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Abstract

This paper, using the Bewley (1979) transformation of the autoregressive distributed lag

model, proposes a pooled Bewley (PB) estimator of long-run coeffi cients for dynamic panels

with heterogeneous short-run dynamics, in the same setting as the widely used Pooled Mean

Group (PMG) estimator. The Bewley transform enables us to obtain an analytical closed form

expression for the PB, which is not available when using the maximum likelihood approach. This

lets us establish asymptotic normality of PB as n, T →∞ jointly, allowing for applications with n

and T large and of the same order of magnitude, but excluding panels where T is short relative to

n. In contrast, asymptotic distribution of PMG estimator was obtained for n fixed and T →∞.
Allowing for both n and T large seems to be the more relevant empirical setting, as revealed

by numerous applications of the PMG estimator in the literature. Dynamic panel estimators

are biased when T is not suffi ciently large. Three bias corrections (simulation based, split-

panel jackknife, and a combined procedure) are investigated using Monte Carlo experiments, of

which the combined procedure works best in reducing bias. In contrast to PMG, PB does not

weight by estimated variances, which can make it more robust in small samples, though less

effi cient asymptotically. The PB estimator is illustrated with an application to the aggregate

consumption function estimated in the original PMG paper.
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1 Introduction

Estimation of cointegrating relationships in panels with heterogeneous short-run dynamics is im-

portant for a number of applications in open economy macroeconomics as well as in other fields

in economics. Existing estimators in the literature are Fully Modified OLS (FMOLS) by Pedroni

(2001), panel Dynamic OLS (PDOLS) by Mark and Sul (2003), likelihood based Pooled Mean

Group (PMG) estimator by Pesaran, Shin, and Smith (1999), and the parametric approach by Bre-

itung (2005).1 In this paper, we propose a pooled Bewley (PB) estimator of long-run relationships

under a similar setting as PMG, relying on the Bewley transform of ARDL model (Bewley, 1979).2

PB estimator is computed analytically using a simple formula, and it does not rely on numerical

maximization of the complex likelihood function of the PMG estimator. In contrast to PMG, we

also adopt robust equal weighting in pooling of the long-run coeffi cients, and therefore our esti-

mator will not be as effi cient as PMG in general, but our simulations suggest very small effi ciency

losses when time dimension (T ) is large (T = 200), and gains for smaller values of T (notably

T = 30), in the relevant case with cross sectional error heteroskedasticity and heterogeneous speed

of convergence towards the long-run relationships, which is when PMG estimator has asymptotic

advantage.

We derive the asymptotic distribution of the PB estimator when the cross-section dimension (n)

and the time dimension diverge to infinity jointly such that supn,T
√
n/T 1−ε < K, for some small

ε > 0 and a fixed positive constant, K, which allows for the relevant empirical setting where both n

and T are large and of similar order of magnitude, whilst it excludes panels where T is short relative

to n. In contrast, asymptotic results for the PMG, PDOLS, FMOLS and Breitung’s estimators

have been developed in the case with n fixed and T →∞ and/or a sequential asymptotics T →∞

followed by n → ∞. Allowing for n, T to increase concurrently is more relevant for applications

where n and T are both large.

Like PMG, FMOLS, PDOLS as well as Breitung’s estimator, the proposed PB estimator will

suffer from a small-T bias in panels where T is not suffi ciently large in relation to n. Our simulations

suggest this bias can be important for finite samples of interest, and therefore we also propose three

1There are numerous applications in the literature adopting these estimators. We do not provide a review here.
The referenced four papers have a total 8,364 citations in Google Scholar as of 21 May 2021.

2See Wickens and Breusch (1988) for a discussion of the Bewley transform.
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bias-corrected PB estimators, relying either on stochastic simulations and/or split panel jackknife

approaches. While all methods perform well in reducing the overall bias, a combined procedure

where the split panel estimates are combined together in a data-dependent way tends to outperform

the others in terms of bias, for our design and sample sizes. The usefulness of the proposed estimator

is also illustrated in the context of a consumption function application for OECD economies taken

from Pesaran, Shin, and Smith (1999).

The remainder of this paper is organized as follows. Section 2 presents the model and as-

sumptions, introduces the PB estimator, provides asymptotic results, and proposes bias-corrected

estimators. Section 3 presents Monte Carlo evidence. Section 4 revisits the aggregate consumption

function empirical application in Pesaran, Shin, and Smith (1999). Section 5 concludes. Some of

the mathematical derivations and proofs are presented in an Appendix. The online Supplement

provides a description of bias-corrected PMG estimators.

2 Pooled Bewley estimator of long-run relationships

Our setup is similar to Pesaran, Shin, and Smith (1999). Let zit = (yit, xit)
′ and consider the

following illustrative model

∆yit = ci − αi (yi,t−1 − βxi,t−1) + uy,it (1)

∆xit = ux,it, (2)

for i = 1, 2, ..., n, and t = 1, 2, ..., T . Extension to include additional lags and regressors is relatively

straightforward. We keep the model and notations simple for expositional purposes. The following

assumptions are postulated.

Assumption 1 (Coeffi cients) There exists ε > 0 such that ε < αi < 1 for all i.

Assumption 2 (Innovations) ux,it ∼ IID
(
0, σ2xi

)
, and uy,it is given by

uy,it = δiux,it + vit, (3)

for all i and t, where vit ∼ IID
(
0, σ2vi

)
, and ux,it is independently distributed of vi′t′ for all i,i′, t,
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and t′. In addition, supi,tE |vit|16 < K and supi,tE |ux,it|8 < K, and limits limn→∞ n−1
∑n

i=1 σ
2
xi =

σ2x and lim n→∞n−1
∑n

i=1 σ
2
xiσ

2
vi/
(
6α2i
)

= ω2v exist.

Assumption 3 (Initial values and deterministic terms) zi,0 = (yi,0, xi,0)
′ is given by

zi0 = µi + C∗i (L) u0, (4)

for all i and t, and ci = αiµi,1 − αiβµi,2 for all i, where u0 = (uy,i,0, ux,i,0)
′, µi =

(
µi,1, µi,2

)′,
‖µi‖ < K, and C∗i (L) is defined in Section A.1 in Appendix.

Remark 1 Assumption 1 rules out zero as a limit point of {αi, i ∈ N}, where we use N to denote

the set of natural numbers. Assumption 2 allows for ux,it to be correlated with uy,it. Cross-section

dependence of uit is ruled out. Assumption 3 (together with the remaining assumptions) ensure

∆zit and (yit − βxit) are covariance stationary.

Substituting first (3) for uy,it in (1), and then substituting ux,it = ∆xit, we obtain the following

ARDL representation for yit

∆yit = ci − αi (yi,t−1 − βxi,t−1) + δi∆xit + vit. (5)

The pooled Bewley estimator takes advantage of the Bewley transform (Bewley, 1979). Subtracting

(1− αi) yit from both sides of (5) and re-arranging, we have

αiyit = ci − (1− αi) ∆yit + αiβxit + δi∆xit + vit, (6)

or (noting that αi > 0 for all i and multiplying the equation above by α−1i )

yit = α−1i ci + βxit +ψ′i∆zit + α−1i vit, (7)

where ∆zit = (∆yit,∆xit)
′, and ψi =

(
−1−αiαi

, δiαi

)′
. Further, stacking (7) for t = 1, 2, ..., T , we

have

yi = α−1i ciτT + xiβ + ∆Ziψi + α−1i vi, (8)
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where yi = (yi1, yi2, ..., yiT )′, xi = (xi1, xi2, ..., xiT )′,∆Zi =
(

∆z′i,1,∆z′i,2, ...,∆z′i,T

)′
, vi = (vi,1, vi,2, ..., vi,T )′,

and τT is T × 1 vector of ones. Define projection matrix Mτ = IT − τTτ ′T . This projec-

tion matrix subtracts the period average. Let ỹi = (ỹi1, ỹi2, ..., ỹiT )′ = Mτyi, and similarly

x̃i = (x̃i1, x̃i2, ..., x̃iT )′ = Mτxi, ∆Z̃i = Mτ∆Zi, and ṽi = Mτvi. Multiplying (8) by Mτ , we

have

ỹi = x̃iβ + ∆Z̃iψi + α−1i ṽi,

Consider the matrix of instruments

H̃i = (ỹi,−1, x̃i, x̃i,−1) = MτHi, Hi = (yi,−1,xi,xi,−1) , (9)

where yi,−1 = (yi,1, yi,1, ..., yi,T−1)
′ is the data vector on the first lag of yit, similarly xi,−1 =

(xi,1, xi,1, ..., xi,T−1)
′. The PB estimator of β is given by

β̂ =

(
n∑
i=1

x̃′iMix̃i

)−1( n∑
i=1

x̃′iMiỹi

)
, (10)

where

Mi = Pi −Pi∆Z̃i

(
∆Z̃′iPi∆Z̃i

)−1
∆Z̃′iPi, (11)

and

Pi = H̃i

(
H̃i
′H̃i

)−1
H̃i (12)

is the projection matrix associated with H̃i.

In addition to Assumptions 1-3, we also require the following high-level conditions to hold in

the derivations of the asymptotic distribution of the PB estimator under the joint asymptotics

n, T →∞.

Assumption 4 There exists T0 ∈ N such that the following conditions are satisfied:

(i) supi∈N, T>T0 E
[
λ−2min (BiT )

]
< K, where BiT = ∆Z̃′iPi∆Z̃i/T , Pi is given by (12), and ∆Z̃i

is defined below (8).
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(ii) supi∈N, T>T0 E
[
λ−2min

(
AT H̃∗′i H̃∗iAT

)]
< K, where

AT =

 T−1 0

0 T−1/2

 , H∗i =
(
x̃i,∆x̃i, ξ̃i,−1

)
, (13)

ξ̃i,−1 =
(
ξ̃i,0, ξ̃i,1, ..., ξ̃i,T−1

)′
, ξ̃i,t−1 = ỹi,t−1 − βx̃i,t−1, ỹit and x̃it are defined below (8),

x̃i = (x̃i1, x̃i2, ..., x̃iT )′, and ∆x̃i = (∆x̃i1,∆x̃i2, ...,∆x̃iT )′.

