# Short T Dynamic Panel Data Models with Individual, Time and Interactive Effects\*

Kazuhiko Hayakawa Hiroshima University M. Hashem Pesaran University of Southern California, and Trinity College, Cambridge L. Vanessa Smith University of York

 $25~\mathrm{July}~2021$ 

#### Abstract

This paper proposes a transformed quasi maximum likelihood (TQML) estimator for short T dynamic fixed effects panel data models allowing for interactive effects through a multi-factor error structure. The proposed estimator is robust to the heterogeneity of the initial values and common unobserved effects, whilst at the same time allowing for standard fixed and time effects. It is applicable to both stationary and unit root cases. The order condition for identification of the number of interactive effects is established, and conditions are derived under which the parameters are almost surely locally identified. It is shown that global identification in the presence of the lagged dependent variable cannot be guaranteed. The TQML estimator is proven to be consistent and asymptotically normally distributed. A sequential multiple testing likelihood ratio procedure is also proposed for estimation of the number of factors which is shown to be consistent. Finite sample results obtained from Monte Carlo simulations show that the proposed procedure for determining the number of factors performs very well and the TQML estimator has small bias and RMSE, and correct empirical size in most settings. The practical use of the TQML approach is demonstrated by means of two empirical illustrations from the literature on cross county crime rates and cross country growth regressions.

JEL Classifications: C12, C13, C23

**Keywords:** short T dynamic panels, unobserved common factors, quasi maximum likelihood, interactive effects, multiple testing, sequential likelihood ratio tests, crime rate, growth regressions

<sup>\*</sup>The authors would like to thank the editor, three referees, Alex Chudik and Ron Smith for helpful suggestions, Liudas Giraitis for useful discussions, and Vasilis Sarafidis for helpful comments on a preliminary version of the paper. Part of this paper was written whilst Hayakawa was visiting the University of Cambridge as a JSPS Postdoctoral Fellow for Research Abroad. He acknowledges financial support from the JSPS Fellowship and the Grant-in-Aid for Scientific Research (KAKENHI 17K03660, 20H01484, 20K20760) provided by the JSPS. Pesaran and Smith acknowledge financial support from ESRC Grant No. ES/I031626/1.

### 1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data models where the time dimension (T) is short and fixed relative to the cross section dimension (N), which is large. Both generalised method of moments (GMM) and likelihood approaches have been advanced to estimate such panel data models. See, for example, Anderson and Hsiao (1981), Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995), Blundell and Bond (1998), Hsiao et al. (2002), Binder et al. (2005) and Moral-Benito (2013). As a natural extension of the traditional two-way error component model, the recent literature considers the case where individual and time effects are included in a multiplicative manner.<sup>1</sup> Such a structure is termed time-varying individual effects by Ahn et al. (2001, 2013) or interactive fixed effects by Bai (2009), otherwise characterised as a multi-factor error structure

Main contributions to this literature include the papers by Phillips and Sul (2007) and Sarafidis and Robertson (2009) who investigate the implications of ignoring the interactive fixed effects for the behaviour of the fixed effects and GMM estimators, respectively.<sup>2</sup> Ahn et al. (2001) consider a single factor error structure and propose a quasi-differencing approach to eliminate the factor, subsequently applying GMM to consistently estimate the parameters. The quasi-differencing transformation was originally proposed by Chamberlain (1984) and implemented by Holtz-Eakin et al. (1988) in the context of a bivariate panel autoregression. Nauges and Thomas (2003) follow the same approach, and in addition to prior first-differencing to eliminate the fixed effects, they also consider a single factor structure for the errors. Ahn et al. (2013) extend their quasi-differencing approach to a multi-factor error structure. More recently, Hayakawa (2012) proposes a GMM estimator based on the projection method to deal with short dynamic panel data models with interactive fixed effects, while Robertson and Sarafidis (2015) propose an instrumental variable estimation procedure that introduces new parameters to represent the unobserved covariances between the instruments and the unobserved factors. Comments on the latter approach are provided by Ahn (2015) and Hayakawa (2016). As an alternative to GMM, Bai (2013) proposes a quasi-maximum likelihood (QML) approach applied to the original dynamic panel data model without differencing, treating time effects as free parameters. To deal with possible correlations between the factor loadings and the regressors Bai follows Mundlak (1978) and Chamberlain (1982) and specifies linear relationships between the factor loadings and the regressors to be estimated along with the other parameters. A survey of short T panel data models with interactive effects can be found in Sarafidis and Wansbeek (2012).

Building on the work of Hsiao et al. (2002), this paper proposes a transformed QML approach (TQML), applied to the short T dynamic panel data model after first-differencing, that allows for interactive effects in addition to the standard individual and time fixed effects. In this way we directly address the empirical question of whether inclusion of individual and time effects are sufficient to deal with error cross-sectional dependence in short T panels. Our approach also accounts for heterogeneity of the initial values and the common factors in an integrated framework, and allows the initial values to be correlated with the fixed effects and other model parameters. We establish the order condition for identification of the number of interactive effects, discuss identification based on moment conditions and the likelihood framework, and finally derive conditions under which the parameters are almost surely locally identified. It it shown that global identification in the presence of the lagged dependent variable cannot be guaranteed. These results can be useful for the development of QML theory in the case of more general models. The TQML estimator is shown to be consistent and asymptotically normally distributed

<sup>&</sup>lt;sup>1</sup>The terms individual effects and fixed effects are used interchangeably, as are the terms interactive effects and common factors.

<sup>&</sup>lt;sup>2</sup>For the case of panel models with interactive fixed effects when N and T are both large, see, for example, Pesaran (2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios et al. (2011).

both for stationary and unit root cases. We also propose a sequential multiple testing likelihood ratio (MTLR) procedure to estimate the number of interactive effects and show that it delivers a consistent estimator of the true number of factors, and has the added advantage that it does not depend on an arbitrary choice of a maximum number of factors as required in the large N and T factor literature.

The theoretical results are further supported by means of extensive Monte Carlo experiments, covering both stationary and unit root cases, showing that the methods proposed for estimating the number of factors and the unknown parameters of the model perform well in most settings. It is also shown that the TQML estimator compares favourably to the QML estimator of Bai (2013) and the GMM type estimators proposed in the literature, and interestingly enough is reasonably robust to a number of important departures from its underlying assumptions. The practical use of the TQML approach is demonstrated with two empirical illustrations from the literature, focusing on the importance of allowing for interactive effects in empirical analysis. The first illustration estimates a dynamic version of the panel data model considered by Cornwell and Trumbull (1994) and Baltagi (2006) to explain the incidence of crime across counties in North Carolina; the second illustration estimates growth regressions using the recent data analysed by Acemoglu et al. (2019). In the case of both illustrations we find statistically significant evidence of interactive effects, even after allowing for fixed and time effects.

Our contribution differs from Bai (2013) in a number of important respects, despite the fact that both approaches make use of the likelihood framework. First, our procedure applies maximum likelihood estimation after first-differencing that eliminates the individual effects, whereas Bai (2013) considers the model in levels. Second, we assume the initial values,  $y_{i0}$ , i = 1, 2, ..., N, follow the postulated dynamic processes from some arbitrary initial values, thus also allowing the underlying processes to have unit roots. Bai notes that "the initial observation  $y_{i0}$  may or may not follow the [considered] dynamic process" but in his analysis he follows Bhargava and Sargan (1983) and assumes (rather than derives) initial values can be modelled as linear projections on the regressors and the factor loadings. Third, we address the issue of identification of short T dynamic panel data models with a multi-factor error structure, and propose a sequential multiple testing likelihood procedure for estimating the number of factors, topics that are not addressed by Bai (2013).

The rest of this paper is organised as follows. Section 2 discusses the relation to the literature. Section 3 sets out the dynamic panel data model and its assumptions. Section 4 considers the quasi maximum likelihood estimation with details of derivations given in Appendix S.3. Identification of the number of factors and the parameters of the model are discussed in Section 5. Section 6 establishes the asymptotic properties of the TQML estimator. Section 7 presents the sequential MTLR procedure for estimating the number of factors. Section 8 describes the Monte Carlo experiments and provides finite sample results on the performance of the sequential MTLR estimator for the number of factors, and the proposed TQML estimator. Empirical illustrations are provided in Section 9. The final section presents some concluding remarks. All technical proofs are provided in the Appendix. Details of alternative GMM estimators used in the Monte Carlo experiments together with additional Monte Carlo results are provided in an online supplement.

**Notations:** Let  $\mathbf{w} = (w_1, w_2, ..., w_n)'$  and  $\mathbf{A} = (a_{ij})$  be an  $n \times 1$  vector and an  $n \times n$  matrix, respectively. Denote the Euclidean norm of  $\mathbf{w}$  and the Frobenius norm of  $\mathbf{A}$  by  $\|\mathbf{w}\| = \left(\sum_{i=1}^n w_i^2\right)^{1/2}$  and  $\|\mathbf{A}\| = [\operatorname{tr}(\mathbf{A}'\mathbf{A})]^{1/2}$  respectively, and the largest and smallest eigenvalue of  $\mathbf{A}$  by  $\lambda_{max}(\mathbf{A})$  and  $\lambda_{min}(\mathbf{A})$ . If  $\{y_n\}_{n=1}^{\infty}$  is any real sequence and  $\{x_n\}_{n=1}^{\infty}$  is a sequence of positive real numbers, then  $y_n = O(x_n)$  if there exists a positive finite constant K such that  $|y_n|/x_n \leq K$  for all n.  $y_n = o(x_n)$  if  $y_n/x_n \to 0$  as  $n \to \infty$ . If  $\{y_n\}_{n=1}^{\infty}$  and  $\{x_n\}_{n=1}^{\infty}$  are both positive sequences of real numbers, then  $y_n = \ominus(x_n)$  if there exists  $N_0 \geq 1$  and positive finite constants  $K_0$  and  $K_1$  such that  $\inf_{n\geq N_0}(y_n/x_n) \geq K_0$  and  $\sup_{n\geq N_0}(y_n/x_n) \leq K_1$ . Positive, possibly large, fixed constants will be denoted by K,  $K_0$ ,  $K_1$  and so on, that could take different values in different equations. c,  $c_{\min}$  and  $c_{\max}$  will also denote positive fixed constants. Small positive constants will be denoted by  $\epsilon$ .  $E_0(.)$  denotes expectations taken under the true probability measure.  $\to_p$  and  $\stackrel{a.s.}{\to}$  denote convergence in probability and almost sure (a.s.) convergence,

respectively.  $\rightarrow_d$  denotes convergence in distribution for fixed T and as  $N \rightarrow \infty$ .

### 2 Related literature

For the purpose of relating our approach to the literature we start with a simple dynamic panel data model with a single common factor and abstract from fixed effects. Adding more factors and fixed and time effects does not materially change the narrative. Specifically we consider the simple dynamic panel data model

$$y_{it} = \gamma y_{i,t-1} + \beta x_{it} + \lambda_i f_t + \varepsilon_{it}, \text{ for } t = 1, 2, 3, ..., T, i = 1, 2, ..., N,$$
 (1)

where  $x_{it}$  is strictly exogenous, such that  $E(x_{it}\varepsilon_{jt'})=0$  for all i,j,t and t'. It will be assumed that  $\lambda_i$  and  $x_i$  are uncorrelated and have zero means, namely  $E(x_{it})=0$ ,  $E(\lambda_i)=0$ , and  $E(x_{it}\lambda_i)=0$ , for all i and t. These assumptions are made to simplify the derivations of rank conditions for identification and are not needed. The key assumptions are that conditional on  $f_t$ ,  $(y_{it}, x_{it} \text{ and } \varepsilon_{it})$  are cross-sectionally independent, and  $f_t \neq 0$ , for some t, in addition to  $x_{it}$  being strictly exogenous.  $\varepsilon_{it} \sim IID(0, \sigma_i^2)$ , with  $\sup_i(\sigma_i^2) < c_{\max} < \infty$ , and  $\inf_i(\sigma_i^2) > c_{\min} > 0$ . Also for the purpose of illustration we assume the initial values,  $y_{i0}$ , are obtained by projection of  $y_{i0}$  onto  $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{iT})'$  and  $f_0$ , and assume the following data generating process (DGP) for  $y_{i0}$ :

$$y_{i0} = \pi'_0 \mathbf{x}_i + \lambda_i f_0 + v_i, \ i = 1, 2, ..., N,$$
 (2)

where  $v_i \sim IID(0, \sigma_{i,v}^2)$  is distributed independently of  $\{\varepsilon_{it}, t = 1, 2, ..., T\}$  and  $\sigma_{i,v}^2$  could differ from  $\sigma_i^2$ . Since T is short, how initial values,  $y_{i0}$  for i = 1, 2, ..., N are generated play a crucial role in identification and estimation of the unknown parameters of interest, namely  $\gamma$  and  $\beta$ .

There are two main approaches to identification and estimation of  $\gamma$  and  $\beta$ . The first one builds on the pioneering contribution of Holtz-Eakin et al. (1988) and employs a quasi-differencing procedure to eliminate the factor loadings,  $\lambda_i$ , viewed as nuisance (incidental) parameters. The second approach advanced by Bai (2013) treats  $\lambda_i$  as free parameters and estimates them together with the factors,  $f_t$ , and the parameters of interest using the maximum likelihood approach. In what follows we consider these two approaches and highlight their main underlying assumptions, and discuss their relations to the transformed quasi-ML approach that we propose in this paper. With this in mind we also introduce a new GMM method which treats the factors,  $f_t$ , as given constants and avoids the incidental parameter problem by conditioning on

$$d_N(\lambda) = N^{-1} \sum_{i=1}^N \lambda_i^2 \tag{3}$$

rather than the individual factor loadings,  $\lambda_i$ . The limiting value of  $d_N(\lambda)$  as  $N \to \infty$ , depends on the degree of pervasiveness (strength) of the factor. In general we could have  $\sum_{i=1}^N \lambda_i^2 = \ominus(N^{\alpha})$ , where  $\alpha$  measures the strength of the factor. When the factor is strong  $\alpha = 1$  and  $\lim_{N\to\infty} [d_N(\lambda)] = \bar{d}(\lambda) > c > 0$ . But when the factor is not strong  $(\alpha < 1) \lim_{N\to\infty} [d_N(\lambda)] = 0$ . It is typically assumed that  $\alpha = 1$ , but it is also of interest to consider the possibility of weak factors and their implications for identification and estimation under different estimation approaches. We shall also see that once we allow the initial values to depend on the loadings,  $\lambda_i$ , for consistent estimation of  $\gamma$  all the methods we consider require the orthogonality assumption

$$E(\lambda_i \varepsilon_{it}) = 0$$
, for all  $i$  and  $t$ . (4)

In their more recent contribution, Ahn et al. (2013, ALS) consider a multi-factor panel regression where they allow a subset of the regressors to be weakly exogenous, and use lags and leads of the strictly exogenous regressors as instruments for the weakly exogenous variables (see Section 3.2 of ALS). As a result, their set up does not apply to a *pure* dynamic panel data model without any exogenous regressors.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>ALS do not consider dynamics in their Monte Carlo experiments either.

It is, therefore, important that the properties of the GMM approach are specifically investigated for the dynamic specification in (1). In what follows we consider two alternative approaches considered in the literature to eliminate the factor loadings.

### 2.1 Quasi-differenced GMM estimator

The quasi-differencing idea was introduced by Holtz-Eakin et al. (1988) and has been adopted in the literature by a number of authors. Eliminating the incidental parameters  $\lambda_i$  from (1) by quasi first-differencing yields:

$$y_{it} - b_t y_{i,t-1} = \gamma \left( y_{i,t-1} - b_t y_{i,t-2} \right) + \beta \left( x_{it} - b_t x_{i,t-1} \right) + \nu_{it}, \text{ for } t = 2, 3, ..., T,$$
 (5)

where

$$\nu_{it} = \varepsilon_{it} - b_t \varepsilon_{i,t-1} \tag{6}$$

and  $b_t = f_t/f_{t-1}$ . The values of  $b_t$  for t = 2, 3, ..., T are treated as given unknown constants to be estimated along with  $\gamma$  and  $\beta$ . Note that  $b_t$  is invariant to the scaling of  $f_t$ , and the importance of the unobserved factor,  $f_t$ , is determined by  $d_N(\lambda)$  defined by (3).

Using (5) we note that under the strict exogeneity assumption we have

$$E(x_{is}\nu_{it}) = E[x_{is}(\varepsilon_{it} - b_t\varepsilon_{i,t-1})] = 0 \text{ for } t = 1, 2, ..., T \text{ and } s = 1, 2, ..., T,$$

and no further assumptions concerning the factor loadings are required. But when  $\beta = 0$ , we need to use  $y_{i0}$  and  $y_{i1}$  as instruments and for these to be valid, we also require that

$$E(\lambda_i \varepsilon_{it}) = 0$$
, for all i and t.

To see this note that (recall that  $y_{i0} = \pi'_0 \mathbf{x}_i + \lambda_i f_0 + v_i$ , with  $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{iT})'$ )

$$E(y_{i0}\nu_{it}) = E[y_{i0}(\varepsilon_{it} - b_t\varepsilon_{i,t-1})], \text{ for } t = 2, 3, ...$$

$$= E[(\boldsymbol{\pi}'_{0}\mathbf{x}_{i} + \lambda_{i}f_{0} + \upsilon_{i})(\varepsilon_{it} - b_t\varepsilon_{i,t-1})] = f_{0}E[\lambda_{i}(\varepsilon_{it} - b_t\varepsilon_{i,t-1})].$$

Therefore, in general where  $f_0 \neq 0$ , it is required that  $E(\lambda_i \varepsilon_{it}) = b_t E(\lambda_i \varepsilon_{i,t-1})$ , which will be met for all values of  $b_t$  if  $E(\lambda_i \varepsilon_{it}) = 0$ , for all t. This condition is also required when we consider using  $y_{i1}$  as an instrument. In what follows we assume that  $E(\lambda_i \varepsilon_{it}) = 0$ , holds.

For illustrative purposes we focus on the relatively simple case where T=3, and assume the available observations are  $(y_{i0}, y_{it}, x_{it}, t=1, 2, 3; i=1, 2, ..., N)$ . Let  $\mathbf{z}_i = (y_{i0}, y_{i1}, x_{i1}, x_{i2}, x_{i3})' = (\mathbf{w}_i', \mathbf{x}_i')'$  be the set of instruments under consideration and write the moment conditions as  $E[\mathbf{m}_N(\boldsymbol{\theta}_0)] = 0$ , where  $\boldsymbol{\theta} = (\gamma, \beta, b_3)'$ ,  $b_3 = f_3/f_2$ ,  $f_2 \neq 0$ ,  $\boldsymbol{\theta}_0$  is the true value of  $\boldsymbol{\theta}$ , and

$$\mathbf{m}_{N}(\boldsymbol{\theta}) = N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} \nu_{i3}(\boldsymbol{\theta}).$$
 (7)

Note that under quasi-differencing  $f_2 \neq 0$  and  $E(\lambda_i \varepsilon_{it}) = 0$  are the necessary conditions for identification. There are also other moment conditions that could be used. For example  $E(y_{i0}\nu_{i2}) = 0$ , and  $E(x_{is}\nu_{i2}) = 0$ , for s = 1, 2, 3. But including these moment conditions involve the additional parameters,  $b_1$  and  $b_2$  and do not materially impact the nature of the rank conditions needed for identification of  $\gamma$  and  $\beta$ .

We first note that

$$\nu_{i3}(\boldsymbol{\theta}) = y_{i3} - (b_3 + \gamma)y_{i2} + b_3\gamma y_{i1} - \beta x_{i3} + b_3\beta x_{i2}, \tag{8}$$

from which it follows immediately that when  $\beta = 0$  it will not be possible to distinguish between  $\gamma$  and  $b_3$ , and these parameters are not identified. Notice also that in this case considering the additional moment condition  $E(y_{i0}\nu_{i2}) = 0$  yields

$$E\left\{y_{i0}\left[y_{i2}-(b_2+\gamma)y_{i1}+b_2\gamma y_{i0}-\beta x_{i2}+b_2\beta x_{i1}\right]\right\}=0,$$

and when  $\beta = 0$ , again we have the same identification problem - we are only able to consistently estimate  $b_2 + \gamma$  and  $\gamma b_2$ , and further a priori information is needed to distinguish between  $\gamma$  and  $b_2$ . For example, if it is known that  $|\gamma| < 1$  and we end up with two estimates one inside and another outside the unit circle we could then use the small root to represent  $\gamma$ .

Another possibility would be when it is known with *certainty* that  $\beta \neq 0$ . In such a case it is possible to estimate  $\gamma$  by GMM subject to the usual rank conditions. In the present application it is required that the  $5 \times 3$  matrix **D** and the  $5 \times 5$  matrix **S** defined by

$$\frac{\partial \mathbf{m}_{N}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}'} \rightarrow_{p} \mathbf{D}$$
, and  $N\mathbf{m}_{N}\left(\boldsymbol{\theta}\right) \mathbf{m}_{N}'\left(\boldsymbol{\theta}\right) \rightarrow_{p} \mathbf{S}$ ,

are both full rank for all  $\theta \in \mathbb{R}^3$ . Details of the derivations of **D** and **S** are provided in Section S.2 of the online supplement, where it is shown that **S** is positive definite so long as  $\Sigma_{xx} = N^{-1} \sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i'$  is a positive definite matrix.<sup>4</sup> Also it is shown that

$$\mathbf{D} = - \begin{pmatrix} q_1 & f_0 f_2 \bar{d}(\boldsymbol{\lambda}) & \boldsymbol{\pi}_0' \boldsymbol{\Sigma}_{xx} (\mathbf{e}_3 - b \mathbf{e}_2) \\ q_2 & (\gamma f_0 + f_1) f_2 \bar{d}(\boldsymbol{\lambda}) & \boldsymbol{\pi}_1' \boldsymbol{\Sigma}_{xx} (\mathbf{e}_3 - b \mathbf{e}_2) \\ \boldsymbol{\Sigma}_{xx} [(\gamma - b) \boldsymbol{\pi}_1 + \beta \mathbf{e}_2] & \mathbf{0} & \boldsymbol{\Sigma}_{xx} (\mathbf{e}_3 - b \mathbf{e}_2) \end{pmatrix},$$

where  $\mathbf{e}_s$  is a 3 × 1 vector of zeros except for its  $s^{th}$  element which is unity,

$$q_{1} = \pi'_{0} \Sigma_{xx} \left[ (\gamma - b) \pi_{1} + \beta \mathbf{e}_{2} \right] + f_{0} \left[ (\gamma - b) (\gamma f_{0} + f_{1}) + f_{2} \right] \bar{d}(\boldsymbol{\lambda}) + \gamma (\gamma - b) \bar{\sigma}^{2},$$

$$q_{2} = \pi'_{1} \Sigma_{xx} \left[ (\gamma - b) \pi_{1} + \beta \mathbf{e}_{2} \right] + (\gamma f_{0} + f_{1}) \left[ (\gamma - b) (\gamma f_{0} + f_{1}) + f_{2} \right] \bar{d}(\boldsymbol{\lambda}) + (\gamma - b) (1 + \gamma^{2}) \bar{\sigma}^{2}$$

 $\pi_1 = \gamma \pi_0 + \beta \mathbf{e}_1$ ,  $\bar{\sigma}^2 = \lim_{N \to \infty} N^{-1} \sum_{i=1}^N \sigma_i^2$ , and  $\bar{d}(\lambda) = \lim_{N \to \infty} N^{-1} \sum_{i=1}^N \lambda_i^2$ . It is now clear that  $\mathbf{D}$  does not have full rank for all values of  $\boldsymbol{\theta} \in \mathbb{R}^3$ . For example, as anticipated earlier,  $\mathbf{D}$  becomes rank deficient when  $\bar{d}(\lambda) = 0$ , namely if the common factor,  $f_t$ , is not strong. Even when  $\bar{d}(\lambda) > 0$ , the rank condition fails if  $f_0 = f_1 = 0$ . Recall that the validity of the moment condition (7) only requires that  $f_2 \neq 0$ , and is silent regarding the values of  $f_0$  and  $f_1$ . We have already seen that there is an identification problem when  $\beta = 0$ . The  $\mathbf{D}$  matrix for this case is given by

$$\mathbf{D} = - \begin{pmatrix} f_0 \left[ (\gamma - b) \left( \gamma f_0 + f_1 \right) + f_2 \right] \bar{d}(\boldsymbol{\lambda}) + \gamma (\gamma - b) \bar{\sigma}^2 & f_0 f_2 \bar{d}(\boldsymbol{\lambda}) \\ \left( \gamma f_0 + f_1 \right) \left[ (\gamma - b) \left( \gamma f_0 + f_1 \right) + f_2 \right] \bar{d}(\boldsymbol{\lambda}) + (\gamma - b) \left( 1 + \gamma^2 \right) \bar{\sigma}^2 & (\gamma f_0 + f_1) f_2 \bar{d}(\boldsymbol{\lambda}) \end{pmatrix}.$$

It is easily seen that  $|\mathbf{D}| = -\bar{d}(\lambda)\bar{\sigma}^2(\gamma - b) (\gamma f_1 - f_0) f_2$  which could take zero values for  $\gamma = f_0/f_1$  and/or  $\gamma = b = f_3/f_2$  even if  $f_t \neq 0$  for t = 1, 2, 3 and the factor is strong, namely  $\bar{d}(\lambda) \neq 0$ . In short, there is no guarantee that the minimand for the quasi-differenced GMM estimator will have a unique solution.

### 2.2 Ahn et al. (2013) GMM approach

Ahn et al. (2013) use a different normalisation to eliminate the factor loadings,  $\lambda_i$ . In the case of a single factor model their approach reduces to using the normalisation  $f_T = 1$  to eliminate the factor loadings,  $\lambda_i$ . It is implicitly assumed that  $f_T$  is known a priori to be non-zero. In the case of the application considered above (with T = 3), setting  $f_3 = 1$  yields  $\lambda_i = y_{i3} - \gamma y_{i2} - \beta x_{i3} - \varepsilon_{i3}$ , and we obtain (assuming  $f_2 \neq 0$ )

$$y_{i2} = \gamma y_{i1} + \beta x_{i2} + f_2 (y_{i3} - \gamma y_{i2} - \beta x_{i3} - \varepsilon_{i3}) + \varepsilon_{i2}$$

that can be written equivalently as (with  $a = 1/f_2$ )

$$v_{i3}(\psi) = \varepsilon_{i3} - a\varepsilon_{i2} = y_{i3} - (a+\gamma)y_{i2} + \gamma ay_{i1} - (x_{i3} - ax_{i2})\beta$$

<sup>&</sup>lt;sup>4</sup>To simplify the notations in deriving **D** we have assumed that  $\sigma_{i,v}^2 = \sigma_i^2$ .

which has the same form as (8), with  $\psi = (\gamma, a, \beta)'$ . So long as the same a priori information is imposed on whether  $f_t$  are zero or not, the manner by which  $\lambda_i$  is eliminated is non-consequential. As an alternative normalisation suppose that we set  $f_2 = 1$ , and use

$$\lambda_i = y_{i2} - \gamma y_{i1} - \beta x_{i2} - \varepsilon_{i2},$$

to eliminate  $\lambda_i$  from the equations for  $y_{i3}$ , for i = 1, 2, ..., N. Then

$$y_{i3} = \gamma y_{i2} + \beta x_{i3} + f_3 (y_{i2} - \gamma y_{i1} - \beta x_{i2} - \varepsilon_{i2}) + \varepsilon_{i3}$$

and not-surprisingly we again arrive at (8) with  $b_3 = f_3$ . Therefore, the same identification issues discussed above in relation to the quasi-GMM approach would also apply to the ALS type normalisation.

For the set of nonlinear moment conditions proposed by Ahn et al. (2001, 2013), Hayakawa (2016) shows that these do not always satisfy the global identification assumption which is necessary for consistency of GMM estimation. He further shows that the same problem occurs for the moment conditions proposed by Robertson and Sarafidis (2015) and Hayakawa (2012), since their moment conditions become identical to those of Ahn et al. (2001, 2013) in some cases. The results are demonstrated for the ALS model  $y_{it} = \beta' x_{it} + \lambda'_i f_t + \varepsilon_{it}$  where  $x_{it}$  is allowed to include a lagged dependent variable  $y_{i,t-1}$ . It readily follows from his results that for the case of a pure dynamic panel model with no additional regressors, a quadratic equation in  $\gamma$  arises leading generally to two solutions for  $\gamma$  and could lead to global identification failure.

### 2.3 Likelihood approach Bai (2013)

The likelihood method advanced by Bai (2013), instead of eliminating the factor loadings, treats  $\lambda_i$  as random variables. He considers both cases, when  $\lambda_i$  are distributed independently of the regressors as well as when they are modelled as linear functions of them, with the errors distributed independently over i. He proposes two estimation approaches one where he follows the approach of Bhargava and Sargan (1983) and models the initial values in terms of cross section averages of the regressors, independently of the dynamic processes generating  $y_{it}$  for t = 1, 2, ..., T and another conditional on the initial values,  $y_{i0}$ . When T is short Bai motivates and formulates the likelihood by treating the factor loadings as random and estimates their sample variance matrix to avoid the incidental parameter problem, which is what we propose to do in this paper as well. However, we differ from Bai in two respects. We explicitly model fixed effects and work with first differences of the panel regression model, thus allowing for arbitrary correlations between fixed effects and the regressors, whilst under Bai's approach the fixed effects are implicitly treated as random or are assumed to be linearly correlated with the regressors à la the Mundlak-Chambelain projection device. We also provide a more general treatment of the initial values that explicitly relates  $\Delta y_{i1} = y_{i1} - y_{i0}$  to the unobserved past history of the dynamic panel under consideration that allows for initialisations from a finite past as well as unit roots. In addition we establish the condition under which the Mundlak type linear projection can be justified for the dynamic panel data model. Furthermore, we allow the regressors to share one or all of the latent factors that drives  $y_{it}$ . It is also perhaps worth noting that Bai does not provide any proofs for the short T case, and simply states that "the standard theory of the quasi-maximum likelihood applies". He also simply states that  $\beta$  and  $\gamma$  are identified subject to an order condition without considering whether the related rank condition is also met. See Section 4.1 of Bai (2013). In contrast, we provide a detailed analysis of the identification, estimation and inference problems whilst also allowing for interactive effects in the process generating the regressors. Lastly, Bai does not provide a method for selecting the number of factors when T is fixed as N tends to infinity.

<sup>&</sup>lt;sup>5</sup>When T is fixed and  $N \to \infty$ , the conditional likelihood approach is applicable only when the initial values,  $y_{i0}, i = 1, 2, ..., N$ , do not depend on  $\gamma$  and/or  $\beta$ .

With regard to accommodating fixed effects, under the method of Bai (2013) the unit-specific intercept is absorbed in the interactive factor part and treated as another factor to be estimated, so that the number of factors in this case is  $\tilde{m} = m + 1$ . In the dynamic AR(1) panel data model, for example, where the process has started in the distant past, the unit-specific intercept does not imply that  $f_{1t} = 1$  for all t, but  $f_{10} = 1/(1-\gamma)$  whilst  $f_{1t} = 1$ , for  $t = 1, 2, \ldots$  This has bearing on what normalisation can be validly imposed on  $f_{1t}$ ,  $f_{2t}$ ,...,  $f_{\tilde{m}t}$  for  $t = 0, 1, \ldots, T$ , as discussed below. When  $x_{it}$  is included then other issues arise relating to the past values of  $x_{it}$  for  $t = -1, -2, \ldots$  that need to be resolved; another issue that Bai (2013) does not address explicitly, but simply assumes a process for  $y_{i0}$ . Moreover, by treating unit-specific intercepts as a factor, Bai's approach requires the use of the Mundlak-Chamberlain projection device to account for possible correlation between the corresponding loadings (the fixed effects) and  $x_{it}$ , and rules out the unit-specific intercepts to be spatially correlated and/or heteroskedastic, which could be restrictive and renders Bai's approach inconsistent. Some small sample evidence on the adverse effects of spatially correlated fixed effects on Bai's QMLE is provided in Section 8.2.3.

To illustrate the issue of normalisation, consider the panel AR(1) model

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \beta x_{it} + \lambda_i f_t + \varepsilon_{it}$$
, for  $t = 1, 2, 3, ..., T, i = 1, 2, ..., N$ .

To simplify the analysis suppose that  $|\gamma| < 1$ ,  $\varepsilon_{it} \sim IID(0, \sigma^2)$ ,  $\sup_s |f_{-s}| < K$ , and that  $\{y_{it}\}$  has started in the distant past. Then

$$y_{i0} = \frac{\alpha_i}{1 - \gamma} + \lambda_i \sum_{s=0}^{\infty} \gamma^s f_{-s} + \sum_{s=0}^{\infty} \gamma^s \varepsilon_{i,-s}.$$

Suppose that  $\sum_{s=0}^{\infty} \gamma^s f_{-s} = f_0^*$  exists (this follows if  $|f_0^*| < K$ ). Then

$$y_{i0} = \frac{\alpha_i}{1 - \gamma} + \lambda_i f_0^* + \upsilon_i,$$

where  $v_i = \sum_{s=0}^{\infty} \gamma^s \varepsilon_{i,-s}$ , and  $\sum_{s=0}^{\infty} \gamma^s f_{-s} = f_0^*$ . Also,  $E(v_i) = 0$ ,  $E(v_i^2) = \frac{\sigma^2}{1-\gamma^2} = \omega^2$ . For T = 3

$$y_{i0} = \frac{\alpha_i}{1 - \gamma} + \lambda_i f_0^* + \upsilon_i$$

$$y_{i1} = \gamma y_{i0} + \alpha_i + \lambda_i f_1 + \varepsilon_{i1}$$

$$y_{i2} = \gamma y_{i1} + \alpha_i + \lambda_i f_2 + \varepsilon_{i2}$$

$$y_{i3} = \gamma y_{i2} + \alpha_i + \lambda_i f_3 + \varepsilon_{i3}$$

Bai treats the above model as a two factor model with  $\mathbf{f}_t = (f_{1t}, f_{2t})'$ ,  $\lambda_i = (\lambda_{i1}, \lambda_{i2})' = (\alpha_i, \lambda_i)'$  where

$$\mathbf{F} = \begin{pmatrix} f_{10} & f_{20} \\ f_{11} & f_{21} \\ f_{12} & f_{22} \\ \vdots & \vdots \\ f_{1T} & f_{2T} \end{pmatrix} = \begin{pmatrix} 1/(1-\gamma) & f_0^* \\ 1 & f_1 \\ 1 & f_2 \\ \vdots & \vdots \\ 1 & f_T \end{pmatrix}.$$

In this application the identification restrictions used in Bai (2013), namely  $\mathbf{F}^+ = (\mathbf{I}_2, \mathbf{F}_2')'$  which sets  $f_{10} = \frac{1}{1-\gamma} = 1$ ,  $f_{11} = f_{20} = 0$ , and  $f_{21} = 1$ , imposes an invalid restriction on the first column of  $\mathbf{F}$ . To impose valid identification restrictions, a priori knowledge regarding the presence of individual-specific effects and the initialisation of  $\{y_{it}\}$  are needed. It is easily seen that adding time effects does not alter the above conclusions.

### 2.4 Bias-corrected method of moments

Bai's short T log-likelihood approach and the transformed quasi maximum likelihood (TQML) proposed in this paper estimate the moments of the factor loadings,  $\lambda_i$ , instead of eliminating them. To illustrate how the two approaches are related, as with the likelihood approaches we derive moment conditions without first eliminating  $\lambda_i$ . We refer to this as the bias-corrected method of moments as in Chudik and Pesaran (2021). For the purpose of illustration and without loss of generality we abstract from exogenous regressors and focus on the simple case where  $\beta = 0$  and  $\pi_0 = 0$ , and set T = 3. Using (1) and (2), under the orthogonality condition given by (4) we have

$$E\left[N^{-1}\sum_{i=1}^{N}y_{i0}\left(y_{it}-\gamma y_{i,t-1}\right)\right] = f_0 f_t E\left[d_N(\lambda)\right], \text{ for } t=1,2,$$
(9)

$$E\left[N^{-1}\sum_{i=1}^{N}(y_{it} - \gamma y_{i,t-1})^{2}\right] = f_{t}^{2}E\left[d_{N}(\lambda)\right] + E\left(N^{-1}\sum_{i=1}^{N}\varepsilon_{it}^{2}\right), \text{ for } t = 1, 2$$
(10)

where  $d_N(\lambda)$  is defined by (3) and<sup>6</sup>

$$E\left[N^{-1}\sum_{i=1}^{N}(y_{i1}-\gamma y_{i0})(y_{i2}-\gamma y_{i1})\right] = f_1 f_2 E\left[d_N(\lambda)\right]. \tag{11}$$

Assuming further that  $E(\varepsilon_{it}^2) = \sigma_i^2$ , then  $E\left(N^{-1}\sum_{i=1}^N \varepsilon_{it}^2\right) = \bar{\sigma}_N^2$ , and using (10) we have

$$E\left[N^{-1}\sum_{i=1}^{N}(y_{i2}-\gamma y_{i1})^{2}-N^{-1}\sum_{i=1}^{N}(y_{i1}-\gamma y_{i0})^{2}\right]=\left(f_{2}^{2}-f_{1}^{2}\right)E\left[d_{N}(\boldsymbol{\lambda})\right].$$
(12)

The four moment conditions (9), (11) and (12) can now be used to estimate  $\gamma$ . To this end it is useful to distinguish between strong and weak factor cases, namely when  $d_N(\lambda) \to \bar{d} > 0$ , and  $d_N(\lambda) \to 0$ , respectively. When the factor is weak we have

$$\lim_{N \to \infty} E \left[ N^{-1} \sum_{i=1}^{N} y_{i0} \left( y_{it} - \gamma y_{i,t-1} \right) \right] = 0, \text{ for } t = 1, 2$$

$$\lim_{N \to \infty} E \left[ N^{-1} \sum_{i=1}^{N} \left( y_{i1} - \gamma y_{i0} \right) \left( y_{i2} - \gamma y_{i1} \right) \right] = 0,$$

and these moment conditions can be used to uniquely identify  $\gamma$ , even if  $E(\varepsilon_{i1}^2) \neq E(\varepsilon_{i2}^2)$ . This result is in contrast to the quasi-differenced GMM approach that breaks down under a weak factor scenario.

When the factor is strong,  $d_N(\lambda) > 0$ , we need to use a normalisation since  $\lambda_i$  (or  $d_N(\lambda)$  in the present context) can not be identified from  $f_t$ . Here it is convenient to set  $f_2 = 1$  and eliminate  $d_N(\lambda)$  from (9), (11) and (12) to yield

$$\frac{E\left[N^{-1}\sum_{i=1}^{N}y_{i0}\left(y_{i2}-\gamma y_{i1}\right)\right]}{E\left[N^{-1}\sum_{i=1}^{N}y_{i0}\left(y_{i1}-\gamma y_{i0}\right)\right]} = \frac{f_2}{f_1} = \frac{1}{f_1},$$

and

$$\frac{E\left[N^{-1}\sum_{i=1}^{N}(y_{i2}-\gamma y_{i1})^{2}-N^{-1}\sum_{i=1}^{N}(y_{i1}-\gamma y_{i0})^{2}\right]}{E\left[N^{-1}\sum_{i=1}^{N}(y_{i1}-\gamma y_{i0})(y_{i2}-\gamma y_{i1})\right]}=\frac{f_{2}^{2}-f_{1}^{2}}{f_{2}f_{1}}=\frac{1-f_{1}^{2}}{f_{1}}.$$

<sup>&</sup>lt;sup>6</sup>We also have  $E\left(N^{-1}\sum_{i=1}^{N}y_{i0}^{2}\right)=f_{0}^{2}E\left[d_{N}(\boldsymbol{\lambda})\right]+E\left(N^{-1}\sum_{i=1}^{N}v_{i}^{2}\right)$ . But since in general  $E\left(v_{i}^{2}\right)\neq E\left(\sigma_{it}^{2}\right)$  this moment condition does not help with identification of  $\gamma$ .

Further eliminating  $f_1$  we obtain

$$\frac{E\left[N^{-1}\sum_{i=1}^{N}(y_{i2}-\gamma y_{i1})^{2}-N^{-1}\sum_{i=1}^{N}(y_{i1}-\gamma y_{i0})^{2}\right]}{E\left[N^{-1}\sum_{i=1}^{N}(y_{i1}-\gamma y_{i0})(y_{i2}-\gamma y_{i1})\right]}$$

$$=\frac{E\left[N^{-1}\sum_{i=1}^{N}y_{i0}(y_{i2}-\gamma y_{i1})\right]}{E\left[N^{-1}\sum_{i=1}^{N}y_{i0}(y_{i1}-\gamma y_{i0})\right]} - \frac{E\left[N^{-1}\sum_{i=1}^{N}y_{i0}(y_{i1}-\gamma y_{i0})\right]}{E\left[N^{-1}\sum_{i=1}^{N}y_{i0}(y_{i2}-\gamma y_{i1})\right]},$$

which can be used to estimate  $\gamma$ . But there is no guarantee that the real solution to the above moment condition will be unique.

### 3 The dynamic panel data model

In this paper we consider a multi-variate and multi-factor version of (1), but explicitly allow for fixed and time effects. Although, as noted by Bai (2013) and others, heterogeneous individual effects can be implicitly allowed for in interactive factor models, standard GMM and likelihood approaches require such effects to be uncorrelated with the errors. See the orthogonality condition given by (4). But in practice most researchers start with panel data models with fixed effects, where such effects are allowed to have non-zero correlations with the errors and the regressors. Finally, by starting with a standard panel data model our estimation strategy enables the researchers to investigate the importance of allowing for (additional) interactive effects for their empirical analysis.

Accordingly we consider the following standard dynamic panel data model with time and fixed effects

$$y_{it} = \alpha_i + \delta_t + \gamma y_{i,t-1} + \beta' \mathbf{x}_{it} + \eta'_i \mathbf{f}_t + u_{it}, \text{ for } t = 1, 2, ..., T, \text{ and } i = 1, 2, ..., N,$$
 (13)

where  $\mathbf{x}_{it}$  is a  $k \times 1$  vector of regressors that vary both across i and t,  $|\gamma| < K$ ,  $\boldsymbol{\beta}$  is a  $k \times 1$  vector of unknown coefficients, with  $\|\boldsymbol{\beta}\| < K$ , and K denotes a finite positive constant.  $\alpha_i$  and  $\delta_t$  denote unit-specific fixed effects and time effects, respectively.  $\mathbf{f}_t = (f_{1t}, f_{2t}, ..., f_{mt})'$ , an  $m \times 1$  vector of unobserved common factors, and  $\boldsymbol{\eta}_i = (\eta_{i1}, \eta_{i2}, ..., \eta_{im})'$ , an  $m \times 1$  vector of associated factor loadings, with  $u_{it}$  denoting the remaining idiosyncratic error terms. This specification includes a number of models considered in the literature and reviewed in Section 1 as special cases. It also provides a direct generalisation of Hsiao and Tahmiscioglu (2008) who consider estimation of (13) with IID errors using the transformed MLE procedure. The explicit inclusion of time effects,  $\delta_t$ , in the model also allows us, without loss of generality, to assume the factor loadings,  $\boldsymbol{\eta}_i$ , have zero means. Note that  $\delta_t + \boldsymbol{\eta}_i' \mathbf{f}_t$  can be written equivalently as  $\boldsymbol{\lambda}_i' \mathbf{f}_t$ , where  $\boldsymbol{\eta}_i = \boldsymbol{\lambda}_i - \boldsymbol{\lambda}_i$ , and  $\boldsymbol{\delta}_t = \boldsymbol{\lambda}' \mathbf{f}_t$ , where  $\boldsymbol{\lambda} = E(\boldsymbol{\lambda}_i)$ .

We consider T to be fixed, and allow  $N \to \infty$ , under which the unit root case where  $|\gamma| = 1$  is also covered. It is assumed that the observations  $\{y_{i0}, y_{it}, \mathbf{x}_{it}, \text{ for } t = 1, 2, ..., T; i = 1, 2, ..., N\}$  are available for estimation of  $\gamma$  and  $\beta$ , which are the parameters of interest. We propose an extension of the transformed MLE by treating the unknown factors as fixed parameters to be estimated for each t, but assume the factor loadings to be random and distributed independently of the errors,  $u_{it}$ . In addition, we contribute to the analysis of identification of short T dynamic models with a multiple factor error structure, and derive order conditions for identification of m and the parameters of interest,  $\gamma$  and  $\beta$ . Initially, we develop our proposed estimation method assuming that m is known, and consider the problem of consistent estimation of m in Section 7.1.

We make the following assumptions:

**Assumption 1** The idiosyncratic errors,  $u_{it}$ , for i = 1, 2, ..., N are distributed independently across i and over t with zero means and constant variance,  $\sigma^2$ , such that  $0 < \sigma^2 < K$ , and  $\sup_{i,t} E |u_{it}|^{4+\epsilon} < K$ .

**Assumption 2** The time effects,  $\delta_t$ , for t = 1, 2, ..., T, and the  $m \times 1$  vector of factors  $\mathbf{f}_t$ , vary across t, so that  $d_t = \Delta \delta_t \neq 0$  and  $\mathbf{g}_t = \Delta \mathbf{f}_t \neq \mathbf{0}$  at least for some t = 2, ..., T, m < T, and  $\sup_t \|\mathbf{g}_t\| < K$  and  $\sup_t |d_t| < K$ . For a fixed T,  $\delta_t$  and  $\mathbf{g}_t$ , for t = 1, 2, ..., T are taken as fixed constants.

**Assumption 3** The unobserved  $m \times 1$  factor loadings,  $\eta_i$ , for i = 1, 2, ..., N are distributed independently of  $u_{jt}$ , for all i, j and t, and are independently and identically distributed across i with zero means, and a finite covariance matrix, namely,  $\eta_i \sim IID(\mathbf{0}, \Omega_{\eta})$ , where  $\Omega_{\eta}$  is an  $m \times m$  symmetric positive definite matrix with  $\|\Omega_{\eta}\| < K$  and  $\sup_i E \|\eta_i\|^{4+\epsilon} < K$ .

**Assumption 4** The unit specific fixed effects,  $\alpha_i$ , for i = 1, 2, ..., N are allowed to be correlated with  $\mathbf{x}_{jt}$ ,  $\boldsymbol{\eta}_j$ , and  $u_{jt}$ , for all i, j and t, and could be deterministic and uniformly bounded,  $\sup_i |\alpha_i| < K$ , or stochastic and uniformly bounded,  $\sup_i E|\alpha_i| < K$ .

**Assumption 5** The first-difference of the regressors,  $\Delta \mathbf{x}_{it}$ , for i = 1, 2, ..., N follows the multi-factor model

$$\Delta \mathbf{x}_{it} = \boldsymbol{\delta}_{x,t} + \mathbf{E}_{i,x} \mathbf{g}_{x,t} + \mathbf{v}_{it}, \text{ for all } t = \dots -2, -1, 0, 1, 2, \dots,$$
 (14)

where  $\mathbf{v}_{it}$  (the idiosyncratic component) follows the general linear stationary process  $\mathbf{v}_{it} = \sum_{j=0}^{\infty} \mathbf{\Psi}_{j} \boldsymbol{\varepsilon}_{i,t-j}$ ,  $\boldsymbol{\delta}_{x,t}$  is a  $k \times 1$  vector of time effects,  $\mathbf{g}_{x,t} = (g_{x,1t}, g_{x,2t}, ..., g_{x,m_xt})'$  is a  $m_x \times 1$  vector of common factors,  $\mathbf{E}_{i,x} = (\boldsymbol{\eta}_{i1,x}, \boldsymbol{\eta}_{i2,x}, ..., \boldsymbol{\eta}_{i,m_x,x})$  is a  $k \times m_x$  matrix of loadings, with  $\boldsymbol{\eta}_{ij,x}$  a  $k \times 1$  vector associated with the  $j^{th}$  factor  $g_{x,jt}$ ,  $\mathbf{\Psi}_{j}$  for j = 0,1,... are  $k \times k$  matrices of fixed constants such that  $\sum_{j=0}^{\infty} \|\mathbf{\Psi}_{j}\| < K$ ,  $\sup_{t} E \|\boldsymbol{\delta}_{x,t}\| < K$ , and  $\sup_{j,t} E |g_{x,jt}| < K$ . Furthermore, conditional on the common factors,  $\mathbf{E}_{i,x}$  is distributed independently over i, and of  $\boldsymbol{\eta}_{i}$  and  $u_{it'}$  for all i,t, and t',  $E (\boldsymbol{\eta}_{ij,x}|\mathcal{I}_{\delta,g}) = \mathbf{0}$ ,  $E (\boldsymbol{\eta}_{ij,x}\boldsymbol{\eta}'_{ij',x}|\mathcal{I}_{\delta,g}) = \mathbf{V}_{j}$  if j = j' and  $E (\boldsymbol{\eta}_{ij,x}\boldsymbol{\eta}'_{ij',x}|\mathcal{I}_{\delta,g}) = \mathbf{0}$ , where  $\mathcal{I}_{\delta,g} = (\boldsymbol{\delta}_{x,T}, \boldsymbol{\delta}_{x,T-1}, \boldsymbol{\delta}_{x,T-2}, ...; \mathbf{g}_{x,T}, \mathbf{g}_{x,T-1}, \mathbf{g}_{x,T-2}, ...)$  for all  $j \neq j' = 1, 2, ..., m_x$ ,  $\sup_{i,j} E \|\boldsymbol{\eta}_{ij,x}\|^{4+\epsilon} < K$ ,  $\boldsymbol{\varepsilon}_{it} \sim IID(\mathbf{0}, \mathbf{I}_{k})$  with  $\sup_{i,t} E \|\boldsymbol{\varepsilon}_{it}\|^{4+\epsilon} < K$  for some small  $\epsilon > 0$ , and  $\boldsymbol{\varepsilon}_{it}$  are distributed independently of  $\boldsymbol{\delta}_{x,t'}$ ,  $\mathbf{g}_{x,t'}$ ,  $u_{jt'}$  for all i,j, t and t'.

Remark 1 The time effects and factors in the  $\Delta y_{it}$  and  $\Delta \mathbf{x}_{it}$  equations, namely  $\Delta \delta_t \neq 0$ ,  $\mathbf{g}_t$ ,  $\boldsymbol{\delta}_{x,t}$  and  $\mathbf{g}_{x,t}$ , are assumed to be draws from stochastic processes, but the analysis is carried out conditional on given values of  $d_t = \Delta \delta_t \neq 0$ ,  $\mathbf{g}_t$ ,  $\boldsymbol{\delta}_{x,t}$  and  $\mathbf{g}_{x,t}$ , over the estimation sample t = 1, 2, ..., T. As it is standard in short T panels,  $d_t$  and  $\mathbf{g}_t$ , for t = 1, 2, ..., T are treated as free parameters and estimated subject to suitable normalisation restrictions. But for the derivation of the initial values,  $\Delta y_{i0}$ , for i = 1, 2, ..., N, we require the time effects and factors for t < 0 to follow stable processes so that the distribution of  $\Delta y_{i0}$  conditional on the observed values,  $\{\Delta y_{it} \text{ and } \Delta \mathbf{x}_{it}, \text{ for } t = 1, 2, ..., T\}$ , can be obtained.

Assumptions 1, 2 and 4 are standard in the literature on short T dynamic panels. Assumption 1 can be relaxed to allow for time series heteroskedasticity so that  $Var(u_{it}) = \sigma_t^2$ , as shown in Section S.10 of the online supplement. Bai (2013) allows for time series heteroskedasticity while the GMM framework of Ahn et al. (2013) accommodates heteroskedasticity and/or serial correlation in a static model. In our context, serial correlation in the idiosyncratic errors can be entertained by allowing for a higher order autoregressive model. Assumption 2 is innocuous and requires time effects and the factors to be time-varying, otherwise they can not be distinguished from the fixed effects. Note that the case where  $\delta_t = \delta$  and/or  $\mathbf{f}_t = \mathbf{f}$  for all t is already covered by the presence of the fixed-effects,  $\alpha_i$ . Assumption 3 imposes strong restrictions on the distribution of the factor loadings,  $\eta_i$ , and is required for identification of the factors and the parameters. Ahn et al. (2013) entertain the same assumption for their factor loadings, which they treat as random alongside the factors which are taken to be fixed parameters. This assumption could be somewhat relaxed as noted in what follows. In contrast, Assumption 4 does not impose any restrictions on the fixed effects,  $\alpha_i$ , and allows them to be correlated with the regressors as well as with the composite errors,  $\zeta_{it}$ . In this way, as noted above, our model specification can be viewed as a direct generalisation of the standard time and fixed effects models considered routinely in the empirical literature.

As noted above, our specification also differs from the one considered by Bai (2013) and Ahn et al. (2013) who do not model the fixed effects explicitly but assume that the fixed effects can be captured implicitly through the interactive effects, for example, by setting  $f_{1t} = 1$ . In the context of our set up, following this line of reasoning leads to a random coefficient specification, which is likely to be restrictive in practice. Bai (2013) does consider the possible dependence of  $\eta_{i1}$  on the regressors, using the methods of Mundlak (1978) and Chamberlain (1982), whereby it is assumed that the random components of  $\alpha_i$ , namely  $\eta_{i1}$ , is given by

$$\eta_{i1} = \sum_{t=1}^{T} \mathbf{b}_{t}' \left[ \mathbf{x}_{it} - E\left( \mathbf{x}_{it} \right) \right] + \varepsilon_{\eta_{i1}}, \text{ for } i = 1, 2, ..., N,$$
(15)

where  $(\mathbf{b}'_1, \mathbf{b}'_2, ..., \mathbf{b}'_T)'$  is a  $Tk \times 1$  vector of coefficients to be estimated and  $\varepsilon_{\eta_{i1}}$  are mean zero cross-sectionally independent random variables distributed independently of  $u_{jt'}$  for all i, j, and t'. This specification ensures that  $E(\eta_{i1}) = 0$ , as required, but depends on  $E(\mathbf{x}_{it})$  which is unobserved. To make this scheme operational it is typically assumed that  $E(\mathbf{x}_{it})$  is fixed so that it can be absorbed in an intercept. But in the more general context where  $\mathbf{x}_{it}$  could be non-stationary, the use of the Mundlak scheme as applied in (15) directly to  $\mathbf{x}_{it}$  could be problematic. The quasi-differenced GMM approach also allows for correlation between the regressors and the random factor loadings. In our context, possible correlation between  $\eta_i$  and the regressors  $\Delta \mathbf{x}_i$  can be dealt with using the Mundlak device as set out above for the case of fixed effects, but applied to  $\Delta \mathbf{x}_i$ .

Assumption 5 provides a general linear multi-factor time series specification for  $\Delta \mathbf{x}_{it}$ . This is done for convenience. We could have equally started with a model for  $\mathbf{x}_{it}$ . This assumption postulates that  $\Delta \mathbf{x}_{it}$  is composed of three components, a  $k \times 1$  vector of time effects,  $\boldsymbol{\delta}_{x,t}$ , a multifactor component with  $m_x$  common factors,  $\mathbf{g}_{x,t}$ , and a stationary component  $\mathbf{v}_{it}$  which is assumed to be cross-sectionally independent. The assumption that the factor loadings,  $\boldsymbol{\eta}_{ij,x}$ ,  $j=1,2,...,m_x$  have zero mean and are uncorrelated over j is made for convenience, and can be relaxed without any consequences for the subsequent analysis.

**Remark 2** Our assumptions require  $u_{it}$  and  $\mathbf{v}_{it}$  to be uncorrelated which rules out classical simultaneity and measurement errors. The assumption that  $u_{it}$  and  $\mathbf{v}_{it}$  and their factor loadings,  $\boldsymbol{\eta}_i$  and  $\mathbf{E}_{i,x}$ , are independently distributed can, however, be relaxed by considering a vector autoregressive version of (13), where  $\mathbf{z}_{it} = (y_{it}, \mathbf{x}'_{it})'$  is modelled jointly as in Holtz-Eakin et al. (1988) and Binder et al. (2005).

Finally, while the composite error term,  $\zeta_{it} = \eta_i' \mathbf{f}_t + u_{it}$ , in (13) is cross-sectionally heteroskedastic through the presence of the interactive effects, allowing explicitly for the same in the idiosyncratic error,  $u_{it}$ , can be pursued along the lines of Hayakawa and Pesaran (2015). These authors extend the cross-sectionally independent homoskedastic idiosyncratic errors of Hsiao et al. (2002) to the heteroskedastic case. These extensions are not considered here as they are beyond the scope of the present focus of the paper.

We follow the standard practice and eliminate the fixed effects by application of the first-difference operator to both sides of (13):

$$\Delta y_{it} = \gamma \Delta y_{i,t-1} + \beta' \Delta \mathbf{x}_{it} + d_t + \mathbf{g}_t' \boldsymbol{\eta}_i + \Delta u_{it}, \text{ for } t = 2, 3, ..., T; \ i = 1, 2, ..., N,$$
(16)

where  $d_t = \Delta \delta_t \neq 0$  and  $\mathbf{g}_t = \Delta \mathbf{f}_t \neq \mathbf{0}$  for some  $t \geq 2$ , and

$$\xi_{it} = \mathbf{g}_t' \boldsymbol{\eta}_i + \Delta u_{it}, \text{ for } t = 2, 3, ..., T. \tag{17}$$

For t = 1 (16) is not defined as  $\Delta y_{i1}$  depends on the unobserved  $\Delta y_{i0}$ , which in turn depends on the past history of the regressors,  $\Delta \mathbf{x}_{it}$  for  $t \leq 0$  which are not observed. To derive the joint probability

<sup>&</sup>lt;sup>7</sup>Though we do not pursue this idea in the present paper, we do investigate the effect of such correlations on the proposed TQML estimator in our Monte Carlo experiments, where we also consider the effect of weakly correlated factor loadings. Our findings suggest that neither of these have a significant impact on the results.

distribution of  $(\Delta y_{i1}, \Delta y_{i2}, \ldots, \Delta y_{iT})$  the process generating  $\Delta y_{i1}$  in terms of the available observations is also required. For this purpose we need to specify the data generating process of  $\Delta \mathbf{x}_{it}$ , which we do under Assumption 5, as well as the initialisation of  $\Delta y_{i,-S+1}$ , for some S > 0, which we formalise in the following assumption.

**Assumption 6** Suppose that for each i,  $\{\Delta y_{it}\}$  is started from time t = -S + 1, for some S > 0, with the initial first differences,  $\Delta y_{i,-S+1}$ , as random draws from a distribution such that

$$E\left(\Delta y_{i,-S+1} \middle| \Delta \mathbf{x}_i, \mathcal{I}_{\delta,g}\right) = a_S + \boldsymbol{\pi}_S' \Delta \mathbf{x}_i, \tag{18}$$

where  $\Delta \mathbf{x}_i = (\Delta \mathbf{x}'_{i1}, \Delta \mathbf{x}'_{i2}, ..., \Delta \mathbf{x}'_{iT})'$  is the  $kT \times 1$  vector of observations on the regressors,  $\mathcal{I}_{\delta,g} = (\boldsymbol{\delta}_{x,T}, \boldsymbol{\delta}_{x,T-1}, \boldsymbol{\delta}_{x,T-2}, ...; \mathbf{g}_{x,T}, \mathbf{g}_{x,T-1}, \mathbf{g}_{x,T-2}, ...)$ ,  $a_S$  is a fixed coefficient that allows for non-zero means, and  $\boldsymbol{\pi}_S$  is the  $kT \times 1$  vector of coefficients, such that  $\sup_S |a_S| < K$ , and  $\sup_S \|\boldsymbol{\pi}_S\| < K$ . Furthermore, let  $\varpi_i = \Delta y_{i,-S+1} - E(\Delta y_{i,-S+1} | \Delta \mathbf{x}_i, \mathcal{I}_{\delta,g})$ , and suppose that  $\varpi_i \sim IID(0, \sigma_{\varpi}^2)$ ,  $0 < \sigma_{\varpi}^2 < K$ , and  $\sup_i E|\varpi_i|^{4+\epsilon} < K$ .

Equation (18) can be viewed as a linear projection of  $\Delta y_{i,-S+1}$  on the observables,  $\Delta \mathbf{x}_i$ , and allows the initial values,  $y_{i,-S}$  and  $y_{i,-S+1}$  to depend on the fixed effects,  $\alpha_i$ , as well as other parameters. Also it is redundant if  $|\gamma| < 1$  and S is sufficiently large, and does not apply if there are no regressors in (13). The main restriction here is the assumed linearity of (18). One can think of Assumption 6 as "implicitly" using Mundlak-type projections for  $\Delta y_{i,-S+1}$ . Using first differences allows us to make less restrictive assumptions about  $\alpha_i$  to the extent that such assumption implicitly involves  $\alpha_i$ .

It is possible to dispense with Assumptions 5 and 6 by postulating a model for the initial first-differences,  $\Delta y_{i1}$ , similar to what we assumed for  $y_{i0}$  in our discussion of the GMM approach (see equation (2)). Under the GMM approach, the moment conditions take the initial values  $y_{i0}$  (or  $\Delta y_{i1}$ ), as given. But as we have seen a model for the initial values is required if we are to check the validity of the rank condition typically assumed when the GMM approach is used in the literature.

#### 3.1 Modelling initial values

Given the above assumptions, we can now derive an expression for  $\Delta y_{i1}$  that depends on the observables and the unknown parameters only. Using (16), and starting from some arbitrary point in the past at t = -S + 1 with  $\Delta y_{i,-S+1}$  as given we obtain the following expression

$$\Delta y_{i1} = \gamma^S \Delta y_{i,-S+1} + \sum_{j=0}^{S-1} \gamma^j \boldsymbol{\beta}' \Delta \mathbf{x}_{i,1-j} + \widetilde{d}_1 + \widetilde{\mathbf{g}}_1' \boldsymbol{\eta}_i + \sum_{j=0}^{S-1} \gamma^j \Delta u_{i,1-j},$$
(19)

where  $\widetilde{d}_1 = \sum_{j=0}^{S-1} \gamma^j d_{1-j}$ , and  $\widetilde{\mathbf{g}}_1 = \sum_{j=0}^{S-1} \gamma^j \mathbf{g}_{1-j}$ . In the case of models without regressors  $\Delta y_{i1}$  is fully determined under Assumptions 1 to 3. But when the model includes regressors and S > 2, the distribution of  $\Delta y_{i1}$  also depends on the  $k(S-2) \times 1$  vector of past observations  $\Delta \mathbf{x}_i^0 = (\Delta \mathbf{x}'_{i0}, \Delta \mathbf{x}'_{i,-1}, ..., \Delta \mathbf{x}'_{i,-S+3})'$ , not available to the researcher. To deal with this missing observation problem, Hsiao et al. (2002) propose back-casting these missing data points from  $\Delta \mathbf{x}_i$  which is observed. Following a similar procedure, we first note that under Assumption 6

$$\Delta \mathbf{x}_{i}^{0} = \boldsymbol{\delta}_{x}^{0} + \sum_{j=1}^{m_{x}} \left( \mathbf{g}_{x,j}^{0} \otimes \boldsymbol{\eta}_{ij,x} \right) + \mathbf{v}_{i}^{0}, \text{ and } \Delta \mathbf{x}_{i} = \boldsymbol{\delta}_{x} + \sum_{j=1}^{m_{x}} \left( \mathbf{g}_{x,j} \otimes \boldsymbol{\eta}_{ij,x} \right) + \mathbf{v}_{i},$$
 (20)

where  $\boldsymbol{\delta}_{x}^{0} = (\boldsymbol{\delta}_{x,0}', \boldsymbol{\delta}_{x,-1}', ..., \boldsymbol{\delta}_{x,-S+3}')', \mathbf{g}_{x,j}^{0} = (g_{x,j,0}, g_{x,j,-1}, ..., g_{x,j,-S+3})', \text{ and } \mathbf{v}_{i}^{0} = \left(\mathbf{v}_{i0}', \mathbf{v}_{i,-1}', ..., \mathbf{v}_{i,-S+3}', \mathbf{v}_{i,-S+3}'\right)',$  and similarly  $\boldsymbol{\delta}_{x} = (\boldsymbol{\delta}_{x,1}', \boldsymbol{\delta}_{x,2}', ..., \boldsymbol{\delta}_{x,T}'), \mathbf{g}_{x,j} = (g_{x,j1}, g_{x,j2}, ..., g_{x,jT})', \mathbf{g}_{x,j} = (\mathbf{v}_{i1}', \mathbf{v}_{i2}', ..., \mathbf{v}_{iT}')'.$  Also

 $E\left(\Delta \mathbf{x}_{i}^{0}\right) = \boldsymbol{\delta}_{x}^{0}, \, E\left(\Delta \mathbf{x}_{i}\right) = \boldsymbol{\delta}_{x}, \, \text{and using linear projections, we have}^{8}$ 

$$E\left(\Delta \mathbf{x}_{i}^{0} | \Delta \mathbf{x}_{i}\right) = \boldsymbol{\delta}_{x}^{0} + \boldsymbol{\Omega}_{01} \boldsymbol{\Omega}_{11}^{-1} \left(\Delta \mathbf{x}_{i} - \boldsymbol{\delta}_{x}\right)$$
(21)

where

$$\mathbf{\Omega}_{11} = \sum_{i=1}^{m_x} \left( \mathbf{g}_{x,j} \mathbf{g}'_{x,j} \otimes \mathbf{V}_j \right) + E\left( \mathbf{v}_i \mathbf{v}'_i \right), \quad \mathbf{\Omega}_{01} = \sum_{i=1}^{m_x} \left( \mathbf{g}_{x,j}^0 \mathbf{g}'_{x,j} \otimes \mathbf{V}_j \right) + E\left( \mathbf{v}_i^0 \mathbf{v}'_i \right).$$

Since  $\mathbf{v}_{it}$  is a stationary process with zero means and variance-covariances that do not depend on i, it then readily follows that  $E\left(\mathbf{v}_{i}\mathbf{v}_{i}'\right) = \mathbf{\Omega}_{v,11}$  and  $E\left(\mathbf{v}_{i}^{0}\mathbf{v}_{i}'\right) = \mathbf{\Omega}_{v,01}$  that also do not depend on i. Now using (21) along with (18) we have

$$E\left(\gamma^{S}\Delta y_{i,-S+1} + \sum_{j=0}^{S-1} \gamma^{j} \boldsymbol{\beta}' \Delta \mathbf{x}_{i,1-j} | \Delta \mathbf{x}_{i}\right) = a + \boldsymbol{\pi}' \Delta \mathbf{x}_{i},$$
(22)

where a and  $\pi$  are fixed parameters that are complicated functions of  $\gamma$  and  $\beta$ , the parameters of the  $\mathbf{x}_{it}$  process as well as the parameters of the initial values. Now let

$$\chi_{i} = \left(\gamma^{S} \Delta y_{i,-S+1} + \sum_{j=0}^{S-1} \gamma^{j} \boldsymbol{\beta}' \Delta \mathbf{x}_{i,1-j}\right) - E\left(\gamma^{S} \Delta y_{i,-S+1} + \sum_{j=0}^{S-1} \gamma^{j} \boldsymbol{\beta}' \Delta \mathbf{x}_{i,1-j} | \Delta \mathbf{x}_{i}, \mathcal{I}_{\delta,g}\right)$$

$$= \gamma^{S} \left[\Delta y_{i,-S+1} - E\left(\Delta y_{i,-S+1} | \Delta \mathbf{x}_{i}, \mathcal{I}_{\delta,g}\right)\right] + \boldsymbol{\beta}' \sum_{j=0}^{S-1} \gamma^{j} \left[\Delta \mathbf{x}_{i,1-j} - E\left(\Delta \mathbf{x}_{i,1-j} | \Delta \mathbf{x}_{i}, \mathcal{I}_{\delta,g}\right)\right],$$

$$(23)$$

and note that under Assumption 6  $\Delta y_{i,-S+1} - E\left(\Delta y_{i,-S+1} | \Delta \mathbf{x}_i, \mathcal{I}_{\delta,g}\right) = \varpi_i \sim IID(0,\sigma_{\varpi}^2)$ , and  $\sup_i E\left|\varpi_i\right|^{4+\epsilon} < K$ . Also, under Assumption 5

$$\Delta \mathbf{x}_{i,1-j} - E\left(\Delta \mathbf{x}_{i,1-j} \mid \Delta \mathbf{x}_{i}, \mathcal{I}_{\delta,g}\right) = \left[\mathbf{E}_{i,x} - E\left(\mathbf{E}_{i,x} \mid \Delta \mathbf{x}_{i}, \mathcal{I}_{\delta,g}\right)\right] \mathbf{g}_{x,1-j} + \mathbf{v}_{i,1-j} - E\left(\mathbf{v}_{i,1-j} \mid \Delta \mathbf{x}_{i}, \mathcal{I}_{\delta,g}\right)$$
$$= \mathbf{E}_{i,x} \mathbf{g}_{x,1-j} + \mathbf{v}_{i,1-j},$$

and overall

$$\chi_i = \gamma^S \varpi_i + \boldsymbol{\beta}' \sum_{j=0}^{S-1} \gamma^j \left( \mathbf{E}_{i,x} \mathbf{g}_{x,1-j} + \mathbf{v}_{i,1-j} \right).$$

Therefore,  $\{\chi_i\}$  is a sequence of cross-sectionally independent random variables with zero means. Also in view of Assumptions 5 and 6 and by application of the Minkowski inequality to both sides of  $\chi_i$  we have  $\sup_i |\chi_i|^{4+\epsilon} < K$ . Hence, using (22) and (23) in (19) we obtain

$$\Delta y_{i1} = d_1 + \boldsymbol{\pi}' \Delta \mathbf{x}_i + \xi_{i1}, \tag{24}$$

where  $d_1 = a + \widetilde{d}_1$ ,

$$\xi_{i1} = \widetilde{\mathbf{g}}_1' \boldsymbol{\eta}_i + v_{i1}, \tag{25}$$

and

$$v_{i1} = \sum_{j=0}^{S-1} \gamma^j \Delta u_{i,1-j} + \chi_i.$$
 (26)

In the analysis that follows we treat  $d_1$  and  $\pi$  as unknown parameters to be estimated along with the parameters of interest  $\gamma$  and  $\beta$ . We also note that  $v_{i1} \sim IID(0, \omega \sigma^2)$ , and  $v_{i1}$  is distributed independently

<sup>&</sup>lt;sup>8</sup>This result provides an optimal linear approximation when the regressors are not normally distributed.

<sup>&</sup>lt;sup>9</sup>Note that under Assumption 5  $\sup_{i,t} E \|\Delta \mathbf{x}_{it}\|^{4+\epsilon} < K$ . See Lemma 1.

of  $\Delta \mathbf{x}_i$  and  $\boldsymbol{\eta}_i$ . Further, by application of the Minkowski inequality to (26) we have  $\sup_i E |v_{i1}|^{4+\epsilon} < K$ , and under Assumptions 5 and 6,  $\sup_i Var(\chi_i) < K$ ; as a result  $0 < \omega_{\min} < \omega < \omega_{\max} < \infty$ , where  $\omega_{\min}$  and  $\omega_{\max}$  are fixed constants, with  $\omega$  taken as a free parameter to be estimated together with other model parameters.

Finally, using (26) we have

$$Cov(v_{i1}, \Delta u_{it}) = \begin{cases} -\sigma^2 & \text{for } t = 2\\ 0 & \text{for } t = 3, 4, ..., T \end{cases}$$
 (27)

**Remark 3** As noted earlier, in the case where  $|\gamma| < 1$  and  $S \to \infty$  we have  $\Delta y_{i1} = d_1 + \pi' \Delta \mathbf{x}_i + \xi_{i1}$ , where  $\xi_{i1}$  is defined by (25), with  $v_{i1}$  given by  $v_{i1} = \sum_{j=0}^{\infty} \gamma^j \Delta u_{i,1-j} + \chi_i$ , and

$$\chi_i = \sum_{j=0}^{\infty} \gamma^j \beta' \Delta \mathbf{x}_{i,1-j} - E\left(\sum_{j=0}^{\infty} \gamma^j \beta' \Delta \mathbf{x}_{i,1-j} \left| \Delta \mathbf{x}_i, \mathcal{I}_{\delta,g} \right.\right).$$

where  $\mathcal{I}_{\delta,g} = (\boldsymbol{\delta}_{x,T}, \boldsymbol{\delta}_{x,T-1}, \boldsymbol{\delta}_{x,T-2}, ...; \mathbf{g}_{x,T}, \mathbf{g}_{x,T-1}, \mathbf{g}_{x,T-2}, ...)$ . Since  $\Delta \mathbf{x}_{it}$ ,  $\boldsymbol{\eta}_i$ , and  $u_{it'}$  are independently distributed for all i, t and t', it then follows that  $v_{i1}$  is distributed independently of  $\boldsymbol{\eta}_i$  and  $\Delta \mathbf{x}_i$ , with  $E(v_{i1}) = 0$ , and

$$Var\left(v_{i1}\right) = Var\left(\sum_{j=0}^{\infty} \gamma^{j} \Delta u_{i,1-j}\right) + Var\left(\chi_{i}\right) = \frac{2\sigma^{2}}{1+\gamma} + Var\left(\chi_{i}\right) > 0.$$

In the case of pure AR(1) panels, we have the further parametric restriction,  $Var(v_{i1}) = \frac{2\sigma^2}{1+\gamma}$ , which, if imposed, can increase estimation efficiency.

### 3.2 The full model specification

We can now combine the processes for  $\Delta y_{i1}$  and  $\Delta y_{it}$  conditional on  $\Delta y_{i,t-1}$ , for t = 2, 3, ..., T to write down the quasi-likelihood function of the first-differenced model. Writing (16) and (24) in matrix notation we note that

$$\Delta \mathbf{y}_i = \Delta \mathbf{W}_i \boldsymbol{\varphi} + \boldsymbol{\xi}_i, \ \boldsymbol{\xi}_i = \mathbf{G} \boldsymbol{\eta}_i + \mathbf{r}_i, \tag{28}$$

where  $\Delta \mathbf{y}_i = (\Delta y_{i1}, \Delta y_{i2}, ..., \Delta y_{iT})', \ \Delta \mathbf{W}_i$  is the  $T \times (T + Tk + k + 1)$  matrix given by

$$\Delta \mathbf{W}_{i} = \begin{pmatrix} 1 & 0 & \dots & 0 & \Delta \mathbf{x}'_{i} & 0 & 0 \\ 0 & 1 & \dots & 0 & \mathbf{0} & \Delta \mathbf{x}'_{i2} & \Delta y_{i1} \\ \vdots & \vdots & \dots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & \mathbf{0} & \Delta \mathbf{x}'_{iT} & \Delta y_{i,T-1} \end{pmatrix},$$
(29)

$$\boldsymbol{\varphi} = \left(\mathbf{d}', \boldsymbol{\pi}', \boldsymbol{\beta}', \boldsymbol{\gamma}\right)' \text{ with } \mathbf{d} = (d_1, d_2, ..., d_T)', \ \mathbf{G}' = (\widetilde{\mathbf{g}}_1, \mathbf{g}_2, ..., \mathbf{g}_T), \ \mathbf{r}_i = (v_{i1}, \Delta u_{i2}, ..., \Delta u_{iT})', \ \text{and} \ \boldsymbol{\xi}_i = \left(\widetilde{\boldsymbol{\xi}}_{i1}, \boldsymbol{\xi}_{i2}, \cdots, \boldsymbol{\xi}_{iT}\right)', \ \text{and recall that} \ \widetilde{\boldsymbol{\xi}}_{i1} = \widetilde{\mathbf{g}}'_1 \boldsymbol{\eta}_i + v_{i1}, \ \text{and} \ \boldsymbol{\xi}_{it} = \mathbf{g}'_t \boldsymbol{\eta}_i + \Delta u_{it}, \ \text{for} \ t = 2, 3, ..., T.$$

In using the first-differenced specification (28), it is first worth noting that despite the presence of common factors in  $\Delta y_{it}$  and  $\Delta \mathbf{x}_{it}$ , the composite errors,  $\boldsymbol{\xi}_i$ , and the regressors  $\Delta \mathbf{x}_i = (\Delta \mathbf{x}'_{i1}, \Delta \mathbf{x}'_{i2}, ..., \Delta \mathbf{x}'_{iT})$  are independently distributed over i, conditional on  $\boldsymbol{\delta}_{x,t}$  and  $\mathbf{g}_{x,t}$ . This follows since under the above assumptions the cross sectional-variation of  $\Delta \mathbf{x}_i$ , given by (20), is governed by  $\mathbf{v}_i$  and  $\{\boldsymbol{\eta}_{ij,x}, \text{ for } j=1,2,...,m_x\}$  that are assumed to be distributed independently of  $\boldsymbol{\eta}_i$  and  $\Delta u_{it}$  for all i and t (see Assumption 5)). For future reference it is also convenient to partition  $\Delta \mathbf{W}_i$ , as  $\Delta \mathbf{W}_i = (\Delta \mathbf{Z}_i, \Delta \mathbf{y}_{i,-1})$  and write (28) as

$$\Delta \mathbf{y}_i = \Delta \mathbf{Z}_i \delta + \Delta \mathbf{y}_{i,-1} \gamma + \boldsymbol{\xi}_i, \tag{30}$$

where  $\boldsymbol{\delta} = \left(\mathbf{d}', \boldsymbol{\pi}', \boldsymbol{\beta}'\right)'$ .

### 4 Transformed quasi maximum likelihood estimation

Consider the panel data model given by (28) and note that under Assumption 1, and using (25) and (27), we have (recall also that  $v_{i1} \sim IID(0, \omega\sigma^2)$ )

$$E(\mathbf{r}_i \mathbf{r}_i') = \sigma^2 \mathbf{\Omega},\tag{31}$$

where

$$E(\mathbf{r}_{i}\mathbf{r}_{i}') = \sigma^{2} \begin{pmatrix} \omega & -1 & 0 \\ -1 & 2 & \ddots & 0 \\ & & \ddots & \\ & & \ddots & 2 & -1 \\ 0 & & & -1 & 2 \end{pmatrix} = \sigma^{2}\mathbf{\Omega}, \tag{32}$$

and  $\Omega = \Omega(\omega)$ . Since  $|\Omega| = 1 + T(\omega - 1)$ ,  $\omega$  needs to satisfy  $\omega > 1 - \frac{1}{T}$  to ensure that  $\Omega$  is positive definite. Also, since  $\eta_i$  and  $\mathbf{r}_i$  are independently distributed, conditional on  $\delta_{x,t}$  and  $\mathbf{g}_{x,t}$  we have

$$Var(\boldsymbol{\xi}_i) = \boldsymbol{\Sigma}_{\boldsymbol{\xi}}(\boldsymbol{\psi}) = \sigma^2 \boldsymbol{\Omega} + \mathbf{G} \boldsymbol{\Omega}_{\eta} \mathbf{G}' = \sigma^2 \left( \boldsymbol{\Omega} + \mathbf{Q} \mathbf{Q}' \right)$$
(33)

where  $\mathbf{Q} = (1/\sigma)\mathbf{G}\mathbf{\Omega}_{\eta}^{1/2}$ ,  $rank(\mathbf{Q}) = m$ , and  $\boldsymbol{\psi} = (\omega, \sigma^2, vec(\mathbf{Q})')'$ .

Our parameters of primary interest are given by  $\varphi = (\mathbf{d}', \pi', \beta', \gamma)' = (\delta', \gamma)'$ , with the interactive effects treated as nuisance parameters. In consequence, we shall also focus on conditions under which  $\varphi_0$  the true value of  $\varphi$ , can be identified, globally or locally. We are only interested in controlling for the latent interactive effects, and not in their interpretation. This is reflected in the above specification of  $\mathbf{Q}$ , the parameter associated with such effects. Given that  $\mathbf{Q}\mathbf{Q}'$  is of reduced rank m < T, it is not possible to identify  $\mathbf{Q}$  without additional restrictions. This is because for any orthonormal  $m \times m$  matrix  $\mathbf{C}$ ,  $\mathbf{Q}\mathbf{Q}' = \mathbf{Q}^*\mathbf{Q}^{*\prime}$  where  $\mathbf{Q}^* = \mathbf{Q}\mathbf{C}$ . To avoid such non-trivial identification m(m-1)/2 restrictions need to be imposed on  $\mathbf{Q}$ . The number of non-redundant parameters in  $\mathbf{Q}$  is then mT - m(m-1)/2 (see also Hayashi et al. (2007, p.507)).

The quasi-log-likelihood of the transformed model (28) is given by

$$\ell_{N}(\boldsymbol{\theta}) = \ell_{N}(\boldsymbol{\delta}, \gamma, \boldsymbol{\psi}) = -\frac{NT}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})| - \frac{1}{2} \sum_{i=1}^{N} \boldsymbol{\xi}_{i}'(\boldsymbol{\delta}, \gamma) \boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i}(\boldsymbol{\delta}, \gamma)$$
(34)

$$\boldsymbol{\xi}_{i}(\boldsymbol{\delta},\gamma) = \Delta \mathbf{y}_{i} - \Delta \mathbf{Z}_{i} \boldsymbol{\delta} - \Delta \mathbf{y}_{i,-1} \gamma \tag{35}$$

and it is assumed that  $\varphi = (\delta', \gamma)'$  does not depend on  $\psi$ . For fixed m and T, the above log-likelihood function depends on a fixed number of unknown parameters, which are collected in the  $[T(m+k+1) - m(m-1)/2 + k + 3] \times 1$  vector  $\theta = (\delta', \gamma, \psi')'$ . 11

### 5 Identification

We begin our identification analysis by focusing on the identification of  $\mathbf{d}$  and  $\gamma$  in the panel AR(1) model before turning to the general likelihood framework allowing also for exogenous regressors. Prior to this, for identification of the number of interactive effects we derive the order condition on m and T, and show that  $m_{\text{max}} = T - 2$  is an important input in the determination of  $m_0$ , the true value of m. We also show that the same order condition applies irrespective of whether the model contains exogenous regressors.

<sup>&</sup>lt;sup>10</sup>Note that m(m+1)/2 restrictions are imposed by expressing  $\mathbf{G}\Omega_{\eta}\mathbf{G}'$  as  $\mathbf{Q}\mathbf{Q}'$ . For the  $m^2$  restrictions typically imposed on  $Var(\mathbf{G}\eta_i)$  in traditional factor analysis an additional m(m-1)/2 restrictions need to be placed on  $\mathbf{Q}$ .

<sup>&</sup>lt;sup>11</sup>In the Monte Carlo and empirical applications that follow the TQML estimates are obtained by maximising a concentrated version of the likelihood function in (34). This is derived using an eigenvalue approach which greatly simplifies the computations. For details see Section S.3 of the online supplement.

### 5.1 Order condition

We first consider the order condition on m and T associated with the AR(1) model. Using (16) and (24), we have

$$\Delta y_{i1} = d_1 + \tilde{\mathbf{g}}'_1 \eta_i + v_{i1}, \Delta y_{it} - \gamma \Delta y_{i,t-1} = d_t + \mathbf{g}'_t \eta_i + \Delta u_{it}, \text{ for } t = 2, 3, ..., T,$$
(36)

which can be written as  $\mathbf{B}(\gamma) \Delta \mathbf{y}_i = \mathbf{d} + \mathbf{G} \boldsymbol{\eta}_i + \mathbf{r}_i = \mathbf{d} + \boldsymbol{\xi}_i$ , for i = 1, 2, ..., N, where  $\mathbf{d} = (d_1, ..., d_T)'$ ,  $\Delta \mathbf{y}_i$  and  $\boldsymbol{\xi}_i$  are as defined above, and

$$\mathbf{B}(\gamma) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -\gamma & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & -\gamma & 1 \end{pmatrix}. \tag{37}$$

Note also that,  $|\mathbf{B}(\gamma)| = 1$ , and

$$\mathbf{B}^{-1}(\gamma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \gamma & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \gamma^{T-1} & \cdots & \gamma & 1 \end{pmatrix}, \tag{38}$$

and hence  $\Delta \mathbf{y}_i = \mathbf{a} + \mathbf{B}^{-1}(\gamma) \boldsymbol{\xi}_i$ , where

$$\mathbf{a} = \mathbf{B}^{-1}(\gamma) \, \mathbf{d} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \gamma & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \gamma^{T-1} & \dots & \gamma & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_T \end{pmatrix} = \begin{pmatrix} d_1 \\ \gamma d_1 + d_2 \\ \vdots \\ \gamma^{T-1} d_1 + \gamma^{T-2} d_2 + \dots + \gamma d_{T-1} + d_T \end{pmatrix}. \quad (39)$$

The parameters associated with this model are  $\boldsymbol{\theta} = (\mathbf{d}', \gamma, \psi')' = (\mathbf{d}', \varrho')'$  with  $\varrho = (\gamma, \psi')'$ , and recall  $\psi = (\omega, \sigma^2, vec(\mathbf{Q})')'$ . In deriving the order condition on m and T for the AR(1) model, and the ARX(1) that follows, it suffices to focus on the identification of  $\varrho$  as none of the remaining parameters of either model depend on m.

For the AR(1) model since **d** is a  $T \times 1$  unrestricted parameter vector, then **a** is also unrestricted, namely knowing **a** will not help with identification  $\gamma$ , or any of the remaining parameters in  $\psi$ . Hence, the identification of  $\boldsymbol{\varrho} = (\gamma, \psi')'$  can only come from the T(T+1)/2 distinct elements of  $Var(\Delta \mathbf{y}_i) = \Sigma_{\Delta y}$  which are given by

$$\Sigma_{\Delta y} = \mathbf{B}(\gamma)^{-1} Var(\boldsymbol{\xi}_i) \mathbf{B}'(\gamma)^{-1}$$

$$= \sigma^2 \mathbf{B}(\gamma)^{-1} \left( \mathbf{\Omega} + \mathbf{Q} \mathbf{Q}' \right) \mathbf{B}'(\gamma)^{-1} = \mathbf{\Sigma} \left( \boldsymbol{\varrho} \right), \tag{40}$$

where  $\Sigma_{\Delta y}$  can be consistently estimated. Since  $\mathbf{Q}$  enters  $\Sigma(\varrho)$  as  $\mathbf{A} = \mathbf{Q}\mathbf{Q}'$ , we need to consider the unknown elements of the symmetric matrix  $\mathbf{A}$  under different rank conditions. First it is clear that if  $\mathbf{A}$  has full rank, namely if  $rank(\mathbf{A}) = T$ , then  $\varrho$  cannot be identified. Therefore, to identify  $\varrho$ , we must have  $rank(\mathbf{A}) = rank(\mathbf{Q}) = m < T$ . Recall also from Section 4 that the number of non-redundant elements of  $\mathbf{Q}$  is given by mT - m(m-1)/2. The order condition necessary for identification of  $\varrho$  is then given by

$$T(T+1)/2 \ge 3 + Tm - m(m-1)/2.$$
 (41)

This order condition is satisfied if  $T \ge 3$ , for  $m = 0, 1, 2, ..., m_{\text{max}}$  where  $m_{\text{max}}$  is the largest value of m that satisfies (41), that is  $m_{\text{max}} = T - 2$ .

Consider now the more general case where the panel AR(1) model also contains exogenous regressors. For this case note that the system of equations (28) can be written equivalently as

$$\Delta \mathbf{y}_{i} = \mathbf{a} + \widetilde{\Delta \mathbf{X}}_{i} (\gamma) \phi + \mathbf{B}^{-1} (\gamma) \boldsymbol{\xi}_{i}, \tag{42}$$

where  $\mathbf{a}$ ,  $\mathbf{B}^{-1}(\gamma)$  and  $\boldsymbol{\xi}_i$  are as defined above,  $\boldsymbol{\phi} = (\boldsymbol{\pi}', \boldsymbol{\beta}')'$ ,  $\widetilde{\Delta \mathbf{X}}_i(\gamma) = \mathbf{B}^{-1}(\gamma) \Delta \mathbf{X}_i$ , and  $\Delta \mathbf{X}_i$  is the  $T \times (Tk + k)$  matrix of observations on the exogenous regressors defined by

$$\Delta \mathbf{X}_{i} = \begin{pmatrix} \Delta \mathbf{x}_{i}' & \mathbf{0} \\ \mathbf{0} & \Delta \mathbf{x}_{i2}' \\ \vdots & \vdots \\ \mathbf{0} & \Delta \mathbf{x}_{iT}' \end{pmatrix}. \tag{43}$$

The parameters associated with the ARX(1) model in (42) are  $\boldsymbol{\theta} = (\mathbf{d}', \phi', \gamma, \psi')' = (\mathbf{d}', \phi', \varrho')'$ , with  $\boldsymbol{\psi}$  as defined earlier. Here, as above,  $\mathbf{d}$  and  $\boldsymbol{\phi}$  are unrestricted parameters in the sense that knowing them will not help identification of  $\boldsymbol{\varrho}$  since  $\boldsymbol{\Sigma}(\boldsymbol{\varrho})$  does not depend on  $\mathbf{d}$  and  $\boldsymbol{\phi}$ . But it is already established that identification of  $\gamma$  is based on the covariance of  $\mathbf{B}^{-1}(\gamma)\boldsymbol{\xi}_i$ , which is given by  $\boldsymbol{\Sigma}(\boldsymbol{\varrho}) = \sigma^2 \mathbf{B}(\gamma)^{-1} (\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}') \mathbf{B}'(\gamma)^{-1}$  if the order condition (41) is met. Hence, it follows that the same order condition given by (41) continues to hold in the case of the ARX(1) model.

### 5.2 Rank condition

Subject to the order condition, (41), being satisfied we now consider if the mapping

$$\mathbf{\Sigma}_{\Delta y} = \sigma^2 \mathbf{B}(\gamma)^{-1} \left( \mathbf{\Omega} + \mathbf{Q} \mathbf{Q}' \right) \mathbf{B}'(\gamma)^{-1},$$

provides a unique solution for  $\gamma$ , in terms of  $\Sigma_{\Delta y}$ . The moment conditions implicit in this mapping can also be obtained explicitly using (36). To simplify the exposition we use  $\mathbf{g}_1$  for  $\tilde{\mathbf{g}}_1$ , abstract from exogenous regressors and set T=3 which implies  $m_{max}=T-2=1$ , and assume that the observations  $y_{i0}, y_{i1}, y_{i2}$ , and  $y_{i3}$  are available for the units i=1,2,...,N. We have the following relations

$$\begin{array}{rcl} \Delta y_{i1} & = & d_1 + g_1 \eta_i + v_{i1}, \\ \Delta y_{i2} - \gamma \Delta y_{i1} & = & d_2 + g_2 \eta_i + \Delta u_{i2}, \\ \Delta y_{i3} - \gamma \Delta y_{i2} & = & d_3 + g_3 \eta_i + \Delta u_{i3}. \end{array}$$

It is clear that  $d_1$  is identified since  $d_1 = E(\Delta y_{i1})$ , and can be consistently estimated by  $\hat{d}_{1N} = N^{-1} \sum_{i=1}^{N} \Delta y_{i1}$ . To identify  $d_2$  and  $d_3$  we need to know  $\gamma$ . But since  $d_t = E(\Delta y_{it} - \gamma \Delta y_{i,t-1})$ , we can eliminate  $d_t$  from the above equations to obtain

$$\Delta y_{i1} - E\left(\Delta y_{i1}\right) = q_1 \eta_i + v_{i1},\tag{44}$$

$$[\Delta y_{i2} - E(\Delta y_{i2})] - \gamma [\Delta y_{i1} - E(\Delta y_{i1})] = g_2 \eta_i + \Delta u_{i2}, \tag{45}$$

$$[\Delta y_{i3} - E(\Delta y_{i3})] - \gamma [\Delta y_{i2} - E(\Delta y_{i2})] = g_3 \eta_i + \Delta u_{i3}. \tag{46}$$

Recall that  $v_{i1} \sim IID(0, \omega\sigma^2)$ ,  $\Delta u_{it} \sim IID(0, 2\sigma^2)$  for t = 2, 3,  $E(\Delta u_{i2}v_{i1}) = E(\Delta u_{i2}\Delta u_{i3}) = -\sigma^2$ , and  $E(\Delta u_{i3}v_{i1}) = 0$ . Furthermore, by assumption  $\eta_i$  is distributed independently of  $(v_{i1}, \Delta u_{i2}, \Delta u_{i3})$ . Here we assume the factor,  $g_t$ , is strong and set  $\sigma_{\eta}^2 = 1$ . Using (44)-(46) we obtain the moment conditions

$$m_{11} = \sigma_{11} - (g_1^2 + \omega \sigma^2) = 0,$$
 (47)

$$m_{22} = \sigma_{22} - 2\gamma\sigma_{12} + \gamma^2\sigma_{11} - (g_2^2 + 2\sigma^2) = 0,$$
 (48)

$$m_{33} = \sigma_{33} - 2\gamma\sigma_{23} + \gamma^2\sigma_{22} - (g_3^2 + 2\sigma^2) = 0,$$
 (49)

$$m_{12} = \sigma_{12} - \gamma \sigma_{11} - (g_1 g_2 - \sigma^2) = 0,$$
 (50)

$$m_{13} = \sigma_{13} - \gamma \sigma_{12} - g_1 g_3 = 0, (51)$$

$$m_{23} = \sigma_{23} - (\sigma_{13} + \sigma_{22})\gamma + \gamma^2 \sigma_{12} - (g_2 g_3 - \sigma^2) = 0,$$
 (52)

where

$$\sigma_{tt'} = Cov\left(\Delta y_{it}, \Delta y_{it'}\right) = E\{\left[\Delta y_{it} - E\left(\Delta y_{it}\right)\right]\left[\Delta y_{it'} - E\left(\Delta y_{it'}\right)\right]\}, \ \forall t, t' = 1, 2, 3.$$

As  $\gamma$  only enters equations (48)-(52), the moment condition in (47),  $m_{11}(\boldsymbol{\theta}) = 0$ , is not informative about  $\gamma$  but can be used to identify  $\omega$ . The five equations (48)-(52) can then be solved for the unknowns  $\boldsymbol{\theta} = \left(\gamma, \sigma^2, g_1, g_2, g_3\right)'$ , with global identification requiring that the solution to  $\mathbf{m}(\boldsymbol{\theta}) = \mathbf{0}$ , where  $\mathbf{m}(\boldsymbol{\theta}) = (m_{22}, m_{33}, m_{12}, m_{13}, m_{23})'$ , is unique in terms of  $\sigma_{tt'}$ , which can be estimated consistently (as  $N \to \infty$ ) by  $\hat{\sigma}_{tt'} = \frac{1}{N} \sum_{i=1}^{N} (\Delta y_{it} - \Delta \bar{y}_t)(\Delta y_{it'} - \Delta \bar{y}_{t'})$ , where  $\Delta \bar{y}_t = N^{-1} \sum_{i=1}^{N} \Delta y_{it}$ .

