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Abstract

This paper proposes a transformed quasi maximum likelihood (TQML) estimator for short T' dy-
namic fixed effects panel data models allowing for interactive effects through a multi-factor error
structure. The proposed estimator is robust to the heterogeneity of the initial values and common
unobserved effects, whilst at the same time allowing for standard fixed and time effects. It is applica-
ble to both stationary and unit root cases. The order condition for identification of the number of
interactive effects is established, and conditions are derived under which the parameters are almost
surely locally identified. It is shown that global identification in the presence of the lagged dependent
variable cannot be guaranteed. The TQML estimator is proven to be consistent and asymptotically
normally distributed. A sequential multiple testing likelihood ratio procedure is also proposed for
estimation of the number of factors which is shown to be consistent. Finite sample results obtained
from Monte Carlo simulations show that the proposed procedure for determining the number of factors
performs very well and the TQML estimator has small bias and RMSE, and correct empirical size in
most settings. The practical use of the TQML approach is demonstrated by means of two empirical
illustrations from the literature on cross county crime rates and cross country growth regressions.
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1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data models where
the time dimension (7') is short and fixed relative to the cross section dimension (N), which is large.
Both generalised method of moments (GMM) and likelihood approaches have been advanced to estimate
such panel data models. See, for example, Anderson and Hsiao (1981), Arellano and Bond (1991),
Arellano and Bover (1995), Ahn and Schmidt (1995), Blundell and Bond (1998), Hsiao et al. (2002),
Binder et al. (2005) and Moral-Benito (2013). As a natural extension of the traditional two-way error
component model, the recent literature considers the case where individual and time effects are included
in a multiplicative manner.! Such a structure is termed time-varying individual effects by Ahn et al.
(2001, 2013) or interactive fived effects by Bai (2009), otherwise characterised as a multi-factor error
structure.

Main contributions to this literature include the papers by Phillips and Sul (2007) and Sarafidis
and Robertson (2009) who investigate the implications of ignoring the interactive fixed effects for the
behaviour of the fixed effects and GMM estimators, respectively.? Ahn et al. (2001) consider a single factor
error structure and propose a quasi-differencing approach to eliminate the factor, subsequently applying
GMM to consistently estimate the parameters. The quasi-differencing transformation was originally
proposed by Chamberlain (1984) and implemented by Holtz-Eakin et al. (1988) in the context of a
bivariate panel autoregression. Nauges and Thomas (2003) follow the same approach, and in addition
to prior first-differencing to eliminate the fixed effects, they also consider a single factor structure for
the errors. Ahn et al. (2013) extend their quasi-differencing approach to a multi-factor error structure.
More recently, Hayakawa (2012) proposes a GMM estimator based on the projection method to deal with
short dynamic panel data models with interactive fixed effects, while Robertson and Sarafidis (2015)
propose an instrumental variable estimation procedure that introduces new parameters to represent the
unobserved covariances between the instruments and the unobserved factors. Comments on the latter
approach are provided by Ahn (2015) and Hayakawa (2016). As an alternative to GMM, Bai (2013)
proposes a quasi-maximum likelihood (QML) approach applied to the original dynamic panel data model
without differencing, treating time effects as free parameters. To deal with possible correlations between
the factor loadings and the regressors Bai follows Mundlak (1978) and Chamberlain (1982) and specifies
linear relationships between the factor loadings and the regressors to be estimated along with the other
parameters. A survey of short 7" panel data models with interactive effects can be found in Sarafidis and
Wansbeek (2012).

Building on the work of Hsiao et al. (2002), this paper proposes a transformed QML approach
(TQML), applied to the short T' dynamic panel data model after first-differencing, that allows for in-
teractive effects in addition to the standard individual and time fixed effects. In this way we directly
address the empirical question of whether inclusion of individual and time effects are sufficient to deal
with error cross-sectional dependence in short 7' panels. Our approach also accounts for heterogeneity
of the initial values and the common factors in an integrated framework, and allows the initial values to
be correlated with the fixed effects and other model parameters. We establish the order condition for
identification of the number of interactive effects, discuss identification based on moment conditions and
the likelihood framework, and finally derive conditions under which the parameters are almost surely
locally identified. It it shown that global identification in the presence of the lagged dependent variable
cannot be guaranteed. These results can be useful for the development of QML theory in the case of more
general models. The TQML estimator is shown to be consistent and asymptotically normally distributed

'The terms individual effects and fixed effects are used interchangeably, as are the terms interactive effects and common
factors.

2For the case of panel models with interactive fixed effects when N and T are both large, see, for example, Pesaran
(2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios et al. (2011).



both for stationary and unit root cases. We also propose a sequential multiple testing likelihood ratio
(MTLR) procedure to estimate the number of interactive effects and show that it delivers a consistent
estimator of the true number of factors, and has the added advantage that it does not depend on an
arbitrary choice of a maximum number of factors as required in the large NV and T factor literature.

The theoretical results are further supported by means of extensive Monte Carlo experiments, covering
both stationary and unit root cases, showing that the methods proposed for estimating the number of
factors and the unknown parameters of the model perform well in most settings. It is also shown that
the TQML estimator compares favourably to the QML estimator of Bai (2013) and the GMM type
estimators proposed in the literature, and interestingly enough is reasonably robust to a number of
important departures from its underlying assumptions. The practical use of the TQML approach is
demonstrated with two empirical illustrations from the literature, focusing on the importance of allowing
for interactive effects in empirical analysis. The first illustration estimates a dynamic version of the panel
data model considered by Cornwell and Trumbull (1994) and Baltagi (2006) to explain the incidence of
crime across counties in North Carolina; the second illustration estimates growth regressions using the
recent data analysed by Acemoglu et al. (2019). In the case of both illustrations we find statistically
significant evidence of interactive effects, even after allowing for fixed and time effects.

Our contribution differs from Bai (2013) in a number of important respects, despite the fact that
both approaches make use of the likelihood framework. First, our procedure applies maximum likelihood
estimation after first-differencing that eliminates the individual effects, whereas Bai (2013) considers the
model in levels. Second, we assume the initial values, y;0, 1 = 1,2,..., N, follow the postulated dynamic
processes from some arbitrary initial values, thus also allowing the underlying processes to have unit roots.
Bai notes that "the initial observation y;o may or may not follow the [considered] dynamic process" but
in his analysis he follows Bhargava and Sargan (1983) and assumes (rather than derives) initial values can
be modelled as linear projections on the regressors and the factor loadings. Third, we address the issue
of identification of short 7" dynamic panel data models with a multi-factor error structure, and propose a
sequential multiple testing likelihood procedure for estimating the number of factors, topics that are not
addressed by Bai (2013).

The rest of this paper is organised as follows. Section 2 discusses the relation to the literature. Section
3 sets out the dynamic panel data model and its assumptions. Section 4 considers the quasi maximum
likelihood estimation with details of derivations given in Appendix S.3. Identification of the number of
factors and the parameters of the model are discussed in Section 5. Section 6 establishes the asymptotic
properties of the TQML estimator. Section 7 presents the sequential MTLR procedure for estimating the
number of factors. Section 8 describes the Monte Carlo experiments and provides finite sample results on
the performance of the sequential MTLR estimator for the number of factors, and the proposed TQML
estimator. Empirical illustrations are provided in Section 9. The final section presents some concluding
remarks. All technical proofs are provided in the Appendix. Details of alternative GMM estimators used
in the Monte Carlo experiments together with additional Monte Carlo results are provided in an online
supplement.

Notations: Let w = (wi,ws,...,w,) and A = (a;;) be an n x 1 vector and an n x n matrix,

respectively. Denote the Euclidean norm of w and the Frobenius norm of A by [|w]| = ( ?le?)l/ ? and
|A] = [tr(A’ A)]l/ ? respectively, and the largest and smallest eigenvalue of A by Apaz(A) and Apin(A).
If {yn},2, is any real sequence and {z,} 7 is a sequence of positive real numbers, then y, = O(z,)
if there exists a positive finite constant K such that |y,|/z, < K for all n. y, = o(xy,) if yn/xn — 0
as n — oo. If {y,}-2, and {z,},2, are both positive sequences of real numbers, then y, = & (z)
if there exists Ny > 1 and positive finite constants Ko and K; such that inf,>n, (yn/2n) > Ko and
SUP,> N, (Yn/Tn) < Ki. Positive, possibly large, fixed constants will be denoted by K, Ko, Ki and so
on, that could take different values in different equations. ¢, ¢pin and cmax will also denote positive fixed
constants. Small positive constants will be denoted by €. Fy(.) denotes expectations taken under the true
probability measure. —, and %3 denote convergence in probability and almost sure (a.s.) convergence,



respectively. —, denotes convergence in distribution for fixed 7" and as N — oc.

2 Related literature

For the purpose of relating our approach to the literature we start with a simple dynamic panel data
model with a single common factor and abstract from fixed effects. Adding more factors and fixed and
time effects does not materially change the narrative. Specifically we consider the simple dynamic panel
data model

Yit = VWYit—1 + Bxi + Nift + e, fort =1,2,3,...,T,i=1,2,..., N, (1)

where x;; is strictly exogenous, such that F(zye;p) = 0 for all ¢,j,t and ¢'. It will be assumed that \;
and x; are uncorrelated and have zero means, namely E(x;) = 0, E(\;) = 0, and E(x4)\;) = 0, for all ¢
and t. These assumptions are made to simplify the derivations of rank conditions for identification and
are not needed. The key assumptions are that conditional on f;, (yit, i+ and €;;) are cross-sectionally
independent, and f; # 0, for some ¢, in addition to z;; being strictly exogenous. e;; ~ I1D(0, 012), with
sup;(0?) < Cmax < o0, and inf;(07) > cmin > 0. Also for the purpose of illustration we assume the initial
values, y;0, are obtained by projection of ;o onto x; = (x;1, T2, ..., z;7)" and fy, and assume the following
data generating process (DGP) for y;o:

Yio = ToX; + Nifo + v, i=1,2,..., N, (2)

g
Since T' is short, how initial values, y;o for i = 1,2, ..., N are generated play a crucial role in identification
and estimation of the unknown parameters of interest, namely v and (.

There are two main approaches to identification and estimation of v and 8. The first one builds
on the pioneering contribution of Holtz-Eakin et al. (1988) and employs a quasi-differencing procedure
to eliminate the factor loadings, \;, viewed as nuisance (incidental) parameters. The second approach
advanced by Bai (2013) treats \; as free parameters and estimates them together with the factors, fi,
and the parameters of interest using the maximum likelihood approach. In what follows we consider
these two approaches and highlight their main underlying assumptions, and discuss their relations to the
transformed quasi-ML approach that we propose in this paper. With this in mind we also introduce a
new GMM method which treats the factors, f;, as given constants and avoids the incidental parameter
problem by conditioning on

where v; ~ I1D(0, a%v) is distributed independently of {e;, t =1,2,...,T} and a?vv could differ from o2

N
dy(A) = N"1Y N (3)
1=1

rather than the individual factor loadings, \;. The limiting value of dx(A) as N — oo, depends on the
degree of pervasiveness (strength) of the factor. In general we could have SN | A2 = &(N®), where a
measures the strength of the factor. When the factor is strong o = 1 and lim .o [dy(A)] = d(A) > ¢ > 0.
But when the factor is not strong (o < 1) lim y—00 [dn(A)] = 0. It is typically assumed that o = 1, but
it is also of interest to consider the possibility of weak factors and their implications for identification
and estimation under different estimation approaches. We shall also see that once we allow the initial
values to depend on the loadings, \;, for consistent estimation of « all the methods we consider require
the orthogonality assumption

E (Xigit) =0, for all ¢ and . (4)

In their more recent contribution, Ahn et al. (2013, ALS) consider a multi-factor panel regression
where they allow a subset of the regressors to be weakly exogenous, and use lags and leads of the strictly
exogenous regressors as instruments for the weakly exogenous variables (see Section 3.2 of ALS). As a
result, their set up does not apply to a pure dynamic panel data model without any exogenous regressors.>

3 ALS do not consider dynamics in their Monte Carlo experiments either.



It is, therefore, important that the properties of the GMM approach are specifically investigated for the
dynamic specification in (1). In what follows we consider two alternative approaches considered in the
literature to eliminate the factor loadings.

2.1 Quasi-differenced GMM estimator

The quasi-differencing idea was introduced by Holtz-Eakin et al. (1988) and has been adopted in the
literature by a number of authors. Eliminating the incidental parameters \; from (1) by quasi first-
differencing yields:

Yit — btyz‘,t—l =7 (yz}t—l - btyi,t—Q) + 3 (xz‘t - btl’z‘,t—l) + v, fort =2,3,...,T, (5)

where
Vit = Eit — bt5i7t—1 (6)
and by = f;/fi—1. The values of b, for t = 2,3,...,T are treated as given unknown constants to be
estimated along with v and 8. Note that b; is invariant to the scaling of f;, and the importance of the
unobserved factor, f;, is determined by dy () defined by (3).
Using (5) we note that under the strict exogeneity assumption we have

FE (:L'isyit) =F [-"L'is (Eit — btgi,tfl)] =0fort=1,2,....,Tand s=1,2,..,T,

and no further assumptions concerning the factor loadings are required. But when § = 0, we need to use
yio and y;1 as instruments and for these to be valid, we also require that

E (Niei) =0, for all ¢ and ¢.
To see this note that (recall that yo = w(x; + Aifo + vi, with x; = (@41, Zi2, ..., Tir)’)

E (yiovit) = FEl[yio (et — bigig—1)], fort =2,3, ...
= E[(moxi + Nifo+vi) (gt — bgiz—1)] = foE [Ni (€t — breip—1)] -

Therefore, in general where fy # 0, it is required that E (Aigi) = biE (Nigj+—1), which will be met for
all values of b; if E (\je;r) = 0, for all ¢. This condition is also required when we consider using y;; as an
instrument. In what follows we assume that E (A\;e;1) = 0, holds.

For illustrative purposes we focus on the relatively simple case where T' = 3, and assume the available
observations are (Yo, Yit, Tit, t = 1,2,3;4 = 1,2,...,N). Let z; = (yi0, Yi1, Ti1, Ti2, Tiz)' = (W}, x})" be
the set of instruments under consideration and write the moment conditions as E [my (6y)] = 0, where
0 = (v,3,b3), bs = f3/f2, fo # 0, B is the true value of 8, and

N
my (6) = N"") zi5(0). (7)
=1

Note that under quasi-differencing fo # 0 and E (A\;e;z) = 0 are the necessary conditions for identifi-
cation. There are also other moment conditions that could be used. For example E (yovs2) = 0, and
E (zisvi2) = 0, and F (z;5v41) = 0, for s = 1,2,3. But including these moment conditions involve the
additional parameters, b1 and by and do not materially impact the nature of the rank conditions needed
for identification of v and .
We first note that

vi3 (0) = iz — (b3 + ) yiz + b3yyi1 — Bxiz + b3 w40, (8)

from which it follows immediately that when § = 0 it will not be possible to distinguish between v and b3,

and these parameters are not identified. Notice also that in this case considering the additional moment
condition E (yiovi2) = 0 yields

E {yio [yi2 — (b2 +7) yi1 + b2ayyio — Bxiz + bafzir]} =0,



and when 8 = 0, again we have the same identification problem - we are only able to consistently estimate
ba + v and b, and further a priori information is needed to distinguish between v and bs. For example,
if it is known that |y| < 1 and we end up with two estimates one inside and another outside the unit
circle we could then use the small root to represent +.

Another possibility would be when it is known with certainty that 8 # 0. In such a case it is possible
to estimate v by GMM subject to the usual rank conditions. In the present application it is required
that the 5 x 3 matrix D and the 5 x 5 matrix S defined by

a“gvg,(e) —, D, and Nmy () mly (6) —, S,

are both full rank for all & € R3. Details of the derivations of D and S are provided in Section S.2 of
N

the online supplement, where it is shown that S is positive definite so long as X, = N1 Z'—1 XX, 18

a positive definite matrix.* Also it is shown that

q fofad(X)  wpZas(es — beg)
D=- q2 (vfo + f1) fad(X) 7 Byp(e3 —bea) |,
29&1’ [(’y — b)’Tl'l + ,862] 0 21’1‘(63 — beg)

where e, is a 3 x 1 vector of zeros except for its st element which is unity,

G = W [(y — b)w1+ Bea] + fol(y = b) (vfo+ f1) + Sl d(X) + (v — b)5?,
@ = T Ea (v~ b)ms + Bea] + (vfo + f1) [(v = b) (vfo + 1) + 2 dA) + (v = b) (1 +192) 72

71 = ymo 4 Ber, 32 = Im y oo N 'Y 02, and d(A) =lim y oo N7 32N A2 Tt is now clear that D
does not have full rank for all values of @ € R3. For example, as anticipated earlier, D becomes rank
deficient when d(A) = 0, namely if the common factor, f;, is not strong. Even when d(X) > 0, the rank
condition fails if fo = fi = 0. Recall that the validity of the moment condition (7) only requires that
f2 # 0, and is silent regarding the values of fo and f;. We have already seen that there is an identification
problem when § = 0. The D matrix for this case is given by

D—_ ( folly =) (vfo + f1) + fo d(N) +~(y — b)5” fof2d(X) >
( d(X) + '

vho+ f1) (v = b) (vfo + f1) + fol dA) + (v —=b) (1 +72) 5% (vfo+ f1) f2d(N)

It is easily seen that [D| = —d(A)&%(y—b) (vf1 — fo) f2 which could take zero values for v = fo/f1 and/or
v =b= f3/fs even if f; # 0 for t = 1,2,3 and the factor is strong, namely d(\) # 0. In short, there is
no guarantee that the minimand for the quasi-differenced GMM estimator will have a unique solution.

2.2 Ahn et al. (2013) GMM approach

Ahn et al. (2013) use a different normalisation to eliminate the factor loadings, A;. In the case of a single
factor model their approach reduces to using the normalisation fr = 1 to eliminate the factor loadings,
Ai. It is implicitly assumed that fr is known a priori to be non-zero. In the case of the application
considered above (with 7' = 3), setting f3 = 1 yields A\; = yi3 — yyi2 — Bxi3 — €i3, and we obtain (assuming
f2 #0)

Yie = VYi1 + BTiz + fa (Yis — VYiz2 — Briz — €i3) + €i2,

that can be written equivalently as (with a = 1/ fs)

vi3(Y) = €iz — agiz = yiz — (@ + Y)yiz + yayn — (ziz — azi2) B

4To simplify the notations in deriving D we have assumed that cr?’v =02,



which has the same form as (8), with ¢ = (v, a, 3)’. So long as the same a priori information is imposed on
whether f; are zero or not, the manner by which J; is eliminated is non-consequential. As an alternative
normalisation suppose that we set fo = 1, and use

Ai = Yi2 — VYi1 — BTiz — €2,
to eliminate \; from the equations for y;3, for ¢ =1,2,..., N. Then

Vi3 = VY2 + Bxiz + f3 (yi2 — YYi1 — Bxi2 — 5i2) + €3,

and not-surprisingly we again arrive at (8) with bs = f3. Therefore, the same identification issues
discussed above in relation to the quasi-GMM approach would also apply to the ALS type normalisation.

For the set of nonlinear moment conditions proposed by Ahn et al. (2001, 2013), Hayakawa (2016)
shows that these do not always satisfy the global identification assumption which is necessary for consis-
tency of GMM estimation. He further shows that the same problem occurs for the moment conditions
proposed by Robertson and Sarafidis (2015) and Hayakawa (2012), since their moment conditions be-
come identical to those of Ahn et al. (2001, 2013) in some cases. The results are demonstrated for the
ALS model y;; = B'xi + )\; ft + €t where z;; is allowed to include a lagged dependent variable y;¢—1.
It readily follows from his results that for the case of a pure dynamic panel model with no additional
regressors, a quadratic equation in « arises leading generally to two solutions for v and could lead to
global identification failure.

2.3 Likelihood approach Bai (2013)

The likelihood method advanced by Bai (2013), instead of eliminating the factor loadings, treats \; as
random variables. He considers both cases, when A; are distributed independently of the regressors as
well as when they are modelled as linear functions of them, with the errors distributed independently over
i. He proposes two estimation approaches one where he follows the approach of Bhargava and Sargan
(1983) and models the initial values in terms of cross section averages of the regressors, independently
of the dynamic processes generating y;+ for t = 1,2,...,T and another conditional on the initial values,
yi0.> When T is short Bai motivates and formulates the likelihood by treating the factor loadings as
random and estimates their sample variance matrix to avoid the incidental parameter problem, which
is what we propose to do in this paper as well. However, we differ from Bai in two respects. We
explicitly model fixed effects and work with first differences of the panel regression model, thus allowing
for arbitrary correlations between fixed effects and the regressors, whilst under Bai’s approach the fixed
effects are implicitly treated as random or are assumed to be linearly correlated with the regressors a
la the Mundlak-Chambelain projection device. We also provide a more general treatment of the initial
values that explicitly relates Ay;1 = ;1 — yi0 to the unobserved past history of the dynamic panel under
consideration that allows for initialisations from a finite past as well as unit roots. In addition we establish
the condition under which the Mundlak type linear projection can be justified for the dynamic panel data
model. Furthermore, we allow the regressors to share one or all of the latent factors that drives y;;. It is
also perhaps worth noting that Bai does not provide any proofs for the short T' case, and simply states
that "the standard theory of the quasi-maximum likelihood applies". He also simply states that 8 and
~ are identified subject to an order condition without considering whether the related rank condition is
also met. See Section 4.1 of Bai (2013). In contrast, we provide a detailed analysis of the identification,
estimation and inference problems whilst also allowing for interactive effects in the process generating
the regressors. Lastly, Bai does not provide a method for selecting the number of factors when 7' is fixed
as IV tends to infinity.

"When T is fixed and N — oo, the conditional likelihood approach is applicable only when the initial values, yi0,i =
1,2,..., N, do not depend on ~ and/or 3.



With regard to accommodating fixed effects, under the method of Bai (2013) the unit-specific intercept
is absorbed in the interactive factor part and treated as another factor to be estimated, so that the number
of factors in this case is m = m + 1. In the dynamic AR(1) panel data model, for example, where the
process has started in the distant past, the unit-specific intercept does not imply that fi; = 1 for all ¢,
but fig =1/(1—+) whilst fi; =1, for ¢ = 1,2.... This has bearing on what normalisation can be validly
imposed on f1;, for,..., fme for t =0,1,...,T, as discussed below. When x; is included then other issues
arise relating to the past values of x;; for t = —1,—2,... that need to be resolved; another issue that
Bai (2013) does not address explicitly, but simply assumes a process for y;0. Moreover, by treating unit-
specific intercepts as a factor, Bai’s approach requires the use of the Mundlak-Chamberlain projection
device to account for possible correlation between the corresponding loadings (the fixed effects) and x;,
and rules out the unit-specific intercepts to be spatially correlated and/or heteroskedastic, which could
be restrictive and renders Bai’s approach inconsistent. Some small sample evidence on the adverse effects
of spatially correlated fixed effects on Bai’s QMLE is provided in Section 8.2.3.

To illustrate the issue of normalisation, consider the panel AR(1) model

Yit = o + YYit—1 + Bxit + >\th + it for t = 172737 "‘7T7i = 1727 7N

To simplify the analysis suppose that |y| < 1, ;s ~ IID(0,0?%), sup, | f_s| < K, and that {y;} has started
in the distant past. Then

Q5
L=~

Yio = + A Z?io Y fos+ Z?io 755i,—s-

Suppose that > 22 7°f-s = f¢ exists (this follows if |f§| < K). Then
o4
L—n

Yio = + Nifo + v,

where v; = 320 v%e; s, and Yo o v* fos = fi. Also, E(v;) =0, E(v?) = 125 =w? For T =3

[3 1 0%
a; .
vio = 7 _17 + Xifo +vi
Vit = Yo +oi +ANift +en
Yz = YY1+ o+ Nifo+ e
Yis = Y2 + i + A fs + €i3.

Bai treats the above model as a two factor model with £ = (f1¢, for)', Ai = (Mi1, Ai2)’ = (i, \;)" where

fio fa 1/(1=7) f5
fi1 fa 1 f1
F=| fiz fo |= 1 fo
fl.T f2.T 1 f.T

In this application the identification restrictions used in Bai (2013), namely F* = (I, F,)" which sets
fio = 1% =1, fi1 = foo = 0, and fo; = 1, imposes an invalid restriction on the first column of F. To
impose valid identification restrictions, a priori knowledge regarding the presence of individual-specific
effects and the initialisation of {y;:} are needed. It is easily seen that adding time effects does not alter
the above conclusions.



2.4 Bias-corrected method of moments

Bai’s short T log-likelihood approach and the transformed quasi maximum likelihood (TQML) proposed
in this paper estimate the moments of the factor loadings, A;, instead of eliminating them. To illustrate
how the two approaches are related, as with the likelihood approaches we derive moment conditions
without first eliminating A\;. We refer to this as the bias-corrected method of moments as in Chudik and
Pesaran (2021). For the purpose of illustration and without loss of generality we abstract from exogenous
regressors and focus on the simple case where § = 0 and 7o = 0, and set 7" = 3. Using (1) and (2), under
the orthogonality condition given by (4) we have

N
E N yio (i — 'Yyi,tl)] = foftE[dn(N)], for t = 1,2, 9)
ZZlN N
E|[N7! Z (yir — fyyi,t_l)2] = fPE[dv A+ E (Nl ZE%) , fort =1,2 (10)
i=1

i=1
where dy () is defined by (3) and®

N

NS (ya = vwio) (viz — ’Yyﬂ)] = fif2E[dn(N)]. (11)

=1

E

Assuming further that F(e%) = o2, then E <N‘1 SN 5?,5) = 5%, and using (10) we have

N N
E|INT (2 — i) = N> (ya — ’sz'o)zl = (f3 = 1) Eldn(N)]. (12)
i=1 =1

The four moment conditions (9), (11) and (12) can now be used to estimate 7. To this end it is useful
to distinguish between strong and weak factor cases, namely when dy(A) —d > 0, and dy(\) —0,
respectively. When the factor is weak we have

N
lim yoo B | N1 Zyio (yir — ’sz‘,t—l)] = 0, fort=1,2
i—1
N
lim N oo [N (yin = vwi0) (yi2 — ’Y@/il)] = 0,
=1

and these moment conditions can be used to uniquely identify v, even if E(¢?) # E(¢%). This result is
in contrast to the quasi-differenced GMM approach that breaks down under a weak factor scenario.
When the factor is strong, dx(A) >0, we need to use a normalisation since A; (or dx(A) in the present
context) can not be identified from f;. Here it is convenient to set fo = 1 and eliminate dx () from (9),
(11) and (12) to yield
E [N—l S wio (a2 — 'Yyil)} fa 1

E [N_l Zz‘JL yio (Yi1 — fyyio)} A A

i

and

L [N_l Zﬁ\; (Yiz — 7?/11)2 - Nt Zf\; (yir — 7%0)2} _ f22 _ f12 _ 1 f12'
E [N_l Yy (i — o) (yi2 — vyﬂ)} fahr fi

SWe also have F (Nfl Zi\;l yizo) = feE[dn(N)]+E (Nf1 vazl vf) . But since in general F (’U%) +F (Uft) this moment

condition does not help with identification of .



Further eliminating f; we obtain
E|NTISN (yio —vya)” — NN (g - ’sz‘o)z}
E|N-! Zﬁil (yi1 — Ywio) (Yi2 — 72/1‘1)}
[A7—1 N 1N
E N7 70 vio (yi2 — ’Yyﬂ)] E {N > sy Yio (yin — ’sz‘o)]

E|N-TYN o (yia — Vyio)] E [N*I SN yio (yio — wm)]

which can be used to estimate . But there is no guarantee that the real solution to the above moment
condition will be unique.

3 The dynamic panel data model

In this paper we consider a multi-variate and multi-factor version of (1), but explicitly allow for fixed
and time effects. Although, as noted by Bai (2013) and others, heterogeneous individual effects can
be implicitly allowed for in interactive factor models, standard GMM and likelihood approaches require
such effects to be uncorrelated with the errors. See the orthogonality condition given by (4). But in
practice most researchers start with panel data models with fixed effects, where such effects are allowed
to have non-zero correlations with the errors and the regressors. Finally, by starting with a standard panel
data model our estimation strategy enables the researchers to investigate the importance of allowing for
(additional) interactive effects for their empirical analysis.

Accordingly we consider the following standard dynamic panel data model with time and fixed effects

Yit = Oy + 52& + 'Yyi,tfl + IB/Xit + 'I’];ft + Uit fOI‘ t= 1a 27 ceey T7 and i = la 2’ ceey N7 (13)

where x;; is a k x 1 vector of regressors that vary both across i and ¢, |y| < K, B is a kx 1 vector of unknown
coefficients, with ||8|| < K, and K denotes a finite positive constant. «; and d; denote unit-specific fixed
effects and time effects, respectively. f; = (fit, fat, - fmt)', an m x 1 vector of unobserved common
factors, and 1; = (;1, M2, - Nim )’ » @0 m X 1 vector of associated factor loadings, with w;; denoting the
remaining idiosyncratic error terms. This specification includes a number of models considered in the
literature and reviewed in Section 1 as special cases. It also provides a direct generalisation of Hsiao
and Tahmiscioglu (2008) who consider estimation of (13) with /1D errors using the transformed MLE
procedure. The explicit inclusion of time effects, d;, in the model also allows us, without loss of generality,
to assume the factor loadings, n;, have zero means. Note that §; + nif; can be written equivalently as
Aify, where m; = A; — A, and §; = N'f;, where A =E(X\,).

We consider T to be fixed, and allow N — oo, under which the unit root case where |y| = 1 is also
covered. It is assumed that the observations {vo, yit, Xit, for t = 1,2,...,T;i = 1,2,..., N} are available for
estimation of v and 3, which are the parameters of interest. We propose an extension of the transformed
MLE by treating the unknown factors as fixed parameters to be estimated for each ¢, but assume the factor
loadings to be random and distributed independently of the errors, u;;. In addition, we contribute to the
analysis of identification of short T" dynamic models with a multiple factor error structure, and derive
order conditions for identification of m and the parameters of interest, v and 3. Initially, we develop our
proposed estimation method assuming that m is known, and consider the problem of consistent estimation
of m in Section 7.1.

We make the following assumptions:

Assumption 1 The idiosyncratic errors, uy, for i = 1,2,...., N are distributed independently across i
and over t with zero means and constant variance, o2, such that 0 < 0? < K, and sup; , B/ |uit\4+6 < K.



Assumption 2 The time effects, 6;, fort = 1,2,...,T, and the m x 1 vector of factors £y, vary across
t, so that dy = Ady # 0 and g = Afy # 0 at least for some t =2,...,T, m < T, and sup, ||g:|]| < K and
sup, |d¢| < K. For a fixed T, 6; and g, fort =1,2,....,T are taken as fized constants.

Assumption 3 The unobserved m x 1 factor loadings, m;, for i = 1,2,..... N are distributed indepen-
dently of uji, for alli, j and t, and are independently and identically distributed across i with zero means,
and a finite covariance matriz, namely, n; ~ 11D(0,82,), where 2, is an m X m symmetric positive
definite matriz with ||Q,| < K and sup; E | ]I*T€ < K.

Assumption 4 The unit specific fixed effects, «;, for i = 1,2,...., N are allowed to be correlated with
Xjt, M, and wje, for all i,j and t, and could be deterministic and uniformly bounded, sup; || < K, or
stochastic and uniformly bounded, sup; E |o;| < K.

Assumption 5 The first-difference of the regressors, Ax;:, for i = 1,2,..... N follows the multi-factor
model
Ax;p = (5%15 + Ei,a:ga:,t + v, forallt=...—2,—-1,0,1,2, ..., (14)

where v (the idiosyncratic component) follows the general linear stationary process vi; = Z;io Wieii—j,
Ozt s a k x 1 vector of time effects, gzt = (9uits Yu2ts > Jumat) 1S @ Mgy X 1 vector of common
factors, E; , = (nil’x,nﬂ,x, -"777i,mz,:c) is a k X my matriz of loadings, with n;;, a k X 1 vector as-
sociated with the % factor 9z,jt, ¥j for 3 = 0,1,... are k X k matrices of fized constants such that
> izo 1]l < K, sup, E|[654]| < K, and sup;; E'|gsjt| < K. Furthermore, conditional on the common
factors, E; 5 is distributed independently over i, and of n; and wyy for alli,t, and t', E (nijyx |.'Z§7g) =0,

E <77ij,ac77;'j/7x |I(5,g) = Vj Zf.] = j, and B (nij,xn;j/’m |I§,g> =0, where I§,g = (dx,T’ ax,TfL 6I7T,2, ey 82,7

. . 4+€ .
82, 7—-1,8x,T-2 ) fOT a’”j 7é j, = 17 27 ooy My, Supi,j E ang,xH < K: Eit ~ IID(()? Ik:) with Supi,t E Hsit||4+€
< K for some small € > 0, and e are distributed independently of g4, 8z v, wjy for all i,j, t and t'.

Remark 1 The time effects and factors in the Ay and Axy equations, namely Ady # 0, g, 6. and
8a.t, are assumed to be draws from stochastic processes, but the analysis is carried out conditional on given
values of dy = Ady # 0, g, 0,4 and g, over the estimation sample t = 1,2,...,T. As it is standard
in short T panels, d; and g, for t = 1,2,...,T are treated as free parameters and estimated subject to
suitable normalisation restrictions. But for the derivation of the initial values, Ay, for i =1,2,..., N,
we require the time effects and factors for t < 0 to follow stable processes so that the distribution of Ay,
conditional on the observed values, {Ay; and Axyy, fort =1,2,....,T}, can be obtained.

