5.8 0.21 8.37 6.1 0.01 6.35 5.8 0.01 6.33 5.9
300 0.13 4.65 5.6 0.15 4.74 5.9 0.14 3.66 5.4 0.13 3.64 5.8
500 0.04 3.47 4.8 0.06 3.55 4.7 0.03 2.80 5.7 0.03 2.78 5.6
1000 -0.01 2.48 4.8 0.00 2.52 4.7 -0.04 1.99 5.2 -0.03 1.98 5.2
Note: v and 8 are the coefficients of the lagged dependent variable and the x;¢ regressor given in (1). See also the note to

Table C4(i).
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