A unique solution for  $\gamma$  can be obtained if  $g_1 = 0$ , but not more generally when  $g_1 \neq 0$ . To see this

A unique solution for  $\gamma$  can be obtained if  $g_1 = 0$ , but not more generally when  $g_1 \neq 0$ . To see this note that when  $g_1 = 0$ , using (51) we have  $\sigma_{13} - \gamma \sigma_{12} = 0$ , and  $\gamma$ ,  $d_1$ ,  $d_2$  and  $d_3$  are uniquely identified, by

$$\gamma = \frac{E\{ [\Delta y_{i1} - E(\Delta y_{i1})] [\Delta y_{i3} - E(\Delta y_{i3})] \}}{E\{ [\Delta y_{i1} - E(\Delta y_{i1})] [\Delta y_{i2} - E(\Delta y_{i2})] \}},$$

$$E(\Delta y_{i1}) = d_1, E(\Delta y_{i2}) = d_2 + \gamma d_1, E(\Delta y_{i3}) = d_3 + \gamma d_2 + \gamma^2 d_3.$$

The remaining moment conditions can also be used to identify  $\sigma^2$  and  $\omega$ , as well as  $g_2$  and  $g_3$  if the sign of  $g_2$  is set a priori. But as soon as it is assumed that  $\Delta y_{i1}$  also depends on  $\eta_i$  (i.e.  $g_1 \neq 0$ ), then the resultant moment conditions need not have a unique solution. In general the rank condition required for a unique solution is given by  $rank(\partial \mathbf{m}(\boldsymbol{\theta})/\partial \boldsymbol{\theta}') = 5$ , where

$$\frac{\partial m(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'} = - \begin{pmatrix} 2(\sigma_{12} - \gamma \sigma_{11}) & 2 & 0 & 2g_2 & 0 \\ 2(\sigma_{23} - \gamma \sigma_{22}) & 2 & 0 & 0 & 2g_3 \\ \sigma_{11} & -1 & g_2 & g_1 & 0 \\ \sigma_{12} & 0 & g_3 & 0 & g_1 \\ \sigma_{13} + \sigma_{22} - 2\gamma \sigma_{12} & 1 & 0 & g_3 & g_2 \end{pmatrix}.$$

It is clear that the rank condition is not met if  $g_2 = g_3 = 0$ , since in this case  $g_1$  cannot be identified. Using (44) and noting that  $Var(v_{i1}) = \omega \sigma^2$ , then  $Var(\Delta y_{i1}) = g_1^2 \sigma_{\eta}^2 + \omega \sigma^2$ , and even if one sets  $\sigma_{\eta}^2 = 1$  this moment condition can not be used to identify both  $\omega$  and  $g_1$ . To identify  $g_1$ , moment conditions for observations 2 and 3 must be used.

### 5.3 Identification in the likelihood setting

We now turn to the general likelihood framework allowing also for exogenous regressors. Recall  $\boldsymbol{\theta} = (\boldsymbol{\varphi}', \boldsymbol{\psi}')' = (\boldsymbol{\delta}', \gamma, \boldsymbol{\psi}')'$ , with  $\boldsymbol{\delta} = (\mathbf{d}', \boldsymbol{\pi}', \boldsymbol{\beta}')'$ ,  $\boldsymbol{\psi} = (\omega, \sigma^2, \mathbf{q}')'$  and  $\mathbf{q} = vec(\mathbf{Q})$ , where  $\boldsymbol{\delta}$  collects the parameters associated with the initial values, the regressors,  $\Delta \mathbf{x}_i$ , and the time-effects, and as defined earlier,  $\boldsymbol{\varrho} = (\gamma, \boldsymbol{\psi}')'$  collects the non-linear parameters. Consider the average log-likelihood function defined by (34) expressed as

$$\bar{\ell}_{N}\left(\boldsymbol{\delta}, \gamma, \boldsymbol{\psi}\right) = N^{-1}\ell_{N}\left(\boldsymbol{\delta}, \gamma, \boldsymbol{\psi}\right) = -\frac{T}{2}\ln\left|2\pi\right| - \frac{1}{2}\ln\left|\Sigma_{\xi}\left(\boldsymbol{\psi}\right)\right| - \frac{1}{2N}\sum_{i=1}^{N}\boldsymbol{\xi}_{i}'(\boldsymbol{\delta}, \gamma)\boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\delta}, \gamma), \quad (53)$$

where  $\boldsymbol{\xi}_{i}(\boldsymbol{\delta},\gamma)$  is given by (35).

We require the following additional assumption.

**Assumption 7** (i)  $\theta \in \Theta = \Theta_{\delta} \times \Theta_{\gamma} \times \Theta_{\psi}$ , where  $\Theta_{\delta} = \Theta_{d} \times \Theta_{\pi} \times \Theta_{\beta}$  and  $\Theta_{\psi} = \Theta_{\omega} \times \Theta_{\sigma} \times \Theta_{q}$ , with  $\Theta_{d}$ ,  $\Theta_{\pi}$ ,  $\Theta_{\beta}$  and  $\Theta_{q}$  compact subsets of  $\mathbb{R}^{n_{d}}$ ,  $\mathbb{R}^{n_{d}}$ ,  $\mathbb{R}^{n_{\beta}}$ , and  $\mathbb{R}^{n_{q}}$ , respectively;  $\Theta_{\gamma}$ ,  $\Theta_{\omega}$  and  $\Theta_{\sigma}$  are compact subsets of  $\mathbb{R}$ , where  $n_{d} = T$ ,  $n_{\pi} = kT$ ,  $n_{\beta} = k$ , and  $n_{q} = Tm - m(m-1)/2$ ;

<sup>&</sup>lt;sup>12</sup>Equations  $m_{22}$  and  $m_{23}$ , for example, can be used to globally identify  $g_2$  and  $g_3$  respectively, once the sign of  $g_2$  is fixed. See also the related discussion, for examle, in Bai and Ng (2013) in the case of the pure factor model.

 $\boldsymbol{\theta}_{0} = \left(\boldsymbol{\varphi}_{0}^{\prime}, \boldsymbol{\psi}_{0}^{\prime}\right)^{\prime} = \left(\boldsymbol{\delta}_{0}^{\prime}, \gamma_{0}, \boldsymbol{\psi}_{0}^{\prime}\right)^{\prime} \text{ lies in the interior of } \boldsymbol{\Theta} \text{ (ii) the likelihood } \bar{\ell}_{N}\left(\boldsymbol{\theta}\right) \text{ is continuous in } \boldsymbol{\theta} \text{ and for some } c_{\max} > c_{\min} > 0, \ c_{\min} \leq \inf_{\boldsymbol{\psi} \in \boldsymbol{\Theta}_{\psi}} \lambda_{\min} \left[\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})\right] < \sup_{\boldsymbol{\psi} \in \boldsymbol{\Theta}_{\psi}} \lambda_{\max} \left[\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})\right] \leq c_{\max}, \text{ (iii)}$   $\boldsymbol{\Lambda}\left(\boldsymbol{\psi}\right) = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} E\left(\Delta \mathbf{W}_{i}^{\prime} \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1} \Delta \mathbf{W}_{i}\right) \text{ is positive definite almost surely uniformly on } \boldsymbol{\psi} \in \boldsymbol{\Theta}_{\psi}.^{13}$ 

Assumption 7(i) is standard and rules out parameter values on the boundary of the parameter space. The eigenvalue conditions on  $\Sigma_{\xi}(\psi)$  in Assumption 7 (ii) ensure that  $\Sigma_{\xi}(\psi)$  is uniformly bounded.<sup>14</sup> Assumption 7(iii) is required for identification of  $\delta_0$  and  $\gamma_0$ , and also implies that  $\mathbf{A}_z(\psi)$  and  $\alpha_y(\psi)$ , defined by

$$\mathbf{A}_{z}\left(\boldsymbol{\psi}\right) = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} E\left(\Delta \mathbf{Z}_{i}^{\prime} \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1} \Delta \mathbf{Z}_{i}\right) \text{ and } \alpha_{y}(\boldsymbol{\psi}) = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} E\left(\Delta \mathbf{y}_{i-1}^{\prime} \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1} \Delta \mathbf{y}_{i-1}\right),$$

are strictly positive definite uniformly on  $\psi \in \Theta_{\psi}$ , where  $\Delta \mathbf{Z}_i$  is the matrix of time dummies and observations on  $\Delta \mathbf{x}_i$ , and  $\Delta \mathbf{y}_{i-1} = (0, \Delta y_{i1}, ..., \Delta y_{i,T-1})'$ , as defined by the partition of  $\Delta \mathbf{W}_i$  in (29). For  $\gamma$  we need to distinguish between the case where S is fixed (namely initialisation is from a finite past) and when  $S \to \infty$ . Under the former, it is only required that  $|\gamma| < K$ , which includes the unit root case  $(|\gamma| = 1)$ . Under the latter (when  $S \to \infty$ ), we must have  $|\gamma| < 1$ .

Given Assumptions 1-7, the global identification condition requires  $f(\boldsymbol{\delta}, \gamma, \boldsymbol{\psi}) = \lim_{N \to \infty} E_0 \left[ \bar{\ell}_N \left( \boldsymbol{\delta}, \gamma, \boldsymbol{\psi} \right) \right]$  to attain a unique maximum at  $\boldsymbol{\theta}_0 = \left( \boldsymbol{\delta}_0, \gamma_0, \boldsymbol{\psi}_0 \right) \in \boldsymbol{\Theta}$ .

Using results (A.25) and (A.26) in Lemma 4, we have

$$\bar{\ell}_{N}\left(\boldsymbol{\delta}_{0}, \gamma_{0}, \boldsymbol{\psi}_{0}\right) - \bar{\ell}_{N}\left(\boldsymbol{\delta}, \gamma, \boldsymbol{\psi}\right) \stackrel{a.s.}{\to} \lim_{N \to \infty} E_{0}\left[\bar{\ell}_{N}\left(\boldsymbol{\delta}_{0}, \gamma_{0}, \boldsymbol{\psi}_{0}\right) - \bar{\ell}_{N}\left(\boldsymbol{\delta}, \gamma, \boldsymbol{\psi}\right)\right],\tag{54}$$

where

$$2\lim_{N\to\infty} E_0\left[\bar{\ell}_N\left(\boldsymbol{\delta}_0,\gamma_0,\boldsymbol{\psi}_0\right) - \bar{\ell}_N\left(\boldsymbol{\delta},\gamma,\boldsymbol{\psi}\right)\right] = \left(\boldsymbol{\delta} - \boldsymbol{\delta}_0\right)'\mathbf{A}_z\left(\boldsymbol{\psi}\right)\left(\boldsymbol{\delta} - \boldsymbol{\delta}_0\right) + \left(\gamma - \gamma_0\right)^2\alpha_y(\boldsymbol{\psi}) + w\left(\boldsymbol{\varrho},\boldsymbol{\varrho}_0\right), (55)$$

$$w\left(\boldsymbol{\varrho},\boldsymbol{\varrho}_{0}\right) = \chi\left(\boldsymbol{\psi},\boldsymbol{\psi}_{0}\right) + 2\left(\gamma - \gamma_{0}\right)\kappa\left(\boldsymbol{\psi},\boldsymbol{\psi}_{0}\right),\tag{56}$$

and

$$\chi(\boldsymbol{\psi}, \boldsymbol{\psi}_0) = \operatorname{tr}\left[\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1} \boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi}_0)\right] - \ln\left(\left|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi}_0)\right| / \left|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})\right|\right) - T.$$
 (57)

Also

$$\kappa\left(\boldsymbol{\psi},\boldsymbol{\psi}_{0}\right) = \operatorname{tr}\left\{\left[\boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right) - \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}_{0}\right)\right]\,\boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1}\boldsymbol{\Gamma}\left(\boldsymbol{\gamma}_{0}\right)\right\},\tag{58}$$

where  $\Gamma(\gamma_0)$  is the lower triangular matrix with zero diagonal elements

$$\mathbf{\Gamma}(\gamma_0) = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma_0^{T-3} & \gamma_0^{T-4} & \cdots & 0 & 0 \\ \gamma_0^{T-2} & \gamma_0^{T-3} & \cdots & 1 & 0 \end{pmatrix}.$$
 (59)

To investigate identification of the parameters of interest, namely  $\delta_0$  and  $\gamma_0$ , we first write (55) more compactly as

$$f(\boldsymbol{\varepsilon}_{\delta}, \varepsilon_{\gamma}, \boldsymbol{\varrho}, \boldsymbol{\varrho}_{0}) = \boldsymbol{\varepsilon}_{\delta}' \mathbf{A}_{z}(\boldsymbol{\psi}) \boldsymbol{\varepsilon}_{\delta} + \alpha_{y}(\boldsymbol{\psi}) \varepsilon_{\gamma}^{2} + w(\boldsymbol{\varrho}, \boldsymbol{\varrho}_{0}).$$

<sup>&</sup>lt;sup>13</sup>All expectations are taken with respect to the true parameter vector  $\boldsymbol{\theta}_0$ , even when not explicitly denoted by  $E_0(.)$ .

<sup>&</sup>lt;sup>14</sup>Note also that  $\Sigma_{\xi}(\psi)$  is positive definite for every  $\psi \in \Theta_{\psi}$ , when the order condition is met and  $\omega > 1 - \frac{1}{T}$ . Recall that under the latter  $\Omega$  is a positive definite matrix and  $\mathbf{Q}$  is rank deficient, and under Assumption 1,  $0 < \sigma^2 < K$ .

We also note that by the information inequality  $f(\boldsymbol{\varepsilon}_{\delta}, \boldsymbol{\varepsilon}_{\gamma}, \boldsymbol{\varrho}, \boldsymbol{\varrho}_{0}) \geq 0$  for all values of  $\boldsymbol{\varepsilon}_{\delta}, \boldsymbol{\varepsilon}_{\gamma}, \boldsymbol{\varrho}$ , and  $\boldsymbol{\varrho}_{0}$ . Global identification of  $\boldsymbol{\delta}_{0}$  and  $\boldsymbol{\gamma}_{0}$ , requires that  $f(\boldsymbol{\varepsilon}_{\delta}, \boldsymbol{\varepsilon}_{\gamma}, \boldsymbol{\varrho}, \boldsymbol{\varrho}_{0}) = 0$  solves uniquely for  $\boldsymbol{\varepsilon}_{\delta} = \mathbf{0}$ , and  $\boldsymbol{\varepsilon}_{\gamma} = 0$ , for all values of  $\boldsymbol{\varrho}$  and  $\boldsymbol{\varrho}_{0}$ . Furthermore, we have that

$$f(\boldsymbol{\varepsilon}_{\delta}, \varepsilon_{\gamma}, \boldsymbol{\varrho}, \boldsymbol{\varrho}_{0}) = \boldsymbol{\varepsilon}_{\delta}' \mathbf{A}_{z}(\boldsymbol{\psi}) \boldsymbol{\varepsilon}_{\delta} + \alpha_{y}(\boldsymbol{\psi}) \boldsymbol{\varepsilon}_{\gamma}^{2} + w(\boldsymbol{\varrho}, \boldsymbol{\varrho}_{0}) \geq \lambda_{\min} \left[ \mathbf{A}_{z}(\boldsymbol{\psi}) \right] \boldsymbol{\varepsilon}_{\delta}' \boldsymbol{\varepsilon}_{\delta} + \alpha_{y}(\boldsymbol{\psi}) \boldsymbol{\varepsilon}_{\gamma}^{2} + w(\boldsymbol{\varrho}, \boldsymbol{\varrho}_{0}) \geq 0.$$
(60)

It is now easily established that  $\delta_0$  and  $\gamma_0$  are globally identified if  $w(\varrho, \varrho_0) \geq 0$  for all values of  $\gamma$  and  $\psi$ . Note that since the right hand side of (60) is non-negative, then if  $w(\varrho, \varrho_0) \geq 0$  we must also have  $\lambda_{\min} [\mathbf{A}_z(\psi)] \varepsilon_{\delta}' \varepsilon_{\delta} \geq 0$  and  $\alpha_y(\psi) \varepsilon_{\gamma}^2 \geq 0$ . Then condition  $f(\varepsilon_{\delta}, \varepsilon_{\gamma}, \varrho, \varrho_0) = 0$  can occur if and only if

$$\lambda_{\min} \left[ \mathbf{A}_z \left( \boldsymbol{\psi} \right) \right] \boldsymbol{\varepsilon}_{\delta}' \boldsymbol{\varepsilon}_{\delta} = 0, \text{ and } \alpha_y(\boldsymbol{\psi}) \boldsymbol{\varepsilon}_{\gamma}^2 = 0,$$
 (61)

noting further that, if  $\lambda_{\min} [\mathbf{A}_z(\boldsymbol{\psi})] \boldsymbol{\varepsilon}_{\delta}' \boldsymbol{\varepsilon}_{\delta} > 0$  and/or  $\alpha_y(\boldsymbol{\psi}) \boldsymbol{\varepsilon}_{\gamma}^2 > 0$ , then  $f(\boldsymbol{\varepsilon}_{\delta}, \boldsymbol{\varepsilon}_{\gamma}, \boldsymbol{\varrho}, \boldsymbol{\varrho}_0) > 0$  for sure, so long as  $w(\boldsymbol{\varrho}, \boldsymbol{\varrho}_0) \geq 0$ . It now follows that since by Assumption 7(iii)  $\lambda_{\min} [\mathbf{A}_z(\boldsymbol{\psi})] > 0$ , and  $\alpha_y(\boldsymbol{\psi}) > 0$ , then conditions in (61) hold if and only if  $\boldsymbol{\varepsilon}_{\delta} = 0$  and  $\boldsymbol{\varepsilon}_{\gamma} = 0$ , and the desired result is established.

But in general it is not possible to be sure that  $w(\varrho, \varrho_0)$  is non-negative. Consider now  $w(\varrho, \varrho_0)$ , and note that its second component,  $\chi(\psi, \psi_0)$ , can be written as

$$\chi(\boldsymbol{\psi}, \boldsymbol{\psi}_0) = \operatorname{tr}\left[\mathbf{B}\right] - \ln\left(\mathbf{B}\right) - T,$$

where  $\mathbf{B} = \Sigma_{\xi}(\psi)^{-1} \Sigma_{\xi}(\psi_0)$  which is a positive definite matrix, and using result 10 on p.44 of Lütkepohl (1996) we have that  $\chi(\psi, \psi_0) \geq 0$ .

Also,

$$\kappa(\boldsymbol{\psi}, \boldsymbol{\psi}_{0}) = \operatorname{tr}\left\{ \left[ \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right) - \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi}_{0} \right) \right] \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \boldsymbol{\Gamma} \left( \gamma_{0} \right) \right\}$$

$$= \operatorname{tr}\left\{ \left[ \mathbf{I}_{T} - \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi}_{0} \right) \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \right] \boldsymbol{\Gamma} \left( \gamma_{0} \right) \right\}$$

$$\geq \operatorname{tr}\left[ \mathbf{I}_{T} - \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi}_{0} \right) \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \right] \lambda_{\min} [\boldsymbol{\Gamma} \left( \gamma_{0} \right) ], \tag{62}$$

and since  $\lambda_{\min}[\Gamma(\gamma_0)] = 0$ , then  $\kappa(\psi, \psi_0) \geq 0$ , as well. Overall, for values of  $\varrho \neq \varrho_0$ ,  $w(\varrho, \varrho_0) = \chi(\psi, \psi_0) + 2(\gamma - \gamma_0)\kappa(\psi, \psi_0)$  is ensured to be non-negative only if  $(\gamma - \gamma_0) > 0$ , otherwise the second term of  $w(\varrho, \varrho_0)$  could become sufficiently large and negative such that  $w(\varrho, \varrho_0) < 0$ . Therefore, to ensure global identification of  $\delta_0$  and  $\gamma_0$  for all values of  $\gamma$  and  $\psi$  it is required that  $\kappa(\psi, \psi_0) = 0$ . But as shown in the example below, this can occur if the distribution of the initial first differences,  $\Delta y_{i1}$  does not depend on the latent factor, which renders  $\Delta y_{i1}$  uncorrelated with  $\Delta y_{it}$ , for  $t \geq 2$ .

Finally, it is worth noting that even if  $\kappa(\psi, \psi_0) = 0$ , global identification of  $\psi_0$  will involve additional restrictions on  $\psi$ , since  $\chi(\psi, \psi_0) = 0$  only ensures equality of eigenvalues of  $\Sigma_{\xi}(\psi)$  and  $\Sigma_{\xi}(\psi_0)$ , which does not necessarily imply that  $\psi = \psi_0$ . Identification of  $\psi_0$  is ensured if  $\Sigma_{\xi}(\psi)$  and  $\Sigma_{\xi}(\psi_0)$  commute, as the simple example below illustrates.

Remark 4 The above results clearly highlight the fact that in general it is not possible to guarantee global identification in the presence of the lagged dependent variable. Allowing for regressors  $\Delta \mathbf{x}_i$  and the associated initial values component, as well as the time effects, do not alter this conclusion. These results are also in line with the moment condition based identification results discussed earlier. Further insights into conditions related to global identification using the likelihood framework are illustrated by the example that follows.

**Example 1** To keep the illustration as simple as possible we consider the panel data model without fixed effects given by

$$y_{i1} = \lambda_i f_1 + v_i,$$
  
 $y_{i2} = \gamma y_{i1} + \lambda_i f_2 + u_{i2},$ 

for i = 1, 2, ..., N, and assume that  $\lambda_i$ ,  $v_i$ , and  $u_{i2}$  are cross-sectionally, and mutually independent, have zero means, with variances,  $\sigma_{\lambda}^2$ ,  $\sigma_{v}^2$  and  $\sigma_{2}^2$ , respectively. As shown earlier global identification is possible when the initial values,  $y_{i1}$ , do not depend on the common factor. It is clear that in this model  $\gamma_0$ , the true value of  $\gamma$ , is not identified, unless  $f_1 = 0$ . Under this restriction  $\gamma_0$  is identified using the moment condition  $E_0[y_{i1}(y_{i2} - \gamma y_{i1})] = 0$ . Consider now the application of the likelihood approach to this simple model under  $f_1 = 0$ . In this case

$$oldsymbol{\Sigma}_{\xi}\left(oldsymbol{\psi}
ight)=\left(egin{array}{cc} \sigma_{v}^{2} & 0 \ 0 & \sigma^{2} \end{array}
ight),$$

with  $\psi = (\sigma_v^2, \sigma^2)$ ,  $\sigma^2 = f_2^2 \sigma_{\lambda}^2 + \sigma_2^2 > 0$ . Using (55) we have

$$2\lim_{N\to\infty} E_0\left[\bar{\ell}_N\left(\gamma_0,\boldsymbol{\psi}_0\right) - \bar{\ell}_N\left(\gamma,\boldsymbol{\psi}\right)\right] = \left(\gamma - \gamma_0\right)^2 \alpha_y(\boldsymbol{\psi}) + \chi\left(\boldsymbol{\psi},\boldsymbol{\psi}_0\right) + 2\left(\gamma - \gamma_0\right)\kappa\left(\boldsymbol{\psi},\boldsymbol{\psi}_0\right),\tag{63}$$

where  $\alpha_y(\boldsymbol{\psi}) = \lim_{N \to \infty} N^{-1} \sum_{i=1}^N E\left(\mathbf{y}'_{i,-1} \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \mathbf{y}_{i,-1}\right)$ ,  $\mathbf{y}_{i,-1} = (0, y_{i1})$ , which simplifies to  $\alpha_y(\boldsymbol{\psi}) = \sigma^{-2} \lim_{N \to \infty} N^{-1} \sum_{i=1}^N y_{i1}^2 = \sigma_v^2 / \sigma^2$ ,

$$\chi(\boldsymbol{\psi}, \boldsymbol{\psi}_{0}) = \operatorname{tr}\left[\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1} \boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi}_{0})\right] - \operatorname{ln}\left(\left|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi}_{0})\right| / \left|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})\right|\right) - 2$$
$$= \left[\frac{\sigma_{0}^{2}}{\sigma^{2}} - \operatorname{ln}\left(\frac{\sigma_{0}^{2}}{\sigma^{2}}\right) - 1\right] + \left[\frac{\sigma_{0,v}^{2}}{\sigma_{v}^{2}} - \operatorname{ln}\left(\frac{\sigma_{0,v}^{2}}{\sigma_{v}^{2}}\right) - 1\right] \geq 0,$$

and

$$\kappa (\boldsymbol{\psi}, \boldsymbol{\psi}_{0}) = \operatorname{tr} \left\{ \left[ \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi}) - \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi}_{0}) \right] \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi})^{-1} \boldsymbol{\Gamma} (\gamma_{0}) \right\}$$

$$= -\operatorname{tr} \left\{ \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi}_{0}) \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi})^{-1} \boldsymbol{\Gamma} (\gamma_{0}) \right\}$$

$$= -\operatorname{tr} \left\{ \begin{pmatrix} \frac{\sigma_{0,v}^{2}}{\sigma_{v}^{2}} & 0\\ 0 & \frac{\sigma_{0}^{2}}{\sigma^{2}} \end{pmatrix} \begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix} \right\} = 0.$$

Hence,

$$2\lim_{N\to\infty}E_{0}\left[\bar{\ell}_{N}\left(\gamma_{0},\boldsymbol{\psi}_{0}\right)-\bar{\ell}_{N}\left(\gamma,\boldsymbol{\psi}\right)\right]=\left(\gamma-\gamma_{0}\right)^{2}\alpha_{y}(\boldsymbol{\psi})+\chi\left(\boldsymbol{\psi},\boldsymbol{\psi}_{0}\right).$$

We further have that  $\frac{\sigma_0^2}{\sigma^2} - \ln\left(\frac{\sigma_0^2}{\sigma^2}\right) - 1 \ge 0$  and  $\frac{\sigma_{0,v}^2}{\sigma_v^2} - \ln\left(\frac{\sigma_{0,v}^2}{\sigma_v^2}\right) - 1 \ge 0$ , with equalities holding if and only if  $\sigma^2 = \sigma_0^2$  and  $\sigma_v^2 = \sigma_{0,v}^2$ , respectively. Note also that in this simple example the matrices  $\Sigma_{\xi}(\psi)$  and  $\Sigma_{\xi}(\psi_0)$  commute. It then follows that we must also have  $\gamma = \gamma_0$  if and only if  $\alpha_y(\psi) > 0$ . In fact, the diagonality of  $\Sigma_{\xi}(\psi)$  and  $\alpha_y(\psi) = \sigma_v^2/\sigma^2 > 0$  are both necessary and sufficient for global identification of  $\gamma_0$ . A similar outcome also follows if we allow for fixed effects and work with the first-differenced version of the panel. But for the first-differenced version we need T=3 with  $g_1=0$ . The likelihood approach can now be applied to

$$\Delta y_{i1} = \Delta u_{i1},$$

$$\Delta y_{i2} - \gamma \Delta y_{i1} = g_2 \eta_i + \Delta u_{i2},$$

$$\Delta y_{i3} - \gamma \Delta y_{i2} = g_3 \eta_i + \Delta u_{i3}.$$

Since due to first-differencing  $Cov(\Delta u_{i1}, \Delta u_{i2}) = -\sigma^2$ , to ensure the diagonality of  $\Sigma_{\xi}(\psi)$  for this application, noting that  $Cov(\Delta u_{i1}, g_3\eta_i + \Delta u_{i3}) = 0$ , it is sufficient to apply the likelihood approach to

$$\Delta y_{i1} = \Delta u_{i1},$$
  
$$\Delta y_{i3} - \gamma \Delta y_{i2} = g_3 \eta_i + \Delta u_{i3},$$

with  $\boldsymbol{\xi}_i(\gamma) = (\Delta y_{i1}, \Delta y_{i3} - \gamma \Delta y_{i2})'$ . In this set up one can first obtain a uniquely consistent estimator using  $\Delta y_{i1}$  and  $\Delta y_{i3} - \gamma \Delta y_{i2}$ , and then use this consistent estimator as initial value for a more efficient ML estimation that also makes use of the relations  $\Delta y_{i2} - \gamma \Delta y_{i1} = g_2 \eta_i + \Delta u_{i2}$ , for i = 1, 2, ..., N.

#### 5.3.1 Local identification

As global identification of  $\delta_0$  and  $\gamma_0$  on the parameter space  $\Theta$  cannot be guaranteed, we proceed by considering a restriction of  $\Theta$  on which identification and consistency will be shown.<sup>15</sup> To this end we introduce the following definition:

**Definition 1** Let  $\mathcal{N}_{\epsilon}(\varrho_0)$  be a set in the closed neighbourhood of  $\varrho_0$  defined by

$$\mathcal{N}_{\epsilon}(\boldsymbol{\varrho}_0) = \{ \boldsymbol{\varrho} \in \boldsymbol{\Theta}_{\gamma} \times \boldsymbol{\Theta}_{\psi} : \| \boldsymbol{\varrho} - \boldsymbol{\varrho}_0 \| \leq \epsilon \}$$

for some  $\epsilon > 0$ , such that

$$w(\boldsymbol{\varrho}, \boldsymbol{\varrho}_0) = \chi(\boldsymbol{\psi}, \boldsymbol{\psi}_0) + 2(\gamma - \gamma_0) \kappa(\boldsymbol{\psi}, \boldsymbol{\psi}_0) \ge 0, \tag{64}$$

for all values of  $\gamma \in \Theta_{\gamma}$  and  $\psi \in \Theta_{\psi}$  where  $\Theta_{\gamma}$  is a compact subset of  $\mathbb{R}$  and  $\Theta_{\psi} = \Theta_{\omega} \times \Theta_{\sigma} \times \Theta_{q}$ , with  $\Theta_{\omega}$  and  $\Theta_{\sigma}$  compact subsets of  $\mathbb{R}$ , and  $\Theta_{q}$  a compact subset of  $\mathbb{R}^{n_{q}}$ , with  $n_{q} = Tm - m(m-1)/2$ .

In view of the local nature of our analysis, from hereon we consider the more restricted parameter space as set out in the following assumption.

Assumption 8  $\theta \in \Theta_{\epsilon} = \Theta_{\delta} \times \mathcal{N}_{\epsilon}(\varrho_{0})$ , where  $\Theta_{\delta} = \Theta_{d} \times \Theta_{\pi} \times \Theta_{\beta}$  and  $\mathcal{N}_{\epsilon}(\varrho_{0})$  is specified in Definition 1,  $\Theta_{\psi} = \Theta_{\omega} \times \Theta_{\sigma} \times \Theta_{q}$ , with  $\Theta_{d}$ ,  $\Theta_{\pi}$ ,  $\Theta_{\beta}$  and  $\Theta_{q}$  compact subsets of  $\mathbb{R}^{n_{d}}$ ,  $\mathbb{R}^{n_{\pi}}$ ,  $\mathbb{R}^{n_{\beta}}$ , and  $\mathbb{R}^{n_{q}}$ , respectively;  $\Theta_{\omega}$  and  $\Theta_{\sigma}$  are compact subsets of  $\mathbb{R}$ , where  $n_{d} = T$ ,  $n_{\pi} = kT$ ,  $n_{\beta} = k$ , and  $n_{q} = Tm - m(m-1)/2$ ;  $\mathcal{N}_{\epsilon}(\varrho_{0})$  is given in Definition 1,  $\Theta_{\epsilon}$  is a compact subset of  $\mathbb{R}^{n_{\theta}}$  with  $n_{\theta} = 3 + T(k+1) + k + Tm - m(m-1)/2$ ; and  $\theta_{0} = (\varphi'_{0}, \psi'_{0})' = (\delta'_{0}, \gamma_{0}, \psi'_{0})'$  lies in the interior of  $\Theta_{\epsilon}$ .

We now have:

**Proposition 1** Consider the model given by (13), with the associated log-likelihood function for first-differences given by (34). Suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41) hold. Then  $\delta_0$  and  $\gamma_0$  are almost surely (locally) identified on  $\Theta_{\epsilon}$ .

The proof follows noting that for all values of  $\boldsymbol{\theta} \in \boldsymbol{\Theta}_{\epsilon}$ , condition (64) is met and hence local identification of  $\boldsymbol{\delta}_0$  and  $\gamma_0$  is established using (60). In what follows we also assume that  $\boldsymbol{\psi}_0$  is locally identified under suitable additional restrictions on  $\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})$  such that  $\chi(\boldsymbol{\psi}, \boldsymbol{\psi}_0) = 0$  ensures that  $\boldsymbol{\psi}_0 = \boldsymbol{\psi}$ . Note that under local identification of  $\gamma_0$  and  $\boldsymbol{\delta}_0$  we also have  $\chi(\boldsymbol{\psi}, \boldsymbol{\psi}_0) = 0$ , but as noted earlier this by itself does not necessarily ensure that  $\boldsymbol{\psi} = \boldsymbol{\psi}_0$ . Under local identification of  $\gamma_0$  and  $\boldsymbol{\delta}_0$ , in order for  $\boldsymbol{\psi}_0$  to also be locally identified it is further required that  $\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi}_0)$  and  $\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})$  have the same eigenvectors and eigenvalues, and this is ensured if on  $\boldsymbol{\Theta}_{\epsilon}$  the two matrices  $\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi}_0)$  and  $\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})$  commute, as previously mentioned.

### 6 Asymptotic properties of the transformed QML estimator

The analysis of consistency and asymptotic normality of the TQML estimator,  $\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_{\epsilon}} \bar{\ell}_{N}(\boldsymbol{\theta})$ , now follows by application of standard results from the literature. Almost sure local consistency of  $\hat{\boldsymbol{\theta}}$  follows, for example, from a straightforward adaptation of Theorem 9.3.1 of Davidson (2000). Specifically under Assumptions 1-7(ii),(iii), and 8 we have: (i)  $\boldsymbol{\Theta}_{\epsilon}$  as a subset of  $\boldsymbol{\Theta}$  is compact, (ii) setting  $\bar{C}_{N}(\boldsymbol{\theta}) = -2\bar{\ell}_{N}(\boldsymbol{\theta})$ , and  $\bar{C}(\boldsymbol{\theta}) = E_{0}[\bar{C}_{N}(\boldsymbol{\theta})]$ ,  $\bar{C}_{N}(\boldsymbol{\theta}) \stackrel{a.s.}{\to} \bar{C}(\boldsymbol{\theta})$  uniformly on  $\boldsymbol{\Theta}_{\epsilon}$  as shown in the proof of 2 in the

<sup>&</sup>lt;sup>15</sup>This approach is typical in the time series literature under QMLE theory, see for example Lumsdaine (1996) for the GARCH model, Allen et al. (2008) for the case of the Logarithmic Autoregressive Conditional Duration model, Kristensen and Rahbek (2010) for nonlinear error-correction models, and Han and Kristensen (2014) for GARCH-X models with stationary and nonstationary covariates, among others.

Appendix, (iii)  $\theta_0$ , an interior point of  $\Theta_{\epsilon}$ , is the unique minimum of  $\bar{C}(\theta)$  on  $\Theta_{\epsilon}$  by Proposition 1 and given that  $\Sigma_{\xi}(\psi_0)$  and  $\Sigma_{\xi}(\psi)$  commute. Therefore, all three conditions of Theorem 9.3.1 of Davidson are satisfied and  $\hat{\theta} \stackrel{a.s.}{\longrightarrow} \theta_0$  on the set  $\Theta_{\epsilon}$ .

The asymptotic distribution of  $\hat{\boldsymbol{\theta}}$  is derived by taking a Taylor expansion of  $\frac{\partial \bar{\ell}_N(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}} = \mathbf{0}$  at  $\boldsymbol{\theta}_0$  and checking the asymptotic behaviour of the score function,  $\bar{\mathbf{s}}_N(\boldsymbol{\theta}) = \frac{\partial \bar{\ell}_N(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ , and Hessian matrix,  $\mathbf{H}_N(\boldsymbol{\theta}) = -\frac{\partial^2 \bar{\ell}_N(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}$ . If  $E_0\left[\frac{\bar{\ell}_N(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}}\right] = \mathbf{0}$  and  $\mathbf{H}_N(\boldsymbol{\check{\theta}}) \stackrel{a.s.}{\to} \mathbf{H}(\boldsymbol{\theta}_0)$ , the asymptotic normality of the TQML estimator will follow from the mean value theorem:

$$\mathbf{0} = \sqrt{N}\bar{\mathbf{s}}_N(\widehat{\boldsymbol{\theta}}) = \sqrt{N}\bar{\mathbf{s}}_N(\boldsymbol{\theta}_0) - \mathbf{H}_N(\widecheck{\boldsymbol{\theta}})\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$$
(65)

where  $\check{\boldsymbol{\theta}}$  lies between  $\widehat{\boldsymbol{\theta}}$  and  $\boldsymbol{\theta}_0$ . The resultant asymptotic distribution is summarised in the following theorem:

**Theorem 2** Consider the dynamic panel data model with interactive effects given by (13). Suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41) and Proposition 1 hold, and that  $\Sigma_{\xi}(\psi_0)$  and  $\Sigma_{\xi}(\psi)$  commute. Denote the TQML estimator of  $\theta_0$  by  $\widehat{\theta} = \arg \max_{\theta \in \Theta_{\epsilon}} \overline{\ell}_N(\theta)$ , where  $\overline{\ell}_N(\theta)$  is given by (53). Then,  $\widehat{\theta}$  is almost surely locally consistent for  $\theta_0$  on  $\Theta_{\epsilon}$  and

$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \to_d N \left[ \mathbf{0}, \mathbf{H}^{-1}(\boldsymbol{\theta}_0) \mathbf{J}(\boldsymbol{\theta}_0) \mathbf{H}^{-1}(\boldsymbol{\theta}_0) \right], \tag{66}$$

where  $\mathbf{H}(\boldsymbol{\theta}_0) = \lim_{N \to \infty} E_0 \left[ -\frac{\partial^2 \bar{\ell}_N(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \right]$  and  $\mathbf{J}(\boldsymbol{\theta}_0) = \lim_{N \to \infty} E_0 \left[ N \frac{\partial \bar{\ell}_N(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} \frac{\partial \bar{\ell}_N(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}'} \right]$  are assumed to exist and be positive definite.

When  $\xi_i(\varphi_0)$  is Gaussian  $\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \to_d N[\mathbf{0}, \mathbf{H}^{-1}(\boldsymbol{\theta}_0)]$ . A consistent estimator for the variance in (66) can be obtained by substituting  $\widehat{\boldsymbol{\theta}}$  for  $\boldsymbol{\theta}_0$  in the expressions for  $\mathbf{J}(\boldsymbol{\theta}_0)$  and  $\mathbf{H}(\boldsymbol{\theta}_0)$ .

**Remark 5** Since in general we do not have global identification, in practice when computing the proposed TQML estimator it is advisable that a number of different initial parameter vectors are considered in the optimisation procedure to ensure, as far as possible, that the resultant estimates correspond to the locally consistent maximum.

### 7 Estimating the number of factors

There are a number of studies that provide information criteria for selecting the number of factors including Bai and Ng (2002), Onatski (2010), Kapetanios (2010), Ahn and Horenstein (2013), among others. However, these are not applicable to short T panel data sets, and require both N and T to be large. In the case of short T panels Ahn et al. (2013) estimate the true number of factors,  $m_0$ , within a GMM framework using the Sargan-Hansen misspecification statistic in a sequential manner, as well as information criteria. To ensure consistency of the selected number of factors under the former case, following Bauer and Hackl (1988) and Cragg and Donald (1997), Ahn et al. (2013) choose the significance level  $b_N$  such that  $b_N \to 0$  and  $-\ln(b_N)/N \to 0$  as  $N \to \infty$ . Using simulations they find that the sequential method could produce better estimates if the significance level depends also on T (in addition to N), when the regressors and  $\eta'_i f_t$  are not highly correlated, but do not provide theoretical details on how best to allow for T as well as N in their selection procedure. In what follows we consider a sequential likelihood ratio (LR) testing procedure, but adjust the significance level of the tests to take account of the multiple testing nature of the procedure in terms of T, as well as adjusting the size of the tests in terms of N to ensure consistency of the selected number of factors. We provide a formal theory that should be of general interest for the analysis of short T factor models.

## 7.1 A sequential multiple testing likelihood ratio procedure for estimating the number of factors

We first consider the problem of testing  $H_0$ :  $m = m_0$  against  $H_1$ :  $m = m_{\text{max}}$ , where  $m_{\text{max}}$  is the largest value of m that satisfies the order condition (41), namely  $m_{\text{max}} = T - 2$ . This is in contrast to the problem of selecting m in the case of large N and T factor models where it is often based on an arbitrary choice of  $m_{\text{max}}$ . Under  $H_0$ , the maximised log-likelihood function,  $\ell_N\left(\widehat{\boldsymbol{\theta}}_{m_0}\right)$ , is computed by maximising (53) subject to  $r_0$  over-identifying restrictions given by

$$r_0 = T(T+1)/2 - 3 - [Tm_0 - m_0(m_0 - 1)/2]. (67)$$

Denote the exactly identified estimator of  $\boldsymbol{\theta}$  (under  $H_1$ ) by  $\widehat{\boldsymbol{\theta}}_{m_{\text{max}}}$  with its dimension  $n_{\theta}^* = 3 + T(k + 1) + k + (T-2)(T+3)/2$ , and the constrained estimator of  $\boldsymbol{\theta}$  under  $H_0: m = m_0 < T-2$  by  $\widehat{\boldsymbol{\theta}}_{m_0}$ . The latter estimator is obtained under  $\mathbf{r}(\boldsymbol{\theta}_0) = \mathbf{0}$ , where  $\mathbf{r}(\boldsymbol{\theta}_0)$  is the  $r_0 \times 1$  vector of restrictions on  $\ell_N(\boldsymbol{\theta})$ , the log-likelihood function defined by (34), implied by setting  $m = m_0$ . The LR statistic for testing  $H_0$ :  $m = m_0$  against  $H_1$ :  $m = m_{\text{max}} = T-2$ , is then given by

$$\mathcal{LR}_{N}\left(m_{0}, m_{\text{max}}\right) = 2\left[\ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{\text{max}}}\right) - \ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{0}}\right)\right], \text{ for } m_{0} = 0, 1, 2, ..., T - 3.$$

$$(68)$$

The following theorem provides the asymptotic distribution of  $\mathcal{LR}_N$  under the null and  $\eta$ -local alternatives, the latter to be defined below.

**Theorem 3** Consider the dynamic panel data model given by (13), and suppose that Theorem 2 holds. Denote the constrained TQML estimator of  $\boldsymbol{\theta}$  obtained under  $H_0: m = m_0$  by  $\widehat{\boldsymbol{\theta}}_{m_0}$  and its unconstrained estimator by  $\widehat{\boldsymbol{\theta}}_{m_{\max}}$ , where  $m_{\max} = T - 2$ . Also let the restrictions imposed under  $H_0$  be given by  $\mathbf{r}(\boldsymbol{\theta}_0) = \mathbf{0}$ , where  $\mathbf{r}(\boldsymbol{\theta}_0)$  is the  $r_0 \times 1$  vector function of  $\boldsymbol{\theta}$  implied by setting  $m = m_0$  where  $r_0 = T(T+1)/2 - 3 - [Tm_0 - m_0(m_0 - 1)/2]$ . Then: (a) under the null  $H_0: m = m_0$  (or equivalently under  $\mathbf{r}(\boldsymbol{\theta}_0) = \mathbf{0}$ ), the log-likelihood ratio statistic  $\mathcal{LR}_N$ , defined by (68), has the following asymptotic distribution (for a fixed T, and as  $N \to \infty$ )

$$\mathcal{LR}_N \to_d \sum_{j=1}^{r_0} w_j z_j^2, \tag{69}$$

where  $z_{j} \sim IID\mathcal{N}\left(0,1\right)$ ,  $w_{1}, w_{2}, ..., w_{r_{0}}$  are the strictly positive eigenvalues of the symmetric matrix

$$\mathbf{A}_0 = \mathbf{J}_0^{1/2} \mathbf{H}_0^{-1} \mathbf{R}_0' \left( \mathbf{R}_0 \mathbf{H}_0^{-1} \mathbf{R}_0' \right)^{-1} \mathbf{R}_0 \mathbf{H}_0^{-1} \mathbf{J}_0^{1/2}, \tag{70}$$

with  $\mathbf{J}_0 = \mathbf{J}(\boldsymbol{\theta}_0)$ ,  $\mathbf{H}_0 = \mathbf{H}(\boldsymbol{\theta}_0)$ , and  $\mathbf{R}_0 = \mathbf{R}(\boldsymbol{\theta}_0)$ , where  $\mathbf{R}(\boldsymbol{\theta}_0) = \partial \mathbf{r}(\boldsymbol{\theta}_0) / \partial \boldsymbol{\theta}'$  is of dimension  $(r_0 \times n_{\theta}^*)$  with  $n_{\theta}^* = 3 + T(k+1) + k + (T-2)(T+3)/2$ , such that  $rank[\mathbf{R}(\boldsymbol{\theta}_0)] = r_0$ , (b) furthermore, under  $\eta$ -local alternatives  $H_{1N}: \boldsymbol{\theta}_{1N} = \boldsymbol{\theta}_0 + N^{-\eta/2}\boldsymbol{\kappa}$ , where  $\boldsymbol{\kappa}$  is a  $n_{\theta}^* \times 1$  vector of constants such that  $\boldsymbol{\kappa}'\boldsymbol{\kappa} > 0$  and  $0 < \eta < 1$ , we have

$$\frac{N^{-(1-\eta)/2}\mathcal{L}\mathcal{R}_N - N^{(1-\eta)/2}\boldsymbol{\kappa}'\mathbf{S}_c\boldsymbol{\kappa}}{2\sqrt{\boldsymbol{\kappa}'\mathbf{S}_b'\mathbf{S}_b\boldsymbol{\kappa}}} \stackrel{a}{\sim} N(0,1), \tag{71}$$

where  $\mathbf{S}_c$  and  $\mathbf{S}_b'\mathbf{S}_b$  are symmetric positive definite matrices defined by

$$\mathbf{S}_c = \mathbf{R}_0' \left( \mathbf{R}_0 \mathbf{H}_0^{-1} \mathbf{R}_0' \right)^{-1} \mathbf{R}_0, \tag{72}$$

and

$$\mathbf{S}_{b}'\mathbf{S}_{b} = \mathbf{R}_{0}' \left(\mathbf{R}_{0}\mathbf{H}_{0}^{-1}\mathbf{R}_{0}'\right)^{-1}\mathbf{R}_{0}\mathbf{H}_{0}^{-1}\mathbf{J}_{0}\mathbf{H}_{0}^{-1}\mathbf{R}_{0}' \left(\mathbf{R}_{0}\mathbf{H}_{0}^{-1}\mathbf{R}_{0}'\right)^{-1}\mathbf{R}_{0},\tag{73}$$

respectively.

Remark 6 It is worth noting that the concept of  $\eta$ -local alternatives extends the standard Pitman sequence of local alternatives where  $\eta$  is set to  $\eta = 1$ . By considering alternatives that tend towards the null at a slower rate, with  $\eta < 1$ , we are able to allow both Types I and II errors to tend to zero.

**Remark 7** Note that the non-zero eigenvalues of  $\mathbf{A}_0$  (given by (70)) are also the eigenvalues of  $\left(\mathbf{R}_0\mathbf{H}_0^{-1}\mathbf{R}_0'\right)^{-1}\left(\mathbf{R}_0\mathbf{H}_0^{-1}\mathbf{J}_0\mathbf{H}_0^{-1}\mathbf{R}_0'\right)$ . Hence, if  $\mathbf{J}_0 = \mathbf{H}_0$ , this matrix becomes equal to  $\mathbf{I}_{r_0}$  and we have  $w_i = 1, (i = 1, 2, ..., r_0)$ , which yields the familiar result

$$\mathcal{LR}_N \to_d \chi_{r_0}^2$$
, under  $\mathbf{r}(\boldsymbol{\theta}_0) = \mathbf{0}$ ,

where  $\chi^2_{r_0}$  is a central chi-squared variate with  $r_0$  degrees of freedom.

Theorem 3 shows that the use of the LR test in the non-Gaussian setting is non-standard and requires an explicit derivation when  $H_0: \mathbf{r}(\boldsymbol{\theta}_0) = \mathbf{0}$ . Furthermore, even in the standard case the use of the sequential LR procedure for the estimation of m is subject to the multiple testing problem and does not guarantee that  $m_0$ , the true value of m, will be estimated consistently. This is a well known problem in the sequential testing literature. In this paper, we deal with both of these problems by letting the overall size of the sequential LR tests decline with N at a suitable rate, which we show yields the desired result even if the underlying individual LR tests are non-standard.

**Proposition 2** Suppose that the assumptions of Theorem 3 hold, and that under the null hypothesis  $H_0$  the LR test statistic  $\mathcal{LR}_N$  given by (68) is distributed as  $\sum_{i=1}^{r_0} w_i \chi_i^2(1)$ , where the weights  $w_1 \geq w_2 \geq ... \geq w_{r_0} > 0$  are finite constants, and  $\chi_i^2(1)$  for i = 1, 2, ..., h are independently distributed central chi-squared variates with 1 degree of freedom. Denote the type I error probability of the test by  $\alpha_N$ , and the critical value of the test by  $c_N^2(r_0)$ . If  $c_N^2(r_0) \to \infty$  as  $N \to \infty$ , then  $\lim_{N \to \infty} \alpha_N = 0$ .

Corollary 1 Under the assumptions of Theorem 3, define the critical value of the test by  $c_N^2(r_0)$  with  $c_N^2(r_0) \to \infty$  as  $N \to \infty$ , and the type II error probability by  $\beta_N$ . For all  $\eta$ -local alternatives  $H_{1N}: \theta_{1N} = \theta_0 + N^{-\eta/2} \kappa$ , with  $\kappa' \kappa > 0$ ,

$$\lim_{N \to \infty} \beta_N = \lim_{N \to \infty} \Pr \left[ \mathcal{L} \mathcal{R}_N \le c_N^2(r_0) | H_{1N} \right] = 0, \tag{74}$$

so long as  $\eta < 1$ , and  $N^{-(1-\eta)}c_N^2(r_0) \to 0$ , as  $N \to \infty$ .

**Remark 8** From Proposition 2 and Corollary 1 it follows that if  $c_N^2(r_0) \to \infty$  as  $N \to \infty$  such that  $N^{-(1-\eta)}c_N^2(r_0) \to 0$ , then  $\lim_{N\to\infty}\alpha_N = \lim_{N\to\infty}\beta_N = 0$ , assuming that the relevant Hessian matrices are non-singular and the restrictions are full rank. To see that both these conditions are met if  $\alpha_N = p/N^\delta$  with  $\delta$  a finite positive constant, using (A.56) in the Appendix we have that

$$\frac{c_N^2(r_0)}{N^{(1-\eta)}} \le \frac{2w_1 r_0 \ln\left(\frac{r_0}{\alpha_N}\right)}{N^{(1-\eta)}} = \frac{2w_1 r_0 \ln\left(\frac{r_0 N^{\delta}}{p}\right)}{N^{(1-\eta)}} = O\left(\frac{\delta \ln(N)}{N^{(1-\eta)}}\right),\tag{75}$$

Since  $\ln(N) \to \infty$  as  $N \to \infty$ , then for any  $\delta > 0$  it follows that  $c_N^2(r_0) \to \infty$  as  $N \to \infty$ . Also, as  $N \to \infty$ , then  $\ln(N)/N^{(1-\eta)} \to 0$ , so long as  $\eta$  is not too close to unity, and it will be surely met if  $\eta$  is close to 1/2. Hence  $c_N^2(r_0)/N^{(1-\eta)} \to 0$  as  $c_N^2(r_0) \to \infty$  with  $N \to \infty$ .

Remark 9 When  $\alpha_N$  is set as  $\alpha_N = p/N^{\delta}$ , the parameter  $p \ (0 can be viewed as the nominal size of the test. The Neyman-Pearson case is obtained if we set <math>\delta = 0$ . The case of  $\delta > 0$  relates to the Chernoff test procedure that aims at minimizing  $\Pr(H_0)\alpha_N + \Pr(H_1)\beta_N$ , where  $0 < \Pr(H_0) < 1$  and  $0 < \Pr(H_1) < 1$  are prior probabilities of  $H_0$  and  $H_1$ , respectively. When N is finite the solution to this problem depends on the prior probabilities. But in the case of chi-squared tests, we have  $\Pr(H_0)\alpha_N + \Pr(H_1)\beta_N \to 0$  as  $N \to \infty$ , irrespective of the prior probabilities  $\Pr(H_0)$  and  $\Pr(H_1)$ , so long as  $\alpha_N = p/N^{\delta}$  for  $\delta > 0$  and p > 0.

**Remark 10** In finite samples the choice of p and  $\delta$  can matter, though for moderate values of N the choice of p is likely to be of second order importance. In the simulation results that follow we set  $\delta = 1$  and p = 5%, and investigate the robustness of the results to other choices of p.

Theorem 3 together with Corollary 1 and Proposition 2, can now be used to develop a sequential procedure for estimating (selecting) m that accounts for the multiple testing nature of the approach, and is consistent for the true number of factors  $m_0$ . Consistency is ensured as long as Proposition 2 and Corollary 1 both hold, which in conjunction with Remark 8 effectively requires the size of the sequential LR tests to decline with N.

As  $m_0$  is unknown and could be T-2, we assume the sequential procedure involves T-2 separate tests, although in some applications we might end up stopping the sequential procedure having carried out a fewer number of tests than T-2. Let the hypotheses of interest be  $H_{0,T-2}, H_{1,T-2}, ..., H_{T-3,T-2}$  (the total available as determined by the order condition) with the first and second subscripts denoting the number of factors specified under the null and alternative hypothesis respectively, and write the T-2 LR tests as

$$\Pr\left[\mathcal{LR}_{N}\left(m_{0}=t-1,m_{\max}=T-2\right)>CV_{N,t-1,T-2}\left|H_{t-1,T-2}\right|\leq p_{N,t-1,T-2},\text{ for }t=1,2,...,T-2,\right]$$

where  $\mathcal{LR}_N(m_0, m_{\text{max}})$  is given by (68),  $CV_{N,t-1,T-2}$  is the critical value for the test of  $H_{t-1,T-2}$ , and  $p_{N,t-1,T-2}$  is the realised p-value for  $H_{t-1,T-2}$ .

The sequential testing procedure begins by using the likelihood ratio statistic  $\mathcal{LR}_N$  to test  $H_{0,T-2}$ , that is the null hypothesis m=0 against the alternative m=T-2. If the null hypothesis is rejected, one proceeds to test  $H_{1,T-2}$ , that is the null hypothesis m=1 against the alternative m=T-2, and so forth. This sequential process is continued until the  $\mathcal{LR}_N$  test fails to reject the null hypothesis associated with  $H_{m_0,m_{\text{max}}}$ . The estimated number of factors,  $\widehat{m}$ , is then equal to the number of factors specified under the null hypothesis associated with this event of non-rejection. If  $\mathcal{LR}_N$  rejects the null hypothesis associated with all  $H_{0,T-2}, H_{1,T-2}, ..., H_{T-3,T-2}$  then  $\widehat{m}$  is set equal to T-2.

The overall size of the test is given by the family-wise error rate (FWER) defined by

$$FWER_{N} = \Pr\left[ \bigcup_{t=1}^{T-2} \left( \mathcal{LR}_{N} \left( m_{0} = t - 1, m_{\max} = T - 2 \right) > CV_{N, t-1, T-2} \left| H_{t-1, T-2} \right| \right].$$

Suppose that we wish to control  $FWER_N$  to lie below a pre-determined value, p. An exact solution to this problem depends on the nature of the dependence across the underlying tests, which is generally difficult to obtain. But one could derive bounds on  $FWER_N$  using, for example, the Bonferroni (1936) or Holm (1979) procedures. Both of these procedures are valid for all possible degrees of dependence across the individual tests, and as a result tend to be conservative in the sense that the actual size will be lower than the overall target size of p. Using the union bound we have

$$\Pr\left\{ \bigcup_{t=1}^{T-2} \left[ \mathcal{LR}_{N} \left( m_{0} = t - 1, m_{\max} = T - 2 \right) > CV_{N, t-1, T-2} \left| H_{t-1, T-2} \right] \right\}$$

$$\leq \sum_{t=1}^{T-2} \Pr\left( \mathcal{LR}_{N} \left( m_{0} = t - 1, m_{\max} = T - 2 \right) > CV_{N, t-1, T-2} \left| H_{t-1, T-2} \right| \leq \sum_{t=1}^{T-2} p_{N, t-1, T-2}.$$

Hence, to obtain  $FWER_N \leq p$ , it is sufficient to set  $p_{N,t-1,T-2} \leq p/(T-2)$ . To ensure consistency of the sequential LR procedure, in line with the earlier discussion and the theorem that follows, p/(T-2) is further adjusted so that  $\alpha_N = p/N(T-2)$ . The individual critical values,  $CV_{N,t-1,T-2}$  for performing the sequential MTLR procedure are based on the critical values of the  $\chi^2$  distribution, namely

<sup>&</sup>lt;sup>16</sup>Substituting for  $\alpha_N = p/N(T-2)$  in (75), it is easy to see that the required conditions that ensure consistency of the test continue to be satisfied.

 $\chi_{r_0}^2 \left[ p/N \left( T - 2 \right) \right]$ , where  $p/N \left( T - 2 \right)$  is the right-tail probability of the individual tests and  $r_0 = T \left( T + 1 \right) / 2 - 3 - \left[ T m_0 - m_0 \left( m_0 - 1 \right) / 2 \right]$ .

Local consistency of  $\widehat{m}$  for  $m_0$  on  $\Theta_{\epsilon}$  is established in the following theorem.

**Theorem 4** Let  $\widehat{m}$  be the number of factors obtained using the sequential likelihood ratio procedure based on the statistic  $\mathcal{LR}_N$  given by (68), for which Theorem 3, Corollary 1 and Proposition 2 hold. Then  $\widehat{m}$  is almost surely locally consistent for  $m_0$  on  $\Theta_{\epsilon}$ .

### 8 Small sample properties of the transformed QML estimator

In this section, we investigate the finite sample properties of the proposed estimator using Monte Carlo (MC) simulations. We start by presenting the MC design.

### 8.1 Monte Carlo design

The observations on  $y_{it}$  are generated assuming k = 1 (one exogenous regressor) and  $m_0$  unobserved factors as

$$y_{it} = \alpha_i + \delta_t + \gamma y_{i,t-1} + \beta x_{it} + \zeta_{it}, \tag{76a}$$

$$\zeta_{it} = \sum_{\ell=1}^{m_0} \eta_{\ell i} f_{\ell t} + u_{it} = \boldsymbol{\eta}_i' \mathbf{f}_t + u_{it}, \tag{76b}$$

for i=1,2,...,N and t=1,2,...,T. Together with the initial observation for t=0 which will be set below, this yields T observations for estimation after first-differencing. The fixed effects  $\alpha_i$  are generated as  $\alpha_i \sim IID\mathcal{N}(0,1)$ . The factor loadings,  $\boldsymbol{\eta}_i = (\eta_{1i}, \eta_{2i}, ..., \eta_{mo,i})'$  are generated as

$$\eta_{\ell i} \sim IID\mathcal{N}\left(0, \frac{\kappa^2}{m_0}\right), \ \ell = 1, 2, ..., m_0.$$
(77)

We have scaled the variance of  $\eta_{\ell i}$ ,  $\sigma_{\eta_{\ell}}^2$ , by  $1/m_0$  to ensure that the relative importance of the factor component of  $\zeta_{it}$  is not affected by the choice of  $m_0$ . We also consider the case where  $m_0 = 0$  for which we set  $Var(\eta_{\ell i}) = 0$  for all  $\ell$ . The strength of the factors is controlled by the parameter  $\kappa^2$ .

The idiosyncratic errors,  $u_{it}$ , for t = 0, 1, ..., T and i = 1, 2, ..., N are generated as  $u_{it} \sim IID\frac{\sigma}{\sqrt{12}}(\chi_6^2 - 6)$  where  $\chi_6^2$  is a chi-square variate with six degrees of freedom. The regressors,  $x_{it}$ , for i = 1, 2, ..., N are generated as

$$x_{it} = \alpha_{xi} + \sum_{\ell=1}^{m_x} \vartheta_{i\ell} f_{\ell t} + v_{it}, \ v_{it} = \rho_x v_{i,t-1} + \left(1 - \rho_x^2\right)^{1/2} \varepsilon_{it}, \quad \text{for } t = 1, 2, ..., T,$$
 (78)

with  $\rho_x = 0.95$ , and  $\varepsilon_{it} \sim IID\mathcal{N}(0, \sigma_{vi}^2)$ . We set  $m_x$  at  $m_x = 2$ , but consider different values of  $m_0$ . In this way we allow for interactive effects in the  $\{x_{it}\}$  processes for all values of  $m_0$ , including when  $m_0 = 0$ . We draw  $v_{i0}$  from the steady state distribution of  $v_{it}$ , namely  $v_{i0} \sim IID\mathcal{N}(0, \sigma_{vi}^2)$ , for i = 1, 2, ..., N. This in turn ensures that  $Var(v_{it}) = \sigma_{vi}^2$ . These error variances are drawn as  $\sigma_{vi}^2 \sim IID$   $\frac{1}{4}(\chi_2^2 + 2)\sigma_v^2$ , thus ensuring that  $E(\sigma_{vi}^2) = \sigma_v^2$ . The factor loadings in the  $x_{it}$  equations,  $\vartheta_{i\ell}$ , are generated as  $\vartheta_{i\ell} \sim IID\mathcal{N}(0, \sigma_{\vartheta\ell}^2)$ , for  $\ell = 1, 2, ..., m_x$ . To establish that the fit of the model is not affected by the number of factors  $(m_0$  and  $m_x)$  in what follows we set  $\sigma_{\vartheta\ell}^2 = \sigma_v^2/m_x$ , for all  $\ell$ . Finally, we set  $\alpha_{xi} = \alpha_i + v_i$ ,

 $<sup>\</sup>overline{\text{In Note that } \Pr\left(\sum_{i=1}^{r_0} w_i z_i^2 < c_N^2\right)} \leq \Pr\left(w_i \sum_{i=1}^{r_0} z_i^2 < c_N^2\right) = \Pr\left(\sum_{i=1}^{r_0} z_i^2 < (c_N^2/w_i)\right) \text{ and for } c_N^2 \to \infty \text{ as } N \to \infty,$   $\lim_{N \to \infty} \Pr\left(\sum_{i=1}^{r_0} w_i z_i^2 < c_N^2\right) = 0. \text{ Hence, using the critical values of } \sum_{i=1}^{r_0} z_i^2 \text{ instead of } \sum_{i=1}^{r_0} w_i z_i^2 < c_N^2 \text{ will still deliver a consistent estimator of } m.$ 

where  $v_i \sim IID\mathcal{N}(0,1)$ , for all i. This specification ensures that the fixed effects,  $\alpha_i$ , are correlated with the regressors,  $x_{it}$ .

We generate the time effects,  $\delta_t$ , and unobserved common factors,  $f_{\ell t}$ , as  $\delta_t = \frac{1}{2}(t^2 - t)$ , for t =1, 2, ..., T, and

$$f_{\ell t} = \rho_{\ell f} f_{\ell, t-1} + \left(1 - \rho_{f\ell}^2\right)^{1/2} \varepsilon_{f\ell t}, \ \varepsilon_{f\ell t} \sim IID\mathcal{N}(0, 1), \text{ for } \ell = 1, 2, ..., m_0, \text{ and } t = 1, 2, ..., T,$$
 (79)

with  $\rho_{f\ell}=\rho_f=0.5$ , and  $f_{\ell,0}=0$  for  $\ell=1,2,...,m_0$ . Setting the initial values of  $f_{\ell t}$  to zero is not restrictive since any non-zero sample means for the  $f'_{\ell t}s$  would be absorbed by the values of the fixed effects,  $\alpha_i$ , and the estimation results would be invariant to the choice of  $f_{\ell,0}$ .

To investigate the performance of our proposed estimator and its robustness to the relative importance of the common factors in the generation of  $y_{it}$ , we calibrate the variance of  $x_{it}$  relative to the regression noise,  $\zeta_{it}$ , as well as the variance of the factors  $\eta'_i f_t$  to the idiosyncratic components,  $u_{it}$ . More specifically we consider the following ratios

$$\lambda_{f,NT} = \frac{N^{-1} \sum_{i=1}^{N} \eta_i' \left( T^{-1} \sum_{t=1}^{T} \mathbf{f}_t \mathbf{f}_t' \right) \eta_i}{N^{-1} T^{-1} \sum_{t=1}^{T} \sum_{i=1}^{N} u_{it}^2},$$

$$\lambda_{x,NT} = \frac{N^{-1} T^{-1} \sum_{t=1}^{T} \sum_{i=1}^{N} \left( x_{it} - \alpha_{xi} \right)^2}{N^{-1} T^{-1} \sum_{t=1}^{T} \sum_{i=1}^{N} \zeta_{it}^2},$$
(80)

$$\lambda_{x,NT} = \frac{N^{-1}T^{-1}\sum_{t=1}^{T}\sum_{i=1}^{N}(x_{it} - \alpha_{xi})^{2}}{N^{-1}T^{-1}\sum_{t=1}^{T}\sum_{i=1}^{N}\zeta_{it}^{2}},$$
(81)

and to simplify the derivations we re-scale the values of the factors such that they are orthonormalised, namely

$$T^{-1} \sum_{t=1}^{T} f_{\ell t} = 0, \ T^{-1} \sum_{t=1}^{T} f_{\ell t}^{2} = 1, \ T^{-1} \sum_{t=1}^{T} f_{\ell t} f_{\ell' t} = 0, \text{ for all } \ell \text{ and } \ell \neq \ell'.$$
 (82)

Under the above scaling and using (77) we have (for any finite T) and as  $N \to \infty$ 

$$\lambda_f = \lim_{N \to \infty} \kappa_{f,NT} = \frac{E(\eta_i' \eta_i)}{\sigma^2} = \frac{\kappa^2}{\sigma^2}.$$
 (83)

Similarly, using (78) and (76b) we have

$$\lambda_{x} = \frac{\lim_{N \to \infty} \left[ N^{-1} T^{-1} \sum_{t=1}^{T} \sum_{i=1}^{N} \left( \sum_{\ell=1}^{m_{x}} \vartheta_{i\ell} f_{\ell t} + \mathbf{v}_{it} \right)^{2} \right]}{\lim_{N \to \infty} \left[ N^{-1} T^{-1} \sum_{t=1}^{T} \sum_{i=1}^{N} \left( \boldsymbol{\eta}_{i}' \mathbf{f}_{t} + u_{it} \right)^{2} \right]}$$

$$= \frac{2\sigma_{\mathbf{v}}^{2}}{\kappa^{2} + \sigma^{2}} = \frac{2\sigma_{\mathbf{v}}^{2} / \sigma^{2}}{1 + \kappa^{2} / \sigma^{2}}.$$
(84)

To control the ratios  $\lambda_f$  and  $\lambda_x$ , without loss of generality, we set  $\sigma^2 = 1$ , and consider the values of  $\kappa^2 = \{1/4, 1/2, 1, 2\}$  and  $\sigma_v^2 = \{1/2, 1, 3/2\}$ . These combinations allow us to examine the extent to which the small sample results are dependent on  $\kappa^2$  and  $\sigma_{\rm v}^2$  that measure the relative importance of the unobserved common factors,  $\mathbf{f}_t$ , and the idiosyncratic components of  $x_{it}$ .

To set the initial values,  $\{y_{i0}; i=1,2,...,N\}$ , we distinguish between the case where  $|\gamma|<1$ , and the unit-root case where  $\gamma = 1$ . Under the former, for each i, we generate  $y_{i0}$  from the steady state distribution of  $\{y_{it}\}$ , and set<sup>18</sup>

$$y_{i0} = \mu_{i0} + \sigma_{i0} (u_{i0}/\sigma), \text{ for } i = 1, 2, ..., N$$
 (85)

where

$$\mu_{i0} = \frac{\alpha_i + \beta \alpha_{xi}}{1 - \gamma}, \ \sigma_{i0}^2 = \frac{\sigma^2 + a_x \beta^2 \sigma_{iv}^2 + a_f a_i}{1 - \gamma^2}, \tag{86}$$

<sup>&</sup>lt;sup>18</sup>For the derivation of  $\mu_{i0}$  and  $\sigma_{i0}$  see Section S.4 of the online supplement.

$$\mathbf{a}_x = \frac{1 + \gamma \rho_x}{1 - \gamma \rho_x}, \ \mathbf{a}_f = \frac{1 + \gamma \rho_f}{1 - \gamma \rho_f},\tag{87}$$

$$a_{i} = \sum_{\ell=1}^{m_{0}} \eta_{\ell i}^{2} + \beta^{2} \sum_{\ell=1}^{m_{x}} \vartheta_{\ell i}^{2} + 2\beta \sum_{\ell=1}^{\min(m_{0}, m_{x})} \eta_{\ell i} \vartheta_{\ell i},$$
(88)

and  $u_{i0}$  is generated as above. To check the robustness of our MC analysis to the choice of the initial values, we also consider generating  $y_{it}$  with  $\mu_{i0}$  and  $\sigma_{i0}$  in (85) replaced by  $\kappa_1\mu_{i0}$  and  $\kappa_2\sigma_{i0}$  and experiment with the values of  $\kappa_1, \kappa_2 = 1.2, 0.8$ . For the remaining parameters we consider  $\beta = 0$  (the pure autoregressive case) and  $\beta = 1$ , and experiment with medium and high values of  $\gamma$ , namely  $\gamma = 0.4$  and 0.8.

In the unit root case ( $\gamma = 1$ ) we avoid incidental parameters in first differences by first generating the first-differences and then cumulating them to obtain  $y_{it}$  from some arbitrary values for  $y_{i0}$ . The first-differences are generated as

$$\Delta y_{i1} = \Delta \delta_1 + \beta \Delta x_{i1} + \Delta \zeta_{i1}, \tag{89}$$

$$\Delta y_{it} = \Delta \delta_t + \gamma \Delta y_{i,t-1} + \beta \Delta x_{it} + \Delta \zeta_{it}, \ t = 2, 3, ..., T, \tag{90}$$

with  $\Delta y_{i0} = 0$ , for i = 1, 2, ..., N. The regressors and error processes are generated as above.

### 8.2 Monte Carlo results

We begin by reporting on the performance of the sequential MTLR procedure for estimating  $m_0$ , the true number of latent factors. We then report on the bias and root mean square error (RMSE) of the TQML estimator of the parameters ( $\gamma$  and  $\beta$ ), as well as size and power using the number of factors estimated by the MTLR procedure. Throughout we consider the parameter choices  $\gamma_0 = \{0.4, 0.8\}$  and  $\beta_0 = 1$ , the sample size configurations  $T = \{5, 10\}$  and  $N = \{100, 300, 500, 1000\}$ , and values of  $m_0 = \{0, 1, 2\}$ . Thereafter, we provide results comparing the TQML estimator with the QML estimator of Bai (2013), which we denote by Bai-QML, and separately with the GMM quasi-difference (QD) and first-difference (FD) estimator of ALS (where the latter takes the first-difference prior to applying the quasi-difference approach by Ahn et al. (2013)), assuming  $m_0$  is known.<sup>19</sup> Finally, we turn to the unit root case ( $\gamma_0 = 1$ ), and end with a summary discussion of the main results from our robustness analysis. In the paper we focus on the baseline case where  $\kappa^2 = \sigma_v^2 = 1$ ; results for other values of  $\kappa^2 = \{1/4, 1/2, 2\}$  and  $\sigma_v^2 = \{1/2, 3/2\}$  are provided in the online supplement and are discussed only briefly to save space. Further, we only report results for non-Gaussian errors. The results for the case of Gaussian errors are available upon request.

All panel regressions related to the TQML approach are estimated including both individual and time effects as well as an intercept, and regressors (in the case of the ARX(1) model), associated with  $\Delta y_{i1}$ , as in (24). Time effects are explicitly included in the regressions for the Bai-QML estimator while for the GMM regressions deviation from cross section averages is taken prior to estimation to remove the time effects; for both these set of regressions the individual effects are subsumed within the interactive effects. For further details related to the computation of the quasi-log-likelihood for Bai-QML and the GMM estimators see Sections S.5 and S.6 respectively of the online supplement. Not surprisingly, the conditional QML estimator of Bai (2013) did not perform well given that under our MC design  $y_{i0}$  depends on the model's unknown parameters, and therefore is not included.

Unless otherwise stated, the sequential MTLR procedure is implemented using the  $\mathcal{LR}_N$  ( $m_{\text{max}}, m_0$ ) statistic for testing  $m = m_0 = \{0, 1, 2, ..., T - 3\}$  against  $m = m_{\text{max}} = T - 2$ , with significance level  $\alpha_N = \frac{p}{N(T-2)}$  and p = 0.05, using the critical values of the chi-square distribution with degrees of freedom as given by (67). The standard errors used for inference are based on equation (66) with all derivatives computed numerically. All tests are carried out at the 5% significance level and all experiments are replicated 2000 times.

<sup>&</sup>lt;sup>19</sup>To simplify the comparisons we thought it more instructive to base our comparisons assuming that  $m_0$  is known. Also, as will be seen, under our approach m is generally well estimated.

#### 8.2.1 Selecting the number of factors

Table 1 reports the number of times (in %) that the estimated number of factors,  $\widehat{m}$ , is equal to the true number of factors,  $m_0$ , following the sequential MTLR procedure outlined in Section 7.1. The results refer to the baseline case where  $\kappa^2 = \sigma_v^2 = 1$  and show that  $\widehat{m}$  performs well for most parameter values and sample sizes. Even when N = 100, the true number of factors is estimated quite precisely except for the ARX(1) panel data model when T = 5 and  $m_0 = 2$ . However, by the time N reaches 300 the probability of selecting the true number of factors approaches 100%, across all parameter values. The results for other values of  $\kappa^2$  and  $\sigma_v^2$  are given in Tables A1(i) and A1(ii) in the online supplement. As to be expected, the empirical frequency of correctly selecting  $m_0$  declines as the value of  $\kappa^2$  (which measures the strength of the factors relative to the idiosyncratic error) is reduced for small N. However, as N increases the probability of selecting the true number of factors improves and approaches 100%, as to be expected given the consistency of the proposed procedure. Table A1(ii) further shows that the performance of  $\widehat{m}$  is not that much affected as other values of  $\sigma_v^2$  are considered.

#### 8.2.2 Performance of the TQML estimator

We next consider the small sample performance of the TQML estimator of  $\gamma$  and  $\beta$ , after estimating m by the sequential MTLR procedure.

AR(1) For this panel data model, bias, RMSE, and empirical size for the TQML estimator of  $\gamma$  are reported in Table 2. The overall performance of the bias and RMSE is favourable with a few exceptions when  $T=5, N \leq 100$  and  $m_0=2$ . Specifically when  $\gamma_0=0.4$ , we need N larger than 100, particularly if  $m_0 = 2$ . The bias and size distortions are more serious when  $\gamma_0 = 0.8$ , and much larger sample sizes are required. However, as predicted by the asymptotic theory, the results improve as N increases. The performance of the TQML estimator improves considerably as T is increased to T=10, and evidence of size distortions is limited to a few cases where  $m_0 = 0$  and  $\gamma_0 = 0.8$ , and  $N \leq 300$ . The results for all combinations of  $\kappa^2 = \{1/4, 1/2, 1, 2\}$  and  $\sigma_v^2 = \{1/2, 1, 3/2\}$  are reported in Tables A2(i) and A2(ii) in the online supplement. As with the estimation of m discussed above, the performance of the TQML estimator deteriorates as  $\kappa^2$  is reduced towards zero, and large sample sizes (N and/or T) are required for satisfactory outcomes in the case of the AR(1) specification. The power functions in Figure 1 show that overall the power is satisfactory. While power is low when  $\gamma_0 = 0.8$  for small N, it improves as N increases. Power functions across alternative values of  $\kappa^2$  are shown in Figures A3(i), A3(iv) and A3(vii) in the online supplement. The shape of these functions becomes quite distorted if the factors are very weak relative to the signal (namely for small values of  $\kappa^2$ ), particularly when T=5 and  $\gamma_0=0.8$ , or  $\gamma_0 = 0.4 \text{ and } m_0 = 2.$ 

**ARX(1)** Simulation results for the ARX(1) panel data model are provided in Table 3, and show the much better small sample performance as compared to the AR(1) model. This seems to be primarily due to the additional source of variations from the regressor. The bias and RMSE for the estimators of  $\gamma$  and  $\beta$  are both very small in all cases, and empirical sizes are also close to their nominal levels. In addition, as shown in Figure 2, power is reasonably high. From Table A2(iii) in the online supplement we also note that biases are very small across all values of  $\kappa^2$ . As  $\kappa^2$  reduces, the RMSE of  $\gamma$  increases while that of  $\beta$  decreases. Differences in RMSE across  $\kappa^2$  for each of these parameters tends to decrease as N increases. Furthermore, Table A2(iv) shows that empirical sizes behave well across all values of  $\kappa^2$  with only a couple of exceptions for N = 100 and smaller values of  $\kappa^2$ . Power functions across the different values of  $\kappa^2$ , as shown in Figures A3(ii)-A3(iii), A3(v)-A3(vi) and A3(viii)-A3(ix) of the online supplement, are similar to those of Figure 2 given below for  $\kappa^2 = 1$ . Results for the other values of  $\sigma_v^2$  (namely 1/2 and 3/2) are very similar to those of  $\sigma_v^2 = 1$ , and are available upon request.

### 8.2.3 Comparison of TQML with alternative estimators

We begin by presenting results for the TQML and Bai-QML estimators followed by the GMM estimator proposed by ALS, for the AR(1) panel data model initially and for the ARX(1) subsequently. The GMM estimators we consider include the quasi-difference and first-difference ALS one step and two step estimators, denoted by QD1, QD2, FD1 and FD2, respectively.

For the comparison of TQML with the Bai-QML estimator, we provide results both for the IID specification of fixed effects (used in the Monte Carlo design of Section 8.1), namely  $\alpha_i \sim IID\mathcal{N}(0,1)$ , as well as for spatially correlated fixed effects. Under the latter the  $N \times 1$  vector of fixed effects,  $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_N)'$ , is generated as the first-order spatial autoregressive process

$$\alpha = \rho_{\alpha} \mathbf{W} \alpha + \boldsymbol{\varepsilon}_{\alpha}, \text{ or } \alpha = (\mathbf{I}_{N} - \rho_{\alpha} \mathbf{W})^{-1} \boldsymbol{\varepsilon}_{\alpha},$$

with heteroskedastic errors  $\boldsymbol{\varepsilon}_{\alpha}=(\varepsilon_{\alpha,1},\varepsilon_{\alpha,2},...,\varepsilon_{\alpha,N})'$ , where  $\rho_{\alpha}=0.9$ ,

$$\mathbf{W} = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 1/2 & 0 & 1/2 & 0 & & 0 \\ 0 & 1/2 & 0 & \ddots & & \vdots \\ 0 & 0 & \ddots & \ddots & 1/2 & 0 \\ \vdots & & & 1/2 & 0 & 1/2 \\ 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix}, \tag{91}$$

and for each i,  $\varepsilon_{\alpha,i}$  are drawn as  $IID\mathcal{N}(0,\sigma_{\varepsilon_{\alpha,i}}^2)$  with

$$\sigma_{\varepsilon_{\alpha},i}^{2} = \begin{cases} 1, \text{ for } i = 1, 2, ..., N/2, \\ 2, \text{ for } i = N/2 + 1, ..., N. \end{cases}$$

The TQML estimator is fully robust to the way fixed effects for  $y_{it}$  and  $x_{it}$  are generated (random or correlated). Hence, the results for TQML under both the above fixed effect specifications are identical, and it does not matter which fixed effects specification is used.<sup>20</sup> Also, since the GMM estimators first eliminate the fixed effects (GMM based on QD does it implicitly) to save space for the GMM estimators we show results only under the IID specification of the fixed effects.

In line with the discussion in Section 2.3, for the Bai-QML estimator the Mundlak-Chamberlain projection of the regressor equation fixed effects,  $\alpha_{xi}$ , (recall  $\alpha_{xi} = \alpha_i + v_i$ , where  $v_i \sim IID\mathcal{N}(0,1)$ , for all i) on  $\mathbf{x}_i$  is used to deal with the dependence of  $\alpha_{xi}$  on  $\alpha_i$ . In addition, the number of factors included in the regressions for the computation of the Bai-QML estimator is  $\widetilde{m}_0 = m_0 + 1$ , and following Bai (2013) we use the factor normalisation  $\mathbf{F}^+ = (\mathbf{I}_{\widetilde{m}}, \mathbf{F}_2')'$ . The same number of factors is used for the QD GMM estimators given that the individual effects are subsumed within the interactive effects, while  $m_0$  is used for the FD GMM estimators that employ prior first-differencing; the same normalisation is also used on the factor matrix for these estimators.

**AR(1): TQML** and **Bai-QML** Table 4 reports the bias and RMSE of  $\gamma$  for the TQML and Bai-QML estimators in the case of the AR(1) panel data model. Results show that the Bai-QML estimator performs very poorly in terms of bias and RMSE for both values of  $\gamma_0$ . The same is true with regard to size as seen from the results for the two estimators summarised in Table 5, which show the Bai-QML estimator to have severe size distortions. The poor performance of the Bai-QML estimator in terms of bias, RMSE and size is, on the whole, more pronounced when the fixed effects are spatially correlated

<sup>&</sup>lt;sup>20</sup>The use of the Mundlak-Chamberlain projection for the Bai-QML estimator helps in the present MC design because  $\alpha_{ix}$  for i = 1, 2, ..., N are generated as a linear function of  $\alpha_i$ . It would not have helped if the  $\alpha_{ix}$  were generated as a general (for example quadratic) function of  $\alpha_i$ . The TQML estimator is not affected even if  $\alpha_i$  and  $\alpha_{ix}$  are non-linearly related.

compared to the IID case. In contrast, the TQML estimator performs well, requiring larger values of N only when  $\{T=5, \gamma_0=0.8\}$  to reduce the mild biases observed for this parameter combination. The small size distortion of TQML in the case of  $\{N=100, T=5, \gamma_0=0.8\}$ , vanish when larger values of  $N=\{300,500\}$  are considered. Power functions for  $\{T=5, N=500\}$ , are shown in Figures 3a and 3b for the IID and spatially correlated fixed effects, respectively. The TQML estimator shows satisfactory power as the distance from the null hypothesis increases, with the power curves exhibiting slight asymmetry for the case of  $\gamma_0=0.8$ . While power appears higher for the Bai-QML estimator, this is accompanied by evidence of large size distortions which are higher for the case of  $\gamma_0=0.8$ , and even more so when the fixed effects are spatially correlated as compared to the IID results.

**AR(1): TQML** and **GMM** In comparing the TQML and GMM estimators, results for the AR(1) panel data model are only reported for T=10 as the GMM estimators are not computable for the case of T=5 due to failure of the order condition. Results in Table 6 show that the TQML estimator performs substantially better than the GMM estimators in terms of bias and RMSE. When  $\gamma=0.8$ , the GMM estimators, especially FD1 and FD2, perform very poorly possibly due to weak instruments, whereas the TQML estimator has small bias and RMSE. With regard to size shown in Table 7, the GMM estimators display substantial size distortions while the TQML estimator has empirical size close to the nominal value, except for the case where  $\gamma=0.8$  and N=100.

**ARX(1):** TQML and Bai-QML Bias and RMSE of  $\gamma$  and  $\beta$  for the ARX(1) panel data model are given in Table 8. While the bias is generally small for the TQML estimator for  $\gamma$  and  $\beta$  across all parameter combinations, for the Bai-QML estimator these are larger, and much more so in the case of spatially correlated fixed effects. The same holds for the RMSE. Empirical size is reported in Table 9, which shows the TQML estimator to have little size distortions for all parameter configurations, even for T=5 and N=100. In contrast, the performance of the Bai-QML estimator varies considerably depending on the parameter values, the number of latent factors, and the way fixed effects are generated. For example, Bai-QML shows little size distortion when T=5, N>100 and  $\gamma_0=0.4$ . But significant size distortions occur when  $\gamma_0 = 0.8$ , and the extent of these become more pronounced under spatially correlated fixed effects, and as  $m_0$  is increased to 2. Power functions for T=5 and N=500 are shown in Figures 4 and 5 for the IID and spatially correlated fixed effects, respectively. These figures show that under IID fixed effects the Bai-QML estimator for  $\gamma$  exhibits similar power performance compared to the TQML estimator when  $\gamma_0 = 0.4$ , and moderately lower power for  $\gamma_0 = 0.8$ . For  $\beta$ , when  $m_0 = 1$ across both values of  $\gamma_0$ , the Bai-QML estimator continues to show lower power as compared to TQML, which becomes extremely lower in the case of  $m_0 = 2$ . The picture is qualitatively similar for spatially correlated fixed effects, however with more pronounced power discrepancies. For  $\gamma_0 = 0.8$  the large size distortions for  $\gamma$  and  $\beta$  do not allow for a meaningful power comparison of the two estimators. The power performance of the TQML estimator is satisfactory across all parameter combinations.

ARX(1): TQML and GMM Table 10 reports the bias and RMSE of  $\gamma$  and  $\beta$  for the TQML and GMM estimators and shows that the TQML estimator has better small sample properties both in terms of bias and RMSE. The same also follows if we consider the size of the tests based on these estimators summarised in Table 11. For the GMM estimators, the performance crucially depends on the specific values of  $\gamma_0$ ,  $m_0$ , N and T, and there is no GMM estimator that performs well for all combinations, which is in contrast to the TQML estimator that performs well for all cases considered. For instance, when T = 5, FD1 and FD2 tend to have correct empirical sizes when N is large. However, they tend to have large size distortions when T is increased to T = 10 for  $m_0 = 1$ . QD2 and FD2 tend to have larger size distortions than QD1 and FD1. This is partly due to the downward bias of the standard errors used in

#### 8.2.4 The unit root case

The results for the unit root case are very similar to those already reported for the stationary case. Table 12 reports the number of factors correctly selected (in %) by the sequential MTLR procedure when  $\gamma_0 = 1$ . As can be seen, the results are uniformly good for all values of  $m_0$ , N and T. Also the effects of deviating from the baseline values of  $\kappa^2$  and  $\sigma_v^2$  on the empirical frequency of correctly selecting the true number of factors are similar to the stationary case. See Tables B1(i) and B1(ii) in the online supplement. The results for bias, RMSE and size of the TQML estimator when  $\gamma_0 = 1$  are summarised in Tables 13 and 14 for the AR(1) and ARX(1) panel data models, respectively. These show that the bias and RMSE are reasonably small, and the empirical size for  $\gamma$  is slightly below the nominal value. The effects of deviating from the baseline value of  $\kappa^2$  are reported in Tables B2(i) and B2(ii) of the online supplement, and show that the bias and RMSE become smaller as the value of  $\kappa^2$  is reduced, which is different from the stationary case. Power is also reasonably high as shown in Figures 6 and 7 for the AR(1) and ARX(1) panel data models, respectively, when  $\kappa^2 = 1$ . The power plots for other values of  $\kappa^2$ , namely  $\{1/4, 1/2, 2\}$ , are given in Figures B3(i), B3(iv), and B3(vii) of the online supplement for the AR(1) model, and Figures B3(ii)-B3(iii), B3(v)-B3(vi) and B3(viii)-B3(ix) for the ARX(1).

#### 8.2.5 Robustness of baseline MC results

Lastly we investigate the performance of our selection and estimation strategy under a number of deviations from the baseline model. Specifically, we consider the following scenarios: (i) initial values that deviate from the steady state distribution, whereby  $y_{i0}$  is generated as in (85) but with means and variances given by  $\kappa_1\mu_{i0}$  and  $\kappa_2\sigma_{i0}$ , with  $\kappa_1,\kappa_2=1.2,0.8$ ; (ii) implementing the sequential MTLR procedure with different p-values, namely  $p=\{0.01,0.10\}$ , instead of our baseline value of p=0.05; (iii) factor loadings that are correlated with the regressors; and (iv) factor loadings that are mutually weakly correlated. Further details on the data generating process for the last two cases and related results can be found in Section S.9 of the online supplement.

As shown in Tables C1(i)-C1(iii) of the online supplement, deviating the initial values from those of the steady state distribution has only a limited effect on the results with the performance of our estimator remaining reasonably good overall. The only effect observed is for the AR(1) panel data model for which size distortions are slightly more pronounced for T = 5,  $\gamma_0 = 0.8$  and  $N \leq 500$  as compared to the case where  $y_{i0}$  are drawn from the steady state distribution. For the rest of the results, including those of the ARX(1) model bias and RMSE values are still reasonably small with empirical sizes close to their nominal value across all parameter configurations.

Regarding the use of alternative values of p in implementing the MTLR test, as can be seen from Tables C2(i)-C2(iii) for p = 0.01 and Tables C2(iv)-C2(vi) for p = 0.10, the results are very similar and in some cases even better than those obtained in Tables 1-3 for p = 0.05.

When the factor loadings are correlated with the regressor, from Tables C3(i)-C3(iii) of the online supplement, we find that the sequential MTLR procedure estimates the number of factors very precisely across all parameters, the bias is sufficiently small, and empirical size is close to the nominal level, with one exception, namely, when N=100, T=5 and  $\gamma_0=0.8$  for the AR(1) model. When the factor loadings are weakly correlated, as shown in Tables C4(i)-C4(iii) in the online supplement, the results are very similar to those in Tables 1-3 where such correlation is absent. The same also applies if we consider the estimates for the ARX(1) model.

<sup>&</sup>lt;sup>21</sup>Since both QD2 and FD2 are nonlinear GMM estimators, it is not straightforward to apply the Windmeijer (2005) correction.

### 9 Empirical illustrations

We investigate the importance of allowing for interactive effects in empirical analysis by applying our selection and estimation strategy to two empirical problems addressed in the literature. In the first illustration we estimate a dynamic version of the model considered by Cornwell and Trumbull (1994) and subsequently by Baltagi (2006), to explain the incidence of crime across N = 90 counties in North Carolina over the period 1981-1987 (T = 6). In the second illustration, we use the data set recently analysed by Acemoglu et al. (2019) to estimate output regressions on a balanced panel of N = 82 countries using T = 5 five-year time intervals over the period 1981-2005. All regressions include both individual and time effects, plus the regressors associated with the initial observation of the dependent variable in first differences. The presence of interactive effects is investigated by first estimating m, the number of unobserved factors, subject to  $m_{\text{max}} = T - 2$ . Results are presented for the parameters of interest, namely the coefficient of the lagged dependent variable and the regressors; estimates for the remaining parameters (such as time effects) are available upon request.

### 9.1 Cross county crime rate regressions

The crime rate in county i, year t ( $y_{it}$ ) is explained by the deterrent variables, namely the probability of arrest ( $P_{it,A}$ ), the probability of conviction given arrest ( $P_{it,C}$ ), the probability of a prison sentence given a conviction ( $P_{it,P}$ ), average prison sentence in days ( $S_{it}$ ), and a number of other variables such as population density ( $Density_{it}$ ), percent young male ( $YM_{it}$ ), the wage rates in manufacturing ( $WMF_{it}$ ), and the wage rate in transportation, utilities and communication industries ( $WTUC_{it}$ ).<sup>22</sup> The panel regressions estimated by Cornwell and Trumbull (1994) and Baltagi (2006) are static and could be misspecified since jurisdictions with high crime rates in one year are likely to continue to have high crime rates into the near future. By including lagged crime rates ( $y_{i,t-1}$ ) in the model we account for the possible persistence of crime rates over time, and by allowing for unobserved common effects we take account of possible persistence and spill-over effects of crimes across counties.

To investigate the importance of the interactive effects we first estimated m (the number of latent factors) using the proposed sequential MTLR procedure, with the nominal value of the test, p, set to 5%, and the maximum number of factors,  $m_{max} = T - 2 = 4$  (see Section 7.1). We obtain  $\hat{m} = 3$  and reject the null hypothesis that the panel regressions are not subject to interactive effects, despite the fact that they include country and year fixed effects. The estimate of m is reasonably robust to the choice of p values and we obtain the same estimate ( $\hat{m} = 3$ ) if we set p = 10%, although setting p = 1% yields  $\hat{m} = 2$ . In Table 15 we report the results for  $\hat{m} = 3$ , along with the estimates without interactive effects (with m = 0). We first note that irrespective of whether we allow for interactive effects or not, there is clear evidence of dynamics and the coefficient of the lagged crime rate is highly significant, even though when we allow for interactive effects this coefficient falls from 0.501 to 0.402, but remains highly significant. Amongst the  $\mathbf{x}_{it} = (P_{it,A}, P_{it,C}, P_{it,P}, S_{it}, Density_{it}, YM_{it}, WMF_{it}, WTUC_{it})'$  variables, only the deterrent variables and the wage rate in manufacturing are statistically significant once we allow for interactive effects. The results are similar when we do not allow for interactive effects, with the exception of the  $WTUC_{it}$  variable which is marginally significant when m = 0. It is also worth noting that all the estimated coefficients that are statistically significant have the correct signs when  $\hat{m} = 3$ .

<sup>&</sup>lt;sup>22</sup>Cornwell and Trumbull (1994) and Baltagi (2006) consider a number of other variables such as wage rates in other industries and the number of police, which we exclude to simplify the exposition.

**Table 15:** Dynamic panel estimates of crime rates  $(y_{it})$  across 90 counties in North Carolina over the period 1981-1987 (T = 6, N = 90)

| $(I \equiv 6, N \equiv 90)$                                   |                      |                      |
|---------------------------------------------------------------|----------------------|----------------------|
| Explanatory Variables $(y_{i,t-1}, \mathbf{x}_{it})$          | $\widehat{m} = 3$    | m = 0                |
| Lagged crime rate $(y_{i,t-1})$                               | 0.402***<br>(0.108)  | 0.501***<br>(0.086)  |
| Probability of arrest $(P_{it,A})$                            | -0.301***<br>(0.072) | -0.221***<br>(0.070) |
| Probability of conviction given arrest $(P_{it,C})$           | -0.193***<br>(0.032) | -0.147***<br>(0.055) |
| Probability of prison given conviction $(P_{it,P})$           | -0.154***<br>(0.042) | -0.137***<br>(0.051) |
| Severity of punishment $(S_{it})$                             | -0.093***<br>(0.035) | -0.130***<br>(0.048) |
| Population density ( $Density_{it}$ )                         | $0.172 \\ (0.459)$   | $0.148 \ (0.430)$    |
| Wage: transportation, utilities & communication $(WTUC_{it})$ | $0.016 \\ (0.019)$   | 0.033*<br>(0.019)    |
| Wage: manufacturing $(WMFG_{it})$                             | -0.563***<br>(0.158) | -0.431***<br>(0.105) |
| Percent young male $(YM_{it})$                                | 0.839 $(0.694)$      | $0.601 \\ (0.664)$   |

Note: The estimates allow for county and year fixed effects. T is the number of time periods used in TQML estimation after first differencing.  $\widehat{m}$  is the latent factors estimated using the sequential MTLR procedure described in Section 7.1 with  $m_{\text{max}} = T-2=4$  and  $\alpha_N=0.05/(N(T-2))$ . Figures in parentheses are standard errors that are computed according to equation (66). \*\*\*\*,\*\* ,\* denote significance at the 1%, 5% and 10% levels, respectively.