Assumptions 1, 2 and 4 are standard in the literature on short 7" dynamic panels. Assumption 1 can
be relaxed to allow for time series heteroskedasticity so that Var(u;) = o2, as shown in Section S.10 of
the online supplement. Bai (2013) allows for time series heteroskedasticity while the GMM framework
of Ahn et al. (2013) accommodates heteroskedasticity and/or serial correlation in a static model. In
our context, serial correlation in the idiosyncratic errors can be entertained by allowing for a higher
order autoregressive model. Assumption 2 is innocuous and requires time effects and the factors to be
time-varying, otherwise they can not be distinguished from the fixed effects. Note that the case where
d; = 0 and/or f; = f for all ¢ is already covered by the presence of the fixed-effects, a;. Assumption 3
imposes strong restrictions on the distribution of the factor loadings, n;, and is required for identification
of the factors and the parameters. Ahn et al. (2013) entertain the same assumption for their factor
loadings, which they treat as random alongside the factors which are taken to be fixed parameters. This
assumption could be somewhat relaxed as noted in what follows. In contrast, Assumption 4 does not
impose any restrictions on the fixed effects, «;, and allows them to be correlated with the regressors
as well as with the composite errors, ;. In this way, as noted above, our model specification can be
viewed as a direct generalisation of the standard time and fixed effects models considered routinely in
the empirical literature.
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As noted above, our specification also differs from the one considered by Bai (2013) and Ahn et al.
(2013) who do not model the fixed effects explicitly but assume that the fixed effects can be captured
implicitly through the interactive effects, for example, by setting fi; = 1. In the context of our set up,
following this line of reasoning leads to a random coefficient specification, which is likely to be restrictive
in practice. Bai (2013) does consider the possible dependence of 7;; on the regressors, using the methods
of Mundlak (1978) and Chamberlain (1982), whereby it is assumed that the random components of «;,
namely 7;,;, is given by

T
N = E:b;5 [xit — B (x4¢)] + €n,y, fori=1,2,..., N, (15)
t=1

where (b}, b5, ...,b%) is aTk x 1 vector of coefficients to be estimated and &,, are mean zero cross-

sectionally independent random variables distributed independently of u;,s for all 4, j, and ¢'. This speci-
fication ensures that E (n,;;) = 0, as required, but depends on E (x;;) which is unobserved. To make this
scheme operational it is typically assumed that E (x;) is fixed so that it can be absorbed in an intercept.
But in the more general context where x;; could be non-stationary, the use of the Mundlak scheme as
applied in (15) directly to x;; could be problematic. The quasi-differenced GMM approach also allows for
correlation between the regressors and the random factor loadings. In our context, possible correlation
between m); and the regressors Ax; can be dealt with using the Mundlak device as set out above for the
case of fixed effects, but applied to Ax;.”

Assumption 5 provides a general linear multi-factor time series specification for Ax;;. This is done for
convenience. We could have equally started with a model for x;;. This assumption postulates that Ax;
is composed of three components, a k x 1 vector of time effects, 4, ;, a multifactor component with m,
common factors, g, ;, and a stationary component v;; which is assumed to be cross-sectionally indepen-
dent. The assumption that the factor loadings, n;; ., 7 = 1,2, ..., m, have zero mean and are uncorrelated
over j is made for convenience, and can be relaxed without any consequences for the subsequent analysis.

Remark 2 Our assumptions require u;y and v to be uncorrelated which rules out classical simultaneity
and measurement errors. The assumption that u; and vy and their factor loadings, n; and E; ., are
independently distributed can, however, be relaxed by considering a vector autoregressive version of (13),
where zi = (yit,x};)" is modelled jointly as in Holtz-Eakin et al. (1988) and Binder et al. (2005).

Finally, while the composite error term, (;; = n,;'f; + u;, in (13) is cross-sectionally heteroskedastic
through the presence of the interactive effects, allowing explicitly for the same in the idiosyncratic error,
u;t, can be pursued along the lines of Hayakawa and Pesaran (2015). These authors extend the cross-
sectionally independent homoskedastic idiosyncratic errors of Hsiao et al. (2002) to the heteroskedastic
case. These extensions are not considered here as they are beyond the scope of the present focus of the
paper.

We follow the standard practice and eliminate the fixed effects by application of the first-difference
operator to both sides of (13):

Ay = YAy -1 + B'Axi + dp + gim; + Ay, for t =2,3,....,T; i =1,2,..., N, (16)
where d; = Ad; # 0 and gy = Af; # 0 for some ¢ > 2, and
git = gllflrlz + Auita for t = 273a 7T (17)

For ¢t =1 (16) is not defined as Ay;; depends on the unobserved Ay, which in turn depends on the
past history of the regressors, Ax; for ¢ < 0 which are not observed. To derive the joint probability

"Though we do not pursue this idea in the present paper, we do investigate the effect of such correlations on the proposed
TQML estimator in our Monte Carlo experiments, where we also consider the effect of weakly correlated factor loadings.
Our findings suggest that neither of these have a significant impact on the results.
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distribution of (Ay;1,Ayi2, . . . ,Ayr) the process generating Ay;; in terms of the available observations
is also required. For this purpose we need to specify the data generating process of Ax;;, which we do
under Assumption 5, as well as the initialisation of Ay; _g41, for some S > 0, which we formalise in the
following assumption.

Assumption 6 Suppose that for each i, {Ay;} is started from time t = —S + 1, for some S > 0, with
the nitial first differences, Ay; _s4+1, as random draws from a distribution such that

E(Ay;—s+1|A%4,154) = as + W%AXZ', (18)

where Ax; = (Ax}y, AXly,...,AX ;) is the kT x 1 wvector of observations on the regressors, Is, =
(027,057-1,027-2, 827, 8o T—1,8xT—2,---), as is a fized coefficient that allows for non-zero means,
and g is the KT x 1 vector of coefficients, such that supg |as| < K, and supg ||7ws| < K. Furthermore,
let w; = Ay;—s+1 — E(Ayi—s4+1|A%4,Z5,4), and suppose that w; ~ IID(0,062), 0 < 02 < K, and
} 4+-€

sup,; E |w;|"" < K.

Equation (18) can be viewed as a linear projection of Ay; _g41 on the observables, Ax;, and allows
the initial values, y; —s and y; —s+1 to depend on the fixed effects, «;, as well as other parameters. Also
it is redundant if |y| < 1 and S is sufficiently large, and does not apply if there are no regressors in (13).
The main restriction here is the assumed linearity of (18). One can think of Assumption 6 as "implicitly"
using Mundlak-type projections for Ay; —g41. Using first differences allows us to make less restrictive
assumptions about «; to the extent that such assumption implicitly involves a;.

It is possible to dispense with Assumptions 5 and 6 by postulating a model for the initial first-
differences, Ay;1, similar to what we assumed for y;o in our discussion of the GMM approach (see equation
(2)). Under the GMM approach, the moment conditions take the initial values y;o (or Ay;1), as given.
But as we have seen a model for the initial values is required if we are to check the validity of the rank
condition typically assumed when the GMM approach is used in the literature.

3.1 Modelling initial values

Given the above assumptions, we can now derive an expression for Ay;; that depends on the observables
and the unknown parameters only. Using (16), and starting from some arbitrary point in the past at

t=—5+1 with Ay; _s41 as given we obtain the following expression
S—1 ' _ S—1 '
Ayin =7 Ayi -1+ Y VB A1+ di+ &y + )y A, (19)
j=0 j=0

where d; = 25;01 Ydy—j, and g1 = Zf;ol 7Igi—;. In the case of models without regressors Ay;; is fully
determined under Assumptions 1 to 3. But when the model includes regressors and S > 2, the distribution
of Ay;1 also depends on the k (S — 2) x 1 vector of past observations AxY) = (Ax/, Ax£~7_1, ey Ax;’fs%)’,
not available to the researcher. To deal with this missing observation problem, Hsiao et al. (2002) propose
back-casting these missing data points from Ax; which is observed. Following a similar procedure, we
first note that under Assumption 6

My Mz
Ax) = 6) + Z (gg,j ® m‘j,w) +vY, and Ax; =, + Z (82 ® mj,:c) + vi, (20)
= j=1

/
0 _ (8 / ! I &0 . . ) / 0 _ / / /
where 6, = (850,05 1,0, _g43) 185 = (92,4,0, 92.j.~15 -+ Yo, —5+3), and v = (Vz'()?Vi,fl? "'7vi,75+3> )

s _ / / ! _ / _ / / ARV
and similarly 6, = (81,059,-0,7), 825 = (92,51, Gz.j2s - Gugr)’s and vi = (Viy, Vig, ..., Vip). Also
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E (AXY) = 682, E (Ax;) = §,, and using linear projections, we have®

E (AX) |Ax;) = 60 + Q01977 (Ax; — 6,) (21)
where
Q= Z (8.8, © Vi) + E (vivi), Qo1 = Z (ggnggyj ® V) + E (viv]).
Jj=1 j=1

Since v;; is a stationary process with zero means and variance-covariances that do not depend on i, it
then readily follows that E (v;v}) = @, 1; and E (v?vg) = Q, 01 that also do not depend on i. Now using
(21) along with (18) we have

S—1
E ’YSAyi,—S—H + Z ’yjﬁ'Axi,l_j |IAx; | = a+ 7' Ax;, (22)
§=0
where a and 7 are fixed parameters that are complicated functions of v and 3, the parameters of the x;;
process as well as the parameters of the initial values. Now let

S—1 S—1
Xi = |V AYi—s+ Y VBAR | = E | YAy s+ Y VB Axia - |A%;, Ty (23)
=0 =0
5-1
= 7 [AYi 51— E(Ayi—s41|18%;,T5,4)] + 8 Z Y [A%x1-5 — E(Ax;1-5 [A%4, Ls 6)] s
=0

and note that under Assumption 6 Ay; _s41—F (Ay; _s+1|A%,Z54) = w; ~ II1D(0,0%), and sup; E ]wi\4+€ <
K. Also, under Assumption 5

Axi1-j — E(A%i1- [A%,T54) = [Eig — E(Eig |A%i,Zs5)] 81— + Vii—j — B (vin—j |A%,Zs )
= Ei281-j + Vii—j,
and overall
S—1
Xi =7 @i+ 0 Z ¥ (Biz8u1—j + Vii—j) -
j=0
Therefore, {x;} is a sequence of cross-sectionally independent random variables with zero means. Also in

view of Assumptions 5 and 6 and by application of the Minkowski inequality to both sides of x; we have
sup; |x;[*T¢ < K.9 Hence, using (22) and (23) in (19) we obtain

Ayin =dy + ' Ax; + &, (24)
where di = a + élvl,
£ = g1m; + vit, (25)
and
5—1
Vi1 = Z ¥ Auii_j + X (26)
j=0

In the analysis that follows we treat d; and 7 as unknown parameters to be estimated along with the
parameters of interest v and 3. We also note that v;; ~ ITD(0,wo?), and v;1 is distributed independently

8This result provides an optimal linear approximation when the regressors are not normally distributed.
?Note that under Assumption 5 sup, , £ | Axi||*T¢ < K. See Lemma 1.
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of Ax; and n;. Further, by application of the Minkowski inequality to (26) we have sup,; £ |U¢1\4+€ <K,
and under Assumptions 5 and 6, sup; Var (x;) < K; as a result 0 < wpin < W < Wmax < 00, where wpnin
and wnax are fixed constants, with w taken as a free parameter to be estimated together with other model
parameters.

Finally, using (26) we have

—02 fort=2

Cov (vi1, Augt) = { 0 fort=3,4,..,T

(27)

Remark 3 As noted earlier, in the case where |y <1 and S — oo we have Ay = di + 7' Ax; + &1,
where &;1 is defined by (25), with v;1 given by vy = Z;io VI Aui1—j + x;, and

o0 [e.@]
Xi = ZVJB/AXi,l—j - B Z’Y],@IAXi,l—j |Ax;, Zs g
j=0 §=0
where Is 4 = (027,00 7-1,007—2, ;82T 8o, T—1, 82, T—2, ...). Since Ax;, m;, and u;p are independently
distributed for all i, t and t', it then follows that v;1 is distributed independently of m; and Ax;, with
E (vi1) =0, and

o0 2
Var (vi1) = Var Z”Y]Aui,l—j + Var (x;) = + Var (x;) > 0.
= I+~
In the case of pure AR(1) panels, we have the further parametric restriction, Var (v;1) = %, which, if

imposed, can increase estimation efficiency.

3.2 The full model specification

We can now combine the processes for Ay;; and Ay;; conditional on Ay; 1, for t = 2,3,...,T to write
down the quasi-likelihood function of the first-differenced model. Writing (16) and (24) in matrix notation
we note that

Ay; = AW;p +§;, & = Gn;+r;, (28)
where Ay; = (Ayi1, Ayia, ..., Ayir)', AW, is the T x (T + Tk + k + 1) matrix given by
10 ... 0 AX] 0 0
N P | 2
00 .1 0 Axy Ayrs

p = (dlaﬂ-,?/@/”}/)/ with d = (d17d27"'7dT),a G' = (glvg27"'agT)> r; = (UilaAui27-"7AuiT)/7 and £z =

~ /! ~
(o€ &) and recall that &, = gm; + i, and &, = gim; + Aug, for t =2,3,...,T.

In using the first-differenced specification (28), it is first worth noting that despite the presence of com-
mon factors in Ay, and Ax;, the composite errors, §;, and the regressors Ax; = (Ax};, Ax),, ..., AX}) are
independently distributed over ¢, conditional on 4, ; and g, ;. This follows since under the above assump-
tions the cross sectional-variation of Ax;, given by (20), is governed by v; and {nij’x, for j=1,2,..., mx}
that are assumed to be distributed independently of 1, and Awu; for all ¢+ and ¢ (see Assumption 5)). For
future reference it is also convenient to partition AW;, as AW, = (AZ;, Ay; 1) and write (28) as

Ay; = AZ;d+Ayi 17+ &, (30)

where & = (d’, ﬂ’,ﬁ')/.
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4 Transformed quasi maximum likelihood estimation

Consider the panel data model given by (28) and note that under Assumption 1, and using (25) and (27),
we have (recall also that v;; ~ I1D(0,wo?))

E(r;ir}) = 0%Q, (31)
where
w -1 0
-1 2 0
E(r;ir}) = o? =o’Q, (32)
2 -1
0 -1 2

and @ = Q(w). Since || = 1+ T (w— 1), w needs to satisfy w > 1 — 1 to ensure that € is positive
definite. Also, since n; and r; are independently distributed, conditional on §,; and g, we have

Var(¢,) = ¢ (¢) = 0’Q + GQ,G' =0 (2 + QQ') (33)

where Q = (1/0’)G9717/2, rank (Q) = m, and ¥ = (w,aQ,vec(Q)’)/.

Our parameters of primary interest are given by ¢ = (d’ , 7, ,C‘I’,’y), = (5’ ,fy)/, with the interactive
effects treated as nuisance parameters. In consequence, we shall also focus on conditions under which
@ the true value of ¢, can be identified, globally or locally. We are only interested in controlling for
the latent interactive effects, and not in their interpretation. This is reflected in the above specification
of Q, the parameter associated with such effects. Given that QQ’ is of reduced rank m < T, it is not
possible to identify Q without additional restrictions. This is because for any orthonormal m x m matrix
C, QQ' = Q*Q* where Q* = QC. To avoid such non-trivial identification m(m — 1)/2 restrictions need
to be imposed on Q.!'° The number of non-redundant parameters in Q is then mT — m(m — 1)/2 (see
also Hayashi et al. (2007, p.507)).

The quasi-log-likelihood of the transformed model (28) is given by

éN(G)ZEN(&%lﬂ)——ﬂln(%)—*lnlzf \—*ZE M) (¥) 7 €i(8,7) (34)

£(0,7) = Ay; — AZ;d—Ay; 17 (35)

and it is assumed that ¢ = (5' , 'y)/ does not depend on 1. For fixed m and T, the above log-likelihood
function depends on a fixed number of unknown parameters, which are collected in the [T'(m + &k + 1) —
m(m —1)/2+k + 3] x 1 vector 8 = (&',~,2')" .11

5 Identification

We begin our identification analysis by focusing on the identification of d and ~ in the panel AR(1) model
before turning to the general likelihood framework allowing also for exogenous regressors. Prior to this,
for identification of the number of interactive effects we derive the order condition on m and 7', and show
that mmax = T — 2 is an important input in the determination of mg, the true value of m. We also show
that the same order condition applies irrespective of whether the model contains exogenous regressors.

'"Note that m(m 4+ 1)/2 restrictions are imposed by expressing G2, G’ as QQ’. For the m? restrictions typically imposed
on Var(Gn,) in traditional factor analysis an additional m(m — 1)/2 restrictions need to be placed on Q.

"Tn the Monte Carlo and empirical applications that follow the TQML estimates are obtained by maximising a concen-
trated version of the likelihood function in (34). This is derived using an eigenvalue approach which greatly simplifies the
computations. For details see Section S.3 of the online supplement.
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5.1 Order condition

We first consider the order condition on m and 7T associated with the AR(1) model. Using (16) and (24),
we have

Ayqa = di+gim; + v,
Ayi — yAyir—1 = di+gm; + Aug, for t = 2,3, ..., T, (36)

which can be written as B (y) Ay; = d + Gn,+r; = d +§;, for i = 1,2,..., N, where d = (dy, ...,dr)’,
Ay; and &, are as defined above, and

1 0 0
Boy=| (31)
0 oy 1
Note also that, |B (y)| =1, and
1 0 0 0
Bl = 7 N (39)
: 0
v v 1
and hence Ay; = a+ B! (v) €&, where
1 0 0 0 dy dy
a=Bl(yd=| 7 ! 0] " T (39)
B N ? dr Ty +AT=2dy + 4 vdp g +dp

The parameters associated with this model are 8 = (d',y,v’) = (d', ¢')’ with g = (*y, 1/)')’, and recall
P = (w, 0%, vec(Q)’)/ . In deriving the order condition on m and T for the AR(1) model, and the ARX(1)
that follows, it suffices to focus on the identification of g as none of the remaining parameters of either
model depend on m.

For the AR(1) model since dis a T x 1 unrestricted parameter vector, then a is also unrestricted,
namely knowing a will not help with identification -, or any of the remaining parameters in ¥. Hence, the
identification of g = (v, %’ )/ can only come from the T'(7" + 1)/2 distinct elements of Var(Ay;) = Xay
which are given by

Say = B(y) WVar(é)B'(y)7
= o*B(y) 7' (2+QQ)B'(n) ' ==(o), (40)
where X5, can be consistently estimated. Since Q enters X () as A = QQ’, we need to consider the
unknown elements of the symmetric matrix A under different rank conditions. First it is clear that if A
has full rank, namely if rank(A) = T', then g cannot be identified. Therefore, to identify @, we must have

rank (A) = rank (Q) = m < T. Recall also from Section 4 that the number of non-redundant elements
of Q is given by mT' — m(m — 1)/2. The order condition necessary for identification of g is then given by

T(T+1)/2>3+Tm—m(m—1)/2. (41)

This order condition is satisfied if 7" > 3, for m = 0,1,2, .., Mmax Where mumay is the largest value of m
that satisfies (41), that is mpax =T — 2.
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Consider now the more general case where the panel AR(1) model also contains exogenous regressors.
For this case note that the system of equations (28) can be written equivalently as

Ayi =a+AX; (1) ¢ +BL (7)€, (42)

where a, B~! (y) and &, are as defined above, ¢ = (7', 3'), AX; (7) = B71(y) AX;, and AX; is the
T x (Tk + k) matrix of observations on the exogenous regressors defined by

Ax] 0
0 Ax),
AX, = . (43)
0 Ax),

The parameters associated with the ARX(1) model in (42) are 8 = (d',¢' v, ¢") = (d, ¢, 0",
with v as defined earlier. Here, as above, dand ¢ are unrestricted parameters in the sense that
knowing them will not help identification of @ since X (@) does not depend on dand ¢. But it is
already established that identification of v is based on the covariance of B~! () &;, which is given by
¥ (0) = 02B(7)" 1 (2 4+ QQ')B/(y) ! if the order condition (41) is met. Hence, it follows that the same
order condition given by (41) continues to hold in the case of the ARX(1) model.

5.2 Rank condition

Subject to the order condition, (41), being satisfied we now consider if the mapping
Say =0"B(7)71 (2+QQ)B'(n) 7,

provides a unique solution for v, in terms of ¥4,. The moment conditions implicit in this mapping
can also be obtained explicitly using (36). To simplify the exposition we use g; for g;, abstract from
exogenous regressors and set 7' = 3 which implies Mo =T — 2 = 1, and assume that the observations
Y0, Yil, Yi2, and y;3 are available for the units ¢ = 1,2, ..., N. We have the following relations

Ay = di+ g1m; + v,
Ayio —vAyn = d2 + g2n; + Auiz,
Ayis — Ay = d3+ g3n; + Augs.
It is clear that d; is identified since d; = F (Ay;1), and can be consistently estimated by cil N =

N1 Zf\il Ay;1. To identify dp and ds we need to know . But since d; = E (Ayir — YAy;¢—1), we can
eliminate d; from the above equations to obtain

Ay — E(Ayin) = gim; + vi1, (44)
[Ayiz — E (Ayi2)] — v [Ayin — E(Aya)] = gon; + Augo, (45)
[Ayizs — E (Ayiz)] — v[Ayi2a — E (Ayi2)] = g3n; + Aus. (46)

Recall that vy ~ I1D(0,wo?), Aug ~ I1D(0,202) for t = 2,3, E(Aupvi) = E(AupAuz) = —o?, and
E(Au;sv;1) = 0. Furthermore, by assumption 7, is distributed independently of (v;1, Au;o, Au;s). Here
we assume the factor, g4, is strong and set 0'727 = 1. Using (44)-(46) we obtain the moment conditions

mi = o1 — (9} +wo?) =0, (47)
Moy = 099 — 2y019 + Y2011 — (93 + 20%) =0, (48)
ms3 = 033 — 2y023 + V209 — (g3 + 20%) =0, (49)
mips = o012 — 011 — (g1g2 — 02) =0, (50)
miz = o013 — Y012 — 9193 = 0, (51)
myy = 093 — (013 + 022)Y + 7Y 012 — (9203 — 07) =0, (52)
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where

ow = Cov (Ayir, Ayiw) = E{[Ayi — E (Ayi)] [Ayiv — E (Ayip)]}, V¢, =1,2,3.

As ~y only enters equations (48)-(52), the moment condition in (47), m11(€) = 0, is not informative about
v but can be used to identify w. The five equations (48)-(52) can then be solved for the unknowns
0= (’y, a2, g1, g2, 93)', with global identification requiring that the solution to m(8) = 0, where m(6) =
(mag, m3s, m12, M13,M23)’, is unique in terms of o4, which can be estimated consistently (as N — o)
by 61 = & SN 1 (Ayir — AG) (Aysy — Afy), where Agy = N~ N | Ay,

A unique solution for v can be obtained if g; = 0, but not more generally when g; # 0. To see this

note that when g; = 0, using (51) we have 013 — vo12 = 0, and +, d1, d2 and d3 are uniquely identified,
by

E{[Ayi1 — E (Ayin)] [Ayizs — E (Ay;z)|}
E{[Ayin — E (Ayir)] [Ayiz — E (Ayi2)]}
E(Ayn) = di, E(Ayie) = do +7d1, E (Ay;3) = ds + vd2 + ~2ds.

The remaining moment conditions can also be used to identify o2 and w, as well as go and g3 if the sign
of go is set a priori.'? But as soon as it is assumed that Ay;; also depends on n; (i.e. g1 # 0), then the
resultant moment conditions need not have a unique solution. In general the rank condition required for
a unique solution is given by rank (0m(0)/06") = 5, where

2(012 —")/0'11) 2 0 292 0

am(o) 2(0’23 — 7022) 2 0 O 293
00 o11 -1 g ¢ 0
012 0 g3 0 g1

o13+02—2y012 1 0 g3 @2

It is clear that the rank condition is not met if go = g3 = 0, since in this case g; cannot be identified.
Using (44) and noting that Var(v;1) = wo?, then Var (Ay;1) = g%o’% + wo?, and even if one sets 0127 =1
this moment condition can not be used to identify both w and g;. To identify g;, moment conditions for
observations 2 and 3 must be used.

5.3 Identification in the likelihood setting

We now turn to the general likelihood framework allowing also for exogenous regressors. Recall 8 =
((,0’,7,[:')/ = (5’,7,1/1')/, with 6 = (d’,ﬂ",ﬁ')/, P = (w,0%,q') and q =vec(Q), where & collects the para-
meters associated with the initial values, the regressors, Ax;, and the time-effects, and as defined earlier,
0 = (v,9") collects the non-linear parameters. Consider the average log-likelihood function defined by
(34) expressed as

N
_ B T 1 1 _
In (8,7,9) = N7Un (8,7,%) = =5 I (2m) — S In B ()] — 57 D €81 (%) €(8:),  (53)
i=1
where &;(d,7) is given by (35).
We require the following additional assumption.

Assumption 7 (i) 0 € ® = O5 x O, X Oy, where Os= OyxO,xBpg and Oy = O, XxO;x0O,,
with ©4, O, Og and O, compact subsets of R™, R"~ R"s and R", respectively; ©., O, and
O, are compact subsets of R, where ng = T, ny = kT, ng = k, and ng = Tm — m(m — 1)/2;

12Bquations maz and mas, for example, can be used to globally identify g2 and gs respectively, once the sign of gz is fixed.
See also the related discussion, for examle, in Bai and Ng (2013) in the case of the pure factor model.
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0y = ((,06,1/16), = ( 6,70,1#6)/ lies in the interior of © (i) the likelihood fx (6) is continuous in 6
and for some Cmax > Cmin > 0, Cmin < infyeo, Amin (Ze(y)] < SUDyco, Amax [2e(¥)] < cmax, (i)
A (¢) = limy_oo N7t ZZ]\LIE (AW;Ei () AWi) is positive definite almost surely uniformly on
Pe ©y.13

Assumption 7(i) is standard and rules out parameter values on the boundary of the parameter space.
The eigenvalue conditions on X () in Assumption 7 (ii) ensure that X¢(tp) is uniformly bounded.!*
Assumption 7(iii) is required for identification of d9 and 7y, and also implies that A, (¢) and oy(1p),
defined by

N—oo

N N
A, (%) = lim N—le(Azgz5 (zp)*lAzi) and a, () = lim N_IZE(Ay;_lEg ()" AyH),
i=1 =1

are strictly positive definite uniformly on 1 € ©,, where AZ; is the matrix of time dummies and
observations on Ax;, and Ay;_1 = (0, Ay;1, ..., Ay; 7—1)’, as defined by the partition of AW, in (29). For
~ we need to distinguish between the case where S is fixed (namely initialisation is from a finite past)
and when S — oo. Under the former, it is only required that |y| < K, which includes the unit root case
(7] = 1). Under the latter (when S — 00), we must have |y| < 1.

Given Assumptions 1-7, the global identification condition requires f (4,7, %) = limy .o Eo [Z ~N (6,7, ¢)]
to attain a unique maximum at 8y = (do, 79, ¥y) € O.

Using results (A.25) and (A.26) in Lemma 4, we have

ZN (6077071;[)0) - ZN (5’7711)) (E). ngnoo EO [ZN (607’707¢0) - Z]\/' (6777’¢))] ) (54)

where

2 lim Eo [In (80,70, %) — In (6,7,%)] = (8 = 80) A (1) (6 — 80) + (v — 70)* ay(3) +w (e, 20) » (55)

N—o0
w (@, 00) = X (¥,%0) +2 (v —70) £ (¥, %) , (56)
and
X (9, %0) = tr [Se ()7 B (o) | — In (1% ()| /|5 (@)]) — T. (57)
Also
(1, 1p0) = tr { [ (3) — B¢ (w0)] S (@) ' T (30) } (58)
where T' (7) is the lower triangular matrix with zero diagonal elements
0 0 - 00
1 0 -0 0
L (7o) = : SN (59)
oo L o 000
T 2 % 10

To investigate identification of the parameters of interest, namely dg and ~y,, we first write (55) more
compactly as

f(€57 Ev, 0O, QO) = 5:5Az (’lp> gs + O‘y(’(p)g?y +w (Q? QO) :

'3 All expectations are taken with respect to the true parameter vector g, even when not explicitly denoted by Eo(.).
M Note also that 3¢ (1) is positive definite for every ¥ € @, when the order condition is met and w > 1 — % Recall that
under the latter Q is a positive definite matrix and Q is rank deficient, and under Assumption 1, 0 < 0% < K.
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We also note that by the information inequality f(es,e,0,09) > 0 for all values of e5,¢,, 0, and g;.
Global identification of dg and 7, requires that f(es, ey, 0, 0y) = 0 solves uniquely for €5 = 0, and e, = 0,
for all values of g and g,. Furthermore, we have that

fles ey, 0, 00) = €5A () €5+ oy (P)e2 +w (0, 00) > Amin [A ()] €5es + vy (1) +w (0, @9) > 0. (60)

It is now easily established that dp and v, are globally identified if w (g, 0y) > 0 for all values of v and
1. Note that since the right hand side of (60) is non-negative, then if w (9, @) > 0 we must also have
Amin [A; (¥)] €565 > 0 and ay(q,b)eg > 0. Then condition f(es,€e5, @, 09) = 0 can occur if and only if

Amin [Az (1)) €565 = 0, and ay ()2 =0, (61)

noting further that, if Amin [A (¥)] €5es > 0 and/or oy (tp)e2 > 0, then f(e5,e4, 0, 00) > 0 for sure, so
long as w (@, 8y) > 0. It now follows that since by Assumption 7(iii) Amin [A- (%0)] > 0, and oy (2p) > 0,
then conditions in (61) hold if and only if €5 = 0 and €, = 0, and the desired result is established.

But in general it is not possible to be sure that w (@, gy) is non-negative. Consider now w (g, g,), and
note that its second component, x (1, 1,), can be written as

X (¢a "Po) =tr [B} —In (B) - T7

where B = 3¢ (¢)~* 3¢ (1) which is a positive definite matrix, and using result 10 on p.44 of Liitkepohl
(1996) we have that x (¢, 1) > 0.
Also,

R(wo) = tr{[Ze () — Te ()] Te ()T (90) }
= tr{[lr—2¢ ($0) Ze () I T (70) }
> trflr— ¢ (30) B¢ ()] Amin[T (70)], (62)

and since Apin[I (79)] = 0, then x(¢,1y) > 0, as well. Overall, for values of o # gy, w (@, 0)) =
X (P, o) + 2 (v — 7o) K (¥, 1) is ensured to be non-negative only if (7 —v,) > 0, otherwise the second
term of w (@, gy) could become sufficiently large and negative such that w (g, @y) < 0. Therefore, to
ensure global identification of dg and -y, for all values of v and % it is required that x (¢,%,) = 0. But
as shown in the example below, this can occur if the distribution of the initial first differences, Ay;; does
not depend on the latent factor, which renders Ay;; uncorrelated with Ay;, for ¢t > 2.

Finally, it is worth noting that even if x (¢, ¥) = 0, global identification of 1, will involve additional
restrictions on 1), since x (1, 1,) = 0 only ensures equality of eigenvalues of X¢ (1) and X¢ (1), which
does not necessarily imply that 1p = 4. Identification of 1) is ensured if 3¢ () and 3¢ (1p) commute,
as the simple example below illustrates.

Remark 4 The above results clearly highlight the fact that in general it is not possible to guarantee
global identification in the presence of the lagged dependent variable. Allowing for regressors Ax; and
the associated initial values component, as well as the time effects, do not alter this conclusion. These
results are also in line with the moment condition based identification results discussed earlier. Further
wnsights into conditions related to global identification using the likelihood framework are illustrated by the
example that follows.

Example 1 To keep the illustration as simple as possible we consider the panel data model without fixzed
effects given by

v = Nfit+owv,

Yi2 YYi1 + Aife + iz,
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fori=1,2,.... N, and assume that X\;, v;, and u;o are cross-sectionally, and mutually independent, have

zero means, with variances, Ui, O‘% and o3, respectively. As shown earlier global identification is possible

when the initial values, y;1, do not depend on the common factor. It is clear that in this model v, the
true value of vy, is not identified, unless fi = 0. Under this restriction vy, s identified using the moment
condition Eg [yi1 (yi2 — Yyi1)] = 0. Consider now the application of the likelihood approach to this simple

model under f1 = 0. In this case
sew)=( 7 )
13 - 0 0_2 ’
with ¥ = (02,0?%), 0? = f303 + 03 > 0. Using (55) we have
21\}1_1}100 Eo [In (70, %0) — In (7:9)] = (v = 70)” (%) + x (3, %0) + 2 (v — 7o) £ (3, 3g) , (63)

where oy (1) = limpy_o0 N1 Zfil E (ygﬁlﬁg (1,&)71 yi,,1> , Vi—1 = (0,9i1), which simplifies to oy () =

—27; 1N L2 2/ 2
o " limy_oo N Zi:ﬂ/ﬂ—gv/af

X($10) =[S () Be ($o)] —n(1Ze (o)l / 1% ()] -2

2 2 2 2
_ |og lof 90,0 90,v

and
R(py) = [ (%) - Ze (%o)] Te ()T () }
= —tr {3 (o) B () ' T () |
J%—f 0 00
(T )}
Hence,

2 lim By [(n (v0,%0) = In (1, 9)] = (v = 70)? ay () + X (3, %) -

We further have that Z—é —1In (Z—é) —1>0 and UE%“ —1In (22“) —1 > 0, with equalities holding if and only
if 02 = a% and o2 = aav, respectively. Note also that in this simple example the matrices 3¢ (1) and
3¢ (Yg) commute. It then follows that we must also have v = vq if and only if o () > 0. In fact, the
diagonality of ¢ (V) and ay(p) =02 /0? > 0 are both necessary and sufficient for global identification of
Yo- A similar outcome also follows if we allow for fixed effects and work with the first-differenced version
of the panel. But for the first-differenced version we need T = 3 with g1 = 0. The likelihood approach can

now be applied to

Ayin = Auy,
Ayio —yAyn = gam; + Augo,
Ayis —yAyia = gsn; + Augs.
Since due to first-differencing Cov (Awi1, Auz) = —0?, to ensure the diagonality of 3¢ () for this
application, noting that Cov (Au,1, gsn; + Augs, ) = 0, it is sufficient to apply the likelihood approach to
Ayin = Auy,
Ayis —yAyiz = gsn; + Aus,

with €,(7) = (Ayi1, Ayiz — YAyi2)'. In this set up one can first obtain a uniquely consistent estimator
using Ay;1 and Ay;s — YAy;o, and then use this consistent estimator as initial value for a more efficient
ML estimation that also makes use of the relations Ay;o — YAy = gan; + Auio, fori=1,2,...,N.
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5.3.1 Local identification

As global identification of d¢ and 7, on the parameter space ® cannot be guaranteed, we proceed by
considering a restriction of ® on which identification and consistency will be shown.!® To this end we
introduce the following definition:

Definition 1 Let N.(gy) be a set in the closed neighbourhood of @, defined by

Ne(ey) ={0 €0, x 0Oy : |lo— gl <¢}

for some € > 0, such that

w(@,00) = X (¥, %0) +2 (v —70) £ (¥, %) = 0, (64)

for all values of v € ©, and ¥ € ©,, where ©., is a compact subsel of R and @y = O, xO ;X Oy, with
O, and O, compact subsets of R, and ©, a compact subset of R™, with ng =Tm —m(m —1)/2.