Remark 2 Under Assumptions 1-3 (and without Assumption 4), we have plimT→∞Bi,T = Bi,

where Bi is nonsingular (see Lemma A.7 in Appendix). Similarly, it can be shown that Assumptions

1-3 are suffi cient for plimT→∞AT H̃∗′i H̃∗iAT to exist and to be nonsingular. However, these results

are not suffi cient for the moments of
∥∥B−1i ∥∥ and ∥∥∥(ATH∗′i H∗iAT )−1

∥∥∥ to exist, which we require for
the derivations of the asymptotic distribution of the PB estimator. This is ensured by Assumption

4.

2.1 Asymptotic results

The following theorem establishes the asymptotic distribution of β̂.

Theorem 1 Let (yit, xit) be generated by model (1)-(2) and suppose Assumptions 1-4 hold. Con-

sider the PB estimator β̂ given by (10). Then,

T
√
n
(
β̂ − β

)
→d N (0,Ω) , Ω = ω−4x ω2v, (14)

as n, T →∞ such that supn,T
√
n/T 1−ε < K, for some ε > 0, where ω2x = σ2x/6, σ

2
x = limn→∞ n−1

∑n
i=1 σ

2
xi

and ω2v = lim n→∞n−1
∑n

i=1 σ
2
xiσ

2
vi/
(
6α2i
)
.

All proofs are provided in Appendix.

Remark 3 Like the PMG estimator in Pesaran, Shin, and Smith (1999), the PB estimator will

also work when variables are integrated of order 0 (the I(0) case), which is not pursued in this

paper. In the I(0) case, the PB estimator converges at rate
√
nT .
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To conduct inference, let

ω̂2x = n−1
n∑
i=1

x′iMixi
T 2

, (15)

and

ω̂2v =
1

n

n∑
i=1

(
x′iMiv̂

∗
i

T

)2
, (16)

where v̂∗i is the vector of residuals from (8), namely

v̂∗i = Mi

(
yi − β̂xi

)
. (17)

We propose the following estimator of Ω:

Ω̂ = ω̂−4x ω̂2v. (18)

2.2 Bias mitigation

When n is not suffi ciently small relative to T , specifically when
√
n/T → K > 0, then

√
nT
(
β̂ − β

)
is no longer asymptotically distributed with zero mean. The asymptotic bias is due nonzero mean

of x̃′iMiṽi, and it can have important consequences for finite sample performance, as the Monte

Carlo evidence in Section 3 illustrates. We consider a simulation based and split-panel jackknife

methods to mitigate this bias.3

2.2.1 Simulation-based bias reduction

Once an estimate of the bias of β̂ is available, denoted as b̂, then the bias-corrected PB estimator

is given by

β̃ = β̂ − b̂. (19)

One possibility of estimating the bias in the literature is by stochastic simulation. We consider the

following algorithm.

1. Compute β̂. Given pooled estimate β̂, estimate the remaining unknown coeffi cients of ele-

ments of (1)-(2) by least squares, and compute residuals ûy,it, ûx,it.
3There are numerous approaches that could be considered for bias reduction, besides the three methods considered

in this paper. Comprehensive comparison of different bias-reduction methods is outside the scope of this paper.
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2. For each r = 1, 2, ..., R, generate new draws for û(r)y,it = a
(r)
y,itûy,it, and û

(r)
x,it = a

(r)
x,itûx,it, where

a
(r)
y,it,a

(r)
x,it are randomly drawn from Rademacher distribution (Davidson and Flachaire, 2008),

a
(r)
h,it =

 −1, with probability 1/2

1, with probability 1/2
,

for h = y, x. Given the estimated parameters of (1)-(2) from Step 1, and initial values yi1, xi1

generate simulated data y(r)it , x
(r)
it for t = 2, 3, ..., T and i = 1, 2, ..., n. Using the generated

data compute β̂
(r)
.

3. Compute b̂ =
[
R−1

∑R
r=1 β̂

(r) − β̂
]
.

The above procedure can be iterated by using the bias-corrected estimator, β̃, in Step 1. This

is not considered in this paper.

We conduct inference using bootstrapped critical values instead of asymptotic critical values to

make more accurate small sample inference. In particular, the α percent critical values are computed

using the 1 − α percent quantile of
{∣∣t(r)∣∣}R

r=1
, where t(r) = β̃

(r)
/se

(
β̃
(r)
)
, β̃

(r)
= β̂

(r) − b̂ is the

bias-corrected estimate of β using the r-th draw of the simulated data, se
(
β̃
(r)
)

= T−1n−1/2Ω̂(r)

is the corresponding standard error estimate, and Ω̂(r) is computed in the same way as Ω̂ in (18)

but using the simulated data.

2.2.2 Jackknife bias reduction

We consider half-panel jackknife bias correction methods,4 which can be written as

β̃jk = β̃jk (κ) = β̂ − κ
(
β̂a + β̂b

2
− β̂

)
, (20)

where β̂ is the full sample PB estimator, β̂a and β̂b are the first and the second half sub-sample PB

estimators, and κ is a suitably chosen weighting parameter. In stationary setting, where the bias

is of order O
(
T−1

)
, κ is chosen to be one, so that K

T − κ ·
(
K
T/2 −

K
T

)
= 0 for any arbitrary K.

4For other panel applications of split-panel jackknife methods, see for example Dhaene and Jochmans (2015) and
Chudik, Pesaran, and Yang (2018).
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In general, when the bias is of order O (T−ε) for some ε > 0, then κ can be chosen to solve

K
T ε − κ ·

(
K

(T/2)ε
− K

T ε

)
= 0, which yields κ = 1/ (2ε − 1). Under our setup with I(1) variables, we

need to correct β̂ for its O
(
T−2

)
bias, namely ε = 2, which yields κ = 1/3.

Asymptotic arguments need not perform well for some T , therefore we also consider a simulation-

based adaptive jackknife correction where κ = κ̂ is data-dependent and computed by stochastic

simulation,

κ̂ =
b̂

b̂a,b − b̂
, (21)

where b̂ = R−1
∑R

r=1 β̂
(r)−β̂, and b̂a,b =

(
b̂a + b̂b

)
/2, b̂a = R−1

∑R
r=1 β̂

(r)

a −β̂a, b̂b = R−1
∑R

r=1 β̂
(r)

b −

β̂b.

Inference using β̃
jk
can be conducted based on (18) but with ω̂2v replaced by

ω̃2v = ω̂2v =
1

n

n∑
i=1


[
(1 + κ) x′iMi − 2κx′ab,iMab,i

]
ṽ∗i

T

2 , (22)

where ṽ∗i = Mi

(
yi − β̃

jk
xi

)
,

x′ab,i =

 x′a,i

x′b,i

 , Mab,i =

 Ma,i

Mb,i

 ,

x′a,i

(
x′b,i

)
and Ma,i (Mb,i) are defined in the same way as xi, and Mi but using only the first

(second) half of the sample.

We use bootstrapped critical values to conduct more accurate small sample inference, for both

choices of κ (1/3 and κ̂). Specifically, the α percent critical value is computed as the 1−α percent

quantile of
{∣∣∣t(r)jk ∣∣∣}R

r=1
, where t(r)jk = β̃

(r)
jk /se

(
β̃
(r)
jk

)
, β̃

(r)
jk is the jackknife estimate of β using the r-th

draw of the simulated data generated using the algorithm described in Subsection 2.2.1, se
(
β̃
(r)
jk

)
is the corresponding standard error estimate, namely se

(
β̃
(r)
jk

)
= T−1n−1/2Ω̂

(r)
jk , Ω̂

(r)
jk = ω̂−4x,(r)ω̃

2
v,(r),

in which ω̃v,(r) and ω̂
2
x,(r) are computed using the simulated data, based on expressions (22) and

(15), respectively.
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3 Monte Carlo Evidence

3.1 Design

The Data Generating Process (DGP) is given by (1)-(2), for i = 1, 2, ..., n, T = 1, 2, ..., T , with

starting values satisfying Assumption 3 with µi ∼ IIDN (τ 2, I2), and ci = αiµi,1 − αiβµi,2. We

generate uy,it = σy,iey,it, ux,it = σx,iex,it, σ2y,i, σ
2
x,i ∼ IIDU [0.8, 1.2],

 ey,it

ex,it

 ∼ IIDN (02,Σe) , Σe ∼

 1 ρi

ρi 1

 , and ρi ∼ IIDU [0.3, 0.7] .

This setup features heteroskedastic (over i) and correlated (over y & x equations) errors, namely

E
(
u2y,it

)
= σ2y,i, E

(
u2x,it

)
= σ2x,i, and cov (uy,it, ux,it) = ρi. We generate αi ∼ IIDU [0.2, 0.3]. We

consider n, T = 30, 50, 100, 200 and compute RMC = 2000 Monte Carlo replications.

3.2 Objectives

We report bias, root mean square error (RMSE), size (H0 : β = 1, 5% nominal level) and power

(H1 : β = 0.98, 5% nominal level) findings for the PB estimator β̂ given by (10), with variance

estimated using (18). Moreover, we also report findings for the three bias corrected versions of

PB estimator as described in Subsection 2.2. We compare the performance of PB estimators with

the PMG estimator proposed by Pesaran, Shin, and Smith (1999) and its bias-corrected versions

proposed in the online supplement.5

3.3 Findings

Table 1 reports the findings for all estimators. The top panel reports results for PB and PMG

estimators uncorrected for their small-T bias. Uncorrected PB estimator features notable negative

bias, which declines with T , and does not change much with n. This bias contributes to oversized

inference when T is small relative to n. These findings illustrate an important scope for bias-

correction methods. The bias of PMG estimator is about 50% smaller as compared to that of the

PB estimator. Despite the differences in the bias, the reported RMSE values of the two estimators

5We use R = 5000 replications for PB bias correction methods described in Subsection 2.2 and for PMG bias
correction methods described in the online supplement.
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are quite similar for sample sizes where T > n. When n > T , PMG tends to dominate in terms of

RMSE due to its lower bias. Interestingly, for the smallest sample size considered, n = T = 30, the

RMSE of PB estimator is smaller compared with PMG (0.0719 vs. 0.0749), despite almost twice

larger bias (-0.0515 vs. -0.0312). Both, PMG and PB estimators are grossly oversized when T is

not suffi ciently large relative to n, in part also due to underestimation of standard errors in small

samples (in addition to the consequences of the bias for inference).