### 9.2 Cross country growth regressions

There is a large empirical literature on cross country growth regressions, using cross section as well as panel data sets. Examples include Barro (1991), Mankiw et al. (1992), Sala-i-Martin (1996), Islam (1995), Caselli et al. (1996) and Lee et al. (1997, 1998). Our application is closest to the panel regressions by Islam (1995) and Caselli et al. (1996) who estimate dynamic panel regressions with time and fixed effects using log GDP per capita at five-year time intervals. A similar approach is also used by Acemoglu et al. (2019) who focus on the effect of democracy on GDP per capita. However, none of these studies allow for interactive effects. In our empirical application we regress log GDP per capita  $(y_{it})$  measured over five-year intervals on  $y_{i,t-1}$ , log investment-output ratio, log total factor productivity (TFP), log trade share in GDP, log infant mortality, and a dichotomous democracy variable. As noted above, the data set used covers N = 82 countries with T = 5 five-yearly periods spanning 1981-2005.<sup>23</sup>

For this illustration the number of latent factors (m) was estimated to be  $\widehat{m}=2$ , using the sequential MTLR procedure with p=5% and  $m_{max}=T-2=3$ . The same result was obtained setting p=1% and 10%. The parameter estimates together with their standard errors for  $\widehat{m}=2$  and m=0 are summarised in Table 16. As can be seen, allowing for interactive effects substantially lowers the degree of output persistence from 0.583 to 0.246, raises the coefficient of log TFP from 0.547 to 0.870, and increases the size and significance of the coefficient of infant mortality on output from -0.042 (and not significant) to -0.075 (and highly significant). The negative and significant effect of infant mortality on GDP is also found in similar growth regressions by Somé et al. (2019). They explore the impact of healthcare on economic growth in Africa, but do not allow for error cross-sectional dependence in their analysis. The trade share and democracy variables both have a positive sign though are found to be insignificant. The

<sup>&</sup>lt;sup>23</sup>For further information on the data and related sources see Acemoglu et al. (2019).

latter finding is in line with recent results by Jacob and Osang (2018) who perform a dynamic panel analysis using GMM for a sample of more than 160 countries based on T=10 five year averages. In contrast Acemoglu et al. (2019) find that democracy does cause GDP using an annual panel data of T=50 observations without allowing for interactive effects. The only parameter estimate which has not been affected by the inclusion of interactive effects is the coefficient of the investment-output ratio, which is estimated at 0.078 when m=0 as compared to 0.071 when  $\hat{m}=2$ .

The empirical illustrations provided suggest that allowing for error cross-sectional dependence in dynamic panels could be important and ought to be considered in applied research.

**Table 16:** Dynamic panel regressions for cross country log per capita output equations  $(y_{it})$  (1981-2005, five yearly T = 5, N = 82)

| (1981-2005, five yearly $T$                | = 5, N =             | 82)                 |
|--------------------------------------------|----------------------|---------------------|
| Explanatory Variables                      | $\widehat{m} = 2$    | m = 0               |
| Lagged log GDP per capita $(y_{i,t-1})$    | 0.246***<br>(0.063)  | 0.583***<br>(0.042) |
| Log investment output ratio $(INV_{it})$   | 0.071***<br>(0.014)  | 0.078***<br>(0.018) |
| Log total factor productivity $(TFP_{it})$ | 0.870***<br>(0.051)  | 0.547***<br>(0.059) |
| Log trade share in GDP $(Trade_{it})$      | $0.010 \\ (0.019)$   | 0.047**<br>(0.021)  |
| Log infant mortality                       | -0.075***<br>(0.029) | -0.042<br>(0.027)   |
| Democracy indicator                        | $0.012 \\ (0.014)$   | 0.008<br>(0.017)    |

Note:  $\widehat{m}$  is the estimated number of factors using the sequential MTLR procedure described in Section 7.1 with  $m_{\text{max}} = T - 2 = 3$  and  $\alpha_N = 0.05/(N(T-2))$ . See also the note to Table 15.

### 10 Conclusion

This paper proposes a quasi maximum likelihood estimator for short dynamic panel data models with unobserved multiple common factors, where individual and time fixed effects are also explicitly included. This provides a natural extension of Hsiao et al. (2002) to panel data models with a multi-factor error structure. Our contribution can also be viewed as extending the standard dynamic panel data models with fixed and time effects, routinely used in the empirical literature, to allow for error cross sectional dependence through interactive effects.

We have also contributed to the literature on short T factor models with regard to identification and estimation of the number of unobserved factors, as well as parameter identification. Our proposed sequential multiple testing likelihood ratio (MTLR) procedure can be particularly relevant to the analysis of short T factor models. Monte Carlo results provide small sample evidence in support of the proposed TQML estimator and show that the sequential MTLR procedure performs very well in selecting the number of unobserved factors in most settings. The same is also true for the performance of the TQML estimator in terms of bias, RMSE and empirical size, and power. Empirical illustrations involving cross county crime and growth regressions suggest that allowing for interactive effects in dynamic panels could be important and ought to be considered in applied work.

Although we allow the error variances to vary across units through the differences in factor loadings, it is assumed that the unit specific errors are cross sectionally homoskedastic, which is rather restrictive. However, our theoretical derivations can be readily adapted to cover the heteroskedastic error case, as was done in the recent paper by Hayakawa and Pesaran (2015) for models without unobserved common factors. It would also be interesting to extend the analysis to panel VAR models with interactive effects.

## References

- Acemoglu, D. and Naidu, S. and Restrepo, P. and Robinson, J.A. (2019). Democracy does cause growth. Journal of Political Economy 127, 47–100.
- Ahn, S.C. (2015). Comment on "IV estimation of panels with factor residuals" by D. Robertson and V. Sarafidis. *Journal of Econometrics* 185, 542–544.
- Ahn, S.C. and Horenstein, A.R. (2013). Eigenvalue ratio test for the number of factors. *Econometrica* 81, 1203–1227.
- Ahn, S.C. and Lee, H.Y. and Schmidt, P. (2001). GMM estimation of linear panel data models with time-varying individual effects. *Journal of Econometrics* 101, 219–255.
- \_\_\_\_\_ (2013). Panel data models with multiple time-varying individual effects. *Journal of Econometrics* 174, 1–14.
- Ahn, S.C. and Schmidt, P. (1995). Efficient estimation of models for dynamic panel data. *Journal of Econometrics* 68, 5–27.
- Allen, D., and Chan, F., and McAleer, M. and Peiris, M.S. (2008). Finite sample properties of the QMLE for the log-ACD model: Application to australian stocks. *Journal of Econometrics* 147, 163–185.
- Anderson, T.W. and Hsiao, C. (1981). Estimation of dynamic models with error components. *Journal of the American Statistical Association* 76, 598–606.
- Arellano, M. and Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. *Review of Economic Studies* 58, 277–297.
- Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. *Journal of Econometrics* 68, 29–51.
- Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica 77, 1229–1279.
- (2013). Likelihood approach to dynamic panel models with interactive effects. mimeo.
- Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. *Econometrica* 70, 191–221.
- \_\_\_\_\_ (2013). Principal components estimation and identification of static factors. *Journal of Econometrics* 176, 18–29.
- Bailey, N. and Pesaran, M.H. and Smith, L.V. (2019). A multiple testing approach to the regularisation of large sample correlation matrices. *Journal of Econometrics* 208, 507–534.
- Baltagi, B. (2006). Estimating an economic model of crime using panel data from north carolina. *Journal of Applied Econometrics* 21, 543–547.
- Barro, R.J. (1991). Economic growth in a cross section of countries. The Quarterly Journal of Economics 106, 407–443.
- Bauer, P., Pötscher, B.M. and Hackl, P. (1988). Model selection by multiple test procedures. *Statistics* 19, 39–44.
- Bhargava, A. and Sargan, J. (1983). Estimating dynamic random effects models from panel data covering short time periods. *Econometrica* 51, 1635–1659.

- Binder, M. and Hsiao, C. and Pesaran, M.H. (2005). Estimation and inference in short panel vector autoregressions with unit roots and cointegration. *Econometric Theory 21*, 795–837.
- Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. *Journal of Econometrics* 87, 115–143.
- Bonferroni, C.E. (1936). Statistical theory of classes and calculation of probabilities. *Pub R Ist Superiore Sci Econ Commerc Firenze 8*, 36–62.
- Caselli, F. and Esquivel, G. and Lefort, F. (1996). Reopening the convergence debate: a new look at cross-country growth empirics. *Journal of Economic Growth* 1, 363–389.
- Chamberlain, G. (1982). Multivariate regression models for panel data. *Journal of Econometrics* 18, 5–46.
- \_\_\_\_\_ (1984). Panel data. In *Handbook of Econometrics*, Volume 2, Chapter 22, pp. 1248–1318. North-Holland.
- Chudik, A. and Kapetanios, G. and Pesaran, M.H. (2018). A one covariate at a time, multiple testing approach to variable selection in high-dimensional linear regression models. *Econometrica* 86, 1479–1512.
- Chudik, A. and Pesaran, M.H. (2021). An augmented Anderson-Hsiao estimator for dynamic short-T panels. *Mimeo*.
- Chudik, A. and Pesaran, M.H. and Tosetti, E. (2011). Weak and strong cross-section dependence and estimation of large panels. *Econometrics Journal* 14, C45–C90.
- Cornwell, C. and Trumbull, W.N. (1994). Estimating the economic model of crime with panel data. *The Review of Economics and Statistics* 76, 360–366.
- Cragg, J.G. and Donald, S.G. (1997). Inferring the rank of a matrix. *Journal of Econometrics* 76, 223–250.
- Davidson, J. (1994). Stochastic Limit Theory. Oxford: Oxford University Press.
- \_\_\_\_\_ (2000). Econometric Theory. Wiley-Blackwell.
- Han, H. and Kristensen, D. (2014). Asymptotic theory for the QMLE in GARCH-X models with stationary and non-stationary covariates. *Journal of Business & Economic Statistics* 32, 416–429.
- Hayakawa, K. (2012). GMM estimation of a short dynamic panel data model with interactive fixed effects. Journal of the Japan Statistical Society 42, 109–123.
- (2016). Identification problem of GMM estimators for short panel data models with interactive fixed effects. *Economics Letters* 139, 22–26.
- Hayakawa, K. and Pesaran, M.H. (2015). Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity. *Journal of Econometrics* 188, 111–134.
- Hayashi, K. and Bentler, P.M. and Yuan, K-H. (2007). On the likelihood ratio test for the number of factors in exploratory factor analysis. *Structural Equation Modeling: A Multidisciplinary Journal* 14, 505–526.
- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70.

- Holtz-Eakin, D. and Newey, W.K. and Rosen, H.S. (1988). Estimating vector autoregressions with panel data. *Econometrica* 56, 1371–1395.
- Hsiao, C. and Pesaran, M.H. and Tahmiscioglu, K.A. (2002). Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. *Journal of Econometrics* 109, 107–150.
- Hsiao, C. and Tahmiscioglu, K.A. (2008). Estimation of dynamic panel data models with both individual and time specific effects. *Journal of Statistical Planning and Inference* 138, 2698–2721.
- Islam, N. (1995). Growth empirics: A panel data approach. The Quarterly Journal of Economics 110, 1127–1170.
- Jacob, J. and Osang, T. (2018). Democracy and growth: A dynamic panel data study. *The Singapore Economic Review*, 1–40.
- Kapetanios, G. (2010). A testing procedure for determining the number of factors in approximate factor models with large datasets. *Journal of Business & Economic Statistics* 28, 397–409.
- Kapetanios, G. and Pesaran, M.H. and Yamagata, T. (2011). Panels with non-stationary multifactor error structures. *Journal of Econometrics* 160, 326–348.
- Kristensen, D. and Rahbek, A.C. (2010). Likelihood-based inference for cointegration with nonlinear error-correction. *Journal of Econometrics* 158, 78–94.
- Lee, K. and Pesaran, M.H. and Smith, R.P. (1997). Growth and convergence in a multi-country empirical stochastic solow model. *Journal of Applied Econometrics* 12, 358–392.
- Lee, K. and Pesaran, M.H. and Smith, R. (1998). Growth empirics: A panel data approach—a comment. The Quarterly Journal of Economics 113, 319–323.
- Lee, L.-F. and Yu, J. (2016). Identification of spatial durbin panel models. *Journal of Applied Econometrics* 31, 133–162.
- Lumsdaine, R.L. (1996). Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1) models. *Econometrica* 64, 575–596.
- Lütkepohl, H. (1996). Handbook of matrices. New York: John Wiley.
- Magnus, J.R. and Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. Oxford: John Wiley & Sons.
- Mankiw, N.G. and Romer, D. and Weil, D.N. (1992). A contribution to the empirics of economic growth. The Quarterly Journal of Economics 107, 407–437.
- Moral-Benito, E. (2013). Likelihood-based estimation of dynamic panels with predetermined regressors. Journal of Business & Economic Statistics 31, 451–472.
- Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica 46, 69–85.
- Nauges, C. and Thomas, A. (2003). Consistent estimation of dynamic panel data models with time-varying individual effects. *Annales d'Economie et de Statistique* 70, 53–75.
- Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. *Review of Economics and Statistics 92*, 1004–1016.
- Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with cross section dependence. *Econometrica* 74, 967–1012.

- Pesaran, M.H. and Tosetti, E. (2011). Large panels with common factors and spatial correlation. *Journal of Econometrics* 161, 182–202.
- Phillips, P.C.B. and Sul, D. (2007). Bias in dynamic panel estimation with fixed effects, incidental trends and cross section dependence. *Journal of Econometrics* 127, 162–188.
- Pötscher, B.M. and Prucha, I.R. (2001). Basic elements of asymptotic theory. In B. H. Baltagi (Ed.), A Companion to Theoretical Econometrics, pp. 201–229. Oxford: Blackwell.
- Robertson, D. and Sarafidis, V. (2015). IV estimation of panels with factor residuals. *Journal of Econometrics* 185, 526–541.
- Sala-i-Martin, X.X. (1996). The classical approach to convergence analysis. *The Economic Journal* 106, 1019–1036.
- Sarafidis, V. and Robertson, D. (2009). On the impact of error cross-sectional dependence in short dynamic panel estimation. *Econometrics Journal* 12, 62–81.
- Sarafidis, V. and Wansbeek, T. (2012). Cross-sectional dependence in panel data analysis. *Econometric Reviews* 31, 483–531.
- Somé, J. and Pasali, S. and Kaboine, M. (2019). Exploring the impact of healthcare on economic growth in Africa. Applied Economics and Finance 6, 45–57.
- White, H. (2001). Asymptotic Theory for Econometricians. San Diego: Academic Press.
- Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. *Journal of Econometrics* 126, 25–51.

### Tables and Figures for the Monte Carlo Results

**Table 1**: Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure ( $\kappa^2 = \sigma_x^2 = 1$ )

| using on            | c scqu |      | ai wi         | TLIC  | procee | iuic i         | (n -  | $\sigma_{\rm v}$ – | 1)             |       |
|---------------------|--------|------|---------------|-------|--------|----------------|-------|--------------------|----------------|-------|
| $T = 5, \gamma_0 =$ | 0.4    | T =  | $5, \gamma_0$ | = 0.8 | T = 1  | $10, \gamma_0$ | = 0.4 | T = 1              | $10, \gamma_0$ | = 0.8 |
| $m_0 = 0$ 1         | 2      | 0    | 1             | 2     | 0      | 1              | 2     | 0                  | 1              | 2     |
| N = AR(1)           |        |      |               |       |        |                |       |                    |                |       |
| 100 99.4 99.7       | 88.9   | 99.2 | 99.8          | 96.3  | 99.5   | 99.6           | 99.7  | 99.7               | 99.5           | 99.7  |
| 300 99.8 100.0      | 100.0  | 99.8 | 100.0         | 100.0 | 99.8   | 100.0          | 100.0 | 99.8               | 100.0          | 100.0 |
| 500 99.9 100.0      | 100.0  | 99.9 | 100.0         | 100.0 | 99.9   | 100.0          | 100.0 | 99.9               | 99.9           | 100.0 |
| 1000 99.9 100.0     | 100.0  | 99.9 | 100.0         | 100.0 | 99.7   | 100.0          | 100.0 | 99.6               | 100.0          | 100.0 |
| ARX(1)              |        |      |               |       |        |                |       |                    |                |       |
| 100 99.7 98.7       | 31.0   | 99.6 | 99.2          | 33.0  | 99.3   | 99.6           | 99.7  | 99.4               | 99.6           | 99.7  |
| 300 100.0 100.0     | 99.5 9 | 99.9 | 100.0         | 99.5  | 100.0  | 100.0          | 99.9  | 100.0              | 99.9           | 99.9  |
| 500 99.9 99.9       | 100.0  | 9.9  | 99.9          | 100.0 | 99.9   | 100.0          | 100.0 | 99.9               | 100.0          | 100.0 |
| 1000 99.9 99.9      | 100.0  | 99.9 | 99.9          | 100.0 | 100.0  | 100.0          | 100.0 | 100.0              | 100.0          | 100.0 |

Note:  $y_{it}$  is generated as  $y_{it} = \alpha_i + \delta_t + \gamma y_{i,t-1} + \beta x_{it} + \zeta_{it}$ ,  $\zeta_{it} = \sum_{\ell=1}^{m_0} \eta_{\ell i} f_{\ell t} + u_{it}$ , for i=1,2,...,N; t=1,...,T, with  $y_{i0} = \mu_{i0} + \sigma_{i0} (u_{i0}/\sigma)$  where  $\mu_{i0} = (\alpha_i + \beta \alpha_{xi})/(1-\gamma)$  and  $\sigma_{i0}^2 = (\sigma^2 + a_x \beta^2 \sigma_{iv}^2 + a_f a_i)/(1-\gamma^2)$ . In addition,  $a_x = (1+\gamma \rho_x)/(1-\gamma \rho_x)$ ,  $a_f = (1+\gamma \rho_f)/(1-\gamma \rho_f)$  and  $a_i = \sum_{\ell=1}^{m_0} \eta_{\ell i}^2 + \beta^2 \sum_{\ell=1}^{m_x} \vartheta_{\ell i}^2 + 2\beta \sum_{\ell=1}^{\min(m_0,m_x)} \eta_{\ell i} \vartheta_{\ell i}$ , where  $\eta_{\ell i} \sim IID\mathcal{N}\left(0,\frac{\kappa^2}{m_0}\right)$ ,  $\ell=1,2,...,m_0$ ,  $\vartheta_{i\ell} \sim IID\mathcal{N}(0,\sigma_{\vartheta\ell}^2)$ , for  $\ell=1,2,...,m_x$ , with  $\sigma_{\vartheta\ell}^2 = \sigma_v^2/m_x$ , for all  $\ell$ ,  $\rho_x = 0.95$ ,  $m_x = 2$ , and  $\beta=1$ . The idiosyncratic errors are generated as  $u_{it} \sim IID\frac{\sigma}{\sqrt{12}}(\chi_6^2-6)$  for i=1,2,...,N; t=0,1,...,T where  $\chi_6^2$  is a chi-square variate with 6 degrees of freedom and  $\sigma^2 = 1$ . The fixed effects are generated as  $\alpha_i \sim IID\mathcal{N}(0,1)$ . The regressors,  $x_{it}$ , for i=1,2,...,N are generated as  $x_{it} = \alpha_{xi} + \sum_{\ell=1}^{m_x} \vartheta_{i\ell} f_{\ell t} + v_{it}$ , with  $v_{it} = \rho_x v_{i,t-1} + (1-\rho_x^2)^{1/2} \varepsilon_{it}$ , for t=1,2,...,T,  $\varepsilon_{it} \sim IID\mathcal{N}(0,1)$ , for all i. Each  $f_t$  is generated once and the same  $f_t's$  are used throughout the replications. In the AR(1) case  $\beta=0$  and under  $m_0=0$ ,  $\zeta_{it}$  collapses to  $u_{it}$ .

**Table 2**: Bias(×100), RMSE(×100) and Size (×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\kappa^2 = 1$ )

|      |                |                   | aci, abiii     | 8 0110 05      | ommade            | ilaino         | I OI IGO       |                  | /              |                |                     |                |
|------|----------------|-------------------|----------------|----------------|-------------------|----------------|----------------|------------------|----------------|----------------|---------------------|----------------|
|      | T =            | $= 5, \gamma_0 =$ | 0.4            | T =            | $= 5, \gamma_0 =$ | 0.8            | T =            | $10, \gamma_0 =$ | 0.4            | T =            | $= 10,  \gamma_0 =$ | 0.8            |
|      | Bias           | RMSE              | Size           | Bias           | RMSE              | Size           | Bias           | RMSE             | Size           | Bias           | RMSE                | Size           |
|      | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$      | $(\times 100)$ |
| N    | $m_0 = 0$      |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | 0.42           | 8.69              | 6.2            | 0.65           | 12.29             | 21.3           | -0.03          | 3.76             | 6.5            | 1.94           | 7.90                | 16.4           |
| 300  | -0.03          | 4.26              | 5.4            | 1.42           | 9.26              | 19.2           | -0.04          | 2.18             | 5.1            | 0.68           | 4.62                | 8.7            |
| 500  | 0.03           | 3.22              | 4.8            | 1.46           | 7.80              | 14.6           | -0.01          | 1.70             | 5.9            | 0.26           | 3.09                | 6.7            |
| 1000 | 0.00           | 2.29              | 4.5            | 1.02           | 6.07              | 12.1           | -0.01          | 1.22             | 5.4            | 0.18           | 2.24                | 5.7            |
|      | $m_0 = 1$      |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | 0.41           | 9.39              | 5.1            | 1.42           | 12.99             | 19.6           | -0.05          | 4.20             | 6.1            | 0.23           | 4.64                | 4.9            |
| 300  | -0.09          | 4.99              | 5.1            | 1.00           | 9.04              | 11.9           | 0.02           | 2.38             | 4.5            | 0.08           | 2.41                | 4.7            |
| 500  | 0.05           | 3.68              | 3.9            | 0.96           | 7.12              | 7.1            | -0.06          | 1.90             | 6.0            | 0.01           | 1.88                | 5.4            |
| 1000 | 0.04           | 2.67              | 4.7            | 0.61           | 5.08              | 4.7            | -0.01          | 1.32             | 4.9            | 0.00           | 1.30                | 4.2            |
|      | $m_0 = 2$      |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | 4.09           | 16.38             | 11.5           | 1.82           | 16.38             | 19.8           | -0.08          | 5.12             | 5.8            | 0.19           | 5.32                | 5.3            |
| 300  | 0.20           | 4.99              | 3.9            | 1.38           | 4.99              | 10.3           | 0.04           | 2.81             | 4.6            | 0.08           | 2.66                | 4.0            |
| 500  | 0.05           | 3.81              | 3.1            | 0.98           | 3.81              | 6.3            | -0.10          | 2.16             | 4.9            | -0.09          | 2.06                | 4.7            |
| 1000 | 0.02           | 2.62              | 3.3            | 0.45           | 2.62              | 4.4            | 0.00           | 1.59             | 4.7            | 0.01           | 1.44                | 4.0            |

See the note to Table 1.

**Table 3**: Bias(×100), RMSE(×100) and Size (×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\kappa^2 = \sigma_{\rm v}^2 = 1$ )

|                |                        | $=5, \gamma_0 =$    |                | $T = \frac{1}{T}$ | $= 5, \gamma_0 =$ |                |                | $10, \gamma_0 =$ |                | T =            | $= 10, \gamma_0 =$ | 0.8            |
|----------------|------------------------|---------------------|----------------|-------------------|-------------------|----------------|----------------|------------------|----------------|----------------|--------------------|----------------|
|                | Bias                   | RMSE                | Size           | Bias              | RMSE              | Size           | Bias           | RMSE             | Size           | Bias           | RMSE               | Size           |
|                | $(\times 100)$         | $(\times 100)$      | $(\times 100)$ | $(\times 100)$    | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$     | $(\times 100)$ |
|                | $\overline{\gamma}$    |                     |                |                   |                   |                |                |                  |                |                |                    |                |
| $\overline{N}$ | $m_0 = 0$              |                     |                |                   |                   |                |                |                  |                |                |                    |                |
| 100            | -0.15                  | 3.45                | 5.9            | -0.07             | 3.02              | 6.6            | -0.06          | 1.95             | 5.4            | -0.03          | 1.37               | 5.8            |
| 300            | -0.04                  | 1.97                | 5.6            | -0.05             | 1.71              | 6.1            | 0.08           | 1.14             | 5.3            | 0.04           | 0.77               | 5.1            |
| 500            | 0.02                   | 1.47                | 5.1            | 0.00              | 1.27              | 4.4            | -0.01          | 0.86             | 4.5            | 0.00           | 0.58               | 4.3            |
| 1000           | -0.05                  | 1.08                | 5.1            | -0.03             | 0.93              | 5.8            | 0.00           | 0.62             | 4.9            | 0.00           | 0.42               | 5.8            |
|                | $m_0 = 1$              |                     |                |                   |                   |                |                |                  |                |                |                    |                |
| 100            | 0.09                   | 4.30                | 5.1            | 0.23              | 4.74              | 5.2            | -0.10          | 2.15             | 6.0            | -0.07          | 1.54               | 6.5            |
| 300            | -0.05                  | 2.39                | 4.4            | -0.02             | 2.56              | 5.1            | 0.03           | 1.20             | 5.2            | 0.02           | 0.83               | 4.0            |
| 500            | 0.01                   | 1.83                | 3.8            | 0.02              | 1.92              | 3.9            | -0.02          | 0.92             | 5.5            | -0.01          | 0.65               | 5.1            |
| 1000           | -0.04                  | 1.35                | 4.5            | -0.02             | 1.41              | 4.5            | 0.01           | 0.67             | 5.4            | 0.00           | 0.46               | 5.4            |
|                | $m_0 = 2$              |                     |                |                   |                   |                |                |                  |                |                |                    |                |
| 100            | 0.37                   | 4.70                | 5.8            | 0.47              | 4.99              | 4.7            | -0.09          | 2.33             | 5.8            | -0.05          | 1.59               | 5.9            |
| 300            | 0.03                   | 2.46                | 4.1            | 0.07              | 2.63              | 4.8            | -0.06          | 1.33             | 5.4            | -0.02          | 0.91               | 4.8            |
| 500            | 0.07                   | 1.94                | 3.6            | 0.10              | 2.10              | 4.6            | -0.03          | 0.98             | 4.3            | -0.01          | 0.69               | 4.7            |
| 1000           | 0.05                   | 1.39                | 3.6            | 0.05              | 1.47              | 4.2            | 0.02           | 0.70             | 4.3            | 0.01           | 0.48               | 4.1            |
|                | β                      |                     |                |                   |                   |                |                |                  |                |                |                    |                |
| 100            | $m_0 = 0$              | 4.44                |                | 0.00              | 4.55              | F 4            | 0.01           | 9.04             | 0.5            | 0.00           | 2.00               | 0.0            |
| 100            | -0.06                  | 4.44                | 5.6            | -0.06             | 4.55              | 5.4            | -0.01          | 3.04             | 6.5            | -0.02          | 3.02               | 6.6            |
| 300            | 0.02                   | 2.53                | 5.7            | 0.01              | 2.58              | 5.8            | -0.05          | 1.73             | 6.0            | -0.03          | 1.71               | 6.0            |
| 500            | 0.04                   | 1.92                | 5.2            | 0.04              | 1.97              | 5.2            | 0.00           | 1.34             | 5.7            | 0.00           | 1.33               | 5.6            |
| 1000           | 0.00                   | 1.38                | 5.0            | 0.00              | 1.40              | 4.9            | 0.01           | 0.96             | 5.6            | 0.01           | 0.95               | 5.8            |
| 100            | $m_0 = 1$ $-0.01$      | 5.99                | 5.6            | 0.06              | 6.16              | 5.5            | 0.09           | 3.98             | 6.3            | 0.07           | 3.98               | 6.2            |
| 300            | -0.01                  | 3.39                | 4.9            | -0.14             | 3.46              | 4.9            | 0.09           | 2.29             | 6.0            | 0.07           | 2.28               | 5.6            |
| 500            | 0.09                   | 2.65                | 5.5            | 0.09              | 2.70              | 5.3            | 0.00           | 1.74             | 5.2            | 0.02           | 1.72               | 5.0            |
| 1000           | 0.09                   | 1.88                | 5.5            | 0.09              | 1.91              | 5.7            | 0.00           | 1.74             | 4.4            | 0.00           | 1.72               | 4.7            |
| 1000           | $m_0 = 2$              | 1.00                |                | 0.00              | 1.91              | 0.1            | 0.03           | 1.21             | 4.4            | 0.04           | 1.20               | 4.1            |
| 100            | $\frac{m_0 - 2}{0.27}$ | 8.33                | 6.5            | 0.41              | 8.56              | 5.8            | 0.15           | 6.27             | 4.9            | 0.13           | 6.24               | 5.0            |
| 300            | 0.27                   | 4.62                | 5.2            | 0.41              | 4.67              | 5.3            | 0.19           | 3.63             | 5.3            | 0.13           | 3.61               | 5.4            |
| 500            | 0.13                   | $\frac{4.02}{3.55}$ | 5.0            | 0.20              | 3.63              | 5.0            | 0.03           | 2.85             | 5.7            | 0.00           | 2.84               | 5.4            |
| 1000           | -0.06                  | 2.51                | 4.9            | -0.05             | 2.55              | 5.0            | 0.02           | 1.96             | 5.3            | 0.01           | 1.95               | 5.3            |
| 1000           | -0.00                  | 2.01                | 4.3            | -0.05             | 2.00              | 0.2            | 0.04           | 1.30             | 0.0            | 0.05           | 1.90               | 0.0            |

See the note to Table 1.

**Table 4:** Bias(×100) and RMSE(×100) of  $\gamma$  for the TQML and Bai-QML estimators in the case of the AR(1) panel data model, using the true number of factors,  $m_0$   $(\kappa^2 = \sigma^2 = 1)$ 

|                |           |                  |               |                  | (1/6             | $\sigma = \sigma_{\mathrm{v}}$ | =1)   |                   |                      |                  |                  |         |
|----------------|-----------|------------------|---------------|------------------|------------------|--------------------------------|-------|-------------------|----------------------|------------------|------------------|---------|
|                |           |                  | $T=5, \gamma$ | $\gamma_0 = 0.4$ |                  |                                |       |                   | $T=5, \gamma$        | $y_0 = 0.8$      |                  |         |
|                |           | $as(\times 100$  |               |                  |                  | 00)                            |       | $ias(\times 100)$ | )                    | RM               | $ISE(\times 1)$  | 00)     |
|                | TQML      | Bai-             | QML           | TQML             | Bai-             | -QML                           | TQML  | Bai-0             | QML                  | TQML             | Bai-             | ·QML    |
|                |           | $I\overline{ID}$ | spatial       |                  | $I\overline{ID}$ | spatial                        |       | $I\overline{ID}$  | spatial              |                  | $I\overline{ID}$ | spatial |
|                | $\gamma$  |                  |               |                  |                  |                                |       |                   |                      |                  |                  |         |
| N              | $m_0 = 1$ |                  |               |                  |                  |                                |       |                   |                      |                  |                  |         |
| 100            | 0.60      | 11.16            | 44.34         | 9.44             | 22.94            | 50.47                          | 1.52  | 12.52             | 17.20                | 13.00            | 15.34            | 18.62   |
| 300            | 0.04      | 3.79             | 37.16         | 5.04             | 12.89            | 46.07                          | 1.51  | 10.92             | 17.33                | 9.32             | 14.16            | 18.51   |
| 500            | -0.01     | 3.08             | 33.53         | 3.87             | 11.25            | 43.76                          | 0.96  | 9.54              | 17.01                | 7.36             | 13.33            | 18.38   |
| 1000           | 0.05      | 2.69             | 30.01         | 2.70             | 9.96             | 41.23                          | 0.53  | 8.20              | 16.86                | 5.01             | 12.13            | 18.67   |
|                | $m_0 = 2$ |                  |               |                  |                  |                                |       |                   |                      |                  |                  |         |
| 100            | 0.52      | 9.02             | 41.71         | 9.69             | 21.17            | 49.13                          | 1.34  | 10.04             | 17.70                | 12.86            | 14.47            | 18.54   |
| 300            | 0.01      | 4.16             | 33.97         | 4.97             | 13.71            | 44.17                          | 1.20  | 8.70              | 18.05                | 9.03             | 13.06            | 18.61   |
| 500            | 0.16      | 3.76             | 32.06         | 3.78             | 12.27            | 42.88                          | 1.12  | 7.69              | 18.35                | 7.17             | 12.03            | 18.76   |
| 1000           | -0.11     | 3.40             | 28.35         | 2.69             | 11.70            | 40.29                          | 0.27  | 6.09              | 18.50                | 4.91             | 10.63            | 18.87   |
|                |           |                  | T = 10, -     | $\gamma_0 = 0.4$ |                  |                                |       |                   | T = 10, -            | $\gamma_0 = 0.8$ |                  |         |
|                | Bi        | $as(\times 100$  |               | RM               | $SE(\times 1)$   | 00)                            | В     | $ias(\times 100)$ | )                    | RM               | $ISE(\times 1)$  | (00)    |
|                | TQML      | Bai-             | QML           | TQML             | Bai-             | -QML                           | TQML  | Bai-0             | QML                  | TQML             | Bai-             | QML     |
|                |           | $I\overline{ID}$ | spatial       |                  | $I\overline{ID}$ | spatial                        |       | $I\overline{ID}$  | $\overline{spatial}$ |                  | $I\overline{ID}$ | spatial |
|                | $\gamma$  |                  |               |                  |                  |                                |       |                   |                      |                  |                  |         |
| $\overline{N}$ | $m_0 = 1$ |                  |               |                  |                  |                                |       |                   |                      |                  |                  |         |
| 100            | -0.06     | 17.36            | 41.58         | 4.37             | 31.54            | 51.83                          | 0.26  | 1.45              | 15.86                | 4.80             | 35.39            | 20.89   |
| 300            | -0.05     | 15.79            | 43.83         | 2.46             | 30.46            | 52.12                          | 0.03  | -0.73             | 16.74                | 2.48             | 40.26            | 19.70   |
| 500            | 0.00      | 14.77            | 44.31         | 1.86             | 32.80            | 52.37                          | 0.06  | -0.06             | 17.05                | 1.83             | 39.96            | 19.59   |
| 1000           | -0.03     | 17.36            | 45.23         | 1.32             | 29.83            | 51.74                          | -0.02 | -0.31             | 17.07                | 1.33             | 38.67            | 19.83   |
|                | $m_0 = 2$ |                  |               |                  |                  |                                |       |                   |                      |                  |                  |         |
| 100            | -0.06     | 8.87             | 39.48         | 5.12             | 53.23            | 51.44                          | 0.18  | -10.56            | 14.18                | 5.08             | 46.78            | 17.13   |
| 300            | -0.11     | 6.93             | 41.71         | 2.82             | 55.25            | 51.57                          | -0.01 | -9.14             | 14.79                | 2.75             | 44.75            | 16.83   |
| 500            | -0.09     | 10.08            | 43.39         | 2.16             | 52.25            | 51.20                          | -0.04 | -11.78            | 15.25                | 2.11             | 47.13            | 17.19   |
| 1000           | 0.04      | 7.58             | 43.13         | 1.57             | 53.65            | 51.11                          | 0.05  | -10.87            | 15.03                | 1.48             | 46.24            | 16.74   |

Note:  $\alpha_i$ , i=1,...,N, are the fixed effects in the  $y_{it}$  equation given by (13) in the absence of regressors. Under IID these are generated as  $\alpha_i \sim IID\mathcal{N}(0,1)$  and under spatial as spatially correlated according to  $\boldsymbol{\alpha} = (\mathbf{I}_N - \rho_\alpha \mathbf{W})^{-1} \boldsymbol{\varepsilon}_\alpha$  with heteroskedastic errors  $\boldsymbol{\varepsilon}_\alpha = (\varepsilon_{\alpha,1}, \varepsilon_{\alpha,2}, ..., \varepsilon_{\alpha,N})'$ , where  $\rho_\alpha = 0.9$ , the matrix  $\mathbf{W}$  is specified as in (91) and for each i,  $\varepsilon_{\alpha,i}$  are drawn as  $IID\mathcal{N}(0, \sigma^2_{\varepsilon_\alpha,i})$  with  $\sigma^2_{\varepsilon_\alpha,i} = 1$ , for i=1,2,...,N/2, and  $\sigma^2_{\varepsilon_\alpha,i} = 2$ , for N/2+1,...,N. TQML is invariant to how the fixed effects are generated. The factor normalisation for the Bai-QML estimator is based on  $\mathbf{F} = (\mathbf{I}_{\widetilde{m}}, \mathbf{F}'_2)'$ . See also the note to Table 1.

**Table 5:** Size(×100) of  $\gamma$  for the TQML and Bai-QML estimators in the case of the AR(1) panel data model, using the true number of factors,  $m_0$ 

|      |           |                  |         |      | $(\kappa^2 =$    | $\sigma_{\rm v}^2 =$ | 1)   |                  |         |       |                  |                      |
|------|-----------|------------------|---------|------|------------------|----------------------|------|------------------|---------|-------|------------------|----------------------|
|      | T =       | $5, \gamma_0 =$  | 0.4     | T =  | $5, \gamma_0 =$  | 0.8                  | T =  | $10, \gamma_0 =$ | = 0.4   | T = 1 | $10, \gamma_0$   | = 0.8                |
|      | TQML      | Bai-             | QML     | TQML | Bai-             | QML                  | TQML | Bai-             | QML     | TQML  | Bai-             | -QML                 |
|      |           | $I\overline{ID}$ | spatial |      | $I\overline{ID}$ | $\overline{spatial}$ |      | $I\overline{ID}$ | spatial |       | $I\overline{ID}$ | $\overline{spatial}$ |
|      | $\gamma$  |                  |         |      |                  |                      |      |                  |         |       |                  |                      |
| N    | $m_0 = 1$ |                  |         |      |                  |                      |      |                  |         |       |                  |                      |
| 100  | 4.6       | 35.1             | 76.5    | 21.3 | 79.6             | 72.7                 | 6.5  | 15.4             | 40.2    | 7.2   | 37.1             | 44.3                 |
| 300  | 5.0       | 14.8             | 65.6    | 12.3 | 69.5             | 69.6                 | 5.8  | 18.3             | 44.6    | 5.0   | 44.6             | 46.2                 |
| 500  | 5.4       | 13.9             | 60.5    | 8.8  | 61.9             | 67.1                 | 5.3  | 21.2             | 47.2    | 4.8   | 47.8             | 43.5                 |
| 1000 | 4.8       | 12.0             | 55.5    | 4.9  | 51.9             | 64.4                 | 5.3  | 21.7             | 48.1    | 4.6   | 47.4             | 45.8                 |
|      | $m_0 = 2$ |                  |         |      |                  |                      |      |                  |         |       |                  |                      |
| 100  | 4.8       | 29.65            | 70.4    | 18.1 | 65.9             | 78.2                 | 4.8  | 47.35            | 63.8    | 4.4   | 54.7             | 72.7                 |
| 300  | 4.0       | 15.90            | 57.9    | 10.1 | 56.9             | 75.8                 | 4.9  | 54.80            | 68.5    | 4.7   | 59.7             | 78.1                 |
| 500  | 2.7       | 13.65            | 55.5    | 6.3  | 49.0             | 76.5                 | 3.7  | 55.85            | 69.5    | 5.1   | 65.1             | 80.8                 |
| 1000 | 3.6       | 14.60            | 49.4    | 4.3  | 39.7             | 75.7                 | 5.3  | 57.70            | 69.6    | 4.7   | 66.5             | 80.7                 |

See the note to Table 4.

**Table 6:** Bias(×100) and RMSE(×100) of  $\gamma$  for the TQML and GMM estimators in the case of the AR(1) panel data model, using the true number of factors,  $m_0$  ( $T=10, \kappa^2=1$ )

|                | ,                | 0     |                  |         |         | ,    | 0 (   | - /          |        | /      |
|----------------|------------------|-------|------------------|---------|---------|------|-------|--------------|--------|--------|
|                |                  | В     | ias $(\times 1)$ | .00)    |         |      | RM    | $SE(\times)$ | 100)   |        |
|                | TQML             | GMM   |                  |         |         | TQML | GMM   |              |        |        |
|                |                  | QD1   | QD2              | FD1     | FD2     |      | QD1   | QD2          | FD1    | FD2    |
| $m_0$          | 1                |       |                  |         |         |      |       |              |        |        |
| $\overline{N}$ | $\gamma_0 = 0.4$ | 4     |                  |         |         |      |       |              |        |        |
| 100            | -0.06            | 47.59 | 46.28            | -77.87  | -71.71  | 4.37 | 48.52 | 47.71        | 79.19  | 73.47  |
| 300            | -0.05            | 48.22 | 45.18            | -67.05  | -55.28  | 2.46 | 49.30 | 47.25        | 68.19  | 56.85  |
| 500            | 0.00             | 47.26 | 42.83            | -62.18  | -48.23  | 1.86 | 48.63 | 45.64        | 62.83  | 49.40  |
| 1000           | -0.03            | 44.17 | 37.98            | -55.13  | -39.34  | 1.32 | 46.17 | 42.08        | 55.69  | 40.28  |
|                | $\gamma_0 = 0.3$ | 8     |                  |         |         |      |       |              |        |        |
| 100            | 0.26             | 17.82 | 17.85            | -103.25 | -100.24 | 4.80 | 17.86 | 17.89        | 104.33 | 102.19 |
| 300            | 0.03             | 17.83 | 17.74            | -89.22  | -77.41  | 2.48 | 18.18 | 18.07        | 90.14  | 79.44  |
| 500            | 0.06             | 17.57 | 17.44            | -81.44  | -65.55  | 1.83 | 18.90 | 18.81        | 82.30  | 67.37  |
| 1000           | -0.02            | 17.50 | 17.35            | -72.58  | -52.73  | 1.33 | 18.87 | 18.82        | 73.30  | 54.20  |
| $m_0$          | 2                |       |                  |         | _       |      |       |              |        |        |
| N              | $\gamma_0 = 0.4$ | 4     |                  |         |         |      |       |              |        |        |
| 100            | -0.06            | 36.71 | 36.04            | -31.72  | -28.39  | 5.12 | 42.41 | 42.49        | 56.67  | 55.29  |
| 300            | -0.11            | 31.22 | 29.25            | -11.99  | -7.84   | 2.82 | 40.23 | 38.88        | 37.23  | 32.67  |
| 500            | -0.09            | 25.70 | 23.64            | -1.81   | 0.31    | 2.16 | 36.29 | 34.28        | 23.75  | 19.81  |
| 1000           | 0.04             |       | 14.62            | 2.66    | 2.90    | 1.57 | 28.58 | 26.14        | 10.95  | 8.99   |
|                | $\gamma_0 = 0.3$ | 8     |                  |         |         |      |       |              |        |        |
| 100            | 0.18             | 14.76 | 14.79            | -97.44  | -97.95  | 5.08 | 22.92 | 23.33        | 110.76 | 112.19 |
| 300            | -0.01            | 15.15 | 15.00            | -68.59  | -67.07  | 2.75 | 23.47 | 23.67        | 89.36  | 88.73  |
| 500            | -0.04            | 16.02 | 15.94            | -46.19  | -43.19  | 2.11 | 21.06 | 21.08        | 71.95  | 69.03  |
| 1000           | 0.05             | 14.93 | 14.81            | -27.04  | -23.18  | 1.48 | 22.68 | 22.72        | 53.52  | 48.06  |
|                |                  |       |                  |         |         |      |       |              |        |        |

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first-difference ALS one step and two step estimators respectively computed as described in Section II. See also the note to Table 1.

**Table 7:** Size(×100) of  $\gamma$  for the TQML and GMM estimators in the case of the AR(1) panel data model, using the true number of factors,  $m_0$  (T=10,  $\kappa^2=1$ )

| ,              | _                |       |       |      |       | , , , |      | ,    | ,    | /    |
|----------------|------------------|-------|-------|------|-------|-------|------|------|------|------|
|                | TQML             | GMM   |       |      |       | TQML  | GMM  |      |      |      |
|                |                  | QD1   | QD2   | FD1  | FD2   |       | QD1  | QD2  | FD1  | FD2  |
| $m_0$          | 1                |       |       |      |       | 2     |      |      |      |      |
| $\overline{N}$ | $\gamma_0 = 0.4$ | 4     |       |      |       |       |      |      |      |      |
| 100            | 6.5              | 95.5  | 98.4  | 97.7 | 100.0 | 4.8   | 73.9 | 81.8 | 51.5 | 71.0 |
| 300            | 5.8              | 95.3  | 98.7  | 97.9 | 100.0 | 4.9   | 64.2 | 70.2 | 34.1 | 50.2 |
| 500            | 5.3              | 95.1  | 99.6  | 97.8 | 100.0 | 3.7   | 54.5 | 61.8 | 22.5 | 38.0 |
| 1000           | 5.3              | 92.2  | 99.5  | 97.8 | 100.0 | 5.3   | 41.1 | 48.4 | 15.0 | 27.3 |
|                | $\gamma_0 = 0.8$ | 8     |       |      |       |       |      |      |      |      |
| 100            | 7.2              | 99.8  | 100.0 | 98.8 | 100.0 | 4.4   | 95.8 | 97.3 | 80.2 | 86.4 |
| 300            | 5.0              | 100.0 | 100.0 | 98.3 | 100.0 | 4.7   | 96.7 | 97.2 | 62.1 | 72.0 |
| 500            | 4.8              | 99.9  | 100.0 | 98.2 | 100.0 | 5.1   | 96.8 | 97.3 | 46.6 | 58.3 |
| 1000           | 4.6              | 99.8  | 100.0 | 98.7 | 100.0 | 4.7   | 95.4 | 96.3 | 32.4 | 43.8 |
|                |                  |       |       |      |       |       |      |      |      |      |

See the note to Table 6.

**Table 8:** Bias(×100) and RMSE(×100) of  $\gamma$  and  $\beta$  for the TQML and Bai-QML estimators in the case of the ARX(1) panel data model, using the true number of factors,  $m_0$  ( $\kappa^2 = \sigma_v^2 = 1$ )

|                |           |                  |                      | tac              | tors,            | $m_0 (\kappa^2)$ | $=\sigma_{\rm v}^2=$            | = 1)             |         |                            |                 |         |
|----------------|-----------|------------------|----------------------|------------------|------------------|------------------|---------------------------------|------------------|---------|----------------------------|-----------------|---------|
|                |           |                  | $T=5, \gamma$        | $y_0 = 0.4$      |                  |                  |                                 |                  | T=5,    | $\gamma_0 = 0.8$           |                 |         |
|                |           | $as(\times 100)$ | O)                   | RM               | $ISE(\times 1)$  | 00)              | $\frac{\text{Bi}}{\text{TQML}}$ | $as(\times 10$   | 0)      | RM                         | $ISE(\times 1)$ |         |
|                | TQML      | Bai-             | QML                  | TQML             | Bai-             | QML              | TQML                            | Bai-             | QML     | $\overline{\mathrm{TQML}}$ | Bai-            | QML     |
|                |           | $I\overline{ID}$ | spatial              |                  | $I\overline{ID}$ | spatial          |                                 | $I\overline{ID}$ | spatial |                            |                 | spatial |
|                | $\gamma$  |                  |                      |                  |                  |                  |                                 |                  |         |                            |                 |         |
| $\overline{N}$ | $m_0 = 1$ |                  |                      |                  |                  |                  |                                 |                  |         |                            |                 |         |
| 100            | 0.09      | 1.59             | 1.98                 | 4.28             | 6.95             | 8.49             | 0.23                            | 2.31             | 4.90    | 4.74                       | 5.75            | 7.93    |
| 300            | -0.05     | 0.07             | 0.35                 | 2.39             | 2.82             | 4.21             | -0.02                           | 0.87             | 3.26    | 2.56                       | 3.58            | 6.35    |
| 500            | 0.02      | 0.12             | 0.25                 | 1.82             | 2.27             | 3.16             | 0.02                            | 0.60             | 2.81    | 1.91                       | 2.82            | 5.86    |
| 1000           | -0.04     | 0.05             | 0.07                 | 1.35             | 1.43             | 1.76             | -0.02                           | 0.41             | 2.25    | 1.41                       | 2.13            | 5.21    |
|                | $m_0 = 2$ |                  |                      |                  |                  |                  |                                 |                  |         |                            |                 |         |
| 100            | 0.22      | 2.96             | 3.41                 | 4.48             | 10.35            | 12.18            | 0.41                            | 2.41             | 5.38    | 4.89                       | 6.47            | 8.97    |
| 300            | 0.03      | 0.46             | 1.23                 | 2.46             | 3.98             | 7.24             | 0.07                            | 1.05             | 4.21    | 2.63                       | 3.94            | 7.57    |
| 500            | 0.07      | 0.28             | 1.07                 | 1.94             | 3.08             | 6.83             | 0.09                            | 0.57             | 3.82    | 2.10                       | 2.97            | 7.02    |
| 1000           | 0.05      | 0.23             | 0.88                 | 1.39             | 2.70             | 6.12             | 0.05                            | 0.31             | 3.59    | 1.47                       | 2.00            | 6.79    |
|                | β         |                  |                      |                  |                  |                  |                                 |                  |         |                            |                 |         |
|                | $m_0 = 1$ |                  |                      |                  |                  |                  |                                 |                  |         |                            |                 |         |
| 100            | -0.01     | 0.57             | 0.81                 | 5.98             | 7.45             | 7.72             | 0.06                            | 0.98             | 1.18    | 6.16                       | 7.25            | 8.50    |
| 300            | -0.15     | 0.06             | 0.05                 | 3.39             | 3.83             | 4.17             | -0.14                           | 0.47             | 0.51    | 3.46                       | 4.10            | 5.97    |
| 500            | 0.09      | 0.08             | 0.08                 | 2.65             | 3.03             | 3.21             | 0.10                            | 0.36             | 0.30    | 2.70                       | 3.21            | 5.15    |
| 1000           | 0.05      | 0.01             | 0.00                 | 1.87             | 2.03             | 2.02             | 0.06                            | 0.17             | 0.23    | 1.91                       | 2.19            | 3.97    |
|                | $m_0 = 2$ |                  |                      |                  |                  |                  |                                 |                  |         |                            |                 |         |
| 100            | 0.25      | 0.88             | 1.43                 | 8.30             | 31.26            | 34.36            | 0.38                            | -0.14            | -3.77   | 8.51                       | 30.55           | 34.03   |
| 300            | 0.17      | 0.97             | -0.30                | 4.61             | 17.16            | 16.92            | 0.20                            | 0.53             | -4.01   | 4.66                       | 17.68           | 27.14   |
| 500            | 0.11      | 0.68             | -0.54                | 3.55             | 13.22            | 13.82            | 0.14                            | 0.60             | -4.37   | 3.63                       | 13.61           | 19.30   |
| 1000           | -0.06     | 0.01             | -0.75                | 2.51             | 9.16             | 10.46            | -0.05                           | 0.02             | -6.41   | 2.55                       | 9.41            | 23.16   |
|                |           |                  | T = 10,              | $\gamma_0 = 0.4$ |                  |                  |                                 |                  | T = 10. | $\gamma_0 = 0.8$           |                 |         |
|                | Bia       | $as(\times 100)$ | <u>)</u>             | RM               | $ISE(\times 1)$  | 00)              | Bi                              | $as(\times 10$   | 0)      | RM                         | $ISE(\times 1)$ | 00)     |
|                | TQML      | Bai-             | QML                  | TQML             | Bai-             | QML              | TQML                            | Bai-             | QML     | TQML                       |                 | QML     |
|                |           | $I\overline{ID}$ | $\overline{spatial}$ |                  |                  | spatial          |                                 | $I\overline{ID}$ | spatial |                            |                 | spatial |
| -              | $\gamma$  |                  |                      |                  |                  |                  | -                               |                  |         | -                          |                 |         |
|                | $m_0 = 1$ |                  |                      |                  |                  |                  | -                               |                  |         | -                          |                 |         |
| 100            | -0.10     | 3.46             | 1.18                 | 2.15             | 11.42            | 7.30             | -0.07                           | 1.16             | 2.81    | 1.53                       | 18.51           | 6.01    |
| 300            | 0.03      | 3.27             | 1.12                 | 1.20             | 10.17            | 6.93             | 0.02                            | 2.50             | 2.59    | 0.82                       | 14.31           | 6.72    |
| 500            | -0.02     | 3.62             | 1.18                 | 0.92             | 10.05            | 6.98             | -0.01                           | 1.45             | 2.21    | 0.65                       | 17.73           | 5.35    |
| 1000           | 0.01      | 3.46             | 0.80                 | 0.67             | 9.05             | 5.80             | 0.00                            | 2.25             | 2.22    | 0.46                       | 14.20           | 5.20    |
|                | $m_0 = 2$ |                  |                      |                  |                  |                  | -                               |                  |         | -                          |                 |         |
| 100            | -0.10     | 5.66             | 12.20                | 2.33             | 21.98            | 24.14            | -0.06                           | -0.04            | 6.56    | 1.58                       | 20.16           | 10.11   |
| 300            | -0.06     | 5.67             | 10.44                | 1.33             | 22.84            | 21.98            | -0.02                           | 0.75             | 6.70    | 0.91                       | 21.30           | 9.85    |
| 500            | -0.03     | 5.09             | 9.37                 | 0.98             | 25.66            | 20.77            | -0.01                           | -0.61            | 6.46    | 0.69                       | 21.96           | 10.77   |
| 1000           | 0.02      | 5.80             | 8.99                 | 0.70             | 21.67            | 20.72            | 0.01                            | 0.54             | 6.63    | 0.48                       | 18.43           | 9.96    |
|                | β         |                  |                      | •                |                  |                  | -                               |                  |         |                            |                 |         |
|                | $m_0 = 1$ |                  |                      |                  |                  |                  |                                 |                  |         |                            |                 |         |
| 100            | 0.10      | -1.25            | -0.79                | 3.98             | 12.39            | 7.21             | 0.07                            | 3.32             | -1.73   | 3.98                       | 40.08           | 12.53   |
| 300            | 0.01      | -1.10            | -1.01                | 2.29             | 9.96             | 6.54             | 0.02                            | 2.57             | -2.84   | 2.28                       | 38.77           | 11.99   |
| 500            | 0.00      | -1.69            | -1.00                | 1.74             | 10.30            | 6.24             | 0.00                            | 2.47             | -2.42   | 1.72                       | 30.21           | 9.75    |
| 1000           | 0.03      | -1.48            | -0.52                | 1.21             | 8.03             | 5.38             | 0.04                            | 1.14             | -2.27   | 1.20                       | 26.98           | 9.32    |
|                | $m_0 = 2$ |                  |                      |                  |                  |                  |                                 |                  | · · ·   |                            |                 |         |
| 100            | 0.15      | 0.88             | -11.76               | 6.27             | 35.52            | 32.59            | 0.15                            | 4.18             | -12.85  | 6.25                       | 77.77           | 38.09   |
| 300            | 0.09      | 1.48             | -10.90               | 3.63             | 32.50            | 25.17            | 0.08                            | 5.91             | -14.21  | 3.61                       | 68.38           | 40.00   |
| 500            | 0.02      | 0.58             | -9.52                | 2.85             | 32.43            | 24.73            | 0.01                            | 9.55             | -14.12  | 2.84                       | 85.11           | 38.50   |
|                |           |                  |                      |                  |                  |                  |                                 |                  |         |                            |                 |         |
| 1000           | 0.04      | 1.33             | -8.51                | 1.96             | 36.25            | 29.94            | 0.05                            | 9.65             | -13.29  | 1.95                       | 87.15           | 44.42   |

Note:  $\alpha_i$ , i=1,...,N, are the fixed effects in the  $y_{it}$  equation given by (13). The regressor equation fixed effects,  $\alpha_{xi}$ , are generated as  $\alpha_{xi} = \alpha_i + v_i$ , where  $v_i \sim IID\mathcal{N}(0,1)$  for all i. For the Bai-QML estimator the Mundlak-Chamberlain projection of  $\alpha_{xi}$  on the regressors is used to deal with the dependence of  $\alpha_{xi}$  on  $\alpha_i$ . See also the note to Tables 1 and 4.

**Table 9:** Size(×100) of  $\gamma$  and  $\beta$  for the TQML and Bai-QML estimators in the case of the ARX(1) panel data model, using the true number of factors,  $m_0$  ( $\kappa^2 = \sigma_{\rm v}^2 = 1$ )

|      |           |                  |                      |       | 100 (10          | v                    | 1     |                    |                      |       |                  |                      |
|------|-----------|------------------|----------------------|-------|------------------|----------------------|-------|--------------------|----------------------|-------|------------------|----------------------|
|      | T = 0     | $5, \gamma_0 =$  | 0.4                  | T = 0 | $5, \gamma_0 =$  | 0.8                  | T = 1 | $0, \gamma_0 =$    | 0.4                  | T = 1 | $0, \gamma_0 =$  | - 0.8                |
|      | TQML      | Bai-             | QML                  | TQML  | Bai-             | QML                  | TQML  | Bai-               | QML                  | TQML  | Bai-             | QML                  |
|      |           | $I\overline{ID}$ | $\overline{spatial}$ |       | $I\overline{ID}$ | $\overline{spatial}$ |       | $I\overline{ID}$ . | $\overline{spatial}$ |       | $I\overline{ID}$ | $\overline{spatial}$ |
|      | $\gamma$  |                  |                      |       |                  |                      |       |                    |                      |       |                  |                      |
| N    | $m_0 = 1$ |                  |                      |       |                  |                      | _     |                    |                      |       |                  |                      |
| 100  | 5.1       | 12.8             | 11.9                 | 5.2   | 37.9             | 55.4                 | 6.0   | 18.8               | 9.2                  | 6.5   | 38.2             | 29.1                 |
| 300  | 4.4       | 4.5              | 6.3                  | 5.1   | 17.5             | 34.8                 | 5.2   | 19.2               | 7.4                  | 4.0   | 45.6             | 24.8                 |
| 500  | 3.7       | 5.0              | 5.6                  | 3.9   | 12.4             | 31.0                 | 5.5   | 20.6               | 7.4                  | 5.1   | 45.2             | 22.1                 |
| 1000 | 4.5       | 4.6              | 5.1                  | 4.5   | 8.4              | 25.0                 | 5.4   | 20.7               | 7.0                  | 5.4   | 47.7             | 20.9                 |
|      | $m_0 = 2$ |                  |                      |       |                  |                      |       |                    |                      |       |                  |                      |
| 100  | 4.9       | 14.9             | 14.2                 | 4.4   | 31.0             | 46.3                 | 5.8   | 25.4               | 31.9                 | 5.9   | 41.4             | 37.5                 |
| 300  | 4.1       | 5.7              | 8.2                  | 4.8   | 15.7             | 38.8                 | 5.4   | 35.2               | 27.1                 | 4.8   | 50.6             | 38.1                 |
| 500  | 3.6       | 5.7              | 8.3                  | 4.6   | 10.9             | 34.4                 | 4.3   | 36.3               | 24.8                 | 4.7   | 51.4             | 39.1                 |
| 1000 | 3.6       | 5.2              | 7.5                  | 4.2   | 6.5              | 31.4                 | 4.3   | 40.4               | 24.6                 | 4.1   | 52.6             | 39.6                 |
|      | β         |                  |                      |       |                  |                      |       |                    |                      |       |                  |                      |
|      | $m_0 = 1$ |                  |                      |       |                  |                      |       |                    |                      |       |                  |                      |
| 100  | 5.6       | 7.7              | 8.1                  | 5.5   | 8.9              | 13.4                 | 6.3   | 13.2               | 8.0                  | 6.2   | 10.0             | 11.8                 |
| 300  | 4.9       | 4.2              | 5.4                  | 4.9   | 6.6              | 13.8                 | 6.0   | 16.6               | 7.4                  | 5.6   | 13.3             | 14.8                 |
| 500  | 5.5       | 5.6              | 5.9                  | 5.3   | 6.5              | 16.6                 | 5.2   | 18.3               | 6.2                  | 5.2   | 16.4             | 13.2                 |
| 1000 | 5.5       | 3.9              | 4.0                  | 5.7   | 5.3              | 16.6                 | 4.4   | 18.4               | 6.8                  | 4.7   | 20.3             | 13.9                 |
|      | $m_0 = 2$ |                  |                      |       |                  |                      |       |                    |                      |       |                  |                      |
| 100  | 6.1       | 19.4             | 18.4                 | 5.7   | 16.9             | 21.5                 | 4.9   | 13.1               | 26.4                 | 5.0   | 14.5             | 22.8                 |
| 300  | 5.1       | 7.2              | 6.0                  | 5.2   | 9.5              | 22.8                 | 5.3   | 18.9               | 23.9                 | 5.4   | 19.8             | 26.2                 |
| 500  | 5.0       | 6.1              | 7.0                  | 5.0   | 7.7              | 23.4                 | 5.7   | 21.9               | 21.5                 | 5.9   | 21.0             | 28.2                 |
| 1000 | 4.9       | 4.1              | 5.9                  | 5.2   | 5.6              | 23.9                 | 5.3   | 26.0               | 22.5                 | 5.3   | 26.3             | 31.2                 |
|      |           |                  |                      |       |                  |                      |       |                    |                      |       |                  |                      |

See the note to Table 8.

**Table 10:** Bias(×100) and RMSE(×100) of  $\gamma$  and  $\beta$  for the TQML and GMM estimators in the case of the ARX(1) model, using the true number of factors,  $m_0$  ( $\kappa^2 = \sigma_{\rm v}^2 = 1$ )

|                                                                   |                                                                                                                                                                                                                          |                                                                                         |                                                                                                                    | 7                                                                                                                   | $\gamma = 5, \gamma_0$                                                                                              |                                                                                                             |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             |                                                                                                                    |                                                                                                                  | (n -                                                                              |                                                                                                             | <del></del>                                                                                        | 0 = 0.8                                                                                                      |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                   |                                                                                                                                                                                                                          | Ris                                                                                     | as(×100                                                                                                            | ))                                                                                                                  | - 5, 70                                                                                                             | ) — 0.4                                                                                                     | RMS                                                                                                              | SE(×10                                                                                                  | 00)                                                                                                 |                                                                                                             |                                                                                                                    | Rie                                                                                                              | as( × 100                                                                         | 1)                                                                                                          | - 0, 7                                                                                             | 1000000000000000000000000000000000000                                                                        | RMS                                                                             | E(×10                                                                                              | 00)                                                                                                |                                                                                                    |
|                                                                   | TQML                                                                                                                                                                                                                     | GMM                                                                                     | 15(X10C                                                                                                            | ,,                                                                                                                  |                                                                                                                     | TQML                                                                                                        | GMM                                                                                                              | DL( XIC                                                                                                 | ,,,                                                                                                 |                                                                                                             | TOMI.                                                                                                              | GMM                                                                                                              | 35(×100                                                                           | ')                                                                                                          |                                                                                                    | TOML                                                                                                         | GMM                                                                             | /L(X10                                                                                             | ,,,                                                                                                |                                                                                                    |
|                                                                   | 1 GML                                                                                                                                                                                                                    | OD1                                                                                     | OD2                                                                                                                | FD1                                                                                                                 | FD2                                                                                                                 | 1 WILL                                                                                                      | OD1                                                                                                              | OD2                                                                                                     | FD1                                                                                                 | FD2                                                                                                         | 1 6 1111                                                                                                           | OD1                                                                                                              | OD2                                                                               | FD1                                                                                                         | FD2                                                                                                | TOME                                                                                                         | OD1                                                                             | OD2                                                                                                | FD1                                                                                                | FD2                                                                                                |
|                                                                   | $\gamma$                                                                                                                                                                                                                 | - Q. Z. I                                                                               | 9,22                                                                                                               |                                                                                                                     |                                                                                                                     |                                                                                                             | - Q.D.I                                                                                                          | - Q D Z                                                                                                 | - 121                                                                                               |                                                                                                             |                                                                                                                    | - Q.D.I                                                                                                          | - Q.D.Z                                                                           |                                                                                                             |                                                                                                    |                                                                                                              | 4,21                                                                            | - Q.D.Z                                                                                            |                                                                                                    |                                                                                                    |
| $\overline{N}$                                                    | $m_0 = 1$                                                                                                                                                                                                                |                                                                                         |                                                                                                                    |                                                                                                                     |                                                                                                                     |                                                                                                             |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             |                                                                                                                    |                                                                                                                  |                                                                                   |                                                                                                             |                                                                                                    |                                                                                                              |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |
| 100                                                               | 0.09                                                                                                                                                                                                                     | 17.79                                                                                   | 17.50                                                                                                              | -12.27                                                                                                              | -7.22                                                                                                               | 4.28                                                                                                        | 20.97                                                                                                            | 20.70                                                                                                   | 14.84                                                                                               | 10.08                                                                                                       | 0.23                                                                                                               | 6.53                                                                                                             | 6.56                                                                              | -13.27                                                                                                      | -7.43                                                                                              | 4.74                                                                                                         | 7.64                                                                            | 7.41                                                                                               | 15.41                                                                                              | 9.75                                                                                               |
| 300                                                               | -0.05                                                                                                                                                                                                                    |                                                                                         |                                                                                                                    | -5.74                                                                                                               |                                                                                                                     |                                                                                                             | 17.65                                                                                                            |                                                                                                         |                                                                                                     |                                                                                                             | -0.02                                                                                                              | 6.09                                                                                                             |                                                                                   | -5.83                                                                                                       | -2.10                                                                                              | 2.56                                                                                                         | 7.11                                                                            | 6.79                                                                                               | 7.83                                                                                               | 3.78                                                                                               |
| 500                                                               | 0.02                                                                                                                                                                                                                     | 9.46                                                                                    | 9.37                                                                                                               | -3.18                                                                                                               | -1.24                                                                                                               | 1.82                                                                                                        | 14.83                                                                                                            | 14.46                                                                                                   | 5.24                                                                                                | 2.76                                                                                                        | 0.02                                                                                                               | 5.72                                                                                                             | 5.61                                                                              | -3.13                                                                                                       | -1.04                                                                                              | 1.91                                                                                                         | 6.76                                                                            | 6.40                                                                                               | 5.28                                                                                               | 2.51                                                                                               |
| 1000                                                              | -0.04                                                                                                                                                                                                                    | 4.88                                                                                    |                                                                                                                    | -1.65                                                                                                               | -0.65                                                                                                               |                                                                                                             | 10.67                                                                                                            |                                                                                                         |                                                                                                     |                                                                                                             | -0.02                                                                                                              | 5.04                                                                                                             | 4.89                                                                              | -1.59                                                                                                       | -0.54                                                                                              | 1.41                                                                                                         | 6.15                                                                            |                                                                                                    |                                                                                                    | 1.75                                                                                               |
|                                                                   | $m_0 = 2$                                                                                                                                                                                                                |                                                                                         |                                                                                                                    |                                                                                                                     |                                                                                                                     |                                                                                                             |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             |                                                                                                                    |                                                                                                                  |                                                                                   |                                                                                                             |                                                                                                    |                                                                                                              |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |
| 100                                                               | 0.22                                                                                                                                                                                                                     | 4.44                                                                                    | 4.43                                                                                                               | -2.59                                                                                                               | -1.69                                                                                                               | 4.48                                                                                                        | 11.80                                                                                                            | 12.14                                                                                                   | 8.92                                                                                                | 8.00                                                                                                        | 0.41                                                                                                               | 2.29                                                                                                             | 2.20                                                                              | -2.99                                                                                                       | -1.97                                                                                              | 4.89                                                                                                         | 6.69                                                                            | 6.93                                                                                               | 8.91                                                                                               | 8.10                                                                                               |
| 300                                                               | 0.03                                                                                                                                                                                                                     | 2.90                                                                                    | 2.72                                                                                                               | -1.05                                                                                                               | -0.65                                                                                                               | 2.46                                                                                                        | 7.98                                                                                                             | 8.09                                                                                                    | 5.21                                                                                                | 4.48                                                                                                        | 0.07                                                                                                               | 2.21                                                                                                             | 2.16                                                                              | -1.10                                                                                                       | -0.62                                                                                              | 2.63                                                                                                         | 5.19                                                                            | 5.26                                                                                               | 5.12                                                                                               | 4.45                                                                                               |
| 500                                                               | 0.07                                                                                                                                                                                                                     | 2.38                                                                                    | 2.31                                                                                                               | -0.63                                                                                                               | -0.29                                                                                                               | 1.94                                                                                                        | 6.84                                                                                                             | 6.87                                                                                                    | 4.14                                                                                                | 3.48                                                                                                        | 0.09                                                                                                               | 2.19                                                                                                             | 2.19                                                                              | -0.56                                                                                                       | -0.35                                                                                              | 2.10                                                                                                         | 4.65                                                                            | 4.64                                                                                               | 4.02                                                                                               | 3.41                                                                                               |
| 1000                                                              | 0.05                                                                                                                                                                                                                     | 1.26                                                                                    | 1.20                                                                                                               | -0.20                                                                                                               | -0.16                                                                                                               | 1.39                                                                                                        | 4.90                                                                                                             | 4.96                                                                                                    | 2.76                                                                                                | 2.47                                                                                                        | 0.05                                                                                                               | 2.03                                                                                                             | 1.99                                                                              | -0.22                                                                                                       | -0.20                                                                                              | 1.47                                                                                                         | 4.03                                                                            | 4.05                                                                                               | 2.66                                                                                               | 2.43                                                                                               |
|                                                                   | β                                                                                                                                                                                                                        |                                                                                         |                                                                                                                    |                                                                                                                     |                                                                                                                     |                                                                                                             |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             |                                                                                                                    |                                                                                                                  |                                                                                   |                                                                                                             |                                                                                                    |                                                                                                              |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |
|                                                                   | $m_0 = 1$                                                                                                                                                                                                                |                                                                                         |                                                                                                                    |                                                                                                                     |                                                                                                                     |                                                                                                             |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             |                                                                                                                    |                                                                                                                  |                                                                                   |                                                                                                             |                                                                                                    |                                                                                                              |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |
| 100                                                               | -0.01                                                                                                                                                                                                                    | -7.21                                                                                   | -6.90                                                                                                              |                                                                                                                     | -3.95                                                                                                               | 5.98                                                                                                        |                                                                                                                  |                                                                                                         | 10.19                                                                                               | 8.69                                                                                                        | 0.06                                                                                                               | -5.52                                                                                                            | -4.75                                                                             | -6.64                                                                                                       | -4.17                                                                                              | 6.16                                                                                                         |                                                                                 | 10.61                                                                                              |                                                                                                    | 8.59                                                                                               |
| 300                                                               | -0.15                                                                                                                                                                                                                    | -4.56                                                                                   | -4.08                                                                                                              | -2.88                                                                                                               | -1.49                                                                                                               | 3.39                                                                                                        | 11.48                                                                                                            |                                                                                                         | 5.94                                                                                                | 4.54                                                                                                        | -0.14                                                                                                              | -4.34                                                                                                            | -3.33                                                                             | -3.12                                                                                                       | -1.37                                                                                              | 3.46                                                                                                         | 8.07                                                                            | 7.44                                                                                               | 6.11                                                                                               | 4.41                                                                                               |
| 500                                                               | 0.09                                                                                                                                                                                                                     | -2.20                                                                                   | -1.85                                                                                                              | -1.44                                                                                                               | -0.68                                                                                                               | 2.65                                                                                                        |                                                                                                                  |                                                                                                         | 4.44                                                                                                |                                                                                                             | 0.10                                                                                                               | -2.81                                                                                                            | -2.06                                                                             | -1.52                                                                                                       | -0.58                                                                                              | 2.70                                                                                                         | 6.76                                                                            | 6.04                                                                                               |                                                                                                    |                                                                                                    |
| 1000                                                              | 0.05                                                                                                                                                                                                                     | -0.48                                                                                   | -0.24                                                                                                              | -0.61                                                                                                               | -0.28                                                                                                               | 1.87                                                                                                        | 6.61                                                                                                             | 7.19                                                                                                    | 3.10                                                                                                | 2.30                                                                                                        | 0.06                                                                                                               | -1.32                                                                                                            | -0.57                                                                             | -0.64                                                                                                       | -0.22                                                                                              | 1.91                                                                                                         | 5.59                                                                            | 5.01                                                                                               | 3.13                                                                                               | 2.25                                                                                               |
|                                                                   | $m_0 = 2$                                                                                                                                                                                                                |                                                                                         |                                                                                                                    |                                                                                                                     |                                                                                                                     |                                                                                                             |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             |                                                                                                                    |                                                                                                                  |                                                                                   |                                                                                                             |                                                                                                    |                                                                                                              |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |
| 100                                                               | 0.25                                                                                                                                                                                                                     | 5.01                                                                                    | 3.88                                                                                                               | -1.87                                                                                                               | -1.28                                                                                                               | 8.30                                                                                                        |                                                                                                                  |                                                                                                         | 29.55                                                                                               |                                                                                                             | 0.38                                                                                                               | 2.18                                                                                                             | 1.88                                                                              | -0.39                                                                                                       | -0.22                                                                                              | 8.51                                                                                                         |                                                                                 |                                                                                                    | 29.23                                                                                              |                                                                                                    |
| 300                                                               | 0.17                                                                                                                                                                                                                     | 2.96                                                                                    | 2.45                                                                                                               | -1.23                                                                                                               | -0.26                                                                                                               |                                                                                                             | 14.87                                                                                                            |                                                                                                         |                                                                                                     |                                                                                                             | 0.20                                                                                                               | 1.19                                                                                                             | 1.07                                                                              | -1.09                                                                                                       | -0.18                                                                                              |                                                                                                              | 13.43                                                                           |                                                                                                    |                                                                                                    |                                                                                                    |
| 500                                                               | 0.11                                                                                                                                                                                                                     | 2.73                                                                                    | 2.43                                                                                                               |                                                                                                                     |                                                                                                                     |                                                                                                             | 11.39                                                                                                            |                                                                                                         |                                                                                                     |                                                                                                             | 0.14                                                                                                               | 1.50                                                                                                             | 1.31                                                                              | -0.56                                                                                                       | 0.15                                                                                               |                                                                                                              | 10.21                                                                           |                                                                                                    |                                                                                                    |                                                                                                    |
| 1000                                                              | -0.06                                                                                                                                                                                                                    | 1.21                                                                                    | 1.02                                                                                                               | -0.77                                                                                                               | -0.42                                                                                                               | 2.51                                                                                                        | 8.37                                                                                                             | 8.25                                                                                                    | 8.84                                                                                                | 1.48                                                                                                        | -0.05                                                                                                              | 0.78                                                                                                             | 0.74                                                                              | -0.45                                                                                                       | -0.25                                                                                              | 2.55                                                                                                         | 1.57                                                                            | 7.61                                                                                               | 8.79                                                                                               | 7.62                                                                                               |
|                                                                   |                                                                                                                                                                                                                          | Dia                                                                                     | as(×100                                                                                                            | 1                                                                                                                   | $=10, \gamma$                                                                                                       | $_0 = 0.4$                                                                                                  | DMC                                                                                                              | EF( v 10                                                                                                | 20)                                                                                                 |                                                                                                             | TQML                                                                                                               | D;                                                                                                               | og( v 100                                                                         | 1                                                                                                           | $= 10, \gamma$                                                                                     | $v_0 = 0.8$                                                                                                  | DMC                                                                             | $E(\times 10^{\circ})$                                                                             | 00)                                                                                                |                                                                                                    |
| -                                                                 | TQML                                                                                                                                                                                                                     |                                                                                         | is( × 100                                                                                                          | (י                                                                                                                  |                                                                                                                     | TQML                                                                                                        | CMM                                                                                                              | DE(XIC                                                                                                  | <i>J</i> O)                                                                                         |                                                                                                             | TOMI                                                                                                               | CMM                                                                                                              | as( × 100                                                                         | ')                                                                                                          |                                                                                                    | TQML                                                                                                         |                                                                                 | DE(XIC                                                                                             | <i>J</i> O)                                                                                        |                                                                                                    |
|                                                                   | TOME                                                                                                                                                                                                                     |                                                                                         | OD2                                                                                                                | FD1                                                                                                                 | FD2                                                                                                                 | TWIL                                                                                                        | OD1                                                                                                              | OD2                                                                                                     | FD1                                                                                                 | FD2                                                                                                         | 1 QML                                                                                                              | OD1                                                                                                              | OD2                                                                               | FD1                                                                                                         | FD2                                                                                                |                                                                                                              |                                                                                 | OD2                                                                                                | FD1                                                                                                | FD2                                                                                                |
|                                                                   | $\gamma$                                                                                                                                                                                                                 | QD1                                                                                     | QD2                                                                                                                | 111                                                                                                                 | 1 1 2                                                                                                               |                                                                                                             | QD1                                                                                                              | QDZ                                                                                                     | 1 1 1                                                                                               | 1 1 2                                                                                                       |                                                                                                                    | &DI                                                                                                              | QD2                                                                               | 1 1 1                                                                                                       | 1102                                                                                               |                                                                                                              | &DI                                                                             | QD2                                                                                                | 111                                                                                                | 1102                                                                                               |
| $\overline{N}$                                                    | $m_0 = 1$                                                                                                                                                                                                                |                                                                                         |                                                                                                                    |                                                                                                                     |                                                                                                                     |                                                                                                             |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             |                                                                                                                    |                                                                                                                  |                                                                                   |                                                                                                             |                                                                                                    |                                                                                                              |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |
| 100                                                               |                                                                                                                                                                                                                          |                                                                                         |                                                                                                                    |                                                                                                                     |                                                                                                                     |                                                                                                             |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             |                                                                                                                    |                                                                                                                  |                                                                                   |                                                                                                             |                                                                                                    |                                                                                                              |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |
| 300                                                               | -0.10                                                                                                                                                                                                                    | _                                                                                       |                                                                                                                    |                                                                                                                     |                                                                                                                     | 2.15                                                                                                        | _                                                                                                                | _                                                                                                       | _                                                                                                   |                                                                                                             | -0.07                                                                                                              |                                                                                                                  | _                                                                                 |                                                                                                             |                                                                                                    | 1.53                                                                                                         | _                                                                               | _                                                                                                  | _                                                                                                  |                                                                                                    |
|                                                                   | -0.10<br>0.03                                                                                                                                                                                                            |                                                                                         |                                                                                                                    |                                                                                                                     |                                                                                                                     | 2.15<br>1.20                                                                                                |                                                                                                                  |                                                                                                         |                                                                                                     |                                                                                                             | -0.07<br>0.02                                                                                                      |                                                                                                                  |                                                                                   |                                                                                                             |                                                                                                    | 1.53<br>0.82                                                                                                 |                                                                                 | 8.42                                                                                               | 38.40                                                                                              | 30.66                                                                                              |
| 500                                                               |                                                                                                                                                                                                                          | 23.02<br>23.53                                                                          | 20.54                                                                                                              |                                                                                                                     | -29.68                                                                                                              | 2.15<br>1.20<br>0.92                                                                                        | 23.20                                                                                                            | 20.83                                                                                                   | 39.30<br>36.43                                                                                      | 32.20                                                                                                       | -0.07<br>0.02<br>-0.01                                                                                             | 9.00<br>9.08                                                                                                     | 8.38                                                                              | -30.82                                                                                                      | -25.17<br>-17.22                                                                                   | 1.53<br>0.82<br>0.65                                                                                         |                                                                                 |                                                                                                    | 38.40<br>33.64                                                                                     |                                                                                                    |
|                                                                   | 0.03                                                                                                                                                                                                                     | 23.02                                                                                   | $20.54 \\ 20.57$                                                                                                   | -36.09                                                                                                              | -29.68<br>-23.92                                                                                                    | 1.20                                                                                                        | $23.20 \\ 23.68$                                                                                                 | $20.83 \\ 20.84$                                                                                        | 39.30                                                                                               | $32.20 \\ 27.44$                                                                                            | 0.02                                                                                                               | 9.00                                                                                                             | $8.38 \\ 8.34$                                                                    | -30.82                                                                                                      | -25.17<br>-17.22                                                                                   | 0.82                                                                                                         | 9.02                                                                            | 8.38                                                                                               | 33.64                                                                                              | 23.99                                                                                              |
| 500                                                               | 0.03<br>-0.02                                                                                                                                                                                                            | $23.02 \\ 23.53$                                                                        | $20.54 \\ 20.57$                                                                                                   | -36.09<br>-31.31                                                                                                    | -29.68<br>-23.92                                                                                                    | $\frac{1.20}{0.92}$                                                                                         | $23.20 \\ 23.68$                                                                                                 | $20.83 \\ 20.84$                                                                                        | $39.30 \\ 36.43$                                                                                    | $32.20 \\ 27.44$                                                                                            | 0.02<br>-0.01                                                                                                      | $9.00 \\ 9.08$                                                                                                   | $8.38 \\ 8.34$                                                                    | -30.82<br>-22.91                                                                                            | -25.17<br>-17.22                                                                                   | $0.82 \\ 0.65$                                                                                               | $9.02 \\ 9.10$                                                                  | 8.38                                                                                               |                                                                                                    | 23.99                                                                                              |
| 500                                                               | 0.03<br>-0.02<br>0.01                                                                                                                                                                                                    | $23.02 \\ 23.53$                                                                        | $20.54 \\ 20.57$                                                                                                   | -36.09<br>-31.31                                                                                                    | -29.68<br>-23.92                                                                                                    | $\frac{1.20}{0.92}$                                                                                         | 23.20<br>23.68<br>23.68                                                                                          | $20.83 \\ 20.84$                                                                                        | $39.30 \\ 36.43$                                                                                    | $32.20 \\ 27.44$                                                                                            | 0.02<br>-0.01                                                                                                      | $9.00 \\ 9.08$                                                                                                   | $8.38 \\ 8.34$                                                                    | -30.82<br>-22.91                                                                                            | -25.17<br>-17.22                                                                                   | $0.82 \\ 0.65$                                                                                               | $9.02 \\ 9.10$                                                                  | 8.38                                                                                               | 33.64                                                                                              | 23.99                                                                                              |
| 500<br>1000                                                       | $0.03$ $-0.02$ $0.01$ $m_0 = 2$                                                                                                                                                                                          | 23.02<br>23.53<br>23.54                                                                 | 20.54<br>20.57<br>20.25                                                                                            | -36.09<br>-31.31<br>-22.35                                                                                          | -29.68<br>-23.92<br>-15.88<br>                                                                                      | $ \begin{array}{r} 1.20 \\ 0.92 \\ 0.67 \\ \hline 2.33 \end{array} $                                        | 23.20<br>23.68<br>23.68                                                                                          | 20.83<br>20.84<br>20.55<br>21.58                                                                        | 39.30<br>36.43<br>31.55<br>5.99                                                                     | 32.20<br>27.44<br>21.37                                                                                     | 0.02<br>-0.01<br>0.00                                                                                              | 9.00<br>9.08<br>9.17                                                                                             | 8.38<br>8.34<br>8.41                                                              | -30.82<br>-22.91<br>-13.70                                                                                  | -25.17<br>-17.22<br>-9.64                                                                          | 0.82<br>0.65<br>0.46                                                                                         | 9.02<br>9.10<br>9.19                                                            | 8.38<br>8.46                                                                                       | 33.64<br>27.53<br>5.30                                                                             | 23.99<br>17.10                                                                                     |
| 100<br>1000<br>1000<br>300<br>500                                 | $0.03 \\ -0.02 \\ 0.01$ $m_0 = 2$ $-0.10 \\ -0.06 \\ -0.03$                                                                                                                                                              | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70                                       | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57                                                                  | -36.09<br>-31.31<br>-22.35<br>                                                                                      | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72                                                                  | $ \begin{array}{r} 1.20 \\ 0.92 \\ 0.67 \end{array} $ $ \begin{array}{r} 2.33 \\ 1.33 \\ 0.98 \end{array} $ | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32                                                               | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16                                                      | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63                                                     | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68                                                             | $ \begin{array}{r} 0.02 \\ -0.01 \\ 0.00 \end{array} $ $ \begin{array}{r} -0.06 \\ -0.02 \\ -0.01 \end{array} $    | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69                                                                     | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73                                      | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11                                                        | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05                                                | $ \begin{array}{r} 0.82 \\ 0.65 \\ 0.46 \end{array} $ $ \begin{array}{r} 1.58 \\ 0.91 \\ 0.69 \end{array} $  | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17                                    | 8.38<br>8.46<br>9.03<br>8.17<br>7.37                                                               | 33.64<br>27.53<br>5.30<br>2.65<br>2.07                                                             | 23.99<br>17.10<br>4.99<br>1.64<br>1.13                                                             |
| 500<br>1000<br>1000<br>100<br>300                                 | $0.03 \\ -0.02 \\ 0.01$ $m_0 = 2$ $-0.10$ $-0.06$ $-0.03$ $0.02$                                                                                                                                                         | 23.02<br>23.53<br>23.54<br>20.28<br>14.83                                               | 20.54<br>20.57<br>20.25<br>19.91<br>13.15                                                                          | -36.09<br>-31.31<br>-22.35<br>1.39<br>1.59                                                                          | -29.68<br>-23.92<br>-15.88<br>                                                                                      | 1.20<br>0.92<br>0.67<br>2.33<br>1.33                                                                        | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32                                                               | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16                                                      | 39.30<br>36.43<br>31.55<br>5.99<br>3.44                                                             | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68                                                             | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02                                                                            | 9.00<br>9.08<br>9.17<br>8.85<br>8.36                                                                             | 8.38<br>8.34<br>8.41<br>8.79<br>7.78                                              | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08                                                                | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05                                                        | $ \begin{array}{r} 0.82 \\ 0.65 \\ 0.46 \end{array} $ $ \begin{array}{r} 1.58 \\ 0.91 \end{array} $          | 9.02<br>9.10<br>9.19<br>9.07<br>8.66                                            | 8.38<br>8.46<br>9.03<br>8.17<br>7.37                                                               | 33.64<br>27.53<br>5.30<br>2.65                                                                     | 23.99<br>17.10<br>4.99<br>1.64<br>1.13                                                             |
| 100<br>1000<br>1000<br>300<br>500                                 | $0.03 \\ -0.02 \\ 0.01$ $m_0 = 2$ $-0.10 \\ -0.06 \\ -0.03 \\ 0.02$                                                                                                                                                      | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70                                       | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57                                                                  | -36.09<br>-31.31<br>-22.35<br>                                                                                      | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72                                                                  | $ \begin{array}{r} 1.20 \\ 0.92 \\ 0.67 \end{array} $ $ \begin{array}{r} 2.33 \\ 1.33 \\ 0.98 \end{array} $ | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32                                                               | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16                                                      | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63                                                     | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68                                                             | $ \begin{array}{r} 0.02 \\ -0.01 \\ 0.00 \end{array} $ $ \begin{array}{r} -0.06 \\ -0.02 \\ -0.01 \end{array} $    | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69                                                                     | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73                                      | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11                                                        | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05                                                | $ \begin{array}{r} 0.82 \\ 0.65 \\ 0.46 \end{array} $ $ \begin{array}{r} 1.58 \\ 0.91 \\ 0.69 \end{array} $  | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17                                    | 8.38<br>8.46<br>9.03<br>8.17<br>7.37                                                               | 33.64<br>27.53<br>5.30<br>2.65<br>2.07                                                             | 23.99<br>17.10<br>4.99<br>1.64<br>1.13                                                             |
| 100<br>1000<br>1000<br>300<br>500<br>1000                         | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \beta \\ \hline m_0 = 1 \\ \end{array}$                                                                           | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06                               | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63                                                          | -36.09<br>-31.31<br>-22.35<br>1.39<br>1.59<br>1.16<br>0.61                                                          | -29.68<br>-23.92<br>-15.88<br>-139<br>1.18<br>0.72<br>0.33                                                          | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70                                                        | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38                                                       | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40                                              | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81                                             | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68                                                             | -0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01                                                          | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25                                                             | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91                              | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10                                                | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05                                                | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48                                                         | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43                            | 8.38<br>8.46<br>9.03<br>8.17<br>7.37<br>5.19                                                       | 33.64<br>27.53<br>5.30<br>2.65<br>2.07                                                             | 23.99<br>17.10<br>4.99<br>1.64<br>1.13                                                             |
| 100<br>1000<br>1000<br>300<br>500<br>1000                         | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \beta \\ \hline m_0 = 1 \\ \hline 0.10 \\ \end{array}$                                                            | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06                               | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63                                                          | -36.09<br>-31.31<br>-22.35<br>1.39<br>1.59<br>1.16<br>0.61                                                          | -29.68<br>-23.92<br>-15.88<br>-1.39<br>1.18<br>0.72<br>0.33                                                         | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70                                                        | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38                                                       | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40                                              | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81                                             | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68<br>1.02                                                     | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01                                                           | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25                                                             | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91                              | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10                                                | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05<br>0.06                                        | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48                                                         | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43                            | 8.38<br>8.46<br>9.03<br>8.17<br>7.37<br>5.19                                                       | 33.64<br>27.53<br>5.30<br>2.65<br>2.07<br>1.49                                                     | 23.99<br>17.10<br>4.99<br>1.64<br>1.13<br>0.69                                                     |
| 100<br>1000<br>1000<br>300<br>500<br>1000<br>100<br>300           | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \beta \\ \hline m_0 = 1 \\ 0.10 \\ 0.01 \\ \end{array}$                                                           | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06                               | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63                                                          | -36.09<br>-31.31<br>-22.35<br>                                                                                      | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72<br>0.33<br>-20.57                                                | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.98<br>2.29                                        | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38                                                       | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40                                              | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81                                             | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68<br>1.02<br>22.35                                            | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01<br>-0.07<br>0.02                                          | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25                                                             | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91                              | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10                                                | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05<br>0.06                                        | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48<br>3.98<br>2.28                                         | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43                            | 9.03<br>8.17<br>7.37<br>5.19                                                                       | 33.64<br>27.53<br>5.30<br>2.65<br>2.07<br>1.49                                                     | 23.99<br>17.10<br>4.99<br>1.64<br>1.13<br>0.69<br>-<br>27.09                                       |
| 100<br>1000<br>1000<br>1000<br>500<br>1000<br>1000<br>1000<br>500 | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \beta \\ \hline m_0 = 1 \\ 0.10 \\ 0.01 \\ 0.00 \\ \end{array}$                                                   | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06                               | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63                                                          | -36.09<br>-31.31<br>-22.35<br>                                                                                      | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72<br>0.33<br>                                                      | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.98<br>2.29<br>1.74                                | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38                                                       | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40                                              | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81<br>27.96<br>26.81                           | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68<br>1.02<br>22.35<br>19.45                                   | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01<br>-0.07<br>0.02<br>0.00                                  | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25                                                             | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91<br>                          | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10<br>-29.17<br>-25.03                            | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05<br>0.06<br>-23.31<br>-17.96                    | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48<br>3.98<br>2.28<br>1.72                                 | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43                            | 9.03<br>8.17<br>7.37<br>5.19<br>-<br>14.37<br>14.25                                                | 33.64<br>27.53<br>5.30<br>2.65<br>2.07<br>1.49<br>-<br>34.13<br>31.59                              | 23.99<br>17.10<br>4.99<br>1.64<br>1.13<br>0.69<br>27.09<br>22.36                                   |
| 100<br>1000<br>1000<br>300<br>500<br>1000<br>100<br>300           | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \hline m_0 = 1 \\ 0.10 \\ 0.01 \\ 0.00 \\ 0.03 \\ \end{array}$                                                    | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06                               | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63                                                          | -36.09<br>-31.31<br>-22.35<br>                                                                                      | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72<br>0.33<br>                                                      | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.98<br>2.29<br>1.74                                | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38                                                       | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40                                              | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81<br>27.96<br>26.81                           | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68<br>1.02<br>22.35<br>19.45                                   | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01<br>-0.07<br>0.02<br>0.00                                  | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25                                                             | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91                              | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10<br>-29.17<br>-25.03                            | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05<br>0.06<br>-23.31<br>-17.96                    | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48<br>3.98<br>2.28<br>1.72                                 | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43                            | 9.03<br>8.17<br>7.37<br>5.19<br>-<br>14.37<br>14.25                                                | 33.64<br>27.53<br>5.30<br>2.65<br>2.07<br>1.49<br>-<br>34.13<br>31.59                              | 23.99<br>17.10<br>4.99<br>1.64<br>1.13<br>0.69<br>27.09<br>22.36                                   |
| 100<br>300<br>500<br>1000<br>1000<br>1000<br>1000                 | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \beta \\ \hline m_0 = 1 \\ 0.10 \\ 0.01 \\ 0.00 \\ 0.03 \\ \hline m_0 = 2 \\ \end{array}$                         | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06                               | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63                                                          | -36.09<br>-31.31<br>-22.35<br>1.39<br>1.59<br>1.16<br>0.61<br>25.76<br>-24.08<br>-19.83                             | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72<br>0.33<br>-20.57<br>-17.52<br>-13.18                            | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.98<br>2.29<br>1.74<br>1.21                        | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38<br>                                                   | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40<br>                                          | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81<br>27.96<br>26.81<br>24.54                  | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68<br>1.02<br>                                                 | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01<br>-0.07<br>0.02<br>0.00<br>0.04                          | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25                                                             | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91<br>13.42<br>-13.21<br>-13.74 | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10<br>                                            | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05<br>0.06<br>23.31<br>-17.96<br>-12.15           | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48<br>3.98<br>2.28<br>1.72<br>1.20                         | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43<br>18.46<br>19.01<br>19.73 | 9.03<br>8.17<br>7.37<br>5.19<br>-<br>14.37<br>14.25<br>14.94                                       | 33.64<br>27.53<br>5.30<br>2.65<br>2.07<br>1.49<br>34.13<br>31.59<br>28.02                          | 23.99<br>17.10<br>4.99<br>1.64<br>1.13<br>0.69<br>27.09<br>22.36<br>17.16                          |
| 100<br>1000<br>1000<br>300<br>500<br>1000<br>1000<br>1000<br>100  | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \beta \\ \hline m_0 = 1 \\ 0.10 \\ 0.01 \\ 0.00 \\ 0.03 \\ \hline m_0 = 2 \\ \hline \end{array}$                  | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06<br>14.30<br>15.12<br>14.75    | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63<br>                                                      | -36.09<br>-31.31<br>-22.35<br>1.39<br>1.59<br>1.16<br>0.61<br>-25.76<br>-24.08<br>-19.83                            | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72<br>0.33<br>-20.57<br>-17.52<br>-13.18                            | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.98<br>2.29<br>1.74<br>1.21                        | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38<br>15.53<br>16.08<br>15.62                            | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40<br>                                          | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81<br>27.96<br>26.81<br>24.54                  | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68<br>1.02<br>22.35<br>19.45<br>15.68                          | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01<br>-0.07<br>0.02<br>0.00<br>0.04                          | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25<br>                                                         | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91<br>13.42<br>-13.21<br>-13.74 | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10<br>                                            | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05<br>0.06<br>-23.31<br>-17.96<br>-12.15          | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48<br>3.98<br>2.28<br>1.72<br>1.20                         | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43<br>18.46<br>19.01<br>19.73 | 9.03<br>8.17<br>7.37<br>5.19<br>14.37<br>14.25<br>14.94                                            | 33.64<br>27.53<br>5.30<br>2.65<br>2.07<br>1.49<br>34.13<br>31.59<br>28.02                          | 23.99<br>17.10<br>4.99<br>1.64<br>1.13<br>0.69<br>27.09<br>22.36<br>17.16                          |
| 100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>100  | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \beta \\ \hline m_0 = 1 \\ 0.10 \\ 0.01 \\ 0.00 \\ 0.03 \\ \hline m_0 = 2 \\ 0.15 \\ 0.09 \\ \end{array}$         | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06<br>-14.30<br>-15.12<br>-14.75 | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63<br>-10.49<br>-10.59<br>-9.88                             | -36.09<br>-31.31<br>-22.35<br>1.39<br>1.59<br>1.16<br>0.61<br>-25.76<br>-24.08<br>-19.83<br>-0.75<br>-0.70          | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72<br>0.33<br>-20.57<br>-17.52<br>-13.18<br>-0.97<br>-0.71          | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.98<br>2.29<br>1.74<br>1.21<br>6.27<br>3.63        | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38<br>15.53<br>16.08<br>15.62                            | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40<br>12.16<br>12.02<br>11.10<br>20.19<br>20.12 | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81<br>27.96<br>26.81<br>24.54<br>12.90<br>8.52 | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68<br>1.02<br>22.35<br>19.45<br>15.68                          | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01<br>-0.07<br>0.02<br>0.00<br>0.04<br>-0.15<br>0.08         | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25<br>-17.89<br>-18.52<br>-19.25                               | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91<br>13.42<br>-13.21<br>-13.74 | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10<br>-29.17<br>-25.03<br>-18.97<br>-0.17<br>0.17 | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.06<br>-23.31<br>-17.96<br>-12.15<br>-0.21<br>0.07 | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48<br>3.98<br>2.28<br>1.72<br>1.20<br>6.25<br>3.61         | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43<br>18.46<br>19.01<br>19.73 | 8.38<br>8.46<br>9.03<br>8.17<br>7.37<br>5.19<br>14.37<br>14.25<br>14.94                            | 33.64<br>27.53<br>5.30<br>2.65<br>2.07<br>1.49<br>34.13<br>31.59<br>28.02<br>12.59<br>8.34         | 23.99<br>17.10<br>4.99<br>1.64<br>1.13<br>0.69<br>27.09<br>22.36<br>17.16                          |
| 100<br>1000<br>1000<br>300<br>500<br>1000<br>1000<br>1000<br>100  | $\begin{array}{c} 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = 2 \\ -0.10 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \beta \\ \hline m_0 = 1 \\ 0.10 \\ 0.01 \\ 0.00 \\ 0.03 \\ \hline m_0 = 2 \\ 0.15 \\ 0.09 \\ 0.02 \\ \end{array}$ | 23.02<br>23.53<br>23.54<br>20.28<br>14.83<br>8.70<br>2.06<br>14.30<br>15.12<br>14.75    | 20.54<br>20.57<br>20.25<br>19.91<br>13.15<br>6.57<br>0.63<br>10.49<br>-10.59<br>-9.88<br>-14.06<br>-10.77<br>-5.81 | -36.09<br>-31.31<br>-22.35<br>1.39<br>1.59<br>1.16<br>0.61<br>-25.76<br>-24.08<br>-19.83<br>-0.75<br>-0.70<br>-0.41 | -29.68<br>-23.92<br>-15.88<br>1.39<br>1.18<br>0.72<br>0.33<br>-20.57<br>-17.52<br>-13.18<br>-0.97<br>-0.71<br>-0.38 | 1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.98<br>2.29<br>1.74<br>1.21<br>6.27<br>3.63        | 23.20<br>23.68<br>23.68<br>21.79<br>18.67<br>13.32<br>4.38<br>15.53<br>16.08<br>15.62<br>20.18<br>19.80<br>16.45 | 20.83<br>20.84<br>20.55<br>21.58<br>18.42<br>13.16<br>3.40<br>                                          | 39.30<br>36.43<br>31.55<br>5.99<br>3.44<br>2.63<br>1.81<br>27.96<br>26.81<br>24.54<br>12.90<br>8.52 | 32.20<br>27.44<br>21.37<br>5.75<br>2.51<br>1.68<br>1.02<br>22.35<br>19.45<br>15.68<br>12.64<br>7.14<br>5.41 | 0.02<br>-0.01<br>0.00<br>-0.06<br>-0.02<br>-0.01<br>0.01<br>-0.07<br>0.02<br>0.00<br>0.04<br>-0.15<br>0.08<br>0.01 | 9.00<br>9.08<br>9.17<br>8.85<br>8.36<br>7.69<br>5.25<br>-17.89<br>-18.52<br>-19.25<br>-18.71<br>-16.43<br>-13.57 | 8.38<br>8.34<br>8.41<br>8.79<br>7.78<br>6.73<br>3.91<br>13.42<br>-13.21<br>-13.74 | -30.82<br>-22.91<br>-13.70<br>-2.28<br>-0.08<br>0.11<br>0.10<br>-29.17<br>-25.03<br>-18.97<br>-0.17<br>0.19 | -25.17<br>-17.22<br>-9.64<br>-2.15<br>-0.05<br>0.05<br>0.06<br>-23.31<br>-17.96<br>-12.15          | 0.82<br>0.65<br>0.46<br>1.58<br>0.91<br>0.69<br>0.48<br>3.98<br>2.28<br>1.72<br>1.20<br>6.25<br>3.61<br>2.84 | 9.02<br>9.10<br>9.19<br>9.07<br>8.66<br>8.17<br>6.43<br>18.46<br>19.01<br>19.73 | 8.38<br>8.46<br>9.03<br>8.17<br>7.37<br>5.19<br>14.37<br>14.25<br>14.94<br>21.42<br>16.88<br>13.91 | 33.64<br>27.53<br>5.30<br>2.65<br>2.07<br>1.49<br>34.13<br>31.59<br>28.02<br>12.59<br>8.34<br>7.22 | 23.99<br>17.10<br>4.99<br>1.64<br>1.13<br>0.69<br>27.09<br>22.36<br>17.16<br>12.31<br>6.98<br>5.34 |

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first- difference ALS one step and two step estimators respectively computed as described in Section II of the online supplement. "-" signifies that results are not available which is due to the number of moment conditions exceeding the sample size. See also the note to Table 1.