In view of the local nature of our analysis, from hereon we consider the more restricted parameter
space as set out in the following assumption.

Assumption 8 0 € O, = O5xN (gy), where O5 = Ogx O, xBg and N (g,) is specified in Definition 1,
Oy = 0O,x0,x0O,, with Og, O, Og and O, compact subsets of R"¢, R"* R"5, and R", respectively;
O, and ©, are compact subsets of R, whereng =T, ny = kT, ng =k, andng = Tm—m(m—1)/2; N(g,)
is given in Definition 1, ©¢ is a compact subset of R™ with ng =3+T(k+1)+k+Tm—m(m—1)/2;and
0o = (), p) = ((56,%,'@06), lies in the interior of ©..

‘We now have:

Proposition 1 Consider the model given by (13), with the associated log-likelihood function for first-
differences given by (34). Suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition
(41) hold. Then 8¢ and ~y, are almost surely (locally) identified on O.

The proof follows noting that for all values of 8 € ©,, condition (64) is met and hence local identifi-
cation of dg and -y, is established using (60). In what follows we also assume that 1 is locally identified
under suitable additional restrictions on 3¢ () such that x (1,%,) = 0 ensures that 1, = 1. Note
that under local identification of v, and dg we also have x (¥, 1) = 0, but as noted earlier this by itself
does not necessarily ensure that @ = 1py. Under local identification of v, and d¢, in order for 1), to
also be locally identified it is further required that X¢ (1py) and X¢ (1p) have the same eigenvectors and
eigenvalues, and this is ensured if on ©, the two matrices X¢ (1) and X¢ (¢p) commute, as previously
mentioned.

6 Asymptotic properties of the transformed QML estimator

The analysis of consistency and asymptotic normality of the TQML estimator, 0= arg maxgee, /N (0),
now follows by application of standard results from the literature. Almost sure local consistency of 0
follows, for example, from a straightforward adaptation of Theorem 9.3.1 of Davidson (2000). Specifically
under Assumptions 1-7(ii),(iii), and 8 we have: (i) © as a subset of © is compact, (ii) setting C (0) =
—20x (0), and C (8) = Ey[Cy (0)], Cx (8) “> C () uniformly on ©, as shown in the proof of 2 in the

'5This approach is typical in the time series literature under QMLE theory, see for example Lumsdaine (1996) for the
GARCH model, Allen et al. (2008) for the case of the Logarithmic Autoregressive Conditional Duration model, Kristensen
and Rahbek (2010) for nonlinear error-correction models, and Han and Kristensen (2014) for GARCH-X models with
stationary and nonstationary covariates, among others.
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Appendix, (iii) 89, an interior point of ®, is the unique minimum of C (8) on ©, by Proposition 1 and
given that X¢ (1) and 3¢ (1) commute. Therefore, all three conditions of Theorem 9.3.1 of Davidson

~

are satisfied and 6 “3 0y on the set ©.. R
The asymptotic distribution of 8 is derived by taking a Taylor expansion of aegée) = 0 at 6y and

checking the asymptotic behaviour of the score function, sy (0) = '%ge(e), and Hessian matrix, Hy(0) =

_PIO) g Ey [ZNa(igo)] = 0 and Hy(0) %5 H(6)), the asymptotic normality of the TQML estimator

0000’
will follow from the mean value theorem:

0 = V/Nsy(6) = V'Nsn(6) — Hy(8)VN(8 — 6) (65)

where 8 lies between 6 and 60y. The resultant asymptotic distribution is summarised in the following
theorem:

Theorem 2 Consider the dynamic panel data model with interactive effects given by (13). Suppose
that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41) and Proposition 1 hold, and
that 3¢ (1) and ¢ () commute. Denote the TQML estimator of 6 by @ = arg maxgece, {n (0), where

Un (0) is given by (53). Then, 0 is almost surely locally consistent for 8y on O, and

VN(8 — 6) —4 N [0,H (80)J (80) H ()] , (66)

where H(0g) = limpy_.o Fo [— a?éva(g,o)] and J (0g) = limy_.o Fo [Naz%(:o) aigégo)} are assumed to exist

and be positive definite.

When &; (¢g) is Gaussian \/N(é —09) —q N [0,H 1(80)] . A consistent estimator for the variance
in (66) can be obtained by substituting 8 for 8y in the expressions for J (8g) and H(6).

Remark 5 Since in general we do not have global identification, in practice when computing the proposed
TQML estimator it is advisable that a number of different initial parameter vectors are considered in the
optimisation procedure to ensure, as far as possible, that the resultant estimates correspond to the locally
consistent mazximum.

7 Estimating the number of factors

There are a number of studies that provide information criteria for selecting the number of factors
including Bai and Ng (2002), Onatski (2010), Kapetanios (2010), Ahn and Horenstein (2013), among
others. However, these are not applicable to short T panel data sets, and require both N and T to
be large. In the case of short T' panels Ahn et al. (2013) estimate the true number of factors, my,
within a GMM framework using the Sargan-Hansen misspecification statistic in a sequential manner, as
well as information criteria. To ensure consistency of the selected number of factors under the former
case, following Bauer and Hackl (1988) and Cragg and Donald (1997), Ahn et al. (2013) choose the
significance level by such that by — 0 and —In(by)/N — 0 as N — oo. Using simulations they find
that the sequential method could produce better estimates if the significance level depends also on T' (in
addition to N), when the regressors and n.f; are not highly correlated, but do not provide theoretical
details on how best to allow for T" as well as N in their selection procedure. In what follows we consider
a sequential likelihood ratio (LR) testing procedure, but adjust the significance level of the tests to take
account of the multiple testing nature of the procedure in terms of 7', as well as adjusting the size of the
tests in terms of N to ensure consistency of the selected number of factors. We provide a formal theory
that should be of general interest for the analysis of short 7" factor models.
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7.1 A sequential multiple testing likelihood ratio procedure for estimating the num-
ber of factors

We first consider the problem of testing Hg: m = mg against Hi: m = Mmax, Where mpyax is the largest
value of m that satisfies the order condition (41), namely mmax = 7" — 2. This is in contrast to the
problem of selecting m in the case of large N and T factor models where it is often based on an arbitrary
choice of myax. Under Hy, the maximised log-likelihood function, £ <§m0>, is computed by maximising

(53) subject to ro over-identifying restrictions given by
7“0:T(T+1)/2—3—[ng—mo(mo—l)/Z]. (67)

Denote the exactly identified estimator of @ (under Hp) by ) with its dimension n; = 3 + T'(k +
1)+ k+ (T —2)(T"+ 3)/2, and the constrained estimator of @ under Hy : m =mo < T — 2 by Emo. The
latter estimator is obtained under r (6p) = 0, where r (6g) is the 79 x 1 vector of restrictions on £y (),
the log-likelihood function defined by (34), implied by setting m = mg. The LR statistic for testing Hy:

m = mg against Hi: m = mpax = 1 — 2, is then given by

Mmax

LRy (Mo, Mumax) = 2 [EN (émm) . (Emoﬂ , formp =0,1,2,..,T — 3. (68)

The following theorem provides the asymptotic distribution of LRy under the null and n-local alterna-
tives, the latter to be defined below.

Theorem 3 Consider the dynamic panel data model given by (13), and suppose that Theorem 2 holds.
Denote the constrained TQML estimator of @ obtained under Hy : m = myqg by /O\mo and its unconstrained
estimator by /H\mmax,
r(6g) = 0, where r(0g) is the ro X 1 vector function of @ implied by setting m = mg where ro =
T(T 4+ 1)/2 — 3 — [Tmog —mo (mo — 1) /2]. Then: (a) under the null Hy : m = myg (or equivalently
under r (6g) = 0), the log-likelihood ratio statistic LRy, defined by (68), has the following asymptotic
distribution (for a fized T, and as N — o)

where Mmmax = 1 — 2. Also let the restrictions imposed under Hg be given by

ro
LRN —q ijz?-, (69)
j=1

where zj ~ IIDN (0,1), wi,wa, ...,wy, are the strictly positive eigenvalues of the symmetric matriz

Ao = J)/*H; 'R (RoH 'RY) " RoH, '35/, (70)
with Jo =J (00) s HO =H (00) s and RO =R (00) N where R (00) =0r (90) /89/ 18 Of dimension (7‘0 X ng)
with ny =3+ T(k+ 1)+ k+ (T —2)(T + 3)/2, such that rank [R(0¢)] = 19, (b) furthermore, under
n-local alternatives Hin : 015 = 0g + N_"/Qn, where Kk is a ny X 1 vector of constants such that k'k >0

and 0 < n < 1, we have
N-O=m/2pR v —NO-D/2k'S K ,

L N(0,1), 71
2\/K/SISok ©.1) (7D

where S and S;Sy, are symmetric positive definite matrices defined by

S. = R} (RoH; 'R}) "' Ry, (72)

and

S}S) = Rj) (RoH; 'R)) ' RoH, \JoH; 'R, (RoH; 'R)) ' Ro, (73)

respectively.
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Remark 6 It is worth noting that the concept of n-local alternatives extends the standard Pitman se-
quence of local alternatives where 1 is set to n = 1. By considering alternatives that tend towards the null
at a slower rate, with 1 < 1, we are able to allow both Types I and II errors to tend to zero.

Remark 7 Note that the non-zero eigenvalues of Ag (given by (70)) are also the eigenvalues of
(ROH(TIR'O)A (RgHgngHalR(]). Hence, if Jo = Hy, this matriz becomes equal to I,, and we have
w; =1,(i=1,2,...,19), which yields the familiar result

LRN —d Xfo, under r (6y) = 0,
where ng 18 a central chi-squared variate with ro degrees of freedom.

Theorem 3 shows that the use of the LR test in the non-Gaussian setting is non-standard and requires
an explicit derivation when Hy : r(8p) = 0. Furthermore, even in the standard case the use of the
sequential LR procedure for the estimation of m is subject to the multiple testing problem and does not
guarantee that mo, the true value of m, will be estimated consistently. This is a well known problem in
the sequential testing literature. In this paper, we deal with both of these problems by letting the overall
size of the sequential LR tests decline with N at a suitable rate, which we show yields the desired result
even if the underlying individual LR tests are non-standard.

Proposition 2 Suppose that the assumptions of Theorem 8 hold, and that under the null hypothesis Hy
the LR test statistic LR given by (68) is distributed as > 12, w;x?(1), where the weights wy > wg > ... >
wy, > 0 are finite constants, and X?(l) fori=1,2,..., h are independently distributed central chi-squared
variates with 1 degree of freedom. Denote the type I error probability of the test by an, and the critical
value of the test by % (ro). If ¢4 (ro) — 0o as N — oo, then lim y_ ooy = 0.

Corollary 1 Under the assumptions of Theorem 3, define the critical value of the test by c?\,(m) with
c?\,(ro) — 00 as N — o0, and the type II error probability by By For all n-local alternatives Hiyn : 1y =
0o + N~ "2k, with k'k >0,
lim By = lim Pr [LRN < ci(ro) |Hin] =0, (74)
—00

N—o0
s0 long as n < 1, and N~(1=1¢Z (rg) — 0, as N — oo.

Remark 8 From Proposition 2 and Corollary 1 it follows that if c?\, (ro) — o0 as N — oo such that
N*(I*”)c?\,(ro) — 0, then lim y oy = lim y_oo By = 0, assuming that the relevant Hessian matrices
are non-singular and the restrictions are full rank. To see that both these conditions are met if ay = p/N°
with & a finite positive constant, using (A.56) in the Appendiz we have that

T roN?
C?\[(TO) - 21017‘0 In (ﬁ) _ 2w17“0 hl( Op ) _0 <(51H(N)> (75)

NQO-n) — N(@—n) - N(-n) N(1-n)

Since In(N) — oo as N — oo, then for any § > 0 it follows that c% (rg) — oo as N — oo. Also, as
N — o0, then ln(N)/N(l_") — 0, so long as n is not too close to unity, and it will be surely met if n is
close to 1/2. Hence 3 (ro)/NU= — 0 as ¢ (rg) — oo with N — o0.

Remark 9 When ay is set as any = p/N‘S, the parameterp (0 < p < 1) can be viewed as the nominal size
of the test. The Neyman-Pearson case is obtained if we set d = 0. The case of d > 0 relates to the Chernoff
test procedure that aims at minimizing Pr(Ho)an+Pr(Hy)By, where 0 < Pr(Hy) < 1 and 0 < Pr(Hy) < 1
are prior probabilities of Hy and Hy, respectively. When N is finite the solution to this problem depends
on the prior probabilities. But in the case of chi-squared tests, we have Pr(Hy)ay + Pr(Hy)By — 0 as
N — oo, irrespective of the prior probabilities Pr(Hy) and Pr(Hy), so long as ay = p/N® for § > 0 and
p > 0.
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Remark 10 In finite samples the choice of p and § can matter, though for moderate values of N the
choice of p is likely to be of second order importance. In the simulation results that follow we set 6 = 1
and p = 5%, and investigate the robustness of the results to other choices of p.

Theorem 3 together with Corollary 1 and Proposition 2, can now be used to develop a sequential
procedure for estimating (selecting) m that accounts for the multiple testing nature of the approach, and
is consistent for the true number of factors mgy. Consistency is ensured as long as Proposition 2 and
Corollary 1 both hold, which in conjunction with Remark 8 effectively requires the size of the sequential
LR tests to decline with N.

As myg is unknown and could be T' — 2, we assume the sequential procedure involves T — 2 separate
tests, although in some applications we might end up stopping the sequential procedure having carried
out a fewer number of tests than 7" — 2. Let the hypotheses of interest be Ho7_2, H1 7—2,..., Hr—3 72
(the total available as determined by the order condition) with the first and second subscripts denoting
the number of factors specified under the null and alternative hypothesis respectively, and write the T'— 2
LR tests as

Pr [ﬁRN (m() =t—1,Mnpax =T — 2) > CVNJ_LT_Q ’Ht—l,T—2] < PN t—1,T-2, for t = 1,2,....,7T — 2,

where LRy (mog, Mmax) is given by (68), CVy —17—2 is the critical value for the test of H; 1 7_2, and
PN,t—1,7—2 is the realised p-value for H;_; 7_2.

The sequential testing procedure begins by using the likelihood ratio statistic LRx to test Hor_a,
that is the null hypothesis m = 0 against the alternative m = T'— 2. If the null hypothesis is rejected, one
proceeds to test Hi 7_o, that is the null hypothesis m = 1 against the alternative m = T'—2, and so forth.
This sequential process is continued until the LR test fails to reject the null hypothesis associated with
Hippo mmar- The estimated number of factors, m, is then equal to the number of factors specified under the
null hypothesis associated with this event of non-rejection. If LRy rejects the null hypothesis associated
with all HO’T_27 HLT_Q, ceny HT—3,T—2 then ?/7\7, is set equal to T — 2.

The overall size of the test is given by the family-wise error rate (FWER) defined by

FWERN = Pr [ufj (LRy (mo =1t —1,Mmax =T —2) > CVNs 172 |Hi_1.7-2)] -

Suppose that we wish to control FW ERy to lie below a pre-determined value, p. An exact solution to
this problem depends on the nature of the dependence across the underlying tests, which is generally
difficult to obtain. But one could derive bounds on FW ERy using, for example, the Bonferroni (1936)
or Holm (1979) procedures. Both of these procedures are valid for all possible degrees of dependence
across the individual tests, and as a result tend to be conservative in the sense that the actual size will
be lower than the overall target size of p. Using the union bound we have

Pr {UtT:_12 LRy (mo=1t—1,mpax =T —2) > CVyy_1,7-2 \Ht—l,T—Q]}
T

T-2 -2

< Z Pr(LRy(mo=t—1,Mmax =T —2) > CVny—17-2|Hi—17-2) < ZPN,t—l,T—Q-
t=1 t=

Hence, to obtain FWERy < p, it is sufficient to set pn;—1,7-2 < p/(T — 2). To ensure consistency of
the sequential LR procedure, in line with the earlier discussion and the theorem that follows, p/(T —
2) is further adjusted so that ay = p/N(T — 2).!® The individual critical values, CVN—1,7—2 for
performing the sequential MTLR procedure are based on the critical values of the x? distribution, namely

15 Substituting for ay = p/N(T — 2) in (75), it is easy to see that the required conditions that ensure consistency of the
test continue to be satisfied.

26



X2, [p/N (T — 2)], where p/N (T — 2) is the right-tail probability of the individual tests and rq = T(T +
1)/2 — 3 — [Tmg — mq (mg — 1) /2].17
Local consistency of m for mg on ©. is established in the following theorem.

Theorem 4 Let m be the number of factors obtained using the sequential likelihood ratio procedure based
on the statistic LRy given by (68), for which Theorem 3, Corollary 1 and Proposition 2 hold. Then m
18 almost surely locally consistent for mg on .

8 Small sample properties of the transformed QML estimator

In this section, we investigate the finite sample properties of the proposed estimator using Monte Carlo
(MC) simulations. We start by presenting the MC design.

8.1 Monte Carlo design

The observations on y;; are generated assuming k& = 1 (one exogenous regressor) and mg unobserved
factors as

Yit = 0+ 0 +YYit—1+ Brit + (s (76a)
mo

G = Z Nei for + wir = mife 4 wir, (76b)
=1

for: =1,2,...,N and t = 1,2,...,7. Together with the initial observation for ¢ = 0 which will be set
below, this yields T" observations for estimation after first-differencing. The fixed effects «; are generated
as o ~ ITDN(0,1). The factor loadings, 1; = (1115, M2;» -+ Nimy.i) are generated as

2

e ~ IIDN (0, “) L 0=1,2,...,mo. (77)
mo

We have scaled the variance of 7, U%e, by 1/mg to ensure that the relative importance of the factor
component of (;; is not affected by the choice of mgy. We also consider the case where mg = 0 for which
we set Var (n,) = 0 for all £. The strength of the factors is controlled by the parameter 2.

The idiosyncratic errors, u;, fort =0,1,...,T andi = 1,2, ..., N are generated as u;; ~ ]ID\/%(Xg—G)
where X% is a chi-square variate with six degrees of freedom. The regressors, x;, for ¢ = 1,2, ..., N are
generated as

Mo

it = owi + ¥ Viefor + Vi, Vie = pyvig1+ (1 - p
=1

)Py, fort=1,2,..T, (78)

with p, = 0.95, and ¢ ~ I[IDN (0,0’%i). We set m; at m; = 2, but consider different values of
mgo. In this way we allow for interactive effects in the {z;} processes for all values of mg, including
when my = 0. We draw v;o from the steady state distribution of v;, namely v;o ~ ITDN (0, agi), for
i =1,2,...,N. This in turn ensures that Var (v;) = 032-. These error variances are drawn as J%i ~I1ID
%(X% +2)02, thus ensuring that E (U%i) = 02. The factor loadings in the z;; equations, ¥;, are generated
as Uiy ~ IIDN(0,03,), for £ = 1,2,...,m,. To establish that the fit of the model is not affected by the
number of factors (mg and m,) in what follows we set 012% = 02 /my, for all £. Finally, we set oz = o+,

"Note that Pr (>, wiz? < c?\,) < Pr(wi) 0,27 < c?\,) =Pr(}°, 2} < (ck/w;)) and for ¢k — oo as N — oo,
limy oo Pr (3072, wizi < %) = 0. Hence, using the critical values of >7°, 27 instead of Y1°, wiz} < c& will still deliver a
consistent estimator of m.
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where v; ~ ITDN(0,1), for all i. This specification ensures that the fixed effects, «;, are correlated with
the regressors, ;.

We generate the time effects, d;, and unobserved common factors, fs, as 6 = %(1‘2 —t), for t =
1,2,...,T, and

foo = popfee + (1= 0%)* €5, eg00 ~ TIDN(0,1), for £ =1,2,...,mg, and £ = 1,2,..,T,  (79)

with py, = p; = 0.5, and fro = 0 for £ = 1,2,...,mp. Setting the initial values of fy to zero is not
restrictive since any non-zero sample means for the f;,s would be absorbed by the values of the fixed
effects, «;, and the estimation results would be invariant to the choice of fyq.

To investigate the performance of our proposed estimator and its robustness to the relative importance
of the common factors in the generation of y;;, we calibrate the variance of z;; relative to the regression
noise, (;, as well as the variance of the factors n}f; to the idiosyncratic components, u;;. More specifically
we consider the following ratios

. NN (T £ ) )
LNT = — — T N )
N30 57 u’%t
1 N
A N It Z?:l >y (@i — azi)2 (81)
,NT — N-17-1 T N 2 ’
D=1 2ie1 Git

and to simplify the derivations we re-scale the values of the factors such that they are orthonormalised,
namely

T fu=0, TP 2 =1, TV, fufoy =0, for all £ and € # (', (82)
Under the above scaling and using (77) we have (for any finite 7') and as N — oo
oy _EMmin) _
Ap= i RN = =57 = 5 (83)

Similarly, using (78) and (76b) we have

lim [N—lT—1 S SN (S0 Do for + Vitﬂ

A _ N—-oo

. =
am [N_lT_l S i (i + uit)z}
202 202 /o2

T kK2+o02  1+rEo? (84)

To control the ratios Ay and \,, without loss of generality, we set 02 = 1, and consider the values of
k? = {1/4,1/2,1,2} and 02 = {1/2,1,3/2}. These combinations allow us to examine the extent to
which the small sample results are dependent on x? and o2 that measure the relative importance of the
unobserved common factors, f;, and the idiosyncratic components of x;;.

To set the initial values, {yi0;¢ =1,2,..., N}, we distinguish between the case where |y| < 1, and
the unit-root case where v = 1. Under the former, for each ¢, we generate y;0 from the steady state
distribution of {y;}, and set'®

Yio = Ko T Ti0 (UZ‘O/O'), fori=1,2,....N (85)

where )
;i + Bagi o B o+ a3 O'ZZV +ara; 36
Mio_ﬁvaio_ 1—~2 ) (86)

"For the derivation of y;, and o0 see Section S.4 of the online supplement.
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_ it L0

- ’ - ’ 87
Tl T Ty (87)
mo My )
ai = g+ B0 05+ 28 0 g, (88)
/=1 /=1

and u; is generated as above. To check the robustness of our MC analysis to the choice of the initial values,
we also consider generating y;; with u,;q and o0 in (85) replaced by k1,9 and k20,0 and experiment with
the values of k1, k2 = 1.2,0.8. For the remaining parameters we consider 8 = 0 (the pure autoregressive
case) and § = 1, and experiment with medium and high values of v, namely v = 0.4 and 0.8.

In the unit root case (v = 1) we avoid incidental parameters in first differences by first generating
the first-differences and then cumulating them to obtain y; from some arbitrary values for y;g. The
first-differences are generated as

Ay = A0+ BAzn + A, (89)
Ayit = A+ ’}/Ayiytfl + ,GAZE“/ + ACit’ t=2,3,..,T, (90)

with Ay;o =0, for i = 1,2, ..., N. The regressors and error processes are generated as above.

8.2 Monte Carlo results

We begin by reporting on the performance of the sequential MTLR procedure for estimating mg, the true
number of latent factors. We then report on the bias and root mean square error (RMSE) of the TQML
estimator of the parameters (y and ), as well as size and power using the number of factors estimated
by the MTLR procedure. Throughout we consider the parameter choices v, = {0.4,0.8} and g, = 1,
the sample size configurations T' = {5,10} and N = {100, 300, 500, 1000}, and values of my = {0, 1, 2}.
Thereafter, we provide results comparing the TQML estimator with the QML estimator of Bai (2013),
which we denote by Bai-QML, and separately with the GMM quasi-difference (QD) and first-difference
(FD) estimator of ALS (where the latter takes the first-difference prior to applying the quasi-difference
approach by Ahn et al. (2013)), assuming myg is known.!? Finally, we turn to the unit root case (y, = 1),
and end with a summary discussion of the main results from our robustness analysis. In the paper we focus
on the baseline case where k2 = 02 = 1; results for other values of k2 = {1/4,1/2,2} and 02 = {1/2,3/2}
are provided in the online supplement and are discussed only briefly to save space. Further, we only
report results for non-Gaussian errors. The results for the case of Gaussian errors are available upon
request.

All panel regressions related to the TQML approach are estimated including both individual and time
effects as well as an intercept, and regressors (in the case of the ARX(1) model), associated with Ay;,
as in (24). Time effects are explicitly included in the regressions for the Bai-QML estimator while for
the GMM regressions deviation from cross section averages is taken prior to estimation to remove the
time effects; for both these set of regressions the individual effects are subsumed within the interactive
effects. For further details related to the computation of the quasi-log-likelihood for Bai-QML and the
GMM estimators see Sections S.5 and S.6 respectively of the online supplement. Not surprisingly, the
conditional QML estimator of Bai (2013) did not perform well given that under our MC design ;o depends
on the model’s unknown parameters, and therefore is not included.

Unless otherwise stated, the sequential MTLR procedure is implemented using the LR (mmax, M0)
statistic for testing m = mo = {0,1,2,..,T — 3} against m = mmax = T — 2, with significance level

ay = ﬁ and p = 0.05, using the critical values of the chi-square distribution with degrees of

freedom as given by (67). The standard errors used for inference are based on equation (66) with all
derivatives computed numerically. All tests are carried out at the 5% significance level and all experiments
are replicated 2000 times.

19To simplify the comparisons we thought it more instructive to base our comparisons assuming that mo is known. Also,
as will be seen, under our approach m is generally well estimated.
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8.2.1 Selecting the number of factors

Table 1 reports the number of times (in %) that the estimated number of factors, m, is equal to the true
number of factors, mg, following the sequential MTLR procedure outlined in Section 7.1. The results
refer to the baseline case where k2 = 02 = 1 and show that m performs well for most parameter values
and sample sizes. Even when N = 100, the true number of factors is estimated quite precisely except
for the ARX(1) panel data model when T' = 5 and mo = 2. However, by the time N reaches 300 the
probability of selecting the true number of factors approaches 100%, across all parameter values. The
results for other values of x? and o2 are given in Tables A1(i) and Al(ii) in the online supplement.
As to be expected, the empirical frequency of correctly selecting mg declines as the value of x? (which
measures the strength of the factors relative to the idiosyncratic error) is reduced for small N. However,
as N increases the probability of selecting the true number of factors improves and approaches 100%,
as to be expected given the consistency of the proposed procedure. Table A1(ii) further shows that the
performance of  is not that much affected as other values of o2 are considered.

8.2.2 Performance of the TQML estimator

We next consider the small sample performance of the TQML estimator of v and [, after estimating m
by the sequential MTLR procedure.

AR(1) For this panel data model, bias, RMSE, and empirical size for the TQML estimator of « are
reported in Table 2. The overall performance of the bias and RMSE is favourable with a few exceptions
when 7' =5, N <100 and mo = 2. Specifically when v, = 0.4, we need N larger than 100, particularly
if mp = 2. The bias and size distortions are more serious when 7, = 0.8, and much larger sample sizes
are required. However, as predicted by the asymptotic theory, the results improve as N increases. The
performance of the TQML estimator improves considerably as T is increased to T' = 10, and evidence
of size distortions is limited to a few cases where moy = 0 and vy = 0.8, and N < 300. The results for
all combinations of k2 = {1/4,1/2,1,2} and 02 = {1/2,1,3/2} are reported in Tables A2(i) and A2(ii)
in the online supplement. As with the estimation of m discussed above, the performance of the TQML
estimator deteriorates as k2 is reduced towards zero, and large sample sizes (N and/or T') are required
for satisfactory outcomes in the case of the AR(1) specification. The power functions in Figure 1 show
that overall the power is satisfactory. While power is low when vy = 0.8 for small N, it improves as N
increases. Power functions across alternative values of k? are shown in Figures A3(i), A3(iv) and A3(vii)
in the online supplement. The shape of these functions becomes quite distorted if the factors are very
weak relative to the signal (namely for small values of k?), particularly when 7' = 5 and ~, = 0.8, or
Yo = 0.4 and mg = 2.

ARX(1) Simulation results for the ARX(1) panel data model are provided in Table 3, and show the
much better small sample performance as compared to the AR(1) model. This seems to be primarily
due to the additional source of variations from the regressor. The bias and RMSE for the estimators of
~v and B are both very small in all cases, and empirical sizes are also close to their nominal levels. In
addition, as shown in Figure 2, power is reasonably high. From Table A2(iii) in the online supplement
we also note that biases are very small across all values of k2. As k2 reduces, the RMSE of ~ increases
while that of 3 decreases. Differences in RMSE across 2 for each of these parameters tends to decrease
as N increases. Furthermore, Table A2(iv) shows that empirical sizes behave well across all values of
k2 with only a couple of exceptions for N = 100 and smaller values of k2. Power functions across the
different values of k2, as shown in Figures A3(ii)-A3(iii), A3(v)-A3(vi) and A3(viii)-A3(ix) of the online
supplement, are similar to those of Figure 2 given below for x2 = 1. Results for the other values of o2
(namely 1/2 and 3/2) are very similar to those of 02 = 1, and are available upon request.

30



8.2.3 Comparison of TQML with alternative estimators

We begin by presenting results for the TQML and Bai-QML estimators followed by the GMM estimator
proposed by ALS, for the AR(1) panel data model initially and for the ARX(1) subsequently. The
GMM estimators we consider include the quasi-difference and first-difference ALS one step and two step
estimators, denoted by QD1, QD2, FD1 and FD2, respectively.

For the comparison of TQML with the Bai-QML estimator, we provide results both for the 11D
specification of fixed effects (used in the Monte Carlo design of Section 8.1), namely a; ~ IIDN(0,1), as
well as for spatially correlated fixed effects. Under the latter the N x 1 vector of fixed effects, a = (ayq,
ag,...,an)’, is generated as the first-order spatial autoregressive process

o = paWa + Eq, O @ = (IN — paW)il €,

with heteroskedastic errors e, = (£4,1,€0,2; ---» €a,N)’, Where p, = 0.9,

o 1 0 0 ... 0
/2 0 1/2 0 0
0 1/2 0 :
W — , (91)
0 o0 1/2 0
/2 0 1/2
0 0 0 1 0

and for each 4, €, are drawn as IIDN(0,02 ;) with

Easl

9 1, fori=1,2,...,N/2,
g .=
Eot 2, fori=N/2+1,...,N.

The TQML estimator is fully robust to the way fixed effects for y; and x;; are generated (random or
correlated). Hence, the results for TQML under both the above fixed effect specifications are identical,
and it does not matter which fixed effects specification is used.?’ Also, since the GMM estimators first
eliminate the fixed effects (GMM based on QD does it implicitly) to save space for the GMM estimators
we show results only under the IID specification of the fixed effects.

In line with the discussion in Section 2.3, for the Bai-QML estimator the Mundlak-Chamberlain
projection of the regressor equation fixed effects, ay;, (recall oy = v +v;, where v; ~ ITDN(0,1), for all
i) on x; is used to deal with the dependence of ay; on «;. In addition, the number of factors included in
the regressions for the computation of the Bai-QML estimator is mo = mg + 1, and following Bai (2013)
we use the factor normalisation F+ = (I, F’Q), The same number of factors is used for the QD GMM
estimators given that the individual effects are subsumed within the interactive effects, while mg is used
for the FD GMM estimators that employ prior first-differencing; the same normalisation is also used on
the factor matrix for these estimators.

AR(1): TQML and Bai-QML Table 4 reports the bias and RMSE of « for the TQML and Bai-
QML estimators in the case of the AR(1) panel data model. Results show that the Bai-QML estimator
performs very poorly in terms of bias and RMSE for both values of v,. The same is true with regard
to size as seen from the results for the two estimators summarised in Table 5, which show the Bai-QML
estimator to have severe size distortions. The poor performance of the Bai-QML estimator in terms of
bias, RMSE and size is, on the whole, more pronounced when the fixed effects are spatially correlated

20The use of the Mundlak-Chamberlain projection for the Bai-QML estimator helps in the present MC design because oz
for i = 1,2,..., N are generated as a linear function of «;. It would not have helped if the a;, were generated as a general
(for example quadratic) function of ;. The TQML estimator is not affected even if o; and a;, are non-linearly related.

31



compared to the IID case. In contrast, the TQML estimator performs well, requiring larger values of
N only when {T" = 5, 7y = 0.8} to reduce the mild biases observed for this parameter combination.
The small size distortion of TQML in the case of {N = 100,7 = 5, v, = 0.8}, vanish when larger
values of N = {300,500} are considered. Power functions for {T' = 5, N = 500}, are shown in Figures
3a and 3b for the IID and spatially correlated fixed effects, respectively. The TQML estimator shows
satisfactory power as the distance from the null hypothesis increases, with the power curves exhibiting
slight asymmetry for the case of 75 = 0.8. While power appears higher for the Bai-QML estimator, this
is accompanied by evidence of large size distortions which are higher for the case of 75 = 0.8, and even
more so when the fixed effects are spatially correlated as compared to the 11D results.

AR(1): TQML and GMM In comparing the TQML and GMM estimators, results for the AR(1)
panel data model are only reported for T' = 10 as the GMM estimators are not computable for the case of
T =5 due to failure of the order condition. Results in Table 6 show that the TQML estimator performs
substantially better than the GMM estimators in terms of bias and RMSE. When v = 0.8, the GMM
estimators, especially FD1 and FD2, perform very poorly possibly due to weak instruments, whereas the
TQML estimator has small bias and RMSE. With regard to size shown in Table 7, the GMM estimators
display substantial size distortions while the TQML estimator has empirical size close to the nominal
value, except for the case where v = 0.8 and N = 100.