Bias-corrected methods are quite successful in reducing the bias, and in the majority of cases also

RMSE of the PB and PMG estimators. The best performing bias reduction method in reducing

the bias is split-panel jackknife with κ = κ̂NT chosen by simulations as opposed to asymptotic

considerations (κ = 1/3). In terms of RMSE, the best performing method is bias reduction by

stochastic simulations. For T = 30, application of any bias-reduction method also resulted in

improved RMSE compared with the uncorrected estimators. Bias-corrected PB (using any of the

three bias-reduction methods considered) achieved lower RMSE values compared with PMG (bias-

corrected or uncorrected) for T = 30, and all choices of n.

Another important observation is the dramatic improvement in size performance. Notably,

the size is very good for jackknife-corrected PB estimators (both choices of κ) for all sample sizes

considered, whereas only a relatively moderate size distortions for smaller choices of T (30 and 50)

are observed for bias-corrected PMG estimators.

We conclude that bias-corrected PB estimators can perform better (notably in terms of RMSE)

compared with corrected or uncorrected PMG estimators for smaller values of T (especially for

T = 30). For large values of T (≥ 200) there does not seem to be any particular advantage of PB

over PMG, as both estimators seemingly perform very close with PMG performing slightly better

due to its asymptotically effi cient weighting of cross-section units, as to be expected. For large

values of T (≥ 200) and n/T suffi ciently small, there also does not seem to be any notable benefit

of bias reduction methods, since both PB and PMG perform without any noticeable drawbacks.

Bias-corrected PB estimators are consequently useful addition to the literature as a complement of

PMG estimator, considering that the sample size in terms of time periods is often quite limited in

many applications in economics.
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4 Empirical Application

This section revisits consumption function empirical application undertaken by Pesaran, Shin, and

Smith (1999), hereafter PSS. The long-run consumption function is assumed to be given by

cit = di + β1y
d
it + β2πit + ϑit,

for country i = 1, 2, ..., n, where cit is the logarithm of real consumption per capita, ydit is the

logarithm of real per capita disposable income, πit is the rate of inflation, and ϑit is an I (0) process.

We take the dataset from PSS, which consists of N = 24 countries and a slightly unbalanced time

period covering 1960-1993.6 PSS assume all variables are I (1) and cointegrated; and they estimate

the coeffi cients β1 and β2 using an ARDL(1,1,1) specification, which can be written as the following

error-correcting equation

∆cit = −αi
(
ci,t−1 − di − β1ydi,t−1 − β2πi,t−1

)
+ δi1∆y

d
it + δi2∆πit + vit, (23)

where all coeffi cients, except the long-run coeffi cients β1 and β2 are country-specific.

Table 2 presents alternative estimates of the long-run coeffi cients. The first column reports the

PMG estimates, the second column reports the PB estimates, and the subsequent columns report

bias-corrected versions of these two estimators. Uncorrected PMG estimates are β̂1,PMG = 0.904

and β̂2,PMG = −0.466, for ydit, and πit, respectively. Bias-corrected PMG estimates are not too far

from the uncorrected PMG estimates, suggesting that the bias is small. PB estimates for the income

elasticity (β1), are slightly larger but generally very close compared with the PMG estimates. The

uncorrected PB estimate for the income elasticity is β̂1 = 0.912, and the bias-corrected PB estimates

are slightly larger in the range 0.918 to 0.926. In contrast, PB estimates for the inflation effect

coeffi cient (β2) are all substantially smaller compared with the PMG estimates. PB estimates of

β2 lie in the relatively narrow range −0.153 to −0.120, compared with the range of PMG estimates

−0.474 to −0.403. While the income elasticity PB estimates are very close to the PMG estimates,

PB estimators suggest much smaller long-run inflation effect.

6We have downloaded data at http://www.econ.cam.ac.uk/people-files/emeritus/mhp1/pmge_prog.zip. Codes
for Monte Carlo and empirical applications in this paper is available from authors’websites.
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5 Conclusion

This paper proposed a simple alternative to the Pesaran, Shin, and Smith (1999) PMG estimator

of long-run relationships in heterogeneous dynamic panels. Taking advantage of Bewley transform,

the proposed PB estimator has an analytical closed-form expression, and since it does not weight by

estimated variances, it is more robust in small samples, though less effi cient asymptotically. Since

dynamic panel estimators are biased when T is small relative to n, this paper also considered bias-

correction methods for the PB and PMG estimators. Monte Carlo experiments show good small

sample performance of bias-corrected estimators with (corrected) PB estimators achieving better

RMSE compared with (corrected) PMG for small T (in particular T = 30), whereas PMG slightly

outperforms PB estimator for large values of T (≥ 200). The usefulness of the PB estimator was

also illustrated by revisiting the aggregate consumption function estimated in the original PMG

paper, where we found similar income elasticity, but substantially smaller inflation effect.
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Table 1: MC findings for the estimation of long-run coeffi cient β

Bias (× 100) RMSE (× 100) Size (5% level) Power (5% level)
n\T 30 50 100 200 30 50 100 200 30 50 100 200 30 50 100 200

PB

30 -5.15 -2.18 -0.58 -0.18 7.19 3.91 1.74 0.81 24.70 15.75 10.45 7.65 15.15 8.35 19.65 66.30

50 -5.34 -2.26 -0.61 -0.17 6.63 3.42 1.43 0.66 33.90 18.60 10.00 7.40 18.10 8.00 23.10 84.15

100 -5.08 -2.17 -0.58 -0.17 5.77 2.77 1.06 0.46 53.15 27.80 12.10 7.45 25.00 6.70 39.80 98.70

200 -5.04 -2.10 -0.57 -0.14 5.38 2.41 0.83 0.34 78.65 45.75 16.70 8.35 41.65 6.45 67.45 100.00

PMG

30 -3.12 -1.14 -0.29 -0.10 7.47 3.89 1.75 0.80 39.40 23.85 14.40 8.50 35.35 23.25 31.45 74.25

50 -3.04 -1.16 -0.29 -0.08 6.09 3.18 1.42 0.65 41.20 25.35 14.65 8.20 35.00 25.15 41.80 90.30

100 -2.70 -1.09 -0.26 -0.08 4.56 2.28 0.97 0.44 45.85 29.50 15.10 8.80 36.25 25.95 63.45 99.70

200 -2.68 -1.05 -0.26 -0.06 3.68 1.74 0.70 0.32 57.45 34.05 16.25 9.95 34.95 31.95 88.30 100.00

Bias-corrected PB estimators
Jackknife-corrected PB using κ = 1/3

30 -2.31 -0.67 -0.08 -0.04 6.16 3.66 1.76 0.84 7.30 5.65 5.75 4.90 4.95 7.00 19.10 58.85

50 -2.37 -0.66 -0.10 -0.02 5.03 2.92 1.39 0.68 6.85 5.85 5.25 5.70 3.80 7.10 28.10 81.30

100 -2.14 -0.58 -0.08 -0.02 3.75 2.00 0.95 0.47 6.15 5.00 5.65 5.00 2.45 9.95 52.35 98.25

200 -2.14 -0.55 -0.06 0.00 3.03 1.42 0.64 0.33 7.60 5.15 4.40 5.50 1.50 15.70 84.10 100.00

Jackknife-corrected PB, using κ = κ̂NT

30 -0.11 -0.04 0.00 -0.03 6.52 3.82 1.79 0.85 6.10 6.05 5.60 4.95 5.85 8.65 19.85 58.25

50 0.01 0.02 -0.02 -0.01 5.08 3.03 1.41 0.69 5.00 5.50 5.20 5.85 5.70 10.85 29.35 81.20

100 0.16 0.07 0.00 -0.02 3.53 2.04 0.96 0.47 4.50 5.10 5.50 4.90 8.45 16.95 54.20 98.10

200 0.09 0.06 0.00 0.00 2.45 1.38 0.65 0.33 4.75 4.80 4.85 5.55 12.75 31.10 85.45 100.00

Bias-corrected PB using stochastic simulations

30 -1.71 -0.47 -0.06 -0.04 5.65 3.40 1.66 0.79 7.60 6.35 5.65 5.15 6.55 8.45 22.35 65.35

50 -1.73 -0.46 -0.06 -0.02 4.58 2.70 1.31 0.64 8.50 6.70 5.05 5.45 6.80 10.60 32.40 86.70

100 -1.53 -0.41 -0.05 -0.02 3.31 1.84 0.90 0.44 9.95 6.65 5.10 4.75 6.50 16.05 60.05 99.20

200 -1.53 -0.38 -0.04 0.00 2.54 1.30 0.61 0.31 13.50 6.90 5.20 5.80 6.65 27.85 88.75 100.00

Bias-corrected PMG estimators
Jackknife-corrected PMG using κ = 1/3

30 -1.35 -0.28 -0.03 -0.03 8.16 4.24 1.88 0.85 14.30 9.75 6.80 4.85 13.10 12.15 21.40 64.05

50 -1.11 -0.22 -0.04 -0.02 6.40 3.40 1.50 0.68 13.95 8.95 6.90 5.80 13.40 13.15 29.80 82.65

100 -0.85 -0.17 -0.02 -0.01 4.42 2.28 1.01 0.47 12.90 8.70 5.75 5.25 12.55 16.75 54.00 99.00

200 -0.86 -0.17 -0.02 0.00 3.08 1.56 0.71 0.33 11.55 6.75 6.95 6.60 13.00 24.55 82.55 100.00

Jackknife-corrected PMG using κ = κ̂NT

30 -1.19 -0.19 -0.02 -0.03 8.30 4.31 1.89 0.85 14.50 9.75 6.85 4.65 13.55 12.45 21.50 63.75

50 -0.84 -0.14 -0.03 -0.02 6.56 3.46 1.51 0.68 14.05 9.15 6.65 5.75 14.15 14.05 29.45 82.90

100 -0.58 -0.10 -0.02 -0.01 4.52 2.31 1.01 0.47 12.95 8.70 5.80 5.15 13.80 17.55 53.40 98.95

200 -0.59 -0.11 -0.01 0.00 3.11 1.58 0.71 0.33 11.80 6.55 7.05 6.55 14.80 26.20 82.80 100.00

Bias-corrected PMG using stochastic simulations

30 -2.08 -0.56 -0.09 -0.04 7.27 3.81 1.74 0.80 14.10 8.95 6.45 4.55 11.60 9.65 22.00 68.40

50 -1.97 -0.56 -0.08 -0.02 5.76 3.06 1.40 0.64 14.80 8.70 7.00 5.35 11.45 11.15 32.00 86.75

100 -1.66 -0.51 -0.07 -0.02 4.12 2.09 0.94 0.43 16.05 8.35 5.50 4.20 11.70 14.55 56.60 99.65

200 -1.66 -0.49 -0.07 -0.01 3.08 1.49 0.66 0.31 18.75 9.85 6.45 5.30 11.95 23.70 86.35 100.00

Notes: DGP is given by ∆yit = ci − αi (yi,t−1 − βxi,t−1) + uy,it and ∆xit = ux,it, for i = 1, 2, ..., n, T = 1, 2, ..., T ,

with β = 1 and αi ∼ IIDU [0.2, 0.3]. See Section 3.1 for complete description of the DGP. The pooled Bewley

estimator is given by (10), with variance estimated using (18). PMG is the Pooled Mean Group estimator proposed

by Pesaran, Shin, and Smith (1999). Bias-corrected versions of the PB estimator are described in Subsection 2.2.