**Table 11:** Size(×100) of  $\gamma$  and  $\beta$  for the TQML and GMM estimators in the case of the ARX(1) panel data model, using the true number of factors,  $m_0$  ( $\kappa^2 = \sigma_v^2 = 1$ )

|      |           | -    |              |      | <i>x</i> 1110, | uci, usii | 18 0110 | orac           | JIIGI | 11001 |      | ,      | - (          |      | v ·   | /    |        |              |      |       |
|------|-----------|------|--------------|------|----------------|-----------|---------|----------------|-------|-------|------|--------|--------------|------|-------|------|--------|--------------|------|-------|
|      |           | T=5, | $\gamma_0 =$ | 0.4  |                |           | T=5,    | $\gamma_0 = 0$ | 0.8   |       |      | T = 10 | $\gamma_0 =$ | 0.4  |       |      | T = 10 | $\gamma_0 =$ | 0.8  |       |
|      | TQML      | GMM  |              |      |                | TQML      | GMM     |                |       |       | TQML | GMM    |              |      |       | TQML | GMM    |              |      |       |
|      |           | QD1  | QD2          | FD1  | FD2            |           | QD1     | QD2            | FD1   | FD2   |      | QD1    | QD2          | FD1  | FD2   |      | QD1    | QD2          | FD1  | FD2   |
|      | $\gamma$  |      |              |      |                |           |         |                |       |       |      |        |              |      |       |      |        |              |      |       |
| N    | $m_0 = 1$ |      |              |      |                |           |         |                |       |       |      |        |              |      |       |      |        |              |      |       |
| 100  | 5.1       | 87.1 | 89.3         | 41.2 | 42.2           | 5.2       | 93.0    | 95.8           | 48.8  | 48.0  | 6.0  | -      | -            | -    | -     | 6.5  | -      | -            | -    | -     |
| 300  | 4.4       | 69.3 | 70.9         | 23.5 | 17.3           | 5.1       | 89.5    | 90.8           | 24.6  | 17.3  | 5.2  | 99.9   | 100.0        | 96.5 | 99.8  | 4.0  | 100.0  | 100.0        | 96.6 | 100.0 |
| 500  | 3.7       | 54.2 | 55.8         | 13.7 | 9.9            | 3.9       | 85.9    | 86.8           | 13.0  | 9.5   | 5.5  | 99.9   | 99.9         | 97.1 | 100.0 | 5.1  | 100.0  | 100.0        | 96.8 | 100.0 |
| 1000 | 4.5       | 34.4 | 35.7         | 10.0 | 8.7            | 4.5       | 77.4    | 77.6           | 9.9   | 8.9   | 5.4  | 100.0  | 100.0        | 96.0 | 100.0 | 5.4  | 100.0  | 100.0        | 96.4 | 100.0 |
|      | $m_0 = 2$ |      |              |      |                |           |         |                |       |       |      |        |              |      |       |      |        |              |      |       |
| 100  | 4.9       | 21.3 | 26.8         | 5.7  | 10.6           | 4.4       | 38.0    | 42.6           | 5.8   | 10.3  | 5.8  | 93.7   | 98.0         | 9.2  | 74.0  | 5.9  | 97.9   | 99.3         | 11.7 | 78.2  |
| 300  | 4.1       | 17.2 | 20.6         | 3.2  | 6.7            | 4.8       | 40.4    | 42.6           | 4.5   | 6.3   | 5.4  | 72.1   | 75.3         | 9.8  | 34.5  | 4.8  | 95.4   | 96.1         | 5.4  | 29.3  |
| 500  | 3.6       | 17.4 | 19.8         | 3.0  | 5.4            | 4.6       | 39.8    | 41.7           | 3.0   | 5.6   | 4.3  | 51.1   | 48.7         | 9.6  | 23.6  | 4.7  | 90.5   | 89.9         | 5.1  | 19.1  |
| 1000 | 3.6       | 9.5  | 11.7         | 2.3  | 4.4            | 4.2       | 35.6    | 37.2           | 2.1   | 4.2   | 4.3  | 18.7   | 16.1         | 7.1  | 13.7  | 4.1  | 69.4   | 65.1         | 4.6  | 11.1  |
|      | β         |      |              |      |                |           |         |                |       |       |      |        |              |      |       |      |        |              |      |       |
|      | $m_0 = 1$ |      |              |      |                |           |         |                |       |       |      |        |              |      |       |      |        |              |      |       |
| 100  | 5.6       | 36.8 | 48.9         | 15.2 | 20.7           | 5.5       | 22.1    | 31.1           | 18.0  | 21.1  | 6.3  | -      | -            | -    | -     | 6.2  | -      | -            | -    | -     |
| 300  | 4.9       | 45.1 | 53.3         | 10.3 | 11.3           | 4.9       | 33.5    | 35.1           | 10.5  | 11.0  | 6.0  | 89.0   | 89.3         | 92.4 | 96.1  | 5.6  | 98.9   | 98.0         | 83.5 | 91.2  |
| 500  | 5.5       | 41.0 | 48.6         | 8.3  | 8.8            | 5.3       | 36.2    | 36.2           | 7.5   | 8.5   | 5.2  | 93.2   | 92.0         | 88.0 | 93.5  | 5.2  | 98.8   | 96.5         | 74.5 | 84.7  |
| 1000 | 5.5       | 29.5 | 34.2         | 5.5  | 7.9            | 5.7       | 39.3    | 42.4           | 5.5   | 7.4   | 4.4  | 94.5   | 93.3         | 78.3 | 84.0  | 4.7  | 98.4   | 95.9         | 64.3 | 76.1  |
|      | $m_0 = 2$ |      |              |      |                |           |         |                |       |       |      |        |              |      |       |      |        |              |      |       |
| 100  | 6.1       | 15.5 | 20.0         | 10.2 | 17.6           | 5.7       | 11.7    | 18.2           | 10.0  | 18.0  | 4.9  | 52.8   | 83.6         | 8.3  | 65.1  | 5.0  | 69.0   | 90.5         | 8.7  | 64.4  |
| 300  | 5.1       | 12.6 | 16.0         | 6.3  | 12.3           | 5.2       | 10.2    | 13.4           | 6.4   | 11.5  | 5.3  | 52.6   | 63.5         | 7.2  | 25.8  | 5.4  | 75.4   | 75.1         | 6.6  | 25.1  |
| 500  | 5.0       | 11.8 | 13.6         | 6.0  | 8.7            | 5.0       | 8.8     | 10.3           | 5.9   | 9.0   | 5.7  | 34.9   | 40.9         | 7.1  | 19.6  | 5.9  | 69.0   | 62.6         | 7.1  | 19.1  |
| 1000 | 4.9       | 10.1 | 10.9         | 6.3  | 8.4            | 5.2       | 8.3     | 10.3           | 6.7   | 9.3   | 5.3  | 11.8   | 16.3         | 5.6  | 11.6  | 5.3  | 41.8   | 34.3         | 5.3  | 11.7  |

See the note to Table 10.

**Table 12**: Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure when  $\gamma_0 = 1$  ( $\kappa^2 = \sigma_{\rm v}^2 = 1$ )

|       |        |       |       |  | , 0    |       |       |  |
|-------|--------|-------|-------|--|--------|-------|-------|--|
|       | T=5    |       |       |  | T = 10 |       |       |  |
| $m_0$ | 0      | 1     | 2     |  | 0      | 1     | 2     |  |
| N     | -AR(1) |       |       |  |        |       |       |  |
| 100   | 99.5   | 99.6  | 96.5  |  | 99.5   | 99.6  | 99.6  |  |
| 300   | 99.8   | 99.9  | 100.0 |  | 100.0  | 99.9  | 100.0 |  |
| 500   | 99.8   | 100.0 | 100.0 |  | 100.0  | 99.9  | 100.0 |  |
| 1000  | 99.9   | 100.0 | 100.0 |  | 99.9   | 100.0 | 100.0 |  |
|       | ARX(1) |       |       |  |        |       |       |  |
| 100   | 99.6   | 99.9  | 97.2  |  | 99.3   | 99.7  | 99.8  |  |
| 300   | 100.0  | 100.0 | 100.0 |  | 100.0  | 100.0 | 99.9  |  |
| 500   | 99.9   | 100.0 | 100.0 |  | 100.0  | 100.0 | 100.0 |  |
| 1000  | 100.0  | 100.0 | 100.0 |  | 100.0  | 99.9  | 100.0 |  |

Note: First-differences are generated as  $\Delta y_{it} = \Delta \delta_t + \gamma \Delta y_{i,t-1} + \beta \Delta x_{it} + \Delta \zeta_{it}$ , t = 2, 3, ..., T, with  $\Delta \zeta_{it} = \sum_{\ell=1}^{m_0} \eta_{\ell i} \Delta f_{\ell t} + \Delta u_{it} = \eta'_i \Delta f_t + \Delta u_{it}$ ,  $\Delta y_{i1} = \Delta \delta_1 + \beta \Delta x_{i1} + \Delta \zeta_{i1}$  and  $\Delta y_{i0} = 0$ , for i = 1, 2, ..., N, and  $\gamma = \beta = 1$ . The first-differences are then cumulated and  $y_{it}$  is obtained using arbitrary values for  $y_{i0}$ . The idiosyncratic errors are generated as  $u_{it} \sim IID\frac{\sigma}{\sqrt{12}}(\chi_6^2 - 6)$  for i = 1, 2, ..., N; t = 0, 1, ..., T where  $\chi_6^2$  is a chi-square variate with 6 degrees of freedom and  $\sigma^2 = 1$ . The fixed effects are generated as  $\alpha_i \sim IID\mathcal{N}(0, 1)$  and the factor loadings are specified as  $\eta_{\ell i} \sim IID\mathcal{N}\left(0, \frac{\kappa^2}{m_0}\right)$ ,  $\ell = 1, 2, ..., m_0$ . The regressors,  $x_{it}$ , for i = 1, 2, ..., N are generated as  $x_{it} = \alpha_{xi} + \sum_{\ell=1}^{m_x} \vartheta_{i\ell} f_{\ell t} + v_{it}$ ,  $v_{it} = \rho_x v_{i,t-1} + \left(1 - \rho_x^2\right)^{1/2} \varepsilon_{it}$ , for t = 1, 2, ..., T, with  $\rho_x = 0.95$ ,  $m_x = 2$ ,  $\vartheta_{i\ell} \sim IID\mathcal{N}(0, \sigma_{2\ell}^2)$ , for  $\ell = 1, 2, ..., m_x$ , and  $\sigma_{2\ell}^2 = \sigma_x^2/m_x$  for all  $\ell, \varepsilon_{it} \sim IID\mathcal{N}(0, \sigma_{vi}^2)$ ,  $v_{i0} \sim IID\mathcal{N}(0, \sigma_{vi}^2)$ , for i = 1, 2, ..., N, with  $\sigma_{vi}^2 \sim IID\frac{1}{4}(\chi_2^2 + 2)\sigma_v^2$  and  $\alpha_{xi} = \alpha_i + v_i$ , where  $v_i \sim IID\mathcal{N}(0, 1)$ , for all i. The remaining parameters are generated as described in Section 8.1. Each  $f_t$  is generated once and the same  $f_t's$  are used throughout the replications. In the AR(1) case  $\beta = 0$  and under  $m_0 = 0$ ,  $\zeta_{it}$  collapses to  $u_{it}$ .

**Table 13**: Bias(×100), RMSE(×100) and Size (×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors,  $\widehat{m}$ , when  $\gamma_0 = 1$  ( $\kappa^2 = 1$ )

|           |                |                |                |                | -)             |                |  |  |
|-----------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|
|           |                | T=5            |                |                | T = 10         |                |  |  |
|           | Bias           | RMSE           | Size           | Bias           | RMSE           | Size           |  |  |
|           | $(\times 100)$ |  |  |
|           | $m_0 = 0$      |                |                |                |                |                |  |  |
| 100       | -1.49          | 2.74           | 3.8            | -0.53          | 1.24           | 3.3            |  |  |
| 300       | -0.89          | 1.69           | 3.1            | -0.33          | 0.50           | 4.2            |  |  |
| 500       | -0.67          | 1.08           | 2.6            | -0.26          | 0.37           | 2.5            |  |  |
| 1000      | -0.53          | 1.25           | 2.4            | -0.20          | 0.33           | 3.0            |  |  |
|           | $m_0 = 1$      |                |                |                |                |                |  |  |
| 100       | -2.99          | 5.70           | 5.4            | -0.61          | 1.01           | 3.0            |  |  |
| 300       | -1.83          | 3.43           | 4.9            | -0.39          | 0.95           | 2.8            |  |  |
| 500       | -1.34          | 2.25           | 3.7            | -0.31          | 0.46           | 2.9            |  |  |
| 1000      | -0.97          | 1.64           | 3.4            | -0.24          | 0.33           | 2.4            |  |  |
| $m_0 = 2$ |                |                |                |                |                |                |  |  |
| 100       | -3.00          | 5.09           | 5.1            | -0.61          | 1.01           | 3.8            |  |  |
| 300       | -1.70          | 2.93           | 3.9            | -0.39          | 0.95           | 2.3            |  |  |
| 500       | -1.37          | 2.30           | 3.2            | -0.31          | 0.46           | 2.4            |  |  |
| 1000      | -0.99          | 1.65           | 3.3            | -0.24          | 0.33           | 2.1            |  |  |
|           |                |                |                |                |                |                |  |  |

See the note to Table 12.

**Table 14:** Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors,  $\widehat{m}$ , when  $\gamma_0 = 1$  ( $\kappa^2 = \sigma_v^2 = 1$ )

|           |           | 70, WIIOI | (** * ** **) |        |        |        |
|-----------|-----------|-----------|--------------|--------|--------|--------|
|           |           | T=5       |              |        | T = 10 |        |
|           | Bias      | RMSE      | Size         | Bias   | RMSE   | Size   |
|           | (×100)    | (×100)    | (×100)       | (×100) | (×100) | (×100) |
| $\gamma$  |           |           |              |        |        |        |
|           | $m_0 = 0$ |           |              |        |        |        |
| 100       | -1.28     | 2.17      | 3.7          | -0.43  | 0.67   | 3.3    |
| 300       | -0.77     | 1.27      | 3.4          | -0.26  | 0.37   | 2.1    |
| 500       | -0.58     | 0.94      | 3.2          | -0.22  | 0.30   | 2.5    |
| 1000      | -0.46     | 0.70      | 3.3          | -0.18  | 0.23   | 2.9    |
|           | $m_0 = 1$ |           |              |        |        |        |
| 100       | -2.00     | 3.46      | 3.9          | -0.53  | 0.84   | 3.6    |
| 300       | -1.24     | 2.05      | 2.3          | -0.31  | 0.46   | 2.3    |
| 500       | -0.97     | 1.61      | 2.3          | -0.26  | 0.37   | 2.8    |
| 1000      | -0.75     | 1.23      | 3.5          | -0.20  | 0.26   | 2.2    |
|           | $m_0 = 2$ |           |              |        |        |        |
| 100       | -2.02     | 3.52      | 3.5          | -0.50  | 0.80   | 2.4    |
| 300       | -1.19     | 2.06      | 3.0          | -0.32  | 0.47   | 2.1    |
| 500       | -0.97     | 1.61      | 2.5          | -0.27  | 0.39   | 2.5    |
| 1000      | -0.71     | 1.16      | 2.8          | -0.20  | 0.26   | 2.0    |
|           | β         |           |              |        |        |        |
|           | $m_0 = 0$ |           |              |        |        |        |
| 100       | -0.58     | 4.47      | 5.5          | -0.13  | 3.01   | 6.2    |
| 300       | -0.30     | 2.55      | 5.0          | -0.09  | 1.72   | 5.6    |
| 500       | -0.21     | 1.94      | 4.0          | -0.05  | 1.33   | 5.3    |
| 1000      | -0.18     | 1.39      | 4.4          | -0.03  | 0.95   | 4.8    |
|           | $m_0 = 1$ |           |              |        |        |        |
| 100       | -0.97     | 5.95      | 4.5          | -0.02  | 3.95   | 6.0    |
| 300       | -0.69     | 3.38      | 4.2          | -0.04  | 2.27   | 5.3    |
| 500       | -0.36     | 2.62      | 4.5          | -0.05  | 1.72   | 4.5    |
| 1000      | -0.27     | 1.87      | 4.4          | 0.00   | 1.20   | 3.8    |
| $m_0 = 2$ |           |           |              |        |        |        |
| 100       | -0.59     | 8.26      | 5.1          | 0.28   | 6.25   | 5.2    |
| 300       | -0.29     | 4.61      | 4.5          | 0.17   | 3.60   | 5.0    |
| 500       | -0.27     | 3.56      | 3.9          | 0.09   | 2.83   | 5.8    |
| 1000      | -0.34     | 2.54      | 4.6          | 0.11   | 1.95   | 4.7    |
|           |           |           |              |        |        |        |

See the note to Table 12.

Figure 1: Power functions for  $\gamma$  in the case of the AR(1) panel data model with different values of m and N

#### Panel A: T=5



Panel B: T=10



Note: --- N=100 ---- N=300 ---- N=500 ---- N=1000.  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N$ =p/N(T-2) and p=0.05;  $\gamma$  is the coefficient of the lagged dependent variable in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table 1.

Figure 2a: Power functions for  $\gamma$  in the case of the ARX(1) panel data model with different values of m and N





Note: --- N=100 ---- N=300 ---- N=500 ---- N=1000.  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N$ =p/N(T-2) and p=0.05;  $\gamma$  is the coefficient of the lagged dependent variable in (13). See also the note to Table 1.

0.40

0.80

Figure 2b: Power functions for  $\beta$  in the case of the ARX(1) panel data model with different values of m and N





Panel B: T=10



Note: --- N=100 ---- N=300 ---- N=500 ---- N=1000 .  $\beta$  is the coefficient of the  $\mathbf{x}_{it}$  regressors in (13). See also the note to Figure 2a.

**Figure 3a**: Power functions for  $\gamma$  in the case of the AR(1) panel data model with T=5, N=500,  $m=\tilde{m}_0=m_0+1$ , and  $\alpha_i\sim IIDN(0,1)$ 

#### Panel A: m<sub>0</sub>=1



#### Panel B: m<sub>0</sub>=2



Note: TQML ---- Bai\_QML ....... 5% nominal value.  $\alpha_i$  are the fixed effects and  $\gamma$  is the coefficient of the lagged dependent variable in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table 1.

**Figure 3b**: Power functions for  $\gamma$  in the case of the AR(1) panel data model with T=5, N=500,  $m=\tilde{m}_0=m_0+1$ , and  $\alpha_i$  spatially correlated

Panel A: m<sub>0</sub>=1



Panel B: m<sub>0</sub>=2



Note: —— TQML ---- Bai\_QML ......5% nominal value. See also the note to Figure 3a.

Figure 4a: Power functions for  $\gamma$  in the case of the ARX(1) panel data model with T=5, N=500,  $\beta_0$ =1,  $m=\tilde{m}_0=m_0+1$ , and  $\alpha_i\sim IIDN(0,1)$ 





Panel B: m<sub>0</sub>=2



Note: ——TQML ---- Bai\_QML ......5% nominal value.  $\alpha_i$  are the fixed effects and  $\gamma$  is the coefficient of the lagged dependent variable in (13). See also the note to Table 1.

**Figure 4b**: Power functions for β in the case of the ARX(1) panel data model with T=5, N=500,  $\beta_0$ =1, m=m<sub>0</sub> with  $\alpha_i$ ~IIDN(0,1)

Panel A: m<sub>0</sub>=1



Panel B: m<sub>0</sub>=2



Note: TQML ---- Bai\_QML ......5% nominal value.  $\alpha_i$  are the fixed effects and  $\beta$  is the coefficient of the  $\mathbf{x}_{it}$  regressors in (13). See also the note to Table 1.

**Figure 5a**: Power functions for  $\gamma$  in the case of the ARX(1) panel data model with T=5, N=500,  $\beta_0$ =1,  $m=\tilde{m}_0=m_0+1$ , and  $\alpha_i$  spatially correlated

Panel A: m<sub>0</sub>=1



Panel B: m<sub>0</sub>=2



Note: TQML ---- Bai\_QML ......5% nominal value.  $\alpha_i$  are the fixed effects and  $\gamma$  is the coefficient of the lagged dependent variable in (13). See also the note to Table 1.

**Figure 5b**: Power functions for  $\beta$  in the case of the ARX(1) panel data model with T=5, N=500,  $\beta_0$ =1,  $m=\tilde{m}_0=m_0+1$ , and  $\alpha_i$  spatially correlated





Panel B: m<sub>0</sub>=2



Note: — TQML ---- Bai\_QML ......5% nominal value.  $\alpha_i$  are the fixed effects and  $\beta$  is the coefficient of the  $\mathbf{x}_{it}$  regressors in (13). See also the note to Table 1.

Figure 6: Power functions for  $\gamma$  in the case of the AR(1) panel data model with different values of m and N

Panel A: T=5



Panel B: T=10



Note: --- N=100 ---- N=300 ---- N=500 ---- N=1000.  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N$ =p/N(T-2) and p=0.05;  $\gamma$  is the coefficient of the lagged dependent variable in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table 4.

Figure 7a: Power functions for  $\gamma$  in the case of the ARX(1) panel data model with different values of m and N

Panel A: T=5



Panel B: T=10



Figure 7b: Power functions for estimation of  $\beta$  in the ARX(1) model with different values of m and N

Panel A: T=5



Panel B: T=10



Note: --- N=100 ---- N=300 ---- N=500 ---- N=1000.  $\beta$  is the coefficient of the  $\mathbf{x}_{it}$  regressors in (13). See also the note to Figure 7a.

### **Appendix**

### A.1 Lemmas and their proofs

**Lemma 1** Consider the composite random variable,  $\xi_{it}$ , i = 1, 2, ..., N, for t = 1 defined by (25), and for t = 2, 3, ..., T defined by (17). Then under Assumptions 1, 2, 3, 5, and 6, the following moment conditions hold:<sup>24</sup>

$$\sup_{i} E\left(|\xi_{it}|^{4+\epsilon}\right) < K, \text{ for } t = 1, 2, ..., T,$$
(A.1)

and

$$\sup_{i,t} E\left(\|\Delta \mathbf{x}_{it}\|^{4+\epsilon}\right) < K. \tag{A.2}$$

**Proof.** Result (A.1) follows by applying Minkowski's inequality to the elements of  $\boldsymbol{\xi}_i = (\xi_{i1}, \xi_{i2}, \dots, \xi_{iT})'$ . Specifically, for  $t = 2, 3, \dots, T$ ,  $\xi_{it} = \mathbf{g}_t' \boldsymbol{\eta}_i + \Delta u_{it}$  and we have

$$\begin{aligned}
\left(E\left|\xi_{it}\right|^{4+\epsilon}\right)^{\frac{1}{4+\epsilon}} &= \left(E\left|\mathbf{g}_{t}'\boldsymbol{\eta}_{i} + \Delta u_{it}\right|^{4+\epsilon}\right)^{\frac{1}{4+\epsilon}} \\
&\leq \left(E\left|\mathbf{g}_{t}'\boldsymbol{\eta}_{i}\right|^{4+\epsilon}\right)^{\frac{1}{4+\epsilon}} + \left(E\left|\Delta u_{it}\right|^{4+\epsilon}\right)^{\frac{1}{4+\epsilon}} \\
&\leq \|\mathbf{g}_{t}\| \left(E\left\|\boldsymbol{\eta}_{i}\right\|^{4+\epsilon}\right)^{\frac{1}{4+\epsilon}} + \left(E\left|\Delta u_{it}\right|^{4+\epsilon}\right)^{\frac{1}{4+\epsilon}}.
\end{aligned}$$

Under Assumptions 1, 2 and  $3 \sup_{t} \|\mathbf{g}_{t}\| < K$ ,  $\sup_{i} E \|\boldsymbol{\eta}_{i}\|^{4+\epsilon} < K$  and  $\sup_{i,t} E |\Delta u_{it}|^{4+\epsilon} < K$ . Similarly for t = 1,  $\xi_{i1} = \widetilde{\mathbf{g}}'_{1}\boldsymbol{\eta}_{i} + v_{i1}$ , and  $\|\widetilde{\mathbf{g}}_{1}\| < K$  and  $\sup_{i} E |v_{i1}|^{4+\epsilon} < K$  (see (26) and related results). Hence,  $\left(E |\xi_{it}|^{4+\epsilon}\right)^{\frac{1}{4+\epsilon}} \leq K$ , for t = 1, 2, ..., T and (A.1) follows as required. To establish condition (A.2), using (14) we first note that

$$\left\|\Delta\mathbf{x}_{it}\right\| \leq \left\|\boldsymbol{\delta}_{x,t}\right\| + \sum_{i=1}^{m_x} \left|g_{x,jt}\right| \left\|\boldsymbol{\eta}_{ij,x}\right\| + \sum_{i=0}^{\infty} \left\|\boldsymbol{\Psi}_{j}\right\| \left\|\boldsymbol{\varepsilon}_{i,t-j}\right\|,$$

and by the Minkowski inequality for infinite sums we have

$$(E \|\Delta \mathbf{x}_{it}\|^p)^{1/p} \leq \|\boldsymbol{\delta}_{x,t}\| + \sum_{j=1}^{m_x} |g_{x,jt}| \left( E \|\boldsymbol{\eta}_{ij,x}\|^p \right)^{1/p} + \sum_{j=0}^{\infty} \|\boldsymbol{\Psi}_j\| \left( E \|\boldsymbol{\varepsilon}_{i,t-j}\|^p \right)^{1/p},$$

for any  $p \geq 1$ . Set  $p = 4 + \epsilon$ , and note that under Assumption 5,  $\sup_{t} \|\boldsymbol{\delta}_{x,t}\| < K, \sup_{j,t} |g_{x,jt}| < K, \sup_{j,t} |g_{x,jt}| < K, \sup_{i,j} E \|\boldsymbol{\eta}_{ij,x}\|^{4+\epsilon} < K, \sup_{i,t} E \|\boldsymbol{\varepsilon}_{it}\|^{4+\epsilon} < K, \text{ and } \sum_{j=0}^{\infty} \|\boldsymbol{\Psi}_{j}\| < K.$  Therefore,  $\left(E \|\Delta \mathbf{x}_{it}\|^{4+\epsilon}\right)^{1/(4+\epsilon)} \leq K$ , and (A.2) follows as required.

**Lemma 2** Consider the  $T \times 1$  vector of composite errors  $\boldsymbol{\xi}_i = (\xi_{i1}, \xi_{i2}, ... \xi_{iT})'$ , where  $\xi_{i1}$  is defined by (25) and  $\xi_{it}$ , for t = 2, 3, ..., T are defined by (17). Suppose that the conditions of Lemma 1 hold and T is fixed. Then

$$\sup E \|\boldsymbol{\xi}_i\|^4 < K < \infty, \tag{A.3}$$

$$\sup_{i} E \|\mathbf{Z}_{i}\|^{4} < K, \sup_{i} E \|\Delta \mathbf{y}_{i}\|^{4} < K, \text{ and } \sup_{i} E \|\Delta \mathbf{W}_{i}\|^{4} < K < \infty.$$
(A.4)

 $<sup>^{-24}</sup>$ It is worth emphasising that this and other lemmas are established for a finite T and conditional on given values of time effects, namely  $\mathbf{g}_t$ ,  $\boldsymbol{\delta}_t$ ,  $\boldsymbol{\delta}_{x,t}$ , and,  $\mathbf{g}_{x,t}$ , for t = 1, 2, ..., T.

**Proof.** To obtain (A.3) note that

$$\left\|oldsymbol{\xi}_i
ight\|^4 = \left\|oldsymbol{\xi}_ioldsymbol{\xi}_i'
ight\|^2 = \operatorname{tr}\left(oldsymbol{\xi}_ioldsymbol{\xi}_i'oldsymbol{\xi}_i'oldsymbol{\xi}_i'
ight) = \left(\sum_{t=1}^T oldsymbol{\xi}_{it}^2
ight)^2.$$

Then by Minkowski's inequality we have

$$E \|\boldsymbol{\xi}_i\|^4 = E \left(\sum_{t=1}^T \xi_{it}^2\right)^2 \le \left(\sum_{t=1}^T \left[E\left(\xi_{it}^4\right)\right]^{1/2}\right)^2,$$

and since  $\sup_i E(|\xi_{it}|^{4+\epsilon}) < K$  for t = 1, 2, ..., T from result (A.1) of Lemma 1, result (A.3) follows noting that T is fixed. To establish (A.4), note that  $\Delta \mathbf{W}_i = (\mathbf{I}_T, \Delta \mathbf{X}_i, \Delta \mathbf{y}_{i,-1}) = (\mathbf{I}_T, \Delta \mathbf{X}_i, \mathbf{L}\Delta \mathbf{y}_i)$ , where  $\Delta \mathbf{y}_{i,-1} = (0, \Delta y_{i1}, ..., \Delta y_{i,T-1})'$ ,  $\Delta \mathbf{X}_i$  and  $\Delta \mathbf{y}_i$  are given by (43) and (42), and recall  $\mathbf{L}$  is the lag matrix operator which is given explicitly by

$$\mathbf{L} = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & \cdots & \cdots & 0 \\ \vdots & 1 & 0 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}, \tag{A.5}$$

with  $\|\mathbf{L}\|^2 = T - 1$ . It is now easily seen that  $\|\Delta \mathbf{W}_i\|^2 \le T + \|\Delta \mathbf{X}_i\|^2 + (T - 1) \|\Delta \mathbf{y}_i\|^2$ , and by Minkowski's inequality we obtain

$$(E \|\Delta \mathbf{W}_i\|^4)^{1/2} \le T + (E \|\Delta \mathbf{X}_i\|^4)^{1/2} + (T-1)(E \|\Delta \mathbf{y}_i\|^4)^{1/2}.$$

Also  $\|\Delta \mathbf{X}_i\|^2 = \|\Delta \mathbf{x}_{i1}\|^2 + 2\sum_{t=2}^T \|\Delta \mathbf{x}_{it}\|^2$ , and since by result (A.2) of Lemma 1  $\sup_{i,t} E\left(\|\Delta \mathbf{x}_{it}\|^{4+\epsilon}\right) < K$ , it then follows that  $\sup_i E\|\Delta \mathbf{X}_i\|^4 < K$ . Similarly, using (42), we have

$$\|\Delta \mathbf{y}_i\| \leq \|\mathbf{a}\| + \|\mathbf{B}^{-1}(\gamma)\| \|\boldsymbol{\delta}\| \|\Delta \mathbf{X}_i\| + \|\mathbf{B}^{-1}(\gamma)\| \|\boldsymbol{\xi}_i\|,$$

and by assumption  $\|\mathbf{a}\| < K$ ,  $\|\boldsymbol{\delta}\| < K$ , and  $\|\mathbf{B}^{-1}(\gamma)\| < K$ . Also by result (A.1) of Lemma 1  $\sup_{i,t} E \left| \xi_{it} \right|^{4+\epsilon} < K$ , and it is already established that  $\sup_i E \left\| \Delta \mathbf{X}_i \right\|^4 < K$ . Hence,

$$\left(E \left\|\Delta \mathbf{y}_{i}\right\|^{4}\right)^{1/4} \leq \left\|\mathbf{a}\right\| + \left\|\mathbf{B}^{-1}\left(\gamma\right)\right\| \left\|\boldsymbol{\delta}\right\| \left(E \left\|\Delta \mathbf{X}_{i}\right\|^{4}\right)^{1/4} + \left\|\mathbf{B}^{-1}\left(\gamma\right)\right\| \left(E \left\|\boldsymbol{\xi}_{i}\right\|^{4}\right)^{1/4},$$

and it follows that  $\sup_{i} E \|\Delta \mathbf{y}_{i}\|^{4} < K$ , as required.  $\blacksquare$ 

Lemma 3 Consider the model given by (28) and let

$$\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}) = \Delta \mathbf{y}_{i} - \Delta \mathbf{W}_{i} \boldsymbol{\varphi}, \ \boldsymbol{\Sigma}_{\boldsymbol{\xi}}(\boldsymbol{\psi}) = E\left[\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}) \, \boldsymbol{\xi}_{i}'(\boldsymbol{\varphi})\right].$$

Define

$$\mathbf{d}_{i}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}) = \Delta \mathbf{W}_{i}' \boldsymbol{\Sigma}_{\varepsilon} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}), \qquad (A.6)$$

and suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41) hold. Then

$$E_0\left[\mathbf{d}_i(\boldsymbol{\psi}, \boldsymbol{\varphi}_0)\right] = \mathbf{b}\left(\boldsymbol{\psi}, \boldsymbol{\varphi}_0\right) = \left[\mathbf{0}, \mathbf{0}, -\kappa\left(\boldsymbol{\psi}, \boldsymbol{\psi}_0\right)\right]',\tag{A.7}$$

where

$$\kappa(\psi, \psi_0) = \operatorname{tr} \left\{ \left[ \mathbf{\Sigma}_{\xi} (\psi) - \mathbf{\Sigma}_{\xi} (\psi_0) \right] \mathbf{C} (\psi, \gamma_0) \right\}$$
(A.8)

and

$$\mathbf{C}(\boldsymbol{\psi}, \gamma_0) = \boldsymbol{\Sigma}_{\boldsymbol{\xi}}(\boldsymbol{\psi})^{-1} \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma_0^{T-3} & \gamma_0^{T-4} & \cdots & 0 & 0 \\ \gamma_0^{T-2} & \gamma_0^{T-3} & \cdots & 1 & 0 \end{pmatrix}.$$
(A.9)

*Furthermore* 

$$E_0[\mathbf{d}_i(\psi_0, \varphi_0)] = \mathbf{0}, \text{ for } i = 1, 2, ..., N,$$
 (A.10)

$$\mathbf{b}_{N}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{d}_{i}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}) \stackrel{a.s.}{\rightarrow} \mathbf{b}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}) = [\mathbf{0}, \mathbf{0}, -\kappa(\boldsymbol{\psi}, \boldsymbol{\psi}_{0})]', \tag{A.11}$$

$$\mathbf{b}_{N}(\boldsymbol{\psi}_{0},\boldsymbol{\varphi}_{0}) = \frac{1}{N} \sum_{i=1}^{N} \Delta \mathbf{W}_{i}^{\prime} \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi}_{0})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}) \stackrel{a.s.}{\rightarrow} \mathbf{0}, \tag{A.12}$$

and

$$\Sigma_{N,\xi}(\boldsymbol{\psi}_0) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\xi}_i(\boldsymbol{\varphi}_0) \boldsymbol{\xi}_i(\boldsymbol{\varphi}_0)' \stackrel{a.s.}{\to} \Sigma_{\xi}(\boldsymbol{\psi}_0). \tag{A.13}$$

**Proof.** First recall that  $\boldsymbol{\theta} = (\boldsymbol{\varphi}', \boldsymbol{\psi}')'$  with  $\boldsymbol{\varphi} = (\boldsymbol{\delta}', \gamma)'$ ,  $\boldsymbol{\delta} = (\mathbf{d}', \boldsymbol{\phi}')' = (\mathbf{d}', \boldsymbol{\pi}', \boldsymbol{\beta}')'$  where  $\boldsymbol{\phi} = (\boldsymbol{\pi}', \boldsymbol{\beta}')'$  and  $\boldsymbol{\psi} = (\omega, \sigma^2, vec(\mathbf{Q})')'$ . Under (28),

$$\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) = \Delta \mathbf{y}_{i} - \Delta \mathbf{W}_{i} \boldsymbol{\varphi}_{0} = \mathbf{G}_{0} \boldsymbol{\eta}_{0i} + \mathbf{r}_{0i}, \tag{A.14}$$

where  $\mathbf{G}_0, \boldsymbol{\eta}_{0i}$ , and  $\mathbf{r}_{0i}$  denote the values of  $\mathbf{G}$ ,  $\boldsymbol{\eta}_i$  and  $\mathbf{r}_i$  evaluated at  $\boldsymbol{\psi} = \boldsymbol{\psi}_0$ . It is now easily seen that  $E_0\left[\boldsymbol{\xi}_i\left(\boldsymbol{\varphi}_0\right)\right] = \mathbf{0}$ , and  $Var\left[\boldsymbol{\xi}_i\left(\boldsymbol{\varphi}_0\right)\right] = E_0\left[\boldsymbol{\xi}_i\left(\boldsymbol{\varphi}_0\right)\boldsymbol{\xi}_i'\left(\boldsymbol{\varphi}_0\right)\right] = \boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_0\right)$ . Also under Assumptions 1-6,  $\boldsymbol{\xi}_i\left(\boldsymbol{\varphi}\right) = \mathbf{G}\boldsymbol{\eta}_i + \mathbf{r}_i$  are independently distributed over i for all values of  $\boldsymbol{\theta} \in \boldsymbol{\Theta}_{\epsilon}$ , and  $\Delta \mathbf{x}_{it}$  is independently distributed from  $u_{it}$  and  $\boldsymbol{\eta}_i$ . Partition  $\Delta \mathbf{W}_i$  as  $\Delta \mathbf{W}_i = (\mathbf{I}_T, \Delta \mathbf{X}_i, \Delta \mathbf{y}_{i,-1})$ , where  $\mathbf{I}_T$  is the identity matrix of order T,  $\Delta \mathbf{X}_i$  is given by (43) and  $\Delta \mathbf{y}_{i,-1} = (0, \Delta y_{i1}, ..., \Delta y_{i,T-1})' = \mathbf{L}\Delta \mathbf{y}_i$ , where  $\mathbf{L}$  and  $\Delta \mathbf{y}_i$  are given by (A.5) and (42). Also, using (42) and evaluating it at  $\boldsymbol{\theta} = \boldsymbol{\theta}_0$  we have

$$\Delta \mathbf{y}_{i} = \mathbf{B} \left( \gamma_{0} \right)^{-1} \left( \Delta \mathbf{X}_{i} \boldsymbol{\phi}_{0} + \mathbf{d}_{0} \right) + \mathbf{B} \left( \gamma_{0} \right)^{-1} \boldsymbol{\xi}_{i} \left( \boldsymbol{\varphi}_{0} \right), \tag{A.15}$$

where  $\mathbf{B}(\gamma)$  is defined by (37). Consider now (A.6), and note that

$$\mathbf{d}_{i}(\boldsymbol{\psi},\boldsymbol{\varphi}_{0}) = \boldsymbol{\Delta}\mathbf{W}_{i}^{\prime}\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) = \begin{pmatrix} \boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) \\ \Delta\mathbf{X}_{i}\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) \\ \Delta\mathbf{y}_{i}^{\prime}\mathbf{L}^{\prime}\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) \end{pmatrix} = \begin{pmatrix} \mathbf{d}_{1i}(\boldsymbol{\psi},\boldsymbol{\varphi}_{0}) \\ \mathbf{d}_{2i}(\boldsymbol{\psi},\boldsymbol{\varphi}_{0}) \\ d_{3i}(\boldsymbol{\psi},\boldsymbol{\varphi}_{0}) \end{pmatrix}. \tag{A.16}$$

Further, using (A.15), write  $d_{3i}(\psi, \varphi_0)$  as

$$d_{3i}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}) = \left[\mathbf{B}(\gamma_{0})^{-1} (\Delta \mathbf{X}_{i} \boldsymbol{\phi}_{0} + \mathbf{d}_{0}) + \mathbf{B}(\gamma_{0})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0})\right]' \mathbf{L}' \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0})$$

$$= (\Delta \mathbf{X}_{i} \boldsymbol{\phi}_{0} + \mathbf{d}_{0})' \mathbf{B}(\gamma_{0})'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}) + \boldsymbol{\xi}'_{i} (\boldsymbol{\varphi}_{0}) \mathbf{B}(\gamma_{0})'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}).$$

$$(A.17)$$

Also under Assumptions 1, 3, and 5,  $\Delta \mathbf{X}_i$  and  $\boldsymbol{\xi}_i(\boldsymbol{\varphi}_0)$  are cross-sectionally independently distributed, and  $E_0[\boldsymbol{\xi}_i(\boldsymbol{\varphi}_0)] = \mathbf{0}$ . Hence

$$E_0\left[\mathbf{d}_{1i}\left(\boldsymbol{\psi},\boldsymbol{\varphi}_0\right)\right] = \mathbf{0}, \text{ and } E_0\left[\mathbf{d}_{2i}\left(\boldsymbol{\psi},\boldsymbol{\varphi}_0\right)\right] = \mathbf{0}, \text{ for all } i,$$
 (A.18)

and

$$E_{0} [d_{3i} (\boldsymbol{\psi}, \boldsymbol{\varphi}_{0})] = E_{0} [\boldsymbol{\xi}_{i}' (\boldsymbol{\varphi}_{0}) \mathbf{B} (\gamma_{0})'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0})]$$

$$= \operatorname{tr} \left\{ \mathbf{B} (\gamma_{0})'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} E_{0} [\boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}) \boldsymbol{\xi}_{i}' (\boldsymbol{\varphi}_{0})] \right\}$$

$$= \operatorname{tr} \left[ \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi}_{0}) \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \mathbf{L} \mathbf{B} (\gamma_{0})^{-1} \right].$$

Also, using (38) and (A.5), we have

$$\mathbf{\Gamma}(\gamma_0) = \mathbf{L}\mathbf{B}(\gamma_0)^{-1} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma_0^{T-3} & \gamma_0^{T-4} & \cdots & 0 & 0 \\ \gamma_0^{T-2} & \gamma_0^{T-3} & \cdots & 1 & 0 \end{pmatrix}.$$

Hence,  $\operatorname{tr}\left[\mathbf{LB}\left(\gamma_{0}\right)^{-1}\right]=0$ , and  $E_{0}\left[d_{3i}\left(\boldsymbol{\psi},\boldsymbol{\varphi}_{0}\right)\right]$  can be written as

$$E_0\left[d_{3i}\left(\boldsymbol{\psi},\boldsymbol{\varphi}_0\right)\right] = -\operatorname{tr}\left\{\left[\boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right) - \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}_0\right)\right]\mathbf{C}\left(\boldsymbol{\psi},\boldsymbol{\gamma}_0\right)\right\} = -\kappa\left(\boldsymbol{\psi},\boldsymbol{\psi}_0\right),\tag{A.19}$$

where  $\mathbf{C}(\psi,\gamma_0) = \mathbf{\Sigma}_{\xi}(\psi)^{-1} \mathbf{L} \mathbf{B}(\gamma_0)^{-1}$ . Using (A.19) and (A.18) now yields (A.7), as required. Result (A.10)—then—follows—immediately,—noting—that— $E_0[d_{3i}(\psi_0,\varphi_0)]=$  =  $\mathrm{tr}\left[\mathbf{\Sigma}_{\xi}(\psi_0)\mathbf{\Sigma}_{\xi}(\psi_0)^{-1}\mathbf{L} \mathbf{B}(\gamma_0)^{-1}\right]=\mathrm{tr}\left[\mathbf{L} \mathbf{B}(\gamma_0)^{-1}\right]=0$ . To establish (A.11), since  $\Delta \mathbf{X}_i$  and  $\boldsymbol{\xi}_i(\varphi_0)$  are cross-sectionally independent for i=1,2,...,N it follows that  $\mathbf{d}_i(\psi,\varphi_0)$  are also independently distributed across i. Hence to show that  $\mathbf{b}_N(\psi,\varphi_0)=\frac{1}{N}\sum_{i=1}^N\mathbf{d}_i(\psi,\varphi_0)$  converges almost surely to  $\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^NE_0\left[\mathbf{d}_i(\psi,\varphi_0)\right]$ , it is sufficient to show that  $\sup_i E_0\|\mathbf{d}_i(\psi,\varphi_0)\|^2 < K$ . Consider each of the three terms of  $\mathbf{d}_i(\psi,\varphi_0)$  in turn. First, from result (A.3) and Liapunov's inequality we have that  $E\|\xi_i\|^2 < K < \infty$  and noting that by assumption 7(ii)  $\mathbf{\Sigma}_{\xi}(\psi)^{-1}$  is positive definite uniformly in  $\psi \in \mathbf{\Theta}_{\psi}$ , then

$$\sup_{i} E_{0} \|\mathbf{d}_{1i}(\psi, \varphi_{0})\|^{2} \leq \|\mathbf{\Sigma}_{\xi}(\psi)^{-1}\|^{2} \sup_{i} E_{0} \|\boldsymbol{\xi}_{i}(\varphi_{0})\|^{2} < K.$$
(A.20)

Similarly, using in addition result (A.4) we have

$$\sup_{i} E_{0} \|\mathbf{d}_{2i}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0})\|^{2} \leq \sup_{i} E \|\Delta \mathbf{X}_{i}\|^{2} \|\boldsymbol{\Sigma}_{\boldsymbol{\xi}}(\boldsymbol{\psi})^{-1}\|^{2} \sup_{i} E_{0} \|\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0})\|^{2} < K. \tag{A.21}$$

Finally, applying the Minkowski inequality to (A.17) we have

$$\begin{aligned}
\left[E_0 \left\| d_{3i}(\boldsymbol{\psi}, \boldsymbol{\varphi}_0) \right\|^2 \right]^{1/2} &\leq \left[E_0 \left\| (\Delta \mathbf{X}_i \boldsymbol{\phi}_0 + \mathbf{d}_0)' \mathbf{B} (\gamma_0)'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_i (\boldsymbol{\varphi}_0) \right\|^2 \right]^{1/2} \\
&+ \left[E_0 \left\| \boldsymbol{\xi}_i' (\boldsymbol{\varphi}_0) \mathbf{B} (\gamma_0)'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_i (\boldsymbol{\varphi}_0) \right\|^2 \right]^{1/2},
\end{aligned}$$

$$E_{0} \left\| (\Delta \mathbf{X}_{i} \boldsymbol{\phi}_{0} + \mathbf{d}_{0})' \mathbf{B} (\gamma_{0})'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}) \right\|^{2} \leq E_{0} \left\| \Delta \mathbf{X}_{i} \boldsymbol{\phi}_{0} + \mathbf{d}_{0} \right\|^{2} \left\| \mathbf{B} (\gamma_{0})'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi})^{-1} \right\|^{2} \times E_{0} \left\| \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}) \right\|^{2},$$

$$E_{0} \left\| \boldsymbol{\xi}_{i}' (\boldsymbol{\varphi}_{0}) \mathbf{B} (\gamma_{0})'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi}_{0})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}) \right\|^{2} \leq \left\| \mathbf{B} (\gamma_{0})'^{-1} \mathbf{L}' \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi})^{-1} \right\|^{2} E_{0} \left\| \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}) \right\|^{4}.$$

But  $\|\mathbf{B}(\gamma_0)^{\prime-1}\mathbf{L}'\mathbf{\Sigma}_{\xi}(\psi)^{-1}\|^2 \le \|\mathbf{\Sigma}_{\xi}(\psi)^{-1}\|^2 \|\mathbf{L}\|^2 \|\mathbf{B}(\gamma_0)^{-1}\|^2$ , and it is easily seen that  $\|\mathbf{L}\|^2 = T - 1$ , and  $\|\mathbf{B}(\gamma_0)^{-1}\| \le \sum_{t=1}^T |\gamma_0|^{t-1} < K$ . Also, by results of Lemma 2,  $\sup_i E_0 \|\boldsymbol{\xi}_i(\varphi_0)\|^4 < K$ , and  $\|\mathbf{\Sigma}_{\xi}(\psi)^{-1}\| < K$ , by assumption. Further,  $E_0 \|\Delta\mathbf{X}_i\phi_0 + \mathbf{d}_0\|^2 \le \|\phi_0\|^2 E \|\Delta\mathbf{X}_i\|^2 + \|\mathbf{d}_0\|^2$  which is uniformly bounded under results (A.4) of Lemma 2, noting that  $\phi_0$  and  $\mathbf{d}_0$  are defined on a compact set and are bounded as well. Therefore,  $\sup_i E_0 \|d_{3i}(\psi, \varphi_0)\|^2 < K$ . Now using this result together with (A.20) and (A.21) in (A.16) we have

$$\sup_{i} E_{0} \|\mathbf{d}_{i}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0})\|^{2} = \sup_{i} E_{0} \|\Delta \mathbf{W}_{i}' \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0})\|^{2} < K,$$

which establishes that  $\mathbf{d}_i(\psi, \varphi_0)$  is uniformly  $L_2$ -bounded, besides being cross-sectionally independent. Hence,

$$\mathbf{b}_{N}\left(\boldsymbol{\psi},\boldsymbol{\varphi}_{0}\right)=N^{-1}\sum_{i=1}^{N}\mathbf{d}_{i}(\boldsymbol{\psi},\boldsymbol{\varphi}_{0})\overset{a.s.}{\rightarrow}\lim_{N\rightarrow\infty}N^{-1}\sum_{i=1}^{N}E_{0}\left[\mathbf{d}_{i}(\boldsymbol{\psi},\boldsymbol{\varphi}_{0})\right]=\left[\mathbf{0},\mathbf{0},-\kappa\left(\boldsymbol{\psi},\boldsymbol{\psi}_{0}\right)\right]',$$

which establishes (A.11). Result (A.12) follows from the above by setting  $\psi = \psi_0$  and noting from (A.10) that  $E_0[\mathbf{d}_i(\psi_0, \varphi_0)] = \mathbf{0}$ . Finally, since  $\sup_i E_0 \|\boldsymbol{\xi}_i(\varphi_0)\boldsymbol{\xi}_i'(\varphi_0)\|^2 < K$ , for a finite T (see result (A.3) of Lemma 2), and by assumption  $\boldsymbol{\xi}_i(\varphi_0)\boldsymbol{\xi}_i'(\varphi_0)$  are distributed independently over i, then

$$\boldsymbol{\Sigma}_{N,\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)=\frac{1}{N}\sum_{i=1}^{N}\boldsymbol{\xi}_{i}\left(\boldsymbol{\varphi}_{0}\right)\boldsymbol{\xi}_{i}\left(\boldsymbol{\varphi}_{0}\right)^{\prime}\overset{a.s.}{\rightarrow}\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{i=1}^{N}E_{0}\left[\boldsymbol{\xi}_{i}\left(\boldsymbol{\varphi}_{0}\right)\boldsymbol{\xi}_{i}\left(\boldsymbol{\varphi}_{0}\right)^{\prime}\right],$$

and result (A.13) follows, since  $E_0\left[\boldsymbol{\xi}_i\left(\boldsymbol{\varphi}_0\right)\boldsymbol{\xi}_i'\left(\boldsymbol{\varphi}_0\right)\right]=\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_0\right)$ .

Lemma 4 Consider the average log-likelihood function

$$\bar{\ell}_{N}\left(\boldsymbol{\theta}\right) = \bar{\ell}_{N}\left(\boldsymbol{\varphi}, \boldsymbol{\psi}\right) = -\frac{T}{2}\ln\left(2\pi\right) - \frac{1}{2}\ln\left|\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}\right)\right| - \frac{1}{2N}\sum_{i=1}^{N}\boldsymbol{\xi}_{i}\left(\boldsymbol{\varphi}\right)'\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}\right)^{-1}\boldsymbol{\xi}_{i}\left(\boldsymbol{\varphi}\right) \tag{A.22}$$

 $\bar{\ell}_N(\boldsymbol{\theta}) = N^{-1}\ell_N(\boldsymbol{\theta})$  and  $\ell_N(\boldsymbol{\theta})$  is defined by (34). Then under Assumptions 1-7(ii),(iii) and 8, and the order condition (41), we have

$$\bar{\ell}_{N}\left(\boldsymbol{\theta}_{0}\right) \stackrel{a.s.}{\to} -\frac{T}{2}\ln\left(2\pi\right) - \frac{1}{2}\log\left|\boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}_{0}\right)\right| - \frac{T}{2},\tag{A.23}$$

and

$$\bar{\ell}_{N}(\boldsymbol{\theta}) \stackrel{a.s.}{\longrightarrow} -\frac{T}{2} \ln(2\pi) - \frac{1}{2} \ln|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})| - \frac{1}{2} \operatorname{tr} \left[ \boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1} \boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi}_{0}) \right] 
- \frac{1}{2} (\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0})' \mathbf{A}(\boldsymbol{\psi}) (\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0}) - (\gamma - \gamma_{0}) \kappa(\boldsymbol{\psi}, \boldsymbol{\psi}_{0}),$$
(A.24)

where  $\kappa(\psi, \psi_0)$  is defined by (A.8). Also

$$\bar{\ell}_{N}\left(\boldsymbol{\theta}_{0}\right) - \bar{\ell}_{N}\left(\boldsymbol{\theta}\right) \stackrel{a.s.}{\to} \lim_{N \to \infty} E_{0}\left[\bar{\ell}_{N}\left(\boldsymbol{\theta}_{0}\right) - \bar{\ell}_{N}\left(\boldsymbol{\theta}\right)\right] \ge 0,\tag{A.25}$$

where

$$\lim_{N\to\infty} E_{0} \left[ \bar{\ell}_{N} \left( \boldsymbol{\theta}_{0} \right) - \bar{\ell}_{N} \left( \boldsymbol{\theta} \right) \right] = \frac{1}{2} \operatorname{tr} \left[ \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi}_{0} \right) \right] - \frac{1}{2} \log \left( \left| \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi}_{0} \right) \right| / \left| \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right) \right| \right) - \frac{T}{2} + \frac{1}{2} \left( \boldsymbol{\varphi} - \boldsymbol{\varphi}_{0} \right)' \boldsymbol{\Lambda} \left( \boldsymbol{\psi} \right) \left( \boldsymbol{\varphi} - \boldsymbol{\varphi}_{0} \right) + \left( \boldsymbol{\gamma} - \boldsymbol{\gamma}_{0} \right) \kappa \left( \boldsymbol{\psi}, \boldsymbol{\psi}_{0} \right).$$
(A.26)

**Proof.** Result (A.23) follows by evaluating (A.22) under  $\theta = \theta_0$ , and using (A.13) from Lemma 3. To establish (A.24) we first note that for any  $\theta \in \Theta_{\epsilon}$ ,  $\xi_i(\varphi) = \xi_i(\varphi_0) - \Delta \mathbf{W}_i(\varphi - \varphi_0)$ , and using this result in (A.22) we have

$$\bar{\ell}_{N}(\boldsymbol{\theta}) = -\frac{T}{2}\ln(2\pi) - \frac{1}{2}\ln|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})| - \frac{1}{2N} \left[ \begin{array}{c} \sum_{i=1}^{N} \left[\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) - \Delta \mathbf{W}_{i}(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0})\right]' \boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1} \\ \times \left[\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) - \Delta \mathbf{W}_{i}(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0})\right] \end{array} \right] \\
= -\frac{T}{2}\ln(2\pi) - \frac{1}{2}\ln|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})| - \frac{1}{2} \left[ \begin{array}{c} \operatorname{tr}\left(\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1} \left[\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) \boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0})'\right]\right) \\ -2(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0})' \mathbf{b}_{N}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}) \\ +(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0})' \mathbf{A}_{N}(\boldsymbol{\psi})(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0}) \end{array} \right], \tag{A.27}$$

where

$$\mathbf{A}_{N}(\boldsymbol{\psi}) = \frac{1}{N} \sum_{i=1}^{N} \Delta \mathbf{W}_{i}' \boldsymbol{\Sigma}_{\xi} (\boldsymbol{\psi})^{-1} \Delta \mathbf{W}_{i}, \ \mathbf{b}_{N}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{d}_{i}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}), \tag{A.28}$$

and  $\mathbf{d}_{i}(\boldsymbol{\psi}, \boldsymbol{\varphi}_{0}) = \Delta \mathbf{W}_{i}' \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\boldsymbol{\psi})^{-1} \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0})$ , as defined by (A.6).

Next consider  $\mathbf{A}_{N}\left(\boldsymbol{\psi}\right) = \frac{1}{N} \sum_{i=1}^{N} \Delta \mathbf{W}_{i}^{\prime} \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1} \Delta \mathbf{W}_{i}$  and note that

$$\sup_{i} E \left\| \Delta \mathbf{W}_{i}' \mathbf{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \Delta \mathbf{W}_{i} \right\|^{2} < \left\| \mathbf{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \right\|^{2} \sup_{i} E \left\| \Delta \mathbf{W}_{i} \right\|^{4} < K,$$

where  $\|\mathbf{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1}\| < K$  under condition (ii) of Assumption 7, and  $\sup_{i} E \|\Delta \mathbf{W}_{i}\|^{4} < K$  by Lemma 2. Also under Assumptions 1, 3, and 5,  $\Delta \mathbf{W}_{i}$  are cross-sectionally independent. This follows since  $\Delta \mathbf{x}_{i}$  are independent across i by Assumption 5 (see also the expression for  $\Delta \mathbf{x}_{i}$  given by (20)), and  $\Delta y_{it}$  being a function of  $\Delta \mathbf{x}_{it}$  and  $\xi_{it}$  (see (42)) are also cross-sectionally independent noting that  $\xi_{it}$  are cross-sectionally independent under Assumptions 1 and 3. Hence,  $\mathbf{A}_{N}(\boldsymbol{\psi}) \stackrel{a.s.}{\to} \mathbf{A}(\boldsymbol{\psi})$  for every  $\boldsymbol{\psi} \in \boldsymbol{\Theta}_{\boldsymbol{\psi}}$  (see, for example, Davidson (1994, Theorem 19.4)).

Result (A.24) then follows using (A.11) and (A.13) from Lemma 3 in (A.27) evaluated at  $\theta_0$  and  $\theta$ , respectively. Results (A.25) and (A.26) follow from the sure convergence property of (A.23) and (A.24). That  $\lim_{N\to\infty} E_0\left[\bar{\ell}_N\left(\theta_0\right) - \bar{\ell}_N\left(\theta\right)\right] \geq 0$  follows from the Kullback–Leibler type information inequality and Jensen's inequality (see for example Section 2.1 of Lee and Yu (2016)).

**Lemma 5** Consider the average log-likelihood function defined by (53) and (35):

$$\bar{\ell}_{N}(\boldsymbol{\theta}) = -\frac{T}{2}\ln(2\pi) - \frac{1}{2}\ln|\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})| - \frac{1}{2N}\sum_{i=1}^{N}\boldsymbol{\xi}_{i}'(\boldsymbol{\varphi})\boldsymbol{\Sigma}_{\xi}(\boldsymbol{\psi})^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}),$$
  
$$\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}) = \Delta \mathbf{y}_{i} - \Delta \mathbf{W}_{i}\boldsymbol{\varphi},$$

and suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41), hold. Denote the average score function by  $\bar{\mathbf{s}}_N(\boldsymbol{\theta}) = \partial \bar{\ell}_N(\boldsymbol{\theta}) / \partial \boldsymbol{\theta}$ . Then

$$\mathbf{\bar{s}}_{N}\left(\boldsymbol{\theta}_{0}\right)\overset{a.s}{\rightarrow}\mathbf{0},$$
 (A.29)

$$\sqrt{N}\bar{\mathbf{s}}_N\left(\boldsymbol{\theta}_0\right) \to_d N\left[\mathbf{0}, \mathbf{J}\left(\boldsymbol{\theta}_0\right)\right],$$
 (A.30)

where

$$\mathbf{J}(\boldsymbol{\theta}_{0}) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} E\left[\boldsymbol{\omega}_{i}(\boldsymbol{\theta}_{0}) \, \boldsymbol{\omega}_{i}'(\boldsymbol{\theta}_{0})\right], \tag{A.31}$$

$$\boldsymbol{\omega}_{i}\left(\boldsymbol{\theta}_{0}\right) = \begin{pmatrix} \Delta \mathbf{W}_{i}^{\prime} \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}_{0}\right)^{-1} \boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) \\ \boldsymbol{\nu}_{i}\left(\boldsymbol{\theta}_{0}\right) \end{pmatrix}, \tag{A.32}$$

with the  $j^{th}$  element of  $\boldsymbol{\nu}_i(\boldsymbol{\theta}_0)$  given by

$$\nu_{ij}\left(\boldsymbol{\theta}_{0}\right) = \frac{1}{2}\boldsymbol{\xi}_{i}'(\boldsymbol{\varphi}_{0})\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\frac{\partial\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)}{\partial\psi_{j}}\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) - \frac{1}{2}\operatorname{tr}\left[\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\frac{\partial\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)}{\partial\psi_{j}}\right].\tag{A.33}$$

A consistent estimator of  $\mathbf{J}(\boldsymbol{\theta}_0)$  is given by

$$\widehat{\mathbf{J}}\left(\widehat{\boldsymbol{\theta}}\right) = \frac{1}{N} \sum_{i=1}^{N} \omega_i \left(\widehat{\boldsymbol{\theta}}\right) \omega_i' \left(\widehat{\boldsymbol{\theta}}\right), \tag{A.34}$$

where  $\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_{\epsilon}} \bar{\ell}_{N}(\boldsymbol{\theta}).$ 

**Proof.** Let  $\bar{\mathbf{s}}_N(\boldsymbol{\theta}) = \left(\bar{\mathbf{s}}'_{N,\varphi}(\boldsymbol{\theta}), \bar{\mathbf{s}}'_{N,\psi}(\boldsymbol{\theta})\right)'$ ,  $\boldsymbol{\psi} = \left(\psi_1, \psi_2, ..., \psi_{n_{\psi}}\right)'$ , where  $n_{\psi} = \dim(\boldsymbol{\psi}) = 1 + Tm - m(m-1)/2$ , and note that

$$\begin{split} \bar{\mathbf{s}}_{N,\varphi}(\boldsymbol{\theta}) &= \frac{\partial \bar{\ell}_{N}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\varphi}} = \frac{1}{N} \sum_{i=1}^{N} \Delta \mathbf{W}_{i}' \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1} \boldsymbol{\xi}_{i}(\boldsymbol{\varphi}), \\ \bar{\mathbf{s}}_{N,\psi_{j}}(\boldsymbol{\theta}) &= \frac{\partial \bar{\ell}_{N}\left(\boldsymbol{\theta}\right)}{\partial \psi_{j}} = -\frac{1}{2} \frac{\partial \ln \left|\boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)\right|}{\partial \psi_{j}} + \frac{1}{2N} \sum_{i=1}^{N} \boldsymbol{\xi}_{i}'(\boldsymbol{\varphi}) \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1} \frac{\partial \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)}{\partial \psi_{j}} \boldsymbol{\Sigma}_{\xi}\left(\boldsymbol{\psi}\right)^{-1} \boldsymbol{\xi}_{i}(\boldsymbol{\varphi}), \end{split}$$

for  $j = 1, 2, ..., n_{\psi}$ . Using (A.6), and result (A.12) of Lemma 3, it then readily follows that

$$\bar{\mathbf{s}}_{N,\varphi}(\boldsymbol{\theta}_0) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{d}_i \left(\boldsymbol{\theta}_0\right) \stackrel{a.s}{\to} \mathbf{0}, \tag{A.35}$$

Also

$$E_{0}\left[\boldsymbol{\xi}_{i}^{\prime}(\boldsymbol{\varphi}_{0})\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\frac{\partial\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)}{\partial\boldsymbol{\psi}_{i}}\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0})\right]=\operatorname{tr}\left[\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\frac{\partial\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)}{\partial\boldsymbol{\psi}_{i}}\right],$$

and using well known results on the partial derivatives of the determinants, we have (see, for example, Magnus and Neudecker (1988, p.151)).

$$\frac{\partial \ln \left| \boldsymbol{\Sigma}_{\boldsymbol{\xi}} \left( \boldsymbol{\psi}_{0} \right) \right|}{\partial \boldsymbol{\psi}_{j}} = \operatorname{tr} \left[ \boldsymbol{\Sigma}_{\boldsymbol{\xi}} \left( \boldsymbol{\psi}_{0} \right)^{-1} \frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{\xi}} \left( \boldsymbol{\psi}_{0} \right)}{\partial \boldsymbol{\psi}_{j}} \right],$$

and hence  $\bar{\mathbf{s}}_{N,\psi}(\boldsymbol{\theta})$  can be written alternatively as

$$\mathbf{\bar{s}}_{N,\psi_{j}}(\boldsymbol{\theta}_{0}) = \frac{\partial \bar{\ell}_{N}\left(\boldsymbol{\theta}_{0}\right)}{\partial \psi_{j}} = \frac{1}{N} \sum_{i=1}^{N} \nu_{ij}.$$

where

$$\nu_{ij}\left(\boldsymbol{\theta}_{0}\right) = \frac{1}{2}\boldsymbol{\xi}_{i}'(\boldsymbol{\varphi}_{0})\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\frac{\partial\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)}{\partial\psi_{j}}\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\boldsymbol{\xi}_{i}(\boldsymbol{\varphi}_{0}) - \frac{1}{2}\operatorname{tr}\left[\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)^{-1}\frac{\partial\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}_{0}\right)}{\partial\psi_{j}}\right].\tag{A.36}$$

Therefore,

$$ar{\mathbf{s}}_N(oldsymbol{ heta}_0) = \left(egin{array}{c} ar{\mathbf{s}}_{N,arphi}(oldsymbol{ heta}_0) \ ar{\mathbf{s}}_{N,\psi}(oldsymbol{ heta}_0) \end{array}
ight) = \left(egin{array}{c} rac{1}{N} \sum_{i=1}^N \mathbf{d}_i(oldsymbol{ heta}_0) \ rac{1}{N} \sum_{i=1}^N oldsymbol{
u}_i(oldsymbol{ heta}_0) \end{array}
ight),$$

where  $\boldsymbol{\nu}_{i}\left(\boldsymbol{\theta}_{0}\right) = \left(\nu_{i1}\left(\boldsymbol{\theta}_{0}\right), \nu_{i2}\left(\boldsymbol{\theta}_{0}\right), ..., \nu_{i,n_{\psi}}\left(\boldsymbol{\theta}_{0}\right)\right)'$ .

$$\sup_{i} E \|\boldsymbol{\nu}_{i}\left(\boldsymbol{\theta}_{0}\right)\|^{2} = \sup_{i} E\left(\boldsymbol{\nu}_{i}'\left(\boldsymbol{\theta}_{0}\right)\boldsymbol{\nu}_{i}\left(\boldsymbol{\theta}_{0}\right)\right) = \sum_{i=1}^{n_{\psi}} \sup_{i} E\left(\nu_{ij}^{2}\left(\boldsymbol{\theta}_{0}\right)\right) \leq n_{\psi} \sup_{i,j} E\left|\nu_{ij}\left(\boldsymbol{\theta}_{0}\right)\right|^{2},$$

and application of Minkowski's inequality to (A.36) yields

$$\sup_{i} E \left| \nu_{ij} \left( \boldsymbol{\theta}_{0} \right) \right|^{2} \leq \frac{1}{4} \left[ \left\| \boldsymbol{\Sigma}_{\boldsymbol{\xi}} \left( \boldsymbol{\psi}_{0} \right)^{-1} \right\|^{2} \left\| \frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{\xi}} \left( \boldsymbol{\psi}_{0} \right)}{\partial \boldsymbol{\psi}_{j}} \right\| \left( \sup_{i} E \left\| \boldsymbol{\xi}_{i} (\boldsymbol{\varphi}_{0}) \right\|^{4} \right)^{1/2} + \left| \boldsymbol{C} \right| \right]^{2},$$

where  $C = \operatorname{tr}\left[\Sigma_{\xi}(\psi_{0})^{-1} \frac{\partial \Sigma_{\xi}(\psi_{0})}{\partial \psi_{j}}\right]$ . But under Assumption 7(ii) and noting that  $n_{\psi}$  is finite, we also have  $\left\|\frac{\partial \Sigma_{\xi}(\psi_{0})}{\partial \psi_{j}}\right\| < K$  and  $\left\|\Sigma_{\xi}(\psi_{0})^{-1}\right\| < K$ , and from result (A.3)  $\sup_{i} E \left\|\boldsymbol{\xi}_{i}(\varphi_{0})\right\|^{4} < K$ . Therefore,  $\sup_{i} E \left\|\boldsymbol{\nu}_{i}(\boldsymbol{\theta}_{0})\right\|^{2} < K$ . Also recall that  $\boldsymbol{\xi}_{i}(\varphi_{0})$  are independently distributed over i, which implies that  $\boldsymbol{\nu}_{i}$  are also independently distributed across i. Therefore,  $\boldsymbol{\nu}_{i}$  have zero means (by construction), are independently distributed over i and have bounded second-order moments, which ensure that  $\bar{\mathbf{s}}_{N,\psi}(\boldsymbol{\theta}_{0}) \stackrel{a.s}{\to} \mathbf{0}$ , and together with (A.35) yields  $\bar{\mathbf{s}}_{N}(\boldsymbol{\theta}_{0}) \stackrel{a.s}{\to} \mathbf{0}$ , as required. Consider now the limiting distribution of  $\sqrt{N}\bar{\mathbf{s}}_{N}(\boldsymbol{\theta}_{0})$  and note that

$$\sqrt{N}\bar{\mathbf{s}}_{N}(\boldsymbol{\theta}_{0}) = \begin{pmatrix} \sqrt{N}\bar{\mathbf{s}}_{N,\varphi}(\boldsymbol{\theta}_{0}) \\ \sqrt{N}\bar{\mathbf{s}}_{N,\psi}(\boldsymbol{\theta}_{0}) \end{pmatrix} = \frac{1}{\sqrt{N}} \begin{pmatrix} \sum_{i=1}^{N} \mathbf{d}_{i}(\boldsymbol{\theta}_{0}) \\ \sum_{i=1}^{N} \boldsymbol{\nu}_{i}\left(\boldsymbol{\theta}_{0}\right) \end{pmatrix} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \boldsymbol{\omega}_{i}\left(\boldsymbol{\theta}_{0}\right),$$

where  $\omega_i(\theta_0) = (\mathbf{d}_i'(\theta_0), \boldsymbol{\nu}_i'(\theta_0))'$ , and it is already established that  $\omega_i(\theta_0)$  are independently distributed over i, have zero means and bounded second-order moments. Therefore, by the Liapounov central limit theorem and the Cramér-Wold device we have  $\nabla N = \mathbf{J}(\theta_0) \rightarrow_d N[\mathbf{0}, \mathbf{J}(\theta_0)]$ , where  $\mathbf{J}(\theta_0)$  is given by (A.31), as required.  $\nabla N = \mathbf{J}(\theta_0)$  for  $\mathbf{J}(\theta_0)$  for  $\mathbf{J}(\theta_0)$  follows from the local consistency of  $\mathbf{0}$  for  $\mathbf{0}$  on  $\mathbf{0}$ , and the independence of  $\mathbf{0}$  ( $\mathbf{0}$ ) over i.

# A.2 Proofs of Propositions and Theorems

**Proof of Theorem 2.** Firstly, under the assumptions of the theorem it suffices to show that  $\bar{C}_N(\theta) = -2\bar{\ell}_N(\theta) \xrightarrow{a.s.} \bar{C}(\theta)$  uniformly on  $\Theta_{\epsilon}$  (see Section 6), which together with the result in Proposition 1 and that  $\Sigma_{\xi}(\psi_0)$  and  $\Sigma_{\xi}(\psi)$  commute deliver local consistency. From results in Lemma 4 (see (A.25) and (A.26)) it follows that  $\bar{C}_N(\theta) = -2\bar{\ell}_N(\theta) \xrightarrow{a.s.} \bar{C}(\theta)$  for every  $\theta \in \Theta_{\epsilon}$ , where

$$\bar{C}_{N}\left(\boldsymbol{\theta}\right) = \bar{C}_{N}\left(\boldsymbol{\varphi},\boldsymbol{\psi}\right) = T\ln\left(2\pi\right) + \ln\left|\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}\right)\right| + \frac{1}{N}\sum_{i=1}^{N}\boldsymbol{\xi}_{i}\left(\boldsymbol{\varphi}\right)'\boldsymbol{\Sigma}_{\boldsymbol{\xi}}\left(\boldsymbol{\psi}\right)^{-1}\boldsymbol{\xi}_{i}\left(\boldsymbol{\varphi}\right)$$

and

$$\bar{C}\left(\boldsymbol{\theta}\right) = \bar{C}\left(\boldsymbol{\varphi}, \boldsymbol{\psi}\right) = \chi\left(\boldsymbol{\psi}, \boldsymbol{\psi}_{0}\right) + \left(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0}\right)' \mathbf{A}\left(\boldsymbol{\psi}\right) \left(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0}\right) + 2\left(\boldsymbol{\gamma} - \boldsymbol{\gamma}_{0}\right) \kappa(\boldsymbol{\psi}, \boldsymbol{\psi}_{0}) + C(\boldsymbol{\psi}_{0}),$$

and the term C does not depend on  $\theta$ . Since  $\bar{\ell}_N(\theta)$  is continuous in  $\theta$  by assumption, this pointwise result holds uniformly on  $\Theta_{\epsilon}$  by the uniform law of large numbers, so long as the dominance condition

$$E \sup_{\theta \in \mathbf{\Theta}_{\epsilon}} \left| \boldsymbol{\xi}_{i}'(\boldsymbol{\varphi}) \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \boldsymbol{\xi}_{i}(\boldsymbol{\varphi}) + T \ln \left( 2\pi \right) + \ln \left| \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right) \right| \right| < \infty$$

holds; see for example Pötscher and Prucha (2001, Theorem 23).

Since T is finite, it is sufficient to show that

$$E \sup_{\theta \in \mathbf{\Theta}_{\epsilon}} \left| \boldsymbol{\xi}_{i}'(\boldsymbol{\varphi}) \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \boldsymbol{\xi}_{i}(\boldsymbol{\varphi}) + \ln \left| \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right) \right| \right| < \infty.$$

<sup>&</sup>lt;sup>25</sup>See, for example, White (2001, Theorem 5.10).

We have that

$$E \sup_{\theta \in \Theta_{\epsilon}} \left| \boldsymbol{\xi}_{i}'(\varphi) \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \boldsymbol{\xi}_{i}(\varphi) + \ln \left| \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right) \right| \right| \leq E \sup_{\theta \in \Theta_{\epsilon}} \left| \boldsymbol{\xi}_{i}'(\varphi) \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right)^{-1} \boldsymbol{\xi}_{i}(\varphi) \right| + \sup_{\boldsymbol{\psi} \in \Theta_{\psi}} \left| \ln \left| \boldsymbol{\Sigma}_{\xi} \left( \boldsymbol{\psi} \right) \right| \right|.$$

Starting with the second term and using Assumption 7(ii) and the property that for any positive definite real  $n \times n$  matrix  $\mathbf{A}$ ,  $\ln |\mathbf{A}| \leq \operatorname{tr}(\mathbf{A}) - n$ ,

$$\sup_{\psi \in \mathbf{\Theta}_{\psi}} |\ln |\mathbf{\Sigma}_{\xi} (\psi)|| \leq \sup_{\psi \in \mathbf{\Theta}_{\psi}} |\operatorname{tr}[\mathbf{\Sigma}_{\xi} (\psi)] - T|$$

$$\leq \sup_{\psi \in \mathbf{\Theta}_{\psi}} \left( \sum_{t=1}^{T} \lambda_{t} [\mathbf{\Sigma}_{\xi} (\psi)] \right) + T$$

$$\leq T \sup_{\psi \in \mathbf{\Theta}_{\psi}} (\lambda_{\max} [\mathbf{\Sigma}_{\xi} (\psi)]) - T \leq T(c_{\max} - 1) < \infty.$$

For the first term, defining  $\Theta_{\varphi} = \Theta_{\delta} \times \mathcal{N}_{\epsilon}(\varrho_0)$ , we have

$$E \sup_{\theta \in \Theta_{\epsilon}} \left| \boldsymbol{\xi}_{i}'(\varphi) \boldsymbol{\Sigma}_{\xi} (\psi)^{-1} \boldsymbol{\xi}_{i}(\varphi) \right| \leq E \sup_{\theta \in \Theta_{\epsilon}} \left| \operatorname{tr}[\boldsymbol{\xi}_{i}(\varphi) \boldsymbol{\xi}_{i}'(\varphi) \boldsymbol{\Sigma}_{\xi} (\psi)^{-1}] \right|$$

$$\leq E \sup_{\theta \in \Theta_{\epsilon}} \left\{ \lambda_{\max} [\boldsymbol{\Sigma}_{\xi} (\psi)^{-1}] \| \boldsymbol{\xi}_{i}(\varphi) \|^{2} \right\}$$

$$\leq E \sup_{\psi \in \Theta_{\psi}} \lambda_{\max} [\boldsymbol{\Sigma}_{\xi} (\psi)^{-1}] E \sup_{\varphi \in \Theta_{\varphi}} \| \boldsymbol{\xi}_{i}(\varphi) \|^{2}$$

$$\leq E \left( \inf_{\psi \in \Theta_{\psi}} \lambda_{\min} [\boldsymbol{\Sigma}_{\xi} (\psi)] \right)^{-1} E \sup_{\varphi \in \Theta_{\varphi}} \| \boldsymbol{\xi}_{i}(\varphi) \|^{2}$$

$$\leq \frac{1}{c_{\min}} E \sup_{\varphi \in \Theta_{\varphi}} \| \boldsymbol{\xi}_{i}(\varphi) \|^{2} .$$

Further

$$E \sup_{\varphi \in \mathbf{\Theta}_{\varphi}} \|\boldsymbol{\xi}_{i}(\varphi)\|^{2} = E \sup_{\varphi \in \mathbf{\Theta}_{\varphi}} \|\Delta \mathbf{y}_{i} - \Delta \mathbf{W}_{i}\varphi\|^{2}$$

$$\leq E \|\Delta \mathbf{y}_{i}\|^{2} + E \|\Delta \mathbf{W}_{i}\|^{2} \sup_{\varphi \in \mathbf{\Theta}_{\varphi}} \|\varphi\|^{2}.$$

But given that  $\Theta_{\epsilon}$  is a compact set  $\sup_{\varphi \in \Theta_{\varphi}} \|\varphi\|^2$  is bounded. Furthermore, from result (A.4) of Lemma 2 and Liapunov's inequality we have that  $E \|\Delta \mathbf{y}_i\|^2 < K < \infty$  and  $E \|\Delta \mathbf{W}_i\|^2 < K < \infty$ . Since  $c_{\min}^{-1}$  is bounded by Assumption 7(ii) it follows that  $E \sup_{\theta \in \Theta_{\epsilon}} \left| \boldsymbol{\xi}_i'(\varphi) \boldsymbol{\Sigma}_{\boldsymbol{\xi}} (\psi)^{-1} \boldsymbol{\xi}_i(\varphi) \right| < \infty$  and hence the dominance condition holds.

To establish asymptotic normality of  $\widehat{\boldsymbol{\theta}}$ , by application of the mean value theorem to  $\bar{\ell}_N\left(\boldsymbol{\theta}\right)$  around  $\boldsymbol{\theta} = \boldsymbol{\theta}_0$ , we first note that

$$\bar{\ell}_{N}(\boldsymbol{\theta}) - \bar{\ell}_{N}(\boldsymbol{\theta}_{0}) = (\boldsymbol{\theta} - \boldsymbol{\theta}_{0})' \,\bar{\mathbf{s}}_{N}(\boldsymbol{\theta}_{0}) - \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_{0})' \,\mathbf{H}_{N}(\bar{\boldsymbol{\theta}}) (\boldsymbol{\theta} - \boldsymbol{\theta}_{0}), \qquad (A.37)$$

where  $\bar{\mathbf{s}}_N(\boldsymbol{\theta}) = \partial \bar{\ell}_N(\boldsymbol{\theta}) / \partial \boldsymbol{\theta}$ ,  $\mathbf{H}_N(\boldsymbol{\theta}) = -\partial^2 \bar{\ell}_N(\boldsymbol{\theta}) / \partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'$ , and  $\bar{\boldsymbol{\theta}}$  lies on a line segment joining  $\boldsymbol{\theta}$  and  $\boldsymbol{\theta}_0$ . By result (A.29) of Lemma 5, and combining (54) and (55) we have

$$\bar{\mathbf{s}}_{N}(\boldsymbol{\theta}_{0}) \stackrel{a.s.}{\rightarrow} \mathbf{0}, \\
2\left[\bar{\ell}_{N}(\boldsymbol{\theta}_{0}) - \bar{\ell}_{N}(\boldsymbol{\theta})\right] \stackrel{a.s.}{\rightarrow} \chi\left(\boldsymbol{\psi}, \boldsymbol{\psi}_{0}\right) + 2\left(\gamma - \gamma_{0}\right)\kappa(\boldsymbol{\psi}, \boldsymbol{\psi}_{0}) + \left(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0}\right)'\mathbf{A}\left(\boldsymbol{\psi}\right)\left(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{0}\right).$$

Hence, in view of (A.37) we must also have

$$(\boldsymbol{\theta} - \boldsymbol{\theta}_0)' \mathbf{H}_N(\bar{\boldsymbol{\theta}}) (\boldsymbol{\theta} - \boldsymbol{\theta}_0) \stackrel{a.s.}{\to} \chi (\boldsymbol{\psi}, \boldsymbol{\psi}_0) + (\boldsymbol{\varphi} - \boldsymbol{\varphi}_0)' \mathbf{A} (\boldsymbol{\psi}) (\boldsymbol{\varphi} - \boldsymbol{\varphi}_0) + 2 (\gamma - \gamma_0) \kappa(\boldsymbol{\psi}, \boldsymbol{\psi}_0). \tag{A.38}$$

But by Proposition 1 and given that  $\Sigma_{\xi}(\psi_0)$  and  $\Sigma_{\xi}(\psi)$  commute, on  $\Theta_{\epsilon}$  the right hand side of (A.38) can be equal to zero if and only if  $\theta = \theta_0$ , and hence we must also have

$$\mathbf{H}_N(\bar{\boldsymbol{\theta}}) \stackrel{a.s.}{\to} \mathbf{H}(\boldsymbol{\theta}_0),$$
 (A.39)

where  $\mathbf{H}(\boldsymbol{\theta}_0)$  must be a positive definite matrix given by  $\mathbf{H}(\boldsymbol{\theta}_0) = \lim_{N \to \infty} E_0 \left[ -\partial^2 \bar{\ell}_N \left( \boldsymbol{\theta}_0 \right) / \partial \boldsymbol{\theta} \partial \boldsymbol{\theta}' \right]$ . Applying the mean value theorem to  $\bar{\mathbf{s}}_N(\widehat{\boldsymbol{\theta}})$  around  $\widehat{\boldsymbol{\theta}} = \boldsymbol{\theta}_0$  we have

$$\mathbf{0} = \sqrt{N}\bar{\mathbf{s}}_N(\widehat{\boldsymbol{\theta}}) = \sqrt{N}\bar{\mathbf{s}}_N(\boldsymbol{\theta}_0) - \mathbf{H}_N(\widecheck{\boldsymbol{\theta}})\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$$

where  $\check{\boldsymbol{\theta}}$  lies on a line segment joining  $\widehat{\boldsymbol{\theta}}$  and  $\boldsymbol{\theta}_0$ . Then,

$$\sqrt{N}(\widehat{\boldsymbol{ heta}} - {m{ heta}}_0) = {\mathbf{H}}_N^{-1}(m{reve{ heta}}) \left[ \sqrt{N} ar{\mathbf{s}}_N({m{ heta}}_0) 
ight].$$

Since  $\check{\boldsymbol{\theta}}$  lies between  $\widehat{\boldsymbol{\theta}}$  and  $\widehat{\boldsymbol{\theta}}_0$  and  $\widehat{\boldsymbol{\theta}}$  is almost surely locally consistent for  $\boldsymbol{\theta}_0$  on the set  $\boldsymbol{\Theta}_{\epsilon}$  so is  $\check{\boldsymbol{\theta}}$ , and as in (A.39) above  $\mathbf{H}_N(\check{\boldsymbol{\theta}}) \stackrel{a.s.}{\to} \mathbf{H}(\boldsymbol{\theta}_0)$ . In addition, using result (A.30) of Lemma 5, we have  $\sqrt{N}\bar{\mathbf{s}}_N(\boldsymbol{\theta}_0) \to_d N[\mathbf{0}, \mathbf{J}(\boldsymbol{\theta}_0)]$ , where  $\mathbf{J}(\boldsymbol{\theta}_0)$  is given by (A.31). Hence

$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \rightarrow_d N(\mathbf{0}, \mathbf{V}_{\theta}).$$

where  $\mathbf{V}_{\theta}$  has the familiar sandwich form

$$\mathbf{V}_{\theta} = \mathbf{H}^{-1}(\boldsymbol{\theta}_0) \mathbf{J}(\boldsymbol{\theta}_0) \mathbf{H}^{-1}(\boldsymbol{\theta}_0).$$

**Proof of Theorem 3.** Denote the exactly identified estimator of  $\boldsymbol{\theta}$  (under  $H_1$ ) by  $\widehat{\boldsymbol{\theta}}_{m_{\max}}$  with its dimension  $n_{\boldsymbol{\theta}}^* = 3 + T(k+1) + k + (T-2)(T+3)/2$ , and the constrained estimator of  $\boldsymbol{\theta}$  under  $H_0$ :  $m = m_0 < T - 2$  by  $\widehat{\boldsymbol{\theta}}_{m_0}$ . The latter estimator is obtained under  $\mathbf{r}(\boldsymbol{\theta}_0) = \mathbf{0}$ , where  $\mathbf{r}(\boldsymbol{\theta}_0)$  is the  $r_0 \times 1$  vector of restrictions on  $\ell_N(\boldsymbol{\theta})$ , the log-likelihood function defined by (34), implied by setting  $m = m_0$ . Since  $\widehat{\boldsymbol{\theta}}_{m_0}$  is the constrained estimator of  $\boldsymbol{\theta}$  under  $H_0: \mathbf{r}(\boldsymbol{\theta}_0) = \mathbf{0}$ , by using the results from constrained optimisation (see, for example, Davidson (2000, pp.289-290)), we have

$$\sqrt{N} \left( \widehat{\boldsymbol{\theta}}_{m_0} - \boldsymbol{\theta}_0 \right) \stackrel{a}{\sim} \mathbf{F}_0 \sqrt{N} \overline{\mathbf{s}}_N \left( \boldsymbol{\theta}_0 \right)$$
 (A.40)

where  $\bar{\mathbf{s}}_N$  is the score function in Lemma 5 which satisfies

$$\sqrt{N}\bar{\mathbf{s}}_N\left(\boldsymbol{\theta}_0\right) \stackrel{d}{\to} N\left(\mathbf{0}, \mathbf{J}_0\right)$$
 (A.41)

and

$$\mathbf{F}_0 = \mathbf{H}_0^{-1} - \mathbf{H}_0^{-1} \mathbf{R}_0' \left( \mathbf{R}_0 \mathbf{H}_0^{-1} \mathbf{R}_0' \right)^{-1} \mathbf{R}_0 \mathbf{H}_0^{-1}. \tag{A.42}$$

Also for the unconstrained estimator  $\hat{\theta}_{m_{\text{max}}}$ , using result (65) in Section 6, we have

$$\sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{m_{\text{max}}} - \boldsymbol{\theta}_0\right) \stackrel{a}{\sim} \mathbf{H}_0^{-1} \sqrt{N} \bar{\mathbf{s}}_N\left(\boldsymbol{\theta}_0\right) \tag{A.43}$$

Consider now the mean value expansion of  $\ell_N\left(\widehat{\boldsymbol{\theta}}_{m_0}\right)$  around  $\widehat{\boldsymbol{\theta}}=\widehat{\boldsymbol{\theta}}_{m_{\max}}$  given by

$$\ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{0}}\right) = \ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{\max}}\right) + \frac{\partial \ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{\max}}\right)'}{\partial \boldsymbol{\theta}} \left(\widehat{\boldsymbol{\theta}}_{m_{0}} - \widehat{\boldsymbol{\theta}}_{m_{\max}}\right) \\
+ \frac{1}{2}\left(\widehat{\boldsymbol{\theta}}_{m_{0}} - \widehat{\boldsymbol{\theta}}_{m_{\max}}\right)' \left(\frac{\partial^{2} \ell_{N}\left(\overline{\boldsymbol{\theta}}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right) \left(\widehat{\boldsymbol{\theta}}_{m_{0}} - \widehat{\boldsymbol{\theta}}_{m_{\max}}\right),$$

where  $\bar{\boldsymbol{\theta}}$  lies on points between  $\hat{\boldsymbol{\theta}}_{m_0}$  and  $\hat{\boldsymbol{\theta}}_{m_{\text{max}}}$ . Since  $\hat{\boldsymbol{\theta}}_{m_{\text{max}}}$  is the unconstrained ML estimator, we have  $\partial \ell_N(\hat{\boldsymbol{\theta}}_{m_{\text{max}}})/\partial \boldsymbol{\theta} = \mathbf{0}$ , and

$$2\left[\ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{\max}}\right) - \ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{0}}\right)\right] = \sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{m_{0}} - \widehat{\boldsymbol{\theta}}_{m_{\max}}\right)'\left(\frac{-1}{N}\frac{\partial^{2}\ell_{N}\left(\overline{\boldsymbol{\theta}}\right)}{\partial\boldsymbol{\theta}\partial\boldsymbol{\theta}'}\right)\sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{m_{0}} - \widehat{\boldsymbol{\theta}}_{m_{\max}}\right). \tag{A.44}$$

Since  $\widehat{\boldsymbol{\theta}}_{m_{\max}}$  and  $\widehat{\boldsymbol{\theta}}_{m_0} \stackrel{p}{\to} \boldsymbol{\theta}_0$  under  $m = m_0$ , we have  $\overline{\boldsymbol{\theta}} \stackrel{p}{\to} \boldsymbol{\theta}_0$  and

$$2\left[\ell_N\left(\widehat{\boldsymbol{\theta}}_{m_{\max}}\right) - \ell_N\left(\widehat{\boldsymbol{\theta}}_{m_0}\right)\right] \stackrel{a}{\sim} \sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{m_0} - \widehat{\boldsymbol{\theta}}_{m_{\max}}\right)' \mathbf{H}_0 \sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{m_0} - \widehat{\boldsymbol{\theta}}_{m_{\max}}\right). \tag{A.45}$$

Using (A.40) and (A.43), we have the following result:

$$\sqrt{N} \left( \widehat{\boldsymbol{\theta}}_{m_{\text{max}}} - \widehat{\boldsymbol{\theta}}_{m_0} \right) \stackrel{a}{\sim} \left( \mathbf{H}_0^{-1} - \mathbf{F}_0 \right) \sqrt{N} \bar{\mathbf{s}}_N \left( \boldsymbol{\theta}_0 \right) = \left( \mathbf{H}_0^{-1} - \mathbf{F}_0 \right) \mathbf{J}_0^{1/2} \mathbf{z}_n \left( \boldsymbol{\theta}_0 \right)$$
(A.46)

where  $\mathbf{z}\left(\boldsymbol{\theta}_{0}\right) = \mathbf{J}_{0}^{-1/2}\sqrt{N}\mathbf{\bar{s}}_{N}\left(\boldsymbol{\theta}_{0}\right) \stackrel{d}{\rightarrow} N\left(\mathbf{0}, \mathbf{I}_{n_{\theta}^{*}}\right)$ , which follows from (A.41). Then, using (A.46) in (A.44), we have

$$2\left[\ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{\max}}\right) - \ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{0}}\right)\right] \stackrel{a}{\sim} \mathbf{z}\left(\boldsymbol{\theta}_{0}\right)' \mathbf{A}_{0} \mathbf{z}\left(\boldsymbol{\theta}_{0}\right)$$

where

$$\mathbf{A}_{0} = \mathbf{J}_{0}^{1/2} \left( \mathbf{H}_{0}^{-1} - \mathbf{F}_{0} \right) \mathbf{H}_{0} \left( \mathbf{H}_{0}^{-1} - \mathbf{F}_{0} \right) \mathbf{J}_{0}^{1/2} = \mathbf{J}_{0}^{1/2} \mathbf{H}_{0}^{-1} \mathbf{R}_{0}' \left( \mathbf{R}_{0} \mathbf{H}_{0}^{-1} \mathbf{R}_{0}' \right)^{-1} \mathbf{R}_{0} \mathbf{H}_{0}^{-1} \mathbf{J}_{0}^{1/2}. \tag{A.47}$$

Since  $\mathbf{J}_0^{1/2}\mathbf{H}_0^{-1}$  is full rank under Theorem 2, then,  $rank(\mathbf{A}_0) = rank(\mathbf{R}_0) = r_0$ , and, hence, only  $r_0$  eigenvalues of  $\mathbf{A}_0$  are non-zero. Furthermore, since  $\mathbf{A}_0$  is symmetric and positive semi-definite, the  $r_0$  eigenvalues of  $\mathbf{A}_0$  are positive, which are denoted by  $w_1, w_2, ..., w_{r_0} > 0$ . Then, using the spectral decomposition of  $\mathbf{A}_0$ , we obtain the following result

$$2\left[\ell_N\left(\widehat{\boldsymbol{\theta}}_{m_{\max}}\right) - \ell_N\left(\widehat{\boldsymbol{\theta}}_{m_0}\right)\right] \stackrel{a}{\sim} \sum_{j=1}^{r_0} w_j z_j^2$$

where  $z_j \sim IID\mathcal{N}(0,1)$ , as required for the first part of the theorem under the  $H_0$ .