ARX(1): TQML and Bai-QML Bias and RMSE of v and § for the ARX(1) panel data model
are given in Table 8. While the bias is generally small for the TQML estimator for v and g across all
parameter combinations, for the Bai-QML estimator these are larger, and much more so in the case of
spatially correlated fixed effects. The same holds for the RMSE. Empirical size is reported in Table 9,
which shows the TQML estimator to have little size distortions for all parameter configurations, even
for T =5 and N = 100. In contrast, the performance of the Bai-QML estimator varies considerably
depending on the parameter values, the number of latent factors, and the way fixed effects are generated.
For example, Bai-QML shows little size distortion when 7' = 5, N > 100 and v, = 0.4. But significant
size distortions occur when v, = 0.8, and the extent of these become more pronounced under spatially
correlated fixed effects, and as my is increased to 2. Power functions for 7'=5 and N = 500 are shown
in Figures 4 and 5 for the I1D and spatially correlated fixed effects, respectively. These figures show
that under 11D fixed effects the Bai-QML estimator for v exhibits similar power performance compared
to the TQML estimator when v, = 0.4, and moderately lower power for v, = 0.8. For 3, when mo =1
across both values of v, the Bai-QML estimator continues to show lower power as compared to TQML,
which becomes extremely lower in the case of mg = 2. The picture is qualitatively similar for spatially
correlated fixed effects, however with more pronounced power discrepancies. For v, = 0.8 the large size
distortions for v and 8 do not allow for a meaningful power comparison of the two estimators. The power
performance of the TQML estimator is satisfactory across all parameter combinations.

ARX(1): TQML and GMM Table 10 reports the bias and RMSE of v and g for the TQML and
GMM estimators and shows that the TQML estimator has better small sample properties both in terms
of bias and RMSE. The same also follows if we consider the size of the tests based on these estimators
summarised in Table 11. For the GMM estimators, the performance crucially depends on the specific
values of g, mo, N and 7', and there is no GMM estimator that performs well for all combinations, which
is in contrast to the TQML estimator that performs well for all cases considered. For instance, when
T =5, FD1 and FD2 tend to have correct empirical sizes when N is large. However, they tend to have
large size distortions when T is increased to 7' = 10 for mg = 1. QD2 and FD2 tend to have larger size
distortions than QD1 and FD1. This is partly due to the downward bias of the standard errors used in
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the two-step estimators.?!

8.2.4 The unit root case

The results for the unit root case are very similar to those already reported for the stationary case.
Table 12 reports the number of factors correctly selected (in %) by the sequential MTLR procedure
when 75 = 1. As can be seen, the results are uniformly good for all values of mg, N and 7. Also the
effects of deviating from the baseline values of x? and o2 on the empirical frequency of correctly selecting
the true number of factors are similar to the stationary case. See Tables B1(i) and B1(ii) in the online
supplement. The results for bias, RMSE and size of the TQML estimator when v, = 1 are summarised
in Tables 13 and 14 for the AR(1) and ARX(1) panel data models, respectively. These show that the
bias and RMSE are reasonably small, and the empirical size for « is slightly below the nominal value.
The effects of deviating from the baseline value of x? are reported in Tables B2(i) and B2(ii) of the online
supplement, and show that the bias and RMSE become smaller as the value of x? is reduced, which is
different from the stationary case. Power is also reasonably high as shown in Figures 6 and 7 for the
AR(1) and ARX(1) panel data models, respectively, when x2 = 1. The power plots for other values of
k2, namely {1/4,1/2,2}, are given in Figures B3(i), B3(iv), and B3(vii) of the online supplement for the
AR(1) model, and Figures B3(ii)-B3(iii), B3(v)-B3(vi) and B3(viii)-B3(ix) for the ARX(1).

8.2.5 Robustness of baseline MC results

Lastly we investigate the performance of our selection and estimation strategy under a number of devi-
ations from the baseline model. Specifically, we consider the following scenarios: (i) initial values that
deviate from the steady state distribution, whereby ;g is generated as in (85) but with means and vari-
ances given by k1o and keojo, with k1, ke = 1.2,0.8; (ii) implementing the sequential MTLR procedure
with different p-values, namely p = {0.01,0.10}, instead of our baseline value of p = 0.05; (iii) factor
loadings that are correlated with the regressors; and (iv) factor loadings that are mutually weakly cor-
related. Further details on the data generating process for the last two cases and related results can be
found in Section S.9 of the online supplement.

As shown in Tables C1(i)-C1(iii) of the online supplement, deviating the initial values from those of
the steady state distribution has only a limited effect on the results with the performance of our estimator
remaining reasonably good overall. The only effect observed is for the AR(1) panel data model for which
size distortions are slightly more pronounced for 7' = 5, 7, = 0.8 and N < 500 as compared to the case
where y;0 are drawn from the steady state distribution. For the rest of the results, including those of
the ARX(1) model bias and RMSE values are still reasonably small with empirical sizes close to their
nominal value across all parameter configurations.

Regarding the use of alternative values of p in implementing the MTLR test, as can be seen from
Tables C2(i)-C2(iii) for p = 0.01 and Tables C2(iv)-C2(vi) for p = 0.10, the results are very similar and
in some cases even better than those obtained in Tables 1-3 for p = 0.05.

When the factor loadings are correlated with the regressor, from Tables C3(i)-C3(iii) of the online
supplement, we find that the sequential MTLR, procedure estimates the number of factors very precisely
across all parameters, the bias is sufficiently small, and empirical size is close to the nominal level, with
one exception, namely, when N = 100, 7" = 5 and v, = 0.8 for the AR(1) model. When the factor
loadings are weakly correlated, as shown in Tables C4(i)-C4(iii) in the online supplement, the results are
very similar to those in Tables 1-3 where such correlation is absent. The same also applies if we consider
the estimates for the ARX(1) model.

21Since both QD2 and FD2 are nonlinear GMM estimators, it is not straightforward to apply the Windmeijer (2005)
correction.
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9 Empirical illustrations

We investigate the importance of allowing for interactive effects in empirical analysis by applying our
selection and estimation strategy to two empirical problems addressed in the literature. In the first
illustration we estimate a dynamic version of the model considered by Cornwell and Trumbull (1994)
and subsequently by Baltagi (2006), to explain the incidence of crime across N = 90 counties in North
Carolina over the period 1981-1987 (T' = 6). In the second illustration, we use the data set recently
analysed by Acemoglu et al. (2019) to estimate output regressions on a balanced panel of N = 82
countries using 7" = 5 five-year time intervals over the period 1981-2005. All regressions include both
individual and time effects, plus the regressors associated with the initial observation of the dependent
variable in first differences. The presence of interactive effects is investigated by first estimating m, the
number of unobserved factors, subject to mmax = T — 2. Results are presented for the parameters of
interest, namely the coefficient of the lagged dependent variable and the regressors; estimates for the
remaining parameters (such as time effects) are available upon request.

9.1 Cross county crime rate regressions

The crime rate in county i, year ¢ (y;;) is explained by the deterrent variables, namely the probability of
arrest (P, 4), the probability of conviction given arrest (Pj ), the probability of a prison sentence given
a conviction (Pj p), average prison sentence in days (S;;), and a number of other variables such as popula-
tion density (Density;;), percent young male (Y M;;), the wage rates in manufacturing (WM Fj;), and the
wage rate in transportation, utilities and communication industries (WTUC;;).2?> The panel regressions
estimated by Cornwell and Trumbull (1994) and Baltagi (2006) are static and could be misspecified since
jurisdictions with high crime rates in one year are likely to continue to have high crime rates into the
near future. By including lagged crime rates (y;¢—1) in the model we account for the possible persistence
of crime rates over time, and by allowing for unobserved common effects we take account of possible
persistence and spill-over effects of crimes across counties.

To investigate the importance of the interactive effects we first estimated m (the number of latent
factors) using the proposed sequential MTLR procedure, with the nominal value of the test, p, set to
5%, and the maximum number of factors, my., = T — 2 = 4 (see Section 7.1). We obtain m = 3 and
reject the null hypothesis that the panel regressions are not subject to interactive effects, despite the
fact that they include country and year fixed effects. The estimate of m is reasonably robust to the
choice of p values and we obtain the same estimate (m = 3) if we set p = 10%, although setting p = 1%
yields m = 2. In Table 15 we report the results for m = 3, along with the estimates without interactive
effects (with m = 0). We first note that irrespective of whether we allow for interactive effects or not,
there is clear evidence of dynamics and the coefficient of the lagged crime rate is highly significant, even
though when we allow for interactive effects this coefficient falls from 0.501 to 0.402, but remains highly
significant. Amongst the x;s = (Pjt,a, Pit,c, Pit,p, Sit, Density;s, Y My, W M Fy, WTUCj;) variables, only
the deterrent variables and the wage rate in manufacturing are statistically significant once we allow for
interactive effects. The results are similar when we do not allow for interactive effects, with the exception
of the WTUCj; variable which is marginally significant when m = 0. It is also worth noting that all the
estimated coefficients that are statistically significant have the correct signs when m = 3.

22Cornwell and Trumbull (1994) and Baltagi (2006) consider a number of other variables such as wage rates in other
industries and the number of police, which we exclude to simplify the exposition.
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Table 15: Dynamic panel estimates of crime rates (y;;) across 90
counties in North Carolina over the period 1981-1987

(T = 6,N = 90)

Explanatory Variables (y; ¢—1,X¢) m =3 m=0
. 0.402*** 0.501***

Lagged crime rate (yi t—1) (0.108) (0.086)

Probability of arrest (P, 4) _(8?6(;;) _(8327%))
_ * %k k. _ * %k 3k

Probability of conviction given arrest (Pt c) (gégg) (g(l;ég)
_ * %k % . * %k k.

Probability of prison given conviction (Pj p) (g(l]ié) (8(1)?5)1)
_ % %k %k _ Kok ok

Severity of punishment (.S;¢) (gggi;) ((O)éig)

Population density (Density;; ) (?J}lgf)) ?01511380)

Q9%
Wage: transportation, utilities & communication (WTUC;) (((]J[(ﬁg) ?00339)

-0.563***  -0.431***

Wage: manufacturing (WMFG;;) (0.158) (0.105)
0.839 0.601
Percent young male (Y M;;) (0.694)  (0.664)

Note: The estimates allow for county and year fixed effects. T is the number of
time periods used in TQML estimation after first differencing. m is the latent factors
estimated using the sequential MTLR procedure described in Section 7.1 with mmax =
T—2=4and ay =0.05/(N(T —2)). Figures in parentheses are standard errors that
are computed according to equation (66). *** ** * denote significance at the 1%, 5%
and 10% levels, respectively.

9.2 Cross country growth regressions

There is a large empirical literature on cross country growth regressions, using cross section as well as
panel data sets. Examples include Barro (1991), Mankiw et al. (1992), Sala-i-Martin (1996), Islam (1995),
Caselli et al. (1996) and Lee et al. (1997, 1998). Our application is closest to the panel regressions by
Islam (1995) and Caselli et al. (1996) who estimate dynamic panel regressions with time and fixed effects
using log GDP per capita at five-year time intervals. A similar approach is also used by Acemoglu et al.
(2019) who focus on the effect of democracy on GDP per capita. However, none of these studies allow
for interactive effects. In our empirical application we regress log GDP per capita (y;;) measured over
five-year intervals on y;;—1, log investment-output ratio, log total factor productivity (TFP), log trade
share in GDP, log infant mortality, and a dichotomous democracy variable. As noted above, the data set
used covers N = 82 countries with 7' = 5 five-yearly periods spanning 1981-2005.%3

For this illustration the number of latent factors (m) was estimated to be m = 2, using the sequential
MTLR procedure with p = 5% and my,q, = T —2 = 3. The same result was obtained setting p = 1% and
10%. The parameter estimates together with their standard errors for m = 2 and m = 0 are summarised
in Table 16. As can be seen, allowing for interactive effects substantially lowers the degree of output
persistence from 0.583 to 0.246, raises the coefficient of log TFP from 0.547 to 0.870, and increases the
size and significance of the coefficient of infant mortality on output from —0.042 (and not significant ) to
—0.075 (and highly significant). The negative and significant effect of infant mortality on GDP is also
found in similar growth regressions by Somé et al. (2019). They explore the impact of healthcare on
economic growth in Africa, but do not allow for error cross-sectional dependence in their analysis. The
trade share and democracy variables both have a positive sign though are found to be insignificant. The

Z3For further information on the data and related sources see Acemoglu et al. (2019).
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latter finding is in line with recent results by Jacob and Osang (2018) who perform a dynamic panel
analysis using GMM for a sample of more than 160 countries based on 7" = 10 five year averages. In
contrast Acemoglu et al. (2019) find that democracy does cause GDP using an annual panel data of
T = 50 observations without allowing for interactive effects. The only parameter estimate which has not
been affected by the inclusion of interactive effects is the coefficient of the investment-output ratio, which
is estimated at 0.078 when m = 0 as compared to 0.071 when m = 2.

The empirical illustrations provided suggest that allowing for error cross-sectional dependence in
dynamic panels could be important and ought to be considered in applied research.

Table 16: Dynamic panel regressions for cross
country log per capita output equations (y;;)
(1981-2005, five yearly T'=5, N = 82)

Explanatory Variables m=2 m=0
. 0.246*** 0.583***
Lagged log GDP per capita (y;,¢—1) (0.063) (0.042)

Log investment output ratio (INV;4) 0.071 0.078

(0.014) (0.018)

Log total factor productivity (TF P;) (8%?1)) (ggé;)
* %k

Log trade share in GDP (Trade;;) (ggig) ((())gg)

_ * kK _
Log infant mortality 0.075 0.042

(0.029) (0.027)
L 0.012 0.008
Democracy indicator (0.014) (0.017)

Note: m is the estimated number of factors using the sequential
MTLR procedure described in Section 7.1 with mmax =T —2 = 3
and ay = 0.05/(N(T — 2)). See also the note to Table 15.

10 Conclusion

This paper proposes a quasi maximum likelihood estimator for short dynamic panel data models with
unobserved multiple common factors, where individual and time fixed effects are also explicitly included.
This provides a natural extension of Hsiao et al. (2002) to panel data models with a multi-factor error
structure. Our contribution can also be viewed as extending the standard dynamic panel data models
with fixed and time effects, routinely used in the empirical literature, to allow for error cross sectional
dependence through interactive effects.

We have also contributed to the literature on short T' factor models with regard to identification
and estimation of the number of unobserved factors, as well as parameter identification. Our proposed
sequential multiple testing likelihood ratio (MTLR) procedure can be particularly relevant to the analysis
of short T' factor models. Monte Carlo results provide small sample evidence in support of the proposed
TQML estimator and show that the sequential MTLR procedure performs very well in selecting the
number of unobserved factors in most settings. The same is also true for the performance of the TQML
estimator in terms of bias, RMSE and empirical size, and power. Empirical illustrations involving cross
county crime and growth regressions suggest that allowing for interactive effects in dynamic panels could
be important and ought to be considered in applied work.

Although we allow the error variances to vary across units through the differences in factor loadings,
it is assumed that the unit specific errors are cross sectionally homoskedastic, which is rather restrictive.
However, our theoretical derivations can be readily adapted to cover the heteroskedastic error case, as
was done in the recent paper by Hayakawa and Pesaran (2015) for models without unobserved common
factors. It would also be interesting to extend the analysis to panel VAR models with interactive effects.
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Tables and Figures for the Monte Carlo Results

Table 1: Empirical frequency of correctly selecting the true number of factors, mg,
: : 2 _ 2 _
using the sequential MTLR procedure (k* =05 = 1)
T=51=04 T=57,=08 T=107,=04 T =107, =038
mo 0 1 2 0 1 2 0 1 2 0 1 2
N AR(D)
100 994 99.7 8890 992 998 963 995 99.6 997 99.7 995 99.7
300 99.8 100.0 100.0 99.8 100.0 100.0  99.8 100.0 100.0  99.8 100.0 100.0
500  99.9 100.0 100.0 99.9 100.0 100.0  99.9 100.0 100.0  99.9 99.9 100.0
1000 99.9 100.0 100.0 99.9 100.0 100.0  99.7 100.0 100.0  99.6 100.0 100.0
ARX(D)
100 99.7 98.7 31.0 99.6 99.2 33.0 993 99.6 99.7 99.4 99.6 99.7
300 100.0 100.0 99.5 99.9 100.0 99.5 100.0 100.0 99.9 100.0 99.9 99.9
500 99.9 99.9 100.0 99.9 99.9 100.0  99.9 100.0 100.0  99.9 100.0 100.0
1000 99.9 99.9 100.0 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: y;; is generated as y;s = o +0¢t+YYi,t—1+B2it+C4p, Cip = Z;nzol Nei for +uit = n;ft—l—uit, fori =1,2,...,N;t =
1,..,T, with yi0 = ;0 + 0i0 (ui0/0) where p;g = (@ + Bagi)/(1 —7) and 02, = (02+az8%02 +ara;)/(1 —
7). In addition, az = (14 7p,)/(1 = vpy), ap = (14 7pp)/(1 = ypy) and a; = 3710 07, + B2 )2 97 +
i 2
28 R (m0me) 1) 9y, where ng; ~ TIDN (o, 570) 0= 1,2,...,mo, ¥ig ~ IIDN(0,03,), for £ = 1,2, ...,ma,
with 0%[ = o%,/mm7 for all £, p, = 0.95, mz = 2, and 8 = 1. The idiosyncratic errors are generated as wu;z ~
I]D\/%(xg —6) for i = 1,2,..,N;t = 0,1,...,T where x2 is a chi-square variate with 6 degrees of freedom and
02 = 1. The fixed effects are generated as a; ~ ITDN(0,1). The regressors, 4, for i = 1,2,..., N are generated
. 1/2

as Tip = Qgi + ooy Vs fer+vit, wWith vig = p,vie 1 + (1-p2) / eit, for t = 1,2,...,T, g4 ~ IIDN(0,02)),
vio ~ IIDN(0,02,), for i = 1,2,..., N, with 62, ~ IID %(X% +2)02 and ay; = a; +v;, where v; ~ ITDN(0, 1), for
all i. Bach f; is generated once and the same f/s are used throughout the replications. In the AR(1) case 8 =0
and under mo = 0, {;; collapses to u;;.

Table 2: Bias(x100), RMSE(x100) and Size (x100) of  for the AR(1) panel data
model, using the estimated number of factors, m (k2 = 1)

T =5,v =04 T =5,v)=0.8 T =10,v9=04 T =10,v,=0.8
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
N mg=0
100 0.42 8.69 6.2 0.65 12.29 21.3 -0.03 3.76 6.5 1.94 7.90 16.4
300 -0.03 4.26 5.4 1.42 9.26 19.2 -0.04 2.18 5.1 0.68 4.62 8.7
500 0.03 3.22 4.8 1.46 7.80 14.6 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.02 6.07 12.1 -0.01 1.22 5.4 0.18 2.24 5.7
mo =1
100 0.41 9.39 5.1 1.42 12.99 19.6 -0.05 4.20 6.1 0.23 4.64 4.9
300 -0.09 4.99 5.1 1.00 9.04 11.9 0.02 2.38 4.5 0.08 2.41 4.7
500 0.05 3.68 3.9 0.96 7.12 7.1 -0.06 1.90 6.0 0.01 1.88 5.4
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 4.9 0.00 1.30 4.2
mo = 2
100 4.09 16.38 11.5 1.82 16.38 19.8 -0.08 5.12 5.8 0.19 5.32 5.3
300 0.20 4.99 3.9 1.38 4.99 10.3 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 3.1 0.98 3.81 6.3 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 3.3 0.45 2.62 4.4 0.00 1.59 4.7 0.01 1.44 4.0

See the note to Table 1.
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Table 3: Bias(x100), RMSE(x100) and Size (x100) of v and g for the ARX(1) panel
data model, using the estimated number of factors, m (k? = 02 = 1)

T =5, 75 =04

T =5, v, =08

T =10, 7 =04

T =10, 7, = 0.8

Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
o
N mog=0
100 -0.15 3.45 5.9 -0.07 3.02 6.6 -0.06 1.95 5.4 -0.03 1.37 5.8
300 -0.04 1.97 5.6 -0.05 1.71 6.1 0.08 1.14 5.3 0.04 0.77 5.1
500 0.02 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.1 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8
mo =1
100 0.09 4.30 5.1 0.23 4.74 5.2 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.83 4.0
500 0.01 1.83 3.8 0.02 1.92 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4
mo = 2
100 0.37 4.70 5.8 0.47 4.99 4.7 -0.09 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1
[E]
mo =0
100 -0.06 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.01 2.58 5.8 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8
mo =1
100 -0.01 5.99 5.6 0.06 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.09 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.88 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7
mo = 2
100 0.27 8.33 6.5 0.41 8.56 5.8 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

See the note to Table 1.

42



Table 4: Bias(x100) and RMSE(x100) of v for the TQML and Bai-QML estimators
in the case of the AR(1) panel data model, using the true number of factors, my
(=0t =1)

T =5, =04 T=05,v7 =08
Bias(x100) RMSE(x100) Bias(x100) RMSE(x100)
TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial IID spatial IID spatial IID spatial
2
N mg=1

100 0.60 11.16 44.34 9.44 22.94 50.47 1.52 12,52 17.20 13.00 15.34 18.62
300 0.04 3.79 37.16 5.04 12.89 46.07 1.51 10.92 17.33 9.32 14.16 18.51
500 -0.01 3.08 33.53 3.87 11.25 43.76 0.96 9.54 17.01 7.36 13.33 18.38
1000 0.05 2.69 30.01 2.70 9.96 41.23 0.53 8.20 16.86 5.01 12.13 18.67
mo = 2
100 0.52 9.02 41.71 9.69 21.17 49.13 1.34  10.04 17.70 12.86 14.47 18.54
300 0.01 4.16  33.97 497 13.71  44.17 1.20 8.70  18.05 9.03 13.06 18.61
500 0.16 3.76  32.06 3.78 12.27 42.88 1.12 7.69 18.35 7.17 12.03 18.76
1000 -0.11 3.40 28.35 2.69 11.70 40.29 0.27 6.09 18.50 491 10.63 18.87

T =10,v, =04 T =10, vy =0.8
Bias(x 100) RMSE(x100) Bias(x 100) RMSE(x 100)
TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial 11D spatial IID spatial IID spatial
2l
N mo=1

100 -0.06 17.36 41.58 4.37 31.54 51.83 0.26 1.45 15.86 4.80 35.39 20.89
300 -0.05 15.79 43.83 2.46 30.46 52.12 0.03 -0.73 16.74 2.48 40.26  19.70
500 0.00 14.77 44.31 1.86 32.80 52.37 0.06 -0.06 17.05 1.83 39.96 19.59
1000 -0.03 17.36  45.23 1.32 29.83 51.74 -0.02  -0.31 17.07 1.33 38.67 19.83
mo = 2
100 -0.06 8.87 39.48 5.12 53.23 51.44 0.18 -10.56 14.18 5.08 46.78 17.13
300 -0.11  6.93 41.71 2.82 55.25 51.57 -0.01  -9.14 14.79 2.75 44.75 16.83
500 -0.09 10.08 43.39 2.16 52.25 51.20 -0.04 -11.78 15.25 2.11 47.13 17.19
1000 0.04 7.58 43.13 1.57 53.65 51.11 0.05 -10.87 15.03 1.48 46.24 16.74

Note: ay, ¢ = 1,...,N, are the fixed effects in the y;; equation given by (13) in the absence of regressors.
Under IID these are generated as o; ~ ITDN(0,1) and under spatial as spatially correlated according to
o =1y — p, W) e, with heteroskedastic errors e, = (€a,1,€a,2, - €a,N)’, where p, = 0.9, the matrix W
is specified as in (91) and for each i, e4,; are drawn as IIDN(0, aga ;) With aga ;=1 fori=1,2,..,N/2, and
0'2a i =2, for N/2+1,..., N. TQML is invariant to how the fixed effects are generated. The factor normalisation

€

for the Bai-QML estimator is based on F = (Iﬁ“ F’2)/ See also the note to Table 1.

Table 5: Size(x100) of v for the TQML and Bai-QML estimators in the case
of the AR(1) panel data model, using the true number of factors, mg
(12 =02 = 1)

T=5,v =04 T=05,v7 =038 T =10,v, =04 T =10, v, =0.8
TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial IID spatial IID spatial IID spatial
o
N mg=1
100 4.6 35.1 76.5 21.3  79.6 72.7 6.5 15.4 40.2 7.2 37.1 44.3
300 5.0 14.8 65.6 12.3  69.5 69.6 5.8 18.3 44.6 5.0 44.6 46.2
500 5.4 13.9 60.5 8.8 61.9 67.1 5.3 21.2 47.2 4.8 47.8 43.5
1000 4.8 12.0 55.5 4.9 519 64.4 5.3 21.7 48.1 4.6 474 45.8
mo = 2
100 4.8 29.65 70.4 18.1 65.9 78.2 4.8 47.35 63.8 4.4 54.7 72.7
300 4.0 15.90 57.9 10.1  56.9 75.8 4.9 54.80 68.5 4.7 59.7 78.1
500 2.7 13.65 55.5 6.3 49.0 76.5 3.7 55.85 69.5 5.1 65.1 80.8
1000 3.6 14.60 49.4 4.3  39.7 75.7 5.3 57.70 69.6 4.7 66.5 80.7

See the note to Table 4.
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Table 6: Bias(x100) and RMSE(x100) of v for the TQML
and GMM estimators in the case of the AR(1) panel data
model, using the true number of factors, mg (7' = 10, x% = 1)

Bias (x100) RMSE (x100)
TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
mgo 1
N Yo = 0.4
100 -0.06 47.59 46.28 -77.87 -71.71 4.37 48.52 47.71 79.19 73.47
300 -0.05 48.22 45.18 -67.05 -55.28 2.46 49.30 47.25 68.19 56.85
500 0.00 47.26 42.83 -62.18 -48.23 1.86 48.63 45.64 62.83 49.40
1000  -0.03 44.17 37.98 -55.13 -39.34 1.32 46.17 42.08 55.69 40.28
Yo = 0.8
100 0.26 17.82 17.85 -103.25 -100.24 4.80 17.86 17.89 104.33 102.19
300 0.03 17.83 17.74 -89.22 -77.41 2.48 18.18 18.07 90.14 79.44
500 0.06 17.57 17.44 -81.44 -65.55 1.83 18.90 18.81 82.30 67.37
1000  -0.02 17.50 17.35 -72.58 -52.73 1.33 18.87 18.82 73.30 54.20
mo 2
N =04
100 -0.06 36.71 36.04 -31.72 -28.39 5.12 42.41 4249 56.67 55.29
300 -0.11  31.22 29.25 -11.99 -7.84 2.82 40.23 38.88 37.23 32.67
500 -0.09 25.70 23.64 -1.81 0.31 2.16 36.29 34.28 23.75 19.81
1000 0.04 16.64 14.62 2.66 2.90 1.567 28.58 26.14 10.95 8.99
Yo = 0.8
100 0.18 14.76 14.79 -97.44 -97.95 5.08 22.92 23.33 110.76 112.19
300 -0.01 15.15 15.00 -68.59 -67.07 2.75 23.47 23.67 89.36 88.73
500 -0.04 16.02 15.94 -46.19 -43.19 2.11 21.06 21.08 71.95 69.03
1000 0.05 14.93 14.81 -27.04 -23.18 1.48 22.68 22.72 53.52 48.06

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first-difference
ALS one step and two step estimators respectively computed as described in Sec-
tion II. See also the note to Table 1.

Table 7: Size(x100) of v for the TQML and GMM
estimators in the case of the AR(1) panel data model,
using the true number of factors, mo (T = 10, k? = 1)

TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
mo 1 2
N ~vy=0.4
100 6.5 95.5 98.4 97.7 100.0 4.8 739 81.8 51.5 T1.0
300 5.8 95.3 98.7 97.9 100.0 49 64.2 70.2 34.1 50.2
500 5.3 95.1 99.6 97.8 100.0 3.7 545 61.8 22.5 38.0
1000 5.3 92.2 99.5 97.8 100.0 5.3 41.1 48.4 15.0 27.3
Y9 = 0.8
100 7.2 99.8 100.0 98.8 100.0 44  95.8 97.3 80.2 86.4
300 5.0 100.0 100.0 98.3 100.0 4.7 96.7 97.2 62.1 72.0
500 4.8 99.9 100.0 98.2 100.0 5.1  96.8 97.3 46.6 58.3
1000 4.6  99.8 100.0 98.7 100.0 4.7 954 96.3 32.4 43.8

See the note to Table 6.
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Table 8: Bias(x100) and RMSE(x100) of v and g for the TQML and Bai-QML
estimators in the case of the ARX(1) panel data model, using the true number of
factors, mo (k2 = 02 = 1)

T=5,v =04 T=05,v =08
Bias(x100) RMSE(x100) Bias(x100) RMSE(x100)
TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial IID spatial IID spatial IID spatial
5
N mg=1

100 0.09 1.59 1.98 4.28 6.95 8.49 0.23 2.31 4.90 4.74 5.75 7.93
300 -0.05 0.07 0.35 2.39 2.82 4.21 -0.02  0.87 3.26 2.56 3.58 6.35
500 0.02 0.12 0.25 1.82 2.27 3.16 0.02  0.60 2.81 1.91 2.82 5.86
1000 -0.04  0.05 0.07 1.35 1.43 1.76 -0.02 0.41 2.25 1.41 2.13 5.21
mo = 2
100 0.22  2.96 3.41 4.48 10.35 12.18 0.41 241 5.38 4.89 6.47 8.97
300 0.03 0.46 1.23 2.46 3.98 7.24 0.07 1.05 4.21 2.63 3.94 7.57
500 0.07 0.28 1.07 1.94 3.08 6.83 0.09 0.57 3.82 2.10 2.97 7.02
1000 0.05 0.23 0.88 1.39 2.70 6.12 0.05 0.31 3.59 1.47 2.00 6.79
B
mog =1
100 -0.01  0.57 0.81 5.98 7.45 7.72 0.06 0.98 1.18 6.16 7.25 8.50
300 -0.15  0.06 0.05 3.39 3.83 4.17 -0.14  0.47 0.51 3.46 4.10 5.97
500 0.09 0.08 0.08 2.65 3.03 3.21 0.10 0.36 0.30 2.70 3.21 5.15
1000 0.05 0.01 0.00 1.87 2.03 2.02 0.06 0.17 0.23 1.91 2.19 3.97
mo = 2
100 0.25 0.88 1.43 8.30 31.26 34.36 0.38 -0.14  -3.77 8.51 30.55 34.03
300 0.17 097 -0.30 4.61 17.16 16.92 0.20 0.3 -4.01 4.66 17.68 27.14
500 0.11  0.68 -0.54 3.565 13.22 13.82 0.14 0.60 -4.37 3.63 13.61 19.30
1000 -0.06 0.01 -0.75 2.51 9.16 10.46 -0.05 0.02 -6.41 2.55 9.41 23.16

T =10, vy = 0.4 T =10, v, =038
Bias(x100) RMSE(x100) Bias(x100) RMSE(x100)
TQML  BaiQML  TQML  BaiQML  TQML  BaiQML  TQML  Bai-QML
IID spatial IID spatial IID spatial IID spatial
5
N mg=1

100 -0.10  3.46 1.18 2.15 11.42 7.30 -0.07 1.16 2.81 1.53 18.51 6.01
300 0.03  3.27 1.12 1.20 10.17 6.93 0.02 2.50 2.59 0.82 14.31 6.72
500 -0.02  3.62 1.18 0.92  10.05 6.98 -0.01 1.45 2.21 0.65 17.73 5.35
1000 0.01 3.46 0.80 0.67 9.05 5.80 0.00 2.25 2.22 0.46 14.20 5.20
mo = 2
100 -0.10  5.66 12.20 2.33 21.98 24.14 -0.06 -0.04 6.56 1.58 20.16 10.11
300 -0.06  5.67 10.44 1.33 22.84 21.98 -0.02  0.75 6.70 0.91 21.30 9.85
500 -0.03  5.09 9.37 0.98 25.66 20.77 -0.01 -0.61 6.46 0.69 21.96 10.77
1000 0.02  5.80 8.99 0.70 21.67 20.72 0.01 0.54 6.63 0.48 18.43 9.96
JE]
mo =1
100 0.10 -1.25 -0.79 3.98 12.39 7.21 0.07 3.32 -1.73 3.98 40.08 12.53
300 0.01 -1.10 -1.01 2.29 9.96 6.54 0.02 257 -2.84 2.28 38.77 11.99
500 0.00 -1.69 -1.00 1.74 10.30 6.24 0.00 247 -2.42 1.72  30.21 9.75
1000 0.03 -1.48 -0.52 1.21 8.03 5.38 0.04 1.14 -2.27 1.20 26.98 9.32
mo = 2
100 0.15 0.88 -11.76 6.27 35.52  32.59 0.15 4.18 -12.85 6.25 T77.77 38.09
300 0.09 1.48 -10.90 3.63 32.50 25.17 0.08 591 -14.21 3.61 68.38 40.00
500 0.02 0.58 -9.52 2.85 3243 24.73 0.01 9.55 -14.12 2.84 85.11 38.50
1000 0.04 1.33 -8.51 1.96 36.25 29.94 0.05 9.65 -13.29 1.95 87.15 44.42

Note: a;, ¢ = 1,..., N, are the fixed effects in the y;; equation given by (13). The regressor equation fixed effects,
g, are generated as ag; = a; + v;, where v; ~ IIDN(0,1) for all 5. For the Bai-QML estimator the Mundlak-
Chamberlain projection of «,; on the regressors is used to deal with the dependence of a,; on «;. See also the
note to Tables 1 and 4.
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Table 9: Size(x100) of v and S for the TQML and Bai-QML estimators in
the case of the ARX(1) panel data model, using the true number of factors,
mo (k2 =02 =1)