Bias-corrected versions of the PMG estimator are described in the online supplement. The size and power findings

are computed using 5% nominal level and the reported power is the rejection frequency for testing the hypothesis

β = 0.98.

13



Table 2: Estimated consumption function coeffi cients for OECD countries

Bias-corrected estimators

Jackknife, κ = 1/3 Jackknife, κ̂ Stochastic simul.

(1) (2) (3) (4) (5) (6) (7) (8)

PMG* PB** PMG PB PMG PB PMG PB

β1: Income .904 .912 .915 .926 .901 .926 .904 0.918

95% Conf. Int. [.889,.919] [.845,.980] [.885,.945] [.846,1.006] [.877,.926] [.848,1.005] [.879,.929] [.852,.984]

β2: Inflation -.466 -.134 -.403 -0.120 -.432 -.153 -.474 -0.126

95% Conf. Int. [-.566,-.365] [-.260,-.008] [-.583,-.222] [-.211,-.029] [-.603,-.262] [-.326,.020] [-.637,-.310] [-.320,-.067]

*PMG stand for Pooled Mean Group estimator, **PB stands for pooled Bewley estimator

Notes: This table revisits empirical application in Table 1 of Pesaran, Shin, and Smith (1999). Column (1) of this

table reports the PMG estimates of long-run income elasticity (β1) and inflation effect (β2) coeffi cients and their

95% confidence intervals in the ARDL(1,1,1) consumption functions (23) for OECD countries using the dataset

from Pesaran, Shin, and Smith (1999). Column (2) reports the PB estimator. Columns (3)-(8) report bias-corrected

versions of the PMG and PB estimator. Jackknife bias correction using κ = 1/3 is reported in columns (3)-(4),

jackknife bias correction using simulated value κ̂ is reported in columns (5)-(6), and simulation-based bias

correction is reported in columns (7)-(8). Description of bias correction methods is provided in Subsection 2.2 for

PB estimator and in the online supplement for PMG estimator.
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A Appendix

This Appendix is organized in three sections. Section A.1 introduces some notations and definitions.

Section A.2 presents lemmas and proofs needed for the proof of Theorem 1. Section A.3 presents

proof of Theorem 1.

A.1 Notations and definitions

Define Ci (L) =
∑∞

`=0Ci`L
` and C∗i (L) =

∑∞
`=0C∗i`L

`, where

Ci0 = I2,

Ci` = (Φi − I2) Φ`−1
i , ` = 1, 2, ....,

Φi =

(
1− αi αiβ

0 1

)
, (A.1)

Ci(1) = Ci0 + Ci1 + ..... = lim
`→∞

Φ`
i =

(
0 β

0 1

)
and

C∗i0 = Ci0 −Ci(1) =

(
1 −β
0 0

)

C∗i` = C∗i,`−1 + Ci` =

(
(1− αi)` − (1− αi)` β

0 0

)
, for ` = 1, 2, ....

Model (1)-(2) can be equivalently written as

Φi (L) zit = ci + uit,

for i = 1, 2, ..., n and t = 1, 2, ..., T , where ci = (ci, 0)′,

Φi (L) = I2 −ΦiL, (A.2)

and I2 is a 2 × 2 identity matrix. The lag polynomial Φi (L) can be re-written in the following

(error correcting) form

Φi (L) = −ΠiL+ (1− L) I2, (A.3)

where

Πi = − (I2 −Φi) =

(
−αi αiβ

0 0

)
. (A.4)
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The VAR model (A.5) can be also rewritten in the following form

Φi (L) (zit − µi) = uit, (A.5)

where ci = −Πiµi = (ci, 0)′, namely ci = αiµi,1 − αiβµi,2.
Using Granger representation theorem, the process zit under the assumptions 1-3 has represen-

tation

yit = µyi + βsit +

∞∑
`=0

(1− αi)` (uy,i,t−` − βux,i,t−`) , (A.6)

xit = µxi + sit, (A.7)

where

sit =

t∑
`=1

ux,it, (A.8)

is the stochastic trend.

A.2 Lemmas: Statements and proofs

Lemma A.1 Suppose Assumptions 2 and 3 hold, and consider x̃i = (x̃i,1, x̃i,2, ..., x̃i,T )′, where

x̃it = xit − x̄i, xit =
∑t

s=1 ux,it, and x̄i = T−1
∑T

t=1 xit. Then

n−1
n∑
i=1

x̃′ix̃i
T 2
→p ω

2
x =

σ2x
6
, as n, T →∞, (A.9)

where σ2x = limn→∞ n−1
∑n

i=1 σ
2
xi.

Proof. Recall Mτ = IT − τTτ ′T , where IT is T ×T identity matrix and τT is T × 1 vector of ones.

Since x̃i = Mτxi, and Mτ is symmetric and idempotent (M′
τMτ = Mτ = M′

τ ) we can write x̃′ix̃i

as x̃′ix̃i = x′iM
′
τMτxi = x′iM

′
τxi = x̃′ixi. Denote Si,T = x̃′ixi/T

2. We have

n−1
n∑
i=1

x̃′ix̃i
T 2

= n−1
n∑
i=1

Si,T = n−1
n∑
i=1

E (Si,T ) + n−1
n∑
i=1

[Si,T − E (Si,T )] . (A.10)

Consider E (Si,T ) first. Noting that x̃it =
∑t

s=1 ux,it − x̄i, x̄i = T−1
∑T

s=1 (T − s+ 1)ust, and
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xit =
∑t

s=1 ux,it, Si,T can be written as

Si,T =
1

T 2

T∑
t=1

x̃itxit

=
1

T 2

T∑
t=1

( t∑
s=1

ux,is

)2
− x̄i

t∑
s=1

ux,is


=

1

T 2

T∑
t=1

( t∑
s=1

ux,is

)2
−

t∑
s=1

T − s+ 1

T
ux,is ·

t∑
s=1

ux,is


Taking expectations, we obtain

E (Si,T ) =
σ2xi
T 2

T∑
t=1

[
t−

t∑
s=1

T − s+ 1

T

]
.

Using
∑t

s=1
T−s+1
T =

∑t
s=1 (1− s/T + 1/T ) = t− (t+ 1) t/ (2T ) + t/T , we have

E (Si,T ) =
σ2xi
T 2

T∑
t=1

[
t− t+

(t+ 1) t

2T
− t

T

]
=
σ2xi
T 2

T∑
t=1

(t+ 1) t

2T
− t

T
.

Finally, noting that
∑T

t=1 (t+ 1) t = (T + 2) (T + 1)T/3, and
∑T

t=1 t = (T + 1)T/2, we obtain

E (Si,T ) = σ2xiκT < K <∞, (A.11)

for all T > 0, where

κT =

[
(T + 2) (T + 1)T

6T 3
− (T + 1)T

2T 3

]
. (A.12)

In addition, κT → 1/6, as T →∞, and

1

n

n∑
i=1

E (Si,T ) = κT
1

n

n∑
i=1

σ2xi →
σ2x
6
,

as n, T →∞. This establishes the limit of the first term on the right side of (A.10). Consider the

second term next. Since E [Si,T − E (Si,T )] = 0, and Si,T is independent over i, we have

E

{
n−1

n∑
i=1

[Si,T − E (Si,T )]

}2
=

1

n2

n∑
i=1

E
(
S2i,T

)
− 1

n2

n∑
i=1

[E (Si,T )]2 .

But it follows from (A.11) that there exist finite positive constant K1 <∞ (which does not depend

on n, T ) such that [E (Si,T )]2 < K1. In addition, due to existence of uniformly bounded fourth mo-

ments of ux,it, it also can be shown that E
(
S2i,T

)
< K2 <∞. Hence, E

{
n−1

∑n
i=1 [Si,T − E (Si,T )]

}2
=
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O
(
n−1

)
, which implies n−1

∑n
i=1 [Si,T − E (Si,T )] →p 0, as n, T → ∞. This completes the proof.

Lemma A.2 Suppose Assumptions 1-2 hold. Then there exists finite positive constant K that does

not depend on i and/or T such that

E

(
1

T

T∑
t=1

ux,itx̃it

)%
< K, (A.13)

and

E

(
1

T

T∑
t=1

∆yitx̃it

)%
< K, (A.14)

for % = 4, where x̃it = xit − x̄i, xit =
∑t

s=1 ux,it, x̄i = T−1
∑T

t=1 xit, and ∆yit = δiux,it + vit −
αi
∑∞

`=1 (1− αi)`−1 [vi,t−` + (δi − β)ux,i,t−`].

Proof. Consider
∑T

t=1 uitx̃it/T and % = 2 first, and note that x̃it =
∑t

s=1 ux,is − x̄i, where

x̄i = T−1
∑T

s=1 (T − s+ 1)ux,is. We have(
1

T

T∑
t=1

ux,itx̃it

)2
=

1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′ x̃itx̃it′

=
1

T 2

T∑
t=1

T∑
t′=1

uituit′

(
t∑

s=1

ux,is − x̄i

)(
t′∑
s=1

ux,is − x̄i

)
= Ai,T,1 +Ai,T,2 −Ai,T,3 −Ai,T,4,

where

Ai,T,1 =
1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′

(
t∑

s=1

ux,is

)(
t′∑
s=1

ux,is

)

Ai,T,2 =
1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′ x̄
2
i ,

Ai,T,3 =
1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′ x̄i

t∑
s=1

ux,is,

Ai,T,4 =
1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′ x̄i

t′∑
s=1

ux,is.