Consider now the asymptotic distribution of the log-likelihood ratio statistic under the  $\eta$ -local alternative  $H_{1N}: \mathbf{r}(\boldsymbol{\theta}_{1N}) = \mathbf{0}$ , where  $\boldsymbol{\theta}_{1N} = \boldsymbol{\theta}_0 + N^{-\eta/2}\boldsymbol{\kappa}$ , with  $\boldsymbol{\kappa}'\boldsymbol{\kappa} > 0$ . With a slight abuse of notation we continue to denote by  $\hat{\boldsymbol{\theta}}_{m_0}$  the constrained estimator of  $\boldsymbol{\theta}$  now under  $H_{1N}$ , and by  $\hat{\boldsymbol{\theta}}_{m_{\text{max}}}$  the unconstrained estimator of  $\boldsymbol{\theta}$  under  $H_{1N}$ . First note that (by the mean value theorem around  $\boldsymbol{\theta}_0$ )

$$\sqrt{N}\bar{\mathbf{s}}_{N}\left(\boldsymbol{\theta}_{1}\right) = \sqrt{N}\bar{\mathbf{s}}_{N}\left(\boldsymbol{\theta}_{0}\right) + \sqrt{N}\frac{\partial\bar{\mathbf{s}}_{N}\left(\boldsymbol{\theta}_{N}^{*}\right)}{\partial\boldsymbol{\theta}}\left(\boldsymbol{\theta}_{1N} - \boldsymbol{\theta}_{0}\right),\tag{A.48}$$

where the rows of  $\partial \bar{\mathbf{s}}_N(\boldsymbol{\theta})/\partial \theta$  are evaluated at  $\boldsymbol{\theta}^*$ , points between  $\boldsymbol{\theta}_0$ , and  $\boldsymbol{\theta}_{1N}$ . Also using (A.40) and (A.43) under  $H_{1N}$  we have

$$\sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{m_{\max}} - \widehat{\boldsymbol{\theta}}_{m_0}\right) \stackrel{a}{\sim} \left(\mathbf{H}_{1N}^{-1} - \mathbf{F}_{1N}\right) \sqrt{N} \mathbf{\bar{s}}_N\left(\boldsymbol{\theta}_{1N}\right)$$

where  $\mathbf{H}_{1N} = \mathbf{H}(\boldsymbol{\theta}_{1N})$  and  $\mathbf{F}_{1N}$  is defined analogously to  $\mathbf{F}_0$  given above, namely

$$\mathbf{F}_{1N} = \mathbf{H}_{1N}^{-1} - \mathbf{H}_{1N}^{-1} \mathbf{R}_{1N}' \left( \mathbf{R}_{1N} \mathbf{H}_{1N}^{-1} \mathbf{R}_{1N}' \right)^{-1} \mathbf{R}_{1N} \mathbf{H}_{1N}^{-1}, \tag{A.49}$$

with  $\mathbf{R}_{1N} = \mathbf{R}(\boldsymbol{\theta}_{1N})$ . Now using (A.48) we have

$$\sqrt{N} \left( \widehat{\boldsymbol{\theta}}_{m_{\text{max}}} - \widehat{\boldsymbol{\theta}}_{m_0} \right) \stackrel{a}{\sim} \left( \mathbf{H}_{1N}^{-1} - \mathbf{F}_{1N} \right) \left[ \sqrt{N} \overline{\mathbf{s}}_N \left( \boldsymbol{\theta}_0 \right) + \sqrt{N} \frac{\partial \overline{\mathbf{s}}_N \left( \boldsymbol{\theta}_N^* \right)}{\partial \boldsymbol{\theta}} \left( \boldsymbol{\theta}_{1N} - \boldsymbol{\theta}_0 \right) \right] \\
= \left( \mathbf{H}_{1N}^{-1} - \mathbf{F}_{1N} \right) \left[ \sqrt{N} \overline{\mathbf{s}}_N \left( \boldsymbol{\theta}_0 \right) + \sqrt{N} \frac{\partial \overline{\mathbf{s}}_N \left( \boldsymbol{\theta}^* \right)}{\partial \boldsymbol{\theta}} N^{-\eta/2} \boldsymbol{\kappa} \right].$$

Let  $\mathbf{z}(\boldsymbol{\theta}_0) = \mathbf{J}_0^{-1/2} \sqrt{N} \bar{\mathbf{s}}_N(\boldsymbol{\theta}_0)$  and note that under  $H_{1N}$ 

$$\frac{\partial \overline{\mathbf{s}}_{N}\left(\overline{\boldsymbol{\theta}}_{N}^{*}\right)}{\partial \boldsymbol{\theta}} = \frac{1}{N} \frac{\partial^{2} \ell_{N}\left(\boldsymbol{\theta}_{N}^{*}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \rightarrow_{p} -\mathbf{H}(\boldsymbol{\theta}_{0}) = -\mathbf{H}_{0}.$$

Then

$$\sqrt{N} \left( \widehat{\boldsymbol{\theta}}_{m_{\text{max}}} - \widehat{\boldsymbol{\theta}}_{m_0} \right) \stackrel{a}{\sim} \left( \mathbf{H}_{1N}^{-1} - \mathbf{F}_{1N} \right) \mathbf{J}_0^{1/2} \mathbf{z} \left( \boldsymbol{\theta}_0 \right) - \sqrt{N} \left( \mathbf{H}_{1N}^{-1} - \mathbf{F}_{1N} \right) \mathbf{H}_0 N^{-\eta/2} \boldsymbol{\kappa}, \tag{A.50}$$

where, as noted above,  $\mathbf{z}(\boldsymbol{\theta}_0) \stackrel{a}{\sim} N\left(\mathbf{0}, \mathbf{I}_{n_{\theta}^*}\right)$ . The first component of (A.50) relates to the null hypothesis, whilst the second component relates to the "non-centrality" parameter which diverges since  $\eta < 1$ . Note also that,  $\mathbf{H}_{1N} = \mathbf{H}(\boldsymbol{\theta}_0 + N^{-\eta/2}\boldsymbol{\kappa})$  and  $\mathbf{R}_{1N} = \mathbf{R}(\boldsymbol{\theta}_0 + N^{-\eta/2}\boldsymbol{\kappa})$ , and converge to  $\mathbf{H}_0$  and  $\mathbf{R}_0$ , respectively, which in view of (A.49), also implies that  $\mathbf{F}_{1N} \to \mathbf{F}_0$ , as  $N \to \infty$ . Using (A.50) in (A.44) we now have

$$\begin{split} &\mathcal{L}\mathcal{R}_{N}=2\left[\ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{\max}}\right)-\ell_{N}\left(\widehat{\boldsymbol{\theta}}_{m_{0}}\right)\right]\overset{a}{\sim}\\ &\left[\left(\mathbf{H}_{0}^{-1}-\mathbf{F}_{0}\right)\mathbf{J}_{0}^{1/2}\mathbf{z}\left(\boldsymbol{\theta}_{0}\right)-N^{\frac{(1-\eta)}{2}}\left(\mathbf{H}_{0}^{-1}-\mathbf{F}_{0}\right)\mathbf{H}_{0}\boldsymbol{\kappa}\right]'\mathbf{H}_{0}\\ &\times\left[\left(\mathbf{H}_{0}^{-1}-\mathbf{F}_{0}\right)\mathbf{J}_{0}^{1/2}\mathbf{z}\left(\boldsymbol{\theta}_{0}\right)-N^{\frac{(1-\eta)}{2}}\left(\mathbf{H}_{0}^{-1}-\mathbf{F}_{0}\right)\mathbf{H}_{0}\boldsymbol{\kappa}\right]. \end{split}$$

Recalling that  $(\mathbf{H}_0^{-1} - \mathbf{F}_0) = \mathbf{H}_0^{-1} \mathbf{R}_0' \left( \mathbf{R}_0 \mathbf{H}_0^{-1} \mathbf{R}_0' \right)^{-1} \mathbf{R}_0 \mathbf{H}_0^{-1}$  (see (A.42)),  $\mathcal{LR}_N$  can also be written as

$$\mathcal{LR}_{N} \stackrel{a}{\sim} \mathbf{z} \left(\boldsymbol{\theta}_{0}\right)' \mathbf{S}_{a} \mathbf{z} \left(\boldsymbol{\theta}_{0}\right) - 2N^{\frac{(1-\eta)}{2}} \boldsymbol{\kappa}' \mathbf{S}_{b}' \mathbf{z} \left(\boldsymbol{\theta}_{0}\right) + N^{(1-\eta)} \boldsymbol{\kappa}' \mathbf{S}_{c} \boldsymbol{\kappa}, \tag{A.51}$$

where

$$\mathbf{S}_{a} = \mathbf{J}_{0}^{1/2} \mathbf{H}_{0}^{-1} \mathbf{R}_{0}' \left( \mathbf{R}_{0} \mathbf{H}_{0}^{-1} \mathbf{R}_{0}' \right)^{-1} \mathbf{R}_{0} \mathbf{H}_{0}^{-1} \mathbf{J}_{0}^{1/2},$$

$$\mathbf{S}_{b}' = \mathbf{R}_{0}' \left( \mathbf{R}_{0} \mathbf{H}_{0}^{-1} \mathbf{R}_{0}' \right)^{-1} \mathbf{R}_{0} \mathbf{H}_{0}^{-1} \mathbf{J}_{0}^{1/2},$$

$$\mathbf{S}_{c} = \mathbf{R}_{0}' \left( \mathbf{R}_{0} \mathbf{H}_{0}^{-1} \mathbf{R}_{0}' \right)^{-1} \mathbf{R}_{0}.$$

Under the assumptions of the theorem,  $\mathbf{H}_0$  is positive definite and  $\mathbf{R}_0$  is full rank and so

$$\lambda_{min} \left( \mathbf{R}_0' \left( \mathbf{R}_0 \mathbf{H}_0^{-1} \mathbf{R}_0' \right)^{-1} \mathbf{R}_0 \right) > 0,$$

and since  $\kappa' \kappa > 0$ , then

$$\kappa' \mathbf{S}_c \kappa > \kappa' \kappa \ \lambda_{min} \left( \mathbf{R}_0' \left( \mathbf{R}_0 \mathbf{H}_0^{-1} \mathbf{R}_0' \right)^{-1} \mathbf{R}_0 \right) > 0.$$
(A.52)

Recall also that  $\mathbf{J}_0$  is positive definite. Then  $\mathbf{S}_a$  is positive semi-definite with  $r_0$  non-zero eigenvalues which we denote by  $w_i^*$  for i=1,2,...,n. It is clear that under  $\boldsymbol{\theta}=\boldsymbol{\theta}_0$ ,  $\mathbf{S}_a$  coincides with  $\mathbf{A}_0$  given by (A.47) and  $w_i^*=w_i$ . In the present context it is still the case that  $\mathbf{z}\left(\boldsymbol{\theta}_0\right)'\mathbf{S}_a\mathbf{z}\left(\boldsymbol{\theta}_0\right)=\sum_{j=1}^{r_0}w_j^*z_j^2$  which is a weighted average of chi-squared variates and is stochastically bounded, namely  $\mathbf{z}\left(\boldsymbol{\theta}_0\right)'\mathbf{S}_a\mathbf{z}\left(\boldsymbol{\theta}_0\right)=O_p(1)$ . Post-multiplying both sides of (A.51) by  $N^{\frac{-(1-\eta)}{2}}$ , and rearranging the terms we have

$$N^{\frac{-(1-\eta)}{2}}\mathcal{L}\mathcal{R}_{N} - N^{\frac{(1-\eta)}{2}}\left(\kappa'\mathbf{S}_{c}\kappa\right) \stackrel{a}{\sim} -2\kappa'\mathbf{S}_{b}'\mathbf{z}\left(\boldsymbol{\theta}_{0}\right) + N^{\frac{-(1-\eta)}{2}}\mathbf{z}\left(\boldsymbol{\theta}_{0}\right)'\mathbf{S}_{a}\mathbf{z}\left(\boldsymbol{\theta}_{0}\right)$$
$$= -2\kappa'\mathbf{S}_{b}'\mathbf{z}\left(\boldsymbol{\theta}_{0}\right) + o_{p}\left(1\right),$$

since  $\eta < 1$ , and  $N^{\frac{-(1-\eta)}{2}} \mathbf{z} (\boldsymbol{\theta}_0)' \mathbf{S}_a \mathbf{z} (\boldsymbol{\theta}_0) \to_p 0$ , with  $N \to \infty$ . Furthermore, since  $\mathbf{z} (\boldsymbol{\theta}_0) \sim N(\mathbf{0}, \mathbf{I}_{n_{\theta}^*})$ , it then follows that

$$\frac{N^{\frac{-(1-\eta)}{2}}\mathcal{L}\mathcal{R}_N - N^{\frac{(1-\eta)}{2}}(\kappa' \mathbf{S}_c \kappa)}{2\sqrt{\kappa' \mathbf{S}_b \mathbf{S}_b' \kappa}} \stackrel{a}{\sim} N(0,1). \tag{A.53}$$

Note also that

$$\mathbf{S}_{b}'\mathbf{S}_{b} = \mathbf{R}_{0}'\left(\mathbf{R}_{0}\mathbf{H}_{0}^{-1}\mathbf{R}_{0}'\right)^{-1}\mathbf{R}_{0}\mathbf{H}_{0}^{-1}\mathbf{J}_{0}\mathbf{H}_{0}^{-1}\mathbf{R}_{0}'\left(\mathbf{R}_{0}\mathbf{H}_{0}^{-1}\mathbf{R}_{0}'\right)^{-1}\mathbf{R}_{0},$$

and  $\mathbf{S}_b'\mathbf{S}_b$  is a positive definite matrix since by assumption  $rank(\mathbf{R}_0) = r_0$ , and  $\mathbf{H}_0$  and  $\mathbf{J}_0$  are positive definite matrices. Then

$$\kappa' \mathbf{S}_b' \mathbf{S}_b \kappa > \kappa' \kappa \ \lambda_{min} \left( \mathbf{S}_b' \mathbf{S}_b \right) > 0.$$
 (A.54)

**Proof of Corollary 1.** The type II error probability of testing  $H_0$ :  $\mathbf{r}(\boldsymbol{\theta}_0) = 0$  against  $\eta$ -local alternatives,  $H_{1N}$ , is given by

$$\beta_N = \Pr \left[ \mathcal{L} \mathcal{R}_N \le c_N^2(r_0) | H_{1N} \right],$$

which can be written equivalently as (recall that  $\kappa' \mathbf{S}_b \mathbf{S}_b' \kappa > 0$ )

$$\beta_N = \Pr\left[\frac{N^{\frac{-(1-\eta)}{2}}\mathcal{L}\mathcal{R}_N - N^{\frac{(1-\eta)}{2}}\left(\boldsymbol{\kappa}'\mathbf{S}_c\boldsymbol{\kappa}\right)}{2\sqrt{\boldsymbol{\kappa}'\mathbf{S}_b\mathbf{S}_b'\boldsymbol{\kappa}}} \le \frac{N^{\frac{-(1-\eta)}{2}}c_N^2(r_0) - N^{\frac{(1-\eta)}{2}}\left(\boldsymbol{\kappa}'\mathbf{S}_c\boldsymbol{\kappa}\right)}{2\sqrt{\boldsymbol{\kappa}'\mathbf{S}_b\mathbf{S}_b'\boldsymbol{\kappa}}} \left| H_{1N} \right|\right]$$

Now using result (71) of Theorem 3 and taking limits as  $N \to \infty$  we have (noting that  $\eta < 1$ )

$$\lim_{N \to \infty} \beta_{N} = \lim_{N \to \infty} \Phi\left(\frac{-N^{\frac{(1-\eta)}{2}} \kappa' \mathbf{S}_{c} \kappa + N^{\frac{-(1-\eta)}{2}} c_{N}^{2}(r_{0})}{2\sqrt{\kappa' \mathbf{S}_{b}'} \mathbf{S}_{b} \kappa}\right)$$

$$= \lim_{N \to \infty} \Phi\left(-\frac{N^{\frac{(1-\eta)}{2}} \kappa' \mathbf{S}_{c} \kappa \left(1 - \frac{N^{-(1-\eta)} c_{N}^{2}(r_{0})}{(\kappa' \mathbf{S}_{c} \kappa)}\right)}{2\sqrt{\kappa' \mathbf{S}_{b}'} \mathbf{S}_{b} \kappa}\right),$$

where  $\kappa' \mathbf{S}_c \kappa / \sqrt{\kappa' \mathbf{S}_b' \mathbf{S}_b \kappa} > 0$ , which follows using (A.52) and (A.54) of Theorem 3. The desired result,  $\lim_{N \to \infty} (\beta_N) = 0$ , now follows since by assumption  $\eta < 1$ , and  $N^{-(1-\eta)} c_N^2(r_0) \to 0$  as  $N \to \infty$ .

Proof of Proposition 2. Consider the type I error of the test and note that

$$\alpha_N = \Pr\left(\mathcal{LR}_N > c_N^2(r_0) | H_0\right) = \Pr\left(\sum_{i=1}^{r_0} w_i z_i^2 > c_N^2(r_0)\right),$$

where  $z_i \sim IID\mathcal{N}(0,1)$ . Using Lemma A1 of the theory supplement to Chudik et al. (2018) we have that

$$\alpha_N = \Pr\left(\sum_{i=1}^{r_0} w_i z_i^2 > c_N^2(r_0)\right) \le \sum_{i=1}^{r_0} \Pr\left(w_i z_i^2 > r_0^{-1} c_N^2(r_0)\right).$$

Therefore, since  $w_i > 0$ 

$$\alpha_N \le \sum_{i=1}^{r_0} \Pr\left(z_i^2 > (r_0 w_i)^{-1} c_N^2(r_0)\right) \le r_0 \sup_i \Pr\left(z_i^2 > \theta_i^2 c_N^2(r_0)\right),$$
(A.55)

where  $\theta_i^2 = (r_0 w_i)^{-1} > 0$ . But since  $z_i \sim N(0, 1)$ , then

$$\Pr(z_i^2 > \theta_i^2 c_N^2(r_0)) = 1 - \Pr(-\theta_i | c_N(r_0)| \le z_i \le \theta_i | c_N(r_0)|)$$
$$= 2\Phi(-\theta_i | c_N(r_0)|).$$

Using this result in (A.55) we have

$$\alpha_N \le 2r_0 \sup_i \Phi\left(-\theta_i |c_N(r_0)|\right) = 2r_0 \Phi\left(-\theta_{\min} |c_N(r_0)|\right) = 2h\left[1 - \Phi\left(\theta_{\min} |c_N(r_0)|\right)\right],$$

where  $\theta_{\min}^2 = r_0^{-1} \inf_i w_i^{-1} = r_0^{-1} w_1^{-1} > 0$ . Hence  $\Phi\left(\theta_{\min} | c_N(r_0)|\right) \le 1 - \alpha_N/2r_0$ , and

$$\alpha_N \le 2r_0 \left[ 1 - \Phi \left( \theta_{\min} \left| c_N(r_0) \right| \right) \right] = 2r_0 \Phi \left( -\theta_{\min} \left| c_N(r_0) \right| \right).$$

Since  $\theta_{\min} |c_N(r_0)| > 0$ , then by (A.1) in Lemma 1 of Bailey et al. (2019, BPS)

$$\Phi(-\theta_{\min}|c_N(r_0)|) \le (1/2) \exp\left[-\frac{1}{2}\theta_{\min}^2 c_N^2(r_0)\right],$$

and hence

$$\alpha_N \le r_0 \exp\left[-\frac{1}{2}\theta_{\min}^2 c_N^2(r_0)\right] = r_0 \exp\left[-\frac{c_N^2(r_0)}{2r_0w_1}\right].$$

Since  $w_1$  is bounded and strictly positive, it then follows that  $\lim_{N\to\infty} \alpha_N = 0$ , so long as  $c_N^2(r_0) \to \infty$ . Furthermore, due to the monotonicity property of  $\Phi(.)$  we have that (for  $\alpha_N$  sufficiently small)  $\theta_{\min} |c_N(r_0)| \le \Phi^{-1} \left(1 - \frac{\alpha_N}{2r_0}\right)$ , or  $c_N^2(r_0) \le \theta_{\min}^{-2} \left[\Phi^{-1} \left(1 - \frac{\alpha_N}{2r_0}\right)\right]^2$ . By Lemma 3 of BPS,  $\left[\Phi^{-1} \left(1 - \frac{\alpha_N}{2r_0}\right)\right]^2 \le 2 \ln \left(\frac{r_0}{\alpha_N}\right)$ , and hence it also follows that

$$c_N^2(r_0) \le 2\theta_{\min}^{-2} \ln\left(\frac{r_0}{\alpha_N}\right) = 2w_1 r_0 \ln\left(\frac{r_0}{\alpha_N}\right). \tag{A.56}$$

**Proof of Theorem 4.** To show that  $\widehat{m}$  is almost surely (locally) consistent for the true number of factors  $m_0$  on  $\Theta_{\epsilon}$ , we will show that  $\lim_{N\to\infty} \Pr(\widehat{m}=m_0)=1$  on  $\Theta_{\epsilon}$ . Consider the event  $\{\widehat{m}>m_0\}$  on  $\Theta_{\epsilon}$ . For this event to be true it must be the case that for some  $t\in\{1,2,...,T-2\}$ , at a certain stage in the sequential estimation, when testing  $H_0$ :  $m=m_0=t-1$  against  $H_1$ :  $m=m_{\max}=T-2$ , the null hypothesis of the true number of factors is rejected. That is,

$$\Pr(\widehat{m} > m_0) \leq P(\exists t, m_0 \text{ is rejected } | H_0)$$

$$\leq \sum_{t=1}^{m_0+1} \Pr(\mathcal{LR}_N > c_N^2(r_0) | H_0), \tag{A.57}$$

where  $c_N^2(r_0)$  denotes the critical value of the test recalling that  $r_0$  is the number of over-identified restrictions imposed under the  $H_0$ , given by (67). For any given t, using the result in Proposition 2 for  $c_N^2(r_0) \to \infty$  as  $N \to \infty$ , we have

$$\lim_{N \to \infty} \alpha_N = \lim_{N \to \infty} \Pr(\mathcal{L}\mathcal{R}_N > c_N^2(r_0) | H_0)$$

$$= \lim_{N \to \infty} \Pr\left(\sum_{i=1}^{r_0} w_i z_i^2 > c_N^2(r_0)\right) = 0, \tag{A.58}$$

(recall that  $z_i \sim IID\mathcal{N}(0,1)$ ). Then, from (A.57) using (A.58) it follows that

$$\Pr(\widehat{m} > m_0) \le (m_0 + 1) \max_{1 \le t < m_0 + 1} \Pr(\mathcal{LR}_N > c_N^2(r_0) | H_0) \to 0$$
(A.59)

as  $N \to \infty$  on  $\Theta_{\epsilon}$ . Next consider the event  $\{\widehat{m} < m_0\}$  on  $\Theta_{\epsilon}$ , and note that

$$\Pr(\widehat{m} < m_0) = \Pr\left(\max_{1 \le t \le T - 2} \mathcal{L}\mathcal{R}_N \le c_N^2(r_0) | H_0 \text{ is false}\right)$$

$$\le \sum_{t=1}^{T-2} \Pr\left(\mathcal{L}\mathcal{R}_N \le c_N^2(r_0) | H_0 \text{ is false}\right). \tag{A.60}$$

Using result (74) of Corollary 1, for  $N^{-(1-\eta)}c_N^2(r_0) \to 0$  as  $N \to \infty$  so long as  $\eta < 1$ , we have for the probability of type II error of the test that

$$\lim_{N \to \infty} \beta_N = \lim_{N \to \infty} \Pr\left(\mathcal{LR}_N \le c_N^2(r_0) | H_0 \text{ is false}\right) = 0.$$
 (A.61)

Then similar to the  $\{\widehat{m} > m_0\}$  case, from (A.60) and using (A.61) it readily follows that  $\lim_{N\to\infty} \Pr(\widehat{m} < m_0) = 0$  on  $\Theta_{\epsilon}$  which together with (A.59) establishes the desired result.

#### References

- Acemoglu, D. and Naidu, S. and Restrepo, P. and Robinson, J.A. (2019). Democracy does cause growth. Journal of Political Economy 127, 47–100.
- Ahn, S.C. (2015). Comment on "IV estimation of panels with factor residuals" by D. Robertson and V. Sarafidis. *Journal of Econometrics* 185, 542–544.
- Ahn, S.C. and Horenstein, A.R. (2013). Eigenvalue ratio test for the number of factors. *Econometrica* 81, 1203–1227.
- Ahn, S.C. and Lee, H.Y. and Schmidt, P. (2001). GMM estimation of linear panel data models with time-varying individual effects. *Journal of Econometrics* 101, 219–255.
- \_\_\_\_\_ (2013). Panel data models with multiple time-varying individual effects. *Journal of Econometrics* 174, 1–14.
- Ahn, S.C. and Schmidt, P. (1995). Efficient estimation of models for dynamic panel data. *Journal of Econometrics* 68, 5–27.
- Allen, D., and Chan, F., and McAleer, M. and Peiris, M.S. (2008). Finite sample properties of the QMLE for the log-ACD model: Application to australian stocks. *Journal of Econometrics* 147, 163–185.
- Anderson, T.W. and Hsiao, C. (1981). Estimation of dynamic models with error components. *Journal of the American Statistical Association* 76, 598–606.
- Arellano, M. and Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. *Review of Economic Studies* 58, 277–297.
- Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. *Journal of Econometrics* 68, 29–51.
- Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica 77, 1229–1279.
- (2013). Likelihood approach to dynamic panel models with interactive effects. mimeo.
- Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. *Econometrica* 70, 191–221.
- \_\_\_\_\_ (2013). Principal components estimation and identification of static factors. *Journal of Econometrics* 176, 18–29.
- Bailey, N. and Pesaran, M.H. and Smith, L.V. (2019). A multiple testing approach to the regularisation of large sample correlation matrices. *Journal of Econometrics* 208, 507–534.

- Baltagi, B. (2006). Estimating an economic model of crime using panel data from north carolina. *Journal of Applied Econometrics* 21, 543–547.
- Barro, R.J. (1991). Economic growth in a cross section of countries. The Quarterly Journal of Economics 106, 407–443.
- Bauer, P., Pötscher, B.M. and Hackl, P. (1988). Model selection by multiple test procedures. *Statistics* 19, 39–44.
- Bhargava, A. and Sargan, J. (1983). Estimating dynamic random effects models from panel data covering short time periods. *Econometrica* 51, 1635–1659.
- Binder, M. and Hsiao, C. and Pesaran, M.H. (2005). Estimation and inference in short panel vector autoregressions with unit roots and cointegration. *Econometric Theory 21*, 795–837.
- Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. *Journal of Econometrics* 87, 115–143.
- Bonferroni, C.E. (1936). Statistical theory of classes and calculation of probabilities. *Pub R Ist Superiore Sci Econ Commerc Firenze 8*, 36–62.
- Caselli, F. and Esquivel, G. and Lefort, F. (1996). Reopening the convergence debate: a new look at cross-country growth empirics. *Journal of Economic Growth* 1, 363–389.
- Chamberlain, G. (1982). Multivariate regression models for panel data. *Journal of Econometrics* 18, 5–46.
- \_\_\_\_\_ (1984). Panel data. In *Handbook of Econometrics*, Volume 2, Chapter 22, pp. 1248–1318. North-Holland.
- Chudik, A. and Kapetanios, G. and Pesaran, M.H. (2018). A one covariate at a time, multiple testing approach to variable selection in high-dimensional linear regression models. *Econometrica* 86, 1479–1512.
- Chudik, A. and Pesaran, M.H. (2021). An augmented Anderson-Hsiao estimator for dynamic short-T panels. *Mimeo*.
- Chudik, A. and Pesaran, M.H. and Tosetti, E. (2011). Weak and strong cross-section dependence and estimation of large panels. *Econometrics Journal* 14, C45–C90.
- Cornwell, C. and Trumbull, W.N. (1994). Estimating the economic model of crime with panel data. *The Review of Economics and Statistics* 76, 360–366.
- Cragg, J.G. and Donald, S.G. (1997). Inferring the rank of a matrix. *Journal of Econometrics* 76, 223–250.
- Davidson, J. (1994). Stochastic Limit Theory. Oxford: Oxford University Press.
- \_\_\_\_\_ (2000). Econometric Theory. Wiley-Blackwell.
- Han, H. and Kristensen, D. (2014). Asymptotic theory for the QMLE in GARCH-X models with stationary and non-stationary covariates. *Journal of Business & Economic Statistics* 32, 416–429.
- Hayakawa, K. (2012). GMM estimation of a short dynamic panel data model with interactive fixed effects. Journal of the Japan Statistical Society 42, 109–123.

- (2016). Identification problem of GMM estimators for short panel data models with interactive fixed effects. *Economics Letters* 139, 22–26.
- Hayakawa, K. and Pesaran, M.H. (2015). Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity. *Journal of Econometrics* 188, 111–134.
- Hayashi, K. and Bentler, P.M. and Yuan, K-H. (2007). On the likelihood ratio test for the number of factors in exploratory factor analysis. *Structural Equation Modeling: A Multidisciplinary Journal* 14, 505–526.
- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70.
- Holtz-Eakin, D. and Newey, W.K. and Rosen, H.S. (1988). Estimating vector autoregressions with panel data. *Econometrica* 56, 1371–1395.
- Hsiao, C. and Pesaran, M.H. and Tahmiscioglu, K.A. (2002). Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. *Journal of Econometrics* 109, 107–150.
- Hsiao, C. and Tahmiscioglu, K.A. (2008). Estimation of dynamic panel data models with both individual and time specific effects. *Journal of Statistical Planning and Inference* 138, 2698–2721.
- Islam, N. (1995). Growth empirics: A panel data approach. The Quarterly Journal of Economics 110, 1127–1170.
- Jacob, J. and Osang, T. (2018). Democracy and growth: A dynamic panel data study. The Singapore Economic Review, 1–40.
- Kapetanios, G. (2010). A testing procedure for determining the number of factors in approximate factor models with large datasets. *Journal of Business & Economic Statistics* 28, 397–409.
- Kapetanios, G. and Pesaran, M.H. and Yamagata, T. (2011). Panels with non-stationary multifactor error structures. *Journal of Econometrics* 160, 326–348.
- Kristensen, D. and Rahbek, A.C. (2010). Likelihood-based inference for cointegration with nonlinear error-correction. *Journal of Econometrics* 158, 78–94.
- Lee, K. and Pesaran, M.H. and Smith, R.P. (1997). Growth and convergence in a multi-country empirical stochastic solow model. *Journal of Applied Econometrics* 12, 358–392.
- Lee, K. and Pesaran, M.H. and Smith, R. (1998). Growth empirics: A panel data approach—a comment. The Quarterly Journal of Economics 113, 319–323.
- Lee, L.-F. and Yu, J. (2016). Identification of spatial durbin panel models. *Journal of Applied Econometrics* 31, 133–162.
- Lumsdaine, R.L. (1996). Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1) models. *Econometrica* 64, 575–596.
- Lütkepohl, H. (1996). Handbook of matrices. New York: John Wiley.
- Magnus, J.R. and Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. Oxford: John Wiley & Sons.
- Mankiw, N.G. and Romer, D. and Weil, D.N. (1992). A contribution to the empirics of economic growth. The Quarterly Journal of Economics 107, 407–437.

- Moral-Benito, E. (2013). Likelihood-based estimation of dynamic panels with predetermined regressors. Journal of Business & Economic Statistics 31, 451–472.
- Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica 46, 69–85.
- Nauges, C. and Thomas, A. (2003). Consistent estimation of dynamic panel data models with time-varying individual effects. *Annales d'Economie et de Statistique* 70, 53–75.
- Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. *Review of Economics and Statistics 92*, 1004–1016.
- Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with cross section dependence. *Econometrica* 74, 967–1012.
- Pesaran, M.H. and Tosetti, E. (2011). Large panels with common factors and spatial correlation. *Journal of Econometrics* 161, 182–202.
- Phillips, P.C.B. and Sul, D. (2007). Bias in dynamic panel estimation with fixed effects, incidental trends and cross section dependence. *Journal of Econometrics* 127, 162–188.
- Pötscher, B.M. and Prucha, I.R. (2001). Basic elements of asymptotic theory. In B. H. Baltagi (Ed.), A Companion to Theoretical Econometrics, pp. 201–229. Oxford: Blackwell.
- Robertson, D. and Sarafidis, V. (2015). IV estimation of panels with factor residuals. *Journal of Econometrics* 185, 526–541.
- Sala-i-Martin, X.X. (1996). The classical approach to convergence analysis. *The Economic Journal* 106, 1019–1036.
- Sarafidis, V. and Robertson, D. (2009). On the impact of error cross-sectional dependence in short dynamic panel estimation. *Econometrics Journal* 12, 62–81.
- Sarafidis, V. and Wansbeek, T. (2012). Cross-sectional dependence in panel data analysis. *Econometric Reviews* 31, 483–531.
- Somé, J. and Pasali, S. and Kaboine, M. (2019). Exploring the impact of healthcare on economic growth in Africa. Applied Economics and Finance 6, 45–57.
- White, H. (2001). Asymptotic Theory for Econometricians. San Diego: Academic Press.
- Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. *Journal of Econometrics* 126, 25–51.

# Online Supplement for Short T Dynamic Panel Data Models with Individual, Time and Interactive Effects

Kazuhiko Hayakawa Hiroshima University

M. Hashem Pesaran Department of Economics University of Southern California, USA, and Trinity College, Cambridge

> L. Vanessa Smith University of York

> > July 2021

#### S.1 Introduction

This supplement is organised as follows: Section S.2 provides the derivations for the rank conditions associated with the quasi-differenced GMM estimators given in the related literature section of the paper. Section S.3 outlines the eigenvalue approach used for computing the TQML estimator. Section S.4 gives the derivations of the initial values used for the Monte Carlo (MC) analysis. Sections S.5 and S.6 provide details for the computation of the Bai-QML and GMM estimators, respectively. Sections S.7 and S.8 give additional MC results for the stationary and unit root cases, respectively. To save space the results for the ARX(1) model are given only for the case where  $\sigma_{\rm v}^2 = 1$ . The results for other values,  $\sigma_{\rm v}^2 = \{0.5, 1.5\}$ , are very similar and are available upon request.

Section S.9 gives the details of the MC experiments we carried out for the robustness analysis and the associated results, covering the effects of initial values deviating from the steady state distribution (applicable only for the stationary case), the use of alternative p-values (p = 0.01, p = 0.10) in implementing the MTLR test, allowing for non-zero correlation of the factor loadings and the regressors, and for weakly cross-correlated factor loadings. The last three experiments are presented for the stationary case. Qualitatively similar results were obtained for the unit root case and are available upon request. All results are given for  $\beta_0 = 1$  and are based on 2000 replications. Also, all MC results are obtained using the Multiple Testing Likelihood Ratio (MTLR) test for selecting the number of factors with p = 0.05 unless otherwise stated. Lastly, Section S.10 discusses the case of time series heteroskedasticity in the idiosyncratic errors.

## S.2 Rank conditions for quasi-differenced GMM estimators

Here we consider the rank conditions with respect to the moment conditions  $E[\mathbf{m}_N(\boldsymbol{\theta}_0)] = 0$ , defined by (7) in the paper, where

$$\mathbf{m}_{N}\left(oldsymbol{ heta}
ight)=N^{-1}\sum_{i=1}^{N}\mathbf{z}_{i}
u_{i3}\left(oldsymbol{ heta}
ight),$$

with  $\mathbf{z}_i = (\mathbf{w}_i', \mathbf{x}_i')', \mathbf{w}_i = (y_{i0}, y_{i1})', \mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3})', \text{ and}$ 

$$\nu_{i3}(\boldsymbol{\theta}) = y_{i3} - (b_3 + \gamma)y_{i2} + b_3\gamma y_{i1} - \beta x_{i3} + b_3\beta x_{i2}.$$

To simplify the notations we denote  $b_3$  as b, so that  $\boldsymbol{\theta} = (\gamma, b, \beta)'$ . Following standard results from the GMM literature (see, for example, Chapter 10 of Pesaran (2015)) for identification it is required that  $\mathbf{S}_N$  (5 × 5 matrix) and  $\mathbf{D}_N$  (5 × 3 matrix) defined by

$$\nu_{i3}(\boldsymbol{\theta}) = y_{i3} - (b_3 + \gamma)y_{i2} + b_3\gamma y_{i1} - \beta x_{i3} + b_3\beta x_{i2},$$

$$\mathbf{D}_{N}\left(\boldsymbol{\theta}\right) = \frac{\partial \mathbf{m}_{N}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}'} \text{ and } \mathbf{S}_{N}\left(\boldsymbol{\theta}\right) = N\mathbf{m}_{N}\left(\boldsymbol{\theta}\right)\mathbf{m}_{N}'\left(\boldsymbol{\theta}\right),$$

are full rank matrices and that  $\mathbf{S} = \lim_{N \to \infty} E_0 \left[ \mathbf{S}_N \left( \boldsymbol{\theta}_0 \right) \right]$  is positive definite, and  $\mathbf{D} = \lim_{N \to \infty} E_0 \left[ \mathbf{D}_N \left( \boldsymbol{\theta}_0 \right) \right]$  has full column rank. To derive  $\mathbf{S}$  and  $\mathbf{D}$  note that

$$\mathbf{D}_{N}(\boldsymbol{\theta}) = N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} \frac{\partial \nu_{i3}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'}$$

$$= -\left(N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} (y_{i2} - by_{i1}), N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} (y_{i2} - \gamma y_{i1} - \beta x_{i2}), N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} (x_{i3} - bx_{i2})\right)$$

and

$$\mathbf{S}_{N}\left(\boldsymbol{\theta}\right) = N^{-1} \sum_{i=1}^{N} \sum_{j=1}^{N} \nu_{i3}\left(\boldsymbol{\theta}\right) \nu_{j3}\left(\boldsymbol{\theta}\right) \mathbf{z}_{i} \mathbf{z}_{j}^{\prime}.$$
 (S.2)

Consider first the limit of  $\mathbf{S}_{N}(\boldsymbol{\theta})$ , and note that under the assumption of conditional cross sectional independence we have

$$\mathbf{S}_{N}(\boldsymbol{\theta}) \underset{p}{\to} \mathbf{S} = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} E\left(\mathbf{z}_{i} \mathbf{z}_{i}^{\prime}\right) E\left(\varepsilon_{i3} - b\varepsilon_{i2}\right)^{2}$$

$$\mathbf{S} = (1 + b^{2}) \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \sigma_{i}^{2} E\left(\mathbf{z}_{i} \mathbf{z}_{i}^{\prime}\right).$$

Also

$$E\left(\mathbf{z}_{i}\mathbf{z}_{i}^{\prime}\right) = \begin{pmatrix} E(\mathbf{w}_{i}\mathbf{w}_{i}^{\prime}) & E(\mathbf{w}_{i}\mathbf{x}_{i}^{\prime}) \\ E(\mathbf{x}_{i}\mathbf{w}_{i}^{\prime}) & E(\mathbf{x}_{i}\mathbf{x}_{i}^{\prime}) \end{pmatrix},$$

where

$$\mathbf{w}_{i} = \begin{pmatrix} y_{i0} \\ y_{i1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\pi}'_{0} \mathbf{x}_{i} + \lambda_{i} f_{0} + \varepsilon_{i1} \\ \boldsymbol{\pi}'_{1} \mathbf{x}_{i} + \lambda_{i} (\gamma f_{0} + f_{1}) + \gamma \varepsilon_{i0} + \varepsilon_{i1} \end{pmatrix},$$

$$\boldsymbol{\pi}_{1} = \gamma \boldsymbol{\pi}_{0} + \beta \mathbf{e}_{1}, \tag{S.3}$$

and  $\mathbf{e}_s$  is a  $3 \times 1$  vector of zeros except for its  $s^{th}$  element which is unity.

$$E(\mathbf{w}_{i}\mathbf{w}_{i}') = \begin{pmatrix} \boldsymbol{\pi}_{0}'E(\mathbf{x}_{i}\mathbf{x}_{i}')\boldsymbol{\pi}_{0} + f_{0}^{2}\lambda_{i}^{2} + \sigma_{i}^{2} & \boldsymbol{\pi}_{0}'E(\mathbf{x}_{i}\mathbf{x}_{i}')\boldsymbol{\pi}_{1} + f_{0}(\gamma f_{0} + f_{1})\lambda_{i}^{2} + \gamma \sigma_{i}^{2} \\ & \boldsymbol{\pi}_{1}'E(\mathbf{x}_{i}\mathbf{x}_{i}')\boldsymbol{\pi}_{1} + (\gamma f_{0} + f_{1})^{2}\lambda_{i}^{2} + \sigma_{i}^{2}(1 + \gamma^{2}) \end{pmatrix}.$$

$$E(\mathbf{w}_{i}\mathbf{x}'_{i}) = \begin{pmatrix} E(\boldsymbol{\pi}'_{0}\mathbf{x}_{i} + \lambda_{i}f_{0} + \varepsilon_{i0})\mathbf{x}'_{i} \\ E[\boldsymbol{\pi}'_{1}\mathbf{x}_{i} + \lambda_{i}(\gamma f_{0} + f_{1}) + \gamma \varepsilon_{i0} + \varepsilon_{i1}]\mathbf{x}'_{i} \end{pmatrix}$$
$$= \begin{pmatrix} \boldsymbol{\pi}'_{0}E(\mathbf{x}_{i}\mathbf{x}'_{i}) \\ \boldsymbol{\pi}'_{1}E(\mathbf{x}_{i}\mathbf{x}'_{i}) \end{pmatrix}.$$

Let

$$\mathbf{A} = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \sigma_i^2 \left( \mathbf{x}_i \mathbf{x}_i' \right), \ d_{\lambda \sigma} = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \sigma_i^2 \lambda_i^2 \ge 0, d_{\sigma \sigma} = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \sigma_i^4 > 0,$$

$$N^{-1} \sum_{i=1}^{N} \sigma_i^2 E(\mathbf{w}_i \mathbf{w}_i') = \lim_{N \to \infty} \begin{pmatrix} \boldsymbol{\pi}_0' \mathbf{A} \boldsymbol{\pi}_0 + f_0^2 \mathbf{d}_{\lambda \sigma} + \mathbf{d}_{\sigma \sigma} & \boldsymbol{\pi}_0' \mathbf{A} \boldsymbol{\pi}_1 + f_0(\gamma f_0 + f_1) \mathbf{d}_{\lambda \sigma} + \gamma \mathbf{d}_{\sigma \sigma} \\ \boldsymbol{\pi}_0' \mathbf{A} \boldsymbol{\pi}_1 + f_0(\gamma f_0 + f_1) \mathbf{d}_{\lambda \sigma} + \gamma \mathbf{d}_{\sigma \sigma} & \boldsymbol{\pi}_1' \mathbf{A} \boldsymbol{\pi}_1 + (\gamma f_0 + f_1)^2 \mathbf{d}_{\lambda \sigma} + (1 + \gamma^2) \mathbf{d}_{\sigma \sigma} \end{pmatrix},$$

$$N^{-1} \sum_{i=1}^{N} \sigma_i^2 E(\mathbf{w}_i \mathbf{x}_i') = \begin{pmatrix} \boldsymbol{\pi}_0' \mathbf{A} \\ \boldsymbol{\pi}_1' \mathbf{A} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\pi}_0' \mathbf{A} \\ \gamma \boldsymbol{\pi}_0' \mathbf{A} + \beta \mathbf{e}_1' \mathbf{A} \end{pmatrix}$$

and note that

$$\mathbf{S} = (1+b^2) \lim_{N \to \infty} \begin{pmatrix} N^{-1} \sum_{i=1}^{N} \sigma_i^2 E(\mathbf{w}_i \mathbf{w}_i') & N^{-1} \sum_{i=1}^{N} \sigma_i^2 E(\mathbf{w}_i \mathbf{x}_i') \\ N^{-1} \sum_{i=1}^{N} \sigma_i^2 E(\mathbf{x}_i \mathbf{w}_i') & N^{-1} \sum_{i=1}^{N} \sigma_i^2 E(\mathbf{x}_i \mathbf{x}_i') \end{pmatrix}$$

$$= (1+b^2) \begin{pmatrix} \boldsymbol{\pi}_0' \mathbf{A} \boldsymbol{\pi}_0 + f_0^2 \mathbf{d}_{\lambda \sigma} + \mathbf{d}_{\sigma \sigma} & \boldsymbol{\pi}_0' \mathbf{A} \boldsymbol{\pi}_1 + f_0 (\gamma f_0 + f_1) \mathbf{d}_{\lambda \sigma} + \gamma \mathbf{d}_{\sigma \sigma} & \boldsymbol{\pi}_0' \mathbf{A} \\ \boldsymbol{\pi}_1' \mathbf{A} \boldsymbol{\pi}_0 + f_0 (\gamma f_0 + f_1) \mathbf{d}_{\lambda \sigma} + \gamma \mathbf{d}_{\sigma \sigma} & \boldsymbol{\pi}_1' \mathbf{A} \boldsymbol{\pi}_1 + (\gamma f_0 + f_1)^2 \mathbf{d}_{\lambda \sigma} + (1 + \gamma^2) \mathbf{d}_{\sigma \sigma} & \gamma \boldsymbol{\pi}_0' \mathbf{A} + \beta \mathbf{e}_1' \mathbf{A} \\ \mathbf{A} \boldsymbol{\pi}_0 & \gamma \mathbf{A} \boldsymbol{\pi}_0 + \beta \mathbf{A} \mathbf{e}_1 & \mathbf{A} \end{pmatrix}.$$

It is clear that in general for **S** to be positive definite it is necessary that **A** is positive definite. Since  $\mathbf{A} = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \sigma_i^2(\mathbf{x}_i \mathbf{x}_i') \ge \inf_i(\sigma_i^2) \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i'$ , and by assumption  $\inf_i(\sigma_i^2) > 1$ 

 $c_{\min} > 0$ , then it is sufficient if  $E(\mathbf{x}_i \mathbf{x}_i')$  is a positive definite matrix, which is likely to be so if  $x_{it}$  varies sufficiently across t = 1, 2, 3. Note that even if  $\pi_0 = 0$  and  $d_{\lambda\sigma} = 0$  (cases to be considered below) then

$$\mathbf{S} = (1 + b^2) \begin{pmatrix} \mathbf{d}_{\sigma\sigma} & \gamma \mathbf{d}_{\sigma\sigma} & \mathbf{0} \\ \gamma \mathbf{d}_{\sigma\sigma} & \beta^2 \mathbf{e}_1' \mathbf{A} \mathbf{e}_1 + (1 + \gamma^2) \mathbf{d}_{\sigma\sigma} & \beta \mathbf{e}_1' \mathbf{A} \\ \mathbf{0} & \beta \mathbf{A} \mathbf{e}_1 & \mathbf{A} \end{pmatrix},$$

which is a positive definite matrix so long as  $\mathbf{A} > \mathbf{0}$  and  $d_{\sigma\sigma} > 0$ . This result holds even if  $\beta = 0$ .

Now consider  $\mathbf{D}_N$  defined by (S.1), and since  $y_{i2} - \gamma y_{i1} - \beta x_{i2} = \lambda_i f_2 + \varepsilon_{i2}$ , then  $\mathbf{D}_N$  can be written equivalently as

$$\mathbf{D}_{N} = -\left(N^{-1}\sum_{i=1}^{N} \mathbf{z}_{i}(y_{i2} - by_{i1}), N^{-1}\sum_{i=1}^{N} \mathbf{z}_{i}(\lambda_{i}f_{2} + \varepsilon_{i2}), N^{-1}\sum_{i=1}^{N} \mathbf{z}_{i}(x_{i3} - bx_{i2})\right).$$
(S.4)

First we note that

$$\mathbf{z}_{i} = \begin{pmatrix} y_{i0} \\ y_{i1} \\ x_{i1} \\ x_{i2} \\ x_{i3} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\pi}'_{0}\mathbf{x}_{i} + \lambda_{i}f_{0} + \varepsilon_{i0} \\ \boldsymbol{\pi}'_{1}\mathbf{x}_{i} + \lambda_{i}(\gamma f_{0} + f_{1}) + \gamma \varepsilon_{i0} + \varepsilon_{i1} \\ x_{i1} \\ x_{i2} \\ x_{i3} \end{pmatrix},$$

where  $\boldsymbol{\pi}_1 = \gamma \boldsymbol{\pi}_0 + \beta \mathbf{e}_1$ . Also

$$y_{i2} = \pi_2' \mathbf{x}_i + \lambda_i \left( \gamma^2 f_0 + \gamma f_1 + f_2 \right) + \gamma^2 \varepsilon_{i0} + \gamma \varepsilon_{i1} + \varepsilon_{i2}, \tag{S.5}$$

with

$$\pi_2 = \gamma^2 \pi_0 + (\gamma \mathbf{e}_1 + \mathbf{e}_2) \beta. \tag{S.6}$$

Furthermore, to simplify the exposition we assume  $\mathbf{x}_i$  have zero means and are uncorrelated with the loadings, namely  $E(\lambda_i x_{it}) = 0$ . Then it is easily established that

$$N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i}(\lambda_{i} f_{2} + \varepsilon_{i2}) = \begin{pmatrix} N^{-1} \sum_{i=1}^{N} y_{i0}(\lambda_{i} f_{2} + \varepsilon_{i2}) \\ N^{-1} \sum_{i=1}^{N} y_{i1}(\lambda_{i} f_{2} + \varepsilon_{i2}) \\ N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}(\lambda_{i} f_{2} + \varepsilon_{i2}) \end{pmatrix}$$

$$= \begin{pmatrix} N^{-1} \sum_{i=1}^{N} (\boldsymbol{\pi}'_{0} \mathbf{x}_{i} + \lambda_{i} f_{0} + \varepsilon_{i0}) (\lambda_{i} f_{2} + \varepsilon_{i2}) \\ N^{-1} \sum_{i=1}^{N} (\boldsymbol{\pi}'_{1} \mathbf{x}_{i} + \lambda_{i} (\gamma f_{0} + f_{1}) + \gamma \varepsilon_{i0} + \varepsilon_{i1}) (\lambda_{i} f_{2} + \varepsilon_{i2}) \\ N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}(\lambda_{i} f_{2} + \varepsilon_{i2}) \end{pmatrix}$$

$$\rightarrow p \begin{pmatrix} f_{0} f_{2} \bar{d}(\boldsymbol{\lambda}) \\ (\gamma f_{0} + f_{1}) f_{2} \bar{d}(\boldsymbol{\lambda}) \\ 0 \end{pmatrix},$$

where  $\bar{d}(\lambda) = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \lambda_i^2$ . Similarly,

$$N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i}(x_{i3} - bx_{i2}) \rightarrow_{p} \begin{pmatrix} \boldsymbol{\pi}'_{0} \boldsymbol{\Sigma}_{xx}(\mathbf{e}_{3} - b\mathbf{e}_{2}) \\ \boldsymbol{\pi}'_{1} \boldsymbol{\Sigma}_{xx}(\mathbf{e}_{3} - b\mathbf{e}_{2}) \\ \boldsymbol{\Sigma}_{xx}(\mathbf{e}_{3} - b\mathbf{e}_{2}) \end{pmatrix}.$$

where  $\Sigma_{xx} = \lim_{N\to\infty} N^{-1} \sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}'_i$ . Finally, to obtain the limit of the first column of  $\mathbf{D}_N$ , using (2) and (S.5) we first note that

$$y_{i2} - by_{i1} = \left[ (\gamma - b)\boldsymbol{\pi}_1 + \beta \mathbf{e}_2 \right]' \mathbf{x}_i + \left[ (\gamma - b)(\gamma f_0 + f_1) + f_2 \right] \lambda_i + (\gamma - b)\gamma \varepsilon_{i0} + (\gamma - b)\varepsilon_{i1} + \varepsilon_{i2}.$$

Then it follows that

$$y_{i2} - by_{i1} = [(\gamma - b)\pi_1 + \beta \mathbf{e}_2] + \lambda_i [(\gamma - b)(\gamma f_0 + f_1) + f_2]$$

$$N^{-1} \sum_{i=1}^{N} y_{i0} (y_{i2} - by_{i1}) \to_{p} q_{1}, \ N^{-1} \sum_{i=1}^{N} y_{i1} (y_{i2} - by_{i1}) \to_{p} q_{2},$$

where

$$q_{1} = \pi'_{0} \Sigma_{xx} \left[ (\gamma - b) \pi_{1} + \beta \mathbf{e}_{2} \right] + f_{0} \left[ (\gamma - b) (\gamma f_{0} + f_{1}) + f_{2} \right] \bar{d}(\boldsymbol{\lambda}) + \gamma (\gamma - b) \bar{\sigma}^{2},$$

$$q_{2} = \pi'_{1} \Sigma_{xx} \left[ (\gamma - b) \pi_{1} + \beta \mathbf{e}_{2} \right] + (\gamma f_{0} + f_{1}) \left[ (\gamma - b) (\gamma f_{0} + f_{1}) + f_{2} \right] \bar{d}(\boldsymbol{\lambda}) + (\gamma - b) (1 + \gamma^{2}) \bar{\sigma}^{2} (S.8)$$

and  $\bar{\sigma}^2 = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} \sigma_i^2$ . Similarly

$$N^{-1} \sum_{i=1}^{N} \mathbf{x}_i (y_{i2} - by_{i1}) \to_p \mathbf{\Sigma}_{xx} [(\gamma - b)\pi_1 + \beta \mathbf{e}_2].$$

Collecting the above results in (S.4), we have

$$\mathbf{D}_{N} \to_{p} \mathbf{D} = -\begin{pmatrix} q_{1} & f_{0}f_{2}\bar{d}(\boldsymbol{\lambda}) & \boldsymbol{\pi}_{0}'\boldsymbol{\Sigma}_{xx}(\mathbf{e}_{3} - b\mathbf{e}_{2}) \\ q_{2} & (\gamma f_{0} + f_{1}) f_{2}\bar{d}(\boldsymbol{\lambda}) & \boldsymbol{\pi}_{1}'\boldsymbol{\Sigma}_{xx}(\mathbf{e}_{3} - b\mathbf{e}_{2}) \\ \boldsymbol{\Sigma}_{xx}\left[(\gamma - b)\boldsymbol{\pi}_{1} + \beta\mathbf{e}_{2}\right] & \mathbf{0} & \boldsymbol{\Sigma}_{xx}(\mathbf{e}_{3} - b\mathbf{e}_{2}) \end{pmatrix}.$$
(S.9)

The rank of **D** depends on  $\boldsymbol{\theta}$ , as well as the parameters of the  $\mathbf{x}_i$  process, and the strength of the common factor, as measured by  $\bar{d}(\boldsymbol{\lambda})$ . It is not possible to be sure that **D** will be full rank for all values of  $\boldsymbol{\theta}$ ; the rank could become deficient due to the particular values that the incidental parameters, such as b and  $\bar{d}(\boldsymbol{\lambda})$  could take.

## S.3 An eigenvalue approach for computing the TQML estimator

Consider the log-likelihood given in (34) without any restrictions on  $\mathbf{Q}$ , which can be further written as

$$\ell_{N}(\boldsymbol{\theta}) = \ell_{N}(\boldsymbol{\varphi}, \boldsymbol{\psi}) = -\frac{NT}{2} \ln(2\pi) - \frac{NT}{2} \ln(\sigma^{2})$$

$$-\frac{N}{2} \ln\left|\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right| - \frac{1}{2\sigma^{2}} \sum_{i=1}^{N} \boldsymbol{\xi}'_{i}(\boldsymbol{\varphi}) \left(\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right)^{-1} \boldsymbol{\xi}_{i}(\boldsymbol{\varphi}). \tag{S.10}$$

To compute the TQML estimator consider (S.10) and note that since  $\Omega$  is a positive definite matrix and  $\mathbf{Q}\mathbf{Q}'$  is rank deficient (recall that m < T), we have  $|\Omega + \mathbf{Q}\mathbf{Q}'| = |\Omega| |\mathbf{I}_m + \mathbf{Q}'\Omega^{-1}\mathbf{Q}|$ , and using the Woodbury matrix identity

$$(\Omega + \mathbf{Q}\mathbf{Q}')^{-1} = \Omega^{-1} - \Omega^{-1}\mathbf{Q}(\mathbf{I}_m + \mathbf{Q}'\Omega^{-1}\mathbf{Q})^{-1}\mathbf{Q}'\Omega^{-1}$$
  
=  $\Omega^{-1} - \Omega^{-1}\mathbf{Q}\mathbf{A}^{-1}\mathbf{Q}'\Omega^{-1},$  (S.11)

where  $\mathbf{A}$  is a non-singular matrix defined by

$$\mathbf{A} = \mathbf{I}_m + \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{Q}. \tag{S.12}$$

Using the above results in (S.10), and after some simplification the quasi-log-likelihood function can be written as

$$N^{-1}\ell_{N}\left(\boldsymbol{\theta}\right) \propto -\frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln|\boldsymbol{\Lambda}| - \frac{1}{2\sigma^{2}}\left[\operatorname{tr}\left(\mathbf{B}_{N}\boldsymbol{\Omega}^{-1}\right) - \operatorname{tr}\left(\mathbf{B}_{N}\boldsymbol{\Omega}^{-1}\mathbf{Q}\boldsymbol{\Lambda}^{-1}\mathbf{Q}'\boldsymbol{\Omega}^{-1}\right)\right], \quad (S.13)$$

where  $|\Omega| = 1 + T(\omega - 1)$ , and

$$\mathbf{B}_{N}(\varphi) = N^{-1} \sum_{i=1}^{N} \xi_{i}(\varphi) \xi'_{i}(\varphi). \tag{S.14}$$

For analytical convenience we further define  $\mathbf{P} = \mathbf{\Omega}^{-1/2} \mathbf{Q} \mathbf{A}^{-1/2}$ . Note that since  $\mathbf{A}$  and  $\mathbf{\Omega}$  are non-singular matrices, then  $rank(\mathbf{P}) = m$ , as well. Further, it is easily seen that

$$\mathbf{I}_m - \mathbf{P}'\mathbf{P} = \mathbf{I}_m - \mathbf{A}^{-1/2}\mathbf{Q}'\mathbf{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1/2},$$

and using  $\mathbf{Q}'\mathbf{\Omega}^{-1}\mathbf{Q} = \mathbf{A} - \mathbf{I}_m$  from (S.12), we have

$$\mathbf{A}^{-1} = \mathbf{I}_m - \mathbf{P}'\mathbf{P}.\tag{S.15}$$

Similarly,

$$\operatorname{tr}\left(\mathbf{B}_{N}\mathbf{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1}\mathbf{Q}'\mathbf{\Omega}^{-1}\right) = \sigma^{2}\operatorname{tr}\left[\mathbf{P}'\mathbf{C}_{N}\left(\boldsymbol{\theta}_{c}\right)\mathbf{P}\right],$$

where

$$\mathbf{C}_{N}(\boldsymbol{\theta}_{c}) = \sigma^{-2} \mathbf{\Omega}^{-1/2} \mathbf{B}_{N}(\boldsymbol{\varphi}) \mathbf{\Omega}^{-1/2}, \tag{S.16}$$

and  $\theta_c = (\varphi', \omega, \sigma^2)'$  where subscript c refers to  $\theta_c$  being the concentrated parameter vector. Using the above results, the quasi-log-likelihood function given by (S.13) can now be written as

$$N^{-1}\ell_{N}\left(\boldsymbol{\theta}_{c},\mathbf{P}\right) \propto -\frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln\left[1 + T\left(\omega - 1\right)\right] + \frac{1}{2}\ln\left|\mathbf{I}_{m} - \mathbf{P'P}\right| - \frac{1}{2}\left\{\operatorname{tr}\left[\mathbf{C}_{N}\left(\boldsymbol{\theta}_{c}\right)\right] - \operatorname{tr}\left[\mathbf{P'C}_{N}\left(\boldsymbol{\theta}_{c}\right)\mathbf{P}\right]\right\}.$$
(S.17)

In line with the discussion in Section 4,  $\mathbf{P}$  is not identified without additional restrictions. It is easily seen that the value of  $\ell_N$  ( $\boldsymbol{\theta}_c$ ,  $\mathbf{P}$ ) is invariant to the orthonormal transformation of  $\mathbf{P}$ . To see this consider the transformation  $\widetilde{\mathbf{P}} = \mathbf{P}\mathbf{\Xi}$ , where  $\mathbf{\Xi}$  is an  $m \times m$  orthonormal matrix such that  $\mathbf{\Xi}'\mathbf{\Xi} = \mathbf{I}_m$ . Then it is readily verified that  $N^{-1}\ell_N$  ( $\boldsymbol{\theta}_c$ ,  $\mathbf{P}$ ) =  $N^{-1}\ell_N$  ( $\boldsymbol{\theta}_c$ ,  $\widetilde{\mathbf{P}}$ ). Let  $\mathbf{P} = (\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$ , where  $\mathbf{p}_t$  is the  $t^{th}$  column of  $\mathbf{P}$ , and  $\mathbf{p}_t$  is a  $T \times 1$  vector of unknown parameters. Since rank ( $\mathbf{P}$ ) = m, then  $\mathbf{P}'\mathbf{P}$  can be diagonalised by an orthonormal transformation, and without loss of generality we impose the following m(m-1)/2 orthogonality conditions

$$\mathbf{p}_t'\mathbf{p}_s = 0$$
, for all  $s \neq t = 1, 2, ..., m$ . (S.18)

Under these restrictions the quasi-log-likelihood function, (S.17), simplifies to

$$N^{-1}\ell_{N}\left(\boldsymbol{\theta}_{c},\mathbf{P}\right) \propto -\frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln\left[1 + T\left(\omega - 1\right)\right] + \frac{1}{2}\sum_{t=1}^{m}\ln\left(1 - \mathbf{p}_{t}'\mathbf{p}_{t}\right) + \frac{1}{2}\sum_{t=1}^{m}\mathbf{p}_{t}'\mathbf{C}_{N}\left(\boldsymbol{\theta}_{c}\right)\mathbf{p}_{t} - \frac{1}{2}\operatorname{tr}\left[\mathbf{C}_{N}\left(\boldsymbol{\theta}_{c}\right)\right].$$
(S.19)

Taking first derivatives with respect to  $\mathbf{p}_t$  and setting these derivatives to zero now yields

$$\mathbf{C}_{N}\left(\boldsymbol{\theta}_{c}\right)\widehat{\mathbf{p}}_{t} - \left(\frac{1}{1 - \widehat{\mathbf{p}}_{t}'\widehat{\mathbf{p}}_{t}}\right)\widehat{\mathbf{p}}_{t} = \mathbf{0}, \quad \text{for } t = 1, 2, ..., m,$$
(S.20)

where  $\hat{\mathbf{p}}_t$  is the quasi-maximum likelihood estimator of  $\mathbf{p}_t$  (in terms of  $\boldsymbol{\theta}_c$ ). Therefore,  $\hat{\mathbf{p}}_t$  is the eigenvector of  $\mathbf{C}_N(\boldsymbol{\theta}_c)$  associated with the first m largest non-zero eigenvalues of  $\mathbf{C}_N(\boldsymbol{\theta}_c)$ , which we denote by  $\lambda_1(\boldsymbol{\theta}_c) > \lambda_2(\boldsymbol{\theta}_c) > \dots > \lambda_m(\boldsymbol{\theta}_c) > 0$ . Note that  $\mathbf{C}_N(\boldsymbol{\theta}_c)$  is a symmetric positive definite matrix with all real eigenvalues  $\lambda_t(\boldsymbol{\theta}_c) > 0$ , for  $t = 1, 2, \dots, T$ . We also have

$$\lambda_t(\boldsymbol{\theta}_c) = \frac{1}{1 - \widehat{\mathbf{p}}_t'\widehat{\mathbf{p}}_t}, \text{ and } \widehat{\mathbf{p}}_t'\mathbf{C}_N(\boldsymbol{\theta}_c)\widehat{\mathbf{p}}_t = \lambda_t(\boldsymbol{\phi}) - 1.$$

Hence, the concentrated quasi log-likelihood function in terms of  $\theta_c$  can be written as

$$N^{-1}\ell_{N}\left(\boldsymbol{\theta}_{c};m\right) \propto -\frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln\left[1 + T\left(\omega - 1\right)\right] - \frac{1}{2}\sum_{t=1}^{m}\ln\left[\lambda_{t}\left(\boldsymbol{\theta}_{c}\right)\right] + \frac{1}{2}\sum_{t=1}^{m}\left[\lambda_{t}\left(\boldsymbol{\theta}_{c}\right) - 1\right] - \frac{1}{2}\sum_{t=1}^{T}\lambda_{t}\left(\boldsymbol{\theta}_{c}\right),$$
(S.21)

where  $\lambda_t(\boldsymbol{\theta}_c)$  is the  $t^{th}$  eigenvalue of  $\mathbf{C}_N(\boldsymbol{\theta}_c)$ , given by (S.16). This concentrated quasi log-likelihood function can now be maximised with respect to  $\boldsymbol{\theta}_c = (\boldsymbol{\varphi}', \omega, \sigma^2)'$ . The TQML estimators,  $\hat{\lambda}_t(\boldsymbol{\theta}_c)$ , can then be computed using the TQML estimator of  $\boldsymbol{\theta}_c$  and their corresponding variance covariance matrix can be computed using the delta method. Due to the possibily of local maxima, in maximising (S.21) we initialise the optimisation process with a number of starting values, randomly selected from the uniform distribution, specifically

$$\gamma_{ini} \sim U(-0.999, 0.999), \ \sigma_{ini}^2 \sim U(0.1, 1), \omega_{ini} \sim U(1, 2),$$

with the initial values for the remaining parameters, namely  $\boldsymbol{\delta} = (\mathbf{d}', \boldsymbol{\pi}', \boldsymbol{\beta}')'$  generated from a U(-1,1). With regard to the computation of  $\hat{\mathbf{p}}_t$  it is important to bear in mind that standard eigenvector routines provide eigenvectors that are typically orthonormalised. Whilst in the above analysis,  $\hat{\mathbf{p}}_1$ ,  $\hat{\mathbf{p}}_2$ , ....,  $\hat{\mathbf{p}}_m$  are orthogonal to each other, their length is not unity and is given by  $\hat{\mathbf{p}}_t'\hat{\mathbf{p}}_t = 1 - 1/\lambda_t(\boldsymbol{\theta}_c)$ .

# S.4 Steady state distribution of $y_{it}$ in the stationary case

Consider the panel data model

$$y_{it} = \alpha_i + \delta_t + \gamma y_{i,t-1} + \beta x_{it} + \zeta_{it}, \ |\gamma| < 1,$$

where

$$\zeta_{it} = \sum_{\ell=1}^{m} \eta_{\ell i} f_{\ell t} + u_{it}, \tag{S.22}$$

$$x_{it} = \alpha_{xi} + \sum_{\ell=1}^{m_x} \vartheta_{\ell i} f_{\ell t} + \mathbf{v}_{it}, \tag{S.23}$$

for i = 1, 2, ..., N and t = 1, 2, ..., T. Also

$$\mathbf{v}_{it} = \rho_x \mathbf{v}_{i,t-1} + \left(1 - \rho_x^2\right)^{1/2} \varepsilon_{it}, \quad |\rho_x| < 1, \text{ for } t = 1, ..., T,$$

$$\varepsilon_{it} \sim IID\mathcal{N}(0, \sigma_{iy}^2), \text{ and } \mathbf{v}_{i0} \sim IID\mathcal{N}(0, \sigma_{iy}^2),$$
(S.24)

which ensures that  $Var(\mathbf{v}_{it}) = \sigma_{iv}^2$ . Further,

$$f_{\ell t} = \rho_{\ell f} f_{\ell, t-1} + \left(1 - \rho_{f \ell}^2\right)^{1/2} \varepsilon_{f \ell t}, \ \varepsilon_{f \ell t} \sim IID\mathcal{N}(0, 1),$$

with  $f_{\ell,0}=0$ , for  $\ell=1,2,...,m$ , and t=1,...,T. Also to simplify the derivations we set  $\rho_{\ell f}=\rho_f$  for all  $\ell$ . From the above specifications of  $\mathbf{v}_{it}$  and  $\mathbf{f}_t$  it readily follows that

$$E\left(\mathbf{v}_{it}\right) = 0, \ E\left(\mathbf{f}_{t}\right) = 0, \ Cov\left(\mathbf{v}_{i,t-j}\mathbf{v}_{i,t-j'}\right) = \sigma_{iv}^{2}\rho_{x}^{|j-j'|} \text{ and } Cov\left(\mathbf{f}_{t-j}\mathbf{f}_{t-j'}\right) = \rho_{f}^{|j-j'|}\mathbf{I}_{m}. \tag{S.25}$$

Due to the dependence of  $x_{it}$  and  $\zeta_{it}$  on the same unobserved factors, the regressors and the errors of the above regression are correlated. Following Pesaran and Smith (1994) we base the derivation of the steady state distribution of  $y_{it}$  on the following reduced form regressions

$$y_{it} = \widetilde{\alpha}_i + \delta_t + \gamma y_{i,t-1} + \beta v_{it} + \mathbf{c}_i' \mathbf{f}_t + u_{it}, \tag{S.26}$$

where

$$\widetilde{\alpha}_i = \alpha_i + \beta \alpha_{xi},$$
 (S.27)

$$\mathbf{c}_{i}'\mathbf{f}_{t} = \sum_{\ell=1}^{m} \eta_{\ell i} f_{\ell t} + \beta \sum_{\ell=1}^{m_{x}} \vartheta_{\ell i} f_{\ell t} = \sum_{\ell=1}^{\max(m, m_{x})} c_{\ell i} f_{\ell t}, \tag{S.28}$$

where  $c_{\ell i}$  for all i and  $\ell = 1, 2, ..., \max(m, m_x)$ , are defined implicitly. Using the results in (S.25), and noting that  $\mathbf{f}_t, u_{it'}$  and  $\mathbf{v}_{is}$  are mutually uncorrelated for all values of t, t' and s, it then follows, conditional on  $\widetilde{\alpha}_i$  and  $\mathbf{c}_i$ , that (without loss of generality we set  $\delta_t = 0$ )

$$E(y_{it}|\widetilde{\alpha}_i, \mathbf{c}_i) = \gamma E(y_{i,t-1}|\widetilde{\alpha}_i, \mathbf{c}_i) + \widetilde{\alpha}_i$$
(S.29)

$$Var\left(y_{it}|\widetilde{\alpha}_{i},\mathbf{c}_{i}\right) = \gamma^{2}Var\left(y_{i,t-1}|\widetilde{\alpha}_{i},\mathbf{c}_{i}\right) + \beta^{2}Var\left(v_{it}|\widetilde{\alpha}_{i},\mathbf{c}_{i}\right) + \mathbf{c}_{i}^{\prime}Cov\left(\mathbf{f}_{t}\mathbf{f}_{t}^{\prime}\right)\mathbf{c}_{i} + \sigma^{2}$$

$$+2\gamma Cov\left(y_{i,t-1},\mathbf{c}_{i}^{\prime}\mathbf{f}_{t}|\widetilde{\alpha}_{i},\mathbf{c}_{i}\right) + 2\gamma\beta Cov\left(y_{i,t-1},v_{it}|\widetilde{\alpha}_{i},\mathbf{c}_{i}\right).$$
(S.30)

Also, the steady state values of the covariances in the above expression are given by (upon using (S.25))

$$Cov\left(y_{i,t-1}, \mathbf{c}_{i}'\mathbf{f}_{t}|\widetilde{\alpha}_{i}, \mathbf{c}_{i}\right) = \sum_{j=0}^{\infty} \gamma^{j} \mathbf{c}_{i}' E\left(\mathbf{f}_{t-j-1}\mathbf{f}_{t}'\right) \mathbf{c}_{i} = \left(\mathbf{c}_{i}'\mathbf{c}_{i}\right) \sum_{j=0}^{\infty} \rho_{f}^{j+1} \gamma^{j} = \frac{\left(\mathbf{c}_{i}'\mathbf{c}_{i}\right) \rho_{f}}{1 - \gamma \rho_{f}},$$

$$Cov\left(y_{i,t-1}, \mathbf{v}_{it} \middle| \widetilde{\alpha}_i, \mathbf{c}_i\right) = \beta \sigma_{iv}^2 \sum_{j=0}^{\infty} \gamma^j E\left(\mathbf{v}_{i,t-j-1} \mathbf{v}_{it}\right) = \beta \sigma_{iv}^2 \sum_{j=0}^{\infty} \rho_x^{j+1} \gamma^j = \frac{\beta \rho_x \sigma_{iv}^2}{1 - \gamma \rho_x}.$$

Using the above results in (S.30) and noting that in steady state  $E(y_{it}|\widetilde{\alpha}_i, \mathbf{c}_i) = E(y_{i0}|\widetilde{\alpha}_i, \mathbf{c}_i)$  and  $Var(y_{it}|\widetilde{\alpha}_i, \mathbf{c}_i) = Var(y_{i0}|\widetilde{\alpha}_i, \mathbf{c}_i)$  we have

$$E(y_{it}|\tilde{\alpha}_i, \mathbf{c}_i) = \mu_{i0} = \frac{\alpha_i + \beta \alpha_{xi}}{1 - \gamma}, \tag{S.31}$$

$$Var(y_{it}|\widetilde{\alpha}_i, \mathbf{c}_i) = \sigma_{i0}^2 = \frac{\sigma^2 + a_x \beta^2 \sigma_{iv}^2 + a_f a_i}{1 - \gamma^2},$$
 (S.32)

where

$$\mathbf{a}_{i} = \mathbf{c}_{i}'\mathbf{c}_{i} = \sum_{\ell=1}^{m} \eta_{\ell i}^{2} + \beta^{2} \sum_{\ell=1}^{m_{x}} \vartheta_{\ell i}^{2} + 2\beta \sum_{\ell=1}^{\min(m, m_{x})} \eta_{\ell i} \vartheta_{\ell i}, \tag{S.33}$$

and

$$\mathbf{a}_x = \left(\frac{1 + \gamma \rho_x}{1 - \gamma \rho_x}\right), \text{ and } \mathbf{a}_f = \left(\frac{1 + \gamma \rho_f}{1 - \gamma \rho_f}\right).$$
 (S.34)

# S.5 Quasi-log-likelihood function of Bai (2013)

Consider

$$y_{it} = \gamma y_{i,t-1} + \delta_t + \mathbf{x}'_{it} \boldsymbol{\beta} + \mathbf{f}'_t \boldsymbol{\lambda}_i + \varepsilon_{it}, \text{ for } t = 1, 2, 3, ..., T, i = 1, 2, ..., N,$$
(S.35)

where  $\mathbf{x}_i = (\mathbf{x}_{i1}, ..., \mathbf{x}_{iT})', \mathbf{x}_i \boldsymbol{\beta} = (\mathbf{I}_T \otimes \boldsymbol{\beta}') vec(\mathbf{x}_i') = (\mathbf{I}_T \otimes \boldsymbol{\beta}') \mathbf{w}_i, \boldsymbol{\lambda}_i = (\lambda_{i1}, \lambda_{i2}, ..., \lambda_{i,\widetilde{m}})' = (\alpha_i, \lambda_{i2}, ..., \lambda_{i,\widetilde{m}})',$  $\mathbf{f}_t = (f_{1t}, f_{2t}, ..., f_{\widetilde{m},t})'$  with  $\widetilde{m} = m+1$ , and

$$y_{i0} = \delta_0^* + \sum_{s=1}^T \mathbf{x}_{is}' \boldsymbol{\pi}_s + \mathbf{f}_0^{*\prime} \boldsymbol{\lambda}_i + \varepsilon_{i0}^*, \tag{S.36}$$

with  $\boldsymbol{\pi} = (\boldsymbol{\pi}_1', ..., \boldsymbol{\pi}_T')'$ .

To account for the correlation of the factor loading corresponding to the individual effects with the regressors  $\mathbf{x}_{it}$ , the Mundlak-Chamberlain projection is applied to the factor loadings  $\lambda_i$ .

Projecting  $\lambda_i$  on  $\mathbf{w}_i = vec(\mathbf{x}_i')$ 

$$\lambda_i = \lambda + \phi_1 \mathbf{x}_{i1} + ... \phi_T \mathbf{x}_{iT} + \boldsymbol{\eta}_i$$

or

$$\lambda_i = \lambda + \phi \mathbf{w}_i + \eta_i, \tag{S.37}$$

where  $\lambda$  is the intercept,  $\eta_i$  is the projection residual,  $\phi_1, ..., \phi_T$  are matrices  $(\widetilde{m} \times k)$  of projection coefficients. By definition  $E(\eta_i) = \mathbf{0}$ , and the regressors are uncorrelated with the projection residual for all t.

Substituting (S.37) into (S.35) and absorbing  $\mathbf{f}_t' \boldsymbol{\lambda}_i$  into  $\delta_t$ , for  $t \geq 1$ ,

$$y_{it} = \gamma y_{i,t-1} + \delta_t + \mathbf{x}'_{it}\boldsymbol{\beta} + \mathbf{f}'_t \boldsymbol{\phi} \mathbf{w}_i + \mathbf{f}'_t \boldsymbol{\eta}_i + \varepsilon_{it}, \text{ for } t = 1, 2, 3, ..., T, i = 1, 2, ..., N,$$
 (S.38)

and

$$y_{i0} = \delta_0^* + \mathbf{w}_i' \boldsymbol{\pi} + \mathbf{f}_0^{*\prime} \boldsymbol{\eta}_i + \varepsilon_{i0}^*. \tag{S.39}$$

Stacking the system of T+1 equations given by (S.38) and (S.39) yields

$$\mathbf{B}^{+}\mathbf{y}_{i}^{+} = \mathbf{C}\mathbf{w}_{i} + \boldsymbol{\delta}^{+} + \mathbf{F}^{+}\boldsymbol{\eta}_{i} + \boldsymbol{\varepsilon}_{i}^{+},$$

where

$$\mathbf{y}_i^+ = \left[ egin{array}{c} y_{i0} \\ \mathbf{y}_i \end{array} 
ight], \; oldsymbol{\delta}^+ = \left[ egin{array}{c} \delta_0^* \\ oldsymbol{\delta} \end{array} 
ight], \; \mathbf{F}^+ = \left[ egin{array}{c} \mathbf{f}_0^{*\prime} \\ oldsymbol{F} \end{array} 
ight], \; oldsymbol{arepsilon}_i^+ = \left[ egin{array}{c} arepsilon_{i0}^* \\ oldsymbol{arepsilon}_i \end{array} 
ight],$$

with

$$\mathbf{B}^+ = \left[ egin{array}{cccc} 1 & 0 & \dots & 0 \ -\gamma & 1 & \dots & 0 \ dots & \ddots & \ddots & dots \ 0 & \dots & -\gamma & 1 \end{array} 
ight], \;\; \mathbf{C} = \left[ egin{array}{c} oldsymbol{\pi}' \ \mathbf{I}_T \otimes oldsymbol{eta}' + \mathbf{F} oldsymbol{\phi} \end{array} 
ight]$$

and  $\mathbf{y}_i = (y_{i1}, y_{i2}, ..., y_{iT})'$ ,  $\boldsymbol{\delta} = (\delta_1, \delta_2, ..., \delta_T)'$ ,  $\mathbf{F} = (\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_T)'$ ,  $\boldsymbol{\varepsilon}_i = (\varepsilon_{i1}, \varepsilon_{i2}, ..., \varepsilon_{iT})'$ . Let  $\mathbf{\Sigma}^+ = \mathbf{F}^+ \mathbf{\Sigma}_{\eta} \mathbf{F}^{+\prime} + \mathbf{\Sigma}_{\varepsilon}$ , where  $\mathbf{\Sigma}_{\eta} = E(\boldsymbol{\eta}_i \boldsymbol{\eta}_i')$  and  $\mathbf{\Sigma}_{\varepsilon} = E(\boldsymbol{\varepsilon}_i^+ \boldsymbol{\varepsilon}_i^{+\prime}) = diag(\sigma_0^2, \sigma^2 \mathbf{I}_T)$ . Furthermore, let  $\mathbf{u}_i^+ = \mathbf{B}^+ \mathbf{y}_i^+ - \mathbf{C} \mathbf{w}_i - \boldsymbol{\delta}^+$ .

Following Bai (2013) we consider the following normalisation

$$\mathbf{F}^+ = (\mathbf{I}_{\widetilde{m}}, \mathbf{F}_2')'. \tag{S.40}$$

The quasi-log-likelihood function for  $(y_{i0}, y_{i1}, ..., y_{iT})$ , conditional on  $\mathbf{w}_i$ , is then given by

$$\ell_N \propto -\frac{N}{2} \ln \left| \mathbf{\Sigma}^+ \right| - \frac{1}{2} \sum_{i=1}^N \mathbf{u}_i^{+\prime} (\mathbf{\Sigma}^+)^{-1} \mathbf{u}_i^+,$$

where a number of random initial values are considered in maximising the above likelihood.

# S.6 The GMM approach

Let us consider a GMM approach to estimate the dynamic panel data model with interactive effects:

$$y_{it} = \alpha_i + \mathbf{w}'_{it}\boldsymbol{\delta} + \boldsymbol{\lambda}'_{i}\mathbf{f}_t + \varepsilon_{it}, \qquad (i = 1, 2, ..., N; t = 1, 2, ..., T)$$
(S.41)

where  $\mathbf{w}_{it} = (y_{i,t-1}, \mathbf{x}'_{it})'$ ,  $\boldsymbol{\delta} = (\gamma, \boldsymbol{\beta}')'$ ,  $\boldsymbol{\lambda}_i = (\lambda_{1i}, ..., \lambda_{mi})'$  and  $\mathbf{f}_t = (f_{1t}, ..., f_{mt})'$  are  $(m \times 1)$  vectors and  $\varepsilon_{it}$  are cross-sectionally and temporally uncorrelated. The individual specific effects  $\boldsymbol{\lambda}_i$  are allowed to be correlated with  $\mathbf{x}_{it}$ , while  $\mathbf{x}_{it}$  is assumed to be strictly or weakly exogenous. A similar model is considered in Ahn et al. (2013), but there are two differences. The first is that the model under consideration is a dynamic model whereas Ahn et al. (2013) consider a static model. This difference does not cause a serious problem in implementing GMM estimation: minor corrections when selecting the instruments suffice. The second difference is that the current model contains time-invariant fixed effects  $\alpha_i$  whereas the model considered in Ahn et al. (2013) does not. Thus the method by Ahn et al. (2013) cannot be applied directly in this case. Hence, we consider two approaches to use the method proposed by Ahn et al. (2013). The first approach is to regard the time-invariant fixed effects as an additional factor to be estimated. The second approach is to take the first-differences prior to applying the quasi-difference approach by Ahn et al. (2013), which is similar to Nauges and Thomas (2003). In the following, we describe each approach.

#### Approach 1: Quasi-differencing

By incorporating  $\alpha_i$  into  $\lambda_i' \mathbf{f}_t$  in (S.41), we have the following alternative expression

$$y_{it} = \mathbf{w}'_{it}\boldsymbol{\delta} + \widetilde{\boldsymbol{\lambda}}'_{i}\widetilde{\mathbf{f}}_{t} + \varepsilon_{it},$$

where  $\widetilde{\lambda}_i = (\alpha_i, \lambda_{1i}, ..., \lambda_{mi})'$  and  $\widetilde{\mathbf{f}}_t = (1, f_{1t}, ..., f_{mt})'$ . The model in matrix notation can be written as

$$\mathbf{y}_i = \mathbf{W}_i \boldsymbol{\delta} + \widetilde{\mathbf{F}} \widetilde{\boldsymbol{\lambda}}_i + \boldsymbol{\varepsilon}_i, \tag{S.42}$$

where  $\mathbf{y}_i = (y_{i1}, ..., y_{iT})'$ ,  $\mathbf{W}_i = (\mathbf{w}_{i1}, ..., \mathbf{w}_{iT})'$ ,  $\boldsymbol{\varepsilon}_i = (\varepsilon_{i1}, ..., \varepsilon_{iT})'$  and  $\widetilde{\mathbf{F}} = (\widetilde{\mathbf{f}}_1, ..., \widetilde{\mathbf{f}}_T)'$  is a  $T \times \widetilde{m}$  matrix. Define  $\widetilde{\boldsymbol{\Psi}} = \widetilde{\mathbf{F}} \overline{\mathbf{F}}^{-1}$  where  $\overline{\mathbf{F}} = (\widetilde{\mathbf{f}}_{T-\widetilde{m}+1}, ..., \widetilde{\mathbf{f}}_T)'$ . To separately identify  $\widetilde{\mathbf{F}}$  from  $\widetilde{\boldsymbol{\lambda}}_i$ ,  $\widetilde{m}^2$  restrictions are imposed on the factors such that  $\widetilde{\mathbf{F}} = (\boldsymbol{\Psi}', \mathbf{I}_{\widetilde{m}})'$  where  $\boldsymbol{\Psi}$  is a  $(T-\widetilde{m}) \times \widetilde{m}$  matrix of unrestricted parameters obtained as the first  $T-\widetilde{m}$  rows of  $\widetilde{\boldsymbol{\Psi}}$ . Let  $\mathbf{H}_Q = (\mathbf{I}_{T-\widetilde{m}}, -\boldsymbol{\Psi})'$ , so that  $\mathbf{H}_Q'\widetilde{\mathbf{F}} = (\mathbf{I}_{T-\widetilde{m}}, -\boldsymbol{\Psi})(\boldsymbol{\Psi}', \mathbf{I}_{\widetilde{m}})' = \mathbf{0}_{(T-\widetilde{m}) \times \widetilde{m}}$ . Then, pre-multiplying equation (S.42) by  $\mathbf{H}_Q'$  removes the unobservable effects so that

$$\mathbf{H}_Q'\mathbf{y}_i = \mathbf{H}_Q'\mathbf{W}_i\boldsymbol{\delta} + \mathbf{H}_Q'\boldsymbol{\varepsilon}_i,$$

or

$$\dot{\mathbf{y}}_{i} = \dot{\mathbf{W}}_{i}\boldsymbol{\delta} + \boldsymbol{\Psi}\ddot{\mathbf{y}}_{i} - \boldsymbol{\Psi}\ddot{\mathbf{W}}_{i}\boldsymbol{\delta} + \dot{\boldsymbol{\varepsilon}}_{i} - \boldsymbol{\Psi}\ddot{\boldsymbol{\varepsilon}}_{i} 
= \dot{\mathbf{W}}_{i}\boldsymbol{\delta} + \left(\mathbf{I}_{T-\widetilde{m}}\otimes\ddot{\mathbf{y}}_{i}'\right)vec(\boldsymbol{\Psi}) - \left(vec(\ddot{\mathbf{W}}_{i})'\otimes\mathbf{I}_{T-\widetilde{m}}\right)vec(\boldsymbol{\delta}'\otimes\boldsymbol{\Psi}) + \dot{\boldsymbol{\varepsilon}}_{i} - \boldsymbol{\Psi}\ddot{\boldsymbol{\varepsilon}}_{i},$$
(S.43)

where  $\dot{\mathbf{y}}_i = (y_{i1}, ..., y_{i,T-\widetilde{m}})'$ ,  $\ddot{\mathbf{y}}_i = (y_{i,T-\widetilde{m}+1}, ..., y_{iT})'$ ,  $\dot{\mathbf{W}}_i = (\mathbf{w}_{i1}, ..., \mathbf{w}_{i,T-\widetilde{m}})'$ ,  $\ddot{\mathbf{W}}_i = (\mathbf{w}_{i,T-\widetilde{m}+1}, ..., \mathbf{w}_{iT})'$ ,  $\mathbf{W}_i = (\mathbf{w}_{i1}, ..., \mathbf{w}_{i,T-\widetilde{m}})'$ ,  $\ddot{\mathbf{W}}_i = (\mathbf{w}_{i1}, ..., \mathbf{w}_{iT-\widetilde{m}})'$ ,  $\ddot{\mathbf{W}}_i = (\mathbf{w}_{i1}, ..., \mathbf{w}_{$ 

$$y_{it} = \boldsymbol{\delta}' \mathbf{w}_{it} + \boldsymbol{\psi}_{t}' \ddot{\mathbf{y}}_{i} - \boldsymbol{\psi}_{t}' \ddot{\mathbf{W}}_{i} \boldsymbol{\delta} + v_{it}, \qquad (i = 1, ..., N; t = 1, ..., T - \widetilde{m}), \qquad (S.44)$$

where  $v_{it} = (\varepsilon_{it} - \boldsymbol{\theta}_t' \ddot{\boldsymbol{\varepsilon}}_i)$ . Since  $\mathbf{x}_{it}$  is strictly exogenous, a large number of moment conditions are available. However, as using many instruments causes a large finite sample bias, we consider  $(k+1)(T-\tilde{m})(T-\tilde{m}+1)/2 + k(T-\tilde{m})\tilde{m}$  moment conditions given by  $E[\mathbf{z}_{it}v_{it}] = \mathbf{0}$ , for  $t=1,...,T-\tilde{m}$ , where  $\mathbf{z}_{it} = (y_{i0},...,y_{i,t-1},\mathbf{x}_{i1}',...,\mathbf{x}_{i1}',\mathbf{x}_{i,T-\tilde{m}+1}',...,\mathbf{x}_{iT}')'$ . In addition to the commonly used instruments  $(y_{i0},...,y_{i,t-1},\mathbf{x}_{i1}',...,\mathbf{x}_{it}')$ , we also use  $\mathbf{x}_{i,T-\tilde{m}+1}',...,\mathbf{x}_{iT}'$  as instruments since they are included in the regressor  $\ddot{\mathbf{W}}$ . In matrix notation the moment conditions can be written as  $E[\mathbf{Z}_i\mathbf{v}_i(\boldsymbol{\theta})] = \mathbf{0}$ , where  $\mathbf{Z}_i = diag(\mathbf{z}_{i1}',...,\mathbf{z}_{i,T-\tilde{m}}')$ ,  $\mathbf{v}_i(\boldsymbol{\theta}) = (v_{i1},...,v_{i,T-\tilde{m}})'$  and  $\boldsymbol{\theta} = (\boldsymbol{\delta}', \boldsymbol{\psi}')'$  with  $\boldsymbol{\psi} = vec(\boldsymbol{\Psi})$ .