T=5,v =04 T=5,v =08 T =10,v, =04 T =10, vy = 0.8
TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial IID spatial IID spatial IID spatial
Y
N mg=1
100 5.1 128 11.9 5.2 379 55.4 6.0 18.8 9.2 6.5 38.2 29.1
300 4.4 4.5 6.3 51 17.5 34.8 5.2  19.2 7.4 4.0 45.6 24.8
500 3.7 5.0 5.6 39 124 31.0 5.5 20.6 7.4 5.1 45.2 22.1
1000 4.5 4.6 5.1 4.5 8.4 25.0 54 20.7 7.0 5.4 47.7 20.9
mo = 2
100 4.9 149 14.2 4.4 31.0 46.3 5.8 254 31.9 59 414 37.5
300 4.1 5.7 8.2 4.8 15.7 38.8 54 35.2 27.1 4.8 50.6 38.1
500 3.6 5.7 8.3 4.6 10.9 34.4 4.3 36.3 24.8 4.7 514 39.1
1000 3.6 5.2 7.5 4.2 6.5 314 4.3 404 24.6 4.1 52.6 39.6
B
mo = 1
100 5.6 7.7 8.1 5.5 8.9 13.4 6.3 13.2 8.0 6.2 10.0 11.8
300 4.9 4.2 5.4 4.9 6.6 13.8 6.0 16.6 7.4 56 13.3 14.8
500 5.5 5.6 5.9 5.3 6.5 16.6 5.2 18.3 6.2 52 164 13.2
1000 5.5 3.9 4.0 5.7 5.3 16.6 44 184 6.8 4.7 203 13.9
mo = 2
100 6.1 194 18.4 5.7 16.9 21.5 49 13.1 26.4 5.0 14.5 22.8
300 5.1 7.2 6.0 5.2 9.5 22.8 5.3 18.9 23.9 54 19.8 26.2
500 5.0 6.1 7.0 5.0 7.7 23.4 5.7 219 21.5 5.9 21.0 28.2
1000 4.9 4.1 5.9 5.2 5.6 23.9 5.3  26.0 22.5 5.3 26.3 31.2

See the note to Table 8.
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Table 10: Bias(x100) and RMSE(x100) of v and g for the TQML and GMM estimators in the case of the ARX(1)
model, using the true number of factors, mo (k? = 02 = 1)

T=25,v =04 T=05,v =08
Bias(x100) RMSE(x100) Bias(x100) RMSE(x100)
TQML GMM TQML GMM TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
o
N mg=1

100 0.09 17.79 17.50 -12.27 -7.22 4.28 20.97 20.70 14.84 10.08 0.23 6.53 6.56 -13.27 -7.43 4.74  7.64 T7.41 15.41 9.75
300 -0.05 13.06 12.97 -5.74 -2.36 2.39 17.65 17.30 7.67 4.16 -0.02 6.09 6.07 -5.83 -2.10 2.56 T7.11 6.79 7.83 3.78
500 0.02 9.46 9.37 -3.18 -1.24 1.82 14.83 14.46 5.24 2.76 0.02 5.72 5.61 -3.13 -1.04 1.91 6.76 6.40 5.28 2.51
1000 -0.04 4.88 482 -1.65 -0.65 1.35 10.67 10.28 3.58 1.90 -0.02  5.04 4.89 -1.59 -0.54 1.41 6.15 5.81 3.61 1.75
mo = 2
100 0.22 4.44 443 -2.59 -1.69 4.48 11.80 12.14 8.92 8.00 0.41 229 220 -299 -1.97 489 6.69 6.93 8.91 8.10
300 0.03 290 2.72 -1.05 -0.65 246 7.98 8.09 5.21 4.48 0.07 221 216 -1.10 -0.62 2.63 5.19 5.26 5.12 4.45
500 0.07 238 231 -0.63 -0.29 1.94 6.84 6.87 4.14 3.48 0.09 219 219 -0.56 -0.35 2.10 4.65 4.64 4.02 3.41
1000 0.05 1.26 1.20 -0.20 -0.16 1.39 490 4.96 2.76 247 0.05 2.03 1.99 -0.22 -0.20 1.47 4.03 4.05 2.66 2.43
B
mo =1
100 -0.01 -7.21 -6.90 -5.79 -3.95 598 15.03 15.98 10.19 8.69 0.06 -5.52 -4.75 -6.64 -4.17 6.16 10.86 10.61 10.69 8.59
300 -0.15 -4.56 -4.08 -2.88 -1.49 3.39 11.48 12.45 5.94 4.54 -0.14 -4.34 -3.33 -3.12 -1.37 3.46 8.07 T7.44 6.11 4.41
500 0.09 -2.20 -1.85 -1.44 -0.68 2.65 9.32 10.07 4.44 3.37 0.10 -2.81 -2.06 -1.52 -0.58 270 6.76 6.04 4.49 3.28
1000 0.05 -0.48 -0.24 -0.61 -0.28 1.87 6.61 7.19 3.10 2.30 0.06 -1.32 -0.57 -0.64 -0.22 1.91 559 5.01 3.13 2.25
mo = 2
100 0.25 5.01 3.88 -1.87 -1.28 8.30 24.95 25.10 29.55 26.36 0.38 2.18 1.88 -0.39 -0.22 8.51 23.47 23.79 29.23 26.58
300 0.17 296 245 -1.23 -0.26 4.61 14.87 14.81 15.97 14.12 0.20 1.19 1.07 -1.09 -0.18 4.66 13.43 13.41 15.97 13.98
500 0.11 273 243 -0.86 -0.07 3.55 11.39 11.53 12.32 10.49 0.14 150 1.31 -0.56 0.15 3.63 10.21 10.18 12.52 10.56
1000 -0.06 1.21 1.02 -0.77 -0.42 251 837 825 8.84 7.48 -0.05 0.78 0.74 -0.45 -0.25 2.55 7.57 7.61 8.79 7.62

T =10, vg =04 T =10,v,=038
Bias(x100) RMSE(x100) Bias(x100) RMSE(x100)
TQML GMM TQML GMM TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FDI1 FD2
5
N mg=1
100 -0.10 2.15 - -0.07 1.53

300 0.03 23.02 20.54 -36.09 -29.68 1.20 23.20 20.83 39.30 32.20 0.02 9.00 8.38 -30.82 -25.17 0.82 9.02 8.42 38.40 30.66
500 -0.02 23.53 20.57 -31.31 -23.92 0.92 23.68 20.84 36.43 27.44 -0.01  9.08 8.34 -22.91 -17.22 0.65 9.10 8.38 33.64 23.99
1000 0.01 23.54 20.25 -22.35 -15.88 0.67 23.68 20.55 31.55 21.37 0.00 9.17 8.41 -13.70 -9.64 0.46 9.19 8.46 27.53 17.10
mo = 2
100 -0.10 20.28 1991 1.39 1.39 2.33 21.79 21.58 5.99 5.75 -0.06 8.85 879 -2.28 -2.15 1.58 9.07 9.03 5.30 4.99
300 -0.06 14.83 13.15 1.9 1.18 1.33 18.67 18.42 3.44 2.51 -0.02 8.36 7.78 -0.08 -0.05 091 8.66 8.17 2.65 1.64
500 -0.03 8.70 6.57 1.16 0.72 0.98 13.32 13.16 2.63 1.68 -0.01 7.69 6.73 0.11 0.05 0.69 8.17 7.37 2.07 1.13
1000 0.02 2.06 0.63 061 0.33 0.70 4.38 340 1.81 1.02 0.01 5.25 391 0.10 0.06 0.48 6.43 5.19 1.49 0.69
B
mo =1
100 0.10 - - - - 3.98 - - - - 0.07 - - - - 3.98 - - - -
300 0.01 -14.30 -10.49 -25.76 -20.57 2.29 15.53 12.16 27.96 22.35 0.02 -17.89 -13.42 -29.17 -23.31 2.28 18.46 14.37 34.13 27.09
500 0.00 -15.12 -10.59 -24.08 -17.52 1.74 16.08 12.02 26.81 19.45 0.00 -18.52 -13.21 -25.03 -17.96 1.72 19.01 14.25 31.59 22.36
1000 0.03 -14.75 -9.88 -19.83 -13.18 1.21 15.62 11.10 24.54 15.68 0.04 -19.25 -13.74 -18.97 -12.15 1.20 19.73 14.94 28.02 17.16
mo = 2
100 0.15 -14.47 -14.06 -0.75 -0.97 6.27 20.18 20.19 12.90 12.64 0.15 -18.71 -18.27 -0.17 -0.21 6.25 21.62 21.42 12.59 12.31
300 0.09 -11.44 -10.77 -0.70 -0.71 3.63 19.80 20.12 8.52 7.14 0.08 -16.43 -13.14 0.17 0.07 3.61 18.99 16.88 8.34 6.98
500 0.02 -6.51 -5.81 -0.41 -0.38 2.85 16.45 1548 7.30 5.41 0.01 -13.57 -8.91 0.19 0.03 2.84 16.99 1391 7.22 5.34
1000 0.04 -0.65 -0.48 -0.28 -0.15 1.96 9.53 5.32 5.22 3.51 0.05 -6.33 -1.72 -0.01 -0.01 1.95 11.87 7.71 5.20 3.49

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-difference and first- difference ALS one step and two step estimators respectively computed as described
in Section II of the online supplement. "-" signifies that results are not available which is due to the number of moment conditions exceeding the sample size.
See also the note to Table 1.
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Table 11: Size(x100) of v and S for the TQML and GMM estimators in the case of the ARX(1)

panel data model, using the true number of factors, mg (k? = 02 = 1)

T=5,v =04 T =5,v=0.8 T =10,v,=04 T =10, v9=0.8
TQML GMM TQML GMM TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2
N mg=
100 5.1 87.1 89.3 41.2 42.2 5.2  93.0 95.8 48.8 48.0 6.0 - - - - 6.5 - - - -
300 44 69.3 709 23.5 17.3 5.1 89.5 90.8 24.6 17.3 5.2 99.9 100.0 96.5 99.8 4.0 100.0 100.0 96.6 100.0
500 3.7 54.2 55.8 13.7 99 3.9 859 86.8 13.0 9.5 5.5 99.9 99.9 97.1 100.0 5.1 100.0 100.0 96.8 100.0
1000 4.5 344 35.7 10.0 8.7 45 774 776 9.9 89 5.4 100.0 100.0 96.0 100.0 5.4 100.0 100.0 96.4 100.0
mo =
100 4.9 21.3 26.8 5.7 10.6 44 38.0 42.6 5.8 10.3 5.8 93.7 98.0 9.2 T74.0 59 979 99.3 11.7 78.2
300 4.1 172 206 3.2 6.7 4.8 404 426 4.5 6.3 54 72.1 753 9.8 34.5 4.8 954 96.1 5. 29.3
500 3.6 174 198 3.0 54 4.6 39.8 41.7 3.0 5.6 4.3 51.1 48.7 9.6 23.6 4.7 905 89.9 5.1 19.1
1000 3.6 95 11.7 2.3 44 42 356 372 21 4.2 4.3 187 16.1 7.1 13.7 4.1 694 65.1 4.6 11.1
mo =1
100 5.6 36.8 48.9 15.2 20.7 5.5 22.1 31.1 18.0 21.1 6.3 - - - - 6.2 - - - -
300 4.9 45.1 53.3 10.3 11.3 4.9 33,5 35.1 10.5 11.0 6.0 89.0 89.3 924 96.1 5.6 98.9 98.0 83.5 91.2
500 5.5 41.0 48.6 8.3 8.8 5.3 36.2 36.2 7.5 85 5.2 93.2 92.0 88.0 93.5 5.2 98.8 96.5 74.5 84.7
1000 55 295 342 55 79 5.7 39.3 424 55 74 44 945 933 78.3 84.0 4.7 984 959 64.3 76.1
mo = 2
100 6.1 15.5 20.0 10.2 17.6 5.7 11.7 18.2 10.0 18.0 4.9 528 83.6 8.3 65.1 5.0 69.0 90.5 8.7 644
300 5.1 126 16.0 6.3 12.3 5.2 10.2 134 6.4 11.5 5.3 52,6 63.5 7.2 258 54 754 75.1 6.6 25.1
500 50 11.8 13.6 6.0 8.7 5.0 8.8 103 59 9.0 5.7 349 409 7.1 19.6 59 69.0 626 7.1 19.1
1000 49 10.1 109 6.3 8.4 5.2 83 103 6.7 9.3 5.3 11.8 16.3 5.6 11.6 53 41.8 343 5.3 11.7

See the note to Table 10.

Table 12: Empirical frequency of correctly selecting the true number of factors, my,
using the sequential MTLR procedure when 75 = 1 (k2 = 02 = 1)

T=5 T=10
mo 0 1 2 0 I 2
N AR
100 995 09.6 965 99.5 99.6 99.6
300 99.8  99.9 100.0 100.0 99.9 100.0
500 99.8 100.0 100.0 100.0 99.9 100.0
1000 99.9 100.0 100.0  99.9 100.0 100.0
ARX(D)
100 996 09.0 972 99.3 99.7 99.8
300 100.0 100.0 100.0 100.0 100.0 99.9
500 99.9 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 99.9 100.0

Note: First-differences are generated as Ay;; = Ady + yAy; -1 + BAzi + Ay, t = 2,3,...,T, with A(;, =
Yoo nei Ao+ Augy = i AFf + Augy, Ayin = Ad1+ BAzs1 + Ay and Ay =0, for i =1,2,...,N,and y =8 = 1.
The first-differences are then cumulated and y;¢ is obtained using arbitrary values for y;o. The idiosyncratic errors
are generated as wu;; ~ IID\/%(xg —6) for i = 1,2,...,N;t = 0,1,...,T where x2 is a chi-square variate with

6 degrees of freedom and o2 = 1. The fixed effects are generated as a; ~ ITDN(0,1) and the factor loadings
are specified as n, ~ IIDN (0, :TZO) , £ = 1,2,...,mg. The regressors, z;¢, for i« = 1,2,..., N are generated as

Tit = Qgi + Zznzzl Giefor+vit, Vit = PzViit—1 + (1 —pi)l/2 git, for t = 1,2,...,T, with p, = 0.95, my = 2,
¢ ~ IIDN(0,0%,), for £ = 1,2,...,mg, and 02, = 02 /my for all £, ~ IIDN(0,02,), vio ~ IIDN(0,02,), for
i=1,2,..,N, with 02, ~ IID (x3 4 2)0? and ay; = o; + v;, where v; ~ IIDN(0,1), for all i. The remaining
parameters are generated as described in Section 8.1. Each f; is generated once and the same f/s are used throughout
the replications. In the AR(1) case 8 = 0 and under mo = 0, (;; collapses to u;.

48



Table 13: Bias(x100), RMSE(x100) and
Size (x100) of v for the AR(1) panel data
model, using the estimated number of

factors, m, when v5 = 1 (k2 = 1)

T=5 T =10
Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100)
mo =20
100 -1.49 2.74 3.8 -0.53 1.24 3.3
300 -0.89 1.69 3.1 -0.33 0.50 4.2
500 -0.67 1.08 2.6 -0.26 0.37 2.5
1000 -0.53 1.25 2.4 -0.20 0.33 3.0
mo =1
100 -2.99 5.70 5.4 -0.61 1.01 3.0
300 -1.83 3.43 4.9 -0.39 0.95 2.8
500 -1.34 2.25 3.7 -0.31 0.46 2.9
1000 -0.97 1.64 3.4 -0.24 0.33 2.4
mo = 2
100 -3.00 5.09 5.1 -0.61 1.01 3.8
300 -1.70 2.93 3.9 -0.39 0.95 2.3
500 -1.37 2.30 3.2 -0.31 0.46 2.4
1000 -0.99 1.65 3.3 -0.24 0.33 2.1

See the note to Table 12.

Table 14: Bias(x100), RMSE(x100) and
Size(x100) of v and /3 for the ARX(1) panel
data model, using the estimated number of

factors, m, when vy =1 (k%2 = 02 = 1)

T=5 T=10
Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100)  (x100) (x100) (x100)
8i
mo =0
100 -1.28 2.17 3.7 -0.43 0.67 3.3
300 -0.77 1.27 3.4 -0.26 0.37 2.1
500 -0.58 0.94 3.2 -0.22 0.30 2.5
1000 -0.46 0.70 3.3 -0.18 0.23 2.9
mo =1
100 -2.00 3.46 3.9 -0.53 0.84 3.6
300 -1.24 2.05 2.3 -0.31 0.46 2.3
500 -0.97 1.61 2.3 -0.26 0.37 2.8
1000 -0.75 1.23 3.5 -0.20 0.26 2.2
mo = 2
100 -2.02 3.52 3.5 -0.50 0.80 2.4
300 -1.19 2.06 3.0 -0.32 0.47 2.1
500 -0.97 1.61 2.5 -0.27 0.39 2.5
1000 -0.71 1.16 2.8 -0.20 0.26 2.0
E]
mo =0
100 -0.58 4.47 5.5 -0.13 3.01 6.2
300 -0.30 2.55 5.0 -0.09 1.72 5.6
500 -0.21 1.94 4.0 -0.05 1.33 5.3
1000 -0.18 1.39 4.4 -0.03 0.95 4.8
mo =1
100 -0.97 5.95 4.5 -0.02 3.95 6.0
300 -0.69 3.38 4.2 -0.04 2.27 5.3
500 -0.36 2.62 4.5 -0.05 1.72 4.5
1000 -0.27 1.87 4.4 0.00 1.20 3.8
mo = 2
100 -0.59 8.26 5.1 0.28 6.25 5.2
300 -0.29 4.61 4.5 0.17 3.60 5.0
500 -0.27 3.56 3.9 0.09 2.83 5.8
1000 -0.34 2.54 4.6 0.11 1.95 4.7

See the note to Table 12.
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Figure 1: Power functions for y in the case of the AR(1) panel data model with different values of m
and N

Panel A: T=5
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Note: ——N=100 =---=-N=300 ww=sN=500 =:=-- N=1000. 7 is estimated using the sequential MTLR procedure

described in Section 7.1 with an=p/N(T-2) and p=0.05; vy is the coefficient of the lagged dependent variable in
(13) in the absence of the xit regressors. See also the note to Table 1.
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Figure 2a: Power functions for y in the case of the ARX(1) panel data model with different values of

m and N
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Figure 3a: Power functions for y in the case of the AR(1) panel data model with T=5, N=500,
m=mMoe=mo+1, and ai~IIDN(0,1)
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Note: ——TQML ----Bai_QML - 5% nominal value. o are the fixed effects and y is the coefficient of

the lagged dependent variable in (13) in the absence of the xi: regressors. See also the note to Table 1.

Figure 3b: Power functions for y in the case of the AR(1) panel data model with T=5, N=500,
m=Mo=mo+1, and a, spatially correlated
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Figure 4a: Power functions for y in the case of the ARX(1) panel data model with T=5, N=500, Bo=1,
m=mMoe=mo+1, and ai~IIDN(0,1)
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Note: ——TQML ----Bai_QML - 5% nominal value. a; are the fixed effects and y is the coefficient of

the lagged dependent variable in (13). See also the note to Table 1.

Figure 4b: Power functions for f in the case of the ARX(1) panel data model with T=5, N=500, Bo=1,
m=mo with ou~IIDN(0,1)
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Note: —— TQML ----Bai_QML - 5% nominal value. o are the fixed effects and [ is the coefficient

of the xit regressors in (13). See also the note to Table 1.
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Figure 5a: Power functions for y in the case of the ARX(1) panel data model with T=5, N=500, Bo=1,
m=mo=mo+1, and a, spatially correlated
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Note: ——TQML ----Bai_QML - 5% nominal value. a; are the fixed effects and y is the coefficient of

the lagged dependent variable in (13). See also the note to Table 1.

Figure 5b: Power functions for f in the case of the ARX(1) panel data model with T=5, N=500, Bo=1,
m=Mo=mo+1, and a, spatially correlated
Panel A: mg=1
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Note: —TQML ----Bai_QML - 5% nominal value. o are the fixed effects and [ is the coefficient

of the xit regressors in (13). See also the note to Table 1.
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Figure 6: Power functions for y in the case of the AR(1) panel data model with different values of m
and N

Panel A: T=5
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Note: ——N=100 =-==N=300 === N=500 =-=-= N=1000. 1 is estimated using the sequential MTLR procedure

described in Section 7.1 with an=p/N(T-2) and p=0.05; 7y is the coefficient of the lagged dependent variable in
(13) in the absence of the xit regressors. See also the note to Table 4.
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Figure 7a: Power functions for y in the case of the ARX(1) panel data model with different values of

m and N
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Note: ——N=100 ==-==N=300 === N=500 =-=-= N=1000. 71 is estimated using the sequential MTLR procedure

described in Section 7.1 with an=p/N(T-2) and p=0.05; v is the coefficient of the lagged dependent variable in
(13). See also the note to Table 4.

Figure 7b: Power functions for estimation of 3 in the ARX(1) model with different values of m and N
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the note to Figure 7a.
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Appendix

A.1 Lemmas and their proofs

Lemma 1 Consider the composite random variable, §;;, 1 = 1,2,...,N, for t = 1 defined by (25), and
fort = 2,3,..,T defined by (17). Then under Assumptions 1, 2, 3, 5, and 6, the following moment
conditions hold:**
sup E (|git|4+€) <K, fort=1,2,..,T, (A1)
K]

and
sup B (||Axit||4+e) < K. (A.2)

Proof. Result (A.1) follows by applying Minkowski’s inequality to the elements of &, = (£;1, &9, &7’ -
Specifically, for t = 2,3,..., T, &;; = gin; + Au;; and we have

1 1
€\ d+e 4 d+e
(E |§i1t|4+ )4+ = (E \gfmi + Auit} +6) o
1 1
< (Blgm] ™) + (Blawlt) T
1 1
< el (Blmal ) ™+ (B 1wl ) ™

Under Assumptions 1, 2 and 3 sup; ||| < K, sup; E ||n,||*™ < K and sup; ; F¥ |Auy|*T¢ < K. Similarly

fort =1, & = g m; +vi1, and ||g1]| < K and sup; E |v;1|*" < K (see (26) and related results). Hence,

1
(E \git]4+5> <K, fort=1,2,...,T and (A.1) follows as required. To establish condition (A.2), using
(14) we first note that

My 00
A%l < N6 ell + D 1ge el [0 + D 1%l lewi—ll

J=1 Jj=0

and by the Minkowski inequality for infinite sums we have

My 9]
(B | Axit )P < |[82a]l + D 1ge el (E Im55.0]P) "7 + ST (E fleiaglP) 7,
j=1 Jj=0

for any p > 1. Set p = 4 + ¢, and note that under Assumption 5, sup, [[d.|| < K,sup;,[g.ji| < K,

¢ 1/(4+¢)
sup; ; B ||| < K, sup;; B [lexl|** < K, and 2 ||¥;| < K. Therefore, (E HAxitH4+5> <
K, and (A.2) follows as required. m

Lemma 2 Consider the T x 1 vector of composite errors &€, = (€;1,&9, &), where &1 is defined by
(25) and &;;, fort =2,3,...,T are defined by (17). Suppose that the conditions of Lemma 1 hold and T
is fired. Then
sup B [|&;[* < K < oo, (A.3)
K3

sup E ||Z||* < K, sup E ||Ay||* < K, and sup E |[AW||* < K < . (A4)

24Tt is worth emphasising that this and other lemmas are established for a finite 7" and conditional on given values of time
effects, namely g, d¢, d5,¢,and, gq ¢, for t =1,2,...,T.
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Proof. To obtain (A.3) note that

T 2
||£i”4 = Hﬁz&”z =tr (@5;&5;) = (5;&)2 = <Z f?t) :

t=1

Then by Minkowski’s inequality we have

T 2 T 2
1/2
sl -5 (Y d) < (S .

t=1 t=1
and since sup; B(|€;|*™) < K for t = 1,2,...,T from result (A.1) of Lemma 1, result (A.3) follows
noting that 7" is fixed. To establish (A.4), note that AW; = (Ip, AX;, Ay; 1) = (Ir, AX;, LAy;), where
Ay; 1= (0,Ayi1, ..., Ay; 7—1)", AX; and Ay; are given by (43) and (42), and recall L is the lag matrix
operator which is given explicitly by

00 - 0
10 - 0

L= 1 0 , (A.5)
00 1 0

with ||L||* = T—1. Tt is now easily seen that | AW;||* < T+||AX;||>+(T — 1) | Ay;||®, and by Minkowski’s
inequality we obtain

(Blawi") " <7+ (Blaxd ) + @ -1 (Blay))

Also  |AX;))? = |Axa|? + QZtT:Q |Axi|?, and since by result (A.2) of Lemma 1
sup; ; E (\|Axit\|4+6> < K, it then follows that sup; E ||AX;||* < K. Similarly, using (42), we have
1Ayl < flall + B~ (N[ 181 IAX:] + B~ (]| 1€,

and by assumption [la| < K, ||| < K, and |[B™'(7)|| < K. Also by result (A.1) of Lemma 1
sup; ; I/ €,:]*T¢ < K, and it is already established that sup; F [|AX;||* < K. Hence,

(Elayil*)" < lall + 1B ol 181 (E1ax:0) " + B )] (216) "

and it follows that sup; E || Ay;||* < K, as required. m

Lemma 3 Consider the model given by (28) and let

£ () = Ay; — AW, B¢ (¥) = E [€; (0) & (0)] -

Define
di(h, ) = AW/ ()7 & (o), (A.6)
and suppose that Assumptions 1-7(ii),(iit) and 8, as well as the order condition (41) hold. Then
EO [dl(d)? 900)] = b (¢7 4100) = [07 07 —K (szv wO)], ) (A7)
where
R (P, %) = tr {[3e (¥) — e ()] C (¥,70) } (A.8)
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and

0 0 .- 00
1 0 0 0
Cy) =) | ZRERTTEEEE N (A.9)
ATB AT g g
70T—2 75—3 e 100
Furthermore
EO [dz('l,bo»‘/’o)] :O’ fOT'Z': 1a27"'aNa (A]'O)
N
by (3,00) = 1= D di(ab, 20) “3 b (3, 90) = [0,0, 5 (36,40 (A.11)
i—1
| X
by (g, o) = N ZAW;EE ("/’0)71 &i (o) = 0, (A.12)
i=1
and
1 & ) as.
Ene (Po) = N Zfi (o) &i (Po) = X (o) - (A.13)
i—1

Proof. First recall that 6 = (¢',4)" with ¢ = (§',7)', § = (&', @)’ = (d',n', 8) where ¢ = (n', 8')’
and ¢ = (w, 02,vec(Q)’)/. Under (28),
&i (po) = Ayi — AW,y = Gong;+roi, (A.14)

where Go,n;, and rg; denote the values of G, 1, and r; evaluated at 9 = 1. It is now easily seen
that Eo [€; (pg)] = 0, and Var[€; (py)] = Eo [&; (vo) & (¢0)] = B¢ (¥g). Also under Assumptions 1-6,
&, (p) = Gn,+r; are independently distributed over 4 for all values of 8 € ©., and Ax;; is independently
distributed from w;; and n;. Partition AW, as AW, = (Ir, AX;, Ay, 1), where I is the identity matrix
of order T', AX is given by (43) and Ay; —1 = (0, Ayi1, ..., Ay;7—1)" = LAy;, where L and Ay; are given
by (A.5) and (42). Also, using (42) and evaluating it at @ = 6y we have

Ayi =B (19) " (AXigg + do) + B (v0) " & (00) (A.15)
where B (v) is defined by (37). Consider now (A.6), and note that
/ : Ze (¥) 7 & (o) di; (¥, )
di(, pp) = AW S ()& (pg) = | AXiZe (9) & (g) | = | doi(¥.00) |- (A.16)
AYIL'Se (4) 7 & (0) dzi (¥, o)
Further, using (A.15), write ds; (¢, ) as
dsi (. 00) = [B(30) " (AXidbg + o) + B (70) £ (00)] L' (1) ' &, (20) (A1)
= (AXigg +do) B (79) " L' () 71 & (o) + &6 (00) B (10) T L' (1)1 & (o) -

Also under Assumptions 1, 3, and 5, AX; and &, () are cross-sectionally independently distributed,
and Ey [€; (¢g)] = 0. Hence

Ep [d1i (¥, )] = 0, and Ey [da; (1, )] = 0, for all ¢, (A.18)
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and
Eo [dsi (%, 90)] = Bo & (00) B (10) " L'Se () ' & (o)
= tr{B(30) " 'S () ! Bo [€ (o) & (90)] }
= tr|Z¢ (%) Ze (¥) LB (3) ] -

Also, using (38) and (A.5), we have

0 0 - 00

1 0 0 0
I'(y)=1LB (’Yo)il = :

o2 At 00

v
[\
N~
&
—
o

Hence, tr [LB (”yo)*l} =0, and Ey [dsi (¢, ¢g)] can be written as

Eo [dsi (%, po)] = — tr {[Ze () — X (40)] C (¥,70)} = —r (¢, 90) , (A.19)
where C (1,7,) = 3¢ (4) ' LB (7,) . Using (A.19) and (A.18) now yields (A.7), as required. Result
(A.10) then follows immediately, noting that Eo [dsi (Y9, ¢0)] =

tr [25 (o) Z¢ (1) ' LB (fyo)_l} = tr {LB ('yo)_l} = 0. To establish (A.11), since AX; and &; (¢q)
are cross-sectionally independent for ¢ = 1,2,...,N it follows that d;(¢,¢,) are also independently
distributed across i. Hence to show that by (¢, ¢,) = % ZZJ\L 1 di(9, ) converges almost surely to
limy oo sz\il Eo[d;(v, ¢y)] , it is sufficient to show that

sup; Eo ||d; (1, ¢,)||> < K. Consider each of the three terms of d;(), @) in turn. First, from result (A.3)
and Liapunov’s inequality we have that E ||¢,||* < K < oo and noting that by assumption 7(ii) e (¢) 7!
is positive definite uniformly in ¢ € ©,, then

2
sup Eo i (%, 00)|I” < |[Se ()| sup Fo 1€ (o) < K. (A-20)
Similarly, using in addition result (A.4) we have
2
sup By [[dai(t, 00) | < sup B [AX] | Ze () 7| sup Eo 1€ (00)]” < K. (A-21)

Finally, applying the Minkowski inequality to (A.17) we have

(Bt en?] < [E0H<AX1-¢0+do>’Bm>/1sz§<¢>151-(«/:0)\\2]1/2

911/2
+ [Eo ’ & (po) B (’Yo),_l L' (¢>_1 §i (LPO)H } ’
Eo |AX g + do* [ B (70) ' 'S¢ (¢)_1H2
xEo [1€; (o)l
9 2
€ BOY TR o) (w0 < B0 L) Bl ol

2
Bo||(AXipo + do)' B (7)™ LS ()" € (o)

IN

N

Eo‘
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2 2 2
But HB(%)HL'E£ (zp)—lH < Hzg (zp)—lH L2 HB(%)*H , and it is easily seen that ||L|2 = T —
1, and HB(’yO)_lH < T ol < K. Also, by results of Lemma 2, sup; Eo||&; (wo)||* < K, and

HZg (1/))_1H < K, by assumption. Further, Ep||AX;¢y +dol> < [l¢ool® E[|AX]|> + ||do||* which is
uniformly bounded under results (A.4) of Lemma 2, noting that ¢, and do are defined on a compact

set and are bounded as well. Therefore, sup; Ey ||dsi(v, ‘Po)H2 < K. Now using this result together with
(A.20) and (A.21) in (A.16) we have

2
sup Fo [|di (1, o) | = sup Fo || AW/ Se ()71 € ()| < K,

which establishes that d;(1, ) is uniformly Ls-bounded, besides being cross-sectionally independent.
Hence,

v (1, ¢0) = 1ch (1. 09) =5 lim N 1ZE0 (%, 00) = (0,0, =k (3, 4)]',

which establishes (A.11). Result (A.12) follows from the above by setting 1 = 1, and noting from (A.10)

that Ey [di(vy, @o)] = 0. Finally, since sup; Eq ||€; () & (cpo)H2 < K, for a finite T (see result (A.3) of
Lemma 2), and by assumption &; () & (¢,) are distributed independently over 4, then

Ene (Po) = Zﬁz ©0) & (pg) = Am % iEo & (00) & (¢0)']
i=1
and result (A.13) follows, since Ey [€; (¢0) & (¢0)] = Ze (). ®
Lemma 4 Consider the average log-likelihood function
In (8) = Iy (1) = —fln (2m) - 5 ln | (¥ Zsz (e (A.22)

In(0) = N~Yn (0) and £y () is defined by (34). Then under Assumptions 1-7(ii),(iii) and 8, and the
order condition (41), we have

I (80) %~ In (27) — o8[S ()] — . (A.23)
and
_ ws. T 1 1 .
I (0) % =5 In (2m) — 5 In S ()] — 5 tr [ Se () ™" B¢ ()| (A.24)

where k (P, ) is defined by (A.8). Also

In (80) — Ly (0) = lim Ep [£y (60) — Iy (8)] > 0, (A.25)
where
lim By [y (00) I (0)] = 1 tr [ ()7 B ()] — 1 o (1S (wo)l/ |2 () — 5
N—o0 2 3 1 0 2 0g 3 0 3 2
56— 0o A@) (9 —g0) + (=) s (k). (A26)
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Proof. Result (A.23) follows by evaluating (A.22) under 8 = 6y, and using (A.13) from Lemma 3. To
establish (A.24) we first note that for any 6 € O, &; (¢) = &; (o) — AW, (¢ — ¢¢), and using this result
n (A.22) we have

N o — ! -1
In(0) = —g In (27) — %111 1Ze ()] — % [ 2=t [£>Z< ([ZO()cp_O)A—‘X‘(;Z (‘PLP_O)L]poz;f W) ]
§ 1 EIC D AN AN )
= —Eln(Qﬂ)—iln’z)E (¥)] ) -2 (‘P*‘PO)IbN (¥, %) ’
+ (¢ — o) AN (¥) (¢ — ¥q)
(A.27)
where ) N 1 al

Av () = AW () AWe b (i) =y (w0 (A2

i=1
and d;(v, ;) = AW,X, (¥) " &; (@), as defined by (A.6).
Next consider Ay (¢) = & Zf\;l AW!3, (¢) " AW; and note that

sup B || AW/ ¢ ()

2 -1 2 4
; <H25(¢) H sup E | AW, |* < K,
K2

where HEg (zp)_lu < K under condition (ii) of Assumption 7, and sup; E || AW;||* < K by Lemma 2.
Also under Assumptions 1, 3, and 5, AW, are cross-sectionally independent. This follows since Ax; are
independent across ¢ by Assumption 5 (see also the expression for Ax; given by (20)),and Ay;; being
a function of Ax; and &;; (see (42)) are also cross-sectionally independent noting that &, are cross-
sectionally independent under Assumptions 1 and 3. Hence, Ay (1) “3 A (ap) for every 1 € ©, (see,
for example, Davidson (1994, Theorem 19.4)).