Taking expectations and noting that ux,it is independent of ux,it′ for any t 6= t′, we have

E (Ai,T,1) =
1

T 2

(
T∑
t=1

t−1∑
t′=1

σ2ix +
T∑
t=1

E
(
u4x,it

)
+

T∑
t=1

t−1∑
t′=1

σ2ix

)
.

A4



Under Assumption 2, there exists a finite constant K that does not depend on i and/or t, such

that σ2ix < K and E
(
u4x,it

)
< K. Hence |E (Ai,T,1)| < K. Similarly, we can bound the remaining

elements, |E (Ai,T,j)| < K, for j = 2, 3, 4. It now follows that E
(
1
T

∑T
t=1 ux,itx̃it

)2
< K, where

the upper bound K does not depend on i or T . This establishes (A.13) hold for % = 2. Suffi cient

condition for (A.13) to hold for % = 4 are:7 E
(
A2i,T,j

)
< K for j = 1, 2, 3, 4. These conditions

follow from uniformly bounded eights moments of ux,it. This completes the proof of (A.13). Result

(A.14) can be established in the same way by using the first difference of representation (A.6).

Lemma A.3 Suppose Assumptions 1-4 hold, and consider siT given by

siT = x̃′i∆Z̃i

(
∆Z̃′iPi∆Z̃i

)−1
∆Z̃′ix̃i, (A.15)

where Pi is given by (12), and x̃i and ∆Z̃i are defined below (8). Then,

n−1
n∑
i=1

siT
T 2
→p 0, as n, T →∞. (A.16)

Proof. Consider si,T /T , which can be written as

siT
T
≤ a′iTB−1iT aiT , (A.17)

where

aiT =
∆Z̃′ix̃i
T

=
∆Z′ix̃i
T

, (A.18)

and

BiT =
∆Z̃′iPi∆Z̃i

T
. (A.19)

Using these notations, we have

E

∣∣∣∣∣ 1n
n∑
i=1

siT
T 2

∣∣∣∣∣ ≤ 1

nT

n∑
i=1

E
∣∣a′iTB−1iT aiT

∣∣ .
Using

∣∣a′iTB−1iT aiT
∣∣ ≤ λ−1min (BiT ) a′iTaiT , and Cauchy-Schwarz inequality, we obtain

E

∣∣∣∣∣ 1n
n∑
i=1

siT
T 2

∣∣∣∣∣ ≤ 1

nT

n∑
i=1

√
E
[(

a′iTaiT
)2]√

E
[
λ−2min (BiT )

]
.

Lemma A.2 implies the fourth moments of the individual elements of ai,T are uniformly bounded in

i and T , which is suffi cient for E
[
(a′iTaiT )2

]
< K. In addition, E

[
λ−2min (BiT )

]
< K by Assumption

7For the cross-product terms, note that |E (Ai,T,jAi,T,s)| ≤
√
E
(
A2i,T,j

)√
E
(
A2i,T,s

)
. Hence, E

(
A2i,T,j

)
< K, for

j = 1, 2, 3, 4, is suffi cient.
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4. Hence, there exists K <∞, which does not depend on (n, T ) such that

E

∣∣∣∣∣n−1
n∑
i=1

siT
T 2

∣∣∣∣∣ < K

T
, (A.20)

and result (A.16) follows.

Lemma A.4 Suppose Assumptions 1-4 hold. Then

n−1
n∑
i=1

x̃′iMix̃i
T 2

→p ω
2
x =

σ2x
6
, as n, T →∞, (A.21)

where σ2x = limn→∞ n−1
∑n

i=1 σ
2
xi, Mi is defined in (11) and x̃i is defined below (8).

Proof. Noting that x̃i is one of the column vectors of Hi, we have Pix̃i = x̃i, and x̃′iMix̃i can be

written as

x̃′iMix̃i = x̃′ix̃i − si,T , (A.22)

where si,T is given by (A.15). Suffi cient conditions for result (A.21) are:

n−1
n∑
i=1

x̃′ix̃i
T 2
→p ω

2
x =

σ2x
6
, as n, T →∞, (A.23)

and

n−1
n∑
i=1

si,T
T 2
→p 0, as n, T →∞. (A.24)

Condition (A.23) is established by Lemma A.1, and condition (A.24) is established by Lemma A.3.

Lemma A.5 Let Assumptions 1-3 hold. Then

1√
n

n∑
i=1

x̃′iṽi
Tαi

→d N
(
0, ω2v

)
, as n, T →∞, (A.25)

where ω2v = lim n→∞n−1
∑n

i=1 σ
2
xiσ

2
vi/
(
6α2i
)
, and x̃i and ṽi are defined below (8).

Proof. Recall Mτ = IT − τTτ ′T , where IT is T ×T identity matrix and τT is T × 1 vector of ones.

Since M′
τMτ = M′

τ , we have

x̃′iṽi = x′iM
′
τMτvi = x′iM

′
τvi = x̃′ivi
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Let Ci = σxiσvi
αi

and Qi,T = C−1i
x̃′ivi
Tαi

. We have E (Qi,T ) = 0, and (under independence of vit over t

and independence of vit and ux,it′ for any t, t′)

E

[(
x̃′ivi
Tαi

)2]
=

1

T 2α2i

T∑
t=1

E
(
x̃2it
)
E
(
v2it
)
,

where E
(
v2it
)

= σ2vi. In addition, (A.11) established that
1
T 2
∑T

t=1E
(
x̃2it
)

= σ2xiκT , where κT is
given by (A.12). Hence,

E

[(
x̃′ivi
Tαi

)2]
=
σ2viσ

2
xi

α2i
κT = C2i κT .

It follows that

E
(
Q2i,T

)
= κT

where κT → 1/6 <∞. Finite fourth moments of ux,it and vit imply Q4i,T is uniformly bounded in
T , and therefore Q2i,T is uniformly integrable in T . We can apply Theorem 3 of Phillips and Moon

(1999) to obtain

1√
n

n∑
i=1

CiQi,T =
1√
n

n∑
i=1

x̃′ivi
Tαi

→d N
(
0, ω2v

)
, as n, T →∞

where ω2v = limn→∞C2i κT = lim n→∞n−1
∑n

i=1 σ
2
xiσ

2
vi/
(
6α2i
)
.

Lemma A.6 Suppose Assumptions 1-4 hold, and consider qiT = α−1i ∆Z̃′iPiṽi/
√
T . Then,

E ‖qiT ‖42 < K, (A.26)

and

|E (qiT )| < K√
T
. (A.27)

Proof. Denote the individual elements of 2 × 1 vector qiT as qiT,j , j = 1, 2. Suffi cient conditions

for (A.26) to hold are

E (qiT,j)
4 < K, for j = 1, 2. (A.28)

We establish (A.26) for j = 1 first. We have

qiT,1 =
∆ỹ′iPiṽi

αi
√
T
,

where ∆yi can be written as

∆ỹi = −αiξ̃i,−1 + δi∆x̃i + vi, (A.29)

where ξ̃i,−1 = ỹi,−1 − x̃i,−1. Note that Pi = H̃i

(
H̃′iH̃i

)−1
H̃′i and H̃i = (ỹi,−1, x̃i, x̃i,−1). Hence
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∆x̃′iPi = ∆x̃′i and ξ̃
′
i,−1Pi = ξ̃

′
i,−1, since ∆x̃i and ξ̃i,−1 can be both obtained as a linear combina-

tions of the column vectors of H̃i. Hence

qiT,1 = −
ξ̃
′
i,−1ṽi√
T

+
∆x̃′iṽi

αi
√
T

+
ṽ′iPiṽi

αi
√
T
≡ ςa,iT + ςb,iT + ςc,iT , (A.30)

where we simplified notations by introducing ςa,iT = −ξ̃′i,−1ṽi/
√
T , ςb,iT = α−1i ∆x̃′iṽi/

√
T and

ςc,iT = α−1i ∆ṽ′iPiṽi/
√
T to denote the individual terms in the expression (A.30) for qiT,1. Suffi cient

conditions for E
(
q4iT,1

)
< K are E

(
ς4s,iT

)
< K for s ∈ {a, b, c}.

For s = a, we have

ςa,iT = −
ξ̃
′
i,−1ṽi√
T

= − 1√
T

T∑
i=1

(
ξi,t−1 − ξ̄i,−1

)
(vit − v̄i) = − 1√

T

T∑
i=1

ξi,t−1vit +
√
T ξ̄i,−1v̄i,

where ξ̄i,−1 = T−1
∑T

t=1 ξi,t−1, and

ξit =

∞∑
`=0

(1− αi)` (uy,i,t−` − βux,i,t−`)

=

∞∑
`=0

(1− αi)` (δi − β)ux,i,t−` +

∞∑
`=0

(1− αi)` vit.

Noting that supi (1− αi) < 1 under Assumption 1, and fourth moments of ux,i,t and eights moments

of vit are bounded, we obtain

E

( 1√
T

T∑
i=1

ξi,t−1vit

)4 ≤ K,
and

T 2 · E
(
ξ̄
4
i,−1v̄

4
i

)
≤ K,

which are suffi cient conditions for E
(
ς4a,iT

)
≤ K.

For s = b, we have

ςb,iT =
∆x̃′iṽi

αi
√
T

=
1

αi
√
T

T∑
t=1

(ux,it − ūx,i) (vit − v̄i) =
1

αi
√
T

T∑
t=1

ux,itvit −
√
T

αi
ūx,iv̄i.

Using Assumption 2, we obtain the following upper bound

E
(
ς4b,iT

)
≤
∣∣α−4i ∣∣ 1

T

T∑
t=1

E
(
u4x,it

)
E
(
v4it
)

+
∣∣α−4i ∣∣TE (ū4x,i)E (v̄4i ) ≤ K, (A.31)
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where
∣∣α−4i ∣∣ < K, E

(
u4x,it

)
< K, E

(
v4it
)
< K, E

(
ū4x,i

)
< K/T 2, and E

(
v̄4i
)
< K/T 2.