Then the one-step and two-step GMM estimators are given respectively by

$$\widehat{\boldsymbol{\theta}}_{QD1} = \arg\min_{\boldsymbol{\theta}} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_i(\boldsymbol{\theta})' \mathbf{Z}_i \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{Z}_i \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{v}_i(\boldsymbol{\theta}) \right), \tag{S.45}$$

and

$$\widehat{\boldsymbol{\theta}}_{QD2} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{i}(\boldsymbol{\theta})' \mathbf{Z}_{i} \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{v}_{i}(\widehat{\boldsymbol{\theta}}_{QD1}) \mathbf{v}_{i}(\widehat{\boldsymbol{\theta}}_{QD1})' \mathbf{Z}_{i} \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{v}_{i}(\boldsymbol{\theta}) \right). \tag{S.46}$$

The asymptotic covariance matrix of the above estimators is given, respectively, by

$$Var(\widehat{\boldsymbol{\theta}}_{QD1}) = N^{-1} \left( \widehat{\mathbf{G}}_{QD1}' \widehat{\mathbf{W}}^{-1} \widehat{\mathbf{G}}_{QD1} \right)^{-1} \widehat{\mathbf{G}}_{QD1}' \widehat{\mathbf{W}}^{-1} \widehat{\mathbf{G}}_{QD1} \widehat{\mathbf{W}}^{-1} \widehat{\mathbf{G}}_{QD1} \left( \widehat{\mathbf{G}}_{QD1}' \widehat{\mathbf{W}}^{-1} \widehat{\mathbf{G}}_{QD1} \right)^{-1}$$
(S.47)

$$Var(\widehat{\boldsymbol{\theta}}_{QD2}) = N^{-1} \left( \widehat{\mathbf{G}}_{QD2}^{\prime} \widehat{\boldsymbol{\Omega}}_{QD2}^{-1} \widehat{\mathbf{G}}_{QD2} \right)^{-1}, \tag{S.48}$$

where  $\widehat{\mathbf{G}}_{j} = \partial \overline{\mathbf{g}}(\widehat{\boldsymbol{\theta}}_{j})/\partial \boldsymbol{\theta}'$  for j = QD1, QD2, with  $\mathbf{g}_{i}(\widehat{\boldsymbol{\theta}}_{j}) = \mathbf{Z}_{i}'\mathbf{v}_{i}(\widehat{\boldsymbol{\theta}}_{j})$  and  $\overline{\mathbf{g}}(\widehat{\boldsymbol{\theta}}_{j}) = N^{-1}\sum_{i=1}^{N}\mathbf{g}_{i}(\widehat{\boldsymbol{\theta}}_{j})$ ,  $\widehat{\mathbf{W}} = N^{-1}\sum_{i=1}^{N}\mathbf{Z}_{i}'\mathbf{Z}_{i}$ , and  $\widehat{\boldsymbol{\Omega}}_{j} = N^{-1}\sum_{i=1}^{N}\mathbf{g}_{i}(\widehat{\boldsymbol{\theta}}_{j})\mathbf{g}_{i}(\widehat{\boldsymbol{\theta}}_{j})'$ . The derivatives involved in  $\widehat{\mathbf{G}}_{j}$  are computed numerically.

#### Approach 2: Quasi-differencing after first-differencing

Taking the first-differences of model (S.41) to remove  $\alpha_i$  we have

$$\Delta y_{it} = \Delta \mathbf{w}'_{it} \boldsymbol{\delta} + \boldsymbol{\lambda}'_{i} \Delta \mathbf{f}_{t} + \Delta \varepsilon_{it}, \qquad (i = 1, 2, ..., N; t = 2, 3, ..., T)$$

where  $\Delta \mathbf{w}_{it} = (\Delta y_{i,t-1}, \Delta \mathbf{x}'_{it})'$ ,  $\boldsymbol{\delta} = (\gamma, \boldsymbol{\beta}')'$ , and  $\Delta \mathbf{f}_t = \mathbf{f}_t - \mathbf{f}_{t-1}$ . The model in notation can be written as

$$\Delta \mathbf{y}_i = \Delta \mathbf{W}_i \boldsymbol{\delta} + \Delta \mathbf{F} \boldsymbol{\lambda}_i + \Delta \boldsymbol{\varepsilon}_i, \tag{S.49}$$

where  $\Delta \mathbf{y}_i = (\Delta y_{i2}, ..., \Delta y_{iT})'$ ,  $\Delta \mathbf{W}_i = (\Delta \mathbf{w}_{i2}, ..., \Delta \mathbf{w}_{iT})'$ ,  $\Delta \varepsilon_i = (\Delta \varepsilon_{i2}, ..., \Delta \varepsilon_{iT})'$  and  $\Delta \mathbf{F} = (\Delta \mathbf{f}_2, ..., \Delta \mathbf{f}_T)'$  is a  $(T-1) \times m$  matrix. Define  $\widetilde{\mathbf{\Phi}} = \Delta \mathbf{F} \left(\overline{\Delta \mathbf{F}}\right)^{-1}$  where  $\overline{\Delta \mathbf{F}} = (\Delta \mathbf{f}_{T-m+1}, ..., \Delta \mathbf{f}_T)'$ . To separately identify  $\Delta \mathbf{F}$  from  $\lambda_i$ ,  $m^2$  restrictions are imposed on the factors such that  $\Delta \mathbf{F} = (\mathbf{\Phi}', \mathbf{I}_m)'$  where  $\mathbf{\Phi}$  is a  $(T-1-m) \times m$  matrix of unrestricted parameters obtained as the first T-1-m rows of  $\widetilde{\mathbf{\Phi}}$ . Let  $\mathbf{H}_D = (\mathbf{I}_{T-1-m}, -\mathbf{\Phi})'$ , so that  $\mathbf{H}'_D \Delta \mathbf{F} = (\mathbf{I}_{T-1-m}, -\mathbf{\Phi})(\mathbf{\Phi}', \mathbf{I}_m)' = \mathbf{0}_{(T-1-m)\times m}$ . Then, pre-multiplying equation (S.49) by  $\mathbf{H}'_D$  removes the unobservable effects so that

$$\mathbf{H}_D' \Delta \mathbf{y}_i = \mathbf{H}_D' \Delta \mathbf{W}_i \boldsymbol{\delta} + \mathbf{H}_D' \Delta \boldsymbol{\varepsilon}_i$$

or

$$\Delta \dot{\mathbf{y}}_{i} = \Delta \dot{\mathbf{W}}_{i} \boldsymbol{\delta} + \boldsymbol{\Phi} \Delta \ddot{\mathbf{y}}_{i} - \boldsymbol{\Phi} \Delta \ddot{\mathbf{W}}_{i} \boldsymbol{\delta} + \dot{\boldsymbol{\varepsilon}}_{i} - \boldsymbol{\Phi} \Delta \ddot{\boldsymbol{\varepsilon}}_{i} 
= \Delta \dot{\mathbf{W}}_{i} \boldsymbol{\delta} + \left( \mathbf{I}_{T-1-m} \otimes \Delta \ddot{\mathbf{y}}_{i}' \right) vec(\boldsymbol{\Phi}) - \left( vec(\Delta \ddot{\mathbf{W}}_{i})' \otimes \mathbf{I}_{T-1-m} \right) vec(\boldsymbol{\delta}' \otimes \boldsymbol{\Phi}) + \Delta \dot{\boldsymbol{\varepsilon}}_{i} - \boldsymbol{\Phi} \Delta \ddot{\boldsymbol{\varepsilon}}_{i},$$

where  $\Delta \dot{\mathbf{y}}_i = (\Delta y_{i2}, ..., \Delta y_{i,T-m})'$ ,  $\Delta \ddot{\mathbf{y}}_i = (\Delta y_{i,T-m+1}, ..., \Delta y_{iT})'$ ,  $\Delta \dot{\mathbf{W}}_i = (\Delta \mathbf{w}_{i2}, ..., \Delta \mathbf{w}_{i,T-m})'$ ,  $\Delta \ddot{\mathbf{W}}_i = (\Delta \mathbf{w}_{i,T-m+1}, ..., \Delta \mathbf{w}_{iT})'$ ,  $\Phi' = (\phi_2, ..., \phi_{T-m})$ ,  $\Delta \dot{\boldsymbol{\varepsilon}}_i = (\Delta \varepsilon_{i2}, ..., \Delta \varepsilon_{i,T-m})'$ , and  $\Delta \ddot{\boldsymbol{\varepsilon}}_i = (\Delta \varepsilon_{i,T-m+1}, ..., \Delta \varepsilon_{iT})'$ .

The  $t^{th}$  equation is given by

$$\Delta y_{it} = \boldsymbol{\delta}' \Delta \mathbf{w}_{it} + \boldsymbol{\phi}_t' \Delta \ddot{\mathbf{y}}_i - \boldsymbol{\phi}_t' \Delta \ddot{\mathbf{W}}_i \boldsymbol{\delta} + \Delta v_{it}, \qquad (i = 1, ..., N; t = 2, ..., T - m),$$
 (S.50)

where  $\Delta v_{it} = (\Delta \varepsilon_{it} - \phi_t' \Delta \ddot{\varepsilon}_i)$ . Since  $\mathbf{x}_{it}$  is strictly exogenous, a large number of moment conditions are available. However, since using many instruments causes a large finite sample bias, we consider (k+1)(T-1-m)(T-m)/2+k(T-1-m)m+k(T-1-m) moment conditions given by  $E[\mathbf{z}_{it}\Delta v_{it}] = \mathbf{0}$ , for t=2,...,T-m, where  $\mathbf{z}_{it}=(y_{i0},...,y_{i,t-1},\mathbf{x}_{i0}',\mathbf{x}_{i1}'...,\mathbf{x}_{it}',\mathbf{x}_{i,T-m+1}',...,\mathbf{x}_{iT}')'$ . In addition to the commonly used instruments  $(y_{i0},...,y_{i,t-1},\mathbf{x}_{i0}',...,\mathbf{x}_{it}')$ , we also use  $\mathbf{x}_{i,T-m+1}',...,\mathbf{x}_{iT}'$  as instruments since they are included in the regressor  $\Delta \ddot{\mathbf{W}}$ . Also, compared to the quasi-difference approach, we additionally use  $\mathbf{x}_{i0}$  as instruments. This is because without  $\mathbf{x}_{i0}$ , the local identification assumption is not satisfied for the linear GMM estimator which is used as the starting value to obtain nonlinear GMM estimators. In matrix notation the moment conditions can be written as  $E[\mathbf{Z}_i'\Delta\mathbf{v}_i(\boldsymbol{\theta})] = \mathbf{0}$ , where  $\mathbf{Z}_i = diag(\mathbf{z}_{i2}',...,\mathbf{z}_{i,T-m}')$ ,  $\Delta \mathbf{v}_i(\boldsymbol{\theta}) = (\Delta v_{i2},...,\Delta v_{i,T-m})'$  and  $\boldsymbol{\theta} = (\boldsymbol{\delta}',\phi')'$  with  $\boldsymbol{\phi} = vec(\boldsymbol{\Phi})$ .

Then the one-step and two-step GMM estimators are given respectively by

$$\widehat{\boldsymbol{\theta}}_{FD1} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left( \frac{1}{N} \sum_{i=1}^{N} \Delta \mathbf{v}_{i}(\boldsymbol{\theta})' \mathbf{Z}_{i} \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{Z}_{i} \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \Delta \mathbf{v}_{i}(\boldsymbol{\theta}) \right), \tag{S.51}$$

and

$$\widehat{\boldsymbol{\theta}}_{FD2} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left( \frac{1}{N} \sum_{i=1}^{N} \Delta \mathbf{v}_{i}(\boldsymbol{\theta})' \mathbf{Z}_{i} \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \Delta \mathbf{v}_{i}(\widehat{\boldsymbol{\theta}}_{FD1}) \Delta \mathbf{v}_{i}(\widehat{\boldsymbol{\theta}}_{FD1})' \mathbf{Z}_{i} \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \Delta \mathbf{v}_{i}(\boldsymbol{\theta}) \right). \tag{S.52}$$

The asymptotic covariance matrix of the above estimators is given, respectively, by

$$Var(\widehat{\boldsymbol{\theta}}_{FD1}) = N^{-1} \left( \widehat{\mathbf{G}}_{FD1}' \widehat{\mathbf{W}}^{-1} \widehat{\mathbf{G}}_{FD1} \right)^{-1} \widehat{\mathbf{G}}_{FD1}' \widehat{\mathbf{W}}^{-1} \widehat{\mathbf{G}}_{FD1} \widehat{\mathbf{W}}^{-1} \widehat{\mathbf{G}}_{FD1} \left( \widehat{\mathbf{G}}_{FD1}' \widehat{\mathbf{W}}^{-1} \widehat{\mathbf{G}}_{FD1} \right)^{-1}$$
(S.53)

$$Var(\widehat{\boldsymbol{\theta}}_{FD2}) = N^{-1} \left( \widehat{\mathbf{G}}_{FD2}^{\prime} \widehat{\boldsymbol{\Omega}}_{FD2}^{-1} \widehat{\mathbf{G}}_{FD2} \right)^{-1}, \tag{S.54}$$

where  $\widehat{\mathbf{G}}_j = \partial \overline{\mathbf{g}}(\widehat{\boldsymbol{\theta}}_j) / \partial \boldsymbol{\theta}'$  for j = FD1, FD2, with  $\mathbf{g}_i(\widehat{\boldsymbol{\theta}}_j) = \mathbf{Z}_i' \Delta \mathbf{v}_i(\widehat{\boldsymbol{\theta}}_j)$  and  $\overline{\mathbf{g}}(\widehat{\boldsymbol{\theta}}_j) = N^{-1} \sum_{i=1}^N \mathbf{g}_i(\widehat{\boldsymbol{\theta}}_j)$ ,  $\widehat{\mathbf{W}} = N^{-1} \sum_{i=1}^N \mathbf{Z}_i' \mathbf{Z}_i$ , and  $\widehat{\boldsymbol{\Omega}}_j = N^{-1} \sum_{i=1}^N \mathbf{g}_i(\widehat{\boldsymbol{\theta}}_j) \mathbf{g}_i(\widehat{\boldsymbol{\theta}}_j)'$ . The derivatives involved in  $\widehat{\mathbf{G}}_j$  are computed numerically.

#### Starting values

For the computation of the above nonlinear GMM estimators, starting values are required. When the number of moment conditions is greater than the unknown reduced form parameters we use the linear GMM estimator by Hayakawa (2012) as the starting value. This can reduce the computational time compared to employing several random starting values which we use in the alternative case.

To define the linear GMM estimator, let us define  $L_1 = L_2 = 1$  for  $\widetilde{m} = 1$ , and  $\mathbf{L}_1 = (\mathbf{I}_{\widetilde{m}}, \mathbf{0}_{\widetilde{m}})$  and  $\mathbf{L}_2 = (\mathbf{0}_{\widetilde{m}}, \mathbf{I}_{\widetilde{m}})$  for  $\widetilde{m} > 1$ . Also, define  $\mathbf{\check{y}}_i = \left(y_{i,T-\widetilde{m}}, y_{i,T-\widetilde{m}+1}, ..., y_{iT}\right)' = \left(y_{i,T-\widetilde{m}}, \mathbf{\ddot{y}}_i'\right)'$ . Then, noting that  $\mathbf{\ddot{W}}_i = \left(\mathbf{\ddot{y}}_{i,-1}, \mathbf{\ddot{X}}_{it}\right)$  where  $\mathbf{\ddot{y}}_{i,-1} = \left(y_{i,T-\widetilde{m}}, y_{i,T-\widetilde{m}+1}, ..., y_{iT-1}\right)'$ ,  $\mathbf{\ddot{y}}_i = \mathbf{L}_2\mathbf{\check{y}}_i$  and  $\mathbf{\ddot{y}}_{i,-1} = \mathbf{L}_1\mathbf{\check{y}}_i$ , we have

$$\begin{split} \dot{\mathbf{y}}_{i} &= \dot{\mathbf{W}}_{i}\boldsymbol{\delta} + \boldsymbol{\Psi}\ddot{\mathbf{y}}_{i} - \boldsymbol{\Psi}\ddot{\mathbf{W}}_{i}\boldsymbol{\delta} + \dot{\boldsymbol{\varepsilon}}_{i} - \boldsymbol{\Psi}\ddot{\boldsymbol{\varepsilon}}_{i} \\ &= \dot{\mathbf{W}}_{i}\boldsymbol{\delta} + \boldsymbol{\Psi}\mathbf{L}_{2}\check{\mathbf{y}}_{i} - \boldsymbol{\Psi}\left(\gamma\mathbf{L}_{1}\check{\mathbf{y}}_{i} + \ddot{\mathbf{X}}_{i}\boldsymbol{\beta}\right) + \dot{\boldsymbol{\varepsilon}}_{i} - \boldsymbol{\Psi}\ddot{\boldsymbol{\varepsilon}}_{i} \\ &= \dot{\mathbf{W}}_{i}\boldsymbol{\delta} + \boldsymbol{\Psi}\left(\mathbf{L}_{2} - \gamma\mathbf{L}_{1}\right)\check{\mathbf{y}}_{i} - \boldsymbol{\Psi}\ddot{\mathbf{X}}_{i}\boldsymbol{\beta} + \mathbf{v}_{i} \\ &= \dot{\mathbf{W}}_{i}\boldsymbol{\delta} + \boldsymbol{\Upsilon}\check{\mathbf{y}}_{i} - \boldsymbol{\Psi}\ddot{\mathbf{X}}_{i}\boldsymbol{\beta} + \mathbf{v}_{i} \\ &= \dot{\mathbf{W}}_{i}\boldsymbol{\delta} + \left(\mathbf{I}_{T-\widetilde{m}}\otimes\check{\mathbf{y}}_{i}'\right)vec(\boldsymbol{\Upsilon}') - \left(vec(\ddot{\mathbf{X}}_{i})'\otimes\mathbf{I}_{T-\widetilde{m}}\right)vec(\boldsymbol{\beta}'\otimes\boldsymbol{\Psi}) + \mathbf{v}_{i} \\ &= \tilde{\mathbf{X}}_{i}\boldsymbol{\pi} + \mathbf{v}_{i} \end{split}$$

where  $\mathbf{\Upsilon} = \mathbf{\Psi} \left( \mathbf{L}_2 - \gamma \mathbf{L}_1 \right)$ ,  $\mathbf{X}_i = \left( \dot{\mathbf{W}}_i, (\mathbf{I}_{T-\widetilde{m}} \otimes \mathbf{\check{y}}_i'), -\left( vec(\ddot{\mathbf{X}}_i)' \otimes \mathbf{I}_{T-\widetilde{m}} \right) \right)$  and  $\boldsymbol{\pi} = \left( \boldsymbol{\delta}', vec(\mathbf{\Upsilon}')', vec(\boldsymbol{\beta}' \otimes \mathbf{\Psi})' \right)' = (\boldsymbol{\pi}_1', \boldsymbol{\pi}_2', \boldsymbol{\pi}_3')'$  with  $\boldsymbol{\pi}_1 = \boldsymbol{\delta}, \boldsymbol{\pi}_2 = vec(\mathbf{\Upsilon}'), \boldsymbol{\pi}_3 = vec(\boldsymbol{\beta}' \otimes \mathbf{\Psi})$ . We consider this particular model rather than the original model (S.43) because perfect multicollinearity between  $\ddot{\mathbf{y}}_i$  and  $\ddot{\mathbf{W}}_i$  occurs in (S.43) when  $\widetilde{m} > 1$ . Since this is a linear model in  $\boldsymbol{\pi}$  with moment conditions  $E\left[\mathbf{Z}_i'\mathbf{v}_i(\boldsymbol{\pi})\right] = \mathbf{0}$ , a closed form solution is obtained as

$$\widehat{\boldsymbol{\pi}} = \left[ \left( \frac{1}{N} \sum_{i=1}^{N} \widetilde{\mathbf{X}}_{i}' \mathbf{Z}_{i} \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{Z}_{i} \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \widetilde{\mathbf{X}}_{i} \right) \right]^{-1} \times \left[ \left( \frac{1}{N} \sum_{i=1}^{N} \widetilde{\mathbf{X}}_{i}' \mathbf{Z}_{i} \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{Z}_{i} \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}' \dot{\mathbf{y}}_{i} \right) \right].$$

Hence,  $\widehat{\boldsymbol{\pi}}_1$  and  $\widehat{\boldsymbol{\pi}}_2$  are consistent estimates of  $\boldsymbol{\delta}$  and  $vec(\boldsymbol{\Upsilon}')$ , respectively. To recover  $\boldsymbol{\Psi}$  from the estimate of  $\boldsymbol{\Upsilon}$ , since

$$vec\left(\mathbf{\Upsilon}'\right) = vec\left(\left(\mathbf{L}_{2} - \gamma \mathbf{L}_{1}\right)' \mathbf{\Psi}'\right) = \left(\mathbf{I}_{T - \widetilde{m}} \otimes \left(\mathbf{L}_{2} - \gamma \mathbf{L}_{1}\right)'\right) vec\left(\mathbf{\Psi}'\right) = \mathbf{A}vec\left(\mathbf{\Psi}'\right),$$

 $vec(\Psi')$  is obtained as  $vec(\Psi') = (\mathbf{A}'\mathbf{A})^{-1} \mathbf{A}' vec(\Upsilon')$ . In the computation of the nonlinear GMM estimators, estimates of  $\boldsymbol{\delta}$  and  $vec(\Psi')$  are obtained from  $\widehat{\boldsymbol{\pi}}_1$  and  $\widehat{\boldsymbol{\pi}}_2$  and are used as the starting values

of the numerical optimization. For those cases where random starting values are used  $\gamma$  is generated as U(-0.999, 0.999),  $\beta$  as U(-1, 1) and  $\psi_j$  as  $\psi_{j0} \times U(0.9, 1.1)$  where  $\psi_{j0}$  denotes the true value of  $\psi_j$ , jth element of  $vec(\Psi')$ .

The same procedure can be used in approach 2 by replacing the  $\mathbf{y}_i$ 's and  $\mathbf{W}_i$ 's with their first differences.

#### The AR(1) panel data model

Estimation of the AR(1) model is exactly the same as above after removing all **x**'s from both the model and instruments. However, for the starting value, we cannot use the linear estimator since the number of moment conditions is always smaller than that of the unknown reduced form parameters. Hence in the Monte Carlo simulations for this case we use random starting values. Specifically, we use

$$\gamma_{ini} \sim U(-0.999, 0.999), \ \psi_{i,ini} \sim \psi_{i,0} \times U(-0.5, 0.5), \ (j = 1, ..., (T - \widetilde{m})\widetilde{m})$$

for approach 1 and

$$\gamma_{ini} \sim U\left(-0.999, 0.999\right), \ \psi_{j,ini} \sim \psi_{j,0} \times U\left(-0.5, 0.5\right), \ \ (j=1,...,(T-1-m)m)$$

for approach 2 where  $\psi_{j,0}$  is the true value of  $\psi_j$ .

## S.7 Monte Carlo Results for the Stationary Case

#### A1: Selecting the number of factors

**Table A1(i)**: Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure in the case of the AR(1) panel data model

|                  |              |       |       |      |       | T     | = 5  |       |       |      |       |       |
|------------------|--------------|-------|-------|------|-------|-------|------|-------|-------|------|-------|-------|
| $\kappa^2$       |              | 0.25  |       |      | 0.5   |       |      | 1     |       |      | 2     |       |
| $\overline{m_0}$ | 0            | 1     | 2     | 0    | 1     | 2     | 0    | 1     | 2     | 0    | 1     | 2     |
| $\overline{N}$   | $\gamma_0 =$ | 0.4   |       |      |       |       |      |       |       |      |       |       |
| 100              | 99.4         | 25.5  | 0.9   | 99.4 | 88.2  | 17.1  | 99.4 | 99.7  | 88.9  | 99.4 | 99.7  | 99.9  |
| 300              | 99.8         | 93.7  | 16.5  | 99.8 | 100.0 | 95.4  | 99.8 | 100.0 | 100.0 | 99.8 | 100.0 | 100.0 |
| 500              | 99.9         | 100.0 | 56.1  | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 |
| 1000             | 99.9         | 100.0 | 99.2  | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 |
|                  | $\gamma_0 =$ | 0.8   |       |      |       |       |      |       |       |      |       |       |
| 100              | 99.2         | 53.4  | 1.5   | 99.2 | 98.7  | 28.7  | 99.2 | 99.8  | 96.3  | 99.2 | 99.7  | 100.0 |
| 300              | 99.8         | 99.6  | 23.3  | 99.8 | 100.0 | 98.9  | 99.8 | 100.0 | 100.0 | 99.8 | 100.0 | 100.0 |
| 500              | 99.9         | 100.0 | 65.2  | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 |
| 1000             | 99.9         | 100.0 | 99.7  | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 |
|                  |              |       |       |      |       | T =   | = 10 |       |       |      |       |       |
| $\kappa^2$       |              | 0.25  |       |      | 0.5   |       |      | 1     |       |      | 2     |       |
| $m_0$            | 0            | 1     | 2     | 0    | 1     | 2     | 0    | 1     | 2     | 0    | 1     | 2     |
|                  | $\gamma_0 =$ | 0.4   |       |      |       |       |      |       |       |      |       |       |
| 100              | 99.5         | 97.1  | 13.2  | 99.5 | 99.6  | 90.8  | 99.5 | 99.6  | 99.7  | 99.5 | 99.6  | 99.7  |
| 300              | 99.8         | 100.0 | 95.4  | 99.8 | 100.0 | 100.0 | 99.8 | 100.0 | 100.0 | 99.8 | 100.0 | 100.0 |
| 500              | 99.9         | 100.0 | 99.9  | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 |
| 1000             | 99.7         | 100.0 | 100.0 | 99.7 | 100.0 | 100.0 | 99.7 | 100.0 | 100.0 | 99.7 | 100.0 | 100.0 |
|                  | $\gamma_0 =$ | 0.8   |       |      |       |       |      |       |       |      |       |       |
| 100              | 99.7         | 96.6  | 15.1  | 99.7 | 99.5  | 93.5  | 99.7 | 99.5  | 99.7  | 99.7 | 99.6  | 99.7  |
| 300              | 99.8         | 100.0 | 96.7  | 99.8 | 100.0 | 100.0 | 99.8 | 100.0 | 100.0 | 99.8 | 100.0 | 99.9  |
| 500              | 99.9         | 99.9  | 100.0 | 99.9 | 99.9  | 100.0 | 99.9 | 99.9  | 100.0 | 99.9 | 99.9  | 100.0 |
| 1000             | 99.6         | 100.0 | 100.0 | 99.6 | 100.0 | 100.0 | 99.6 | 100.0 | 100.0 | 99.6 | 100.0 | 100.0 |
|                  | ^ ·          |       |       |      |       |       |      |       |       |      | . ~   |       |

Note:  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N = \frac{p}{N(T-2)}$  and p = 0.05. See also the note to Table 1.

Table A1(ii): Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure in the case of the ARX(1) panel data model

|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                           |                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                              |                                                                                                                   | T:                                                                                                                               | = 5                                                                                                                  |                                                                                                              | , ,                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                                    |                                                                                                           |                                                                                                              |                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| -                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                           | κ                                                                                                                  | $^2 = 0.2$                                                                                                                                                                                                                    | 25                                                                                                                                  |                                                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                                      |                                                                                                              |                                                                                                           | K                                                                                                                            | $\epsilon^2 = 0.$                                                                                                                                                                                                         | 5                                                                                                                                  |                                                                                                           |                                                                                                              |                                                                                                           |
| $\overline{m_0}$                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                | 0                                                                                                                                       |                                                                                                           |                                                                                                                    | 1                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                              | 2                                                                                                                 |                                                                                                                                  |                                                                                                                      | 0                                                                                                            |                                                                                                           |                                                                                                                              | 1                                                                                                                                                                                                                         |                                                                                                                                    |                                                                                                           | 2                                                                                                            |                                                                                                           |
| $\sigma_{ m v}^2$                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                            | 1                                                                                                                                       | 1.5                                                                                                       | 0.5                                                                                                                | 1                                                                                                                                                                                                                             | 1.5                                                                                                                                 | 0.5                                                                                                                          | 1                                                                                                                 | 1.5                                                                                                                              | 0.5                                                                                                                  | 1                                                                                                            | 1.5                                                                                                       | 0.5                                                                                                                          | 1                                                                                                                                                                                                                         | 1.5                                                                                                                                | 0.5                                                                                                       | 1                                                                                                            | 1.5                                                                                                       |
| N                                                                                                                                                                                                                                                                                    | $\gamma_0 = 0$                                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                           |                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                                      |                                                                                                              |                                                                                                           |                                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                                    |                                                                                                           |                                                                                                              |                                                                                                           |
| 100                                                                                                                                                                                                                                                                                  | 99.7                                                                                                                                                                                                                                                                           | 99.7                                                                                                                                    | 99.8                                                                                                      | 46.3                                                                                                               | 51.5                                                                                                                                                                                                                          | 52.6                                                                                                                                | 1.1                                                                                                                          | 1.2                                                                                                               | 1.2                                                                                                                              | 99.2                                                                                                                 | 99.3                                                                                                         | 99.3                                                                                                      | 97.9                                                                                                                         | 98.1                                                                                                                                                                                                                      | 98.1                                                                                                                               | 17.7                                                                                                      | 18.3                                                                                                         | 18.5                                                                                                      |
| 300                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                | 100.0                                                                                                                                   |                                                                                                           | 99.7                                                                                                               |                                                                                                                                                                                                                               | 100.0                                                                                                                               | 21.9                                                                                                                         | 23.5                                                                                                              | 23.3                                                                                                                             |                                                                                                                      | 100.0                                                                                                        |                                                                                                           |                                                                                                                              | 100.0                                                                                                                                                                                                                     |                                                                                                                                    | 97.2                                                                                                      | 97.6                                                                                                         | 97.7                                                                                                      |
| 500                                                                                                                                                                                                                                                                                  | 99.8                                                                                                                                                                                                                                                                           | 99.9                                                                                                                                    | 99.9                                                                                                      | 99.9                                                                                                               | 99.9                                                                                                                                                                                                                          | 99.9                                                                                                                                | 67.4                                                                                                                         | 69.0                                                                                                              | 69.1                                                                                                                             | 99.6                                                                                                                 | 99.9                                                                                                         | 99.9                                                                                                      |                                                                                                                              | 100.0                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                           | 100.0                                                                                                        |                                                                                                           |
| 1000                                                                                                                                                                                                                                                                                 | 99.9                                                                                                                                                                                                                                                                           | 99.9                                                                                                                                    | 99.9                                                                                                      | 99.9                                                                                                               | 99.9                                                                                                                                                                                                                          | 99.9                                                                                                                                | 99.6                                                                                                                         | 99.7                                                                                                              | 99.7                                                                                                                             | 99.8                                                                                                                 | 100.0                                                                                                        | 100.0                                                                                                     | 100.0                                                                                                                        | 100.0                                                                                                                                                                                                                     | 100.0                                                                                                                              | 100.0                                                                                                     | 100.0                                                                                                        | 100.0                                                                                                     |
| 100                                                                                                                                                                                                                                                                                  | $\gamma_0 = 0$ 99.7                                                                                                                                                                                                                                                            | 99.6                                                                                                                                    | 99.6                                                                                                      | 56.2                                                                                                               | 56.9                                                                                                                                                                                                                          | 57.4                                                                                                                                | 1.4                                                                                                                          | 1.6                                                                                                               | 1.7                                                                                                                              | 99.4                                                                                                                 | 99.4                                                                                                         | 99.4                                                                                                      | 97.9                                                                                                                         | 98.0                                                                                                                                                                                                                      | 98.0                                                                                                                               | 19.2                                                                                                      | 18.9                                                                                                         | 19.0                                                                                                      |
| 300                                                                                                                                                                                                                                                                                  | 99.9                                                                                                                                                                                                                                                                           | 99.9                                                                                                                                    | 99.9                                                                                                      |                                                                                                                    | 100.0                                                                                                                                                                                                                         |                                                                                                                                     | 24.8                                                                                                                         | 24.7                                                                                                              | 24.5                                                                                                                             |                                                                                                                      | 100.0                                                                                                        |                                                                                                           |                                                                                                                              | 100.0                                                                                                                                                                                                                     |                                                                                                                                    | 98.2                                                                                                      | 98.1                                                                                                         | 98.1                                                                                                      |
| 500                                                                                                                                                                                                                                                                                  | 99.9                                                                                                                                                                                                                                                                           | 99.9                                                                                                                                    | 99.9                                                                                                      | 99.9                                                                                                               | 99.9                                                                                                                                                                                                                          | 99.9                                                                                                                                | 71.1                                                                                                                         | 71.1                                                                                                              | 71.1                                                                                                                             | 99.9                                                                                                                 | 99.9                                                                                                         | 99.9                                                                                                      |                                                                                                                              | 100.0                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                           | 100.0                                                                                                        |                                                                                                           |
| 1000                                                                                                                                                                                                                                                                                 | 99.9                                                                                                                                                                                                                                                                           | 99.9                                                                                                                                    | 99.9                                                                                                      | 99.9                                                                                                               | 99.9                                                                                                                                                                                                                          | 99.9                                                                                                                                | 99.8                                                                                                                         | 99.8                                                                                                              | 99.8                                                                                                                             |                                                                                                                      | 100.0                                                                                                        |                                                                                                           |                                                                                                                              | 100.0                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                           | 100.0                                                                                                        |                                                                                                           |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                           |                                                                                                                    | $\kappa^2 = 1$                                                                                                                                                                                                                | -                                                                                                                                   |                                                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                                      |                                                                                                              |                                                                                                           |                                                                                                                              | $\kappa^2 = 2$                                                                                                                                                                                                            | ?                                                                                                                                  |                                                                                                           |                                                                                                              |                                                                                                           |
| $m_0$                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                | 0                                                                                                                                       |                                                                                                           |                                                                                                                    | 1                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                              | 2                                                                                                                 |                                                                                                                                  |                                                                                                                      | 0                                                                                                            |                                                                                                           |                                                                                                                              | 1                                                                                                                                                                                                                         |                                                                                                                                    |                                                                                                           | 2                                                                                                            |                                                                                                           |
| $\sigma_{ m v}^2$                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                            | 1                                                                                                                                       | 1.5                                                                                                       | 0.5                                                                                                                | 1                                                                                                                                                                                                                             | 1.5                                                                                                                                 | 0.5                                                                                                                          | 1                                                                                                                 | 1.5                                                                                                                              | 0.5                                                                                                                  | 1                                                                                                            | 1.5                                                                                                       | 0.5                                                                                                                          | 1                                                                                                                                                                                                                         | 1.5                                                                                                                                | 0.5                                                                                                       | 1                                                                                                            | 1.5                                                                                                       |
| $\frac{N}{100}$                                                                                                                                                                                                                                                                      | $\gamma_0 = 0$                                                                                                                                                                                                                                                                 |                                                                                                                                         | 00.0                                                                                                      | -0=                                                                                                                | 00 =                                                                                                                                                                                                                          | 00.0                                                                                                                                | - 20 :                                                                                                                       | 01.0                                                                                                              | - 01 0                                                                                                                           | -00.0                                                                                                                | 00.0                                                                                                         | 00.0                                                                                                      | -00.                                                                                                                         | 00.0                                                                                                                                                                                                                      | 00.0                                                                                                                               | -00.5                                                                                                     | 010                                                                                                          |                                                                                                           |
| 100                                                                                                                                                                                                                                                                                  | 99.7                                                                                                                                                                                                                                                                           | 99.7                                                                                                                                    | 99.8                                                                                                      | 97.8                                                                                                               | 98.7                                                                                                                                                                                                                          | 99.0                                                                                                                                | 29.4                                                                                                                         | 31.0                                                                                                              | 31.0                                                                                                                             | 99.2                                                                                                                 | 99.3                                                                                                         | 99.3                                                                                                      | 99.5                                                                                                                         | 99.6                                                                                                                                                                                                                      | 99.6                                                                                                                               | 93.5                                                                                                      | 94.2                                                                                                         | 94.4                                                                                                      |
| 300                                                                                                                                                                                                                                                                                  | 99.9                                                                                                                                                                                                                                                                           | 100.0                                                                                                                                   |                                                                                                           |                                                                                                                    | 100.0                                                                                                                                                                                                                         | 99.9                                                                                                                                | 98.9                                                                                                                         | 99.5<br>100.0                                                                                                     | 99.4                                                                                                                             |                                                                                                                      | 100.0                                                                                                        | 99.9                                                                                                      |                                                                                                                              | 100.0 $100.0$                                                                                                                                                                                                             |                                                                                                                                    | 99.9                                                                                                      | 99.9<br>100.0                                                                                                | 99.9                                                                                                      |
| 500<br>1000                                                                                                                                                                                                                                                                          | 99.8                                                                                                                                                                                                                                                                           | 99.9<br>99.9                                                                                                                            | $99.9 \\ 99.9$                                                                                            | 99.9<br>99.9                                                                                                       | 99.9<br>99.9                                                                                                                                                                                                                  | 99.9                                                                                                                                |                                                                                                                              | 100.0                                                                                                             |                                                                                                                                  | 99.6                                                                                                                 | 99.9<br>100.0                                                                                                |                                                                                                           |                                                                                                                              | 100.0                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                           | 100.0                                                                                                        |                                                                                                           |
| 1000                                                                                                                                                                                                                                                                                 | $\gamma_0 = 0$                                                                                                                                                                                                                                                                 |                                                                                                                                         | 33.3                                                                                                      |                                                                                                                    | 33.3                                                                                                                                                                                                                          | 33.3                                                                                                                                | 100.0                                                                                                                        | 100.0                                                                                                             | 100.0                                                                                                                            |                                                                                                                      | 100.0                                                                                                        | 100.0                                                                                                     | 100.0                                                                                                                        | 100.0                                                                                                                                                                                                                     | 100.0                                                                                                                              | 100.0                                                                                                     | 100.0                                                                                                        | 100.0                                                                                                     |
| 100                                                                                                                                                                                                                                                                                  | 99.7                                                                                                                                                                                                                                                                           | 99.6                                                                                                                                    | 99.6                                                                                                      | 99.1                                                                                                               | 99.2                                                                                                                                                                                                                          | 99.3                                                                                                                                | 32.6                                                                                                                         | 33.0                                                                                                              | 33.1                                                                                                                             | 99.4                                                                                                                 | 99.4                                                                                                         | 99.4                                                                                                      | 99.5                                                                                                                         | 99.6                                                                                                                                                                                                                      | 99.6                                                                                                                               | 94.4                                                                                                      | 94.7                                                                                                         | 94.4                                                                                                      |
| 300                                                                                                                                                                                                                                                                                  | 99.9                                                                                                                                                                                                                                                                           | 99.9                                                                                                                                    | 99.9                                                                                                      |                                                                                                                    | 100.0                                                                                                                                                                                                                         |                                                                                                                                     | 99.5                                                                                                                         | 99.5                                                                                                              | 99.5                                                                                                                             |                                                                                                                      | 100.0                                                                                                        |                                                                                                           | 100.0                                                                                                                        | 99.9                                                                                                                                                                                                                      | 99.9                                                                                                                               | 99.8                                                                                                      | 99.8                                                                                                         | 99.8                                                                                                      |
| 500                                                                                                                                                                                                                                                                                  | 99.9                                                                                                                                                                                                                                                                           | 99.9                                                                                                                                    | 99.9                                                                                                      | 99.9                                                                                                               | 99.9                                                                                                                                                                                                                          | 99.9                                                                                                                                |                                                                                                                              | 100.0                                                                                                             |                                                                                                                                  | 99.9                                                                                                                 | 99.9                                                                                                         | 99.9                                                                                                      |                                                                                                                              | 100.0                                                                                                                                                                                                                     |                                                                                                                                    | 100.0                                                                                                     | 100.0                                                                                                        | 100.0                                                                                                     |
| 1000                                                                                                                                                                                                                                                                                 | 99.9                                                                                                                                                                                                                                                                           | 99.9                                                                                                                                    | 99.9                                                                                                      | 99.9                                                                                                               | 99.9                                                                                                                                                                                                                          | 99.9                                                                                                                                | 100.0                                                                                                                        | 100.0                                                                                                             | 100.0                                                                                                                            | 100.0                                                                                                                | 100.0                                                                                                        | 100.0                                                                                                     | 100.0                                                                                                                        | 100.0                                                                                                                                                                                                                     | 100.0                                                                                                                              | 100.0                                                                                                     | 100.0                                                                                                        | 100.0                                                                                                     |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                           |                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                              |                                                                                                                   |                                                                                                                                  |                                                                                                                      |                                                                                                              |                                                                                                           |                                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                                    |                                                                                                           |                                                                                                              |                                                                                                           |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                           |                                                                                                                    | 0                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                              |                                                                                                                   | T =                                                                                                                              | = 10                                                                                                                 |                                                                                                              |                                                                                                           |                                                                                                                              | 0 .                                                                                                                                                                                                                       |                                                                                                                                    |                                                                                                           |                                                                                                              |                                                                                                           |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                           | κ                                                                                                                  | $^2 = 0.2$                                                                                                                                                                                                                    | 25                                                                                                                                  |                                                                                                                              |                                                                                                                   | T =                                                                                                                              | = 10                                                                                                                 |                                                                                                              |                                                                                                           | K                                                                                                                            | $\kappa^2 = 0.$                                                                                                                                                                                                           | 5                                                                                                                                  |                                                                                                           |                                                                                                              |                                                                                                           |
| $m_0$                                                                                                                                                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                            | 0                                                                                                                                       | 1 5                                                                                                       |                                                                                                                    | 1                                                                                                                                                                                                                             |                                                                                                                                     | 0.5                                                                                                                          | 2                                                                                                                 |                                                                                                                                  |                                                                                                                      | 0                                                                                                            | 1 5                                                                                                       |                                                                                                                              | 1                                                                                                                                                                                                                         |                                                                                                                                    | 0.5                                                                                                       | 2                                                                                                            | 1 5                                                                                                       |
| $\sigma_{ m v}^2$                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                            | 1                                                                                                                                       | 1.5                                                                                                       | 0.5                                                                                                                |                                                                                                                                                                                                                               | 1.5                                                                                                                                 | 0.5                                                                                                                          | 2 1                                                                                                               | T =                                                                                                                              | 0.5                                                                                                                  | 0                                                                                                            | 1.5                                                                                                       | 0.5                                                                                                                          |                                                                                                                                                                                                                           | 5 1.5                                                                                                                              | 0.5                                                                                                       | 2 1                                                                                                          | 1.5                                                                                                       |
| $\frac{\sigma_{\mathrm{v}}^2}{N}$                                                                                                                                                                                                                                                    | $\gamma_0 = 0$                                                                                                                                                                                                                                                                 | 0.4                                                                                                                                     |                                                                                                           | 0.5                                                                                                                | 1<br>1                                                                                                                                                                                                                        | 1.5                                                                                                                                 |                                                                                                                              | 1                                                                                                                 | 1.5                                                                                                                              | 0.5                                                                                                                  | 1                                                                                                            |                                                                                                           | 0.5                                                                                                                          | 1<br>1                                                                                                                                                                                                                    | 1.5                                                                                                                                |                                                                                                           | 1                                                                                                            |                                                                                                           |
| $\frac{\sigma_{\rm v}^2}{N}$ 100                                                                                                                                                                                                                                                     | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \end{array}$                                                                                                                                                                                                                            | 1<br>0.4<br>99.3                                                                                                                        | 99.3                                                                                                      | 0.5<br>97.9                                                                                                        | 1<br>1<br>98.1                                                                                                                                                                                                                | 1.5<br>98.1                                                                                                                         | 17.7                                                                                                                         | 18.3                                                                                                              | 1.5                                                                                                                              | 0.5                                                                                                                  | 99.3                                                                                                         | 99.3                                                                                                      | 99.5                                                                                                                         | 1<br>1<br>99.6                                                                                                                                                                                                            | 1.5<br>99.6                                                                                                                        | 93.5                                                                                                      | 94.2                                                                                                         | 94.4                                                                                                      |
| $\frac{\sigma_{\rm v}^2}{N}$                                                                                                                                                                                                                                                         | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \end{array}$                                                                                                                                                                                                                            | 0.4                                                                                                                                     | 99.3                                                                                                      | 97.9<br>100.0                                                                                                      | 1<br>1                                                                                                                                                                                                                        | 1.5<br>98.1<br>100.0                                                                                                                | 17.7<br>97.2                                                                                                                 | 1                                                                                                                 | 1.5<br>18.5<br>97.7                                                                                                              | 0.5                                                                                                                  | 1                                                                                                            | 99.3                                                                                                      | 99.5<br>100.0                                                                                                                | 1<br>1                                                                                                                                                                                                                    | 1.5<br>99.6<br>100.0                                                                                                               | 93.5<br>99.9                                                                                              | 1                                                                                                            | 94.4<br>99.9                                                                                              |
| $ \begin{array}{r} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \end{array} $                                                                                                                                                                                                          | $ \gamma_0 = 0 $ 99.2 99.4 99.6 99.8                                                                                                                                                                                                                                           | 1<br>99.3<br>100.0<br>99.9<br>100.0                                                                                                     | 99.3<br>100.0<br>99.9                                                                                     | 97.9<br>100.0<br>100.0                                                                                             | 1<br>1<br>98.1<br>100.0                                                                                                                                                                                                       | 1.5<br>98.1<br>100.0<br>100.0                                                                                                       | 17.7<br>97.2<br>100.0                                                                                                        | 1<br>18.3<br>97.6                                                                                                 | 1.5<br>18.5<br>97.7<br>100.0                                                                                                     | 99.2<br>99.4<br>99.6                                                                                                 | 99.3<br>100.0                                                                                                | 99.3<br>100.0<br>99.9                                                                                     | 99.5<br>100.0<br>100.0                                                                                                       | 1<br>1<br>99.6<br>100.0                                                                                                                                                                                                   | 99.6<br>100.0<br>100.0                                                                                                             | 93.5<br>99.9<br>100.0                                                                                     | 94.2<br>99.9                                                                                                 | 94.4<br>99.9<br>100.0                                                                                     |
| $   \begin{array}{r}     \sigma_{\rm v}^2 \\     \hline     N \\     100 \\     300 \\     500 \\     \hline     1000 \\   \end{array} $                                                                                                                                             | $ \gamma_0 = 0 $ 99.2 99.4 99.6 99.8 $ \gamma_0 = 0 $                                                                                                                                                                                                                          | 1<br>0.4<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8                                                                                       | 99.3<br>100.0<br>99.9<br>100.0                                                                            | 97.9<br>100.0<br>100.0<br>100.0                                                                                    | 98.1<br>100.0<br>100.0<br>100.0                                                                                                                                                                                               | 98.1<br>100.0<br>100.0<br>100.0                                                                                                     | 17.7<br>97.2<br>100.0<br>100.0                                                                                               | 1<br>18.3<br>97.6<br>100.0<br>100.0                                                                               | 1.5<br>18.5<br>97.7<br>100.0<br>100.0                                                                                            | 99.2<br>99.4<br>99.6<br>99.8                                                                                         | 99.3<br>100.0<br>99.9<br>100.0                                                                               | 99.3<br>100.0<br>99.9<br>100.0                                                                            | 99.5<br>100.0<br>100.0<br>100.0                                                                                              | 99.6<br>100.0<br>100.0<br>100.0                                                                                                                                                                                           | 99.6<br>100.0<br>100.0<br>100.0                                                                                                    | 93.5<br>99.9<br>100.0<br>100.0                                                                            | 94.2<br>99.9<br>100.0<br>100.0                                                                               | 94.4<br>99.9<br>100.0<br>100.0                                                                            |
| $ \begin{array}{r} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \end{array} $                                                                                                                                                                                 | $ \gamma_0 = 0 $ 99.2 99.4 99.6 99.8 $ \gamma_0 = 0 $ 99.4                                                                                                                                                                                                                     | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8                                                                                              | 99.3<br>100.0<br>99.9<br>100.0                                                                            | 0.5<br>97.9<br>100.0<br>100.0<br>100.0<br>97.9                                                                     | 98.1<br>100.0<br>100.0<br>100.0                                                                                                                                                                                               | 98.1<br>100.0<br>100.0<br>100.0                                                                                                     | 17.7<br>97.2<br>100.0<br>100.0                                                                                               | 1<br>18.3<br>97.6<br>100.0<br>100.0                                                                               | 1.5<br>18.5<br>97.7<br>100.0<br>100.0                                                                                            | 99.2<br>99.4<br>99.6<br>99.8                                                                                         | 99.3<br>100.0<br>99.9<br>100.0                                                                               | 99.3<br>100.0<br>99.9<br>100.0                                                                            | 99.5<br>100.0<br>100.0<br>100.0                                                                                              | 99.6<br>100.0<br>100.0<br>100.0                                                                                                                                                                                           | 99.6<br>100.0<br>100.0<br>100.0                                                                                                    | 93.5<br>99.9<br>100.0<br>100.0                                                                            | 1<br>94.2<br>99.9<br>100.0<br>100.0                                                                          | 94.4<br>99.9<br>100.0<br>100.0                                                                            |
| $ \begin{array}{c c} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \hline 100 \\ 300 \\ \end{array} $                                                                                                                                                          | $ \gamma_0 = 0 $ 99.2 99.4 99.6 99.8 $ \gamma_0 = 0 $ 99.4 100.0                                                                                                                                                                                                               | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0                                                                             | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0                                                           | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0                                                                   | 98.1<br>100.0<br>100.0<br>100.0<br>100.0                                                                                                                                                                                      | 98.1<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0                                                                                    | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2                                                                               | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1                                                               | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1                                                                            | 0.5<br>99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0                                                                 | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0                                                              | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0                                                           | 99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0                                                                             | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9                                                                                                                                                                           | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9                                                                                    | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8                                                            | 1<br>94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8                                                          | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8                                                            |
| $ \begin{array}{c c} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ \hline 1000 \\ \hline 300 \\ 500 \\ \hline \end{array} $                                                                                                                                                   | $ \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 $                                                                                                                                                                                      | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9                                                                     | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                   | 97.9<br>100.0<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0                                                 | 98.1<br>100.0<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0                                                                                                                                                            | 98.1<br>100.0<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0                                                                  | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0                                                                      | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0                                                      | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0                                                                   | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9                                                                | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                      | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                   | 99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0                                                                    | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0                                                                                                                                                                  | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0                                                                           | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0                                                   | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0                                                      | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0                                                   |
| $ \begin{array}{c c} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \hline 100 \\ 300 \\ \end{array} $                                                                                                                                                          | $ \gamma_0 = 0 $ 99.2 99.4 99.6 99.8 $ \gamma_0 = 0 $ 99.4 100.0                                                                                                                                                                                                               | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9                                                                     | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                   | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>100.0                                                 | 98.1<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0                                                                                                                                                           | 98.1<br>100.0<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>100.0                                                         | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0                                                                      | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1                                                               | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0                                                                   | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9                                                                | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0                                                              | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                   | 99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0                                                                    | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0                                                                                                                                                         | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0                                                                  | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0                                                   | 1<br>94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8                                                          | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0                                                   |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 500 \\ 1000 \end{array} $                                                                                                                                                                  | $ \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 $                                                                                                                                                                                      | 1<br>0.4<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9<br>100.0                                                     | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                   | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>100.0                                                 | $ \begin{array}{c} 1 \\ 1 \\ 98.1 \\ 100.0 \\ 100.0 \\ 100.0 \\ \hline 98.0 \\ 100.0 \\ 100.0 \\ \kappa^2 = 1 \end{array} $                                                                                                   | 98.1<br>100.0<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>100.0                                                         | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0                                                                      | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0                                             | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0                                                                   | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9                                                                | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0                                             | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                   | 99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0                                                                    | $ \begin{array}{c} 1 \\ 1 \\ 99.6 \\ 100.0 \\ 100.0 \\ 100.0 \\ \hline 99.6 \\ 99.9 \\ 100.0 \\ 100.0 \\ \kappa^2 = 2 \end{array} $                                                                                       | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0                                                                  | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0                                                   | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0                                             | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0                                                   |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                        | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 100.0 \\ 99.9 \\ 100.0 \\ \end{array}$                                                                                                                                                | 1<br>0.4<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9<br>100.0                                                     | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0                                          | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0                                                          | $\begin{array}{c} 1\\ 1\\ 1\\ \\ 98.1\\ 100.0\\ 100.0\\ \hline \\ 98.0\\ 100.0\\ 100.0\\ \hline \\ \kappa^2=1\\ 1\\ \end{array}$                                                                                              | 98.1<br>100.0<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0                                                                  | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0<br>100.0                                                             | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0                                             | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>100.0                                                          | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9<br>100.0                                                       | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0                                             | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0                                          | 99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0                                                                    | $\begin{array}{c} 1\\ 1\\ \\ 99.6\\ 100.0\\ 100.0\\ \hline \\ 100.0\\ \hline \\ 99.6\\ 99.9\\ 100.0\\ \\ 100.0\\ \hline \\ \kappa^2=2\\ 1\\ \end{array}$                                                                  | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0                                                                  | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0                                          | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0                                             | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0                                          |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 500 \\ 1000 \end{array} $                                                                                                                                                                  | $ \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 $                                                                                                                                                                                      | 1<br>0.4<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9<br>100.0                                                     | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                   | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>100.0                                                 | $ \begin{array}{c} 1 \\ 1 \\ 98.1 \\ 100.0 \\ 100.0 \\ 100.0 \\ \hline 98.0 \\ 100.0 \\ 100.0 \\ \kappa^2 = 1 \end{array} $                                                                                                   | 98.1<br>100.0<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>100.0                                                         | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0                                                                      | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0                                             | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0                                                                   | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9                                                                | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0                                             | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9                                                   | 99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0                                                                    | $ \begin{array}{c} 1 \\ 1 \\ 99.6 \\ 100.0 \\ 100.0 \\ 100.0 \\ \hline 99.6 \\ 99.9 \\ 100.0 \\ 100.0 \\ \kappa^2 = 2 \end{array} $                                                                                       | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0                                                                  | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0                                                   | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0                                             | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0                                                   |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ m_0 \\ \sigma_{\rm v}^2 \\ N \\ \hline \\ 100 \\ \end{array} $                                                                                             | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 \\ 100.0 \\ \hline \\ \gamma_0 = 0 \\ \hline \\ 99.2 \\ \end{array}$                                                                                            | 1<br>).4<br>99.3<br>100.0<br>99.9<br>100.0<br>).8<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1                                           | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0                                          | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>0.5                                                   | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 100.0 \\ 100.0 \\ 100.0 \\ \hline 98.0 \\ 100.0 \\ 100.0 \\ \kappa^2 = 1 \\ 1 \\ 1 \end{array} $                                                                                            | 98.1<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>1.00.0<br>1.5                                                          | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0<br>100.0<br>0.5                                                      | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0<br>2<br>1                                   | 1.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>1.5                                                                    | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9<br>100.0                                                       | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1                                   | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0                                          | 99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0                                                                    | $\begin{array}{c} 1\\ 1\\ \\ 99.6\\ 100.0\\ 100.0\\ \hline \\ 100.0\\ \hline \\ 99.6\\ 99.9\\ 100.0\\ \\ 100.0\\ \hline \\ \kappa^2=2\\ 1\\ \end{array}$                                                                  | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0                                                                  | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>0.5                                   | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0                                             | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0                                          |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline m_0 \\ \sigma_{\rm v}^2 \\ \hline N \\ \hline 100 \\ 300 \\ \hline \end{array} $                                                      | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 \\ 100.0 \\ \hline \\ 0.5 \\ \hline \gamma_0 = 0 \\ \hline \\ 99.2 \\ 99.4 \\ \end{array}$                                                                      | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1<br>99.3<br>100.0                                 | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5                                   | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>0.5<br>99.5<br>100.0                                  | $\begin{array}{c} 1\\ 1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                   | 98.1<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>1.00.0<br>1.5                                                          | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0<br>100.0<br>0.5<br>99.8<br>99.9                                      | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0<br>2<br>1                                   | 1.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>100.0<br>1.5                                                           | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9<br>100.0<br>0.5                                                | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1                                   | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5                                   | 99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0<br>0.5<br>99.7<br>100.0                                            | $ \begin{array}{c} 1\\ 1\\ 99.6\\ 100.0\\ 100.0\\ 100.0\\ \hline 99.6\\ 99.9\\ 100.0\\ \kappa^2 = 2\\ 1\\ 1\\ \hline 99.6\\ 100.0 \end{array} $                                                                           | 99.6<br>100.0<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0                                                         | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>0.5                                   | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0<br>2<br>1                                   | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0                                          |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 500 \\ \hline \\ \hline 1000 \\ \hline \\ \hline \\ m_0 \\ \sigma_{\rm v}^2 \\ \hline \\ N \\ \hline \\ \hline \\ 100 \\ 300 \\ 500 \\ \hline \end{array} $                  | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 \\ 100.0 \\ \hline \\ 0.5 \\ \hline \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ \end{array}$                                                                        | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9<br>100.0<br>1<br>0.4<br>99.3<br>100.0<br>99.9                       | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5                                   | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>0.5<br>99.5<br>100.0<br>100.0                         | $\begin{array}{c} 1\\ 1\\ 1\\ 00.0\\ 100.0\\ 100.0\\ 100.0\\ \hline \\ 98.0\\ 100.0\\ 100.0\\ \kappa^2=1\\ 1\\ 1\\ 1\\ \hline \\ 99.6\\ 100.0\\ 100.0\\ \end{array}$                                                          | 98.1<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>100.0<br>1.5                                                           | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0<br>100.0<br>0.5<br>99.8<br>99.9<br>100.0                             | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0          | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0                          | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9<br>100.0<br>0.5<br>99.2<br>99.4<br>99.6                        | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1                                   | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9          | 0.5<br>99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0<br>0.5<br>99.7<br>100.0<br>100.0                            | $\begin{array}{c} 1\\ 1\\ \\ 99.6\\ 100.0\\ 100.0\\ \\ 100.0\\ \\ \hline \\ 99.6\\ 99.9\\ 100.0\\ \\ \kappa^2=2\\ \\ 1\\ 1\\ \\ \hline \\ 99.6\\ 100.0\\ \\ 100.0\\ \\ 100.0\\ \\ \end{array}$                            | 99.6<br>100.0<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0<br>2<br>1.5                                             | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>0.5<br>99.7<br>99.9<br>100.0          | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0          | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0          |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline m_0 \\ \sigma_{\rm v}^2 \\ \hline N \\ \hline 100 \\ 300 \\ \hline \end{array} $                                                      | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 \\ 100.0 \\ \hline \\ 0.5 \\ \hline \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \end{array}$                                                                | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1<br>0.4<br>99.3<br>100.0<br>99.9<br>100.0         | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5                                   | 97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>0.5<br>99.5<br>100.0<br>100.0                         | $\begin{array}{c} 1\\ 1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                   | 98.1<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>100.0<br>1.5                                                           | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0<br>100.0<br>0.5<br>99.8<br>99.9<br>100.0                             | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0<br>2<br>1                                   | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0                          | 99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9<br>100.0<br>0.5<br>99.2<br>99.4<br>99.6                        | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1                                   | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9          | 0.5<br>99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0<br>0.5<br>99.7<br>100.0<br>100.0                            | $ \begin{array}{c} 1\\ 1\\ 99.6\\ 100.0\\ 100.0\\ 100.0\\ \hline 99.6\\ 99.9\\ 100.0\\ \kappa^2 = 2\\ 1\\ 1\\ \hline 99.6\\ 100.0 \end{array} $                                                                           | 99.6<br>100.0<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0<br>2<br>1.5                                             | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>0.5<br>99.7<br>99.9<br>100.0          | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0<br>2<br>1                                   | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0          |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ m_0 \\ \sigma_{\rm v}^2 \\ N \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \end{array} $                                                                | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 \\ 100.0 \\ \hline \\ 0.5 \\ \hline \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ \end{array}$                                         | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1<br>0.4<br>99.3<br>100.0<br>99.9<br>100.0         | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9<br>100.0 | 0.5<br>97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>0.5<br>99.5<br>100.0<br>100.0<br>100.0         | $\begin{array}{c} 1\\ 1\\ 1\\ 98.1\\ 100.0\\ 100.0\\ \hline \\ 98.0\\ 100.0\\ \hline \\ 100.0\\ \kappa^2=1\\ 1\\ 1\\ \hline \\ 99.6\\ 100.0\\ 100.0\\ 100.0\\ \\ \end{array}$                                                 | 1.5<br>98.1<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>1.5<br>99.7<br>100.0<br>100.0<br>100.0                          | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0<br>100.0<br>0.5<br>99.8<br>99.9<br>100.0<br>100.0                    | 1<br>18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0<br>100.0 | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0<br>100.0                 | 0.5<br>99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9<br>100.0<br>0.5<br>99.2<br>99.4<br>99.6<br>99.8         | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>0<br>1<br>99.3<br>100.0<br>99.9<br>100.0 | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9<br>100.0 | 0.5 99.5 100.0 100.0 100.0 99.5 100.0 100.0 0.5 99.7 100.0 100.0 100.0                                                       | $\begin{array}{c} 1\\ 1\\ \hline \\ 99.6\\ 100.0\\ 100.0\\ \hline \\ 99.6\\ 99.9\\ 100.0\\ \hline \\ 100.0\\ \kappa^2=2\\ \hline \\ 1\\ \hline \\ 99.6\\ 100.0\\ \hline \\ 100.0\\ 100.0\\ \hline \end{array}$            | 1.5  99.6 100.0 100.0 100.0  99.6 99.9 100.0 100.0  1.5  99.6 100.0 100.0                                                          | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>0.5<br>99.7<br>99.9<br>100.0<br>100.0 | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0<br>100.0 | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0<br>100.0 |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 500 \\ 1000 \\ \hline \\ m_0 \\ \sigma_{\rm v}^2 \\ N \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ 1000 \\ \hline \\ \end{array} $                                           | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 \\ 100.0 \\ \\ \hline \\ 0.5 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \\ \gamma_0 = 0 \\ \hline \\ 99.4 \\ \hline \end{array}$                  | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>).8<br>99.4<br>100.0<br>0<br>1<br>0.4<br>99.3<br>100.0<br>99.9<br>100.0<br>99.9<br>100.0         | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9<br>100.0 | 0.5<br>97.9<br>100.0<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>0.5<br>99.5<br>100.0<br>100.0<br>100.0         | $\begin{array}{c} 1\\ 1\\ 1\\ \\ 98.1\\ 100.0\\ 100.0\\ \hline \\ 98.0\\ 100.0\\ \\ 100.0\\ \\ \kappa^2=1\\ \\ 1\\ 1\\ \\ \\ \hline \\ 99.6\\ \\ 100.0\\ \\ 100.0\\ \\ 100.0\\ \\ \\ \hline \\ 99.6\\ \\ \end{array}$         | 1.5<br>98.1<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>100.0<br>1.5<br>99.7<br>100.0<br>100.0<br>100.0<br>99.6                  | 17.7<br>97.2<br>100.0<br>100.0<br>19.2<br>98.2<br>100.0<br>100.0<br>0.5<br>99.8<br>99.9<br>100.0<br>100.0                    | 18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0<br>100.0      | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0<br>100.0                 | 0.5<br>99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9<br>100.0<br>0.5<br>99.2<br>99.4<br>99.6<br>99.8         | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>0<br>1<br>99.3<br>100.0<br>99.9<br>100.0                  | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9<br>100.0 | 0.5 99.5 100.0 100.0 100.0 99.5 100.0 100.0 0.5 99.7 100.0 100.0 100.0                                                       | $ \begin{array}{c} 1\\ 1\\ 99.6\\ 100.0\\ 100.0\\ \hline 99.6\\ 99.9\\ 100.0\\ \kappa^2 = 2\\ \hline 1\\ 1\\ \hline 99.6\\ 100.0\\ 100.0\\ 100.0\\ \hline 99.6 \end{array} $                                              | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0<br>2<br>1.5<br>99.6<br>100.0<br>100.0<br>100.0                   | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>0.5<br>99.7<br>99.9<br>100.0<br>100.0 | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0<br>100.0 | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0<br>100.0 |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 500 \\ 1000 \\ \hline \\ \hline m_0 \\ \sigma_{\rm v}^2 \\ \hline N \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ 100 \\ 300 \\ \hline \end{array} $                   | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ \hline \\ 0.5 \\ \hline \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.8 \\ \hline \gamma_0 = 0 \\ \hline \\ 100.0 \\ \hline \end{array}$ | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>0.8<br>99.4<br>100.0<br>0<br>1<br>0.4<br>99.3<br>100.0<br>99.9<br>100.0<br>0<br>1<br>0.8         | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9<br>100.0 | 0.5<br>97.9<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>0.5<br>99.5<br>100.0<br>100.0<br>99.5<br>100.0          | $\begin{array}{c} 1\\ 1\\ 1\\ \\ 98.1\\ 100.0\\ 100.0\\ \hline \\ 98.0\\ 100.0\\ \hline \\ 98.0\\ 100.0\\ \\ 100.0\\ \hline \\ \kappa^2=1\\ 1\\ 1\\ \hline \\ 99.6\\ 100.0\\ 100.0\\ \\ 100.0\\ \\ 99.6\\ 99.9\\ \end{array}$ | 1.5<br>98.1<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>100.0<br>1.5<br>99.7<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9 | 17.7<br>97.2<br>100.0<br>100.0<br>199.2<br>98.2<br>100.0<br>100.0<br>0.5<br>99.8<br>99.9<br>100.0<br>100.0                   | 18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0<br>100.0      | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0<br>100.0                 | 0.5<br>99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>0.5<br>99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0         | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>0<br>1<br>99.3<br>100.0<br>99.9<br>100.0                  | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9<br>100.0<br>99.9<br>100.0 | 0.5<br>99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0<br>0.5<br>99.7<br>100.0<br>100.0<br>100.0<br>100.0          | $\begin{array}{c} 1\\ 1\\ 99.6\\ 100.0\\ 100.0\\ \hline \\ 99.6\\ 99.9\\ 100.0\\ \hline \\ 100.0\\ \kappa^2=2\\ \hline \\ 1\\ 1\\ \hline \\ 99.6\\ 100.0\\ 100.0\\ \\ 100.0\\ \\ 100.0\\ \\ 99.6\\ \\ 99.9\\ \end{array}$ | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0<br>2<br>1.5<br>99.6<br>100.0<br>100.0<br>100.0<br>100.0          | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>0.5<br>99.7<br>99.9<br>100.0<br>100.0 | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0<br>100.0 | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0<br>100.0 |
| $ \begin{array}{c} \sigma_{\rm v}^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ \hline \\ 300 \\ 500 \\ \hline \\ \hline N \\ 100 \\ 300 \\ 500 \\ \hline \\ 1000 \\ \hline \\ \hline \\ 0 \\ 300 \\ 500 \\ \hline \\ \hline \\ 0 \\ 500 \\ \hline \\ \end{array} $ | $\begin{array}{c} \gamma_0 = 0 \\ 99.2 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 100.0 \\ 99.9 \\ 100.0 \\ \\ \hline \\ 0.5 \\ \hline \gamma_0 = 0 \\ 99.4 \\ 99.6 \\ 99.8 \\ \hline \\ \gamma_0 = 0 \\ \hline \\ 99.4 \\ \hline \end{array}$                  | 1<br>99.3<br>100.0<br>99.9<br>100.0<br>).8<br>99.4<br>100.0<br>0<br>1<br>0.4<br>99.9<br>100.0<br>99.9<br>100.0<br>99.9<br>100.0<br>99.9 | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>99.9<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9<br>100.0 | 0.5<br>97.9<br>100.0<br>100.0<br>97.9<br>100.0<br>100.0<br>0.5<br>99.5<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0 | $\begin{array}{c} 1\\ 1\\ 1\\ \\ 98.1\\ 100.0\\ 100.0\\ \hline \\ 98.0\\ 100.0\\ \\ 100.0\\ \\ \kappa^2=1\\ \\ 1\\ 1\\ \\ \\ \hline \\ 99.6\\ \\ 100.0\\ \\ 100.0\\ \\ 100.0\\ \\ \\ \hline \\ 99.6\\ \\ \end{array}$         | 98.1<br>100.0<br>100.0<br>100.0<br>98.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>99.7<br>100.0<br>100.0<br>100.0<br>100.0    | 17.7<br>97.2<br>100.0<br>100.0<br>199.2<br>98.2<br>100.0<br>100.0<br>99.8<br>99.9<br>100.0<br>100.0<br>99.7<br>99.9<br>100.0 | 18.3<br>97.6<br>100.0<br>100.0<br>18.9<br>98.1<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0<br>100.0      | 1.5<br>18.5<br>97.7<br>100.0<br>100.0<br>19.0<br>98.1<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0<br>99.7<br>99.9<br>100.0 | 0.5<br>99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>0.5<br>99.2<br>99.4<br>99.6<br>99.8<br>99.4<br>100.0<br>99.9 | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>0<br>1<br>99.3<br>100.0<br>99.9<br>100.0                  | 99.3<br>100.0<br>99.9<br>100.0<br>99.4<br>100.0<br>1.5<br>99.3<br>100.0<br>99.9<br>100.0                  | 0.5<br>99.5<br>100.0<br>100.0<br>100.0<br>99.5<br>100.0<br>100.0<br>0.5<br>99.7<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0 | $ \begin{array}{c} 1\\ 1\\ 99.6\\ 100.0\\ 100.0\\ \hline 99.6\\ 99.9\\ 100.0\\ \kappa^2 = 2\\ \hline 1\\ 1\\ \hline 99.6\\ 100.0\\ 100.0\\ 100.0\\ \hline 99.6 \end{array} $                                              | 99.6<br>100.0<br>100.0<br>100.0<br>99.6<br>99.9<br>100.0<br>100.0<br>2<br>1.5<br>99.6<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0 | 93.5<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>0.5<br>99.7<br>99.9<br>100.0<br>100.0 | 94.2<br>99.9<br>100.0<br>100.0<br>94.7<br>99.8<br>100.0<br>100.0<br>2<br>1<br>99.7<br>99.9<br>100.0<br>100.0 | 94.4<br>99.9<br>100.0<br>100.0<br>94.4<br>99.8<br>100.0<br>100.0<br>1.5<br>99.7<br>99.9<br>100.0<br>100.0 |

See the note to Table A1(i).

## A2: Bias, RMSE and Size

**Table A2(i)**: Bias(×100) and RMSE(×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors,  $\widehat{m}$ 

|                                                              |                                                                                                           |                                                                      |                                                                             |                                                                                                |                                                                                      | eestii                                                                              | nated                                                                                | ı nuı                                                                        | nber (                                                               | oi iac                                                              |                                                              |                                                               |                                                                               |                                                              |                                                                              |                                                              |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                              |                                                                                                           |                                                                      |                                                                             | $=5, \gamma_0$                                                                                 | 0.4                                                                                  |                                                                                     |                                                                                      |                                                                              |                                                                      |                                                                     |                                                              | T=5,                                                          | $\gamma_0 = 0$                                                                |                                                              |                                                                              |                                                              |
|                                                              | ]                                                                                                         | $Bias(\times$                                                        | 100)                                                                        |                                                                                                | I                                                                                    | RMSE(                                                                               | ×100)                                                                                |                                                                              |                                                                      | Bias(                                                               | ×100)                                                        |                                                               |                                                                               | RMSE                                                         | $(\times 100)$                                                               | )                                                            |
| $\kappa^2$                                                   | 0.25                                                                                                      | 0.5                                                                  | 1                                                                           | 2                                                                                              | 0.25                                                                                 | 0.5                                                                                 | 1                                                                                    | 2                                                                            | 0.25                                                                 | 0.5                                                                 | 1                                                            | 2                                                             | 0.25                                                                          | 0.5                                                          | 1                                                                            | 2                                                            |
| $\overline{N}$                                               | $m_0 = 0$                                                                                                 |                                                                      |                                                                             |                                                                                                |                                                                                      |                                                                                     |                                                                                      |                                                                              |                                                                      |                                                                     |                                                              |                                                               |                                                                               |                                                              |                                                                              |                                                              |
| 100                                                          | 0.42                                                                                                      | 0.42                                                                 | 0.42                                                                        | 0.42                                                                                           | 8.69                                                                                 | 8.69                                                                                | 8.69                                                                                 | 8.69                                                                         | 0.65                                                                 | 0.65                                                                | 0.65                                                         | 0.65                                                          | 12.29                                                                         | 12.29                                                        | 12.29                                                                        | 12.29                                                        |
| 300                                                          | -0.03                                                                                                     | -0.03                                                                | -0.03                                                                       | -0.03                                                                                          | 4.26                                                                                 | 4.26                                                                                | 4.26                                                                                 | 4.26                                                                         | 1.42                                                                 | 1.42                                                                | 1.42                                                         | 1.42                                                          | 9.26                                                                          | 9.26                                                         | 9.26                                                                         | 9.26                                                         |
| 500                                                          | 0.03                                                                                                      | 0.03                                                                 | 0.03                                                                        | 0.03                                                                                           | 3.22                                                                                 | 3.22                                                                                | 3.22                                                                                 | 3.22                                                                         | 1.46                                                                 | 1.46                                                                | 1.46                                                         | 1.46                                                          | 7.80                                                                          | 7.80                                                         | 7.80                                                                         | 7.80                                                         |
| 1000                                                         | 0.00                                                                                                      | 0.00                                                                 | 0.00                                                                        | 0.00                                                                                           | 2.29                                                                                 | 2.29                                                                                | 2.29                                                                                 | 2.29                                                                         | 1.02                                                                 | 1.02                                                                | 1.02                                                         | 1.02                                                          | 6.07                                                                          | 6.07                                                         | 6.07                                                                         | 6.07                                                         |
|                                                              | $m_0 = 1$                                                                                                 |                                                                      |                                                                             |                                                                                                |                                                                                      |                                                                                     |                                                                                      |                                                                              |                                                                      |                                                                     |                                                              |                                                               |                                                                               |                                                              |                                                                              |                                                              |
| 100                                                          | 24.98                                                                                                     | 5.19                                                                 | 0.41                                                                        | 0.23                                                                                           | 33.05                                                                                | 18.36                                                                               | 9.39                                                                                 | 7.79                                                                         | 7.22                                                                 | 1.11                                                                | 1.42                                                         | 1.38                                                          | 15.51                                                                         | 13.99                                                        | 12.99                                                                        | 11.19                                                        |
| 300                                                          | 1.96                                                                                                      | -0.05                                                                | -0.09                                                                       | -0.11                                                                                          | 11.04                                                                                | 5.64                                                                                | 4.99                                                                                 | 4.17                                                                         | 1.20                                                                 | 1.28                                                                | 1.00                                                         | 0.46                                                          | 11.06                                                                         | 10.41                                                        | 9.04                                                                         | 6.86                                                         |
| 500                                                          | 0.15                                                                                                      | 0.10                                                                 | 0.05                                                                        | 0.01                                                                                           | 4.53                                                                                 | 4.17                                                                                | 3.68                                                                                 | 3.07                                                                         | 1.68                                                                 | 1.46                                                                | 0.96                                                         | 0.40                                                          | 9.48                                                                          | 8.64                                                         | 7.12                                                                         | 5.09                                                         |
| 1000                                                         | 0.05                                                                                                      | 0.05                                                                 | 0.04                                                                        | 0.03                                                                                           | 3.25                                                                                 | 3.02                                                                                | 2.67                                                                                 | 2.22                                                                         | 1.43                                                                 | 1.13                                                                | 0.61                                                         | 0.27                                                          | 7.70                                                                          | 6.77                                                         | 5.08                                                                         | 3.56                                                         |
|                                                              | $m_0 = 2$                                                                                                 |                                                                      |                                                                             |                                                                                                |                                                                                      |                                                                                     |                                                                                      |                                                                              |                                                                      |                                                                     |                                                              |                                                               |                                                                               |                                                              |                                                                              |                                                              |
| 100                                                          | 6.61                                                                                                      | 13.75                                                                | 4.09                                                                        | 0.34                                                                                           | 13.61                                                                                | 25.13                                                                               | 16.38                                                                                | 7.89                                                                         | 7.09                                                                 | 5.07                                                                | 1.82                                                         | 1.50                                                          | 14.00                                                                         | 15.66                                                        | 16.38                                                                        | 11.31                                                        |
| 300                                                          | 5.43                                                                                                      | 1.25                                                                 | 0.20                                                                        | 0.13                                                                                           | 10.92                                                                                | 8.49                                                                                | 4.99                                                                                 | 4.14                                                                         | 6.76                                                                 | 1.81                                                                | 1.38                                                         | 0.81                                                          | 13.80                                                                         | 10.54                                                        | 4.99                                                                         | 6.82                                                         |
| 500                                                          | 3.12                                                                                                      | 0.08                                                                 | 0.05                                                                        | 0.04                                                                                           | 8.58                                                                                 | 4.36                                                                                | 3.81                                                                                 | 3.16                                                                         | 4.31                                                                 | 1.50                                                                | 0.98                                                         | 0.49                                                          | 11.71                                                                         | 8.74                                                         | 3.81                                                                         | 5.12                                                         |
| 1000                                                         | 0.12                                                                                                      | 0.04                                                                 | 0.02                                                                        | 0.01                                                                                           | 3.38                                                                                 | 2.98                                                                                | 2.62                                                                                 | 2.18                                                                         | 1.23                                                                 | 0.89                                                                | 0.45                                                         | 0.19                                                          | 7.43                                                                          | 6.34                                                         | 2.62                                                                         | 3.45                                                         |
|                                                              |                                                                                                           |                                                                      | T:                                                                          | $= 10, \gamma$                                                                                 | $_0 = 0.4$                                                                           |                                                                                     |                                                                                      |                                                                              |                                                                      |                                                                     | 7                                                            | $\Gamma = 10,$                                                | $\gamma_0 = 0$                                                                | ).8                                                          |                                                                              |                                                              |
|                                                              | ]                                                                                                         | $Bias(\times$                                                        | 100)                                                                        |                                                                                                | F                                                                                    | MSE(                                                                                | ×100)                                                                                |                                                                              |                                                                      | Bias(                                                               | ×100)                                                        |                                                               |                                                                               | RMSE                                                         | $( \times 100)$                                                              |                                                              |
| 2                                                            |                                                                                                           |                                                                      |                                                                             |                                                                                                | -                                                                                    | CLITOL                                                                              | ,                                                                                    |                                                                              |                                                                      |                                                                     |                                                              |                                                               |                                                                               | TUNIOL                                                       | $(\wedge 100)$                                                               | 1                                                            |
| $\kappa^2$                                                   | 0.25                                                                                                      | $0.\dot{\hat{5}}$                                                    | 1                                                                           | 2                                                                                              | 0.25                                                                                 | 0.5                                                                                 | 1                                                                                    | 2                                                                            | 0.25                                                                 | $0.5^{\circ}$                                                       | 1                                                            | 2                                                             | 0.25                                                                          | 0.5                                                          | 1                                                                            | 2                                                            |
| $\frac{\kappa^2}{N}$                                         | $0.25$ $m_0 = 0$                                                                                          |                                                                      | ,                                                                           | 2                                                                                              |                                                                                      | ,                                                                                   | ,                                                                                    | 2                                                                            | 0.25                                                                 |                                                                     |                                                              | 2                                                             |                                                                               |                                                              | · ,                                                                          |                                                              |
|                                                              |                                                                                                           |                                                                      | 1                                                                           |                                                                                                |                                                                                      | ,                                                                                   | 1                                                                                    | 3.76                                                                         | 1.94                                                                 |                                                                     |                                                              | 1.94                                                          |                                                                               |                                                              | · ,                                                                          |                                                              |
| N                                                            | $m_0 = 0$ $-0.03$                                                                                         | $0.\dot{5}$                                                          | -0.03                                                                       | -0.03                                                                                          | 0.25                                                                                 | 0.5                                                                                 | 1                                                                                    | 3.76                                                                         |                                                                      | 0.5                                                                 | 1                                                            |                                                               | 0.25                                                                          | 0.5                                                          | 1                                                                            | 2                                                            |
| $\frac{N}{100}$                                              | $m_0 = 0$ $-0.03$ $-0.04$                                                                                 | -0.03                                                                | -0.03<br>-0.04                                                              | -0.03<br>-0.04                                                                                 | $\frac{0.25}{3.76}$                                                                  | 3.76                                                                                | 3.76<br>2.18                                                                         | 3.76                                                                         | 1.94                                                                 | 1.94                                                                | 1.94                                                         | 1.94                                                          | $\frac{0.25}{7.90}$                                                           | 7.90                                                         | 7.90                                                                         | 7.90                                                         |
| $\frac{N}{100}$ $300$                                        | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$                                                                         | -0.03<br>-0.04<br>-0.01                                              | -0.03<br>-0.04<br>-0.01                                                     | -0.03<br>-0.04<br>-0.01                                                                        | $ \begin{array}{r} 0.25 \\ \hline 3.76 \\ 2.18 \end{array} $                         | 0.5<br>3.76<br>2.18                                                                 | 3.76<br>2.18<br>1.70                                                                 | 3.76<br>2.18                                                                 | 1.94<br>0.68                                                         | 0.5<br>1.94<br>0.68                                                 | 1<br>1.94<br>0.68                                            | 1.94<br>0.68                                                  | $   \begin{array}{r}     \hline                                $              | 7.90<br>4.62                                                 | 7.90<br>4.62                                                                 | 7.90<br>4.62                                                 |
| N<br>100<br>300<br>500                                       | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$                                                                         | -0.03<br>-0.04<br>-0.01                                              | -0.03<br>-0.04<br>-0.01                                                     | -0.03<br>-0.04<br>-0.01                                                                        | $ \begin{array}{r}     \hline                                $                       | 3.76<br>2.18<br>1.70                                                                | 3.76<br>2.18<br>1.70                                                                 | 3.76<br>2.18<br>1.70                                                         | 1.94<br>0.68<br>0.26                                                 | 0.5<br>1.94<br>0.68<br>0.26                                         | 1.94<br>0.68<br>0.26                                         | 1.94<br>0.68<br>0.26                                          | $   \begin{array}{r}     \hline                                $              | 7.90<br>4.62<br>3.09                                         | 7.90<br>4.62<br>3.09                                                         | 7.90<br>4.62<br>3.09                                         |
| N<br>100<br>300<br>500                                       | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$                                                                         | -0.03<br>-0.04<br>-0.01<br>-0.01                                     | -0.03<br>-0.04<br>-0.01                                                     | -0.03<br>-0.04<br>-0.01<br>-0.01                                                               | $ \begin{array}{r}     \hline                                $                       | 3.76<br>2.18<br>1.70                                                                | 3.76<br>2.18<br>1.70                                                                 | 3.76<br>2.18<br>1.70                                                         | 1.94<br>0.68<br>0.26                                                 | 0.5<br>1.94<br>0.68<br>0.26                                         | 1.94<br>0.68<br>0.26                                         | 1.94<br>0.68<br>0.26                                          | $   \begin{array}{r}     \hline                                $              | 7.90<br>4.62<br>3.09                                         | 7.90<br>4.62<br>3.09                                                         | 7.90<br>4.62<br>3.09                                         |
| N<br>100<br>300<br>500<br>1000                               | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$ $-0.01$ $m_0 = 1$                                                       | -0.03<br>-0.04<br>-0.01<br>-0.01                                     | -0.03<br>-0.04<br>-0.01<br>-0.01                                            | -0.03<br>-0.04<br>-0.01<br>-0.01                                                               | 3.76<br>2.18<br>1.70<br>1.22                                                         | 3.76<br>2.18<br>1.70<br>1.22                                                        | 3.76<br>2.18<br>1.70<br>1.22                                                         | 3.76<br>2.18<br>1.70<br>1.22                                                 | 1.94<br>0.68<br>0.26<br>0.18                                         | 1.94<br>0.68<br>0.26<br>0.18                                        | 1.94<br>0.68<br>0.26<br>0.18                                 | 1.94<br>0.68<br>0.26<br>0.18                                  | 7.90<br>4.62<br>3.09<br>2.24                                                  | 7.90<br>4.62<br>3.09<br>2.24                                 | 7.90<br>4.62<br>3.09<br>2.24                                                 | 7.90<br>4.62<br>3.09<br>2.24                                 |
| N<br>100<br>300<br>500<br>1000                               | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$ $-0.01$ $m_0 = 1$ $0.11$                                                | -0.03<br>-0.04<br>-0.01<br>-0.01                                     | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.05<br>0.02                           | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.06<br>0.01                                              | 3.76<br>2.18<br>1.70<br>1.22<br>4.87                                                 | 0.5<br>3.76<br>2.18<br>1.70<br>1.22<br>4.52                                         | 3.76<br>2.18<br>1.70<br>1.22                                                         | 3.76<br>2.18<br>1.70<br>1.22<br>3.75                                         | 1.94<br>0.68<br>0.26<br>0.18                                         | 0.5<br>1.94<br>0.68<br>0.26<br>0.18                                 | 1.94<br>0.68<br>0.26<br>0.18                                 | 1.94<br>0.68<br>0.26<br>0.18                                  | 7.90<br>4.62<br>3.09<br>2.24<br>7.05                                          | 7.90<br>4.62<br>3.09<br>2.24<br>5.83                         | 7.90<br>4.62<br>3.09<br>2.24                                                 | 7.90<br>4.62<br>3.09<br>2.24                                 |
| N<br>100<br>300<br>500<br>1000                               | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$ $-0.01$ $m_0 = 1$ $0.11$ $0.03$                                         | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.04<br>0.02                    | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.05<br>0.02<br>-0.06                  | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.06<br>0.01<br>-0.05                                     | 0.25<br>3.76<br>2.18<br>1.70<br>1.22<br>4.87<br>2.67                                 | 0.5<br>3.76<br>2.18<br>1.70<br>1.22<br>4.52<br>2.55                                 | 3.76<br>2.18<br>1.70<br>1.22<br>4.20<br>2.38                                         | 3.76<br>2.18<br>1.70<br>1.22<br>3.75<br>2.13                                 | 1.94<br>0.68<br>0.26<br>0.18<br>1.08<br>0.24                         | 0.5<br>1.94<br>0.68<br>0.26<br>0.18<br>0.50<br>0.15                 | 1.94<br>0.68<br>0.26<br>0.18<br>0.23<br>0.08                 | 1.94<br>0.68<br>0.26<br>0.18<br>0.08<br>0.04                  | 7.90<br>4.62<br>3.09<br>2.24<br>7.05<br>3.53                                  | 7.90<br>4.62<br>3.09<br>2.24<br>5.83<br>2.98                 | 7.90<br>4.62<br>3.09<br>2.24<br>4.64<br>2.41                                 | 7.90<br>4.62<br>3.09<br>2.24<br>3.48<br>1.89                 |
| N<br>100<br>300<br>500<br>1000<br>100<br>300<br>500          | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$ $-0.01$ $m_0 = 1$ $0.11$ $0.03$ $-0.05$                                 | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.04<br>0.02<br>-0.06           | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.05<br>0.02<br>-0.06                  | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.06<br>0.01<br>-0.05                                     | 0.25<br>3.76<br>2.18<br>1.70<br>1.22<br>4.87<br>2.67<br>2.11                         | 0.5<br>3.76<br>2.18<br>1.70<br>1.22<br>4.52<br>2.55<br>2.03                         | 3.76<br>2.18<br>1.70<br>1.22<br>4.20<br>2.38<br>1.90                                 | 3.76<br>2.18<br>1.70<br>1.22<br>3.75<br>2.13<br>1.70                         | 1.94<br>0.68<br>0.26<br>0.18<br>1.08<br>0.24<br>0.07                 | 0.5<br>1.94<br>0.68<br>0.26<br>0.18<br>0.50<br>0.15<br>0.04         | 1.94<br>0.68<br>0.26<br>0.18<br>0.23<br>0.08<br>0.01         | 1.94<br>0.68<br>0.26<br>0.18<br>0.08<br>0.04<br>-0.01         | 7.90<br>4.62<br>3.09<br>2.24<br>7.05<br>3.53<br>2.58                          | 7.90<br>4.62<br>3.09<br>2.24<br>5.83<br>2.98<br>2.28         | 7.90<br>4.62<br>3.09<br>2.24<br>4.64<br>2.41<br>1.88                         | 7.90<br>4.62<br>3.09<br>2.24<br>3.48<br>1.89<br>1.49         |
| N<br>100<br>300<br>500<br>1000<br>100<br>300<br>500          | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$ $-0.01$ $m_0 = 1$ $0.03$ $-0.05$ $-0.03$                                | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.04<br>-0.02<br>-0.06<br>-0.02 | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.05<br>0.02<br>-0.06                  | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.06<br>0.01<br>-0.05<br>-0.01                            | 0.25<br>3.76<br>2.18<br>1.70<br>1.22<br>4.87<br>2.67<br>2.11                         | 0.5<br>3.76<br>2.18<br>1.70<br>1.22<br>4.52<br>2.55<br>2.03                         | 3.76<br>2.18<br>1.70<br>1.22<br>4.20<br>2.38<br>1.90<br>1.32                         | 3.76<br>2.18<br>1.70<br>1.22<br>3.75<br>2.13<br>1.70                         | 1.94<br>0.68<br>0.26<br>0.18<br>1.08<br>0.24<br>0.07                 | 0.5<br>1.94<br>0.68<br>0.26<br>0.18<br>0.50<br>0.15<br>0.04         | 1.94<br>0.68<br>0.26<br>0.18<br>0.23<br>0.08<br>0.01         | 1.94<br>0.68<br>0.26<br>0.18<br>0.08<br>0.04<br>-0.01         | 7.90<br>4.62<br>3.09<br>2.24<br>7.05<br>3.53<br>2.58                          | 7.90<br>4.62<br>3.09<br>2.24<br>5.83<br>2.98<br>2.28         | 7.90<br>4.62<br>3.09<br>2.24<br>4.64<br>2.41<br>1.88                         | 7.90<br>4.62<br>3.09<br>2.24<br>3.48<br>1.89<br>1.49         |
| N<br>100<br>300<br>500<br>1000<br>100<br>300<br>500<br>1000  | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$ $-0.01$ $m_0 = 1$ $0.03$ $-0.05$ $-0.03$ $m_0 = 2$                      | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.04<br>-0.02<br>-0.06<br>-0.02 | -0.03<br>-0.04<br>-0.01<br>-0.05<br>0.02<br>-0.06<br>-0.01                  | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.06<br>0.01<br>-0.05<br>-0.01                            | 0.25<br>3.76<br>2.18<br>1.70<br>1.22<br>4.87<br>2.67<br>2.11<br>1.48                 | 0.5<br>3.76<br>2.18<br>1.70<br>1.22<br>4.52<br>2.55<br>2.03<br>1.42                 | 3.76<br>2.18<br>1.70<br>1.22<br>4.20<br>2.38<br>1.90<br>1.32                         | 3.76<br>2.18<br>1.70<br>1.22<br>3.75<br>2.13<br>1.70<br>1.17                 | 1.94<br>0.68<br>0.26<br>0.18<br>1.08<br>0.24<br>0.07<br>0.00         | 0.5<br>1.94<br>0.68<br>0.26<br>0.18<br>0.50<br>0.15<br>0.04<br>0.00 | 1.94<br>0.68<br>0.26<br>0.18<br>0.23<br>0.08<br>0.01<br>0.00 | 1.94<br>0.68<br>0.26<br>0.18<br>0.08<br>0.04<br>-0.01<br>0.00 | 7.90<br>4.62<br>3.09<br>2.24<br>7.05<br>3.53<br>2.58<br>1.74                  | 7.90<br>4.62<br>3.09<br>2.24<br>5.83<br>2.98<br>2.28<br>1.55 | 7.90<br>4.62<br>3.09<br>2.24<br>4.64<br>2.41<br>1.88<br>1.30                 | 7.90<br>4.62<br>3.09<br>2.24<br>3.48<br>1.89<br>1.49<br>1.03 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000       | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$ $-0.01$ $m_0 = 1$ $0.03$ $-0.05$ $-0.03$ $m_0 = 2$ $5.48$               | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.02<br>-0.06<br>-0.02          | -0.03<br>-0.04<br>-0.01<br>-0.05<br>0.02<br>-0.06<br>-0.01                  | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.06<br>0.01<br>-0.05<br>-0.01<br>-0.05<br>0.05           | 0.25<br>3.76<br>2.18<br>1.70<br>1.22<br>4.87<br>2.67<br>2.11<br>1.48                 | 0.5<br>3.76<br>2.18<br>1.70<br>1.22<br>4.52<br>2.55<br>2.03<br>1.42<br>6.57         | 3.76<br>2.18<br>1.70<br>1.22<br>4.20<br>2.38<br>1.90<br>1.32<br>5.12<br>2.81         | 3.76<br>2.18<br>1.70<br>1.22<br>3.75<br>2.13<br>1.70<br>1.17                 | 1.94<br>0.68<br>0.26<br>0.18<br>1.08<br>0.24<br>0.07<br>0.00<br>7.57 | 0.5<br>1.94<br>0.68<br>0.26<br>0.18<br>0.50<br>0.15<br>0.04<br>0.00 | 1.94<br>0.68<br>0.26<br>0.18<br>0.23<br>0.08<br>0.01<br>0.00 | 1.94<br>0.68<br>0.26<br>0.18<br>0.08<br>0.04<br>-0.01<br>0.00 | 7.90<br>4.62<br>3.09<br>2.24<br>7.05<br>3.53<br>2.58<br>1.74                  | 7.90<br>4.62<br>3.09<br>2.24<br>5.83<br>2.98<br>2.28<br>1.55 | 7.90<br>4.62<br>3.09<br>2.24<br>4.64<br>2.41<br>1.88<br>1.30                 | 7.90<br>4.62<br>3.09<br>2.24<br>3.48<br>1.89<br>1.49<br>1.03 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>300<br>500<br>1000 | $m_0 = 0$ $-0.03$ $-0.04$ $-0.01$ $-0.01$ $m_0 = 1$ $0.11$ $0.03$ $-0.05$ $-0.03$ $m_0 = 2$ $5.48$ $0.26$ | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.02<br>-0.06<br>-0.02          | -0.03<br>-0.04<br>-0.01<br>-0.05<br>0.02<br>-0.06<br>-0.01<br>-0.08<br>0.04 | -0.03<br>-0.04<br>-0.01<br>-0.01<br>-0.06<br>0.01<br>-0.05<br>-0.01<br>-0.05<br>-0.05<br>-0.09 | 0.25<br>3.76<br>2.18<br>1.70<br>1.22<br>4.87<br>2.67<br>2.11<br>1.48<br>8.23<br>3.58 | 0.5<br>3.76<br>2.18<br>1.70<br>1.22<br>4.52<br>2.55<br>2.03<br>1.42<br>6.57<br>3.07 | 3.76<br>2.18<br>1.70<br>1.22<br>4.20<br>2.38<br>1.90<br>1.32<br>5.12<br>2.81<br>2.16 | 3.76<br>2.18<br>1.70<br>1.22<br>3.75<br>2.13<br>1.70<br>1.17<br>4.48<br>2.46 | 1.94<br>0.68<br>0.26<br>0.18<br>1.08<br>0.24<br>0.07<br>0.00<br>7.57 | 0.5<br>1.94<br>0.68<br>0.26<br>0.18<br>0.50<br>0.15<br>0.04<br>0.00 | 1.94<br>0.68<br>0.26<br>0.18<br>0.23<br>0.08<br>0.01<br>0.00 | 1.94<br>0.68<br>0.26<br>0.18<br>0.08<br>0.04<br>-0.01<br>0.00 | 7.90<br>4.62<br>3.09<br>2.24<br>7.05<br>3.53<br>2.58<br>1.74<br>11.64<br>4.62 | 7.90<br>4.62<br>3.09<br>2.24<br>5.83<br>2.98<br>2.28<br>1.55 | 7.90<br>4.62<br>3.09<br>2.24<br>4.64<br>2.41<br>1.88<br>1.30<br>5.32<br>2.66 | 7.90<br>4.62<br>3.09<br>2.24<br>3.48<br>1.89<br>1.49<br>1.03 |

Note:  $\gamma$  is the coefficient of the lagged dependent variable given in (1) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table 1.