Result (A.24) then follows using (A.11) and (A.13) from Lemma 3 in (A.27) evaluated at 6y and 6,
respectively. Results (A.25) and (A.26) follow from the sure convergence property of (A.23) and (A.24).
That limy_.o Fo [E N (80) — In (0)] > 0 follows from the Kullback—Leibler type information inequality
and Jensen’s inequality (see for example Section 2.1 of Lee and Yu (2016)). m

Lemma 5 Consider the average log-likelihood function defined by (53) and (35):

IN(®) = —gin(2n) — 5 n|Se () Zs e (p),
&(p) = Ayi— AW,

and suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41), hold . Denote the
average score function by Sy (0) = 0N () /00. Then

SCHEL] (A.29)
VNSy (60) —a N (0,3 (60)]. (A.30)
where
J(60) = ]\;gnoo—ZE w; (B) W' (60)] , (A.31)
w; (60) — < AW§2§V(:/200>0_) &i (o) ) 7 (A.32)
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with the j" element of v; (0g) given by

1 03¢ ()
o,

A consistent estimator of J (0g) is given by

3(0) - % 3w (0) 4 0). (A31)

1 03¢ (1) '

0 (A.33)

11y (80) = L€l(s00) B () Ze (o)™ () — 511 [Be (o)

where 6 = arg maxgeeo, L (6).

/ /
Proof. Let 5y (6) = (ggw(e),ggw(e))) = (wl,%,....,%) , where ny, = dim(th) = 1 + T'm —
m(m — 1)/2, and note that

oln(6) 1 & -
swn(@) = 230 LY Awm ) o)
i=1
_ _ 8[7]\[ (9) . 1 8111 |2§ -1 625 (1/)) -1
SN, 0) = 8¢j = ZTJ' ON ZE 5% X () &i(ep),

for j =1,2,...,ny. Using (A.6), and result (A.12) of Lemma 3, it then readily follows that

SN0 (00) = Zd (6o) 8 0, (A.35)
Also 8% (%0) _—
Bo [0 Ze (o)™ TP 5 (o) il | = tr [Be () )
Y, o

and using well known results on the partial derivatives of the determinants, we have (see, for example,
Magnus and Neudecker (1988, p.151)).

Oln |%¢ (o) _ —1 0%¢ (o)
PRl = [z o) g0,
and hence Sy (0) can be written alternatively as
oy (00) 1 &
§N1/1J (00) = ngO) NZVU
J =1
where
1 1 0% _ 0%
iy 60) = 560l e (W) 5P e (o) ki) - o [Ze o) TP (4o
J J
Therefore,
s _ ( 8np(60) ) (% >, di(6,)
svioo = (3on) ) = ( LSV 6o )
where V; (00) = (Vil (00) , V2 (00) g veey ’/i’”w (00))I
ey
sup £ ||v; (89)]> = sup & (Vi (80) vi (60)) ZsupE vi; (60)) < ny supE vi; (80))?,
(2 7 _] 1 7



and application of Minkowski’s inequality to (A.36) yields

93¢ (o)
o,

)

2 _ 1 1/ N i
sup E vy (80)” <+ [[ 2 () (swElelt) +icl

where C' = tr [25 (%bo)il MgT@O)} . But under Assumption 7(ii) and noting that n, is finite, we also
J

have Haxgixj‘)) < K and HZg (¢0)_1H < K, and from result (A.3) sup; E [|€;(¢,)||* < K. Therefore,

sup; E ||v; (00)]|> < K. Also recall that &;(¢,) are independently distributed over i, which implies
that v; are also independently distributed across i. Therefore, v; have zero means (by construction), are
independently distributed over ¢ and have bounded second-order moments, which ensure that Sy ,(6o) 3

0, and together with (A.35) yields §x(0g) =3 0, as required. Consider now the limiting distribution of
V' N5y (0) and note that

<o — ((VNSn(00) Y _ 1 (2N di6y) \ _ 1~
a0 = vavaton ) = 7 ( 5 v 60) ) N

where w; (69) = (d}(6,), V; (00))/, and it is already established that w; (69) are independently distributed
over i, have zero means and bounded second-order moments. Therefore, by the Liapounov central limit
theorem and the Cramér-Wold device we have?® v/ N5y (68y) —q N [0,J (6y)],where J (6y) is given by

(A.31), as required. v/Nconsistency of J (5) for J (8y) follows from the local consistency of 0 for 6, on

©,, and the independence of w; (6y) over i. m

A.2 Proofs of Propositions and Theorems

Proof of Theorem 2. Firstly, under the assumptions of the theorem it suffices to show that Cy (0) =
—20 (8) “3 C () uniformly on @, (see Section 6), which together with the result in Proposition 1 and
that 3¢ (1) and 3¢ (¢) commute deliver local consistency. From results in Lemma 4 (see (A.25) and
(A.26)) it follows that Cn (8) = —20x (0) “3 C () for every 8 € ©,, where

N
O (6) = Oy (9,%) = T (2m) + I3 (9)] + - D" () T () &4 ()
=1

and

C(0) = C(p,%) = x (¥,%0) + (¢ — ®0) A (%) (¢ — @g) + 2 (v — 70) k(2 o) + C(3y),

and the term C does not depend on 6. Since £y () is continuous in @ by assumption, this pointwise
result holds uniformly on ®, by the uniform law of large numbers, so long as the dominance condition

E sup [€1()Be () ' €i(60) + T (27) + In S ()| < o0

0O,

holds; see for example Potscher and Prucha (2001, Theorem 23).
Since T is finite, it is sufficient to show that

FE sup
€O,

()¢ () 1 €5(p) + In|Z (¢)|] < co.

?5See, for example, White (2001, Theorem 5.10).
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We have that

E sup |€(¢)Ze ()" €:(e) + In |3 (zp)\‘ < E sup
[USCH cO,

E(@)Ze (W) &) + sup [In[Z¢ ()]
YEB,

Starting with the second term and using Assumption 7(ii) and the property that for any positive definite
real n x n matrix A, In|A| < tr(A) —n,

sup [In|Z¢ ()| < sup [tr[Eg (¢)] - T
YED®

SIS w€@¢
< swp (X NS (@)]) + T
$E®,
< T sup (Amax[Ze (¥)]) = T < T'(cmax — 1) < 0.
$Ed,,

For the first term, defining ®, = @5 x N(g,), we have

E sup [€(0)%e () ' €(9)| < F sup [uléu(0)&H(0)Ze (9) 7|
0O, PO,
< B sup {manlZe (4) 7] ()7}
0e®,
< B sup huax[Se (9) NE sup [&()|I”
PEBOy, PEO,

IN

1
E< nf N[ <¢>]) E sup &)

YEBy PEB,,
1

< E sup [ (o)l
Cmin  pe®,
Further
E sup [[£(9)|? = E sup Ay, — AW;el?
PEB, PEB,
< E| Ayl + E AW, Sup [
PEBQy

But given that © is a compact set sup ce,, ||| is bounded. Furthermore, from result (A.4) of Lemma
2 and Liapunov’s inequality we have that E ||Ay;||> < K < oo and E||AW;||> < K < oo. Since ¢,L

min
is bounded by Assumption 7(ii) it follows that Esupgce, ‘E;(cp)Eg (¥) "1 €,(p)| < oo and hence the
dominance condition holds.
To establish asymptotic normality of 5, by application of the mean value theorem to /y (0) around
0 = 0, we first note that

Tn (8) — T (B0) = (6 — 8o) 5 (80) — = (8 — 6,) Hy(8) (6 — 60) (A.37)

1

2
where sy (0) = 0lx () /00, Hy(0) = —0%(x (0) /0000', and 0 lies on a line segment joining @ and 6.
By result (A.29) of Lemma 5, and combining (54) and (55) we have

,_h
&

Hence, in view of (A.37) we must also have
(6 —60) Hy(8) (0 — 80) > x (¥, 0) + (¢ — o) A () (0 — @0) +2(7 = 70) 6(¥, ). (A.38)
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But by Proposition 1 and given that X¢ () and 3¢ (1) commute, on ©, the right hand side of (A.38)
can be equal to zero if and only if 8 = 8, and hence we must also have

Hy(0) “3 H(0y), (A.39)

where H(8g) must be a positive definite matrix given by H(6y) = limy_oo Eo [-0*(n (80) /0600'].
Applying the mean value theorem to §N(§) around 6 = 6 we have

0 = VNsy(0) = VNsy(6o) — Hy(8)VN (0 — 6)
where 8 lies on a line segment joining 6 and 6. Then,

VN (B - 60) = Hy!(8) [VNsw (00)] -

Since @ lies between 6 and 0y and 0 is almost surely locally consistent for @y on the set ©. so is
6, and as in (A.39) above Hy(0) “3 H(6p). In addition, using result (A.30) of Lemma 5, we have
V' N5y (89) —4 N [0,T (6¢)], where J (0g) is given by (A.31). Hence

VN(6 — 80) —q N (0, Vy).
where Vg has the familiar sandwich form
Vo =H""(60)J (60) H™'(60).
N ~
Proof of Theorem 3. Denote the exactly identified estimator of 8 (under Hi) by 6, . with its

dimension nj = 3+ T(k + 1) + k + (T — 2)(T + 3)/2, and the constrained estimator of 6 under Hy :

m =mgp < T — 2 by 6,,,. The latter estimator is obtained under r (6p) = 0, where r (6y) is the rg x 1
vector of restrictions on £ (), the log-likelihood function defined by (34), implied by setting m = my.
Since 6, is the constrained estimator of € under Hy : r (6g) = 0, by using the results from constrained
optimisation (see, for example, Davidson (2000, pp.289-290)), we have

VN (6m0 - 90) % Fov/Nsy (60) (A.40)
where Sy is the score function in Lemma 5 which satisfies
VNsy (00) % N (0,3,) (A.41)

and
Fo — Hy' — Hy 'R (RoH; 'R})) ' RoH, .. (A.42)

Also for the unconstrained estimator @ using result (65) in Section 6, we have

Mmax’

VN (émmx - 90) % Hy;'VNsy () (A.43)

given by

Mmax

Consider now the mean value expansion of ¢ </0\m0> around 6 = 6

0 (B )
& (B ) + 5 (O~ )

3 (0na 00 ) (o) (=20,

A10
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where 0 lies on points between Emo and Emmax. Since 6 is the unconstrained ML estimator, we have

dln (O mmax)/@@ 0, and

2 i (B ) — £ (B)] =V (B — ) (;8%2")) VN (B ). (A1)

Mmax

Since 6 and 0,,, 2,0 under m = mo, we have 0 2,0y and

2 [EN (émmx) . (ﬁmoﬂ L VN (Emo . mm) HovN (0 ( _ mm) (A.45)

Using (A.40) and (A.43), we have the following result:

TMmax

VN (émm - amo) < (Hy' — Fo) VNsy (60) = (Hy' — Fy) J) %2, (8,) (A.46)

where z (80) = J; /> N5y (60) % N (0, In5>, which follows from (A.41). Then, using (A.46) in (A.44),
we have R R
2 [eN <0mm) . (0m0)} % 2 (80) Aoz (8o)
where
Ao =JY? (H;' = Fo) Hy (Hy ' — Fo) 5/ = JV/*H; 'R (RoH, 'R} RoH, ' 3¢/%. (A.47)
Since J(l)/ 2Hg s full rank under Theorem 2, then, rank (Ap) = rank (Rg) = ro, and, hence, only rg
eigenvalues of Ay are non-zero. Furthermore, since Ag is symmetric and positive semi-definite, the

ro eigenvalues of Ay are positive, which are denoted by wi,ws,...,w,, > 0. Then, using the spectral
decomposition of Ag, we obtain the following result

2 [0 (O ) = v (Bma) | iwﬂ?
j=1

where z; ~ IIDN (0, 1), as required for the first part of the theorem under the Hp.

Consider now the asymptotic distribution of the log-likelihood ratio statistic under the n-local alter-
native Hiy : r (015) = 0, where @15y = 0 + N~ 12k with 'k > 0. With a slight abuse of notation we
continue to denote by 9m0 the constrained estimator of @ now under H;y, and by Bmmax the unconstrained
estimator of @ under H;y. First note that (by the mean value theorem around 6g)

\/Ngjv (01) = \/N§N (90) + \/Nag]va(gem (91]\[ —0y), (A.48)

where the rows of Sy (0) /00 are evaluated at 8*, points between g, and 61y. Also using (A.40) and
(A.43) under H;y we have

VN (@mmx - 5m0> L (Hp} - Fix) VNsy (01y)
where H;y = H(0, ) and Fiy is defined analogously to F( given above, namely
—1 —1p! —1p/ 7! -1
Fiv = Hjy - H Ry (RivH yRiy) RivHy, (A.49)

with Riy = R(0, ). Now using (A.48) we have

VN (Emm —Emo) L (H} - Fiy) {W sy (60) + VN %’gg)m (61n — 00)]

= (HIJ%T - Fin) [\/NéN (00) + \/N%J\ééa*)]v—nnm} ‘
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Let z (6y) = Jal/Q\/NéN (6p) and note that under Hyy

By (Oy) 1 0%y (0%) B
96~ N oeop » H(0)=—Ho
Then

Mmax

VN (5 - §m0> L (HyL = Fin) 3%2(60) — VN (Hy}: — Fiy) HoN /2%, (A.50)

where, as noted above, z () ~ N <O, In;). The first component of (A.50) relates to the null hypothesis,

whilst the second component relates to the "non-centrality" parameter which diverges since n < 1. Note
also that, Hiy = H(00+N_77/2I£) and Riy = R(00+N_’7/21<L), and converge to Hy and Ry, respectively,
which in view of (A.49), also implies that F1ny — Fo, as N — oo. Using (A.50) in (A.44) we now have

LRy =2 [zN (Emm) . (émo)} 2

(H! — Fo) 34/%2 (60) - N5 (B!~ Fo) Hor| Hy

(1—n)

x| (Hg" = Fo) 35%2(80) - N2 (Hg" — Fo) Hor| .

Recalling that (Hy' — Fo) = Hy 'Ry (RgHale)_l RoH, ' (see (A.42)), LRy can also be written as

(1—m)

LRN ~ 2z(00) Saz (0p) — 2N 2

K'Shz (00) + N k'S kK, (A.51)
where
_ _ ~1 _
S, = JJ°Hy'R) (ReH;'R)) ™ RoH; '3,
I = Ry (RoHy'Ry) ' RoH;'J}/?,
_ -1
S. = Rj(RoH;'R))  Ry.
Under the assumptions of the theorem, Hy is positive definite and Ry is full rank and so
_ -1
Amin (Rg (RoHp 'RY) ™" Ro) >0,
and since &’k >0, then
Kk > 1 Amin (R) (RoH 'Rp) ' Ro) > 0. (A.52)

Recall also that Jy is positive definite. Then S, is positive semi-definite with o non-zero eigenvalues

which we denote by w; for i = 1,2,...,n. It is clear that under 8 = 0y, S, coincides with Ag given by

(A.47) and w} = w;. In the present context it is still the case that z (6g)’ S,z () = >y w;‘zj2 which is a

weighted average of chi-squared variates and is stochastically bounded, namely z (6p)' Sqz (89) = O,(1).
—(1=n)

Post-multiplying both sides of (A.51) by N 7 , and rearranging the terms we have

—(1-m)

N=F LRy — N (Sok) & —2k'S}z (09) + N
= —2k/S}z(00) +0,(1),

Z (00)’ SaZ (00)

—(1-n)

since n < 1, and N~ 2 z(0p) Saz (69) —p 0, with N — oo. Furthermore, since z(6g) ~ N(O,Ing), it
then follows that

e (1—m)

N2 LRy — N9T2 (K/Sek) o

~ N(0,1). A.53
2,/K'SyS| K (0,1) ( )
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Note also that 1 1
SiSs = Rf) (RoH; 'Ry) RoHy ' JoH; 'Rf (RoH 'Ry) ™ Ry,

and Sng is a positive definite matrix since by assumption rank(Rg) = 19, and Hp and Jo are positive
definite matrices. Then

K'S|Spk > k'K A\in (Sng) > 0. (A.54)
]

Proof of Corollary 1.  The type II error probability of testing Hy : r(6,) = 0 against n-local
alternatives, Hyy, is given by

By =Pr[LRy < A(ro) |Hin]
which can be written equivalently as (recall that x’'S;S;k > 0)

a-n) —(1-n) a-mn)
=n (H,/SCK',)<N 2”0?\,( 0) — N R

2\/K'SyS|k - 2\/K'SyS} K

Now using result (71) of Theorem 3 and taking limits as N — oo we have (noting that n < 1)

By = Pr (K'Sck)

|H1N]

. N KJSCH-I—N%I;M % (ro)
lim By = lim @ -
N—oo N—oo 2\/1‘{,/81)78()%
(1—n) "7) N—1-m)2 (r )
) N =2 /SCK'/( - (K/SC,QT) O)
= lim & | — ,
N—o0 2 I{’SZSI)H

where k'Sck//K/S|Spk > 0, which follows using (A.52) and (A.54) of Theorem 3. The desired result,
limy o0 (By) = 0, now follows since by assumption n < 1, and N~(=M¢% (rg) = 0as N — co. m

Proof of Proposition 2. Consider the type I error of the test and note that

ay = Pr (ERN > cN(ro \HO (Z wzz > cN r0)>

where z; ~ IIDN(0,1). Using Lemma A1 of the theory supplement to Chudik et al. (2018) we have that

ay = Pr (szz > & 7“0) <ZPr wiz? > 1y CN(’I“()))

=1

Therefore, since w; > 0
ro
ay < ZPr (212 > (row;) " C?V(TQ)) < rosupPr (212 > 9?6%\;(7“0)) , (A.55)
i=1 !
where 67 = (rowi)_l > 0. But since z; ~ N(0,1), then

Pr (2 > 07k (r9)) = 1—Pr(=0;|cen(ro)| < 2 < 0;len(ro)])
= 2P (—0;|en(ro)]) -

Using this result in (A.55) we have

an < 2rgsup @ (—0;[cn(ro)|) = 2r0® (—0Omin len (r0)|) = 2k [1 — @ (Omin [en (r0)])]
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2

[ P |
where 0;, = r, " inf; w;

= ro_lwl_l > 0. Hence @ (Opin |en(r0)]) < 1 — an/2rp, and
aN S 27“() [1 —&® (Qmin |CN(7’0)D] = 27“0(13 (—Qmin ’CN(TO)D .
Since Omin |cn(r9)| > 0, then by (A.1) in Lemma 1 of Bailey et al. (2019, BPS)

® (<O ex (1)) < (1/2) exp | =302l

and hence

1
ay < rgexp [—2912111110?\,(7“0)] = rgexp [—

Since w; is bounded and strictly positive, it then follows that limy_ ... ay = 0, so long as C?V(ro) —
0o0. Furthermore, due to the monotonicity property of ®(.) we have that (for ay sufficiently small)

Omin e (1) < @71 (1 - M>7 or C?v (rg) < 02 {‘I)_l <1 — O‘—N)r . By Lemma 3 of BPS, [(I)‘l ( — CLN)]Q

2ro min 2ro 2ro

21n <£—?V> , and hence it also follows that

A& (ro) <202 In <O7;?\7> = 2wiroIn (OZJV) . (A.56)

Proof of Theorem 4. To show that m is almost surely (locally) consistent for the true number of
factors mgy on ©,, we will show that lim y_o Pr(m = mgp) = 1 on ©.. Consider the event {m > mgy} on
©.. For this event to be true it must be the case that for some ¢t € {1,2,...,T — 2}, at a certain stage in
the sequential estimation, when testing Hg: m = mo = t — 1 against Hy: m = Mpax = 1 — 2, the null
hypothesis of the true number of factors is rejected. That is,

Pr(m > mp) < P(3t, mo is rejected |Hyp)
mo-+1
< > Pr(LRy > ci(ro) | Ho), (A.57)
t=1

where ¢%;(rg) denotes the critical value of the test recalling that 7o is the number of over-identified
restrictions imposed under the Hy, given by (67). For any given ¢, using the result in Proposition 2 for
% (rg) — o0 as N — oo, we have

lim ay = lim Pr(LRy > c&(ro) |Ho)
N—o0 N—o0
ro
= ]\}Enm Pr (Zl wiz? > C?V(T())> =0, (A.58)
1=
(recall that z; ~ ITDN(0,1)). Then, from (A.57) using (A.58) it follows that
Pr(m >mg) < (mg+1) max Pr(LRy > & (ro)|Hy) — 0 (A.59)
1<t<mo+1

as N — oo on ©,. Next consider the event {m < mp} on @, and note that

Pr(m < mp)=Pr ( max LRy < ci(ro) |Ho is false)

1<t<T-2
T—2
< Z Pr (LR < ¢k (ro) [Hy is false) . (A.60)
t=1
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Using result (74) of Corollary 1, for N~(1="¢Z% (rg) — 0 as N — oo so long as n < 1,we have for the
probablity of type II error of the test that

lim By = ]\}im Pr (LRy < c3(ro) |Hy is false) = 0. (A.61)

N—oo

Then similar to the {m > mg} case, from (A.60) and using (A.61) it readily follows that lim y_,o Pr(m <
mo) = 0 on O, which together with (A.59) establishes the desired result. m

References

Acemoglu, D. and Naidu, S. and Restrepo, P. and Robinson, J.A. (2019). Democracy does cause growth.
Journal of Political Economy 127, 47-100.

Ahn, S.C. (2015). Comment on "IV estimation of panels with factor residuals" by D. Robertson and V.
Sarafidis. Journal of Econometrics 185, 542-544.

Ahn, S.C. and Horenstein, A.R. (2013). Eigenvalue ratio test for the number of factors. Econometrica 81,
1203-1227.

Ahn, S.C. and Lee, H.Y. and Schmidt, P. (2001). GMM estimation of linear panel data models with
time-varying individual effects. Journal of Econometrics 101, 219-255.

(2013). Panel data models with multiple time-varying individual effects. Journal of Economet-
rics 174, 1-14.

Ahn, S.C. and Schmidt, P. (1995). Efficient estimation of models for dynamic panel data. Journal of
FEconometrics 68, 5-27.

Allen, D., and Chan, F., and McAleer, M. and Peiris, M.S. (2008). Finite sample properties of the QMLE
for the log-ACD model: Application to australian stocks. Journal of Econometrics 147, 163-185.

Anderson, T.W. and Hsiao, C. (1981). Estimation of dynamic models with error components. Journal of
the American Statistical Association 76, 598-606.

Arellano, M. and Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence and
an application to employment equations. Review of Economic Studies 58, 277-297.

Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation of error-
components models. Journal of Econometrics 68, 29-51.

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica 77, 1229-1279.
(2013). Likelihood approach to dynamic panel models with interactive effects. mimeo.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. Economet-
rica 70, 191-221.

(2013). Principal components estimation and identification of static factors. Journal of Econo-
metrics 176, 18-29.

Bailey, N. and Pesaran, M.H. and Smith, L.V. (2019). A multiple testing approach to the regularisation
of large sample correlation matrices. Journal of Econometrics 208, 507-534.

A15



Baltagi, B. (2006). Estimating an economic model of crime using panel data from north carolina. Journal
of Applied Econometrics 21, 543-547.

Barro, R.J. (1991). Economic growth in a cross section of countries. The Quarterly Journal of Eco-
nomics 106, 407-443.

Bauer, P., Potscher, B.M. and Hackl, P. (1988). Model selection by multiple test procedures. Statistics 19,
39-44.

Bhargava, A. and Sargan, J. (1983). Estimating dynamic random effects models from panel data covering
short time periods. Fconometrica 51, 1635-1659.

Binder, M. and Hsiao, C. and Pesaran, M.H. (2005). Estimation and inference in short panel vector
autoregressions with unit roots and cointegration. Econometric Theory 21, 795-837.

Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data
models. Journal of Econometrics 87, 115-143.

Bonferroni, C.E. (1936). Statistical theory of classes and calculation of probabilities. Pub R Ist Superiore
Sci Econ Commerc Firenze 8, 36-62.

Caselli, F. and Esquivel, G. and Lefort, F. (1996). Reopening the convergence debate: a new look at
cross-country growth empirics. Journal of Economic Growth 1, 363-389.

Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of Econometrics 18,
5—46.

(1984). Panel data. In Handbook of Econometrics, Volume 2, Chapter 22, pp. 1248-1318. North-
Holland.

Chudik, A. and Kapetanios, G. and Pesaran, M.H. (2018). A one covariate at a time, multiple testing
approach to variable selection in high-dimensional linear regression models. Fconometrica 86, 1479—
1512.

Chudik, A. and Pesaran, M.H. (2021). An augmented Anderson-Hsiao estimator for dynamic short-T
panels. Mimeo.

Chudik, A. and Pesaran, M.H. and Tosetti, E. (2011). Weak and strong cross-section dependence and
estimation of large panels. Econometrics Journal 14, C45-C90.

Cornwell, C. and Trumbull, W.N. (1994). Estimating the economic model of crime with panel data. The
Review of Economics and Statistics 76, 360-366.

Cragg, J.G. and Donald, S.G. (1997). Inferring the rank of a matrix. Journal of Econometrics 76,
223-250.

Davidson, J. (1994). Stochastic Limit Theory. Oxford: Oxford University Press.

(2000). Econometric Theory. Wiley-Blackwell.

Han, H. and Kristensen, D. (2014). Asymptotic theory for the QMLE in GARCH-X models with sta-
tionary and non-stationary covariates. Journal of Business €& Economic Statistics 32, 416-429.

Hayakawa, K. (2012). GMM estimation of a short dynamic panel data model with interactive fixed effects.
Journal of the Japan Statistical Society 42, 109-123.

A16



(2016). Identification problem of GMM estimators for short panel data models with interactive
fixed effects. Economics Letters 139, 22-26.

Hayakawa, K. and Pesaran, M.H. (2015). Robust standard errors in transformed likelihood estimation
of dynamic panel data models with cross-sectional heteroskedasticity. Journal of Econometrics 188,
111-134.

Hayashi, K. and Bentler, P.M. and Yuan, K-H. (2007). On the likelihood ratio test for the number of
factors in exploratory factor analysis. Structural Equation Modeling: A Multidisciplinary Journal 14,
505-526.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Sta-
tistics 6, 65-70.

Holtz-Eakin, D. and Newey, W.K. and Rosen, H.S. (1988). Estimating vector autoregressions with panel
data. Econometrica 56, 1371-1395.

Hsiao, C. and Pesaran, M.H. and Tahmiscioglu, K.A. (2002). Maximum likelihood estimation of fixed
effects dynamic panel data models covering short time periods. Journal of Econometrics 109, 107-150.

Hsiao, C. and Tahmiscioglu, K.A. (2008). Estimation of dynamic panel data models with both individual
and time specific effects. Journal of Statistical Planning and Inference 138, 2698-2721.

Islam, N. (1995). Growth empirics: A panel data approach. The Quarterly Journal of Economics 110,
1127-1170.

Jacob, J. and Osang, T. (2018). Democracy and growth: A dynamic panel data study. The Singapore
Economic Review, 1-40.

Kapetanios, G. (2010). A testing procedure for determining the number of factors in approximate factor
models with large datasets. Journal of Business € Economic Statistics 28, 397-409.

Kapetanios, G. and Pesaran, M.H. and Yamagata, T. (2011). Panels with non-stationary multifactor
error structures. Journal of Econometrics 160, 326—348.

Kristensen, D. and Rahbek, A.C. (2010). Likelihood-based inference for cointegration with nonlinear
error-correction. Journal of Econometrics 158, 78-94.

Lee, K. and Pesaran, M.H. and Smith, R.P. (1997). Growth and convergence in a multi-country empirical
stochastic solow model. Journal of Applied Econometrics 12, 358-392.

Lee, K. and Pesaran, M.H. and Smith, R. (1998). Growth empirics: A panel data approach—a comment.
The Quarterly Journal of Economics 113, 319-323.

Lee, L.-F. and Yu, J. (2016). Identification of spatial durbin panel models. Journal of Applied Econo-
metrics 31, 133-162.

Lumsdaine, R.L. (1996). Consistency and asymptotic normality of the quasi-maximum likelihood esti-
mator in IGARCH(1,1) and covariance stationary GARCH(1,1) models. Econometrica 64, 575-596.

Liitkepohl, H. (1996). Handbook of matrices. New York: John Wiley.

Magnus, J.R. and Neudecker, H. (1988). Matriz differential calculus with applications in statistics and
econometrics. Oxford: John Wiley & Sons.

Mankiw, N.G. and Romer, D. and Weil, D.N. (1992). A contribution to the empirics of economic growth.
The Quarterly Journal of Economics 107, 407-437.

Al17



Moral-Benito, E. (2013). Likelihood-based estimation of dynamic panels with predetermined regressors.
Journal of Business € Economic Statistics 81, 451-472.

Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica 46, 69-85.

Nauges, C. and Thomas, A. (2003). Consistent estimation of dynamic panel data models with time-
varying individual effects. Annales d’Economie et de Statistique 70, 53-75.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. Review
of Economics and Statistics 92, 1004-1016.

Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with cross section depen-
dence. Econometrica 74, 967-1012.

Pesaran, M.H. and Tosetti, E. (2011). Large panels with common factors and spatial correlation. Journal
of Econometrics 161, 182-202.

Phillips, P.C.B. and Sul, D. (2007). Bias in dynamic panel estimation with fixed effects, incidental trends
and cross section dependence. Journal of Econometrics 127, 162—188.

Péotscher, B.M. and Prucha, I.R. (2001). Basic elements of asymptotic theory. In B. H. Baltagi (Ed.), A
Companion to Theoretical Econometrics, pp. 201-229. Oxford: Blackwell.

Robertson, D. and Sarafidis, V. (2015). IV estimation of panels with factor residuals. Journal of Econo-
metrics 185, 526-541.

Sala-i-Martin, X.X. (1996). The classical approach to convergence analysis. The Economic Journal 106,
1019-1036.

Sarafidis, V. and Robertson, D. (2009). On the impact of error cross-sectional dependence in short
dynamic panel estimation. Fconometrics Journal 12, 62—81.

Sarafidis, V. and Wansbeek, T. (2012). Cross-sectional dependence in panel data analysis. Econometric
Reviews 31, 483-531.

Somé, J. and Pasali, S. and Kaboine, M. (2019). Exploring the impact of healthcare on economic growth
in Africa. Applied Economics and Finance 6, 45-57.

White, H. (2001). Asymptotic Theory for Econometricians. San Diego: Academic Press.

Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM
estimators. Journal of Econometrics 126, 25-51.

A18



Online Supplement for
Short T" Dynamic Panel Data Models with Individual, Time and Interactive Effects

Kazuhiko Hayakawa
Hiroshima University

M. Hashem Pesaran
Department of Economics

University of Southern California, USA, and Trinity College, Cambridge

L. Vanessa Smith
University of York

July 2021



S.1 Introduction

This supplement is organised as follows: Section S.2 provides the derivations for the rank conditions
associated with the quasi-differenced GMM estimators given in the related literature section of the paper.
Section S.3 outlines the eigenvalue approach used for computing the TQML estimator. Section S.4 gives
the derivations of the initial values used for the Monte Carlo (MC) analysis. Sections S.5 and S.6 provide
details for the computation of the Bai-QML and GMM estimators, respectively. Sections S.7 and S.8 give
additional MC results for the stationary and unit root cases, respectively. To save space the results for
the ARX (1) model are given only for the case where 02 = 1. The results for other values, o2 = {0.5, 1.5},
are very similar and are available upon request.

Section S.9 gives the details of the MC experiments we carried out for the robustness analysis and
the associated results, covering the effects of initial values deviating from the steady state distribution
(applicable only for the stationary case), the use of alternative p-values (p = 0.01, p = 0.10) in imple-
menting the MTLR test, allowing for non-zero correlation of the factor loadings and the regressors, and
for weakly cross-correlated factor loadings. The last three experiments are presented for the stationary
case. Qualitatively similar results were obtained for the unit root case and are available upon request. All
results are given for 8, = 1 and are based on 2000 replications. Also, all MC results are obtained using
the Multiple Testing Likelihood Ratio (MTLR) test for selecting the number of factors with p = 0.05
unless otherwise stated. Lastly, Section S.10 discusses the case of time series heteroskedasticity in the
idiosyncratic errors.

S.2 Rank conditions for quasi-differenced GMM estimators

Here we consider the rank conditions with respect to the moment conditions E [my (89)] = 0, defined by

(7) in the paper, where
N

my () = Nt ZZinB (9),
i=1

with z; = (W}, x}), w; = (i0,yi)', xi = (241, Ti2, 243)’, and
Vi3 (0) = yi3 — (b3 + ¥) yi2 + b3yyir — Briz + b3fBaso.

To simplify the notations we denote b3 as b, so that 8 = (v,b, 8)’. Following standard results from the
GMM literature (see, for example, Chapter 10 of Pesaran (2015)) for identification it is required that Sy
(5 x 5 matrix) and Dy (5 x 3 matrix) defined by

viz (0) = yiz — (bs + ) iz + bsyyi1 — Bxiz + b3Sz,

Dy (0) = amaNe,(o) and Sy (0) = Nmy (6) m'y (0),
are full rank matrices and that S =1lim y_,o Eo [Sn (00)] is positive definite, and D = lim y_. Eo [Dx (00)]
has full column rank. To derive S and D note that

Jdv;3 (0)
00’

N
Dy(0) = N') z
=1

= - ( NN zi(yio — bya), N7USN 2i(yie — vy — Briz), N7VN | 2i(wis — bfm()s-))
and

N N
SN (0) =N3> vis(0) vy3 (6) ziz). (S.2)

i=1 j=1

S1



Consider first the limit of Sy (6), and note that under the assumption of conditional cross sectional
independence we have

N
_ : —1 - o \2
SN(G)?S = [lim N ;E(zlzz)E(szg beiz)

N—oo

N
S = (1+0%) lim N') o?E (7).
=1

Also

where
S— ( Yio > _ < moXi + Aifo + i >
‘ Yil mixi + Ni(vfo+ fi) +yeiotein )]
™ = ymwo + Pex, (83)

and e, is a 3 x 1 vector of zeros except for its s** element which is unity.