For s = c, we have

ςc,iT =
ṽ′iPiṽi

αi
√
T

=
∆ṽ′iH̃i

(
H̃′iH̃i

)−1
H̃′iṽi

αi
√
T

Consider H̃∗i =
(
x̃i,∆x̃i, ξ̃i,−1

)
and note that

H̃i = (ỹi,−1, x̃i, x̃i,−1) = B∗H̃∗i ,

where

B∗ =

 −β β 1

1 0 0

−1 1 0


is nonsingular (for any β). Hence Pi = H̃i

(
H̃′iH̃i

)−1
H̃′i = H̃∗i

(
H̃∗′i H̃∗i

)−1
H̃∗′i , and we can write

ςc,iT as

ςc,iT =
ṽ′iH̃

∗
i

(
H̃∗′i H̃∗i

)−1
H̃∗′i ṽi

αi
√
T

.

Consider the scaling matrix

AT =

 T−1 0 0

0 T−1/2 0

0 0 T−1/2

 . (A.32)

We have

ςc,iT =
1

αi
√
T

ṽ′iH̃
∗
iAT

(
AT H̃∗′i H̃∗iAT

)−1
AT H̃∗′i ṽi ≥ 0.

Using the inequality x′A−1x ≤ λmin (A) ‖x‖2, we have

0 ≤ ςc,iT ≤
1

αi
√
T
λ−1min

(
AT H̃∗′i H̃∗iAT

)∥∥∥AT H̃∗′i ṽi

∥∥∥2
2
.

Using Cauchy-Schwarz inequality, we obtain

E
(
ς4c,iT

)
≤ 1

α4iT
2

√
E
[
λ−4min

(
AT H̃∗′i H̃∗iAT

)]√
E
∥∥∥AT H̃∗′i ṽi

∥∥∥8
2
.

But α−4i < K under Assumption 1, and E
[
λ−4min

(
AT H̃∗′i H̃∗iAT

)]
< K under Assumption 4. It

follows

E
(
ς4c,iT

)
≤ K

T 2

√
E
∥∥∥AT H̃∗′i ṽi

∥∥∥8
2
.
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Let AT H̃∗′i ṽi ≡ hviT and consider the individual elements of hviT , denoted as hviT,j for j = 1, 2, 3,

hviT = AT H̃∗′i ṽi =

 hviT,1

hviT,2

hviT,3

 =


1
T

∑T
t=1 x̃itṽit

1√
T

∑T
t=1 ũitṽit

1√
T

∑T
t=1 ξ̄i,t−1ṽit

 .
Under Assumption 2, it can be shown that

E
(
h8viT,j

)
< K, for j = 1, 2, 3,

which is suffi cient for E
∥∥∥AT H̃∗′i ṽi

∥∥∥8
2
< K. It follows that

E
(
ς4c,iT

)
<
K

T 2
. (A.33)

This completes the proof of (A.26) for j = 1.

Consider next (A.26) for j = 2, and note qiT,2 is the same as ςb,iT , namely

qiT,2 =
∆x̃′iPiṽi

αi
√
T

=
∆x̃′iṽi

αi
√
T

= ςb,iT .

But E
(
ς4b,iT

)
< K, see (A.31). This completes the proof of (A.26).

We establish (A.27) next. As before we consider the individual elements of 2 × 1 vector qiT ,

denoted as qiT,s for s = 1, 2, separately. For s = 1 we have (using the individual terms in expression

(A.30))

|E (qiT,1)| =
∣∣∣∣∣E
(
−
ξ̃
′
i,−1ṽi√
T

+
∆x̃′iṽi

αi
√
T

+
∆ṽ′iPiṽi

αi
√
T

)∣∣∣∣∣ ≤ |E (ςa,iT )|+ |E (ςb,iT )|+ |E (ςc,iT )| . (A.34)

For the first term in (A.34), we obtain

|E (ςa,iT )| =

∣∣∣∣∣E
[
−
ξ̃
′
i,−1ṽi√
T

= − 1√
T

T∑
i=1

(
ξi,t−1 − ξ̄i,−1

)
(vit − v̄i)

]∣∣∣∣∣
≤ 1√

T

T∑
i=1

∣∣E (ξi,t−1vit)∣∣+
√
TE

∣∣ξ̄i,−1v̄i∣∣ .
But E

(
ξi,t−1vit

)
= 0 and E

∣∣ξ̄i,−1v̄i∣∣ < K/T under Assumptions 1-2. Hence,

|E (ςa,iT )| ≤ K√
T
.
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For the second term in (A.34), we obtain

|E (ςb,iT )| =

∣∣∣∣∣E
(

1

αi
√
T

T∑
t=1

ux,itvit −
√
T

αi
ūx,iv̄i

)∣∣∣∣∣
≤ K

1√
T

T∑
t=1

|E (ux,itvit)|+K
√
T |E (ūx,iv̄i)| .

But E (ux,itvit) = 0 and E (ūx,iv̄i) = 0 under Assumption 2. Hence

|E (ςb,iT )| = 0.

Finally, for the last term we note that

|E (ςc,iT )| ≤ E |ςc,iT | ≤
√
E
(
ς2c,iT

)
,

and using result (A.33), we obtain

|E (ςc,iT )| < K√
T
.

It now follows that |E (qiT,1)| < K/
√
T , as desired.

Consider |E (qiT,s)| for s = 2 next. We have

|E (qiT,2)| = |E (ςb,iT )| = 0.

This completes the proof of result (A.27).

Lemma A.7 Let Assumptions 1-4 hold, and consider BiT defined by (A.19). Then we have

Tα/2 ‖BiT −Bi‖ →p 0 as T →∞, for any α < 1/2, (A.35)

where

Bi = plim
T→∞

BiT =

(
α2iE

(
ξ2it
)

+ δ2iσ
2
xi δiσ

2
xi

δiσ
2
xi σ2xi

)
, (A.36)

and ξit =
∑∞

`=0 (1− αi)` (uy,i,t−` − βux,i,t−`).

Proof. We have

BiT =
∆Z̃′iPi∆Z̃i

T
=

1

T

(
∆ỹ′iPi∆ỹi ∆ỹ′iPi∆x̃i

∆x̃′iPi∆ỹi ∆x̃′iPi∆x̃i

)
=

(
biT,11 biT,12

biT,21 biT,22

)
.
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Consider the element biT,22 first. Since ∆x̃′iPi = ∆x̃′i, and ∆x̃it = ux,it − ūx,i, we have

biT,12 =

(
1

T

T∑
t=1

u2x,it

)
− ū2x,i.

Under Assumption 2, ux,it ∼ IID
(
0, σ2xi

)
with finite fourth order moments, and therefore

Tα

(
1

T

T∑
t=1

u2x,it − σ2xi

)
p→ 0, for any α < 1/2.

In addition, E
(
ū2x,i

)
< K/T , which implies Tαū2x,i

p→ 0, for any α < 1/2. It follows

Tα
(
biT,22 − σ2xi

) p→ 0, for any α < 1/2. (A.37)

Consider the element biT,11 next. We will use similar arguments as in the proof of Lemma A.6. In

particular, ∆ỹi can be written as in (A.29), and, since Piξ̃i,−1 = ξ̃i,−1 and Pi∆x̃i = ∆x̃i, we have

bi,T,11 =
∆ỹ′iPi∆ỹi

T
= ζaa,iT + ζbb,iT + ζcc,iT + 2ζab,iT + 2ζac,iT + 2ζbc,iT , (A.38)

where

ζaa,iT = α2i
ξ̃
′
i,−1ξ̃i,−1
T

,

ζbb,iT = δ2i
∆x̃′i∆x̃i

T
,

ζcc,iT =
ṽ′iPiṽi
T

and the cross-product terms are

ζab,iT = αiδi
ξ̃
′
i,−1∆x̃i

T

ζac,iT = αi
ξ̃
′
i,−1ṽi

T
, and

ζbc,iT = δi
∆x̃′iṽi
T

.

We consider these individual terms ζ next. Note that

ξit =

∞∑
`=0

(1− αi)` (uy,i,t−` − βux,i,t−`)

=

∞∑
`=0

(1− αi)` vi,t−` + (δi − β)

∞∑
`=0

(1− αi)` ux,i,t−`,
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where supi (1− αi) < 1 under Assumption 1, and innovations vit and uxit have finite fourth order

moments under Assumption 2. Hence, Tα
[
T−1

∑T
t=1 ξ

2
i,t−1 − E

(
ξ2i,t−1

)]
→p 0, E

(
ξ̄
2
i,−1

)
< K/T ,

and we obtain

Tα
[
ζaa,iT − α2iE

(
ξ̄
2
i,−1

)]
→p 0, for any α < 1/2. (A.39)

Noting that ζbb,iT = δ2i bi,T,12, and using result (A.37), we have

Tα
[
ζbb,iT − δ2iσ2xi

]
→p 0, for any α < 1/2. (A.40)

Consider ζcc,iT and note that ζcc,iT = αi√
T
ςc,iT , where ςc,iT = α−1i ∆ṽ′iPiṽi/

√
T was introduced in

(A.30) in proof of Lemma A.6. But E
(
ς2c,iT

)
< K

T by (A.33), and it follows

Tαζcc,iT →p 0, for any α < 1/2. (A.41)

Using similar arguments, we obtain for the cross-product terms,

Tαζab,iT →p 0, Tαζac,iT →p 0, and Tαζbc,iT →p 0, for any α < 1/2, as T →∞. (A.42)

Using (A.39)-(A.42) in (A.38), we obtain

Tα
(
bi,T,11 − α2iE

(
ξ2it
)
− δ2iσ2xi

) p→ 0, for any α < 1/2. (A.43)

Using the same arguments for the last term bi,T,12 = bi,T,21, we obtain

Tα
(
bi,T,12 − δiσ2xi

) p→ 0, for any α < 1/2.

This completes the proof of (A.35).

Lemma A.8 Let Assumptions 1-4 hold, and consider BiT defined by (A.19) and Bi = plimT→∞BiT

defined by (A.36). Then we have

Tα/2
∥∥B−1iT −B−1i

∥∥→p 0 as T →∞, for any α < 1/2. (A.44)

Proof. This proof closely follows proof of Lemma A.8 in Chudik and Pesaran (2013). Let p =∥∥B−1i ∥∥, q =
∥∥B−1iT −B−1i

∥∥, and r = ‖BiT −Bi‖. We suppressed subscripts i, T to simplify the

notations, but it is understood that the terms p, q, r depend on (i, T ). Using the triangle inequality
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and the submultiplicative property of matrix norm ‖.‖, we have

q =
∥∥B−1iT (Bi −BiT ) B−1i

∥∥ ,
≤

∥∥B−1iT ∥∥ rp,
≤

∥∥(B−1iT −B−1i
)

+ B−1i
∥∥ rp,

≤ (p+ q) rp.