Table A2(ii): Size(×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors,  $\widehat{m}$ 

|                | T =       | $5, \gamma_0$ | = 0.4 |     | T    | = 5,  ' | $\gamma_0 = 0$ | ).8  | T   | = : | 10, - | $\gamma_0 =$ | 0.4 | T :  | = 10, | $\gamma_0 =$ | 0.8  |
|----------------|-----------|---------------|-------|-----|------|---------|----------------|------|-----|-----|-------|--------------|-----|------|-------|--------------|------|
| $\kappa^2$     | 0.25      | 0.5           | 1     | 2   | 0.25 | 0.5     | 1              | 2    | 0.2 | 5   | 0.5   | 1            | 2   | 0.25 | 0.5   | 1            | 2    |
| $\overline{N}$ | $m_0 = 0$ |               |       |     |      |         |                |      |     |     |       |              |     |      |       |              |      |
| 100            | 6.2       | 6.2           | 6.2   | 6.2 | 21.3 | 21.3    | 21.3           | 21.3 | 6.  | 5   | 6.5   | 6.5          | 6.5 | 16.4 | 16.4  | 16.4         | 16.4 |
| 300            | 5.4       | 5.4           | 5.4   | 5.4 | 19.2 | 19.2    | 19.2           | 19.2 | 5.  | 1   | 5.1   | 5.1          | 5.1 | 8.7  | 8.7   | 8.7          | 8.7  |
| 500            | 4.8       | 4.8           | 4.8   | 4.8 | 14.6 | 14.6    | 14.6           | 14.6 | 5.  | 9   | 5.9   | 5.9          | 5.9 | 6.7  | 6.7   | 6.7          | 6.7  |
| 1000           | 4.5       | 4.5           | 4.5   | 4.5 | 12.1 | 12.1    | 12.1           | 12.1 | 5.  | 4   | 5.4   | 5.4          | 5.4 | 5.7  | 5.7   | 5.7          | 5.7  |
|                | $m_0 = 1$ |               |       |     |      |         |                |      |     |     |       |              |     |      |       |              |      |
| 100            | 52.6      | 15.7          | 5.1   | 6.2 | 54.3 | 21.6    | 19.6           | 12.6 | 6.  | 9   | 6.0   | 6.1          | 5.7 | 12.1 | 7.6   | 4.9          | 4.9  |
| 300            | 9.3       | 3.8           | 5.1   | 5.9 | 16.9 | 17.0    | 11.9           | 6.7  | 4.  | 0   | 4.3   | 4.5          | 5.1 | 4.3  | 4.3   | 4.7          | 5.2  |
| 500            | 2.6       | 3.3           | 3.9   | 4.5 | 12.7 | 12.3    | 7.1            | 4.5  | 5.  | 4   | 5.7   | 6.0          | 6.1 | 4.5  | 5.1   | 5.4          | 5.5  |
| 1000           | 3.2       | 4.2           | 4.7   | 5.2 | 10.0 | 8.1     | 4.7            | 4.5  | 4.  | 7   | 4.9   | 4.9          | 5.0 | 4.5  | 4.6   | 4.2          | 4.1  |
|                | $m_0 = 2$ |               |       |     |      |         |                |      |     |     |       |              |     |      |       |              |      |
| 100            | 8.6       | 26.2          | 11.5  | 4.7 | 42.2 | 43.0    | 19.8           | 11.4 | 33. | 6   | 9.6   | 5.8          | 6.3 | 37.9 | 10.2  | 5.3          | 6.2  |
| 300            | 23.2      | 6.1           | 3.9   | 4.5 | 49.3 | 15.9    | 10.3           | 5.4  | 5.  | 8   | 4.4   | 4.6          | 5.0 | 4.8  | 3.3   | 4.0          | 4.5  |
| 500            | 24.6      | 2.5           | 3.1   | 3.8 | 31.2 | 11.4    | 6.3            | 3.3  | 3.  | 4   | 4.2   | 4.9          | 4.9 | 3.1  | 4.1   | 4.7          | 5.3  |
| 1000           | 2.6       | 2.6           | 3.3   | 3.8 | 7.8  | 6.6     | 4.4            | 3.9  | 3.  | 4   | 4.0   | 4.7          | 4.9 | 3.6  | 4.0   | 4.0          | 4.3  |

See the note to Table A2(i).

**Table A2(iii)**: Bias(×100) and RMSE(×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\sigma_{\rm v}^2 = 1$ )

|                                                                                                              |                                                                                                                                                                                                                                                                                                              | 1.                                                                                                                                                                                                                                             | noaei                                                                                                                                                                                                                                                                                                                     | , usin                                                                                                            | g tne                                                                                                                                                                                                                                                                                                                             | esti                                                                                                                                                         | mate                                                                                                                                                         | ea nur                                                                                                                                                       | nber c                                                                                                 | of fact                                                                                                                                                | tors,                                                                                                                                                                                                                                                                                                                                            | $m (\sigma;$                                                                                                                                            | $\overline{y} = 1$                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                  |                                                                                                                                                              |                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                              |                                                                                                                                                                                                                                                                                                              | Risel                                                                                                                                                                                                                                          | $\frac{T}{\times 100}$                                                                                                                                                                                                                                                                                                    | $\gamma = 5, \gamma$                                                                                              | $_0 = 0.4$                                                                                                                                                                                                                                                                                                                        | RMSE                                                                                                                                                         | E( > 100                                                                                                                                                     | <u>)</u>                                                                                                                                                     |                                                                                                        | Bias(                                                                                                                                                  | $\frac{T}{\sqrt{100}}$                                                                                                                                                                                                                                                                                                                           | $'=5, \gamma$                                                                                                                                           | $v_0 = 0.8$                                                                                                                                                                                                                                                                                                                                     | RMSE                                                                                                                                                                      | E(×10                                                                                                                                                        | <u>n)</u>                                                                                                                                                            |
| $\kappa^2$                                                                                                   | 0.25                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              | 1                                                                                                                                                            | 2                                                                                                                                                            | 0.25                                                                                                   |                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                       | 0.25                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                           | 1                                                                                                                                                            | 2                                                                                                                                                                    |
|                                                                                                              | $\gamma$                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              |                                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                                      |
| N                                                                                                            | $m_0 =$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                | 0.15                                                                                                                                                                                                                                                                                                                      | 0.15                                                                                                              | 0.45                                                                                                                                                                                                                                                                                                                              | 9.45                                                                                                                                                         | 9.45                                                                                                                                                         | 9.45                                                                                                                                                         | 0.07                                                                                                   | 0.07                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                    | 2.00                                                                                                                                                                                                                                                                                                                                            | 2.00                                                                                                                                                                      | 9.00                                                                                                                                                         | 2.00                                                                                                                                                                 |
| 100<br>300                                                                                                   |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | -0.15<br>-0.04                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   | 3.45<br>1.97                                                                                                                                                 |                                                                                                                                                              | 3.45<br>1.97                                                                                                                                                 |                                                                                                        | -0.07<br>-0.05                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                  | -0.07<br>-0.05                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                 | 3.02<br>1.71                                                                                                                                                              |                                                                                                                                                              | $\frac{3.02}{1.71}$                                                                                                                                                  |
| 500                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                      | 0.02                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 1.47                                                                                                                                                         |                                                                                                                                                              | 1.47                                                                                                                                                         | 0.00                                                                                                   | 0.00                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 1.27                                                                                                                                                                      |                                                                                                                                                              | 1.77                                                                                                                                                                 |
|                                                                                                              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | -0.05                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   | 1.08                                                                                                                                                         |                                                                                                                                                              | 1.08                                                                                                                                                         |                                                                                                        | -0.03                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 | 0.93                                                                                                                                                                      |                                                                                                                                                              | 0.93                                                                                                                                                                 |
|                                                                                                              | $m_0 =$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              |                                                                                                        | 0.20                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                                      |
| $\frac{100}{300}$                                                                                            | 2.45                                                                                                                                                                                                                                                                                                         | 0.21                                                                                                                                                                                                                                           | 0.09 $-0.05$                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                              | 5.82                                                                                                                                                                                                                                                                                                                              | 4.49<br>2.42                                                                                                                                                 |                                                                                                                                                              | 4.10<br>2.31                                                                                                                                                 | 0.96                                                                                                   | 0.28 $-0.02$                                                                                                                                           | 0.23                                                                                                                                                                                                                                                                                                                                             | 0.21                                                                                                                                                    | 4.91                                                                                                                                                                                                                                                                                                                                            | 4.91<br>2.60                                                                                                                                                              | 4.74                                                                                                                                                         | 4.53 $2.47$                                                                                                                                                          |
| 500                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 1.86                                                                                                                                                         |                                                                                                                                                              | $\frac{2.31}{1.75}$                                                                                                                                          | 0.02                                                                                                   | 0.02                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 1.96                                                                                                                                                                      |                                                                                                                                                              | 1.85                                                                                                                                                                 |
| 1000                                                                                                         | -0.05                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                | -0.04                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   | 1.37                                                                                                                                                         |                                                                                                                                                              | 1.29                                                                                                                                                         | -0.02                                                                                                  | -0.02                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 | 1.43                                                                                                                                                                      |                                                                                                                                                              | 1.36                                                                                                                                                                 |
|                                                                                                              | $m_0 =$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              |                                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                                      |
| 100                                                                                                          | 1.29                                                                                                                                                                                                                                                                                                         | 1.49                                                                                                                                                                                                                                           | 0.37                                                                                                                                                                                                                                                                                                                      | 0.21                                                                                                              | 4.21                                                                                                                                                                                                                                                                                                                              | 5.39                                                                                                                                                         | 4.70                                                                                                                                                         | 4.27                                                                                                                                                         | 0.57                                                                                                   | 0.69                                                                                                                                                   | 0.47                                                                                                                                                                                                                                                                                                                                             | 0.36                                                                                                                                                    | 3.78                                                                                                                                                                                                                                                                                                                                            | 4.90                                                                                                                                                                      |                                                                                                                                                              | 4.60                                                                                                                                                                 |
| 300<br>500                                                                                                   | $0.78 \\ 0.31$                                                                                                                                                                                                                                                                                               | $0.03 \\ 0.07$                                                                                                                                                                                                                                 | $0.03 \\ 0.07$                                                                                                                                                                                                                                                                                                            | $0.04 \\ 0.07$                                                                                                    |                                                                                                                                                                                                                                                                                                                                   | 2.51<br>1.96                                                                                                                                                 |                                                                                                                                                              | $\frac{2.35}{1.87}$                                                                                                                                          | $0.24 \\ 0.11$                                                                                         | $0.07 \\ 0.09$                                                                                                                                         | $0.07 \\ 0.10$                                                                                                                                                                                                                                                                                                                                   | $0.08 \\ 0.10$                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                 | 2.70<br>2.13                                                                                                                                                              |                                                                                                                                                              | $\frac{2.52}{2.03}$                                                                                                                                                  |
| 1000                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                      | 0.05                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 1.41                                                                                                                                                         |                                                                                                                                                              | 1.33                                                                                                                                                         | 0.05                                                                                                   | 0.05                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 1.49                                                                                                                                                                      |                                                                                                                                                              | 1.41                                                                                                                                                                 |
|                                                                                                              | β                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              |                                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                                      |
| N 100                                                                                                        | $m_0 =$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                              | 4.44                                                                                                                                                                                                                                                                                                                              | 4.44                                                                                                                                                         | 4.44                                                                                                                                                         | 4.44                                                                                                                                                         | 0.00                                                                                                   | 0.00                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                    | 4.55                                                                                                                                                                                                                                                                                                                                            | 1 55                                                                                                                                                                      | 1 55                                                                                                                                                         | 4.55                                                                                                                                                                 |
| 100<br>300                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                         | -0.06 $0.02$                                                                                                                                                                                                                                   | -0.06 $0.02$                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 4.44 $2.53$                                                                                                                                                  |                                                                                                                                                              | 4.44<br>2.53                                                                                                                                                 | -0.06<br>0.01                                                                                          | -0.06<br>0.01                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                             | 0.06                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 4.55 $2.58$                                                                                                                                                               |                                                                                                                                                              | $4.55 \\ 2.58$                                                                                                                                                       |
| 500                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                      | 0.02                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 1.92                                                                                                                                                         |                                                                                                                                                              | 1.92                                                                                                                                                         | 0.01                                                                                                   | 0.01                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 1.97                                                                                                                                                                      |                                                                                                                                                              | 1.97                                                                                                                                                                 |
| 1000                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 1.38                                                                                                                                                         |                                                                                                                                                              | 1.38                                                                                                                                                         | 0.00                                                                                                   | 0.00                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 1.40                                                                                                                                                                      |                                                                                                                                                              | 1.40                                                                                                                                                                 |
|                                                                                                              | $m_0 =$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              |                                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                                      |
| 100                                                                                                          | 0.39                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                           | -0.01<br>-0.15                                                                                                                                                                                                                                                                                                            |                                                                                                                   | 5.48                                                                                                                                                                                                                                                                                                                              | 5.69<br>3.20                                                                                                                                                 | 5.99                                                                                                                                                         | 6.19<br>3.52                                                                                                                                                 | 0.33                                                                                                   | 0.07                                                                                                                                                   | 0.06                                                                                                                                                                                                                                                                                                                                             | 0.04                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 5.90<br>3.29                                                                                                                                                              |                                                                                                                                                              | 6.33                                                                                                                                                                 |
| 300<br>500                                                                                                   | 0.09                                                                                                                                                                                                                                                                                                         | 0.09                                                                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | $\frac{3.20}{2.51}$                                                                                                                                          |                                                                                                                                                              | $\frac{3.32}{2.75}$                                                                                                                                          | -0.10 $0.10$                                                                                           | 0.12                                                                                                                                                   | -0.14 $0.09$                                                                                                                                                                                                                                                                                                                                     | 0.13                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 2.58                                                                                                                                                                      |                                                                                                                                                              | $\frac{3.57}{2.79}$                                                                                                                                                  |
| 1000                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                      | 0.06                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 1.77                                                                                                                                                         |                                                                                                                                                              | 1.95                                                                                                                                                         | 0.04                                                                                                   | 0.05                                                                                                                                                   | 0.06                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 1.82                                                                                                                                                                      |                                                                                                                                                              | 1.97                                                                                                                                                                 |
|                                                                                                              | $m_0 =$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              |                                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                                      |
| 100                                                                                                          | 0.27                                                                                                                                                                                                                                                                                                         | 0.29                                                                                                                                                                                                                                           | 0.27                                                                                                                                                                                                                                                                                                                      | 0.33                                                                                                              |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                              | 10.58                                                                                                                                                        | 0.28                                                                                                   | 0.38                                                                                                                                                   | 0.41                                                                                                                                                                                                                                                                                                                                             | 0.44                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 7.11                                                                                                                                                                      |                                                                                                                                                              | 10.75                                                                                                                                                                |
| 300<br>500                                                                                                   | $0.22 \\ 0.10$                                                                                                                                                                                                                                                                                               | $0.15 \\ 0.09$                                                                                                                                                                                                                                 | $0.18 \\ 0.11$                                                                                                                                                                                                                                                                                                            | $0.20 \\ 0.14$                                                                                                    |                                                                                                                                                                                                                                                                                                                                   | 3.75<br>2.90                                                                                                                                                 |                                                                                                                                                              | $5.89 \\ 4.51$                                                                                                                                               | $0.22 \\ 0.11$                                                                                         | $0.18 \\ 0.12$                                                                                                                                         | $0.20 \\ 0.14$                                                                                                                                                                                                                                                                                                                                   | $0.23 \\ 0.17$                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                 | 3.84<br>3.00                                                                                                                                                              |                                                                                                                                                              | $5.91 \\ 4.57$                                                                                                                                                       |
| 1000                                                                                                         |                                                                                                                                                                                                                                                                                                              | -0.04                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   | 2.05                                                                                                                                                         |                                                                                                                                                              | 3.18                                                                                                                                                         |                                                                                                        |                                                                                                                                                        | -0.05                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           | 2.55                                                                                                                                                         | 3.21                                                                                                                                                                 |
|                                                                                                              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              | 0.02                                                                                                   | 0.00                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | 4.11                                                                                                                                                                      |                                                                                                                                                              | 0.21                                                                                                                                                                 |
|                                                                                                              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                         | $=10, \gamma$                                                                                                     | $y_0 = 0.$                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                              | -0.02                                                                                                  |                                                                                                                                                        | T                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         | $\gamma_0 = 0.$                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                      |
| 2                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                         | Bias(                                                                                                                                                                                                                                          | $\frac{T}{\times 100)}$                                                                                                                                                                                                                                                                                                   | $= 10, \gamma$                                                                                                    | $\gamma_0 = 0.$                                                                                                                                                                                                                                                                                                                   | 4<br>RMSE                                                                                                                                                    | E(×100                                                                                                                                                       | 0)                                                                                                                                                           |                                                                                                        | Bias(                                                                                                                                                  | $\frac{T}{\times 100)}$                                                                                                                                                                                                                                                                                                                          | = 10,                                                                                                                                                   | $\gamma_0 = 0.$                                                                                                                                                                                                                                                                                                                                 | 8<br>RMSE                                                                                                                                                                 | E(×10                                                                                                                                                        | 0)                                                                                                                                                                   |
| $\kappa^2$                                                                                                   | 0.25                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                         |                                                                                                                   | $y_0 = 0.$                                                                                                                                                                                                                                                                                                                        | 4<br>RMSE                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                              | 0.02                                                                                                   |                                                                                                                                                        | T                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         | $\gamma_0 = 0.$                                                                                                                                                                                                                                                                                                                                 | 8<br>RMSE                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                      |
| $\frac{\kappa^2}{N}$                                                                                         | $0.25 \\ \gamma \\ m_0 =$                                                                                                                                                                                                                                                                                    | Bias(<br>0.5                                                                                                                                                                                                                                   | $\frac{T}{\times 100)}$                                                                                                                                                                                                                                                                                                   | $= 10, \gamma$                                                                                                    | $\gamma_0 = 0.$                                                                                                                                                                                                                                                                                                                   | 4<br>RMSE                                                                                                                                                    | E(×100                                                                                                                                                       | 0)                                                                                                                                                           |                                                                                                        | Bias(                                                                                                                                                  | $\frac{T}{\times 100)}$                                                                                                                                                                                                                                                                                                                          | = 10,                                                                                                                                                   | $\gamma_0 = 0.$                                                                                                                                                                                                                                                                                                                                 | 8<br>RMSE                                                                                                                                                                 | E(×10                                                                                                                                                        | 0)                                                                                                                                                                   |
| $\frac{N}{100}$                                                                                              | $ \gamma \\ m_0 = \\ -0.06 $                                                                                                                                                                                                                                                                                 | Bias(<br>0.5<br>-0.06                                                                                                                                                                                                                          | T<br>×100)<br>1                                                                                                                                                                                                                                                                                                           | $= 10, \gamma$ 2 $= -0.06$                                                                                        | $\gamma_0 = 0.0$ $0.25$ $0.95$                                                                                                                                                                                                                                                                                                    | 4<br>RMSF<br>0.5                                                                                                                                             | E(×100<br>1                                                                                                                                                  | 1.95                                                                                                                                                         |                                                                                                        | Bias(<br>0.5                                                                                                                                           | T<br>×100)<br>1                                                                                                                                                                                                                                                                                                                                  | = 10, <sup>2</sup> -0.03                                                                                                                                | $ \gamma_0 = 0. $ $ 0.25 $ $ 1.37 $                                                                                                                                                                                                                                                                                                             | 8<br>RMSE<br>0.5                                                                                                                                                          | E(×100<br>1                                                                                                                                                  | 0) 2 1.37                                                                                                                                                            |
| $ \begin{array}{r} N \\ \hline 100 \\ 300 \end{array} $                                                      | $ \gamma $ $ m_0 = -0.06 $ $ 0.08 $                                                                                                                                                                                                                                                                          | Bias(<br>0.5<br>-0.06<br>-0.08                                                                                                                                                                                                                 | T<br>×100)<br>1<br>-0.06<br>0.08                                                                                                                                                                                                                                                                                          | $= 10, \gamma$ $\frac{2}{-0.06}$ $0.08$                                                                           | $\gamma_0 = 0.$ $0.25$ $0.95$ $1.95$ $1.14$                                                                                                                                                                                                                                                                                       | 4<br>RMSE<br>0.5<br>1.95<br>1.14                                                                                                                             | E(×100<br>1<br>1.95<br>1.14                                                                                                                                  | 2<br>1.95<br>1.14                                                                                                                                            | -0.03<br>0.04                                                                                          | Bias(<br>0.5<br>-0.03<br>0.04                                                                                                                          | T<br>×100)<br>1<br>-0.03<br>0.04                                                                                                                                                                                                                                                                                                                 | = 10, <sup>2</sup> -0.03 0.04                                                                                                                           | $ \gamma_0 = 0. $ $ 0.25 $ $ 0.37 $ $ 0.77 $                                                                                                                                                                                                                                                                                                    | 8<br>RMSE<br>0.5<br>1.37<br>0.77                                                                                                                                          | E(×100<br>1<br>1.37<br>0.77                                                                                                                                  | 0)<br>2<br>1.37<br>0.77                                                                                                                                              |
|                                                                                                              | $rac{\gamma}{m_0} = 0.06$ $0.08$ $-0.01$                                                                                                                                                                                                                                                                     | Bias(<br>0.5<br>-0.06<br>0.08<br>-0.01                                                                                                                                                                                                         | -0.06<br>0.08<br>-0.01                                                                                                                                                                                                                                                                                                    | = 10, $\gamma$ 2  -0.06  0.08  -0.01                                                                              | $\gamma_0 = 0.$ $0.25$ $0.9$ $0.195$ $0.14$ $0.86$                                                                                                                                                                                                                                                                                | 1.95<br>1.14<br>0.86                                                                                                                                         | 1.95<br>1.14<br>0.86                                                                                                                                         | 1.95<br>1.14<br>0.86                                                                                                                                         | -0.25<br>-0.03<br>0.04<br>0.00                                                                         | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00                                                                                                                  | T<br>×100)<br>1<br>-0.03<br>0.04<br>0.00                                                                                                                                                                                                                                                                                                         | = 10, <sup>2</sup> -0.03 0.04 0.00                                                                                                                      | $ \gamma_0 = 0. $ $ 0.25 $ $ 0.77 $ $ 0.77 $ $ 0.58 $                                                                                                                                                                                                                                                                                           | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58                                                                                                                                  | 1.37<br>0.77<br>0.58                                                                                                                                         | 0)<br>2<br>1.37<br>0.77<br>0.58                                                                                                                                      |
| $ \begin{array}{r} N \\ \hline 100 \\ 300 \end{array} $                                                      | $ \gamma $ $ m_0 = -0.06 $ $ 0.08 $                                                                                                                                                                                                                                                                          | Bias(<br>0.5<br>-0.06<br>0.08<br>-0.01<br>0.00                                                                                                                                                                                                 | T<br>×100)<br>1<br>-0.06<br>0.08                                                                                                                                                                                                                                                                                          | $= 10, \gamma$ $\frac{2}{-0.06}$ $0.08$                                                                           | $\gamma_0 = 0.$ $0.25$ $0.9$ $0.195$ $0.14$ $0.86$                                                                                                                                                                                                                                                                                | 4<br>RMSE<br>0.5<br>1.95<br>1.14                                                                                                                             | 1.95<br>1.14<br>0.86                                                                                                                                         | 2<br>1.95<br>1.14                                                                                                                                            | -0.03<br>0.04                                                                                          | Bias(<br>0.5<br>-0.03<br>0.04                                                                                                                          | T<br>×100)<br>1<br>-0.03<br>0.04                                                                                                                                                                                                                                                                                                                 | = 10, <sup>2</sup> -0.03 0.04                                                                                                                           | $ \gamma_0 = 0. $ $ 0.25 $ $ 0.77 $ $ 0.77 $ $ 0.58 $                                                                                                                                                                                                                                                                                           | 8<br>RMSE<br>0.5<br>1.37<br>0.77                                                                                                                                          | 1.37<br>0.77<br>0.58                                                                                                                                         | 0)<br>2<br>1.37<br>0.77                                                                                                                                              |
| N<br>100<br>300<br>500<br>1000                                                                               | $ \gamma $ $ m_0 =  $ $ -0.06 $ $ 0.08 $ $ -0.01 $ $ 0.00 $ $ m_0 =  $ $ -0.07 $                                                                                                                                                                                                                             | Bias(<br>0.5<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1                                                                                                                                                                                          | -0.06<br>0.08<br>-0.01<br>0.00                                                                                                                                                                                                                                                                                            | = 10, \( \gamma \) 2  -0.06 0.08 -0.01 0.00  -0.11                                                                | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \end{array}$                                                                                                                                                                                                               | 1.95<br>1.14<br>0.62<br>2.19                                                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62                                                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62                                                                                                                                 | -0.25<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.06                                                        | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00                                                                                                          | -0.03<br>0.04<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                    | = 10, 2<br>2<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07                                                                                                  | $\gamma_0 = 0.$ 0.25  1.37 0.77 0.58 0.42                                                                                                                                                                                                                                                                                                       | 8<br>RMSF<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42                                                                                                                          | 1.37<br>0.77<br>0.58<br>0.42                                                                                                                                 | 1.37<br>0.77<br>0.78<br>0.42<br>1.49                                                                                                                                 |
| N<br>100<br>300<br>500<br>1000<br>100<br>300                                                                 | $ \gamma $ $ m_0 =  $ $ -0.06 $ $ 0.08 $ $ -0.01 $ $ 0.00 $ $ m_0 =  $ $ -0.07 $ $ 0.03 $                                                                                                                                                                                                                    | Bias(<br>0.5<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03                                                                                                                                                                         | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.10<br>0.03                                                                                                                                                                                                                                                                           | -0.06<br>0.08<br>-0.01<br>0.00                                                                                    | $y_0 = 0.$ $0.25$ $0.25$ $1.95$ $1.14$ $0.86$ $0.62$ $2.23$ $1.23$                                                                                                                                                                                                                                                                | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22                                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20                                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16                                                                                                                 | -0.25<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.06<br>0.02                                                | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02                                                                                         | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02                                                                                                                                                                                                                                                                                                   | = 10, 2<br>2<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02                                                                                          | $\gamma_0 = 0.$ $0.25$ $0.77$ $0.77$ $0.58$ $0.42$ $1.60$ $0.85$                                                                                                                                                                                                                                                                                | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84                                                                                                          | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83                                                                                                                 | 1.37<br>0.77<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79                                                                                                                 |
| N<br>100<br>300<br>500<br>1000<br>100<br>300<br>500                                                          | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \end{array}$                                                                                                                                                                                          | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>:1<br>-0.10<br>0.03<br>-0.02                                                                                                                                                                | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.10<br>0.03<br>-0.02                                                                                                                                                                                                                                                                  | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02                                                          | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \end{array}$                                                                                                                                                                                                      | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93                                                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92                                                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90                                                                                                         | -0.25<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.06<br>0.02<br>-0.01                                       | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01                                                                                | -0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01                                                                                                                                                                                                                                                                                                  | -0.03<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01                                                                                        | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ \end{array}$                                                                                                                                                                                                     | 8<br>RMSF<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66                                                                                                  | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65                                                                                                         | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63                                                                                                                 |
| N<br>100<br>300<br>500<br>1000<br>100<br>300                                                                 | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \end{array}$                                                                                                                                                                                  | Bias(<br>0.5)<br>-0.06<br>-0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01                                                                                                                                                      | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.10<br>0.03                                                                                                                                                                                                                                                                           | -0.06<br>0.08<br>-0.01<br>0.00                                                                                    | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \end{array}$                                                                                                                                                                                                      | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22                                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92                                                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16                                                                                                                 | -0.25<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.06<br>0.02                                                | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02                                                                                         | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02                                                                                                                                                                                                                                                                                                   | = 10, 2<br>2<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02                                                                                          | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ \end{array}$                                                                                                                                                                                                     | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84                                                                                                          | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65                                                                                                         | 1.37<br>0.77<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79                                                                                                                 |
| N<br>100<br>300<br>500<br>1000<br>100<br>300<br>500                                                          | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \end{array}$                                                                                                                                                                         | Bias(<br>0.5<br>-0.06<br>0.08<br>-0.01<br>0.00<br>1<br>-0.10<br>0.03<br>-0.02<br>0.01                                                                                                                                                          | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.10<br>0.03<br>-0.02                                                                                                                                                                                                                                                                  | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01                                                  | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \end{array}$                                                                                                                                                                                    | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93                                                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90                                                                                                         | -0.25<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.06<br>0.02<br>-0.01<br>0.00                               | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00                                                                        | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \end{array}$                                                                                                                                                                                                         | -0.03<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01                                                                                        | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline \end{array}$                                                                                                                                                                                      | 1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47                                                                                                              | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46                                                                                                 | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63                                                                                                                 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>300<br>500<br>1000                                                 | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ 1.17 \\ -0.04 \end{array}$                                                                                                                                                        | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>: 2<br>-0.07                                                                                                                                       | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.10<br>0.03<br>-0.02<br>0.01<br>-0.09<br>-0.06                                                                                                                                                                                                                                        | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01<br>-0.08<br>-0.06                                | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline 2.81 \\ 1.37 \\ \end{array}$                                                                                                                                                             | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65                                                                                                 | -0.25<br>-0.03<br>0.04<br>0.00<br>-0.06<br>0.02<br>-0.01<br>0.00<br>0.31<br>-0.02                      | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03                                                      | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.05<br>-0.02                                                                                                                                                                                                                                                                | -0.03<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.01<br>-0.05<br>-0.02                                                                      | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline \hline 1.68 \\ 0.94 \\ \end{array}$                                                                                                                                                        | 1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47                                                                                                              | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91                                                                                 | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88                                                                                         |
| N<br>100<br>300<br>500<br>1000<br>1000<br>300<br>500<br>1000<br>100<br>300<br>500                            | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ 1.17 \\ -0.04 \\ -0.03 \end{array}$                                                                                                                                               | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>: 2<br>-0.07<br>-0.03                                                                                                                              | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.10<br>0.03<br>-0.02<br>0.01<br>-0.09<br>-0.06<br>-0.03                                                                                                                                                                                                                               | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01<br>-0.08<br>-0.06<br>-0.03                       | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline 2.81 \\ 1.37 \\ 1.00 \\ \end{array}$                                                                                                                                                     | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96                                                                         | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 0.31 -0.02 -0.01                                       | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.03<br>-0.03                                                      | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ \end{array}$                                                                                                                                                              | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.01<br>-0.05<br>-0.02<br>-0.02                                                              | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline \hline 1.68 \\ 0.94 \\ 0.71 \\ \hline \end{array}$                                                                                                                                                | 1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70                                                                                      | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69                                                                         | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67                                                                                 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>300<br>500<br>1000                                                 | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ 1.17 \\ -0.04 \\ -0.03 \\ 0.02 \\ \end{array}$                                                                                                                                    | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>: 2<br>-0.07                                                                                                                                       | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.10<br>0.03<br>-0.02<br>0.01<br>-0.09<br>-0.06<br>-0.03                                                                                                                                                                                                                               | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01<br>-0.08<br>-0.06                                | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline 2.81 \\ 1.37 \\ 1.00 \\ \end{array}$                                                                                                                                                     | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65                                                                                                 | -0.25<br>-0.03<br>0.04<br>0.00<br>-0.06<br>0.02<br>-0.01<br>0.00<br>0.31<br>-0.02                      | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03                                                      | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ \end{array}$                                                                                                                                                              | -0.03<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.01<br>-0.05<br>-0.02                                                                      | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline \hline 1.68 \\ 0.94 \\ 0.71 \\ \hline \end{array}$                                                                                                                                                | 1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47                                                                                                              | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69                                                                         | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88                                                                                         |
| N<br>100<br>300<br>500<br>1000<br>1000<br>300<br>500<br>1000<br>100<br>300<br>500                            | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ 1.17 \\ -0.04 \\ -0.03 \end{array}$                                                                                                                                               | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>2<br>-0.07<br>-0.03<br>0.02                                                                                                                          | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.10<br>0.03<br>-0.02<br>0.01<br>-0.09<br>-0.06<br>-0.03                                                                                                                                                                                                                               | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01<br>-0.08<br>-0.06<br>-0.03                       | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline 2.81 \\ 1.37 \\ 1.00 \\ \end{array}$                                                                                                                                                     | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98                                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96                                                                         | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 0.31 -0.02 -0.01                                       | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.03<br>-0.03                                                      | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ \end{array}$                                                                                                                                                              | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.01<br>-0.05<br>-0.02<br>-0.02                                                              | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline \hline 1.68 \\ 0.94 \\ 0.71 \\ \hline \end{array}$                                                                                                                                                | 1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70                                                                                      | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69                                                                         | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67                                                                                 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>N<br>1000                                  | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ 1.17 \\ -0.04 \\ -0.03 \\ 0.02 \\ \beta \\ m_0 = \\ -0.01 \\ \end{array}$                                                                                                         | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>:1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>:2<br>0.02<br>-0.07<br>-0.03<br>0.02                                                                                                                | -0.06<br>0.08<br>-0.01<br>0.03<br>-0.02<br>0.01<br>-0.09<br>-0.06<br>-0.03<br>-0.09                                                                                                                                                                                                                                       | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01<br>-0.08<br>-0.06<br>-0.03<br>0.02               | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \end{array}$                                                                                                                                             | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69                                                                 | -0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 -0.02 -0.01 -0.02 -0.01 -0.02                         | Bias(<br>0.5)<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03<br>-0.01                                            | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \end{array}$                                                                                                                                               | -0.03<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.01                                                    | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline \end{array}$                                                                                                                          | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.70<br>0.49                                                                  | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48                                                                 | 1.37<br>0.77<br>0.78<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47                                                                         |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>N<br>100<br>300<br>500<br>1000             | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ 1.17 \\ -0.04 \\ -0.03 \\ 0.02 \\ \beta \\ m_0 = \\ -0.01 \\ -0.05 \end{array}$                                                                                                   | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>:1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>:2<br>-0.07<br>-0.03<br>0.02                                                                                                                        | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline \\ -0.09 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \\ \end{array}$                                                                                                                    | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01<br>-0.08<br>-0.06<br>-0.03<br>0.02               | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \hline 3.04 \\ 1.73 \\ \hline \end{array}$                                                                                                               | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69                                                                 | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00  0.31 -0.02 -0.01 0.01                                 | Bias(<br>0.5)<br>-0.03<br>0.04<br>0.00<br>-0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03<br>-0.01<br>0.01                                                    | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \end{array}$                                                                                                                                            | -0.03<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.02<br>-0.03                                           | $egin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline$                                                                                                                                                                                                                                                                                         | 8<br>RRMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49                                                         | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48                                                                 | 1.37<br>0.77<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47                                                                 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>10                                         | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ 1.17 \\ -0.04 \\ -0.03 \\ 0.02 \\ \beta \\ m_0 = \\ -0.01 \\ -0.05 \\ 0.00 \end{array}$                                                                                           | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>: 2<br>-0.07<br>-0.03<br>0.02<br>: 0<br>-0.01<br>-0.05<br>0.00                                                                                     | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \\ \hline \\ -0.01 \\ -0.05 \\ 0.00 \\ \end{array}$                                                                                         | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01<br>-0.08<br>-0.06<br>-0.03<br>0.02               | $y_0 = 0.$ $0.25$ $0.25$ $1.95$ $1.14$ $0.86$ $0.62$ $2.23$ $1.23$ $0.94$ $0.68$ $2.81$ $1.37$ $1.00$ $0.71$ $3.04$ $1.73$ $1.34$                                                                                                                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69                                                                 | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00  0.31 -0.02 -0.01 0.01 -0.02 -0.03 0.00                | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03<br>-0.01<br>0.01                                             | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \end{array}$                                                                                                                                                    | -0.03<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.01<br>-0.02<br>-0.03<br>0.00                                  | $egin{array}{c} \gamma_0 = 0. \\ 0.25 \\ \hline 0.25 \\ \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ \hline \end{array}$                                                                                                          | 8<br>RMSE 0.5<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49                                                      | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48                                                                 | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47                                                                         |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>N<br>100<br>300<br>500<br>1000             | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ 1.17 \\ -0.04 \\ -0.03 \\ 0.02 \\ \beta \\ m_0 = \\ -0.01 \\ -0.05 \end{array}$                                                                                                   | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>: 2<br>-0.07<br>-0.03<br>0.02<br>: 0<br>-0.01<br>-0.05<br>0.00<br>0.01                                                                             | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline \\ -0.09 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \\ \end{array}$                                                                                                                    | -0.06<br>0.08<br>-0.01<br>0.00<br>-0.11<br>0.03<br>-0.02<br>0.01<br>-0.08<br>-0.06<br>-0.03<br>0.02               | $y_0 = 0.$ $0.25$ $0.25$ $1.95$ $1.14$ $0.86$ $0.62$ $2.23$ $1.23$ $0.94$ $0.68$ $2.81$ $1.37$ $1.00$ $0.71$ $3.04$ $1.73$ $1.34$                                                                                                                                                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70                                                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69                                                                 | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00  0.31 -0.02 -0.01 0.01                                 | Bias(<br>0.5)<br>-0.03<br>0.04<br>0.00<br>-0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03<br>-0.01<br>0.01                                                    | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \end{array}$                                                                                                                                            | -0.03<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.01<br>-0.03<br>0.00                                   | $egin{array}{c} \gamma_0 = 0. \\ 0.25 \\ \hline 0.25 \\ \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ \hline \end{array}$                                                                                                          | 8<br>RRMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49                                                         | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48                                                                 | 1.37<br>0.77<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47                                                                 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>N<br>1000<br>N<br>1000<br>1000                     | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = \\ -0.04 \\ -0.03 \\ 0.02 \\ \beta \\ m_0 = \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline m_0 = \\ 0.09 \\ \hline \end{array}$                                                           | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>: 2<br>-0.07<br>-0.03<br>0.02<br>: 0<br>-0.01<br>-0.05<br>0.00<br>0.01<br>: 1                                                                      | -0.06<br>0.08<br>-0.01<br>0.03<br>-0.02<br>0.01<br>-0.06<br>-0.03<br>0.02<br>-0.06<br>-0.03<br>0.02                                                                                                                                                                                                                       | -0.06 0.08 -0.01 0.00 -0.11 0.03 -0.02 0.01 -0.08 -0.06 -0.03 0.02 -0.01 -0.05 0.00 0.01                          | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline \\ 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline \\ 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline \\ 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \\ \hline \\ 3.04 \\ 1.73 \\ 1.34 \\ 0.96 \\ \hline \\ \hline \\ 3.73 \\ \hline \end{array}$                                                    | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71<br>3.04<br>1.73<br>1.34<br>0.96                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.04<br>1.73<br>1.34<br>0.96                                 | 2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69<br>3.04<br>1.73<br>1.34<br>0.96                                                                 | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 -0.02 -0.01 0.01 -0.02 -0.03 0.00 0.01                 | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03<br>-0.01<br>0.01                                             | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \hline \\ -0.02 \\ -0.03 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ 0.07 \\ \hline \end{array}$                                                             | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.01<br>-0.02<br>-0.03<br>0.00<br>0.01                           | $\begin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ 0.95 \\ \hline \hline 3.73 \\ \hline \end{array}$                                                             | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49<br>3.02<br>1.71<br>1.33<br>0.95                          | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48<br>3.02<br>1.71<br>1.33<br>0.95                                 | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47<br>3.02<br>1.71<br>1.33<br>0.95                                         |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>N<br>100<br>500<br>1000<br>N<br>100<br>500<br>1000 | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = \\ -0.04 \\ -0.03 \\ 0.02 \\ \beta \\ m_0 = \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline m_0 = \\ 0.09 \\ 0.01 \\ \end{array}$                                                          | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>: 2<br>-0.07<br>-0.03<br>0.02<br>: 0<br>-0.01<br>-0.05<br>0.00<br>0.01<br>: 1                                                                      | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \\ \\ \hline \\ -0.01 \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ \hline \\ 0.09 \\ 0.01 \\ \hline \end{array}$                         | -0.06 0.08 -0.01 0.00 -0.11 0.03 -0.02 0.01 -0.08 -0.06 -0.03 0.02 -0.01 -0.05 0.00 0.01                          | $\begin{array}{c} 70 = 0. \\ \hline 0.25 \\ \hline \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline \hline 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \hline \hline 3.04 \\ 1.73 \\ 1.34 \\ 0.96 \\ \hline \hline 3.73 \\ 2.15 \\ \hline \end{array}$                                      | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71<br>3.04<br>1.73<br>1.34<br>0.96                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.04<br>1.73<br>1.34<br>0.96                                 | 2.09<br>1.16<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69<br>3.04<br>1.73<br>1.34<br>0.96                                         | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 -0.02 -0.01 0.01 -0.02 -0.03 0.00 0.01 -0.07 0.02      | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03<br>-0.01<br>0.01<br>-0.02<br>-0.03<br>0.00<br>0.01           | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \hline \\ -0.02 \\ -0.03 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ 0.07 \\ 0.02 \\ \end{array}$                                                                     | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.03<br>0.00<br>0.01<br>-0.08<br>0.08                            | $egin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ 0.95 \\ \hline \hline 3.73 \\ 2.14 \\ \hline \end{array}$                                                                            | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49<br>3.02<br>1.71<br>1.33<br>0.95                          | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48<br>3.02<br>1.71<br>1.33<br>0.95                                 | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47<br>3.02<br>1.71<br>1.33<br>0.95                                                 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>N<br>1000<br>500<br>1000<br>10                     | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ m_0 = \\ -0.04 \\ -0.03 \\ 0.02 \\ \beta \\ m_0 = \\ -0.01 \\ -0.05 \\ 0.00 \\ 0.01 \\ m_0 = \\ 0.09 \\ 0.01 \\ 0.01 \\ \end{array}$                                                       | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>: 1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>: 2<br>-0.07<br>-0.03<br>0.02<br>-0.01<br>-0.05<br>0.00<br>0.01<br>: 1                                                                             | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ \hline \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \\ \hline \\ -0.01 \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ 0.09 \\ 0.01 \\ 0.00 \\ \hline \end{array}$                                      | -0.06 0.08 -0.01 0.00 -0.11 0.03 -0.02 0.01 -0.08 -0.06 -0.03 0.02 -0.01 -0.05 0.00 0.01 0.10 0.01 0.00           | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \hline 3.04 \\ 1.73 \\ 1.34 \\ 0.96 \\ \hline \hline 3.73 \\ 2.15 \\ 1.61 \\ \hline \end{array}$                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71<br>3.04<br>1.73<br>1.34<br>0.96                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.04<br>1.73<br>1.34<br>0.96                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69<br>3.04<br>1.73<br>1.34<br>0.96<br>4.04<br>2.32<br>1.78         | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 -0.02 -0.01 0.01 -0.02 -0.03 0.00 0.01                 | Bias( 0.5  -0.03 0.04 0.00 0.00  -0.07 0.02 -0.01 0.00  -0.02 -0.03 -0.01 0.01  -0.02 -0.03 0.00 0.01                                                  | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ -0.01 \\ 0.01 \\ \hline \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \hline \\ 0.02 \\ -0.03 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ 0.07 \\ 0.02 \\ 0.00 \\ \hline \end{array}$                                                               | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.03<br>0.00<br>0.01<br>-0.08<br>0.02<br>-0.01                   | $egin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ 0.95 \\ \hline \hline 3.73 \\ 2.14 \\ 1.59 \\ \hline \end{array}$                                                                    | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49<br>3.02<br>1.71<br>1.33<br>0.95<br>3.87<br>2.22<br>1.66  | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48<br>3.02<br>1.71<br>1.33<br>0.95                                 | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47<br>3.02<br>1.71<br>1.33<br>0.95                                         |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>N<br>100<br>500<br>1000<br>N<br>100<br>500<br>1000 | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = \\ -0.04 \\ -0.03 \\ 0.02 \\ \hline \beta \\ m_0 = \\ -0.01 \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline m_0 = \\ 0.09 \\ 0.01 \\ 0.03 \\ \end{array}$                                  | Bias(<br>0.5)<br>-0.06<br>0.08<br>-0.01<br>0.00<br>:1<br>-0.10<br>0.03<br>-0.02<br>0.01<br>:2<br>-0.07<br>-0.03<br>0.02<br>:0<br>-0.01<br>-0.05<br>0.00<br>0.01<br>:1<br>-0.09<br>0.01<br>-0.00<br>0.01<br>-0.00<br>0.00<br>-0.00<br>0.00<br>0 | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \\ \\ \hline \\ -0.01 \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ \hline \\ 0.09 \\ 0.01 \\ \hline \end{array}$                         | -0.06 0.08 -0.01 0.00 -0.11 0.03 -0.02 0.01 -0.08 -0.06 -0.03 0.02 -0.01 -0.05 0.00 0.01                          | $\begin{array}{c} y_0 = 0. \\ \hline 0.25 \\ \hline 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \hline 3.04 \\ 1.73 \\ 1.34 \\ 0.96 \\ \hline \hline 3.73 \\ 2.15 \\ 1.61 \\ \hline \end{array}$                                                         | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71<br>3.04<br>1.73<br>1.34<br>0.96                                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.04<br>1.73<br>1.34<br>0.96                                 | 2.09<br>1.16<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69<br>3.04<br>1.73<br>1.34<br>0.96                                         | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 -0.02 -0.01 0.01 -0.02 -0.03 0.00 0.01 -0.07 0.02      | Bias(<br>0.5<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.00<br>-0.02<br>-0.03<br>-0.01<br>0.01<br>-0.02<br>-0.03<br>0.00<br>0.01           | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \hline \\ -0.02 \\ -0.03 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ 0.07 \\ 0.02 \\ \end{array}$                                                                     | -0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.03<br>0.00<br>0.01<br>-0.08<br>0.08                            | $egin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ 0.95 \\ \hline \hline 3.73 \\ 2.14 \\ 1.59 \\ \hline \end{array}$                                                                    | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49<br>3.02<br>1.71<br>1.33<br>0.95                          | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48<br>3.02<br>1.71<br>1.33<br>0.95                                 | 1.37<br>0.77<br>0.58<br>0.42<br>1.49<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47<br>3.02<br>1.71<br>1.33<br>0.95                                                 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>N<br>1000<br>500<br>1000<br>10             | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = \\ -0.04 \\ -0.03 \\ 0.02 \\ \hline \beta \\ m_0 = \\ -0.01 \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline m_0 = \\ 0.09 \\ 0.01 \\ 0.01 \\ 0.03 \\ \hline m_0 = \\ -0.20 \\ \end{array}$ | Bias( 0.5)  -0.06 0.08 -0.01 0.00 -1 -0.02 0.01 -2 -0.07 -0.03 0.02 -0.01 -0.05 0.00 0.01 -1 0.09 0.01 0.03 -2 0.09                                                                                                                            | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline \\ -0.09 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \\ \\ \hline \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline \\ 0.09 \\ 0.01 \\ 0.00 \\ 0.03 \\ \hline \\ \hline \\ 0.15 \\ \hline \end{array}$ | -0.06 0.08 -0.01 0.00 -0.11 0.03 -0.02 0.01 -0.08 -0.06 -0.03 0.02 -0.01 -0.05 0.00 0.01 0.00 0.01 0.10 0.00 0.03 | $\begin{array}{c} y_0 = 0. \\ 0.25 \\ \hline \\ 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline \\ 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline \\ 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \\ \hline \\ 3.04 \\ 1.73 \\ 1.34 \\ 0.96 \\ \hline \\ \hline \\ 3.73 \\ 2.15 \\ 1.61 \\ 1.13 \\ \hline \\ 4.55 \\ \hline \end{array}$                 | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71<br>3.04<br>1.73<br>1.34<br>0.96<br>3.87<br>2.24<br>1.18         | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.04<br>1.73<br>1.34<br>0.96<br>3.98<br>2.29<br>1.74<br>1.21 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69<br>3.04<br>1.73<br>1.34<br>0.96<br>4.04<br>2.32<br>1.78<br>1.23 | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 -0.02 -0.01 0.01 -0.02 -0.03 0.00 0.01                 | -0.03<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.01<br>-0.02<br>-0.03<br>-0.01<br>0.01<br>-0.02<br>-0.03<br>0.00<br>0.01          | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \hline \\ -0.02 \\ -0.03 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ 0.07 \\ 0.02 \\ 0.00 \\ 0.04 \\ \hline \\ \hline \\ 0.13 \\ \hline \end{array}$         | -0.03<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.03<br>0.00<br>0.01<br>-0.08<br>0.02<br>-0.01<br>0.08          | $egin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline 0.25 \\ \hline 0.77 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ 0.95 \\ \hline \hline 3.73 \\ 2.14 \\ 1.59 \\ 1.12 \\ \hline 4.51 \\ \hline \end{array}$                       | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49<br>3.02<br>1.71<br>1.33<br>0.95<br>2.22<br>2.166<br>1.17 | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48<br>3.02<br>1.71<br>1.33<br>0.95<br>3.98<br>2.28<br>1.72<br>1.20 | 1.37<br>0.77<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47<br>3.02<br>1.71<br>1.33<br>0.95<br>4.04<br>2.31<br>1.76<br>1.22 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>N<br>1000<br>500<br>1000<br>10             | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ 0.01 \\ \hline m_0 = \\ -0.04 \\ -0.03 \\ 0.02 \\ \beta \\ m_0 = \\ -0.01 \\ -0.05 \\ 0.00 \\ 0.01 \\ m_0 = \\ 0.00 \\ 0.01 \\ 0.03 \\ \hline m_0 = \\ -0.20 \\ 0.10 \\ \end{array}$       | Bias( 0.5)  -0.06 0.08 -0.01 0.00 -1 -0.02 0.01 -2 -0.07 -0.03 0.02  -0.01 -0.05 0.00 0.01 -1 0.09 0.01 0.03 -2 0.09 0.10                                                                                                                      | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline \\ -0.09 \\ 0.00 \\ 0.01 \\ \hline \\ 0.09 \\ 0.01 \\ 0.00 \\ 0.03 \\ \hline \\ \end{array}$                                                                                    | -0.06 0.08 -0.01 0.00 -0.11 0.03 -0.02 0.01 -0.08 -0.06 0.03 0.02 -0.01 -0.05 0.00 0.01 0.10 0.01 0.00 0.03       | $\begin{array}{c} y_0 = 0. \\ 0.25 \\ \hline \\ 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline \\ 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline \\ 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \\ \hline \\ 3.04 \\ 1.73 \\ 1.34 \\ 0.96 \\ \hline \\ \hline \\ 3.73 \\ 2.15 \\ 1.61 \\ 1.13 \\ \hline \\ 4.55 \\ 2.55 \\ \end{array}$                | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71<br>3.04<br>1.73<br>1.34<br>0.96<br>3.87<br>2.24<br>1.69<br>1.18 | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.04<br>1.73<br>1.34<br>0.96<br>3.98<br>2.29<br>1.74<br>1.21 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69<br>3.04<br>1.73<br>1.34<br>0.96<br>4.04<br>2.32<br>1.78<br>1.23 | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 -0.02 -0.01 0.01 -0.02 -0.03 0.00 0.01 -0.02 0.01 0.03 | -0.03<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.02<br>-0.03<br>-0.01<br>-0.02<br>-0.03<br>0.00<br>0.01<br>-0.08<br>0.02<br>0.00<br>0.03 | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \hline \\ -0.02 \\ -0.03 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ 0.07 \\ 0.02 \\ 0.00 \\ 0.04 \\ \hline \\ \hline \\ 0.13 \\ 0.08 \\ \hline \end{array}$ | -0.03<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.03<br>0.00<br>0.01<br>-0.08<br>0.02<br>-0.01<br>0.04<br>-0.05 | $egin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline 0.25 \\ \hline 0.77 \\ 0.58 \\ 0.42 \\ \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ 0.95 \\ \hline \hline 3.73 \\ 2.14 \\ 1.59 \\ 1.12 \\ \hline 4.51 \\ 2.53 \\ \hline \end{array}$                              | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.70<br>0.49<br>3.02<br>1.71<br>1.33<br>0.95<br>1.66<br>1.17                  | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48<br>3.02<br>1.71<br>1.33<br>0.95<br>3.98<br>2.28<br>1.72<br>1.20 | 1.37<br>0.77<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47<br>3.02<br>1.71<br>1.33<br>0.95<br>4.04<br>2.31<br>1.76<br>1.22 |
| N<br>100<br>300<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>N<br>1000<br>500<br>1000<br>10             | $\begin{array}{c} \gamma \\ m_0 = \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ m_0 = \\ -0.07 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline m_0 = \\ -0.04 \\ -0.03 \\ 0.02 \\ \hline \beta \\ m_0 = \\ -0.01 \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline m_0 = \\ 0.09 \\ 0.01 \\ 0.01 \\ 0.03 \\ \hline m_0 = \\ -0.20 \\ \end{array}$ | Bias( 0.5)  -0.06 0.08 -0.01 0.00 -1 -0.02 0.01 -2 -0.07 -0.03 0.02 -0.01 -0.05 0.00 0.01 -1 0.09 0.01 0.03 -2 0.09                                                                                                                            | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.06 \\ 0.08 \\ -0.01 \\ 0.00 \\ \hline \\ -0.10 \\ 0.03 \\ -0.02 \\ 0.01 \\ \hline \\ -0.09 \\ -0.06 \\ -0.03 \\ 0.02 \\ \hline \\ \\ \hline \\ -0.05 \\ 0.00 \\ 0.01 \\ \hline \\ 0.09 \\ 0.01 \\ 0.00 \\ 0.03 \\ \hline \\ \hline \\ 0.15 \\ \hline \end{array}$ | -0.06 0.08 -0.01 0.00 -0.11 0.03 -0.02 0.01 -0.08 -0.06 -0.03 0.02 -0.01 -0.05 0.00 0.01 0.00 0.01 0.10 0.00 0.03 | $\begin{array}{c} y_0 = 0. \\ 0.25 \\ \hline \\ 1.95 \\ 1.14 \\ 0.86 \\ 0.62 \\ \hline \\ 2.23 \\ 1.23 \\ 0.94 \\ 0.68 \\ \hline \\ 2.81 \\ 1.37 \\ 1.00 \\ 0.71 \\ \hline \\ \hline \\ 3.04 \\ 1.73 \\ 1.34 \\ 0.96 \\ \hline \\ \hline \\ 3.73 \\ 2.15 \\ 1.61 \\ 1.13 \\ \hline \\ 4.55 \\ 2.55 \\ 1.99 \\ \hline \end{array}$ | 1.95<br>1.14<br>0.86<br>0.62<br>2.19<br>1.22<br>0.93<br>0.68<br>2.43<br>1.35<br>1.00<br>0.71<br>3.04<br>1.73<br>1.34<br>0.96<br>3.87<br>2.24<br>1.18         | 1.95<br>1.14<br>0.86<br>0.62<br>2.15<br>1.20<br>0.92<br>0.67<br>2.33<br>1.33<br>0.98<br>0.70<br>3.04<br>1.73<br>1.34<br>0.96<br>3.98<br>2.29<br>1.74<br>1.21 | 1.95<br>1.14<br>0.86<br>0.62<br>2.09<br>1.16<br>0.90<br>0.65<br>2.27<br>1.29<br>0.96<br>0.69<br>3.04<br>1.73<br>1.34<br>0.96<br>4.04<br>2.32<br>1.78<br>1.23 | 0.25 -0.03 0.04 0.00 0.00 -0.06 0.02 -0.01 0.00 -0.02 -0.01 0.01 -0.02 -0.03 0.00 0.01 -0.02 0.01 0.03 | -0.03<br>-0.03<br>0.04<br>0.00<br>0.00<br>-0.07<br>0.02<br>-0.01<br>0.01<br>-0.02<br>-0.03<br>-0.01<br>0.01<br>-0.02<br>-0.03<br>0.00<br>0.01          | $\begin{array}{c} T \\ \times 100) \\ 1 \\ \hline \\ -0.03 \\ 0.04 \\ 0.00 \\ 0.00 \\ \hline \\ -0.07 \\ 0.02 \\ -0.01 \\ 0.00 \\ \hline \\ -0.05 \\ -0.02 \\ -0.01 \\ 0.01 \\ \hline \\ \hline \\ -0.02 \\ -0.03 \\ 0.00 \\ 0.01 \\ \hline \\ \hline \\ 0.07 \\ 0.02 \\ 0.00 \\ 0.04 \\ \hline \\ \hline \\ 0.13 \\ \hline \end{array}$         | -0.03<br>-0.03<br>0.04<br>0.00<br>-0.07<br>0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.02<br>-0.03<br>0.00<br>0.01<br>-0.08<br>0.02<br>-0.01<br>0.08          | $egin{array}{c} \gamma_0 = 0. \\ \hline 0.25 \\ \hline \hline 1.37 \\ 0.77 \\ 0.58 \\ 0.42 \\ \hline \hline 1.60 \\ 0.85 \\ 0.67 \\ 0.47 \\ \hline \hline 1.68 \\ 0.94 \\ 0.71 \\ 0.49 \\ \hline \hline 3.02 \\ 1.71 \\ 1.33 \\ 0.95 \\ \hline \hline 3.73 \\ 2.14 \\ 1.59 \\ 1.12 \\ \hline \hline 4.51 \\ 2.53 \\ 1.98 \\ \hline \end{array}$ | 8<br>RMSE<br>0.5<br>1.37<br>0.77<br>0.58<br>0.42<br>1.57<br>0.84<br>0.66<br>0.47<br>1.63<br>0.93<br>0.70<br>0.49<br>3.02<br>1.71<br>1.33<br>0.95<br>2.22<br>2.166<br>1.17 | 1.37<br>0.77<br>0.58<br>0.42<br>1.54<br>0.83<br>0.65<br>0.46<br>1.59<br>0.91<br>0.69<br>0.48<br>3.02<br>1.71<br>1.33<br>0.95<br>3.98<br>2.28<br>1.72<br>1.20 | 1.37<br>0.77<br>0.77<br>0.58<br>0.42<br>1.49<br>0.79<br>0.63<br>0.44<br>1.53<br>0.88<br>0.67<br>0.47<br>3.02<br>1.71<br>1.33<br>0.95<br>4.04<br>2.31<br>1.76<br>1.22 |

Note:  $\gamma$  and  $\beta$  are the coefficients of the lagged dependent variable and the  $\mathbf{x}_{it}$  regressor given in (1). See also the note to Table A2(i).

**Table A2(iv)**: Size(×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\sigma_v^2 = 1$ )

|                | T = 8     | $\dot{5}, \dot{\gamma}_0$ | =0. | 4   | T = | 5, γ | <sub>0</sub> = | 0.8 | T =  | 10, | $\gamma_0 =$ | 0.4 | T =  | 10, | $\gamma_0 =$ | 0.8 |
|----------------|-----------|---------------------------|-----|-----|-----|------|----------------|-----|------|-----|--------------|-----|------|-----|--------------|-----|
| $\kappa^2$     | 0.25      |                           |     | 2   |     | 0.5  | 1              | 2   | 0.25 | 0.5 | 1            | 2   | 0.25 |     |              | 2   |
|                | $\gamma$  |                           |     |     |     |      |                |     |      |     |              |     |      |     |              |     |
| $\overline{N}$ | $m_0 = 0$ |                           |     |     |     |      |                |     |      |     |              |     |      |     |              |     |
| 100            | 5.9       | 5.9                       | 5.9 | 5.9 | 6.6 | 6.6  | 6.6            | 6.6 | 5.4  | 5.4 | 5.4          | 5.4 | 5.8  | 5.8 | 5.8          | 5.8 |
| 300            |           | 5.6                       |     |     |     |      | 6.1            |     | 5.3  | 5.3 | 5.3          | 5.3 | 5.1  | 5.1 | 5.1          | 5.1 |
| 500            |           | 5.1                       |     |     | 4.4 | 4.4  | 4.4            | 4.4 | 4.5  | 4.5 | 4.5          | 4.5 | 4.3  | 4.3 | 4.3          | 4.3 |
| 1000           |           | 5.1                       | 5.1 | 5.1 | 5.8 | 5.8  | 5.8            | 5.8 | 4.9  | 4.9 | 4.9          | 4.9 | 5.8  | 5.8 | 5.8          | 5.8 |
|                | $m_0 = 1$ |                           |     |     |     |      |                |     |      |     |              |     |      |     |              |     |
| 100            | 14.8      |                           |     |     |     |      |                | 5.8 |      |     |              | 6.1 |      | 6.3 |              |     |
| 300            | 3.0       | 3.8                       | 4.4 | 4.9 | 3.2 | 4.4  | 5.1            | 5.4 | 5.4  | 5.4 | 5.2          | 5.6 | 3.7  | 4.2 | 4.0          | 4.0 |
| 500            | 2.3       | 3.0                       | 3.8 | 3.9 | 2.4 | 3.4  | 3.9            | 4.1 | 5.3  | 5.4 | 5.5          | 5.3 | 4.8  | 5.0 | 5.1          | 5.4 |
| 1000           |           | 4.1                       | 4.5 | 5.0 | 3.5 | 4.1  | 4.5            | 4.8 | 5.1  | 5.2 | 5.4          | 5.2 | 5.0  | 5.3 | 5.4          | 5.4 |
|                | $m_0 = 2$ |                           |     |     |     |      |                |     |      |     |              |     |      |     |              |     |
| 100            |           |                           |     | 5.7 |     |      |                | 5.1 | 11.1 |     |              |     |      | 5.3 |              |     |
| 300            |           | 3.3                       |     |     |     |      | 4.8            |     |      | 5.1 |              |     |      | 4.4 |              |     |
| 500            | 5.6       | 2.9                       | 3.6 | 4.3 | 3.0 | 3.3  | 4.6            | 5.1 | 3.4  | 3.8 | 4.3          | 4.9 | 3.7  | 4.4 | 4.7          | 5.0 |
| 1000           |           | 3.0                       | 3.6 | 4.3 | 2.6 | 3.6  | 4.2            | 4.4 | 3.7  | 4.1 | 4.3          | 4.5 | 3.4  | 3.8 | 4.1          | 4.4 |
|                | β         |                           |     |     |     |      |                |     |      |     |              |     |      |     |              |     |
| N              | $m_0 = 0$ |                           |     |     |     |      |                |     |      |     |              |     |      |     |              |     |
| 100            |           | 5.6                       |     |     |     | 5.4  |                | 5.4 | 6.5  |     |              | 6.5 | 6.6  |     | 6.6          |     |
| 300            |           | 5.7                       |     |     |     |      | 5.8            |     |      | 6.0 |              |     |      | 6.0 |              |     |
| 500            |           | 5.2                       |     |     |     |      | 5.2            |     |      | 5.7 |              |     |      | 5.6 |              |     |
| 1000           |           | 5.0                       | 5.0 | 5.0 | 4.9 | 4.9  | 4.9            | 4.9 | 5.6  | 5.6 | 5.6          | 5.6 | 5.8  | 5.8 | 5.8          | 5.8 |
|                | $m_0 = 1$ |                           |     |     |     |      |                |     |      |     |              |     |      |     |              |     |
| 100            |           | 5.1                       |     |     |     |      |                | 5.6 |      |     |              | 6.1 |      |     |              |     |
| 300            |           | 4.4                       |     |     | 4.6 |      | 4.9            |     |      | 6.5 |              |     |      | 6.1 |              |     |
| 500            |           | 5.7                       |     |     |     |      | 5.3            |     |      | 5.0 |              |     |      | 5.2 |              |     |
| 1000           |           | 5.6                       | 5.5 | 5.8 | 5.2 | 5.4  | 5.7            | 5.6 | 4.4  | 4.5 | 4.4          | 4.4 | 4.6  | 4.7 | 4.7          | 4.6 |
|                | $m_0 = 2$ |                           |     |     |     |      |                |     |      |     |              |     |      |     |              |     |
| 100            |           | 6.1                       |     |     |     |      |                | 6.7 |      |     |              | 5.8 |      |     | 5.0          |     |
| 300            |           | 4.9                       |     |     | 4.5 |      | 5.3            |     |      | 5.1 |              |     |      | 5.4 |              |     |
| 500            |           | 4.6                       |     |     | 4.5 |      | 5.0            |     |      | 5.9 |              |     |      | 6.1 |              |     |
| 1000           | 5.4       | 5.3                       | 4.9 | 4.9 | 4.8 | 5.1  | 5.2            | 4.8 | 5.9  | 5.7 | 5.3          | 4.9 | 6.2  | 6.0 | 5.3          | 5.0 |

See the note to Table A2(i).

## **A3: Power Functions**

Figure A3(i): Power functions for  $\gamma$  in the case of the AR(1) panel data model with different values of m and N ( $\kappa^2$ =0.25)

Panel A: T=5

100

80

60 40

20

0

0.37



100

60

40 20

0

0.80

0.77

0.83

Figure A3(ii): Power functions for  $\gamma$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =0.25)

Panel A: T=5



Panel B: T=10



Note: ——N=100 ---- N=300 more N=500 ----- N=1000.  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N$ =p/N(T-2) and p=0.05;  $\gamma$  is the coefficient of the lagged dependent variable in (13). See also the note to Table 1.

Figure A3(iii): Power functions for  $\beta$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =0.25)

Panel A: T=5



Panel B: T=10



Note: --- N=100 ---- N=300 ---- N=500 ---- N=1000 .  $\beta$  is the coefficient of the  $\mathbf{x}_{it}$  regressors in (13). See also the note to Figure A3(ii).

Figure A3(iv): Power functions for  $\gamma$  in the case of the AR(1) panel data model with different values of m and N ( $\kappa^2$ =0.5)

Panel A: T=5



Panel B: T=10



Figure A3(v): Power functions for  $\gamma$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =0.5)

Panel A: T=5



Panel B: T=10



Figure A3(vi): Power functions for  $\beta$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =0.5)

Panel A: T=5



Panel B: T=10



Figure A3(vii): Power functions for  $\gamma$  in the case of the AR(1) panel data model with different values of m and N ( $\kappa^2$ =2)

Panel A: T=5



Panel B: T=10



**Figure A3(viii)**: Power functions for  $\gamma$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =2)









Note: —— N=100 ---- N=300 ---- N=500 ---- N=1000. See also the note to Table A3(ii).

Figure A3(ix): Power functions for  $\beta$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =2)

Panel A: T=5



Panel B: T=10



Note: —— N=100 ---- N=300 ----- N=500 ----- N=1000. See also the note to Figure A3(viii).

# S.8 Unit Root Case $(\gamma_0 = 1)$

#### B1: Selecting the number of factors

Table B1(i): Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure in the case of the AR(1) panel data model

|                   |       |       |       | 1 0110 | (-    | ) Perr | 01 0100 | 0 1110 |       |       |       |       |
|-------------------|-------|-------|-------|--------|-------|--------|---------|--------|-------|-------|-------|-------|
|                   |       |       |       |        |       | T      | =5      |        |       |       |       |       |
| $\kappa^2$        |       | 0.25  |       |        | 0.5   |        |         | 1      |       |       | 2     |       |
| $N \setminus m_0$ | 0     | 1     | 2     | 0      | 1     | 2      | 0       | 1      | 2     | 0     | 1     | 2     |
| 100               | 99.5  | 58.8  | 1.4   | 99.5   | 98.8  | 32.1   | 99.5    | 99.6   | 96.5  | 99.5  | 99.6  | 100.0 |
| 300               | 99.8  | 100.0 | 29.7  | 99.8   | 99.9  | 98.9   | 99.8    | 99.9   | 100.0 | 99.8  | 99.9  | 100.0 |
| 500               | 99.8  | 100.0 | 74.7  | 99.8   | 100.0 | 100.0  | 99.8    | 100.0  | 100.0 | 99.8  | 100.0 | 100.0 |
| 1000              | 99.9  | 100.0 | 100.0 | 99.9   | 100.0 | 100.0  | 99.9    | 100.0  | 100.0 | 99.9  | 100.0 | 100.0 |
|                   |       |       |       |        |       | T =    | = 10    |        |       |       |       |       |
| $\kappa^2$        |       | 0.25  |       |        | 0.5   |        |         | 1      |       |       | 2     |       |
| $N \setminus m_0$ | 0     | 1     | 2     | 0      | 1     | 2      | 0       | 1      | 2     | 0     | 1     | 2     |
| 100               | 99.5  | 97.6  | 18.7  | 99.5   | 99.6  | 94.8   | 99.5    | 99.6   | 99.6  | 99.5  | 99.6  | 99.6  |
| 300               | 100.0 | 99.9  | 97.8  | 100.0  | 99.9  | 100.0  | 100.0   | 99.9   | 100.0 | 100.0 | 99.9  | 100.0 |
| 500               | 100.0 | 99.9  | 100.0 | 100.0  | 99.9  | 100.0  | 100.0   | 99.9   | 100.0 | 100.0 | 99.9  | 100.0 |
| 1000              | 99.9  | 100.0 | 100.0 | 99.9   | 100.0 | 100.0  | 99.9    | 100.0  | 100.0 | 99.9  | 100.0 | 100.0 |
|                   |       |       |       |        |       |        |         |        |       |       |       |       |

Note:  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N = \frac{p}{N(T-2)}$  and p = 0.05. See also the note to Table 12.

**Table B1(ii)**: Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure in the case of the ARX(1) panel data model

|                   |       |       |       |          |                |       |       |       | T:    | =5    |       |       |       |                   |       |       |       |       |
|-------------------|-------|-------|-------|----------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------|-------|-------|-------|-------|
| $\overline{N}$    |       |       |       | $\kappa$ | $^2 = 0.2$     | 25    |       |       |       |       |       |       | K     | $x^2 = 0.$        | 5     |       |       |       |
| $\overline{m_0}$  |       | 0     |       |          | 1              |       |       | 2     |       |       | 0     |       |       | 1                 |       |       | 2     |       |
| $\sigma_{ m v}^2$ | 0.5   | 1     | 1.5   | 0.5      | 1              | 1.5   | 0.5   | 1     | 1.5   | 0.5   | 1     | 1.5   | 0.5   | 1                 | 1.5   | 0.5   | 1     | 1.5   |
| 100               | 99.5  | 99.6  | 99.6  | 57.8     | 57.7           | 57.6  | 1.3   | 1.3   | 1.2   | 99.5  | 99.6  | 99.6  | 99.2  | 99.3              | 99.2  | 32.5  | 32.3  | 32.3  |
| 300               | 100.0 | 100.0 | 100.0 | 100.0    | 100.0          | 100.0 | 26.3  | 26.4  | 26.4  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0             | 100.0 | 99.5  | 99.5  | 99.5  |
| 500               | 99.9  | 99.9  | 99.9  | 100.0    | 100.0          | 100.0 | 71.3  | 71.5  | 71.5  | 99.9  | 99.9  | 99.9  | 100.0 | 100.0             | 100.0 | 100.0 | 100.0 | 100.0 |
| 1000              | 100.0 | 100.0 | 100.0 | 100.0    | 100.0          | 100.0 | 99.8  | 99.8  | 99.8  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0             | 100.0 | 100.0 | 100.0 | 100.0 |
|                   |       |       |       |          | $\kappa^2 = 1$ |       |       |       |       |       |       |       |       | $\kappa^2 = 2$    | !     |       |       |       |
| $\overline{m_0}$  |       | 0     |       |          | 1              |       |       | 2     |       |       | 0     |       |       | 1                 |       |       | 2     |       |
| $\sigma_{ m v}^2$ | 0.5   | 1     | 1.5   | 0.5      | 1              | 1.5   | 0.5   | 1     | 1.5   | 0.5   | 1     | 1.5   | 0.5   | 1                 | 1.5   | 0.5   | 1     | 1.5   |
| 100               | 99.5  | 99.6  | 99.6  | 99.9     | 99.9           | 99.9  | 97.3  | 97.2  | 97.3  | 99.5  | 99.6  | 99.6  | 99.9  | 99.9              | 99.9  | 100.0 | 100.0 | 100.0 |
| 300               | 100.0 | 100.0 | 100.0 | 100.0    | 100.0          | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0             | 100.0 | 100.0 | 100.0 | 100.0 |
| 500               | 99.9  | 99.9  | 99.9  | 100.0    | 100.0          | 100.0 | 100.0 | 100.0 | 100.0 | 99.9  | 99.9  | 99.9  | 100.0 | 100.0             | 100.0 | 100.0 | 100.0 | 100.0 |
| 1000              | 100.0 | 100.0 | 100.0 | 100.0    | 100.0          | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0             | 100.0 | 100.0 | 100.0 | 100.0 |
|                   |       |       |       |          |                |       |       |       | T =   | = 10  |       |       |       |                   |       |       |       |       |
|                   |       |       |       | $\kappa$ | $^2 = 0.2$     | 25    |       |       |       |       |       |       | K     | $\epsilon^2 = 0.$ | 5     |       |       |       |
| $m_0$             |       | 0     |       |          | 1              |       |       | 2     |       |       | 0     |       |       | 1                 |       |       | 2     |       |
| $\sigma_{ m v}^2$ | 0.5   | 1     | 1.5   | 0.5      | 1              | 1.5   | 0.5   | 1     | 1.5   | 0.5   | 1     | 1.5   | 0.5   | 1                 | 1.5   | 0.5   | 1     | 1.5   |
| 100               | 99.3  | 99.3  | 99.3  | 98.1     | 98.2           | 98.2  | 20.1  | 19.95 | 19.7  | 99.3  | 99.3  | 99.3  | 99.7  | 99.7              | 99.7  | 95.05 | 94.9  | 94.9  |
| 300               | 100.0 | 100.0 | 100.0 | 100.0    |                | 100.0 | 98.3  | 98.3  | 98.3  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0             | 100.0 | 99.9  | 99.9  | 99.9  |
| 500               |       | 100.0 |       | 100.0    |                |       |       | 100.0 |       |       | 100.0 |       | 100.0 |                   | 100.0 | 100.0 | 100.0 |       |
| 1000              | 100.0 | 100.0 | 100.0 | 99.9     | 99.9           | 99.9  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.9  | 99.9              | 99.9  | 100.0 | 100.0 | 100.0 |
|                   |       |       |       |          | $\kappa^2 = 1$ |       |       |       |       |       |       |       |       | $\kappa^2 = 2$    |       |       |       |       |
| $m_0$             |       | 0     |       |          | 1              |       |       | 2     |       |       | 0     |       |       | 1                 |       |       | 2     |       |
| $\sigma_{ m v}^2$ | 0.5   | 1     | 1.5   | 0.5      | 1              | 1.5   | 0.5   | 1     | 1.5   | 0.5   | 1     | 1.5   | 0.5   | 1                 | 1.5   | 0.5   | 1     | 1.5   |
| 100               | 99.3  | 99.3  | 99.3  | 99.7     | 99.7           | 99.7  | 100.0 | 99.8  | 99.8  | 99.3  | 99.3  | 99.3  | 99.7  | 99.7              | 99.7  | 99.6  | 99.6  | 99.7  |
| 300               | 100.0 | 100.0 | 100.0 | 100.0    | 100.0          | 100.0 | 99.9  | 99.9  | 99.9  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0             | 100.0 | 99.9  | 99.9  | 99.9  |
| 500               |       | 100.0 |       |          | 100.0          |       | 100.0 |       | 100.0 |       | 100.0 |       |       | 100.0             |       | 100.0 |       |       |
| 1000              | 100.0 | 100.0 | 100.0 | 99.9     | 99.9           | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0             | 100.0 | 100.0 | 100.0 | 100.0 |

See the note to Table B1(i).

# B2: Bias, RMSE and Size

**Table B2(i)**: Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors,  $\widehat{m}$ 

|                |           |               |       | 1     | actors | s, m |       |      |      |       |       |     |
|----------------|-----------|---------------|-------|-------|--------|------|-------|------|------|-------|-------|-----|
|                |           |               |       |       | T      | =5   |       |      |      |       |       |     |
| -              |           | $Bias(\times$ | 100)  |       | F      | RMSE | (×100 | 1)   | S    | ize(> | (100) | )   |
| $\kappa^2$     | 0.25      | 0.5           | 1     | 2     | 0.25   | 0.5  | 1     | 2    | 0.25 | 0.5   | 1     | 2   |
| $\overline{N}$ | $m_0 = 0$ |               |       |       |        |      |       |      |      |       |       |     |
| 100            | -1.49     | -1.49         | -1.49 | -1.49 | 2.74   | 2.74 | 2.74  | 2.74 | 3.8  | 3.8   | 3.8   | 3.8 |
| 300            | -0.89     | -0.89         | -0.89 | -0.89 | 1.69   | 1.69 | 1.69  | 1.69 | 3.1  | 3.1   | 3.1   | 3.1 |
| 500            | -0.67     | -0.67         | -0.67 | -0.67 | 1.08   | 1.08 | 1.08  | 1.08 | 2.6  | 2.6   | 2.6   | 2.6 |
| 1000           | -0.53     | -0.53         | -0.53 | -0.53 | 1.25   | 1.25 | 1.25  | 1.25 | 2.4  | 2.4   | 2.4   | 2.4 |
|                | $m_0 = 1$ |               |       |       |        |      |       |      |      |       |       |     |
| 100            | -2.81     | -3.04         | -2.99 | -2.97 | 5.44   | 5.80 | 5.70  | 5.66 | 4.3  | 4.4   | 5.4   | 6.0 |
| 300            | -1.87     | -1.84         | -1.83 | -1.82 | 3.48   | 3.45 | 3.43  | 3.42 | 2.8  | 4.0   | 4.9   | 5.2 |
| 500            | -1.38     | -1.35         | -1.34 | -1.34 | 2.34   | 2.27 | 2.25  | 2.24 | 2.8  | 3.4   | 3.7   | 3.9 |
| 1000           | -0.99     | -0.98         | -0.97 | -0.97 | 1.67   | 1.65 | 1.64  | 1.64 | 2.2  | 3.3   | 3.4   | 3.9 |
|                | $m_0 = 2$ |               |       |       |        |      |       |      |      |       |       |     |
| 100            | -2.01     | -2.93         | -3.00 | -2.91 | 3.64   | 5.57 | 5.09  | 4.90 | 4.2  | 3.5   | 5.1   | 5.9 |
| 300            | -1.65     | -1.75         | -1.70 | -1.68 | 3.39   | 3.05 | 2.93  | 2.88 | 2.3  | 3.0   | 3.9   | 4.5 |
| 500            | -1.43     | -1.39         | -1.37 | -1.36 | 2.53   | 2.34 | 2.30  | 2.28 | 1.1  | 2.3   | 3.2   | 3.9 |
| 1000           | -1.01     | -0.99         | -0.99 | -0.98 | 1.70   | 1.66 | 1.65  | 1.65 | 1.4  | 2.5   | 3.3   | 3.7 |
|                |           |               |       |       | T      | = 10 |       |      |      |       |       |     |
|                |           | $Bias(\times$ | 100)  |       | F      | RMSE | (×100 | 1)   | S    | ize(> | (100) | )   |
| $\kappa^2$     | 0.25      | 0.5           | 1     | 2     | 0.25   | 0.5  | 1     | 2    | 0.25 | 0.5   | 1     | 2   |
| $\overline{N}$ | $m_0 = 0$ |               |       |       |        |      |       |      |      |       |       |     |
| 100            | -0.53     | -0.53         | -0.53 | -0.53 | 1.24   | 1.24 | 1.24  | 1.24 | 3.3  | 3.3   | 3.3   | 3.3 |
| 300            | -0.33     | -0.33         | -0.33 | -0.33 | 0.50   | 0.50 | 0.50  | 0.50 | 4.2  | 4.2   | 4.2   | 4.2 |
| 500            | -0.26     | -0.26         | -0.26 | -0.26 | 0.37   | 0.37 | 0.37  | 0.37 | 2.5  | 2.5   | 2.5   | 2.5 |
| 1000           | -0.20     | -0.20         | -0.20 | -0.20 | 0.33   | 0.33 | 0.33  | 0.33 | 3.0  | 3.0   | 3.0   | 3.0 |
|                | $m_0 = 1$ |               |       |       |        |      |       |      |      |       |       |     |
| 100            | -0.63     | -0.62         | -0.61 | -0.61 | 1.03   | 1.01 | 1.01  | 1.00 | 2.3  | 2.7   | 3.0   | 3.2 |
| 300            | -0.40     | -0.40         | -0.39 | -0.39 | 0.99   | 0.96 | 0.95  | 0.95 | 2.4  | 2.7   | 2.8   | 2.8 |
| 500            | -0.31     | -0.31         | -0.31 | -0.31 | 0.46   | 0.46 | 0.46  | 0.46 | 2.1  | 2.7   | 2.9   | 3.1 |
| 1000           | -0.24     | -0.24         | -0.24 | -0.24 | 0.33   | 0.33 | 0.33  | 0.33 | 2.2  | 2.3   | 2.4   | 2.6 |
|                | $m_0 = 2$ |               |       |       |        |      |       |      |      |       |       |     |
| 100            | -0.67     | -0.68         | -0.65 | -0.65 | 1.43   | 1.41 | 1.11  | 1.10 | 3.2  | 3.3   | 3.8   | 4.0 |
| 300            | -0.39     | -0.38         | -0.39 | -0.38 | 0.61   | 0.60 | 0.59  | 0.59 | 1.5  | 1.9   | 2.3   | 2.8 |
| 500            | -0.32     | -0.32         | -0.31 | -0.32 | 0.48   | 0.48 | 0.48  | 0.48 | 1.8  | 2.2   | 2.4   | 2.8 |
| 1000           | -0.24     | -0.24         | -0.24 | -0.24 | 0.33   | 0.33 | 0.33  | 0.33 | 1.4  | 1.8   | 2.1   | 2.2 |
|                |           |               |       |       |        |      |       |      |      |       |       |     |

Note:  $\gamma$  is the coefficient of the lagged dependent variable given in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table B1(i).