E(w;w}) =

i

( moE (xix)) wo + fEA] + 0 woE (xix)) w1+ fo(yfo + f1)A] + ol >
. T E (xix)) 1+ (vfo + f1)2AF 4+ 02 (1 +42)

E (mox; + Aifo + €io) X;
E(w;x) = 0% T o
(wix;) < Emix; + Ni(vfo + f1) +vgio + il x;

_ ( mo B (x:%}) )
™ E (xix])
Let

N N N
A= lim NV 0} (xx]), dy, = lim N'> 0707 >0,d,, = lim N7 o} >0,
=1 i=1 =1

N—oo N—oo N—oo

N
NS o2 B(wiwl) = lim e ( AT + fdre + doo oA+ fo(vfo + f1)dae +7dos > ’
1=1

776A771 + fO(’VfO + fl)d)\a + Vdaa 71'/1A7T1 + (7f0 + fl)zd)\a + (1 + ’72)d0'0'

N ! !
_1 2 N oA | mTHA
w3 oteod=( 20 ) = (md e )
and note that

_ N _ N
S = (1+)limy (N i oi Bwiwy) N 1Zi10?E(wz-X£)>
_ .

_ N _ N
N1 Zi:l U%E(Xiwg) N1 Zz‘:l U%E(Xixg)

776A7TO + fgd)\a +doo 7T6A7l'1 + fO('YfO + fl)d/\o + '7dcro 7"6A
= (14| mATo+ fo(vfo+ fi)dae +7doe TIATL+ (vfo + [1)2dae + (1 +92)doe  ymHA + et A
Amg yATy + fAe; A

It is clear that in general for S to be positive definite it is necessary that A is positive definite.
Since A =limy oo NL 2N | 02 (x;%]) > inf;(02) lim y oo N1 SN | x;x, and by assumption inf ;(0?) >
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Cmin > 0, then it is sufficient if F(x;x}) is a positive definite matrix, which is likely to be so if z;; varies

sufficiently across ¢t = 1,2, 3. Note that even if wy = 0 and d), = 0 (cases to be considered below) then

dO’O’ Pyda'o' 0
S = (1 + b2) Vdoa 629/1Ael + (1 + ’72)da'o ﬂellA )
0 ,BAel A

which is a positive definite matrix so long as A > 0 and d,, > 0. This result holds even if g = 0.
Now consider Dy defined by (S.1), and since y;2 — yyi1 — Bzia = Aif2 + €i2, then Dy can be written
equivalently as

Dy =~ < NN 2y —byin), NUSN zi(Nifo +ein), NPV zi(ais — bago) ) . (S4)

First we note that

Yio 776Xi + )\ifO + &0
Yi1 ™ x; + Ni(vfo + f1) +vEi0 +en
Z; = Ti1 = Ti1 )
Tig Tig
x;3 Z;3
where w1 = ymo + fe1. Also
yiz = 7ox; + Ni (V2o + 11+ f2) + Pei0 + e + e, (S.5)
with
my = 77w + (ve1 + e2) B. (S.6)

Furthermore, to simplify the exposition we assume x; have zero means and are uncorrelated with the
loadings, namely E(\;xz;) = 0. Then it is easily established that

N N1 Zfil yio(Ai f2 + €i2)
N_IZzi(Aifg +ep) = NN v (Nifa + €i2)
i=1 NN xi(Nifa + i)

N1 ZiNzl (moxi + Xifo + o) (Nif2 + €i2)
= NN (whxi + Xi(vfo + f1) + veio + i) Nifa + i)
Nt Zf\; X;i(Nif2 +€42)

fofad(X)
p | (Wfo+ f1) fad(X) |,
0

—

where d(A) =limy o N3N A2, Similarly,

N T (€3 — beg)
N_l Z Zi(xig — b$12) —p WIIEII(EgJ, — beg)
=1 Emc (63 — beg)

where ., = lim y_ oo N ! Ef\il x;x;. Finally, to obtain the limit of the first column of Dy, using (2)
and (S.5) we first note that

iz — byin = [(v — b)w1 + Bea] x; + [(v — b) (vfo + f1) + fo] i + (v — b)yeio + (v — b)ea + €in.

Then it follows that

Yiz — byir = [(v — b)m1 + Bea] + Ai [(v — b) (vfo + f1) + f2
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N N
N7 " gio (a2 — bya) —p a1 N7 i (viz — byin) —p @2,
i=1 i=1

where

@ = w8 (v —b)m1+ Bea] + fo[(v —b) (Vo + f1) + f2l d(X) +

E )52 (S.7)
G2 = T Be[(v— 0w+ Bea] + (vfo+ f1) [(v = b) (vfo + f1) + fol dX) + (v —

and 62 = lim y_oo N ! Zfil J?. Similarly

N
N1 in (yiz — byi1) —p Bgg [(v — b)71 + Seg] .

Collecting the above results in (S.4), we have

q1 fonCZ()\)f T 2ee (€3 — beg)
Dy —p D=~ 2 (vfo+ f1) fod(A) 71 3as(e3 —bes) | (5.9)
Yz {('7 - b)ﬂ'l + 692} 0 E:m:(ES - beZ)

The rank of D depends on 0, as well as the parameters of the x; process, and the strength of the common
factor, as measured by d(X). It is not possible to be sure that D will be full rank for all values of 8; the
rank could become deficient due to the particular values that the incidental parameters, such as b and
d(\) could take.

S.3 An eigenvalue approach for computing the TQML estimator

Consider the log-likelihood given in (34) without any restrictions on Q, which can be further written as

NT NT

In(0) = EN(%"P)_—TID(%)—TIH( o?)

N
S+ QQ| - 5y Y Ee) (2+QQ) 7 € (e, (.10)
=1

To compute the TQML estimator consider (S.10) and note that since € is a positive definite matrix
and QQ' is rank deficient (recall that m < T'), we have | + QQ/| = || |L,+Q'Q27'Q|, and using the
Woodbury matrix identity

Q+QQ)"' = 9'-0'QIL,.+Qe'Q Qe (S.11)
— Qfl . QleAlelﬂflj

where A is a non-singular matrix defined by
A=1,+QQ'qQ. (S.12)

Using the above results in (S.10), and after some simplification the quasi-log-likelihood function can be
written as

NN (0) —gln(a ) — fln\Q] — —ln]A] 1 [tr (ByQ ) —tr (ByQ2'QATIQQ7Y)], (S.13)
where [Q] =1+ T (w—1), and
N
=N"") &(@)Ei(w). (S.14)
=1
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For analytical convenience we further define P = QY 2QA Y2, Note that since A and € are non-

singular matrices, then rank (P) = m, as well. Further, it is easily seen that
Im o P/P: Im . A71/2Q/971QA71/2’
and using Q'Q7'Q = A —I,,, from (S.12), we have
Al=1,-PP. (S.15)
Similarly,
tr (ByQ'QAT'Q' Q! = o’ tr [P'Cy (6,) P],
where
Cn (0.) = 0207 V2By ()12, (S.16)

and 0. = (¢',w,0?)" where subscript c refers to 6. being the concentrated parameter vector.
Using the above results, the quasi-log-likelihood function given by (S.13) can now be written as

N~y (6., P) L 1n(a2)—1 In[l+7T (w-— 1)]% In |L, — P’P\—% {tr[Cn (6.)] — tr [P'Cn (6.) P]} .

2 2
(S.17)
In line with the discussion in Section 4, P is not identified without additional restrictions. It is easily
seen that the value of £y (0., P) is invariant to the orthonormal transformation of P. To see this consider
the transformation P = PE, where E is an m X m orthonormal matrix such that E'2 = I,,,. Then it

is readily verified that N~y (0., P) = N~y (90,P>. Let P = (p;, P2, .., Pm), Where p; is the ¢

column of P, and p; is a T x 1 vector of unknown parameters. Since rank (P) = m, then P'P can be
diagonalised by an orthonormal transformation, and without loss of generality we impose the following
m(m — 1)/2 orthogonality conditions

pips =0, forall s #t=1,2,....,m. (S.18)

Under these restrictions the quasi-log-likelihood function, (S.17), simplifies to

T 1
N~YN (00, P) x —=In(c?)—=In[1 + T (w—1)] Zln — pipt)+ ZptCN t—ftr [Cn (6.)].

2 2
(S.19)
Taking first derivatives with respect to p; and setting these derivatives to zero now yields
Cn (0.)D L Vpi=0, fort=1,2 (S.20)
-\ T == = U, ort=1,2,...,m, .

where p; is the quasi-maximum likelihood estimator of p; (in terms of 8..). Therefore, p; is the eigenvector
of Cy (6.) associated with the first m largest non-zero eigenvalues of Cy (0.), which we denote by
A1 (6:) > A2 (0.) > ... > A\ (0.) > 0. Note that Cy (6.) is a symmetric positive definite matrix with all
real eigenvalues \; (0.) > 0, for t = 1,2,...,T. We also have

1 ~ ~
A (0e) = T p’ and P;Cy (0c) P = A (@) —

Hence, the concentrated quasi log-likelihood function in terms of 6. can be written as
N1y (Bim) o 2 In(o®) — T 147 (= 1)] — £ 3" v (6] + 5 3 v (6) — 1) —fZA
N c ) X 21’1(7 2n w 2t71nt c 5 t t
(S.21)
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where \; (0.) is the ' eigenvalue of Cy (6.), given by (S.16). This concentrated quasi log-likelihood
function can now be maximised with respect to 8, = (¢’,w,0?)’. The TQML estimators, \; (6.), can
then be computed using the TQML estimator of 8. and their corresponding variance covariance matrix
can be computed using the delta method. Due to the possibily of local maxima, in maximising (S.21) we
initialise the optimisation process with a number of starting values, randomly selected from the uniform
distribution, specifically
Yini ~ U (—0.999,0.999) , o2, ~ U(0.1,1),win; ~ U(1,2),

with the initial values for the remaining parameters, namely § = (d’,n’, ﬁ')/ generated from a U(—1,1).

With regard to the computation of p; it is important to bear in mind that standard eigenvector rou-
tines provide eigenvectors that are typically orthonormalised. Whilst in the above analysis, p1, P2, ..., Pm
are orthogonal to each other, their length is not unity and is given by pjp: =1 — 1/ (6.) .

S.4 Steady state distribution of y;; in the stationary case
Consider the panel data model

Yit = o + 0t + YY1+ Bxie + (i, |7 < 1,

where .
Cit = Z Neifer + wit, (S.22)
/=1
my
Tip = i + Y Veifer + Vit (5.23)
(=1
fori=1,2,..,Nandt=1,2,...,T. Also
2\1/2
Vit = PyVit—1 + (1 - px) gity |py] <1, fort=1,...,T, (S.24)

it ~ IIDN(0,0%,), and vig ~ IIDN(0,02,),
which ensures that Var(v;) = o2,. Further,
1/2
foe = popfea—1+ (1— p) / rets Epoe ~ IIDN(0, 1),

with fro =0, for £ =1,2,...,m, and t = 1,..,T. Also to simplify the derivations we set pes = py for all
£. From the above specifications of v;; and f; it readily follows that

E(vir) =0, E () =0, Cov (viy_jvis—y) = 0%pf 7 and Cov (f_jfi_yr) = p /'L, (5.25)

Due to the dependence of x;; and (;; on the same unobserved factors, the regressors and the errors
of the above regression are correlated. Following Pesaran and Smith (1994) we base the derivation of the
steady state distribution of y;; on the following reduced form regressions

Yit = G + 0 + YYii—1 + Bvie + cify + i, (S.26)
where
551’ = o;+ ﬁam} (827)
m My max(m,mgz)
cif = Y nufu+BY Yufu= >, cufu (5.28)
—1 —1 —1
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where ¢y; for all ¢ and ¢ = 1,2,...,max(m, my), are defined implicitly. Using the results in (S.25), and
noting that f;, u;» and v;s are mutually uncorrelated for all values of ¢, ¢ and s, it then follows, conditional
on a; and c¢;, that (without loss of generality we set d; = 0)

E (yit|lai,ci) = YE (yig—1]|au, ¢;) + o (5.29)
Var (yulai,¢;) = v*Var (yis—1|as, i) + B2Var (vi|ay, ¢;) + cjCov (£:£)) c; + o2 (S.30)
+2vCov (yis—1, Cift| s, ;) + 298Cov (yig—1, Vit |, ;) -

Also, the steady state values of the covariances in the above expression are given by (upon using

(S.25))

Cov (yi’t,l,cgfﬂai,ci) = nyJcE ft i 1ft c, = ccl Z H A= fcl)pf,
=0 — TPy
~ 1 szo-g
Cov (Yit—1, Vit|s, ¢;) = ZVJE (Vit—j—1Vit) Zﬂgf J = 1_7;;-
X

7=0

Using the above results in (S.30) and noting that in steady state FE(y;|ai,c;) = E(yiol®;,c;) and
Var(yit|a;, c;) = Var(yio|a, c;) we have

~ (67 + P« i
B (el c) = py = 2% (5:31)
-
- o? +a,f%02 +aya,
Var(yulai,ci) = o= =2 =, (5.32)
where
a; = C iCi = Z 77& 62 Z 792@ + 2/8 me ) 77&‘19&‘7 (833)
=1 =1
and ) 1+
ay = ( +WJI) ,and a; = < 7pf> . (S.34)
I —vp, L —ps
S.5 Quasi-log-likelihood function of Bai (2013)
Consider
Yit = VYit—1 + O + th,@ + fz‘{)‘l + ey, fort=1,2,3,....,T,i=1,2,..., N, (835)

where X; = (X1, ..., X;7)', Xi8 = (Ip@8 )vec(x)) = (Ip@B")w;, Ai = (Ait; iz, - M)’ = (4, Aizs oo Aiin)'
ft = (flt7 f2t7 ceey fm,t), with 'ﬁ;L =m—+ 17 and

yio = 05 + Demy XioTa + £ Xi + £, (5.36)
with 7 = (7], ..., 7%)".
To account for the correlation of the factor loading corresponding to the individual effects with the

regressors X;¢, the Mundlak-Chamberlain projection is applied to the factor loadings ;.
Projecting A; on w; = vec(x})

Ai = A+ @1xi1 + . OpXiT + 155

or

A=A+ ow, + (S.37)
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where A is the intercept, 1, is the projection residual, ¢, ..., ¢ are matrices (m x k) of projection
coefficients. By definition F(n,) = 0, and the regressors are uncorrelated with the projection residual for
all ¢.

Substituting (S.37) into (S.35) and absorbing f/A; into d;, for ¢ > 1,

Yit = YVYit—1 + 5t + X'Iit/B + ft,(bwz + ft,nz + Eity for t = ]-7 27 37 ceey T7Z = 1’ 27 ceey Nv (838)
and
Stacking the system of 7"+ 1 equations given by (S.38) and (S.39) yields
Bty =Cw;+46" +F'n, +¢/,

where )
+ | Yo +_ |9 +_ | 5 +_ | €o
e A I BT A R b
with
1 0O ... 0
B — -y 1 ... 0 C_ -~
T Ir®B +Fo
0 ... —y 1

and y; = (yi1, ¥i2, -, yir)'s 6 = (01,02, ...,07)", F = (f1,f2, ... f7)', &; = (i1, €2, ..., &i7)’.

Let X7 = F*X,F" + 3., where ¥, = E(n,n}) and . = E(e; e/’) = diag(03, o*Ir). Furthermore,
let uj =Bty — Cw; —6T.

Following Bai (2013) we consider the following normalisation

Ft = (I;,F5). (S.40)

The quasi-log-likelihood function for (y;g, ¥i1, .-, yi7 ), conditional on w;, is then given by

7 )

N 1
-1
Iy~ |=F| - 3 ;uj’(zﬂ u’
i
where a number of random initial values are considered in maximising the above likelihood.

S.6 The GMM approach

Let us consider a GMM approach to estimate the dynamic panel data model with interactive effects:
Yit = a; + w8 + Nify + i, (i=1,2,.,N;t=1,2,..T) (S.41)

where wi = (yit—1,%};), 6 = (7,8, Xi = (Miiy ooy M)’ and fr = (fiy, ..., fmt)' are (m x 1) vectors and
€it are cross-sectionally and temporally uncorrelated. The individual specific effects A; are allowed to be
correlated with x;;, while x;; is assumed to be strictly or weakly exogenous. A similar model is considered
in Ahn et al. (2013), but there are two differences. The first is that the model under consideration is
a dynamic model whereas Ahn et al. (2013) consider a static model. This difference does not cause a
serious problem in implementing GMM estimation: minor corrections when selecting the instruments
suffice. The second difference is that the current model contains time-invariant fixed effects «; whereas
the model considered in Ahn et al. (2013) does not. Thus the method by Ahn et al. (2013) cannot be
applied directly in this case. Hence, we consider two approaches to use the method proposed by Ahn
et al. (2013). The first approach is to regard the time-invariant fixed effects as an additional factor to
be estimated. The second approach is to take the first-differences prior to applying the quasi-difference
approach by Ahn et al. (2013), which is similar to Nauges and Thomas (2003). In the following, we
describe each approach.
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Approach 1: Quasi-differencing

By incorporating «; into Ajf; in (S.41), we have the following alternative expression
Vit = W0 + ;\;E + Eit,

where ;\Z = (@, Miy -y Ami)’ and E = (1, fit, -, fmt)- The model in matrix notation can be written as
yi=Wid +FX; +e;, (S.42)

where Y: = (yﬂ, ...,yiT)’, Wz = (Wila ...,WZ'T)I, E; = (62‘1, -'-75iT)/ and f‘ = (El, ...,’FT)I is a T' X m matrix.
Define ¥ = FF ! where F = (fT_ﬁlH, ...,fT)’ . To separately identify F from :\i, m? restrictions are
imposed on the factors such that F = (¥', 1) where W is a (T—m) x m matrix of unrestricted parameters
obtained as the first 7' — m rows of ¥. Let Ho= (I,_, —W)', so that H’QF =L s, —O)(¥ 15) =

O(7—f)xm- Then, pre-multiplying equation (S.42) by Hi, removes the unobservable effects so that
Hbyi = Hle(S + Hb&?i,
or
Vv, = W6+ ¥y, — OW,0 + & — W& (S.43)

W6+ (IT_m ® y;) vec(W) — <’U€C(WZ’), ® IT_m> vec(§' @ W) + &; — WE;,

where yz = (yilu ceey yi,T—ﬁL)/v 5’1 - (yi,T—ﬁH—la ceey yiT)la W’L = (W’il) ceey Wi,T—ffL)/? W’L = (WZ',T—ﬁl—i-l) ceey WiT),)
U'=(0,,..,07_5), & = (i1, ci7—m) , and & = (&; 7—m+1, - €iT) -
The t*" equation is given by

Yit :5,Wit+w;yi_¢;§wi5+vita (’L: 171N7t: 1,...,T—7’7?,), (844)

where vy = (g5 — 0}€;). Since x;; is strictly exogenous, a large number of moment conditions are
available. However, as using many instruments causes a large finite sample bias, we consider (k +
(T —m)(T —m+1)/2 + k(T — m)m moment conditions given by E[z;v;] = 0, for t = 1,...,T — m,
where zi; = (Yi0, s Yirt—1, X1, "'7X;th;,Tffﬁ+1v ...y Xpr)'. In addition to the commonly used instruments
(Yi0s s Yit—1,X}q, - Xy ), We also use x;T_Fn_H,...,x;T as instruments since they are included in the
regressor W. In matrix notation the moment conditions can be written as E [Z;vi(0)] = 0, where Z; =
diag(zjy, ... 2y p_7), vi(0) = (vit, .., vi7—7)" and 6 = (6',4")" with ¥ = vec(WP).

Then the one-step and two-step GMM estimators are given respectively by

. 1 Y 1Y AR
(7] = i — (0)'Z; — Z.7; — Zivi(0) ], 4

and

N N -1 N
. (1 1 A ~ 1
0QD2 = arggmm (N ; vZ(H)’ZZ> (N Z ngi<9QDl)Vi(0QD1),Zi> (N ; Z;VZ(0)> . (846)

i=1

The asymptotic covariance matrix of the above estimators is given, respectively, by

~ ~ —~ ~ -1 o~ i~ —~ ~ ~ —~ ~ -1
Var(@gp1) = Nt (G,QDlw_lGQpl) G’QD1W‘1QQD1W‘1GQD1 (G’QmW‘lGQm) (S.47)

N e~ -1
Var(8gpz) = N7* (G/QDQ%}DQGQM) , (S.48)
where CA}J: 8@(5]-)/89' for j = QD1,QD2, with gi@) = Z;Vi(b\j) and g@) = NN gi(aj),

~

W =NV 77, and ﬁj:N_l PR g,-(éj)gi(éj)'. The derivatives involved in G; are computed nu-
merically.
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Approach 2: Quasi-differencing after first-differencing

Taking the first-differences of model (S.41) to remove a; we have
Ayir = AW + NAf + Ay, (1=1,2,..,N;t=2,3,..,T)
where Aw;; = (Ay; -1, A%%), 8 = (v,8)', and Afy = f; — f;_1. The model in notation can be written as
Ay; = AW, + AF\; + Ag;, (S.49)

where Ayi = (Ayig, ceey AyiT)’, AWZ = (AWZ‘Q, ceey AWZ'T),, AEi = (AEiQ, ceey AEZ'T), and AF = (Afg, ceey AfT),
is a (T — 1) x m matrix. Define ® = AF (ﬁ)fl where AF = (Afr_,41, ..., Afy)’. To separately iden-
tify AF from \;, m? restrictions are imposed on the factors such that AF = (®',1,,)" where ® is a
(T — 1 —m) x m matrix of unrestricted parameters obtained as the first T — 1 — m rows of ®. Let
Hp= Iy ,_,,,—®), so that H)AF = (I, , ,—®)(®"1,) = O(7—1—m)xm- Then, pre-multiplying
equation (S.49) by H’, removes the unobservable effects so that

or

Ay, = AW,;6+ PAY; — PAW,S + &, — BAE,
= AW;5+ (Ir—1-pm ® AF)) vee(®) — (Uec(AWi)' ® IT,l,m) vec(d' @ ®) + A&; — PAE;,

where AY; = (Ayiz, oo, AYi7—m)'s AF; = (AYir—mi1s s Ayir)', AW, = (Awin, ..., AW; 1), AW, =
(AWz"T,erl, ceey AWiT),a P'= (¢25 sty ¢Tfm)> Aél = (Asi% ceey Aei,Tfm),a and
A&Z = (Agi,T—m—i-ly caey AEiT)I.

The t*" equation is given by

Ayir = 6'sz-t + qbéAyZ - (,Z’);/AWZJ + Awvyy, (Z =1,. . N;t=2,....,T — m), (850)

where Avy = (Agyy — @, AE;). Since x; is strictly exogenous, a large number of moment conditions
are available. However, since using many instruments causes a large finite sample bias, we consider
(k+1)(T—1—m)(T—m)/2+ k(T —1—m)m~+k(T —1—m) moment conditions given by F[z;;Av;] = 0, for
t =2,...,T —m, where zit = (Yi0, -, Yit—1, Xigs Xiq -y Xigs X;T_m_,'_l, ..., X)), In addition to the commonly
used instruments (Yo, ..., Yit—1,X}g, ---, X}y ), We also use x;Tme, ..., X,p as instruments since they are
included in the regressor AW. Also, compared to the quasi-difference approach, we additionally use x;q
as instruments. This is because without x;, the local identification assumption is not satisfied for the
linear GMM estimator which is used as the starting value to obtain nonlinear GMM estimators. In matrix
notation the moment conditions can be written as E[Z;Av;(0)] = 0, where Z; = diag(ziy, ..., 2, 1_,,)
Av;i(0) = (Avia, ..., Avi7_p,)" and 0 = (&', ¢')’ with ¢ = vec(®).
Then the one-step and two-step GMM estimators are given respectively by

_ 1 & 1 & X
Orp) = arg;nin <N Z; Avi(a)’zZ) (N Z; z;zi> (N Z; z;AvZ-(o)) , (S.51)
and
~ 1 N 1 N =R N -1 1 N
Orp2 = arg;nin (N ; Avi(o)/ZZ) (N ZZ; Z;Avi(aFDl)AVi(oFDl)/Zz) (N ; ZlAW(@)
(S.52)
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The asymptotic covariance matrix of the above estimators is given, respectively, by

~ ~ —~ ~ -1 < o~ ~ o~ ~ ~ —~ ~ —1
Var(@FDl) =N"! < ’FD1W_1GFD1) G’FD1W‘19FD1W_1GFD1 (G’FDlw_lel)l) (853)

~ —~ ~ —~ —1
Var(@pps) = N ! ( /ITD2Q;“}32GFD2> 7 (S.54)

where G;= 0g(6,)/00" for j = FD1,FD2, with g,(8;) = Z;Av;(6;) and g(6;) = N"' L)L, gi(8)),

W =NV 77, and ﬁj:N_l PR g,-(éj)gi(éj)'. The derivatives involved in G; are computed nu-
merically.

Starting values

For the computation of the above nonlinear GMM estimators, starting values are required. When the
number of moment conditions is greater than the unknown reduced form parameters we use the linear
GMM estimator by Hayakawa (2012) as the starting value. This can reduce the computational time
compared to employing several random starting values which we use in the alternative case.

To define the linear GMM estimator, let us define L; = Ly = 1 for m = 1, and L; = (I,04) and
Lo = (07, 15) for m > 1. Also, define y,; = (yi,T_m,y@T_mH, ..,yiT)/ = (yi,T_m,j'r;)/. Then, noting that

o L . ! e - . -
W; = (yZ',_l, Xit) where §; 1= (Yir—m, Yi T—mt1, - Yir—1) > ¥; = Lo¥; and ¥, = L1¥,, we have

Vi = Wi+ 0y, —OW,0 +¢&; — &,
= W0+ ULyy, — ¥ <7L1$/i + Xﬁ) +é&; — Pg;
= Wi+ % (Ly— L)y, — ¥X,8+v;
= W;6+7Yy, —¥X;,8+v;
= W;0+ (Ir_im ®@ ¥;) vec(X') — (vec()"(i)' ® IT_,%) vee(f' @ W) +v;

= X7+

where Y= (L —+L1), X; = (W (Lrm ®F), — (Uec()“(i)’ ® IT_m>> and w=

(8", vec(X') , vec(B' ® ‘Il)')/ = (m, wh, ) with 1 = 8,7y = vec(X'), w3 = vec(B' @ ¥). We consider
this particular model rather than the original model (S.43) because perfect multicollinearity between
¥, and W; occurs in (S.43) when m > 1. Since this is a linear model in 7 with moment conditions
E|Z)v;(m)] = 0, a closed form solution is obtained as

1L 1 Y T

7= [[=S Xz | [ =Y Zz — Y zX;
% <1§:§§{z,> <1§:z(z4>1 <1§:z{y.>

Ni:1 o Nizl o Ni:l o

Hence, 71 and 75 are consistent estimates of § and vec(Y’), respectively. To recover ¥ from the estimate
of X, since

-1

vec (Y') =vec ((Ly — yL1)' ¥') = (Ir—7 ® (L2 — vL1)') vec (¥') = Avec (¥'),

vec (') is obtained as vec (¥') = (A’A)"" A’vec(X’). In the computation of the nonlinear GMM es-
timators, estimates of d and vec (¥’) are obtained from 71 and 73 and are used as the starting values
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of the numerical optimization. For those cases where random starting values are used ~ is generated as
U(—0.999,0.999), 8 as U(—1,1) and 9; as ;o x U(0.9,1.1) where 9;; denotes the true value of 9;, jth
element of vec (¥).

The same procedure can be used in approach 2 by replacing the y;’s and W;’s with their first differ-
ences.

The AR(1) panel data model

Estimation of the AR(1) model is exactly the same as above after removing all x’s from both the model
and instruments. However, for the starting value, we cannot use the linear estimator since the number of
moment conditions is always smaller than that of the unknown reduced form parameters. Hence in the
Monte Carlo simulations for this case we use random starting values. Specifically, we use

for approach 1 and

for approach 2 where v, ; is the true value of ;.

S.7 Monte Carlo Results for the Stationary Case

A1: Selecting the number of factors

Table A1(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure in
the case of the AR(1) panel data model

T=5
K2 0.25 0.5 1 2
mo 0 1 2 0 i 2 0 1 2 0 1 2
N =04
100 99.4 255 09 994 88.2 17.1 994 99.7 88.9 09.4 99.7 99.9
300 99.8 93.7 16.5 99.8 100.0 95.4 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 56.1 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 100.0 99.2 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
Y =08
100 99.2 53.4 1.5 99.2 98.7 28.7 99.2 99.8 96.3 09.2 99.7 100.0
300 99.8 99.6 23.3 99.8 100.0 98.9 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 65.2 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 100.0 99.7 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
T=10
K2 0.25 0.5 1 2
mg O 1 2 0 1 2 0 1 2 0 1 2
Yo =04
100 99.5 07.1 13.2 99.5 99.6 90.8 995 99.6 99.7 995 99.6 99.7
300 99.8 100.0 95.4 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 99.9 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.7 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0
Y =08
100 99.7 96.6 15.1 99.7 99.5 93.5 09.7 99.5 99.7 99.7 99.6 99.7
300 99.8 100.0 96.7 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 99.9
500 99.9 99.9 100.0 99.9 99.9 100.0 99.9 99.9 100.0 99.9 99.9 100.0
1000 99.6 100.0 100.0 99.6 100.0 100.0 99.6 100.0 100.0 99.6 100.0 100.0

Note: m is estimated using the sequential MTLR procedure described in Section 7.1
with any = and p = 0.05. See also the note to Table 1.

p
N(T—2)
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Table A1(ii): Empirical frequency of correctly selecting the true number of factors, mg, using the
sequential MTLR procedure in the case of the ARX(1) panel data model

T=5
k2 =0.25 k2 =05
mo 0 1 2 0 1 2
0'\2,. 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
N 7v9=04
100 99.7 99.7 99.8 46.3 51.5 52.6 1.1 1.2 1.2 99.2 99.3 99.3 97.9 98.1 98.1 17.7 18.3 18.5
300 99.9 100.0 100.0 99.7 99.9 100.0 21.9 23.5 233 99.4 100.0 100.0 100.0 100.0 100.0 97.2 97.6 97.7
500 99.8 99.9 99.9 99.9 99.9 999 67.4 69.0 69.1 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 99.6 99.7 99.7 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Y =08
100 99.7 99.6 99.6 56.2 56.9 574 1.4 1.6 1.7 99.4 99.4 994 97.9 98.0 98.0 19.2 189 19.0
300 99.9 999 99.9 100.0 100.0 100.0 24.8 24.7 24.5 100.0 100.0 100.0 100.0 100.0 100.0 98.2 98.1 98.1
500 99.9 999 99.9 99.9 99.9 99.9 71.1 711 711 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
k2 =1 K2 =2
mo 0 1 2 0 1 2
a% 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
N o, =04
100  99.7 99.7 99.8 97.8 98.7 99.0 29.4 31.0 31.0 99.2 99.3 99.3 99.5 99.6 99.6 93.5 94.2 944
300 99.9 100.0 100.0 100.0 100.0 100.0 98.9 99.5 994 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 99.8 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Yo =038
100 99.7 99.6 99.6 99.1 99.2 99.3 32.6 33.0 33.1 99.4 994 994 99.5 99.6 99.6 94.4 94.7 944
300 999 99.9 99.9 100.0 100.0 100.0 99.5 99.5 99.5 100.0 100.0 100.0 100.0 99.9 99.9 99.8 99.8 99.8
500 999 99.9 999 99.9 99.9 99.9 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T =10
w2 = 0.25 k2 =05
mo 0 1 2 0 1 2
0\2, 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
N 79=04
100 99.2 99.3 99.3 97.9 98.1 98.1 17.7 18.3 18.5 99.2 99.3 99.3 99.5 99.6 99.6 93.5 94.2 944
300 99.4 100.0 100.0 100.0 100.0 100.0 97.2 97.6 97.7 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 999
500 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Yo = 0.8
100 994 994 994 97.9 98.0 98.0 19.2 189 19.0 99.4 99.4 994 99.5 99.6 99.6 94.4 94.7 944
300 100.0 100.0 100.0 100.0 100.0 100.0 98.2 98.1 98.1 100.0 100.0 100.0 100.0 99.9 99.9 99.8 99.8 99.8
500 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
k2 =1 K2 =2
mo 0 1 2 0 1 2
03 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
N v, =04
100 99.2 99.3 99.3 99.5 99.6 99.7 99.8 99.7 99.7 99.2 99.3 99.3 99.7 99.6 99.6 99.7 99.7 99.7
300 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Yo = 0.8
100 99.4 994 99.4 99.5 99.6 99.6 99.7 99.7 99.7 99.4 994 994 99.5 99.6 99.6 99.7 99.7 99.7
300 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 999 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 999
500 99.9 999 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 999 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

See the note to Table AL(i).
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A2: Bias, RMSE and Size

Table A2(i): Bias(x100) and RMSE(x100) of ~ for the AR(1) panel data model,
using the estimated number of factors, m
T =5,v =04 T =5,v=0.8
Bias(x100) RMSE(x100) Bias(x100) RMSE(x100)

k» 025 05 1 2 025 05 1 2 025 05 1 2 025 05 1 2
N mg=0
100  0.42 042 042 0.42 8.69 8.69 8.69 8.69 0.5 0.65 0.65 0.65 12.29 12.29 12.29 12.29
300  -0.03 -0.03 -0.03 -0.03  4.26 4.26 4.26 4.26 1.42 1.42 142 142 926 9.26 9.26 9.26
500  0.03 0.03 0.03 0.03 3.22 3.22 3.22 3.22 1.46 1.46 146 146 7.80 7.80 7.80 7.80
1000  0.00 0.00 0.00 0.00 2.29 2.29 229 2.29 1.02 1.02 1.02 1.02 6.07 6.07 6.07 6.07

mo =1
100 2498 519 041 0.23 33.05 18.36 9.39 7.79 7.22 1.11 1.42 1.38 15.51 13.99 12.99 11.19
300  1.96 -0.05 -0.09 -0.11 11.04 5.64 4.99 417 1.20 1.28 1.00 0.46 11.06 10.41 9.04 6.86
500  0.15 0.10 0.05 0.01 453 4.17 3.68 3.07 1.68 1.46 0.96 0.40 9.48 864 7.12 5.09
1000  0.05 0.05 0.04 0.03 3.25 3.02 267 2.22 143 1.13 0.61 027 7.70 6.77 5.08 3.56

mo = 2
100 6.61 13.75 4.09 0.34 13.61 25.13 16.38 7.89 7.09 5.07 1.82 1.50 14.00 15.66 16.38 11.31
300 543 1.25 0.20 0.13 10.92 8.49 4.99 414 6.76 1.81 1.38 0.81 13.80 10.54 4.99 6.82
500  3.12 0.08 0.05 0.04 858 4.36 3.81 3.16 4.31 1.50 0.98 0.49 11.71 874 3.81 5.12
1000  0.12 0.04 0.02 0.01 3.38 2.98 262 2.18 1.23 0.89 045 0.19 743 6.34 2.62 3.45

T =10, v, = 0.4 T =10, 7o = 0.8
Bias(x 100) RMSE(x100) Bias(x100) RMSE(x100)
k2 025 05 1 2 025 05 1 2 025 05 1 2 025 05 1 2

N mg=0
100 -0.03 -0.03 -0.03 -0.03 3.76 3.76 3.76 3.76 1.94 1.94 1.94 1.94 7.90 7.90 7.90 7.90
300 -0.04 -0.04 -0.04 -0.04 2.18 2.18 2.18 2.18 0.68 0.68 0.68 0.68 4.62 4.62 4.62 4.62
500 -0.01 -0.01 -0.01 -0.01 1.70 1.70 1.70 1.70 0.26 0.26 0.26 0.26 3.09 3.09 3.09 3.09
1000 -0.01 -0.01 -0.01 -0.01 1.22 1.22 1.22 1.22 0.18 0.18 0.18 0.18 2.24 224 224 2.24
mo = 1
100 0.11 -0.04 -0.05 -0.06 4.87 4.52 4.20 3.75 1.08 0.50 0.23 0.08 7.05 5.83 4.64 3.48
300 0.03 0.02 0.02 0.01 2.67 255 238 2.13 0.24 0.15 0.08 0.04 3.53 298 241 1.89
500 -0.05 -0.06 -0.06 -0.05 2.11 2.03 1.90 1.70 0.07 0.04 0.01 -0.01 2.58 2.28 1.88 1.49
1000 -0.03 -0.02 -0.01 -0.01 1.48 1.42 1.32 1.17 0.00 0.00 0.00 0.00 1.74 1.55 1.30 1.03
mo = 2
100 5.48 0.66 -0.08 -0.05 8.23 6.57 5.12 448 7.57 1.11 0.19 0.04 11.64 7.58 5.32 3.93
300 0.26 0.02 0.04 0.05 3.58 3.07 2.81 246 0.51 0.16 0.08 0.06 4.62 3.44 266 2.06
500 -0.12 -0.11 -0.10 -0.09 2.50 2.35 2.16 1.90 -0.06 -0.08 -0.09 -0.08 298 2.51 2.06 1.61
1000 -0.02 -0.01 0.00 0.00 1.84 1.74 1.59 1.39 0.03 0.03 0.01 0.00 202 1.75 144 1.11

Note: v is the coefficient of the lagged dependent variable given in (1) in the absence of the x;; regressors. See
also the note to Table 1.