Subtracting rpq from both sides and multiplying by Tα/2, we have, for any α < 1/2,

(1− rp)
(
Tα/2q

)
≤ p2

(
Tα/2r

)
. (A.45)

Note that Tα/2r
p→ 0 by Lemma A.7, and |p| < K since Bi is invertible and λmin (Bi) is bounded

away from zero8. It follows

(1− rp) p→ 1, (A.46)

and

p2
(
Tα/2r

)
p→ 0. (A.47)

(A.45)-(A.47) imply Tα/2q
p→ 0. This establishes result (A.44).

Lemma A.9 Let Assumptions 1-4 hold, and consider ξiT defined by

ξiT =
x̃′i∆Z̃i
T

(
∆Z̃′iPi∆Z̃i

T

)−1
∆Z̃′iPiṽi

αi
√
T

.

where Pi is given by (12), and x̃i and ∆Z̃i are defined below (8). Then

1√
nT

n∑
i=1

ξiT →p 0, (A.48)

as n, T →∞ such that supn,T
√
n/T 1−ε < K for some ε > 0.

Proof. Term ξiT can be written as

ξiT = a′iTB−1iT qiT , (A.49)

where aiT is given by (A.18), BiT is given by (A.19), and

qiT =
∆Z̃′iPiṽi

αi
√
T

. (A.50)

8This follows from observing that both σ2xi and E
(
ξ2it
)
as well as α2i in (A.36) are bounded away from zero.
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We have
1√
nT

n∑
i=1

ξi,T =
1√
nT

n∑
i=1

a′iT
(
B−1iT −B−1i

)
qiT +

1√
nT

n∑
i=1

a′iTB−1i qiT . (A.51)

Consider the two terms on the right side of (A.51) in turn. Lemma A.2 established fourth moments

of aiT are bounded, which is suffi cient for ‖aiT ‖ = Op (1). Result (A.26) of Lemma A.6 established

second moments of individual elements of qiT are bounded, which is suffi cient for ‖qiT ‖ = Op (1).

In addition, Lemma A.8 established

Tα/2
∥∥B−1iT −B−1i

∥∥→p 0 as T →∞, for any α < 1/2.

Let ε = (1− α) /2 so that 1− ε = 1/2 + α/2. Then we obtain

1√
nT

n∑
i=1

a′iT
(
B−1iT −B−1i

)
qiT =

√
n√
T

1

Tα/2
1

n

n∑
i=1

a′iT

[
Tα/2

(
B−1iT −B−1i

)]
qiT

≤
√
n

T 1−ε

(
1

n

n∑
i=1

‖aiT ‖
(
Tα/2

∥∥B−1iT −B−1i
∥∥) ‖qiT ‖)→p 0(A.52)

as n, T →∞ such that supn,T
√
n

T 1−ε < K for some ε > 0.

Consider next the second term on the right side of (A.51). Let µ∗iT = E
(
a′iTB−1i qiT

)
, and

consider the variance of (nT )−1/2
∑n

i=1 a′iTB−1i qiT . By independence of a′iTB−1i qiT across i,

V ar

(
1√
nT

n∑
i=1

a′iTB−1i qiT

)
=

1

nT

n∑
i=1

V ar
(
a′iTB−1i qiT

)
≤ 1

nT

n∑
i=1

E
(
a′iTB−1i qiT

)2
. (A.53)

Denoting individual elements of B−1i as b−i,sj , individual elements of aiT as aiT,j , and individual

elements of qiT as qiT,s, for s, j = 1, 2, we have

a′iTB−1i qiT =

2∑
s=1

2∑
j=1

b−i,sjaiT,sqiT,j

= b−i,11aiT,1qiT,1 + b−i,21aiT,2qiT,1 + b−i,12aiT,1qiT,2 + b−i,22aiT,2qiT,2, (A.54)

where

aiT,1 =
1

T

T∑
t=1

x̃it∆ỹit =
1

T

T∑
t=1

(xit − x̄i) ∆yit, (A.55)

aiT,2 =
1

T

T∑
t=1

x̃it∆x̃it =
1

T

T∑
t=1

(xit − x̄i)ux,it, (A.56)
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qiT,1 =
∆ỹ′iPiṽi

αi
√
T
, (A.57)

and

qiT,2 =
1√
T

T∑
t=1

ũx,itṽit
αi

. (A.58)

Note that supi
∥∥B−1i ∥∥ < K,9 and therefore

∣∣∣∣(b−i,sj)2∣∣∣∣ < K. Using this result and Cauchy-Schwarz

inequality for the individual summands on the right side of (A.54), we obtain

E
(
a′iTB−1i qiT

)2 ≤ K 2∑
s=1

2∑
j=1

√
E
(
a4iT,s

)√
E
(
q4iT,j

)
< K, (A.59)

where E
(
a4iT,s

)
< K by Lemma A.2, and E

(
q4iT,j

)
< K by result (A.26) of Lemma A.6. Using

(A.59) in (A.53), it follows that

V ar

(
1√
nT

n∑
i=1

a′iTB−1i qiT

)
<
K

T
,

and therefore
1√
nT

n∑
i=1

(
a′iTB−1i qiT − µ∗iT

)
→q.m. 0 as n, T →∞. (A.60)

We establish an upper bound for |µ∗iT | next. We have (using (A.54) and noting that
∣∣∣b−i,sj∣∣∣ < K)

|µ∗iT | < K ·
2∑
s=1

2∑
j=1

|E (aiT,sqiT,j)| .

It follows that if we can show that

|E (aiT,sqiT,j)| <
K√
T
, (A.61)

holds for all s, j = 1, 2, then

|µ∗iT | <
K√
T
, (A.62)

hold. We establish (A.61) for s = j = 2, first, which is the most convenient case to consider. We

have

E (aiT,2qiT,2) = E

(
1

T

T∑
t=1

(xit − x̄i)ux,it ·
1√
T

T∑
t=1

ux,itvit
αi

)
= 0, (A.63)

9Bi is invertible and infi λmin (Bi) is bounded away from zero. This follows from observing that both σ2xi and
E
(
ξ2it
)
as well as α2i in (A.36) are bounded away from zero.
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since vit is independently distributed of ux,it′ for any t, t′. Consider next s = 1, j = 2. We have

E (aiT,1qiT,2) = E

(
1

T

T∑
t=1

(xit − x̄i) ∆yit ·
1√
T

T∑
t=1

ux,itvit
αi

)
, (A.64)

where (first-differencing (A.6) and substituting (3))

∆yit = δiux,it + vit − αi
∞∑
`=1

(1− αi)`−1 [vi,t−` + (δi − β)ux,i,t−`] ,

= ηu,it + ηv,it, (A.65)

in which

ηu,it = δiux,it − αi
∞∑
`=1

(1− αi)`−1 (δi − β)ux,i,t−`, (A.66)

and

ηv,it = vit − αi
∞∑
`=1

(1− αi)`−1 vi,t−`. (A.67)

Hence, E (aiT,1qiT,2) can be written as

E (aiT,1qiT,2) = E

(
1

T

T∑
t=1

(xit − x̄i) ηu,it ·
1√
T

T∑
t=1

ux,itvit
αi

)

+E

(
1

T

T∑
t=1

(xit − x̄i) ηv,it ·
1√
T

T∑
t=1

ux,itvit
αi

)
.

The first term is equal to 0, since vit is independently distributed of ux,it′ for any t, t′. Consider the

second term. Noting that E [(xit − x̄i)ux,is] < K and
∣∣α−1i ∣∣ < K for any i, t, s, we obtain

E

(
1

T

T∑
t=1

(xit − x̄i) ηv,it ·
1√
T

T∑
t=1

ux,itvit
αi

)
=

1

T 3/2

T∑
t=1

T∑
s=1

α−1i E [(xit − x̄i)ux,is]E
(
ηv,isvit

)
,

≤ K

T 3/2

T∑
t=1

T∑
s=1

E
(
ηv,isvit

)
.

But

E
(
ηv,isvit

)
=


0, for s < t,

σ2vi < K, for s = t,

≤ Kρs−t, for s > t,

where ρ ≡ supi (1− αi) < 1 by Assumption 1. Hence
∣∣∣∑T

s=1E
(
ηv,isvit

)∣∣∣ < K for any t = 1, 2, ...T ,

and ∣∣∣∣∣E
(

1

T

T∑
t=1

(xit − x̄i) ηv,it ·
1√
T

T∑
t=1

ux,itvit
αi

)∣∣∣∣∣ ≤ K√
T
, (A.68)
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as desired. This establish (A.61) hold for s = 1, j = 2.

Consider next (A.61) for s ∈ {1, 2} and j = 1. Using expression (A.30), we can write aiT,sqiT,1,

for s = 1, 2, as

aiT,sqiT,1 = aiT,sςa,iT + aiT,sςb,iT + aiT,sςc,iT , (A.69)

where as in the proof of Lemma A.6 ςa,iT = −ξ̃′i,−1ṽi/
√
T , ςb,iT = α−1i ∆x̃′iṽi/

√
T and ςc,iT =

α−1i ∆ṽ′iPiṽi/
√
T . Using similar arguments as in establishing (A.68), we obtain

|E (aiT,sςa,iT )| < K√
T
, for s = 1, 2.

Noting next that ςb,iT = α−1i qi,T,2, it directly follows from results (A.63) and (A.68) that

|E (aiT,sςb,iT )| < K√
T
, for s = 1, 2.

Consider the last term, ai,T,sςc,iT , for s = 1, 2. Using Cauchy-Schwarz inequality we have

|E (aiT,sςc,iT )| ≤
√
E
(
a2iT,s

)√
E
(
ς2c,iT

)
, for s = 1, 2.

But E
(
a2iT,s

)
< K, for s = 1, 2 by Lemma A.2, and E

(
ς2c,iT

)
< K/T is implied by (A.33). Hence

|E (aiT,sςc,iT )| ≤ K√
T
, for s = 1, 2.