Table B2(ii): Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\sigma_{\rm v}^2 = 1$ )

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | esum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ideoca                                                                                                                                                                                             |                                                                                                                                                                                  | 701 01                                                                                                                                                                                | T = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         | (- 1                                                                                                                                                                                 |                                                                                                                     |                                                                                                              |                                                                                                                                          |                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bing(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×100)                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Sigma(\times 10)$                                                                                                                                                                                                                                                                                                     | 0)                                                                                                                                                                                   | Q                                                                                                                   | izo(\                                                                                                        | (100)                                                                                                                                    | ·                                                                                                                                 |
| $\kappa^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                  |                                                                                                                                                                                  | 0.25                                                                                                                                                                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                    | 0.25                                                                                                                | 0.5                                                                                                          | 1                                                                                                                                        | $^{\prime}$ 2                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{0.20}{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                  | 0.20                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      | 0.20                                                                                                                | 0.0                                                                                                          |                                                                                                                                          |                                                                                                                                   |
| $\overline{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $m_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                     |                                                                                                              |                                                                                                                                          |                                                                                                                                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.28                                                                                                                                                                                              | -1.28                                                                                                                                                                            | 2.17                                                                                                                                                                                  | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.17                                                                                                                                                                                                                                                                                                                    | 2.17                                                                                                                                                                                 | 3.7                                                                                                                 | 3.7                                                                                                          | 3.7                                                                                                                                      | 3.7                                                                                                                               |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.77                                                                                                                                                                                              | -0.77                                                                                                                                                                            | 1.27                                                                                                                                                                                  | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27                                                                                                                                                                                                                                                                                                                    | 1.27                                                                                                                                                                                 | 3.4                                                                                                                 | 3.4                                                                                                          | 3.4                                                                                                                                      | 3.4                                                                                                                               |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.58                                                                                                                                                                                              | -0.58                                                                                                                                                                            | 0.94                                                                                                                                                                                  | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.94                                                                                                                                                                                                                                                                                                                    | 0.94                                                                                                                                                                                 |                                                                                                                     |                                                                                                              | 3.2                                                                                                                                      |                                                                                                                                   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.46                                                                                                                                                                                              | -0.46                                                                                                                                                                            | 0.70                                                                                                                                                                                  | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70                                                                                                                                                                                                                                                                                                                    | 0.70                                                                                                                                                                                 | 3.3                                                                                                                 | 3.3                                                                                                          | 3.3                                                                                                                                      | 3.3                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $m_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                     |                                                                                                              |                                                                                                                                          |                                                                                                                                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    | -2.02                                                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.46                                                                                                                                                                                                                                                                                                                    | 3.49                                                                                                                                                                                 |                                                                                                                     | 2.9                                                                                                          | 3.9                                                                                                                                      | 4.5                                                                                                                               |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       | 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 2.08                                                                                                                                                                                 |                                                                                                                     | 2.3                                                                                                          |                                                                                                                                          | 2.9                                                                                                                               |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    | -0.98<br>-0.76                                                                                                                                                                   | 1.54                                                                                                                                                                                  | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.01                                                                                                                                                                                                                                                                                                                    | $\frac{1.63}{1.25}$                                                                                                                                                                  |                                                                                                                     |                                                                                                              | $\frac{2.3}{3.5}$                                                                                                                        |                                                                                                                                   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $m_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.75                                                                                                                                                                                              | -0.70                                                                                                                                                                            | 1.10                                                                                                                                                                                  | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.20                                                                                                                                                                                                                                                                                                                    | 1.20                                                                                                                                                                                 | 2.1                                                                                                                 | ა.ა                                                                                                          | 3.5                                                                                                                                      | 3.1                                                                                                                               |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.02                                                                                                                                                                                              | -2.07                                                                                                                                                                            | 2.68                                                                                                                                                                                  | 3 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.52                                                                                                                                                                                                                                                                                                                    | 3.59                                                                                                                                                                                 | 4.2                                                                                                                 | 3.2                                                                                                          | 3.5                                                                                                                                      | 4.2                                                                                                                               |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       | 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 2.11                                                                                                                                                                                 |                                                                                                                     | 2.6                                                                                                          |                                                                                                                                          | 3.5                                                                                                                               |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    | -1.00                                                                                                                                                                            |                                                                                                                                                                                       | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 1.66                                                                                                                                                                                 |                                                                                                                     |                                                                                                              | 2.5                                                                                                                                      |                                                                                                                                   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    | -0.73                                                                                                                                                                            |                                                                                                                                                                                       | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 1.20                                                                                                                                                                                 |                                                                                                                     |                                                                                                              | 2.8                                                                                                                                      |                                                                                                                                   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                       | 1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1110                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                     |                                                                                                              |                                                                                                                                          |                                                                                                                                   |
| $\overline{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $m_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                     |                                                                                                              |                                                                                                                                          |                                                                                                                                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.58                                                                                                                                                                                              | -0.58                                                                                                                                                                            | 4.47                                                                                                                                                                                  | 4.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.47                                                                                                                                                                                                                                                                                                                    | 4.47                                                                                                                                                                                 | 5.5                                                                                                                 | 5.5                                                                                                          | 5.5                                                                                                                                      | 5.5                                                                                                                               |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.30                                                                                                                                                                                              | -0.30                                                                                                                                                                            |                                                                                                                                                                                       | 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 2.55                                                                                                                                                                                 | 5.0                                                                                                                 | 5.0                                                                                                          | 5.0                                                                                                                                      | 5.0                                                                                                                               |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.21                                                                                                                                                                                              | -0.21                                                                                                                                                                            | 1.94                                                                                                                                                                                  | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.94                                                                                                                                                                                                                                                                                                                    | 1.94                                                                                                                                                                                 | 4.0                                                                                                                 | 4.0                                                                                                          | 4.0                                                                                                                                      | 4.0                                                                                                                               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.18                                                                                                                                                                                              | -0.18                                                                                                                                                                            | 1.39                                                                                                                                                                                  | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.39                                                                                                                                                                                                                                                                                                                    | 1.39                                                                                                                                                                                 | 4.4                                                                                                                 | 4.4                                                                                                          | 4.4                                                                                                                                      | 4.4                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $m_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                     |                                                                                                              |                                                                                                                                          |                                                                                                                                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    | -0.99                                                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                         | 6.15                                                                                                                                                                                 | 4.2                                                                                                                 | 4.1                                                                                                          | 4.5                                                                                                                                      | 4.8                                                                                                                               |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 3.50                                                                                                                                                                                 | 3.8                                                                                                                 |                                                                                                              | 4.2                                                                                                                                      |                                                                                                                                   |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    | -0.38                                                                                                                                                                            |                                                                                                                                                                                       | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 2.71                                                                                                                                                                                 | 4.7                                                                                                                 |                                                                                                              |                                                                                                                                          | 4.3                                                                                                                               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.27                                                                                                                                                                                              | -0.27                                                                                                                                                                            | 1.68                                                                                                                                                                                  | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.87                                                                                                                                                                                                                                                                                                                    | 1.94                                                                                                                                                                                 | 3.9                                                                                                                 | 4.1                                                                                                          | 4.4                                                                                                                                      | 4.5                                                                                                                               |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $m_0 = 0.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                                                                                                                                                                               | -0.47                                                                                                                                                                            | 5.70                                                                                                                                                                                  | 6.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 26                                                                                                                                                                                                                                                                                                                    | 10.46                                                                                                                                                                                | 5.8                                                                                                                 | 5.1                                                                                                          | 5.1                                                                                                                                      | 6.3                                                                                                                               |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       | 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 5.86                                                                                                                                                                                 | 3.7                                                                                                                 |                                                                                                              |                                                                                                                                          | 4.6                                                                                                                               |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         | 4.50                                                                                                                                                                                 | 3.1                                                                                                                 |                                                                                                              | 3.9                                                                                                                                      |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                  | 1.81                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.54                                                                                                                                                                                                                                                                                                                    | 3.20                                                                                                                                                                                 |                                                                                                                     | 4.5                                                                                                          |                                                                                                                                          |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                     |                                                                                                              |                                                                                                                                          |                                                                                                                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       | T 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                     | 1.0                                                                                                          | 1.0                                                                                                                                      |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                       | T 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                     |                                                                                                              |                                                                                                                                          |                                                                                                                                   |
| $\kappa^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×100)                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                       | T = 1RMSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                       | 0) 2                                                                                                                                                                                 | S<br>0.25                                                                                                           | ize(>                                                                                                        |                                                                                                                                          |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×100)                                                                                                                                                                                              |                                                                                                                                                                                  | 1                                                                                                                                                                                     | T = 1RMSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>E(×10                                                                                                                                                                                                                                                                                                              | 0)                                                                                                                                                                                   | S                                                                                                                   | ize(>                                                                                                        | (100)                                                                                                                                    | )                                                                                                                                 |
| $\frac{\kappa^2}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.25 \ \gamma \ m_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bias(<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×100)<br>1                                                                                                                                                                                         | 2                                                                                                                                                                                | 0.25                                                                                                                                                                                  | T = 1<br>RMSE<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>E(×10<br>1                                                                                                                                                                                                                                                                                                         | 0) 2                                                                                                                                                                                 | S<br>0.25                                                                                                           | ize(><br>0.5                                                                                                 | (100)<br>1                                                                                                                               | 2                                                                                                                                 |
| $\frac{\kappa^2}{\frac{N}{100}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.25$ $\gamma$ $m_0 =$ $-0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias(<br>0.5<br>-0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×100)<br>1                                                                                                                                                                                         | -0.43                                                                                                                                                                            | 0.25                                                                                                                                                                                  | T = 1 RMSE $0.5$ $0.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>E(×10<br>1<br>0.67                                                                                                                                                                                                                                                                                                 | 0) 2 0.67                                                                                                                                                                            | S<br>0.25                                                                                                           | ize(><br>0.5                                                                                                 | 3.3                                                                                                                                      | 3.3                                                                                                                               |
| $ \frac{\kappa^2}{N} $ $ \frac{N}{100} $ $ 300 $                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.25$ $\gamma$ $m_0 =$ $-0.43$ $-0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bias(<br>0.5<br>-0.43<br>-0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×100)<br>1<br>-0.43<br>-0.26                                                                                                                                                                       | -0.43<br>-0.26                                                                                                                                                                   | 0.25                                                                                                                                                                                  | T = 1 RMSE 0.5 $0.67$ $0.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>E(×10<br>1<br>0.67<br>0.37                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} 0) \\ 2 \\ \hline 0.67 \\ 0.37 \end{array} $                                                                                                                      | S<br>0.25<br>3.3<br>2.1                                                                                             | ize(><br>0.5<br>3.3<br>2.1                                                                                   | 3.3 2.1                                                                                                                                  | 3.3 2.1                                                                                                                           |
| $   \begin{array}{c c}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.25$ $\gamma$ $m_0 =$ $-0.43$ $-0.26$ $-0.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×100)<br>1<br>-0.43<br>-0.26<br>-0.22                                                                                                                                                              | -0.43<br>-0.26<br>-0.22                                                                                                                                                          | 0.25<br>0.67<br>0.37<br>0.30                                                                                                                                                          | T = 1 RMSE 0.5  0.67 0.37 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 0 \\ E(\times 10 \\ 1 \\ \hline 0.67 \\ 0.37 \\ 0.30 \end{array} $                                                                                                                                                                                                                                   | $ \begin{array}{c} 0) \\ 2 \\ \hline 0.67 \\ 0.37 \\ 0.30 \end{array} $                                                                                                              | 3.3<br>2.1<br>2.5                                                                                                   | 3.3<br>2.1<br>2.5                                                                                            | 3.3<br>2.1<br>2.5                                                                                                                        | 3.3<br>2.1<br>2.5                                                                                                                 |
| $ \frac{\kappa^2}{N} $ $ \frac{N}{100} $ $ 300 $                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.25$ $\gamma$ $m_0 =$ $-0.43$ $-0.26$ $-0.22$ $-0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×100)<br>1<br>-0.43<br>-0.26<br>-0.22                                                                                                                                                              | -0.43<br>-0.26                                                                                                                                                                   | 0.25<br>0.67<br>0.37<br>0.30                                                                                                                                                          | T = 1 RMSE 0.5 $0.67$ $0.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 0 \\ E(\times 10 \\ 1 \\ \hline 0.67 \\ 0.37 \\ 0.30 \end{array} $                                                                                                                                                                                                                                   | $ \begin{array}{c} 0) \\ 2 \\ \hline 0.67 \\ 0.37 \end{array} $                                                                                                                      | 3.3<br>2.1<br>2.5                                                                                                   | 3.3<br>2.1<br>2.5                                                                                            | 3.3 2.1                                                                                                                                  | 3.3<br>2.1<br>2.5                                                                                                                 |
| $\frac{\kappa^2}{N}$ $\frac{N}{100}$ $\frac{300}{500}$ $\frac{500}{1000}$                                                                                                                                                                                                                                                                                                                                                                                                                | $0.25$ $\gamma$ $m_0 =$ $-0.43$ $-0.26$ $-0.22$ $-0.18$ $m_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×100)<br>1<br>-0.43<br>-0.26<br>-0.22<br>-0.18                                                                                                                                                     | -0.43<br>-0.26<br>-0.22<br>-0.18                                                                                                                                                 | 0.25<br>0.67<br>0.37<br>0.30<br>0.23                                                                                                                                                  | T = 1 RMSF 0.5 $0.67$ 0.37 0.30 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \end{array} $                                                                                                                                                                                                                                               | 0)<br>2<br>0.67<br>0.37<br>0.30<br>0.23                                                                                                                                              | 3.3<br>2.1<br>2.5<br>2.9                                                                                            | 3.3<br>2.1<br>2.5<br>2.9                                                                                     | 3.3<br>2.1<br>2.5<br>2.9                                                                                                                 | 3.3<br>2.1<br>2.5<br>2.9                                                                                                          |
| $\kappa^2$ $N$ $100$ $300$ $500$ $1000$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.25$ $\gamma$ $m_0 = -0.43$ $-0.26$ $-0.22$ $-0.18$ $m_0 = -0.53$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>: 1<br>-0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.43<br>-0.26<br>-0.22<br>-0.18                                                                                                                                                                   | -0.43<br>-0.26<br>-0.22<br>-0.18                                                                                                                                                 | 0.25<br>0.67<br>0.37<br>0.30<br>0.23                                                                                                                                                  | T = 1 RMSF 0.5 $0.67$ 0.37 0.30 0.23 $0.84$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} 0 \\ C(\times 10 \\ 1 \end{array} $ $ \begin{array}{c} 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \end{array} $                                                                                                                                                                                                    | 0)<br>2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84                                                                                                                                      | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9                                                                               | 3.3<br>2.1<br>2.5<br>2.9                                                                                     | 3.3<br>2.1<br>2.5<br>2.9                                                                                                                 | 3.3<br>2.1<br>2.5<br>2.9                                                                                                          |
| $ \begin{array}{c c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline 100 \\ 300 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                | $0.25 \atop \gamma \atop m_0 = \\ -0.43 \atop -0.26 \atop -0.22 \atop -0.18 \atop m_0 = \\ -0.53 \atop -0.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>:1<br>-0.53<br>-0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×100)<br>1<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31                                                                                                                                   | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31                                                                                                                               | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45                                                                                                                                  | $   \begin{array}{c}     T = 1 \\     RMSF \\     0.5 \\ \hline     0.67 \\     0.37 \\     0.30 \\     0.23 \\ \hline     0.84 \\     0.45 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \end{array} $                                                                                                                                                                                                                        | 0)<br>2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46                                                                                                                              | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9                                                                 | 3.3<br>2.1<br>2.5<br>2.9                                                                                     | 3.3<br>2.1<br>2.5<br>2.9                                                                                                                 | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1                                                                                            |
| $\begin{array}{c c} \kappa^2 \\ \hline N \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \hline 100 \\ 300 \\ 500 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.25 \\ \gamma \\ m_0 = \\ -0.43 \\ -0.26 \\ -0.22 \\ -0.18 \\ m_0 = \\ -0.53 \\ -0.30 \\ -0.26 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>: 1<br>-0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×100)<br>1<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26                                                                                                                          | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26                                                                                                                      | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37                                                                                                                          | T = 1 RMSF 0.5 $0.67$ 0.37 0.30 0.23 $0.84$ 0.45 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \end{array} $                                                                                                                                                                                                                | 0)<br>2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84                                                                                                                                      | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0                                                          | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5                                                                | 3.3<br>2.1<br>2.5<br>2.9                                                                                                                 | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5                                                                                     |
| $\begin{array}{c c} \kappa^2 \\ \hline N \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \hline 100 \\ 300 \\ 500 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.25 \\ \gamma \\ m_0 = \\ -0.43 \\ -0.26 \\ -0.22 \\ -0.18 \\ m_0 = \\ -0.53 \\ -0.30 \\ -0.26 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×100)<br>1<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26                                                                                                                          | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26                                                                                                                      | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37                                                                                                                          | $   \begin{array}{c}     T = 1 \\     RMSF \\     0.5 \\ \hline     0.67 \\     0.37 \\     0.30 \\     0.23 \\ \hline     0.84 \\     0.45 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \end{array} $                                                                                                                                                                                                                | 0)<br>2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37                                                                                                                      | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0                                                          | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5                                                                | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8                                                                                            | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5                                                                                     |
| $\begin{array}{c c} \kappa^2 \\ \hline N \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \hline 100 \\ 300 \\ 500 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.25 \\ \gamma \\ m_0 = \\ -0.43 \\ -0.26 \\ -0.22 \\ -0.18 \\ m_0 = \\ -0.53 \\ -0.30 \\ -0.26 \\ -0.20 \\ m_0 = \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>:1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20                                                                                                                               | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20                                                                                                             | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26                                                                                                                  | T = 1 RMSF 0.5 $0.67$ 0.37 0.30 0.23 $0.84$ 0.45 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \end{array} $                                                                                                                                                                                                        | 0)<br>2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37                                                                                                                      | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0                                                          | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5                                                                | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2                                                                                     | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3                                                                              |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 300 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.26\\ -0.20\\ m_0 =\\ -0.50\\ -0.31\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-2<br>-0.49<br>-0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20                                                                                                                               | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32                                                                                           | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46                                                                                                  | T = 1 RMSF 0.5 $0.67$ $0.37$ $0.30$ $0.23$ $0.84$ $0.45$ $0.37$ $0.26$ $0.79$ $0.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0 \\ \Xi(\times 10) \\ 1 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0.80 \\ 0.47 \\ \end{array}$                                                                                                                                                         | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48                                                                                                 | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0                                     | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2                                                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2                                                                                     | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3                                                                              |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \\ 100 \\ 300 \\ 500 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ m_0 =\\ -0.50\\ -0.31\\ -0.26 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-2<br>-0.49<br>-0.31<br>-0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27                                                                                                    | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27                                                                                  | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37                                                                                          | T = 1 RMSE 0.5 $0.67$ 0.37 0.30 0.23 $0.84$ 0.45 0.37 0.26 $0.79$ 0.47 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0.80 \\ 0.47 \\ 0.39 \\ \end{array}$                                                                                                                                                                        | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39                                                                                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3                                           | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4                                           | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5                                                                | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8                                                         |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 300 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ m_0 =\\ -0.50\\ -0.31\\ -0.26\\ -0.19\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bias(<br>0.5<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-2<br>-0.49<br>-0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20                                                                                                                               | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32                                                                                           | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46                                                                                                  | T = 1 RMSF 0.5 $0.67$ $0.37$ $0.30$ $0.23$ $0.84$ $0.45$ $0.37$ $0.26$ $0.79$ $0.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0 \\ \Xi(\times 10) \\ 1 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0.80 \\ 0.47 \\ \end{array}$                                                                                                                                                         | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48                                                                                                 | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0                                     | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2                                                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2                                                                                     | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9                                                                |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.25\\ \hline \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ \hline m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ \hline m_0 =\\ -0.50\\ -0.31\\ -0.19\\ \hline \beta \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>2<br>-0.49<br>-0.31<br>-0.26<br>-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27                                                                                                    | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27                                                                                  | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37                                                                                          | T = 1 RMSE 0.5 $0.67$ 0.37 0.30 0.23 $0.84$ 0.45 0.37 0.26 $0.79$ 0.47 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0.80 \\ 0.47 \\ 0.39 \\ \end{array}$                                                                                                                                                                        | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39                                                                                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3                                           | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4                                           | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5                                                                | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8                                                         |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ N \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ m_0 =\\ -0.50\\ -0.31\\ -0.26\\ -0.19\\ \beta\\ m_0 =\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-2<br>-0.49<br>-0.31<br>-0.26<br>-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.43<br>-0.26<br>-0.26<br>-0.27<br>-0.18<br>-0.50<br>-0.50<br>-0.32<br>-0.20                                                                                                                      | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20                                                                                  | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37                                                                                          | T = 1 RMSE $0.5$ $0.67$ $0.37$ $0.30$ $0.23$ $0.84$ $0.45$ $0.37$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0 \\ 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0 \\ 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \end{array}$                                                                                                             | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27                                                                                 | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5                       | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.0<br>2.4                                    | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.1<br>2.5<br>2.0                                                                | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8<br>2.0                                                  |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ N \\ \hline \\ 100 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.25\\ \hline \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ \hline m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ \hline m_0 =\\ -0.50\\ -0.31\\ -0.26\\ -0.19\\ \hline \beta\\ \hline m_0 =\\ -0.13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-2<br>-0.49<br>-0.26<br>-0.20<br>-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.43<br>-0.26<br>-0.29<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.20                                                                                                    | 2 -0.43 -0.26 -0.22 -0.18 -0.53 -0.31 -0.26 -0.20 -0.50 -0.32 -0.27 -0.20                                                                                                        | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25                                                                                  | T = 1 RMSE $0.5$ $0.67$ $0.37$ $0.30$ $0.23$ $0.84$ $0.45$ $0.37$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$ $3.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0 \\ \hline 0 \\ 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0 \\ 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0 \\ 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \end{array}$                                                                                          | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27                                                                                 | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5                                    | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7                                    | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0                                                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8<br>2.0                                                  |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline N \\ \hline \\ 100 \\ 300 \\ 300 \\ \hline \end{array}$                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.30\\ -0.20\\ -0.30\\ -0.20\\ m_0 =\\ -0.50\\ -0.31\\ -0.26\\ -0.19\\ \beta\\ m_0 =\\ -0.13\\ -0.09 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-0.31<br>-0.26<br>-0.20<br>-0.20<br>-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.43<br>-0.26<br>-0.26<br>-0.27<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20                                                                                                             | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27<br>-0.20                                                                         | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72                                                                  | $T = 1 \\ RMSE \\ 0.5 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.45 \\ 0.37 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.33 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ 0.79 \\ 0.79 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0$ | $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \end{array}$                                                                                                                                             | 0) 2  0.67 0.37 0.30 0.23  0.84 0.46 0.37 0.26  0.81 0.48 0.39 0.27                                                                                                                  | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5                       | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7                                    | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0<br>6.2<br>5.6                                           | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>2.0<br>6.2<br>5.6                                                  |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline N \\ 100 \\ 300 \\ 500 \\ \hline \\ 1000 \\ \hline \\ \hline \end{array}$                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ m_0 =\\ -0.50\\ -0.20\\ m_0 =\\ -0.50\\ -0.01\\ -0.05\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>:1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>:2<br>-0.49<br>-0.31<br>-0.26<br>-0.20<br>:0<br>-0.13<br>-0.09<br>-0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.13<br>-0.09<br>-0.05                                                                         | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.26<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.20<br>-0.20                                              | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33                                                          | $T = 1 \\ RMSE \\ 0.5 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.45 \\ 0.37 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.17 \\ 0.38 \\ 0.26 \\ \hline 0.17 \\ 0.38 \\ 0.26 \\ \hline 0.37 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ $                                                                                 | $\begin{array}{c} 0 \\ \hline 0 \\ C(\times 10 \\ 1 \\ \hline \\ 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline \\ 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline \\ 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \\ \hline \\ 3.01 \\ 1.72 \\ 1.33 \\ \end{array}$                                                                           | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27                                                                                 | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5                                    | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.1<br>1.7                                    | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0                                                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8<br>2.0<br>6.2<br>5.6<br>5.3                             |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline N \\ \hline \\ 100 \\ 300 \\ 300 \\ \hline \end{array}$                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ -0.20\\ -0.20\\ -0.031\\ -0.26\\ -0.19\\ \beta\\ m_0 =\\ -0.13\\ -0.09\\ -0.05\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.03\\ -0.$ | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>:1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>:2<br>-0.49<br>-0.31<br>-0.26<br>-0.20<br>:0<br>-0.13<br>-0.09<br>-0.05<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.13<br>-0.09<br>-0.05                                                                         | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27<br>-0.20                                                                         | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72                                                                  | $T = 1 \\ RMSE \\ 0.5 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.45 \\ 0.37 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.33 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ 0.79 \\ 0.79 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0.78 \\ 0$ | $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \end{array}$                                                                                                                                             | 0) 2  0.67 0.37 0.30 0.23  0.84 0.46 0.37 0.26  0.81 0.48 0.39 0.27                                                                                                                  | S<br>0.25<br>3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5                       | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7                                    | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0                                                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>2.0<br>6.2<br>5.6                                                  |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ N \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.25\\ \hline \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ \hline m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.26\\ -0.26\\ -0.05\\ \hline -0.31\\ -0.26\\ -0.19\\ \hline \beta\\ m_0 =\\ -0.13\\ -0.05\\ -0.03\\ \hline m_0 =\\ -0.05\\ -0.03\\ \hline m_0 =\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1.0.26<br>-0.20<br>-0.20<br>-0.31<br>-0.26<br>-0.20<br>-0.31<br>-0.26<br>-0.20<br>-0.31<br>-0.26<br>-0.20<br>-0.21<br>-0.26<br>-0.20<br>-0.21<br>-0.21<br>-0.21<br>-0.21<br>-0.21<br>-0.21<br>-0.21<br>-0.22<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0.20<br>-0       | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27<br>-0.20<br>-0.13<br>-0.09<br>-0.05<br>-0.03                                                       | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.13<br>-0.09<br>-0.05<br>-0.03                                                       | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33<br>0.95                                                  | T = 1 RMSE $0.5$ $0.67$ $0.37$ $0.23$ $0.84$ $0.45$ $0.37$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0.67(\times 10^{-2}) \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \end{array}$                                                                                                              | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27                                                                                 | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5                                    | 3.3<br>2.1<br>2.5<br>2.9<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7                                           | 3.3<br>3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0<br>6.2<br>5.6<br>6.2<br>5.3<br>4.8               | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8                      |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.25\\ \hline \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ \hline m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ \hline m_0 =\\ -0.53\\ -0.31\\ -0.26\\ -0.19\\ \hline \beta\\ \hline m_0 =\\ -0.13\\ -0.09\\ -0.05\\ -0.03\\ \hline m_0 =\\ -0.05\\ -0.03\\ \hline m_0 =\\ -0.05\\ -0.03\\ -0.09\\ -0.05\\ -0.03\\ \hline -0.04\\ -0.04\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-2<br>-0.49<br>-0.31<br>-0.26<br>-0.20<br>-0.03<br>-0.09<br>-0.05<br>-0.03<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.43<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27<br>-0.20<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05                                                       | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27<br>-0.20<br>-0.13<br>-0.09<br>-0.05<br>-0.05<br>-0.03                            | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33<br>0.95<br>3.70                                          | T = 1 RMSE $0.5$ $0.67$ $0.30$ $0.23$ $0.84$ $0.45$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$ $0.37$ $0.39$ $0.47$ $0.38$ $0.26$ $3.01$ $1.72$ $1.33$ $0.95$ $3.84$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0.67(×10<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.80<br>0.47<br>0.39<br>0.26<br>3.01<br>1.72<br>1.33<br>0.95<br>3.95                                                                                                                                                                 | 0) 2  0.67 0.37 0.30 0.23  0.84 0.46 0.37 0.26  0.81 0.48 0.39 0.27  3.01 1.72 1.33 0.95  4.01                                                                                       | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5<br>6.2<br>5.3<br>4.8               | 3.3<br>2.1<br>2.5<br>2.9<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7                                           | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8                             | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>2.8<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8                             |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.25\\ \hline \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ \hline m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ \hline m_0 =\\ -0.50\\ -0.31\\ -0.26\\ -0.19\\ \hline \beta\\ m_0 =\\ -0.13\\ -0.09\\ -0.05\\ -0.03\\ \hline m_0 =\\ -0.05\\ -0.03\\ -0.05\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-0.31<br>-0.26<br>-0.20<br>-0.13<br>-0.09<br>-0.05<br>-0.03<br>-1<br>-0.02<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.43<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.20<br>-0.50<br>-0.03<br>-0.09<br>-0.05<br>-0.03<br>-0.05<br>-0.03                                                       | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.13<br>-0.09<br>-0.05<br>-0.03                                              | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33<br>0.95<br>3.70<br>2.13                                  | T = 1 RMSE $0.5$ $0.67$ $0.37$ $0.30$ $0.23$ $0.84$ $0.45$ $0.37$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$ $1.72$ $1.33$ $0.95$ $3.84$ $2.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0 \\ \hline 0 \\ 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0 \\ 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0 \\ 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \end{array}$                                                                                          | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27<br>3.01<br>1.72<br>1.33<br>0.95                                                 | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5<br>6.2<br>5.6<br>5.3<br>4.8        | 3.3<br>2.1<br>2.5<br>2.9<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7<br>6.2<br>5.6<br>5.3<br>4.8               | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0<br>6.2<br>5.3<br>4.8                                    | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>2.8<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8                             |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.25\\ \hline \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ \hline m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ \hline m_0 =\\ -0.50\\ -0.31\\ -0.26\\ -0.19\\ \hline \beta\\ m_0 =\\ -0.13\\ -0.09\\ -0.05\\ -0.03\\ \hline m_0 =\\ -0.05\\ -0.03\\ -0.05\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>-1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>-2<br>-0.49<br>-0.31<br>-0.26<br>-0.20<br>-0.03<br>-0.09<br>-0.05<br>-0.03<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.43<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27<br>-0.20<br>-0.03<br>-0.09<br>-0.05<br>-0.03<br>-0.05<br>-0.03                                              | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27<br>-0.20<br>-0.13<br>-0.09<br>-0.05<br>-0.05<br>-0.03                            | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33<br>0.95<br>3.70                                          | T = 1 RMSE $0.5$ $0.67$ $0.30$ $0.23$ $0.84$ $0.45$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$ $0.39$ $0.49$ $0.49$ $0.49$ $0.49$ $0.38$ $0.26$ $0.39$ $0.38$ $0.38$ $0.38$ $0.38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0<br>0.67(×10<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.80<br>0.47<br>0.39<br>0.26<br>3.01<br>1.72<br>1.33<br>0.95<br>3.95                                                                                                                                                                 | 0) 2  0.67 0.37 0.30 0.23  0.84 0.46 0.37 0.26  0.81 0.48 0.39 0.27  3.01 1.72 1.33 0.95  4.01                                                                                       | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5<br>6.2<br>5.3<br>4.8               | 3.3<br>2.1<br>2.5<br>2.9<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7                                           | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8                             | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>2.8<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8                             |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.25\\ \hline \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ \hline m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ \hline m_0 =\\ -0.50\\ -0.13\\ -0.03\\ -0.05\\ -0.03\\ \hline m_0 =\\ -0.05\\ -0.05\\ -0.05\\ -0.04\\ -0.04\\ -0.05\\ -0.04\\ -0.05\\ -0.04\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>:1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>:2<br>-0.49<br>-0.31<br>-0.26<br>-0.20<br>:0<br>-0.13<br>-0.09<br>-0.05<br>-0.03<br>:1<br>-0.02<br>-0.02<br>-0.03<br>-0.05<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0   | -0.43<br>-0.26<br>-0.20<br>-0.13<br>-0.26<br>-0.20<br>-0.50<br>-0.20<br>-0.50<br>-0.032<br>-0.27<br>-0.20<br>-0.03<br>-0.09<br>-0.05<br>-0.03<br>-0.05<br>-0.03                                    | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05                                     | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33<br>0.95<br>3.70<br>2.13<br>1.59                          | T = 1 RMSE $0.5$ $0.67$ $0.37$ $0.30$ $0.23$ $0.84$ $0.45$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$ $0.39$ $0.47$ $0.38$ $0.26$ $0.39$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.$                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0 \\ \hline 0 \\ 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0 \\ 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0 \\ 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \end{array}$                                                                                          | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27<br>3.01<br>1.72<br>1.33<br>0.95<br>4.01<br>2.31<br>1.75                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5<br>6.2<br>5.6<br>5.3<br>4.8        | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7<br>5.6<br>5.3<br>4.8               | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.5<br>5.6<br>5.3<br>4.8                                                  | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8                      |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.30\\ -0.20\\ m_0 =\\ -0.50\\ -0.31\\ -0.26\\ -0.19\\ \beta\\ m_0 =\\ -0.13\\ -0.09\\ -0.05\\ -0.03\\ m_0 =\\ -0.05\\ -0.04\\ -0.05\\ -0.04\\ -0.05\\ -0.04\\ -0.01\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>:1<br>-0.53<br>-0.30<br>-0.26<br>-0.20<br>:2<br>-0.49<br>-0.31<br>-0.26<br>-0.20<br>:0<br>-0.13<br>-0.09<br>-0.05<br>-0.03<br>:1<br>-0.02<br>-0.02<br>-0.03<br>-0.05<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0   | -0.43<br>-0.26<br>-0.20<br>-0.13<br>-0.26<br>-0.20<br>-0.50<br>-0.20<br>-0.50<br>-0.032<br>-0.27<br>-0.20<br>-0.03<br>-0.09<br>-0.05<br>-0.03<br>-0.05<br>-0.03                                    | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05                                     | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33<br>0.95<br>3.70<br>2.13<br>1.59                          | T = 1 RMSE $0.5$ $0.67$ $0.37$ $0.30$ $0.23$ $0.84$ $0.45$ $0.26$ $0.79$ $0.47$ $0.38$ $0.26$ $0.39$ $0.47$ $0.38$ $0.26$ $0.39$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.47$ $0.38$ $0.26$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.49$ $0.$                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0 \\ \hline 0 \\ 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0 \\ 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0 \\ 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \end{array}$                                                                                          | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27<br>3.01<br>1.72<br>1.33<br>0.95<br>4.01<br>2.31<br>1.75                         | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5<br>6.2<br>5.6<br>5.3<br>4.8        | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7<br>5.6<br>5.3<br>4.8               | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.5<br>5.6<br>5.3<br>4.8                                                  | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8                      |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ \end{array}$                                                                                                                                                                                         | $\begin{array}{c} 0.25\\ \hline \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ \hline m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ -0.31\\ -0.26\\ -0.19\\ \hline \beta\\ \hline m_0 =\\ -0.13\\ -0.09\\ -0.05\\ -0.03\\ \hline m_0 =\\ -0.00\\ -0.04\\ -0.01\\ \hline m_0 =\\ 0.00\\ 0.07\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>:1<br>-0.53<br>-0.20<br>:2<br>-0.49<br>-0.31<br>-0.26<br>-0.20<br>:0<br>-0.13<br>-0.09<br>-0.05<br>-0.03<br>:1<br>-0.02<br>-0.04<br>-0.05<br>-0.00<br>:2<br>-0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.50<br>-0.32<br>-0.27<br>-0.20<br>-0.05<br>-0.05<br>-0.03<br>-0.05<br>-0.00<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.04 | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.05<br>-0.03<br>-0.09<br>-0.05<br>-0.03<br>-0.04<br>-0.05<br>0.00                    | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33<br>0.95<br>3.70<br>2.13<br>1.59<br>1.112<br>4.51<br>2.52 | $T = 1 \\ \text{RMSF} \\ 0.5 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.45 \\ 0.37 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.26 \\ \hline 0.79 \\ 0.47 \\ 0.38 \\ 0.25 \\ 0.37 \\ 0.38 \\ 0.37 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.$       | $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \end{array}$                                                                                                                                 | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27<br>3.01<br>1.72<br>1.33<br>0.95<br>4.01<br>2.31<br>1.75<br>1.22<br>7.44<br>4.27 | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5<br>5.6<br>5.3<br>4.8<br>4.7<br>4.3 | 3.3<br>3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7<br>5.6<br>5.3<br>4.8<br>4.1 | 3.3<br>3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.4<br>2.1<br>2.5<br>2.0<br>6.0<br>5.3<br>4.5<br>3.8                      | 3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8<br>2.0<br>6.2<br>5.6<br>6.2<br>5.3<br>4.8<br>6.1<br>5.0 |
| $\begin{array}{c} \kappa^2 \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline N \\ 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline 100 \\ 300 \\ 500 \\ 1000 \\ \hline \\ \hline \\ 100 \\ \hline \\ 100 \\ \hline \\ \\ \\ 100 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | $\begin{array}{c} 0.25\\ \gamma\\ m_0 =\\ -0.43\\ -0.26\\ -0.22\\ -0.18\\ m_0 =\\ -0.53\\ -0.30\\ -0.26\\ -0.20\\ m_0 =\\ -0.50\\ -0.26\\ -0.031\\ -0.26\\ -0.031\\ -0.06\\ -0.019\\ \beta\\ m_0 =\\ -0.13\\ -0.09\\ -0.05\\ -0.03\\ m_0 =\\ -0.04\\ -0.04\\ -0.04\\ -0.00\\ -0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bias(<br>0.5)<br>-0.43<br>-0.26<br>-0.22<br>-0.18<br>:1<br>-0.53<br>-0.30<br>-0.20<br>:2<br>-0.49<br>-0.26<br>-0.20<br>:1<br>-0.05<br>-0.03<br>:1<br>-0.02<br>-0.03<br>:1<br>-0.02<br>-0.04<br>-0.05<br>-0.03<br>:1<br>-0.05<br>-0.03<br>:1<br>-0.05<br>-0.03<br>-0.05<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.0 | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.26<br>-0.20<br>-0.20<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.05<br>-0.03<br>-0.05<br>-0.03<br>-0.05<br>-0.03                                              | -0.43<br>-0.26<br>-0.22<br>-0.18<br>-0.53<br>-0.31<br>-0.26<br>-0.20<br>-0.32<br>-0.27<br>-0.20<br>-0.05<br>-0.03<br>-0.09<br>-0.05<br>-0.03<br>-0.02<br>-0.04<br>-0.05<br>-0.04 | 0.25<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.45<br>0.37<br>0.26<br>0.79<br>0.46<br>0.37<br>0.25<br>3.01<br>1.72<br>1.33<br>0.95<br>3.70<br>2.13<br>1.52<br>4.51                  | T = 1 RMSF 0.5 $0.67$ 0.37 0.30 0.23 $0.84$ 0.45 0.37 0.26 $0.79$ 0.47 0.38 0.26 $0.79$ 1.33 0.95 $3.84$ 2.22 1.66 1.17 $5.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline \\ 0.67 \\ 0.37 \\ 0.30 \\ 0.23 \\ \hline \\ 0.84 \\ 0.46 \\ 0.37 \\ 0.26 \\ \hline \\ 0.80 \\ 0.47 \\ 0.39 \\ 0.26 \\ \hline \\ \hline \\ 3.01 \\ 1.72 \\ 1.33 \\ 0.95 \\ \hline \\ 2.27 \\ 1.72 \\ 1.20 \\ \hline \\ \hline \\ 6.25 \\ \end{array}$ | 0) 2<br>0.67<br>0.37<br>0.30<br>0.23<br>0.84<br>0.46<br>0.37<br>0.26<br>0.81<br>0.48<br>0.39<br>0.27<br>3.01<br>1.72<br>1.33<br>0.95<br>4.01<br>2.31<br>1.75<br>1.22                 | 3.3<br>2.1<br>2.5<br>2.9<br>3.0<br>1.9<br>2.0<br>1.9<br>2.7<br>2.0<br>2.3<br>1.5<br>5.6<br>5.3<br>4.8<br>5.5<br>4.7 | 3.3<br>3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.0<br>2.5<br>2.2<br>2.0<br>2.4<br>1.7<br>5.6<br>5.3<br>4.8<br>4.1 | 3.3<br>3.3<br>2.1<br>2.5<br>2.9<br>3.6<br>2.3<br>2.8<br>2.2<br>2.1<br>2.5<br>2.0<br>6.2<br>5.6<br>6.3<br>4.8<br>6.0<br>5.3<br>4.5<br>5.3 | 2.1<br>2.5<br>2.9<br>3.6<br>2.1<br>2.5<br>2.3<br>2.8<br>1.9<br>2.8<br>2.0<br>6.2<br>5.6<br>5.3<br>4.8<br>4.7<br>4.2               |

Note:  $\gamma$  and  $\beta$  are the coefficients of the lagged dependent variable and the  $\mathbf{x}_{it}$  regressor given in (13). See also the note to Table B1(i).

## **B3: Power Functions**

**Figure B3(i)**: Power functions for  $\gamma$  in the case of the AR(1) panel data model with different values of m and N ( $\kappa^2$ =0.25)

Panel A: T=5



Panel B: T=10



— N=100 ---- N=300  $\cdots$  N=500 ---- N=1000.  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N=p/N(T-2)$  and p=0.05;  $\gamma$  is the coefficient of the lagged dependent variable in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table 4.

**Figure B3(ii)**: Power functions for  $\gamma$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =0.25)

Panel A: T=5



Panel B: T=10



Figure B3(iii): Power functions for  $\beta$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =0.25)

Panel A: T=5



Panel B: T=10



Note: --- N=100 ---- N=300 ---- N=500 ---- N=1000 .  $\beta$  is the coefficient of the  $\mathbf{x}_{it}$  regressors in (13). See also the note to Figure B3(ii).

Figure B3(iv): Power functions for  $\gamma$  in the case of the AR(1) panel data model with different values of m and N ( $\kappa^2$ =0.5)

Panel A: T=5



Panel B: T=10



Note: —— N=100 ---- N=300 ---- N=500 ---- N=1000. See also the note to Figure B3(i).

**Figure B3(v)**: Power functions for  $\gamma$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =0.5)

Panel A: T=5



Panel B: T=10



Figure B3(vi): Power functions for  $\beta$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =0.5)

Panel A: T=5



Panel B: T=10



Note: —— N=100 ---- N=300 ---- N=500 ---- N=1000. See also the note to Figure B3(v).

Figure B3(vii): Power functions for  $\gamma$  in the case of the AR(1) panel data model with different values of m and N ( $\kappa^2$ =2)

Panel A: T=5



Panel B: T=10



Note: —— N=100 ---- N=300 ---- N=500 ---- N=1000. See also the note to Figure B3(i).

Figure B3(viii): Power functions for  $\gamma$  in the case of the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =2)

Panel A: T=5



Panel B: T=10



Figure B3(ix): Power functions for  $\beta$  in the ARX(1) panel data model with different values of m and N ( $\kappa^2$ =2)

Panel A: T=5



Panel B: T=10



Note: —— N=100 ---- N=300 ---- N=500 ---- N=1000. See also the note to Figure B3(viii).

# S.9 Monte Carlo experiments for the robustness analysis

### C1: Initial values deviating from the steady state distribution

Table C1(i): Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure

|       |       |                 |       |       | $(\sigma_{\rm v}^2 =$ | $=1,\kappa^2$ | $^{2} = 1)$ |                |       |       |                |       |
|-------|-------|-----------------|-------|-------|-----------------------|---------------|-------------|----------------|-------|-------|----------------|-------|
|       | T =   | $5, \gamma_0 =$ | = 0.4 | T =   | $5, \gamma_0 =$       | = 0.8         | T = 1       | $10, \gamma_0$ | = 0.4 | T = 1 | $10, \gamma_0$ | = 0.8 |
| $m_0$ | 0     | 1               | 2     | 0     | 1                     | 2             | 0           | 1              | 2     | 0     | 1              | 2     |
| N     | AR(1) |                 |       |       |                       |               |             |                |       |       |                |       |
| 100   | 99.4  | 99.7            | 87.8  | 99.2  | 99.7                  | 96.2          | 99.7        | 99.5           | 99.7  | 99.6  | 99.5           | 99.7  |
| 300   | 99.7  | 100.0           | 100.0 | 99.8  | 100.0                 | 100.0         | 100.0       | 100.0          | 100.0 | 99.8  | 100.0          | 100.0 |
| 500   | 99.9  | 100.0           | 100.0 | 99.9  | 100.0                 | 100.0         | 99.9        | 100.0          | 100.0 | 99.8  | 100.0          | 100.0 |
| 1000  | 99.9  | 100.0           | 100.0 | 99.8  | 100.0                 | 100.0         | 99.9        | 100.0          | 100.0 | 99.5  | 100.0          | 100.0 |
|       | ARX(  | 1)              |       |       |                       |               |             |                |       |       |                |       |
| 100   | 99.7  | 100.0           | 96.5  | 99.5  | 99.9                  | 96.8          | 99.4        | 99.6           | 99.7  | 99.6  | 99.6           | 99.8  |
| 300   | 100.0 | 100.0           | 100.0 | 100.0 | 100.0                 | 100.0         | 100.0       | 100.0          | 99.8  | 100.0 | 100.0          | 99.8  |
| 500   | 99.9  | 99.9            | 100.0 | 99.9  | 99.9                  | 100.0         | 99.9        | 100.0          | 100.0 | 99.9  | 100.0          | 100.0 |
| 1000  | 99.9  | 99.9            | 100.0 | 99.8  | 99.9                  | 100.0         | 100.0       | 100.0          | 100.0 | 100.0 | 100.0          | 100.0 |

Note:  $y_{it}$  is generated as  $y_{it} = \alpha_i + \delta_t + \gamma y_{i,t-1} + \beta x_{it} + \zeta_{it}$ ,  $\zeta_{it} = \eta_i' \mathbf{f}_t + u_{it}$  for i=1,2,...,N; t=1,...,T with  $y_{i0} = \kappa_1 \mu_{i0} + \kappa_2 \sigma_{i0} \left( u_{i0}/\sigma \right)$  and  $\kappa_1,\kappa_2 = 1.2,0.8$ . Under  $m_0 = 0, y_{it} = \alpha_i + \delta_t + \gamma y_{i,t-1} + \beta x_{it} + u_{it}$ . In the case of the AR(1) panel data model,  $\beta = 0$ .  $\widehat{m}$  is explained using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N = \frac{p}{N(T-2)}$  and p = 0.05. See also the note to Table 1.

**Table C1(ii)**: Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\kappa^2 = 1$ )

|                |                |                   | using          | g one co       | umacca            | number         | . Of facto     | $n_{\rm s}, m_{\rm t}$ | n-1            |                |                     |                |
|----------------|----------------|-------------------|----------------|----------------|-------------------|----------------|----------------|------------------------|----------------|----------------|---------------------|----------------|
|                | T =            | $= 5, \gamma_0 =$ | 0.4            | T =            | $= 5, \gamma_0 =$ | 0.8            | T =            | $= 10,  \gamma_0 =$    | 0.4            | T =            | $= 10,  \gamma_0 =$ | 0.8            |
|                | Bias           | RMSE              | Size           | Bias           | RMSE              | Size           | Bias           | RMSE                   | Size           | Bias           | RMSE                | Size           |
|                | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$         | $(\times 100)$ | $(\times 100)$ | $(\times 100)$      | $(\times 100)$ |
| $\overline{N}$ | $m_0 = 0$      |                   |                |                |                   |                |                |                        |                |                |                     |                |
| 100            | 0.56           | 9.26              | 6.4            | 0.74           | 12.46             | 22.0           | -0.02          | 3.83                   | 6.1            | 1.91           | 7.86                | 15.4           |
| 300            | -0.01          | 4.47              | 5.5            | 1.17           | 9.10              | 19.2           | -0.05          | 2.22                   | 5.3            | 0.71           | 4.73                | 8.3            |
| 500            | 0.02           | 3.36              | 4.7            | 1.39           | 7.73              | 15.4           | -0.01          | 1.72                   | 5.8            | 0.24           | 3.03                | 6.4            |
| 1000           | 0.01           | 2.41              | 4.7            | 1.04           | 6.07              | 11.2           | -0.01          | 1.25                   | 5.6            | 0.20           | 2.39                | 6.0            |
|                | $m_0 = 1$      |                   |                |                |                   |                |                |                        |                |                |                     |                |
| 100            | 0.73           | 11.21             | 5.7            | 1.27           | 13.68             | 24.2           | -0.04          | 4.52                   | 5.9            | 0.38           | 5.37                | 6.6            |
| 300            | -0.08          | 5.71              | 5.0            | 1.16           | 9.98              | 16.7           | 0.01           | 2.55                   | 4.8            | 0.08           | 2.73                | 4.9            |
| 500            | 0.09           | 4.19              | 3.7            | 1.35           | 8.22              | 11.5           | -0.06          | 2.06                   | 6.4            | 0.02           | 2.15                | 5.4            |
| 1000           | 0.04           | 3.07              | 5.2            | 0.91           | 6.22              | 7.8            | -0.03          | 1.42                   | 4.8            | -0.02          | 1.46                | 4.9            |
|                | $m_0 = 2$      |                   |                |                |                   |                |                |                        |                |                |                     |                |
| 100            | 4.81           | 17.79             | 14.6           | 1.69           | 14.06             | 23.8           | -0.13          | 5.57                   | 5.1            | 0.34           | 6.25                | 7.0            |
| 300            | 0.28           | 5.72              | 3.2            | 1.63           | 9.90              | 14.2           | 0.02           | 3.07                   | 4.8            | 0.09           | 3.16                | 3.7            |
| 500            | 0.08           | 4.36              | 2.9            | 1.34           | 8.16              | 9.6            | -0.10          | 2.35                   | 4.6            | -0.08          | 2.36                | 4.3            |
| 1000           | 0.03           | 2.99              | 3.6            | 0.75           | 5.82              | 5.8            | 0.00           | 1.75                   | 4.7            | 0.03           | 1.65                | 4.4            |

Note:  $\gamma$  is the coefficient of the lagged dependent variable given in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table C1(i).

**Table C1(iii)**: Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\sigma_{\rm v}^2 = 1$ ,  $\kappa^2 = 1$ )

|                | T =                 | $= 5, \gamma_0 =$   |                |                | $= 5, \gamma_0 =$   |                | T =            | $= 10,  \gamma_0 =$ |                | $T = \frac{1}{T}$ | $= 10, \gamma_0 =$ | 0.8            |
|----------------|---------------------|---------------------|----------------|----------------|---------------------|----------------|----------------|---------------------|----------------|-------------------|--------------------|----------------|
|                | Bias                | RMSE                | Size           | Bias           | RMSE                | Size           | Bias           | RMSE                | Size           | Bias              | RMSE               | Size           |
|                | $(\times 100)$      | $(\times 100)$      | $(\times 100)$ | $(\times 100)$ | $(\times 100)$      | $(\times 100)$ | $(\times 100)$ | $(\times 100)$      | $(\times 100)$ | $(\times 100)$    | $(\times 100)$     | $(\times 100)$ |
|                | $\overline{\gamma}$ | , ,                 |                |                | ,                   |                |                |                     |                |                   | ,                  |                |
| $\overline{N}$ | $m_0 = 0$           |                     |                |                |                     |                |                |                     |                |                   |                    |                |
| 100            | -0.12               | 3.64                | 5.7            | -0.05          | 3.15                | 6.8            | -0.06          | 1.99                | 5.7            | -0.03             | 1.41               | 6.8            |
| 300            | -0.04               | 2.08                | 6.1            | -0.06          | 1.79                | 5.7            | 0.07           | 1.17                | 6.1            | 0.03              | 0.80               | 5.7            |
| 500            | 0.02                | 1.55                | 5.3            | 0.01           | 1.34                | 5.1            | -0.01          | 0.88                | 5.3            | 0.00              | 0.60               | 5.1            |
| 1000           | -0.05               | 1.14                | 5.6            | -0.04          | 0.98                | 5.6            | 0.00           | 0.64                | 5.6            | 0.00              | 0.44               | 5.6            |
|                | $m_0 = 1$           |                     |                |                |                     |                |                |                     |                |                   |                    |                |
| 100            | 0.12                | 4.60                | 5.4            | 0.26           | 4.98                | 5.4            | -0.10          | 2.22                | 6.1            | -0.07             | 1.60               | 6.4            |
| 300            | -0.04               | 2.56                | 4.6            | 0.01           | 2.68                | 4.2            | 0.03           | 1.25                | 5.7            | 0.03              | 0.87               | 4.7            |
| 500            | 0.02                | 1.97                | 4.0            | 0.03           | 2.03                | 3.7            | -0.02          | 0.96                | 5.1            | -0.02             | 0.69               | 5.5            |
| 1000           | -0.06               | 1.44                | 5.0            | -0.04          | 1.48                | 4.7            | 0.01           | 0.69                | 5.5            | 0.00              | 0.49               | 5.4            |
|                | $m_0 = 2$           |                     |                |                |                     |                |                |                     |                |                   |                    |                |
| 100            | 0.41                | 5.09                | 6.1            | 0.52           | 5.27                | 4.9            | -0.10          | 2.42                | 6.0            | -0.06             | 1.66               | 5.4            |
| 300            | 0.04                | 2.64                | 4.1            | 0.08           | 2.78                | 4.0            | -0.06          | 1.38                | 5.4            | -0.02             | 0.96               | 4.9            |
| 500            | 0.07                | 2.09                | 4.6            | 0.10           | 2.22                | 4.9            | -0.03          | 1.02                | 4.2            | -0.01             | 0.73               | 4.5            |
| 1000           | 0.05                | 1.49                | 4.0            | 0.05           | 1.54                | 4.5            | 0.02           | 0.73                | 4.4            | 0.01              | 0.51               | 4.4            |
|                | β                   |                     |                |                |                     |                |                |                     |                |                   |                    |                |
| -100           | $m_0 = 0$           |                     |                |                |                     |                |                | 2.00                |                |                   | 0.00               |                |
| 100            | -0.05               | 4.45                | 5.8            | -0.04          | 4.57                | 5.8            | -0.02          | 3.03                | 5.8            | -0.02             | 3.02               | 5.8            |
| 300            | 0.02                | 2.53                | 5.7            | 0.00           | 2.58                | 5.6            | -0.05          | 1.73                | 5.7            | -0.03             | 1.71               | 5.6            |
| 500            | 0.04                | 1.92                | 5.1            | 0.04           | 1.97                | 4.8            | 0.00           | 1.34                | 5.1            | 0.00              | 1.33               | 4.8            |
| 1000           | 0.00                | 1.38                | 5.1            | 0.00           | 1.41                | 5.1            | 0.01           | 0.96                | 5.1            | 0.01              | 0.95               | 5.1            |
| 100            | $m_0 = 1$           | 0.00                |                | 0.00           | 0.10                |                | 0.00           | 2.00                |                | - 0.00            | 2.00               |                |
| 100            | 0.01                | 6.02                | 5.7            | 0.08           | 6.19                | 5.5            | 0.09           | 3.98                | 6.2            | 0.08              | 3.98               | 6.2            |
| 300            | -0.14               | 3.41                | 4.9            | -0.12          | 3.48                | 5.1            | 0.01           | 2.29                | 5.8            | 0.02              | 2.28               | 5.5            |
| 500            | 0.09                | 2.67                | 5.4            | 0.10           | 2.73                | 5.2            | 0.00           | 1.74                | 5.1            | 0.00              | 1.72               | 5.1            |
| 1000           | 0.04                | 1.88                | 5.8            | 0.05           | 1.92                | 5.5            | 0.03           | 1.21                | 4.3            | 0.04              | 1.20               | 4.7            |
| 100            | $m_0 = 2$ 0.28      | 0.94                | 6.3            | 0.42           | 0 50                | 5.9            | 0.14           | 6.26                | <u> </u>       | 0.15              | 6.94               | <u> </u>       |
| 300            | 0.28                | 8.34<br>4.62        | 6.3<br>5.3     | $0.43 \\ 0.21$ | 8.59<br>4.68        | 5.9<br>5.3     | 0.14<br>0.09   | 3.63                | 5.2<br>5.4     | 0.15<br>0.08      | 6.24               | 5.2            |
| 500            | 0.18 $0.12$         | $\frac{4.62}{3.56}$ |                | 0.21 $0.15$    | $\frac{4.68}{3.64}$ | 5.3<br>5.2     | 0.09           | 2.84                | 5.9            | 0.08              | 3.61 $2.84$        | 5.5            |
| 1000           |                     |                     | 5.1            |                |                     |                | 0.02           |                     | $5.9 \\ 5.3$   | 0.01              |                    | 5.8            |
| 1000           | -0.06               | 2.51                | 4.7            | -0.05          | 2.55                | 5.0            | 0.04           | 1.96                | 5.3            | 0.05              | 1.95               | 5.4            |

Note:  $\gamma$  and  $\beta$  are the coefficients of the lagged dependent variable and the  $\mathbf{x}_{it}$  regressor given in (13). See also the note to Table C1(i).

# C2: Alternative p-values (p = 0.01, p = 0.10) for implementing the MTLR test • Results for p = 0.01

**Table C2(i)**: Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure  $(\sigma_v^2 = 1, \kappa^2 = 1)$ 

|                  |       |                 |       | (     | $_{ m v}$ $-$   | 1, 10 | - <b>1</b> |                |       |       |                |       |
|------------------|-------|-----------------|-------|-------|-----------------|-------|------------|----------------|-------|-------|----------------|-------|
|                  | T =   | $5, \gamma_0 =$ | = 0.4 | T =   | $5, \gamma_0 =$ | = 0.8 | T =        | $10, \gamma_0$ | = 0.4 | T =   | $10, \gamma_0$ | = 0.8 |
| $\overline{m_0}$ | 0     | 1               | 2     | 0     | 1               | 2     | 0          | 1              | 2     | 0     | 1              | 2     |
| $\overline{N}$   | AR(1) | )               |       |       |                 |       |            |                |       |       |                |       |
| 100              | 99.7  | 99.9            | 80.4  | 99.7  | 99.9            | 93.1  | 99.9       | 99.8           | 99.9  | 100.0 | 99.8           | 99.9  |
| 300              | 99.9  | 100.0           | 100.0 | 99.9  | 100.0           | 100.0 | 99.8       | 100.0          | 100.0 | 99.9  | 100.0          | 100.0 |
| 500              | 100.0 | 100.0           | 100.0 | 100.0 | 100.0           | 100.0 | 99.9       | 100.0          | 100.0 | 100.0 | 100.0          | 100.0 |
| 1000             | 100.0 | 100.0           | 100.0 | 100.0 | 100.0           | 100.0 | 99.8       | 100.0          | 100.0 | 99.8  | 100.0          | 100.0 |
|                  | ARX(  | 1)              |       |       |                 |       |            |                |       |       |                |       |
| 100              | 100.0 | 100.0           | 93.3  | 100.0 | 100.0           | 94.3  | 99.8       | 99.7           | 99.9  | 99.8  | 99.7           | 99.9  |
| 300              | 100.0 | 100.0           | 100.0 | 100.0 | 100.0           | 100.0 | 100.0      | 100.0          | 100.0 | 100.0 | 100.0          | 100.0 |
| 500              | 100.0 | 99.9            | 100.0 | 99.9  | 100.0           | 100.0 | 100.0      | 100.0          | 100.0 | 100.0 | 100.0          | 100.0 |
| 1000             | 100.0 | 100.0           | 100.0 | 100.0 | 100.0           | 100.0 | 100.0      | 100.0          | 100.0 | 100.0 | 100.0          | 100.0 |

Note:  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N=\frac{p}{N(T-2)}$  and p=0.01. See also the note to Table 1.

**Table C2(ii)**: Bias(×100), RMSE(×100) and Size (×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\kappa^2 = 1$ )

|                | T =            | $= 5, \gamma_0 =$ | 0.4            | T =            | $= 5, \gamma_0 =$ | 0.8            | T =            | $10, \gamma_0 =$ | 0.4            | T =            | $10, \gamma_0 =$ | 0.8            |
|----------------|----------------|-------------------|----------------|----------------|-------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|
|                | Bias           | RMSE              | Size           | Bias           | RMSE              | Size           | Bias           | RMSE             | Size           | Bias           | RMSE             | Size           |
|                | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ |
| $\overline{N}$ | $m_0 = 0$      |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100            | 0.44           | 8.64              | 6.1            | 0.73           | 12.11             | 21.2           | -0.02          | 3.75             | 6.4            | 1.96           | 7.89             | 16.3           |
| 300            | -0.03          | 4.26              | 5.4            | 1.41           | 9.26              | 19.2           | -0.04          | 2.18             | 5.1            | 0.69           | 4.61             | 8.7            |
| 500            | 0.03           | 3.22              | 4.8            | 1.48           | 7.77              | 14.5           | -0.01          | 1.70             | 5.9            | 0.26           | 3.09             | 6.7            |
| 1000           | 0.00           | 2.29              | 4.5            | 1.02           | 6.07              | 12.1           | -0.01          | 1.22             | 5.4            | 0.22           | 2.37             | 5.8            |
|                | $m_0 = 1$      |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100            | 0.45           | 9.32              | 5.1            | 1.43           | 13.00             | 19.6           | -0.04          | 4.19             | 6.1            | 0.25           | 4.61             | 4.9            |
| 300            | -0.10          | 4.98              | 5.1            | 0.99           | 9.04              | 11.9           | 0.02           | 2.38             | 4.5            | 0.08           | 2.41             | 4.7            |
| 500            | 0.05           | 3.68              | 3.9            | 0.96           | 7.12              | 7.1            | -0.05          | 1.91             | 6.0            | 0.01           | 1.88             | 5.4            |
| 1000           | 0.04           | 2.67              | 4.7            | 0.61           | 5.08              | 4.7            | -0.01          | 1.32             | 4.9            | 0.00           | 1.30             | 4.2            |
|                | $m_0 = 2$      |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100            | 6.94           | 20.36             | 17.9           | 1.93           | 13.52             | 20.9           | -0.09          | 5.13             | 5.9            | 0.19           | 5.32             | 5.3            |
| 300            | 0.20           | 4.99              | 3.9            | 1.38           | 8.97              | 10.3           | 0.04           | 2.81             | 4.6            | 0.08           | 2.66             | 4.0            |
| 500            | 0.05           | 3.81              | 3.1            | 0.98           | 7.06              | 6.3            | -0.10          | 2.16             | 4.9            | -0.09          | 2.06             | 4.7            |
| 1000           | 0.02           | 2.62              | 3.3            | 0.45           | 4.81              | 4.4            | 0.00           | 1.59             | 4.7            | 0.01           | 1.44             | 4.0            |

Note:  $\gamma$  is the coefficient of the lagged dependent variable given in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table C2(i).

**Table C2(iii)**: Bias(×100), RMSE(×100) and Size (×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\sigma_{\nu}^2 = 1$ ,  $\kappa^2 = 1$ )

|      |                     |                   |                | ang the        |                   |                |                |                  |                |                | 1)               |                |
|------|---------------------|-------------------|----------------|----------------|-------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|
|      | T =                 | $= 5, \gamma_0 =$ | 0.4            | T =            | $= 5, \gamma_0 =$ | 0.8            | T =            | $10, \gamma_0 =$ | 0.4            | T =            | $10, \gamma_0 =$ | 0.8            |
| -    | Bias                | RMSE              | Size           | Bias           | RMSE              | Size           | Bias           | RMSE             | Size           | Bias           | RMSE             | Size           |
|      | $(\times 100)$      | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ |
|      | $\overline{\gamma}$ |                   |                |                |                   |                |                |                  |                |                |                  |                |
| N    | $m_0 = 0$           |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | -0.14               | 3.45              | 5.9            | -0.07          | 2.98              | 6.6            | -0.05          | 1.94             | 5.4            | -0.03          | 1.36             | 5.9            |
| 300  | -0.04               | 1.97              | 5.6            | -0.05          | 1.70              | 6.0            | 0.08           | 1.14             | 5.3            | 0.04           | 0.77             | 5.0            |
| 500  | 0.02                | 1.47              | 5.1            | 0.00           | 1.27              | 4.4            | -0.01          | 0.86             | 4.5            | 0.00           | 0.58             | 4.3            |
| 1000 | -0.05               | 1.08              | 5.2            | -0.03          | 0.93              | 5.8            | 0.00           | 0.62             | 4.9            | 0.00           | 0.42             | 5.8            |
|      | $m_0 = 1$           |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | 0.09                | 4.28              | 5.1            | 0.23           | 4.74              | 5.2            | -0.10          | 2.15             | 6.0            | -0.07          | 1.54             | 6.5            |
| 300  | -0.05               | 2.39              | 4.4            | -0.02          | 2.56              | 5.1            | 0.03           | 1.20             | 5.2            | 0.02           | 0.82             | 4.0            |
| 500  | 0.01                | 1.83              | 3.8            | 0.03           | 1.91              | 3.9            | -0.02          | 0.92             | 5.5            | -0.01          | 0.65             | 5.1            |
| 1000 | -0.04               | 1.35              | 4.5            | -0.02          | 1.41              | 4.5            | 0.01           | 0.67             | 5.4            | 0.00           | 0.46             | 5.4            |
|      | $m_0 = 2$           |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | 0.46                | 4.84              | 6.3            | 0.48           | 4.99              | 4.6            | -0.09          | 2.33             | 5.8            | -0.05          | 1.59             | 5.9            |
| 300  | 0.03                | 2.46              | 4.1            | 0.07           | 2.63              | 4.8            | -0.06          | 1.33             | 5.4            | -0.02          | 0.91             | 4.8            |
| 500  | 0.07                | 1.94              | 3.6            | 0.10           | 2.10              | 4.6            | -0.03          | 0.98             | 4.3            | -0.01          | 0.69             | 4.7            |
| 1000 | 0.05                | 1.39              | 3.6            | 0.05           | 1.47              | 4.2            | 0.02           | 0.70             | 4.3            | 0.01           | 0.48             | 4.1            |
|      | β                   |                   |                |                |                   |                |                |                  |                |                |                  |                |
|      | $m_0 = 0$           |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | -0.06               | 4.44              | 5.6            | -0.06          | 4.55              | 5.4            | -0.01          | 3.04             | 6.5            | -0.02          | 3.02             | 6.6            |
| 300  | 0.02                | 2.53              | 5.7            | 0.00           | 2.58              | 5.8            | -0.05          | 1.73             | 6.0            | -0.03          | 1.71             | 6.0            |
| 500  | 0.04                | 1.92              | 5.2            | 0.04           | 1.97              | 5.2            | 0.00           | 1.34             | 5.7            | 0.00           | 1.33             | 5.6            |
| 1000 | 0.00                | 1.38              | 5.0            | 0.00           | 1.40              | 4.9            | 0.01           | 0.96             | 5.6            | 0.01           | 0.95             | 5.8            |
|      | $m_0 = 1$           |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | -0.01               | 5.98              | 5.6            | 0.05           | 6.16              | 5.5            | 0.09           | 3.98             | 6.3            | 0.07           | 3.98             | 6.2            |
| 300  | -0.15               | 3.39              | 4.9            | -0.14          | 3.46              | 4.9            | 0.01           | 2.29             | 6.0            | 0.02           | 2.28             | 5.6            |
| 500  | 0.09                | 2.65              | 5.5            | 0.10           | 2.70              | 5.3            | 0.00           | 1.74             | 5.2            | 0.00           | 1.72             | 5.2            |
| 1000 | 0.05                | 1.87              | 5.5            | 0.06           | 1.91              | 5.7            | 0.03           | 1.21             | 4.4            | 0.04           | 1.20             | 4.7            |
|      | $m_0 = 2$           |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | 0.27                | 8.35              | 6.4            | 0.41           | 8.57              | 5.9            | 0.15           | 6.27             | 4.9            | 0.13           | 6.24             | 5.0            |
| 300  | 0.18                | 4.62              | 5.2            | 0.20           | 4.67              | 5.3            | 0.09           | 3.63             | 5.3            | 0.08           | 3.61             | 5.4            |
| 500  | 0.11                | 3.55              | 5.0            | 0.14           | 3.63              | 5.0            | 0.02           | 2.85             | 5.7            | 0.01           | 2.84             | 5.9            |
| 1000 | -0.06               | 2.51              | 4.9            | -0.05          | 2.55              | 5.2            | 0.04           | 1.96             | 5.3            | 0.05           | 1.95             | 5.3            |
|      |                     |                   |                |                |                   |                |                |                  |                |                |                  |                |

Note:  $\gamma$  and  $\beta$  are the coefficients of the lagged dependent variable and the  $\mathbf{x}_{it}$  regressor given in (13). See also the note to Table C2(i).

# ightharpoonup Results for p=0.10

**Table C2(iv)**: Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure

|                  |      |               |       |      | $(\sigma_{\rm v}^2)$ | $=1, \kappa$ | $\mathfrak{c}^{\mathbf{z}}=1$ | )              |       |       |                |       |
|------------------|------|---------------|-------|------|----------------------|--------------|-------------------------------|----------------|-------|-------|----------------|-------|
|                  | T =  | $5, \gamma_0$ | = 0.4 | T =  | $5, \gamma_0$        | = 0.8        | T = 1                         | $10, \gamma_0$ | = 0.4 | T = 1 | $10, \gamma_0$ | = 0.8 |
| $\overline{m_0}$ | 0    | 1             | 2     | 0    | 1                    | 2            | 0                             | 1              | 2     | 0     | 1              | 2     |
| $\overline{N}$   | AR(  | 1)            |       |      |                      |              |                               |                |       |       |                |       |
| 100              | 99.4 | 99.5          | 91.7  | 99.0 | 99.5                 | 97.5         | 99.3                          | 99.4           | 99.4  | 99.3  | 99.5           | 99.4  |
| 300              | 99.7 | 99.9          | 100.0 | 99.7 | 100.0                | 100.0        | 99.7                          | 99.9           | 99.9  | 99.7  | 100.0          | 99.9  |
| 500              | 99.9 | 100.0         | 100.0 | 99.6 | 100.0                | 100.0        | 99.8                          | 99.9           | 100.0 | 99.9  | 99.9           | 100.0 |
| 1000             | 99.9 | 100.0         | 100.0 | 99.8 | 100.0                | 100.0        | 99.6                          | 100.0          | 100.0 | 99.5  | 100.0          | 100.0 |
|                  | ARX  | $\zeta(1)$    |       |      |                      |              |                               |                |       |       |                |       |
| 100              | 99.5 | 99.8          | 97.6  | 99.4 | 99.7                 | 98.0         | 99.2                          | 99.4           | 99.6  | 99.1  | 99.4           | 99.6  |
| 300              | 99.8 | 100.0         | 100.0 | 99.7 | 100.0                | 100.0        | 100.0                         | 99.9           | 99.7  | 100.0 | 99.9           | 99.8  |
| 500              | 99.8 | 99.9          | 100.0 | 99.9 | 99.9                 | 100.0        | 99.9                          | 100.0          | 100.0 | 99.9  | 100.0          | 100.0 |
| 1000             | 99.9 | 99.9          | 100.0 | 99.8 | 99.9                 | 100.0        | 99.9                          | 100.0          | 100.0 | 99.9  | 100.0          | 100.0 |

Note:  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N=\frac{p}{N(T-2)}$  and p=0.10. See also the note to Table 1.

**Table C2(v)**: Bias(×100), RMSE(×100) and Size (×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\kappa^2 = 1$ )

|      |                |                   | doi, doi       | ~              |                   |                |                | ,                | (10 1)         |                |                  |                |
|------|----------------|-------------------|----------------|----------------|-------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|
|      | T =            | $= 5, \gamma_0 =$ | 0.4            | T =            | $= 5, \gamma_0 =$ | 0.8            | T =            | $10, \gamma_0 =$ | 0.4            | T =            | $10, \gamma_0 =$ | 0.8            |
|      | Bias           | RMSE              | Size           | Bias           | RMSE              | Size           | Bias           | RMSE             | Size           | Bias           | RMSE             | Size           |
|      | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ |
| N    | $m_0 = 0$      |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | 0.40           | 8.71              | 6.2            | 0.59           | 12.38             | 21.3           | -0.03          | 3.77             | 6.4            | 1.94           | 7.91             | 16.4           |
| 300  | -0.02          | 4.26              | 5.4            | 1.39           | 9.32              | 19.2           | -0.04          | 2.18             | 5.1            | 0.67           | 4.60             | 8.7            |
| 500  | 0.03           | 3.22              | 4.8            | 1.42           | 7.85              | 14.6           | -0.01          | 1.70             | 5.9            | 0.26           | 3.09             | 6.7            |
| 1000 | 0.00           | 2.29              | 4.5            | 1.00           | 6.08              | 12.1           | -0.01          | 1.22             | 5.4            | 0.18           | 2.24             | 5.7            |
|      | $m_0 = 1$      |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | 0.41           | 9.41              | 5.1            | 1.34           | 13.23             | 19.7           | -0.05          | 4.21             | 9.6            | 0.23           | 4.64             | 19.3           |
| 300  | -0.08          | 5.02              | 5.1            | 1.00           | 9.04              | 11.9           | 0.02           | 2.38             | 3.9            | 0.08           | 2.41             | 10.3           |
| 500  | 0.05           | 3.68              | 3.9            | 0.94           | 7.16              | 7.1            | -0.05          | 1.91             | 3.1            | 0.01           | 1.88             | 6.3            |
| 1000 | 0.04           | 2.67              | 4.7            | 0.61           | 5.08              | 4.7            | -0.01          | 1.32             | 3.3            | 0.00           | 1.30             | 4.4            |
|      | $m_0 = 2$      |                   |                |                |                   |                |                |                  |                |                |                  |                |
| 100  | 3.15           | 14.91             | 6.1            | 1.76           | 13.30             | 4.9            | -0.08          | 5.13             | 5.9            | 0.18           | 5.33             | 5.3            |
| 300  | 0.20           | 4.99              | 4.5            | 1.38           | 8.97              | 4.7            | 0.04           | 2.81             | 4.6            | 0.08           | 2.66             | 4.0            |
| 500  | 0.05           | 3.81              | 6.0            | 0.98           | 7.06              | 5.4            | -0.10          | 2.16             | 4.9            | -0.09          | 2.06             | 4.7            |
| 1000 | 0.02           | 2.62              | 4.9            | 0.45           | 4.81              | 4.2            | 0.00           | 1.59             | 4.7            | 0.01           | 1.44             | 4.0            |

Note:  $\gamma$  is the coefficient of the lagged dependent variable given in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table C2(iv).

**Table C2(vi)**: Bias(×100), RMSE(×100) and Size (×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors,  $\widehat{m}$  ( $\sigma_{\rm v}^2 = 1$ ,  $\kappa^2 = 1$ )

|      | T' =                | $= 5, \gamma_0 =$ | 0.4            | T =            | $= 5, \gamma_0 =$ | 0.8            | T =            | $10, \gamma_0 =$ | 0.4            | T =            | $= 10,  \gamma_0 =$ | 0.8            |
|------|---------------------|-------------------|----------------|----------------|-------------------|----------------|----------------|------------------|----------------|----------------|---------------------|----------------|
|      | Bias                | RMSE              | Size           | Bias           | RMSE              | Size           | Bias           | RMSE             | Size           | Bias           | RMSE                | Size           |
|      | $(\times 100)$      | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$      | $(\times 100)$ |
|      | $\overline{\gamma}$ | ,                 |                |                |                   |                |                |                  |                |                | , ,                 |                |
| N 1  | $m_0 = 0$           |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | -0.14               | 3.45              | 5.9            | -0.07          | 3.03              | 6.6            | -0.06          | 1.95             | 5.4            | -0.03          | 1.37                | 5.8            |
| 300  | -0.04               | 1.97              | 5.6            | -0.05          | 1.74              | 6.1            | 0.08           | 1.14             | 5.3            | 0.04           | 0.77                | 5.1            |
| 500  | 0.01                | 1.47              | 5.1            | 0.00           | 1.27              | 4.4            | -0.01          | 0.86             | 4.5            | 0.00           | 0.58                | 4.3            |
| 1000 | -0.05               | 1.08              | 5.1            | -0.03          | 0.93              | 5.8            | 0.00           | 0.62             | 4.9            | 0.00           | 0.42                | 5.8            |
| 7    | $m_0 = 1$           |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | 0.10                | 4.30              | 5.1            | 0.23           | 4.76              | 5.3            | -0.10          | 2.15             | 6.0            | -0.07          | 1.54                | 6.5            |
| 300  | -0.05               | 2.39              | 4.4            | -0.02          | 2.56              | 5.1            | 0.03           | 1.20             | 5.2            | 0.02           | 0.83                | 4.0            |
| 500  | 0.01                | 1.83              | 3.8            | 0.02           | 1.92              | 3.9            | -0.02          | 0.92             | 5.5            | -0.01          | 0.65                | 5.1            |
| 1000 | -0.04               | 1.35              | 4.5            | -0.02          | 1.41              | 4.5            | 0.01           | 0.67             | 5.4            | 0.00           | 0.46                | 5.4            |
| 7    | $m_0 = 2$           |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | 0.34                | 4.68              | 5.7            | 0.45           | 4.97              | 4.7            | -0.08          | 2.33             | 5.8            | -0.05          | 1.59                | 5.9            |
| 300  | 0.03                | 2.46              | 4.1            | 0.07           | 2.63              | 4.8            | -0.06          | 1.33             | 5.4            | -0.02          | 0.91                | 4.8            |
| 500  | 0.07                | 1.94              | 3.6            | 0.10           | 2.10              | 4.6            | -0.03          | 0.98             | 4.3            | -0.01          | 0.69                | 4.7            |
| 1000 | 0.05                | 1.39              | 3.6            | 0.05           | 1.47              | 4.2            | 0.02           | 0.70             | 4.3            | 0.01           | 0.48                | 4.1            |
|      | β                   |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 7    | $m_0 = 0$           |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | -0.05               | 4.44              | 5.6            | -0.06          | 4.55              | 5.4            | -0.01          | 3.04             | 6.5            | -0.02          | 3.02                | 6.6            |
| 300  | 0.02                | 2.53              | 5.7            | 0.00           | 2.58              | 5.9            | -0.05          | 1.73             | 6.0            | -0.03          | 1.71                | 6.0            |
| 500  | 0.04                | 1.92              | 5.2            | 0.04           | 1.97              | 5.2            | 0.00           | 1.34             | 5.7            | 0.00           | 1.33                | 5.6            |
| 1000 | 0.00                | 1.38              | 5.0            | 0.00           | 1.40              | 4.9            | 0.01           | 0.96             | 5.6            | 0.01           | 0.95                | 5.8            |
| 1    | $m_0 = 1$           |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | -0.01               | 5.99              | 5.6            | 0.06           | 6.16              | 5.5            | 0.09           | 3.98             | 6.3            | 0.07           | 3.98                | 6.2            |
| 300  | -0.15               | 3.39              | 4.9            | -0.14          | 3.46              | 4.9            | 0.01           | 2.29             | 6.0            | 0.02           | 2.28                | 5.6            |
| 500  | 0.09                | 2.65              | 5.5            | 0.09           | 2.70              | 5.3            | 0.00           | 1.74             | 5.2            | 0.00           | 1.72                | 5.2            |
| 1000 | 0.05                | 1.88              | 5.5            | 0.06           | 1.91              | 5.7            | 0.03           | 1.21             | 4.4            | 0.04           | 1.20                | 4.7            |
|      | $m_0 = 2$           |                   |                |                |                   |                |                |                  |                |                |                     |                |
| 100  | 0.27                | 8.33              | 6.4            | 0.41           | 8.55              | 5.8            | 0.15           | 6.27             | 4.9            | 0.13           | 6.24                | 5.0            |
| 300  | 0.18                | 4.62              | 5.2            | 0.20           | 4.67              | 5.3            | 0.09           | 3.63             | 5.3            | 0.08           | 3.61                | 5.4            |
| 500  | 0.11                | 3.55              | 5.0            | 0.14           | 3.63              | 5.0            | 0.02           | 2.85             | 5.7            | 0.01           | 2.84                | 5.9            |
| 1000 | -0.06               | 2.51              | 4.9            | -0.05          | 2.55              | 5.2            | 0.04           | 1.96             | 5.3            | 0.05           | 1.95                | 5.3            |

Note:  $\gamma$  and  $\beta$  are the coefficients of the lagged dependent variable and the  $\mathbf{x}_{it}$  regressor given in (13). See also the note to Table C2(iv).

#### C3: Correlation of factor loadings and regressors

In this experiment we allow the factor loadings  $\eta_i$  in the Monte Carlo design outlined in Section 8.1 to be correlated with the regressors  $x_{it}$  according to

$$\eta_{i\ell} = \kappa \sqrt{\frac{2}{m_0}} \left[ \left( \sqrt{T} \bar{\mathbf{v}}_i / \sigma_{\mathbf{v}} \right) + v_{i\ell} \right], \text{ for } \ell = 1, 2, ..., m_0$$
(S.55)

where  $\bar{\mathbf{v}}_i = T^{-1} \sum_{t=1}^T \mathbf{v}_{it}$ , with  $\mathbf{v}_{it}$  representing the idiosyncratic component of  $x_{it}$ , defined by (78), and  $v_{i\ell} \sim IID\mathcal{N}\left(0,1\right)$ , for  $\ell=1,2,...,m_0$ . The above formulation ensures that  $Var\left(\eta_{i\ell}\right) = \frac{\kappa^2}{m_0}$ , as in the baseline case where the loadings are uncorrelated with the regressors. The rest of the parameters are as described in Section 8.1.

**Table C3(i)**: Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure  $(\sigma^2 = 1 \ \kappa^2 = 1)$ 

|       |                 |              | $(\sigma$ | $\frac{2}{v}=1, F$ | $\mathfrak{c}^{2}=1$ |                  |         |                  |
|-------|-----------------|--------------|-----------|--------------------|----------------------|------------------|---------|------------------|
|       | $T=5, \gamma_0$ | $_{0} = 0.4$ | T=5,      | $\gamma_0 = 0.8$   | T = 10,              | $\gamma_0 = 0.4$ | T = 10, | $\gamma_0 = 0.8$ |
| $m_0$ | 1               | 2            | 1         | 2                  | 1                    | 2                | 1       | 2                |
| N     | AR(1)           |              |           |                    |                      |                  |         |                  |
| 100   | 99.7            | 100.0        | 99.6      | 100.0              | 99.6                 | 99.8             | 99.5    | 99.7             |
| 300   | 100.0           | 100.0        | 100.0     | 100.0              | 100.0                | 100.0            | 100.0   | 100.0            |
| 500   | 100.0           | 100.0        | 100.0     | 100.0              | 100.0                | 100.0            | 100.0   | 100.0            |
| 1000  | 100.0           | 100.0        | 100.0     | 100.0              | 100.0                | 100.0            | 100.0   | 100.0            |
|       | ARX(1)          |              |           |                    |                      |                  |         |                  |
| 100   | 99.9            | 100.0        | 99.9      | 100.0              | 99.6                 | 99.7             | 99.6    | 99.7             |
| 300   | 100.0           | 100.0        | 100.0     | 100.0              | 100.0                | 99.9             | 99.9    | 99.8             |
| 500   | 99.9            | 100.0        | 99.9      | 100.0              | 100.0                | 100.0            | 100.0   | 100.0            |
| 1000  | 99.9            | 100.0        | 99.9      | 100.0              | 100.0                | 100.0            | 100.0   | 100.0            |

Note:  $y_{it}$  is generated as  $y_{it} = \alpha_i + \delta_t + \gamma y_{i,t-1} + \beta x_{it} + \zeta_{it}$ ,  $\zeta_{it} = \eta_i' \mathbf{f}_t + u_{it}$  for i=1,2,...,N; t=1,...,T with  $y_{i0} = \mu_{i0} + \sigma_{i0} \left(u_{i0}/\sigma\right)$ . The factor loadings are generated as  $\eta_{i\ell} = \kappa \sqrt{\frac{2}{m_0}} \left[ \left( \sqrt{T} \bar{\mathbf{v}}_i / \sigma_{\mathbf{v}} \right) + v_{i\ell} \right]$ , for  $\ell=1,2,...,m_0$  where  $\bar{\mathbf{v}}_i = T^{-1} \sum_{t=1}^T \mathbf{v}_{it}$ , and  $v_{i\ell} \sim IID\mathcal{N}\left(0,1\right)$ , for  $\ell=1,2,...,m_0$ . In the case of the AR(1) panel data model,  $\beta=0$ .  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N = \frac{p}{N(T-2)}$  and p=0.05. See also the note to Table 1.

**Table C3(ii)**: Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  for the AR(1) panel data model, using the estimated number of factors, m, and the true number,  $m_0$  ( $\kappa^2 = 1$ )

|                |                | 0                 |                |                |                   | ,              | ,              |                     | ,              | 0 (            | ,                |                |
|----------------|----------------|-------------------|----------------|----------------|-------------------|----------------|----------------|---------------------|----------------|----------------|------------------|----------------|
|                | T =            | $= 5, \gamma_0 =$ | 0.4            | T =            | $= 5, \gamma_0 =$ | 0.8            | T =            | $= 10,  \gamma_0 =$ | 0.4            | T =            | $10, \gamma_0 =$ | 0.8            |
|                | Bias           | RMSE              | Size           | Bias           | RMSE              | Size           | Bias           | RMSE                | Size           | Bias           | RMSE             | Size           |
|                | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$      | $(\times 100)$ | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ |
| $\overline{N}$ | $m_0 = 1$      |                   |                |                |                   |                |                |                     |                |                |                  |                |
| 100            | 0.20           | 7.36              | 6.4            | 1.21           | 10.81             | 10.5           | -0.05          | 3.68                | 5.6            | 0.08           | 3.41             | 5.5            |
| 300            | -0.13          | 3.96              | 5.6            | 0.30           | 6.30              | 6.4            | 0.01           | 2.09                | 4.9            | 0.04           | 1.83             | 5.0            |
| 500            | 0.02           | 2.91              | 4.7            | 0.34           | 4.67              | 4.1            | -0.06          | 1.67                | 5.8            | -0.01          | 1.43             | 5.3            |
| 1000           | 0.04           | 2.11              | 5.5            | 0.24           | 3.27              | 4.8            | -0.01          | 1.16                | 5.3            | 0.00           | 1.00             | 4.6            |
|                | $m_0 = 2$      |                   |                |                |                   |                |                |                     |                |                |                  |                |
| 100            | 0.23           | 7.37              | 5.1            | 1.33           | 10.68             | 9.3            | -0.05          | 4.40                | 6.5            | 0.02           | 3.79             | 6.3            |
| 300            | 0.12           | 3.91              | 4.3            | 0.67           | 6.22              | 5.0            | 0.05           | 2.43                | 5.3            | 0.06           | 2.00             | 4.5            |
| 500            | 0.03           | 3.01              | 4.2            | 0.38           | 4.65              | 3.6            | -0.09          | 1.87                | 4.8            | -0.08          | 1.56             | 5.4            |
| 1000           | 0.01           | 2.06              | 4.2            | 0.17           | 3.15              | 3.7            | -0.01          | 1.36                | 5.0            | 0.00           | 1.07             | 4.0            |

Note:  $\gamma$  is the coefficient of the lagged dependent variable given in (1) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table C3(i).

**Table C3(iii)**: Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors, m, and the true number,  $m_0$  ( $\sigma_v^2 = 1$ ,  $\kappa^2 = 1$ )

|                | T =            | $=5, \gamma_0 =$ | 0.4            | T =            | $= 5, \gamma_0 =$ | 0.8            | T =            | $= 10, \gamma_0 =$ | 0.4            | T =            | $\frac{10, \gamma_0 = 0}{10, \gamma_0 = 0}$ | 0.8            |
|----------------|----------------|------------------|----------------|----------------|-------------------|----------------|----------------|--------------------|----------------|----------------|---------------------------------------------|----------------|
|                | Bias           | RMSE             | Size           | Bias           | RMSE              | Size           | Bias           | RMSE               | Size           | Bias           | RMSE                                        | Size           |
|                | $(\times 100)$ | $(\times 100)$   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$    | $(\times 100)$ | $(\times 100)$ | $(\times 100)$     | $(\times 100)$ | $(\times 100)$ | $(\times 100)$                              | $(\times 100)$ |
|                | $\gamma$       |                  |                |                |                   |                |                |                    |                |                |                                             |                |
| N              | $m_0 = 1$      |                  |                |                |                   |                |                |                    |                |                |                                             |                |
| 100            | 0.02           | 4.01             | 5.9            | 0.10           | 4.49              | 5.8            | -0.08          | 2.09               | 6.4            | -0.05          | 1.51                                        | 6.3            |
| 300            | -0.12          | 2.28             | 5.6            | -0.14          | 2.48              | 6.4            | 0.04           | 1.16               | 5.4            | 0.04           | 0.80                                        | 4.2            |
| 500            | -0.06          | 1.74             | 4.2            | -0.11          | 1.85              | 4.2            | -0.01          | 0.90               | 5.4            | 0.01           | 0.63                                        | 5.5            |
| 1000           | -0.11          | 1.28             | 4.8            | -0.15          | 1.36              | 5.2            | 0.02           | 0.65               | 5.5            | 0.03           | 0.45                                        | 5.5            |
|                | $m_0 = 2$      | -                |                |                |                   |                |                |                    |                |                |                                             |                |
| 100            | 0.07           | 4.27             | 5.8            | 0.19           | 4.73              | 5.7            | -0.07          | 2.28               | 6.6            | -0.02          | 1.57                                        | 6.2            |
| 300            | -0.04          | 2.33             | 4.4            | -0.06          | 2.55              | 5.0            | -0.06          | 1.30               | 5.9            | 0.00           | 0.90                                        | 4.9            |
| 500            | -0.04          | 1.84             | 4.4            | -0.08          | 2.04              | 5.8            | -0.03          | 0.96               | 5.1            | 0.01           | 0.68                                        | 5.5            |
| 1000           | -0.06          | 1.32             | 4.6            | -0.12          | 1.44              | 5.2            | 0.02           | 0.69               | 4.7            | 0.03           | 0.48                                        | 4.2            |
|                | β              |                  |                |                |                   |                |                |                    |                |                |                                             |                |
| $\overline{N}$ | $m_0 = 1$      |                  |                |                |                   |                |                |                    |                |                |                                             |                |
| 100            | 0.01           | 6.20             | 5.3            | 0.04           | 6.34              | 5.5            | 0.07           | 4.05               | 6.2            | 0.06           | 4.06                                        | 6.3            |
| 300            | -0.15          | 3.53             | 5.1            | -0.18          | 3.59              | 5.2            | -0.01          | 2.33               | 5.6            | 0.00           | 2.32                                        | 5.5            |
| 500            | 0.07           | 2.77             | 5.6            | 0.04           | 2.81              | 5.3            | -0.02          | 1.78               | 5.5            | -0.02          | 1.76                                        | 5.4            |
| 1000           | 0.09           | 1.97             | 5.9            | 0.06           | 1.99              | 5.4            | 0.01           | 1.23               | 4.3            | 0.02           | 1.22                                        | 4.6            |
|                | $m_0 = 2$      |                  |                |                |                   |                |                |                    |                |                |                                             |                |
| 100            | 0.49           | 11.19            | 6.8            | 0.56           | 11.35             | 6.5            | -0.18          | 7.56               | 5.5            | -0.17          | 7.53                                        | 5.6            |
| 300            | 0.38           | 6.24             | 5.5            | 0.37           | 6.27              | 5.0            | -0.27          | 4.37               | 5.4            | -0.28          | 4.35                                        | 5.3            |
| 500            | 0.28           | 4.74             | 5.0            | 0.26           | 4.80              | 5.5            | -0.30          | 3.43               | 6.0            | -0.31          | 3.43                                        | 5.8            |
| 1000           | 0.02           | 3.35             | 5.1            | -0.02          | 3.38              | 5.3            | -0.26          | 2.36               | 4.7            | -0.26          | 2.34                                        | 4.7            |
|                |                |                  |                |                |                   |                |                |                    |                |                |                                             |                |

Note:  $\gamma$  and  $\beta$  are the coefficients of the lagged dependent variable and the  $\mathbf{x}_{it}$  regressor given in (13). See also the note to Table C3(i).

### C4: Weakly cross-correlated factor loadings

Here we generate the factor loadings,  $\eta_{i\ell}$ , in the Monte Carlo design outlined in Section 8.1 to follow a first-order spatial autoregressive process defined by

$$\boldsymbol{\eta}_{\ell} = a\mathbf{W}\boldsymbol{\eta}_{\ell} + \mathbf{e}_{\ell}, \quad \ell = 1, 2, ..., m_0, \tag{S.56}$$

where  $\eta_{\ell} = (\eta_{1\ell}, \eta_{2\ell}, ..., \eta_{N\ell})'$ ,

$$\mathbf{W} = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 1/2 & 0 & 1/2 & 0 & & 0 \\ 0 & 1/2 & 0 & \ddots & & \vdots \\ 0 & 0 & \ddots & \ddots & 1/2 & 0 \\ \vdots & & & 1/2 & 0 & 1/2 \\ 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix}, \tag{S.57}$$

and  $\mathbf{e}_{\ell} = (e_{1\ell}, e_{2\ell}, ..., e_{N\ell})'$ . For each i and  $\ell$ ,  $e_{i\ell}$  are drawn as  $IID\mathcal{N}(0, \sigma_{e\ell}^2)$ . To ensure  $N^{-1} \sum_{i=1}^{N} Var(\eta_{i\ell}) = \frac{\kappa^2}{m_0}$ , for  $\ell = 1, 2, ..., m_0$  (which corresponds to the case of cross-sectionally independent factor loadings) we set

$$\sigma_{e\ell}^2 = \left(\frac{\kappa^2}{m_0}\right) \left\{ \frac{N}{\operatorname{tr}\left[ (\mathbf{I}_N - a\mathbf{W})^{-1} (\mathbf{I}_N - a\mathbf{W}')^{-1} \right]} \right\}.$$
 (S.58)

The rest of the parameters are as described in Section 8.1.

Table C4(i): Empirical frequency of correctly selecting the true number of factors,  $m_0$ , using the sequential MTLR procedure

 $(\sigma_{\rm v}^2 = 1, \, \kappa^2 = 1)$ 5,  $\gamma_0 = 0.8$   $T = 10, \, \gamma_0 = 0.4$  $T = 5, \gamma_0 = 0.4$ 2.  $m_0$ N AR(1) 100 99.8 95.6 99.6 99.7 99.5 99.8 99.6 86.3 300 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 500 100.0 100.0100.0 100.0100.0 100.0 99.9100.01000 100.0 100.0100.0 100.0100.0 100.0 100.0 100.0 ARX(1 100 99.9 95.6 99.9 96.6 99.6 99.8 99.5 99.8 300 100.0 100.0100.0 100.0 100.099.999.999.9500 99 9 100.0 99.9 100.0 100.0100.0 100.0 100.0 1000 99.9 99.9 100.0

Note:  $y_{it}$  is generated as  $y_{it} = \alpha_i + \delta_t + \gamma y_{i,t-1} + \beta x_{it} + \zeta_{it}$ ,  $\zeta_{it} = \eta_i' \mathbf{f}_t + u_{it}$ , for i = 1, 2, ..., N; t = 1, ..., T with  $y_{i0} = \mu_{i0} + \sigma_{i0} (u_{i0}/\sigma)$ . The factor loadings  $\boldsymbol{\eta}_{\ell} = (\eta_{1\ell}, \eta_{2\ell}, ..., \eta_{N\ell})'$  are generated as  $\boldsymbol{\eta}_{\ell} = a \mathbf{W} \boldsymbol{\eta}_{\ell} + \mathbf{e}_{\ell}$ , for  $\ell = 1, 2, ..., m_0$ , where  $e_{\ell} = (e_{1\ell}, e_{2\ell}, ..., e_{N\ell})'$ , with a = 0.4 and  $\mathbf{W}$  is specified as in equation (S.57). For each i and  $\ell$ ,  $e_{i\ell}$  are drawn as  $IID\mathcal{N}(0, \sigma_{e\ell}^2)$  with  $\sigma_{e\ell}^2 = \left(\frac{\kappa^2}{m_0}\right) \left\{N/\operatorname{tr}\left[(\mathbf{I}_N - a \mathbf{W})^{-1}(\mathbf{I}_N - a \mathbf{W}')^{-1}\right]\right\}$ . In the case of the AR(1) panel data model,  $\beta = 0$ .  $\widehat{m}$  is estimated using the sequential MTLR procedure described in Section 7.1 with  $\alpha_N = \frac{p}{N(T-2)}$  and p = 0.05. See also the note to Table 1.

**Table C4(ii)**: Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  for the AR(1) model, using the estimated number of factors, m, and the true number,  $m_0$  ( $\kappa^2 = 1$ )

|                |                         |                |                |                |                          | , ,            | ) 0 ( )        |                           |                |                |                           |                |  |
|----------------|-------------------------|----------------|----------------|----------------|--------------------------|----------------|----------------|---------------------------|----------------|----------------|---------------------------|----------------|--|
|                | $T = 5, \gamma_0 = 0.4$ |                |                |                | $T = 5,  \gamma_0 = 0.8$ |                |                | $T = 10,  \gamma_0 = 0.4$ |                |                | $T = 10,  \gamma_0 = 0.8$ |                |  |
|                | Bias                    | RMSE           | Size           | Bias           | RMSE                     | Size           | Bias           | RMSE                      | Size           | Bias           | RMSE                      | Size           |  |
|                | $(\times 100)$          | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ | $(\times 100)$           | $(\times 100)$ | $(\times 100)$ | $(\times 100)$            | $(\times 100)$ | $(\times 100)$ | $(\times 100)$            | $(\times 100)$ |  |
| $\overline{N}$ | $m_0 = 1$               |                |                |                |                          |                |                |                           |                |                |                           |                |  |
| 100            | 0.43                    | 9.46           | 5.1            | 1.35           | 12.86                    | 18.9           | -0.06          | 4.22                      | 5.8            | 0.23           | 4.70                      | 5.1            |  |
| 300            | -0.08                   | 4.99           | 5.4            | 1.03           | 9.07                     | 11.6           | 0.03           | 2.39                      | 4.5            | 0.09           | 2.43                      | 4.9            |  |
| 500            | 0.05                    | 3.68           | 3.8            | 0.97           | 7.16                     | 6.8            | -0.06          | 1.90                      | 5.5            | 0.01           | 1.88                      | 5.5            |  |
| 1000           | 0.03                    | 2.67           | 4.8            | 0.61           | 5.09                     | 4.7            | -0.02          | 1.32                      | 5.3            | 0.00           | 1.30                      | 4.5            |  |
|                | $m_0 = 2$               |                |                |                |                          |                |                |                           |                |                |                           |                |  |
| 100            | 5.11                    | 17.99          | 13.7           | 1.99           | 13.35                    | 19.6           | -0.09          | 5.10                      | 6.0            | 0.20           | 5.24                      | 5.1            |  |
| 300            | 0.30                    | 5.00           | 3.4            | 1.73           | 9.31                     | 10.7           | 0.01           | 2.84                      | 5.2            | 0.04           | 2.68                      | 4.1            |  |
| 500            | -0.01                   | 3.85           | 3.8            | 0.89           | 7.17                     | 7.0            | -0.07          | 2.15                      | 4.3            | -0.06          | 2.05                      | 4.3            |  |
| 1000           | 0.02                    | 2.62           | 3.7            | 0.44           | 4.76                     | 4.6            | 0.00           | 1.59                      | 4.8            | 0.02           | 1.44                      | 4.5            |  |

Note:  $\gamma$  is the coefficient of the lagged dependent variable given in (13) in the absence of the  $\mathbf{x}_{it}$  regressors. See also the note to Table C4(i).

**Table C4(iii)**: Bias(×100), RMSE(×100) and Size(×100) of  $\gamma$  and  $\beta$  for the ARX(1) panel data model, using the estimated number of factors, m, and the true number,  $m_0$  ( $\sigma_v^2 = 1$ ,  $\kappa^2 = 1$ )

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 |                | $T = 5, \gamma_0 = 0.4$ |                |                |                | $T = 5, \gamma_0 = 0.8$ |                |                | $T = 10, \gamma_0 = 0.4$ |                |                | $T = 10, \gamma_0 = 0.8$ |                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|----------------|----------------|----------------|-------------------------|----------------|----------------|--------------------------|----------------|----------------|--------------------------|----------------|--|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                         |                |                |                |                         |                | Bias           | RMSE                     | Size           |                |                          | Size           |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 |                | $(\times 100)$          | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ | $(\times 100)$          | $(\times 100)$ | $(\times 100)$ | $(\times 100)$           | $(\times 100)$ | $(\times 100)$ | $(\times 100)$           | $(\times 100)$ |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 |                | ,                       |                |                |                |                         |                |                |                          |                |                |                          |                |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 | N              | $m_0 = 1$               |                |                |                |                         |                |                |                          |                |                |                          |                |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 | 100            | 0.09                    | 4.30           | 5.0            | 0.22           | 4.73                    | 5.6            | -0.10          | 2.15                     | 6.4            | -0.07          | 1.54                     | 6.5            |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 | 300            | -0.05                   | 2.39           | 4.4            | -0.01          | 2.56                    | 5.1            | 0.03           | 1.20                     | 5.3            | 0.02           | 0.82                     | 3.9            |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                | 500            | 0.01                    | 1.84           | 3.5            | 0.02           | 1.93                    | 3.8            | -0.02          | 0.92                     | 5.5            | -0.01          | 0.65                     | 5.1            |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                | 1000           | -0.04                   | 1.35           | 4.5            | -0.02          | 1.40                    | 4.4            | 0.01           | 0.67                     | 5.3            | 0.00           | 0.46                     | 5.4            |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 |                | $m_0 = 2$               |                |                |                |                         |                |                |                          |                |                |                          |                |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 | 100            | 0.35                    | 4.77           | 5.7            | 0.43           | 4.98                    | 4.4            | -0.08          | 2.31                     | 5.5            | -0.05          | 1.58                     | 5.2            |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                 | 300            | 0.01                    | 2.41           | 3.4            | 0.05           | 2.59                    | 4.2            | -0.08          | 1.33                     | 5.3            | -0.04          | 0.91                     | 4.6            |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                               | 500            | 0.06                    | 1.94           | 3.9            | 0.09           | 2.11                    | 4.3            | -0.03          | 0.97                     | 4.6            | -0.01          | 0.69                     | 4.2            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000           | 0.06                    | 1.36           | 3.2            | 0.06           | 1.45                    | 3.8            | 0.02           | 0.70                     | 4.7            | 0.01           | 0.48                     | 4.1            |  |
| 100         0.00         6.01         5.5         0.06         6.18         5.3         0.09         3.97         6.3         0.08         3.98           300         -0.15         3.37         4.9         -0.14         3.44         5.2         0.01         2.29         5.4         0.02         2.28           500         0.09         2.66         5.7         0.09         2.71         5.4         0.00         1.74         5.0         0.00         1.72 |                | β                       |                |                |                |                         |                |                |                          |                |                |                          |                |  |
| 300     -0.15     3.37     4.9     -0.14     3.44     5.2     0.01     2.29     5.4     0.02     2.28       500     0.09     2.66     5.7     0.09     2.71     5.4     0.00     1.74     5.0     0.00     1.72                                                                                                                                                                                                                                                       | $\overline{N}$ | $m_0 = 1$               |                |                |                |                         |                |                |                          |                |                |                          |                |  |
| 500  0.09  2.66  5.7  0.09  2.71  5.4  0.00  1.74  5.0  0.00  1.72                                                                                                                                                                                                                                                                                                                                                                                                    | 100            | 0.00                    | 6.01           | 5.5            | 0.06           | 6.18                    | 5.3            | 0.09           | 3.97                     | 6.3            | 0.08           | 3.98                     | 6.0            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300            | -0.15                   | 3.37           | 4.9            | -0.14          | 3.44                    | 5.2            | 0.01           | 2.29                     | 5.4            | 0.02           | 2.28                     | 5.7            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500            | 0.09                    | 2.66           | 5.7            | 0.09           | 2.71                    | 5.4            | 0.00           | 1.74                     | 5.0            | 0.00           | 1.72                     | 4.8            |  |
| 1000 0.06 1.88 5.7 0.06 1.92 5.5 0.03 1.21 4.5 0.04 1.20                                                                                                                                                                                                                                                                                                                                                                                                              | 1000           | 0.06                    | 1.88           | 5.7            | 0.06           | 1.92                    | 5.5            | 0.03           | 1.21                     | 4.5            | 0.04           | 1.20                     | 4.5            |  |
| $m_0 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | $m_0 = 2$               |                |                |                |                         |                |                |                          |                |                |                          |                |  |
| 100 0.08 8.17 5.8 0.21 8.37 6.1 0.01 6.35 5.8 0.01 6.33                                                                                                                                                                                                                                                                                                                                                                                                               | 100            | 0.08                    | 8.17           | 5.8            | 0.21           | 8.37                    | 6.1            | 0.01           | 6.35                     | 5.8            | 0.01           | 6.33                     | 5.9            |  |
| 300  0.13  4.65  5.6  0.15  4.74  5.9  0.14  3.66  5.4  0.13  3.64                                                                                                                                                                                                                                                                                                                                                                                                    | 300            | 0.13                    | 4.65           | 5.6            | 0.15           | 4.74                    | 5.9            | 0.14           | 3.66                     | 5.4            | 0.13           | 3.64                     | 5.8            |  |
| 500 0.04 3.47 4.8 0.06 3.55 4.7 0.03 2.80 5.7 0.03 2.78                                                                                                                                                                                                                                                                                                                                                                                                               | 500            | 0.04                    | 3.47           | 4.8            | 0.06           | 3.55                    | 4.7            | 0.03           | 2.80                     | 5.7            | 0.03           | 2.78                     | 5.6            |  |
| 1000 -0.01 2.48 4.8 0.00 2.52 4.7 -0.04 1.99 5.2 -0.03 1.98                                                                                                                                                                                                                                                                                                                                                                                                           | 1000           | -0.01                   | 2.48           | 4.8            | 0.00           | 2.52                    | 4.7            | -0.04          | 1.99                     | 5.2            | -0.03          | 1.98                     | 5.2            |  |

Note:  $\gamma$  and  $\beta$  are the coefficients of the lagged dependent variable and the  $\mathbf{x}_{it}$  regressor given in (13). See also the note to Table C4(i).

### S.10 The case of heteroskedastic errors

The log-likelihood function in (34) can be modified to allow for time series heteroskedasticity. This involves replacing  $\sigma^2 \Omega$  by

$$E(\mathbf{r}_i\mathbf{r}_i') = \begin{pmatrix} \omega\sigma_1^2 & -\sigma_1^2 & 0 & \cdots & 0 & 0 & 0 \\ -\sigma_1^2 & \sigma_1^2 + \sigma_2^2 & -\sigma_2^2 & \ddots & \vdots & 0 & 0 \\ 0 & -\sigma_2^2 & \sigma_2^2 + \sigma_3^2 & \ddots & \vdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_{T-2}^2 & \sigma_{T-2}^2 + \sigma_{T-1}^2 & -\sigma_{T-1}^2 \\ 0 & 0 & 0 & \cdots & 0 & -\sigma_{T-1}^2 & \sigma_{T-1}^2 + \sigma_T^2 \end{pmatrix},$$

with the resultant log-likelihood maximised with respect to  $\omega$ ,  $\sigma_1^2$ ,  $\sigma_2^2$ , ...,  $\sigma_T^2$  and the remaining parameters. This extension does not pose additional difficulties, however it does impact the order conditions for identification. There are an additional T-1 new error variances to estimate and the order condition in the case of an AR(1) model, for example, becomes  $T(T+1)/2 - (T+2) \ge Tm - m(m-1)/2$ , and a larger T is required for identification when m > 0. For instance for m = 1 we need  $T \ge 4$ , and for m = 2 we need  $T \ge 6$ .

# References

Ahn, S.C. and Lee, H.Y. and Schmidt, P. (2013). Panel data models with multiple time-varying individual effects. *Journal of Econometrics* 174, 1-14.

Bai, J. (2013). Likelihood approach to dynamic panel models with interactive effects. Mimeo.

Hayakawa, K. (2012). GMM estimation of a short dynamic panel data model with interactive fixed effects. *Journal of the Japan Statistical Society* 42, 109-123.

Nauges, C. and Thomas, A. (2003). Consistent estimation of dynamic panel data models with time-varying individual effects. *Annales d'Economie et de Statistique* 70, 53–75.

Pesaran, M.H. (2015). Time series and panel data econometrics. Oxford University Press.

Pesaran, M.H. and Smith, R.J. (1994). A generalized  $R^2$  criterion for regression models estimated by the instrumental variables method. *Econometrica* 62, 705.