This completes the proof of (A.61) for all s, j = 1, 2, and therefore (A.62) holds. Using (A.62), we∣∣∣∣∣ 1√
nT

n∑
i=1

µ∗iT

∣∣∣∣∣ ≤ 1√
nT

n∑
i=1

|µ∗iT | <
1√
nT

n∑
i=1

K√
T

= K

√
n

T
→ 0, (A.70)

as n, T →∞ such that
√
n/T → 0. Results (A.60) and (A.70) imply

1√
nT

n∑
i=1

a′iTB−1i qiT →p 0, (A.71)

as n, T → ∞ such that
√
n/T → 0. Finally, using (A.52) and (A.71) in (A.51), we obtain (A.60),

as desired.
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A.3 Proof of Theorem

Proof of Theorem 1. Substituting ỹi = x̃iβ + ∆Z̃iψi + α−1i ṽi in (10), and using Mix̃i = x̃i,

and Mi∆Z̃i = 0, we have

T
√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

x̃′iMix̃i
T 2

)−1(
1√
n

n∑
i=1

x̃′iMiṽi
Tαi

)
. (A.72)

Consider the first term on the right side of (A.72) first. Lemma A.4 establishes

1

n

n∑
i=1

x̃′iMix̃i
T 2

→p ω
2
x > 0, as n, T →∞, (A.73)

where ω2x = σ2x/6, σ
2
x = limn→∞ n−1

∑n
i=1 σ

2
xi. Consider the second term on the right side of (A.72).

Noting that x̃′iPi = x̃′i, we have

1√
n

n∑
i=1

x̃′iMiṽi
αiT

=
1√
n

n∑
i=1

x̃′iṽi
αiT

+
1√
nT

n∑
i=1

ξi,T , (A.74)

where

ξiT =
x̃′i∆Z̃i
T

(
∆Z̃′iPi∆Z̃i

T

)−1
∆Z̃′iPiṽi

αi
√
T

. (A.75)

Using Lemma A.5 (for the first term on the right side of (A.74)), and Lemma A.9 (for the second

term on the right side of (A.74)), we obtain

1√
n

n∑
i=1

x̃′iMiṽi
αiT

→d N
(
0, ω2v

)
, (A.76)

as n, T →∞ and supn,T
√
n/T 1−ε < K, for some ε > 0, where ω2v = lim n→∞n−1

∑n
i=1 σ

2
xiσ

2
vi/
(
6α2i
)
.

Using (A.73) and (A.76) in (A.72) establishes (14).
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This online supplement describes implementation of the Pooled Mean Group (PMG) estimator and

its bias-corrected versions.

S-1 PMG estimator and its bias-corrected versions

Consider the same illustrative panel ARDL model as in the paper, namely the model given by

equations (1)-(2). PMG estimator of the long-run coeffi cient β, as originally proposed by Pesaran,

Shin and Smith (1999), is computed by solving the following equations iteratively:

β̂PMG = −
(

n∑
i=1

φ̂
2

i

σ̂2i
x′iHx,ixi

)−1 n∑
i=1

φ̂
2

i

σ̂2i
x′iHx,i

(
∆yi − φ̂iyi,−1

)
, (S.1)

φ̂i =
(
ξ̂
′
iHx,iξ̂i

)−1
ξ̂
′
iHx,i∆yi, i = 1, 2, ..., n, (S.2)

and

σ̂2i = T−1
(

∆yi − φ̂iξ̂i
)′

Hx,i

(
∆yi − φ̂iξ̂i

)
, i = 1, 2, ..., n, (S.3)

where ξ̂i = yi,−1 − xiβ̂PMG, xi = (xi,1, xi,2, ..., xi,T )′, ∆yi = yi − yi,−1, yi = (yi,1, yi,2, ..., yi,T )′,

yi,−1 = (yi,0, yi,1, ..., yi,T−1)
′,Hx,i = IT−∆xi (∆x′i∆xi)

−1 ∆x′i,∆xi = xi−xi,−1, and xi,−1= (xi,0, xi,1, ..., xi,T−1)
′.

To solve (S.1)-(S.3) iteratively, we set β̂PMG,(0) to the pooled Engle-Granger estimator, and

given the initial estimate β̂PMG,(0), we compute ξ̂i,(0) = yi,−1 − xiβ̂PMG,(0), φ̂i,(0) and σ̂
2
i,(0), for

i = 1, 2, ..., n using (S.2)-(S.3). Next we compute β̂PMG,(1) using (S.1) and given values φ̂i,(0) and
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σ̂2i,(0). Then we iterate - for a given value of β̂PMG,(`) we compute ξ̂i,(`), φ̂i,(`) and σ̂
2
i,(`); and for

given values of φ̂i,(`) and σ̂
2
i,(`) we compute β̂PMG,(`+1). If convergence is not achieved, we increase

` by one and repeat. We define convergence by
∣∣∣β̂PMG,(`+1) − β̂PMG,(`)

∣∣∣ < 10−4.10

Inference is conducted using equation (17) of Pesaran, Shin and Smith (1999). In particular,

T
√
n
(
β̂PMG − β0

)
∼ N (0,ΩPMG) ,

where

ΩPMG =

(
1

n

n∑
i=1

φi,0
σ2i,0

rxi,xi

)−1
, and rxi,xi = plimT→∞T

−2x′iHx,ixi.

Standard error of β̂PMG, denoted as se
(
β̂PMG

)
, is estimated as

ŝe
(
β̂PMG

)
= T−1n−1/2Ω̂PMG,

where

Ω̂PMG =

(
1

n

n∑
i=1

φ̂i,0

σ̂2i,0
r̂xi,xi

)−1
and r̂xi,xi = T−2x′iHx,ixi. (S.4)

S-1.1 Simulation-based bias-corrected PMG

Similarly to the simulation-based bias-corrected PB estimator, we consider the following bias-

corrected PMG estimator

β̃PMG = β̂PMG − b̂PMG, (S.5)

where b̂PMG an estimate of the bias of PMG estimator obtained by the following stochastic simu-

lation algorithm, which resembles the algorithm in Subsection 2.2.1.

1. Compute β̂PMG. Given PMG estimate β̂PMG, estimate the remaining unknown coeffi cients

of (1)-(2) by least squares, and compute residuals ûy,it, ûx,it.

2. For each r = 1, 2, ..., R, generate new draws for û(r)y,it = a
(r)
y,itûy,it, and û

(r)
x,it = a

(r)
x,itûx,it, where

a
(r)
y,it,a

(r)
x,it are randomly drawn from Rademacher distribution (Davidson and Flachaire, 2008)

namely

a
(r)
h,it =

{
−1, with probability 1/2

1, with probability 1/2
,

for h = y, x. Given the estimated parameters of (1)-(2) from Step 1, and initial values yi1, xi1
generate simulated data y(r)it , x

(r)
it for t = 2, 3, ..., T and i = 1, 2, ..., n. Using the generated

data compute β̂
(r)

PMG.

10 If convergence does not occur within the first 500 iterations, we stop and report potential divergence. This event
did not happen in any of the simulations in this paper. Convergence of the PMG procedure above is typically fast.
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3. Compute b̂PMG =
[
R−1

∑R
r=1 β̂

(r)

PMG − β̂PMG

]
.

The above procedure can be iterated by using the bias-corrected estimate β̃PMG in Step 1,

although this is not considered in this paper.

We conduct inference by using the 1−α confidence interval C1−α
(
β̃PMG

)
= β̃PMG±k̂ŝe

(
β̂PMG

)
=

β̃PMG±T−1n−1/2k̂Ω̂PMG, where k̂ is computed by stochastic simulation. In particular, k̂ is the 1−α
percent quantile of

{∣∣∣t(r)PMG

∣∣∣}R
r=1
, where t(r)PMG = β̃

(r)
PMG/ŝe

(
β̂
(r)

PMG

)
= T−1n−1/2β̃

(r)
PMG/Ω̂

(r)
PMG,

β̃
(r)
PMG = β̂

(r)

PMG− b̂PMG is the bias-corrected PMG estimate of β in the r-th draw of the simulated

data in the algorithm above, and Ω̂
(r)
PMG is computed as in (S.4), but using the simulated data.

S-1.2 Jackknife and combined bias-corrected PMG estimators

We consider similar jackknife bias correction for PMG estimator as for the PB estimator in Section

2.2. In particular,

β̃jk−PMG = β̃jk−PMG (κ) = β̂PMG − κ
(
β̂PMG,a + β̂PMG,b

2
− β̂PMG

)
,

where β̂PMG is the full sample PMG estimator, β̂PMG,aand β̂PMG,b are the first and the second

half sub-sample PMG estimators, and κ is suitably chosen weighting parameter. Under our setup

with I(1) variables, we need to correct β̂PMG for its O
(
T−2

)
bias, which gives κ = 1/3.

We also consider a combined, simulation-based adaptive jackknife bias correction where κ = κ̂NT

is data-dependent and computed by stochastic simulation. Specifically, we consider

κ̂PMG =
b̂PMG

b̂PMG,a,b − b̂PMG

, (S.6)

where b̂PMG = R−1
∑R

r=1 β̂
(r)

PMG−β̂, and b̂PMG,a,b =
(
b̂PMG,a + b̂PMG,b

)
/2, b̂PMG,a = R−1

∑R
r=1 β̂

(r)

PMG,a−

β̂PMG,a, b̂PMG,b = R−1
∑R

r=1 β̂
(r)

PMG,b − β̂PMG,b.

We conduct inference by using the 1 − α confidence interval C1−α
(
β̃jk−PMG

)
= β̃jk−PMG ±

k̂jkŝe
(
β̂PMG

)
= β̃jk−PMG ± k̂jkT−1n−1/2Ω̂PMG, where k̂jk = k̂jk (κ) is computed by stochastic

simulation. In particular, k̂jk is the 1− α percent quantile of
{∣∣∣t(r)jk−PMG

∣∣∣}R
r=1
, where t(r)jk−PMG =

β̃
(r)
jk−PMG/ŝe

(
β̂
(r)

PMG

)
= T−1n−1/2β̃

(r)
jk−PMG/Ω̂

(r)
PMG, β̃

(r)
jk−PMG is the jackknife bias-corrected PMG

estimate of β using the r-th draw of the simulated data generated using the same algorithm as in

Subsection S-1.1, and Ω̂
(r)
PMG is computed as in (S.4), but using the simulated data.
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