Table A2(ii): Size(x100) of v for the AR(1) panel data model, using the
estimated number of factors, m

T =05,v =04 T =5,v)=0.8 T =10,v, =04 T =10, v, =0.8
K2 0.25 05 1 2 025 05 1 2 025 0.5 1 2 025 05 1 2
N mog=0
100 6.2 6.2 6.2 6.2 21.3 21.3 21.3 21.3 6.5 6.5 6.5 6.5 16.4 164 16.4 16.4
300 54 5.4 54 54 19.2 19.2 19.2 19.2 5.1 5.1 5.1 5.1 8.7 87 87 87
500 4.8 4.8 4.8 4.8 14.6 14.6 14.6 14.6 59 59 59 59 6.7 6.7 6.7 6.7
1000 4.5 4.5 4.5 4.5 121 12.1 12.1 12.1 54 5.4 54 54 5.7 5.7 57 5.7
mo =1
100 52.6 15.7 5.1 6.2 54.3 21.6 19.6 12.6 6.9 6.0 6.1 5.7 12.1 7.6 4.9 4.9
300 93 38 5.1 59 169 17.0 11.9 6.7 4.0 43 45 5.1 4.3 43 4.7 5.2
500 26 3.3 39 45 127 123 7.1 4.5 54 5.7 6.0 6.1 45 5.1 54 5.5
1000 3.2 4.2 4.7 52 100 81 4.7 4.5 4.7 49 4.9 5.0 4.5 4.6 4.2 4.1
mo = 2
100 8.6 26.2 11.5 4.7 422 43.0 19.8 114 33.6 9.6 58 6.3 379 10.2 53 6.2

300 23.2 6.1 39 45 493 159 103 54 5.8 44 4.6 5.0 4.8 3.3 4.0 45
500 246 25 3.1 38 312 114 63 3.3 3.4 42 49 49 3.1 41 47 53
1000 26 26 3.3 3.8 78 6.6 44 3.9 3.4 4.0 4.7 49 3.6 4.0 4.0 4.3

See the note to Table A2(i).
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Table A2(iii): Bias(x100) and RMSE(x100) of v and /3 for the ARX(1) panel data
model, using the estimated number of factors, m (02 = 1)

T =5, v, =04

T =5, 79 = 0.8

Bias(x100) RMSE(%100) Bias(x100) RMSE(x100)
k2 025 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2
2l
N mg=0
100 -0.15 -0.15 -0.15 -0.15 3.45 3.45 3.45 3.45 -0.07 -0.07 -0.07 -0.07 3.02 3.02 3.02 3.02
300 -0.04 -0.04 -0.04 -0.04 1.97 1.97 1.97 197 -0.05 -0.05 -0.05 -0.05 1.71 1.71 1.71 1.71
500 0.02 0.02 0.02 0.02 1.47 1.47 147 147 0.00 0.00 0.00 0.00 1.27 1.27 1.27 1.27
1000 -0.05 -0.05 -0.05 -0.05 1.08 1.08 1.08 1.08 -0.03 -0.03 -0.03 -0.03 0.93 0.93 0.93 0.93
mo =1
100 2.45 0.21 0.09 0.08 5.82 449 4.30 4.10 0.96 0.28 0.23 0.21 4.91 4.91 4.74 4.53
300 -0.03 -0.04 -0.05 -0.06 2.45 2.42 2.39 231 -0.02 -0.02 -0.02 -0.03 2.64 2.60 2.56 2.47
500 0.02 0.02 0.01 0.01 1.86 1.86 1.83 1.75 0.01 0.02 0.02 0.02 198 1.96 1.92 1.85
1000 -0.05 -0.05 -0.04 -0.04 1.37 1.37 1.35 1.29 -0.02 -0.02 -0.02 -0.02 1.44 1.43 1.41 1.36
mo = 2
100 1.29 1.49 0.37 0.21 4.21 5.39 4.70 4.27 0.57 0.69 0.47 0.36 3.78 4.90 4.99 4.60
300 0.78 0.03 0.03 0.04 2.87 2.51 246 2.35 0.24 0.07 0.07 0.08 2.60 2.70 2.63 2.52
500 0.31 0.07 0.07 0.07 2.16 1.96 1.94 1.87 0.11 0.09 0.10 0.10 2.12 2.13 2.10 2.03
1000 0.06 0.05 0.05 0.05 1.41 1.41 1.39 1.33 0.05 0.05 0.05 0.05 1.51 1.49 1.47 1.41
JE]
N mog=0
100 -0.06 -0.06 -0.06 -0.06 4.44 4.44 444 4.44 -0.06 -0.06 -0.06 -0.06 4.55 4.55 4.55 4.55
300 0.02 0.02 0.02 0.02 253 2.53 2.53 2.53 0.01 0.01 0.01 0.01 2.58 2.58 2.58 2.58
500 0.04 0.04 0.04 0.04 192 192 1.92 1.92 0.04 0.04 0.04 0.04 1.97 197 1.97 1.97
1000 0.00 0.00 0.00 0.00 1.38 1.38 1.38 1.38 0.00 0.00 0.00 0.00 1.40 1.40 1.40 1.40
mog =1
100 0.39 0.01 -0.01 -0.01 5.48 5.69 5.99 6.19 0.33 0.07 0.06 0.04 5.67 5.90 6.16 6.33
300 -0.10 -0.13 -0.15 -0.16 3.00 3.20 3.39 3.52 -0.10 -0.12 -0.14 -0.15 3.11 3.29 3.46 3.57
500 0.09 0.09 0.09 0.08 235 2.51 2.65 2.75 0.10 0.10 0.09 0.08 2.43 2.58 2.70 2.79
1000 0.04 0.04 0.05 0.06 1.66 1.77 1.88 1.95 0.04 0.05 0.06 0.07 1.71 1.82 1.91 1.97
mo = 2
100 0.27 0.29 0.27 0.33 5.73 6.85 8.33 10.58 0.28 0.38 0.41 044 5.88 7.11 8.56 10.75
300 0.22 0.15 0.18 0.20 3.23 3.75 4.62 5.89 0.22 0.18 0.20 0.23 3.32 3.84 4.67 5.91
500 0.10 0.09 0.11 0.14 249 290 3.55 4.51 0.11 0.12 0.14 0.17 2.60 3.00 3.63 4.57
1000 -0.03 -0.04 -0.06 -0.09 1.77 2.05 2.51 3.18 -0.02 -0.03 -0.05 -0.07 1.83 2.11 2.55 3.21
T =10,v95=04 T =10, v =0.8
Bias(x100) RMSE(x100) Bias(x100) RMSE(x100)
k2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2
2l
N mog=0
100 -0.06 -0.06 -0.06 -0.06 1.95 1.95 1.95 1.95 -0.03 -0.03 -0.03 -0.03 1.37 1.37 1.37 1.37
300 0.08 0.08 0.08 0.08 1.14 1.14 1.14 1.14 0.04 0.04 0.04 0.04 0.77 0.77 0.77 0.77
500 -0.01 -0.01 -0.01 -0.01 0.86 0.86 0.86 0.86 0.00 0.00 0.00 0.00 0.58 0.58 0.58 0.58
1000 0.00 0.00 0.00 0.00 0.62 0.62 0.62 0.62 0.00 0.00 0.00 0.00 0.42 0.42 0.42 0.42
mo =1
100 -0.07 -0.10 -0.10 -0.11 2.23 2.19 2.15 2.09 -0.06 -0.07 -0.07 -0.07 1.60 1.57 1.54 1.49
300 0.03 0.03 0.03 0.03 1.23 1.22 1.20 1.16 0.02 0.02 0.02 0.02 0.85 0.84 0.83 0.79
500 -0.02 -0.02 -0.02 -0.02 0.94 0.93 0.92 090 -0.01 -0.01 -0.01 -0.01 0.67 0.66 0.65 0.63
1000 0.01 0.01 0.01 0.01 0.68 0.68 0.67 0.65 0.00 0.00 0.00 0.01 0.47 047 0.46 0.44
mo = 2
100 1.17 0.02 -0.09 -0.08 2.81 2.43 2.33 2.27 0.31 -0.02 -0.05 -0.05 1.68 1.63 1.59 1.53
300 -0.04 -0.07 -0.06 -0.06 1.37 1.35 1.33 1.29 -0.02 -0.03 -0.02 -0.02 0.94 0.93 0.91 0.88
500 -0.03 -0.03 -0.03 -0.03 1.00 1.00 0.98 0.96 -0.01 -0.01 -0.01 -0.02 0.71 0.70 0.69 0.67
1000 0.02 0.02 0.02 0.02 0.71 0.71 0.70 0.69 0.01 0.01 0.01 0.01 0.49 049 0.48 047
B
N mog=0
100 -0.01 -0.01 -0.01 -0.01 3.04 3.04 3.04 3.04 -0.02 -0.02 -0.02 -0.02 3.02 3.02 3.02 3.02
300 -0.05 -0.05 -0.05 -0.05 1.73 1.73 1.73 1.73 -0.03 -0.03 -0.03 -0.03 1.71 1.71 1.71 1.71
500 0.00 0.00 0.00 0.00 1.34 1.34 1.34 1.34 0.00 0.00 0.00 0.00 1.33 1.33 1.33 1.33
1000 0.01 0.01 0.01 0.01 0.96 0.96 0.96 0.96 0.01 0.01 0.01 0.01 0.95 0.95 095 0.95
mog =1
100 0.09 0.09 0.09 0.10 3.73 3.87 3.98 4.04 0.07 0.08 0.07 0.08 3.73 3.87 3.98 4.04
300 0.01 0.01 0.01 0.01 2.15 2.24 2.29 2.32 0.02 0.02 0.02 0.02 2.14 2.22 2.28 231
500 0.01 0.01 0.00 0.00 1.61 1.69 1.74 1.78 0.01 0.00 0.00 -0.01 1.59 1.66 1.72 1.76
1000 0.03 0.03 0.03 0.03 1.13 1.18 1.21 1.23 0.03 0.03 0.04 0.04 1.12 1.17 1.20 1.22
mo = 2
100 -0.20 0.09 0.15 0.15 4.55 5.25 6.27 7.46 0.12 0.13 0.13 0.15 4.51 5.23 6.24 7.42
300 0.10 0.10 0.09 0.08 2.55 3.02 3.63 4.29 0.10 0.09 0.08 0.07 2.53 3.00 3.61 4.27
500 0.01 0.01 0.02 0.03 1.99 2.36 2.85 3.36 0.01 0.01 0.01 0.03 1.98 2.36 2.84 3.35
1000 0.01 0.02 0.04 0.06 1.38 1.63 1.96 2.32 0.02 0.03 0.05 0.07 1.37 1.63 1.95 2.31

Note: v and (8 are the coefficients of the lagged dependent variable and the x;; regressor given in (1).
the note to Table A2(i).
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Table A2(iv): Size(x100) of v and § for the ARX(1) panel data
model, using the estimated number of factors, m (o2 = 1)

T =5,v =04 T =5,vy=0.8 T =10,v,=04 T =10,v,=0.8
K2 025 05 1 2 025 0.5 1 2 025 0.5 1 2 025 05 1 2
a2
N mog=0
100 59 5.9 5.9 59 6.6 6.6 6.6 6.6 54 5.4 5.4 54 5.8 5.8 5.8 5.8
300 56 5.6 5.6 5.6 6.1 6.1 6.1 6.1 5.3 5.3 5.3 5.3 5.1 5.1 5.1 5.1
500 5.1 5.1 5.1 5.1 44 44 4.4 4.4 4.5 4.5 4.5 4.5 4.3 4.3 4.3 4.3
1000 5.1 5.1 5.1 5.1 5.8 5.8 5.8 5.8 4.9 49 4.9 4.9 5.8 5.8 5.8 5.8
mo =1
100 14.8 4.6 5.1 5.7 5.4 4.4 52 5.8 5.8 5.7 6.0 6.1 5.8 6.3 6.5 6.6
300 3.0 3.8 44 4.9 3.2 44 5.1 54 54 54 5.2 5.6 3.7 4.2 4.0 4.0
500 2.3 3.0 3.8 39 2.4 34 39 4.1 53 54 55 5.3 4.8 5.0 5.1 5.4
1000 3.2 4.1 4.5 5.0 3.5 4.1 4.5 4.8 5.1 5.2 5.4 5.2 5.0 5.3 54 54
mo = 2
100 7.5 8.8 5.8 5.7 6.2 45 4.7 5.1 11.1 5.3 5.8 6.5 6.6 5.3 5.9 6.3
300 8.0 3.3 4.1 44 44 3.7 48 5.3 4.0 5.1 5.4 5.5 3.4 44 4.8 4.8
500 56 2.9 3.6 4.3 3.0 3.3 46 5.1 3.4 3.8 43 49 3.7 44 4.7 5.0
1000 26 3.0 3.6 4.3 26 3.6 42 44 3.7 4.1 4.3 4.5 3.4 3.8 4.1 4.4
[E]
N mpg=0
100 56 5.6 5.6 5.6 54 5.4 54 54 6.5 6.5 6.5 6.5 6.6 6.6 6.6 6.6
300 5.7 5.7 5.7 5.7 5.8 5.8 5.8 5.8 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
500 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.7 5.7 5.7 5.7 5.6 5.6 5.6 5.6
1000 5.0 5.0 5.0 5.0 4.9 49 49 49 56 5.6 5.6 5.6 5.8 5.8 5.8 5.8
mo =1
100 4.8 5.1 5.6 5.6 4.9 53 5.5 5.6 6.2 6.4 6.3 6.1 59 6.3 6.2 64
300 4.8 44 49 5.0 46 4.8 4.9 5.2 6.4 6.5 6.0 5.6 59 6.1 5.6 54
500 5.2 5.7 5.5 54 49 5.1 5.3 5.3 4.9 5.0 5.2 54 5.2 5.2 5.2 54
1000 5.1 5.6 5.5 5.8 5.2 5.4 5.7 5.6 4.4 45 4.4 4.4 4.6 4.7 4.7 4.6
mo = 2
100 6.4 6.1 6.5 6.8 6.5 6.2 5.8 6.7 5.1 4.3 4.9 5.8 5.0 4.1 5.0 5.7
300 4.5 49 52 54 45 5.5 5.3 5.2 4.4 5.1 53 5.7 4.7 54 5.4 5.6
500 4.0 46 5.0 5.2 45 49 5.0 5.3 5.7 59 5.7 5.6 5.8 6.1 5.9 5.5
1000 54 53 49 4.9 4.8 5.1 5.2 4.8 59 5.7 5.3 4.9 6.2 6.0 5.3 5.0

See the note to Table A2(i).
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A3: Power Functions

Figure A3(i): Power functions for y in the case of the AR(1) panel data model with different
values of m and N (?=0.25)
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described in Section 7.1 with an=p/N(T-2) and p=0.05; y is the coefficient of the lagged dependent variable in
(13) in the absence of the xit regressors. See also the note to Table 1.
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Figure A3(ii): Power functions for y in the case of the ARX(1) panel data model with different values
of mand N (x?=0.25)
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described in Section 7.1 with an=p/N(T-2) and p=0.05; v is the coefficient of the lagged dependent variable in
(13). See also the note to Table 1.
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Figure A3(iii): Power functions for 3 in the case of the ARX(1) panel data model with different values

of mand N (x?=0.25)
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Figure A3(iv): Power functions for y in the case of the AR(1) panel data model with different

values of m and N (k2=0.5)
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Figure A3(v): Power functions for v in the case of the ARX(1) panel data model with different values

of mand N (x?=0.5)
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Figure A3(vi): Power functions for B in the case of the ARX(1) panel data model with different values
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Figure A3(vii): Power functions for y in the case of the AR(1) panel data model with different

values of m and N (k?=2)
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Figure A3(viii): Power functions for y in the case of the ARX(1) panel data model with different

values of m and N (k?=2)
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Figure A3(ix): Power functions for B in the case of the ARX(1) panel data model with different values

of mand N (k?=2)
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S.8 TUnit Root Case (7, =1)

B1: Selecting the number of factors

Table B1(i): Empirical frequency of correctly selecting the true

number of factors, mg, using the sequential MTLR procedure in the

case of the AR(1) panel data model

T=5
K2 0.25 0.5 1 2
N\mg O 1 2 0 1 2 0 1 2 0 1 2
100 995 588 14 995 988 321 995 996 965 99.5 99.6 100.0
300 99.8 100.0 29.7 99.8 99.9 989 99.8 99.9 100.0  99.8 99.9 100.0
500 99.8 100.0 74.7  99.8 100.0 100.0  99.8 100.0 100.0  99.8 100.0 100.0
1000 99.9 100.0 100.0  99.9 100.0 100.0  99.9 100.0 100.0  99.9 100.0 100.0
T =10
K2 0.25 0.5 1 2
N\mg O 1 2 0 1 2 0 1 2 0 1 2
100 995 97.6 187 995 99.6 948 ~99.5 996 99.6 995 99.6 99.6
300 100.0 99.9 97.8 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0
500  100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0
1000 99.9 100.0 100.0  99.9 100.0 100.0  99.9 100.0 100.0  99.9 100.0 100.0

Note: m is estimated using the sequential MTLR procedure described in Section 7.1 with

an = ﬁ and p = 0.05. See also the note to Table 12.

Table B1(ii): Empirical frequency of correctly selecting the true number of factors, mg, using the
sequential MTLR procedure in the case of the ARX(1) panel data model

T=5
N K2 =0.25 k2 =05
mo 0 1 2 0 1 2
a2 05 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 05 1 1.5 0.5 1 1.5
100 99.5 99.6 99.6 57.8 57.7 57.6 1.3 1.3 1.2 995 996 99.6 99.2 99.3 99.2 ~ 325 323 323
300 100.0 100.0 100.0 100.0 100.0 100.0  26.3 26.4 26.4 100.0 100.0 100.0 100.0 100.0 100.0  99.5 99.5 99.5
500  99.9 99.9 99.9 100.0 100.0 100.0 71.3 71.5 71.5 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0  99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
k2 =1 K2 =2
mo 0 1 2 0 1 2
o2 05 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
100 99.5 99.6 99.6 99.9 99.9 99.9 ~97.3 97.2 97.3 99.5 99.6 99.6 99.9 99.9 99.9 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500  99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T =10
k2 =0.25 k2 =05
mo 0 1 2 0 1 2
a2 05 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
100 99.3 99.3 99.3 98.1 98.2 98.2 20.1 19.95 19.7 99.3 99.3 99.3 99.7 99.7 99.7 95.05 94.9 94.9
300 100.0 100.0 100.0 100.0 100.0 100.0 98.3 98.3 98.3 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0  99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9 100.0 100.0 100.0
k2 =1 K2 =2
mo 0 1 2 0 1 2
o2 05 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
100 99.3 99.3 99.3 ~ 99.7 99.7 99.7 100.0 99.8 99.8 ~99.3 993 99.3 ~99.7 99.7 99.7 ~99.6 99.6 99.7
300 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0  99.9 99.9 99.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0  99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

See the note to Table B1(i).
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B2: Bias, RMSE and Size

Table B2(i): Bias(x100), RMSE(x100) and Size(x100) of -y
for the AR(1) panel data model, using the estimated number of

factors, m
T=5
Bias(x100) RMSE(x 100) Size(x 100)
k2025 05 1 2 025 05 1 2 02505 1 2

N mog=0
100 -1.49 -1.49 -1.49 -1.49 2.74 2.74 2.74 2.74 3.8 3.8 3.8 3.8
300 -0.89 -0.89 -0.89 -0.89 1.69 1.69 1.69 1.69 3.1 3.1 3.1 3.1
500 -0.67 -0.67 -0.67 -0.67 1.08 1.08 1.08 1.08 26 26 2.6 2.6
1000 -0.53 -0.53 -0.53 -0.53 1.25 1.25 1.25 1.25 24 24 24 24

mo =1
100 -2.81 -3.04 -2.99 -2.97 544 580 5.70 5.66 4.3 44 54 6.0
300 -1.87 -1.84 -1.83 -1.82 3.48 3.45 3.43 3.42 2.8 4.0 4.9 5.2
500 -1.38 -1.35 -1.34 -1.34 2.34 2.27 2.25 2.24 2.8 34 3.7 3.9
1000 -0.99 -0.98 -0.97 -0.97 1.67 1.65 1.64 1.64 2.2 3.3 34 3.9

mo = 2
100 -2.01 -2.93 -3.00 -2.91 3.64 5.57 5.09 4.90 42 35 5.1 5.9
300 -1.65 -1.75 -1.70 -1.68 3.39 3.05 2.93 2.88 2.3 3.0 39 45
500 -1.43 -1.39 -1.37 -1.36 2.53 2.34 2.30 2.28 1.1 2.3 3.2 3.9
1000 -1.01 -0.99 -0.99 -0.98 1.70 1.66 1.65 1.65 1.4 2.5 33 3.7

T =10
Bias(x 100) RMSE(x 100) Size(x 100)
w2 025 05 1 2 025 05 1 2 025 05 1 2

N mg=0
100 -0.53 -0.53 -0.53 -0.53 1.24 1.24 1.24 1.24 3.3 3.3 3.3 3.3
300 -0.33 -0.33 -0.33 -0.33 0.50 0.50 0.50 0.50 4.2 4.2 4.2 4.2
500 -0.26 -0.26 -0.26 -0.26  0.37 0.37 0.37 0.37 2.5 25 25 2.5
1000 -0.20 -0.20 -0.20 -0.20 0.33 0.33 0.33 0.33 3.0 3.0 3.0 3.0

mo =1
100 -0.63 -0.62 -0.61 -0.61 1.03 1.01 1.01 1.00 2.3 2.7 3.0 3.2
300 -0.40 -0.40 -0.39 -0.39 0.99 0.96 0.95 0.95 24 2.7 2.8 28
500 -0.31 -0.31 -0.31 -0.31 0.46 0.46 0.46 0.46 2.1 2.7 29 3.1
1000 -0.24 -0.24 -0.24 -0.24 0.33 0.33 0.33 0.33 2.2 23 24 26

mo = 2
100 -0.67 -0.68 -0.65 -0.65 1.43 1.41 1.11 1.10 3.2 3.3 3.8 4.0
300 -0.39 -0.38 -0.39 -0.38 0.61 0.60 0.59 0.59 1.5 1.9 23 238
500 -0.32 -0.32 -0.31 -0.32 048 0.48 0.48 0.48 1.8 2.2 24 238
1000 -0.24 -0.24 -0.24 -0.24 0.33 0.33 0.33 0.33 1.4 1.8 2.1 2.2

Note: « is the coefficient of the lagged dependent variable given in (13) in the
absence of the x;; regressors. See also the note to Table B1(i).
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Table B2(ii): Bias(x100), RMSE(x100) and Size(x100) of
~ and [ for the ARX(1) panel data model, using the
estimated number of factors, m (02 = 1)

T=5

Bias(x100) RMSE(x100) Size(x100)
k2 025 0.5 1 2 0.25 0.5 1 2 025 0.5 1 2

Y
N mog=0

100 -1.28 -1.28 -1.28 -1.28 2.17 2.17 2.17 2.17 3.7 3.7 3.7 3.7
300 -0.77 -0.77 -0.77 -0.77 1.27 1.27 1.27 1.27 34 34 34 34
500 -0.58 -0.58 -0.58 -0.58 0.94 0.94 0.94 0.94 3.2 32 32 32
1000 -0.46 -0.46 -0.46 -0.46 0.70 0.70 0.70 0.70 3.3 3.3 3.3 3.3

mo = 1

100 -1.84 -1.98 -2.00 -2.02 3.16 3.42 3.46 3.49 2.9 29 39 4.5
300 -1.19 -1.22 -1.24 -1.26 1.97 2.01 2.05 2.08 1.8 2.3 2.3 2.9
500 -0.93 -0.95 -0.97 -0.98 1.54 1.58 1.61 1.63 2.3 2.6 2.3 3.0
1000 -0.70 -0.73 -0.75 -0.76 1.15 1.19 1.23 1.25 2.7 3.3 3.5 3.7

mo = 2

100 -1.56 -1.96 -2.02 -2.07 2.68 3.38 3.52 3.59 4.2 3.2 3.5 4.2
300 -1.06 -1.16 -1.19 -1.22 1.81 2.01 2.06 2.11 1.8 2.6 3.0 3.5
500 -0.90 -0.94 -0.97 -1.00 1.51 1.56 1.61 1.66 1.3 1.9 25 2.7
1000 -0.66 -0.69 -0.71 -0.73 1.08 1.12 1.16 1.20 1.9 24 28 3.1

B

N mog=0

100 -0.58 -0.58 -0.58 -0.58  4.47 4.47 4.47 4.47 5.5 5.5 5.5 5.5
300 -0.30 -0.30 -0.30 -0.30 2.55 2.55 2.55 2.55 5.0 5.0 5.0 5.0
500 -0.21 -0.21 -0.21 -0.21 1.94 1.94 194 1.94 4.0 4.0 4.0 4.0
1000 -0.18 -0.18 -0.18 -0.18 1.39 1.39 1.39 1.39 44 44 44 44

mo =1

100 -0.84 -0.95 -0.97 -0.99 544 568 595 6.15 4.2 41 45 438
300 -0.62 -0.66 -0.69 -0.72 3.04 3.21 3.38 3.50 3.8 4.0 4.2 3.9
500 -0.32 -0.34 -0.36 -0.38 2.36 2.49 2.62 2.71 4.7 49 45 4.3
1000 -0.26 -0.27 -0.27 -0.27 1.68 1.78 1.87 1.94 3.9 41 4.4 45

mo = 2

100 -0.61 -0.69 -0.59 -0.47 5.70 6.84 8.26 10.46 5.8 5.1 5.1 6.3
300 -0.30 -0.32 -0.29 -0.23 3.25 3.77 4.61 5.86 3.7 4.0 45 4.6
500 -0.30 -0.29 -0.27 -0.21 2.51 2.91 3.56 4.50 3.1 34 39 4.3
1000 -0.31 -0.33 -0.34 -0.35 1.81 2.09 2.54 3.20 4.2 45 4.6 4.3
T =10
Bias(x100) RMSE(%100) Size(x100)
k2 025 0.5 1 2 0.25 0.5 1 2 025 05 1 2
2l
N mog=0

100 -0.43 -0.43 -0.43 -0.43 0.67 0.67 0.67 0.67 3.3 3.3 3.3 3.3
300 -0.26 -0.26 -0.26 -0.26 0.37 0.37 0.37 0.37 2.1 21 2.1 2.1
500 -0.22 -0.22 -0.22 -0.22 0.30 0.30 0.30 0.30 25 25 25 25
1000 -0.18 -0.18 -0.18 -0.18 0.23 0.23 0.23 0.23 2.9 29 29 29

mo =1

100 -0.53 -0.53 -0.53 -0.53 0.84 0.84 0.84 0.84 3.0 3.6 3.6 3.6
300 -0.30 -0.30 -0.31 -0.31 0.45 0.45 0.46 0.46 1.9 2.0 2.3 2.1
500 -0.26 -0.26 -0.26 -0.26 0.37 0.37 0.37 0.37 2.0 25 2.8 2.5
1000 -0.20 -0.20 -0.20 -0.20 0.26 0.26 0.26 0.26 1.9 22 2.2 2.3

mo = 2

100 -0.50 -0.49 -0.50 -0.50 0.79 0.79 0.80 0.81 2.7 2.0 24 28
300 -0.31 -0.31 -0.32 -0.32 0.46 0.47 0.47 0.48 2.0 20 2.1 19
500 -0.26 -0.26 -0.27 -0.27 0.37 0.38 0.39 0.39 2.3 24 25 28
1000 -0.19 -0.20 -0.20 -0.20 0.25 0.26 0.26 0.27 1.5 1.7 2.0 2.0

B

N mog=0

100 -0.13 -0.13 -0.13 -0.13 3.01 3.01 3.01 3.01 6.2 6.2 6.2 6.2
300 -0.09 -0.09 -0.09 -0.09 1.72 1.72 1.72 1.72 5.6 5.6 5.6 5.6
500 -0.05 -0.05 -0.05 -0.05 1.33 1.33 1.33 1.33 5.3 5.3 5.3 5.3
1000 -0.03 -0.03 -0.03 -0.03 0.95 0.95 0.95 0.95 4.8 48 4.8 4.8

mo =1

100 -0.04 -0.02 -0.02 -0.02 3.70 3.84 3.95 4.01 5.6 59 6.0 6.1
300 -0.05 -0.04 -0.04 -0.04 2.13 2.22 2.27 231 5.5 5.8 5.3 5.0
500 -0.04 -0.05 -0.05 -0.05 1.59 1.66 1.72 1.75 4.7 4.8 4.5 4.7
1000 -0.01 0.00 0.00 0.00 1.12 1.17 1.20 1.22 4.3 41 3.8 4.2

mo = 2

100 0.00 0.14 0.28 042 4.51 522 6.25 7.44 4.6 42 52 5.1
300 0.07 0.11 0.17 0.24 252 299 3.60 4.27 44 49 5.0 5.0
500 -0.01 0.03 0.09 0.18 1.98 2.35 2.83 3.35 5.1 5.6 5.8 5.0
1000 0.00 0.05 0.11 0.18 1.37 1.63 1.95 2.31 5.5 4.9 4.7 4.0

Note: v and (3 are the coefficients of the lagged dependent variable and the x;;
regressor given in (13). See also the note to Table B1(i).
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B3: Power Functions

Figure B3(i): Power functions for v in the case of the AR(1) panel data model with different
values of m and N (k2=0.25)
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described in Section 7.1 with an=p/N(T-2) and p=0.05; 7y is the coefficient of the lagged dependent variable in
(13) in the absence of the xi: regressors. See also the note to Table 4.
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Figure B3(ii): Power functions for y in the case of the ARX(1) panel data model with different
values of m and N (k?=0.25)

Panel A: T=5
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Note: ——N=100 ====N=300 e N=500 ==+~ N=1000. 71 is estimated using the sequential MTLR procedure

described in Section 7.1 with an=p/N(T-2) and p=0.05; 7y is the coefficient of the lagged dependent variable in
(13). See also the note to Table 4.

Figure B3(iii): Power functions for B in the case of the ARX(1) panel data model with different
values of m and N (k2=0.25)
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Figure B3(iv): Power functions for y in the case of the AR(1) panel data model with different

values of m and N (k2=0.5)
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Figure B3(v): Power functions for y in the case of the ARX(1) panel data model with different
values of m and N (k2=0.5)
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Figure B3(vi): Power functions for 3 in the case of the ARX(1) panel data model with different
values of m and N (k2=0.5)
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Figure B3(vii): Power functions for y in the case of the AR(1) panel data model with different

values of m and N (k2=2)
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Figure B3(viii): Power functions for y in the case of the ARX(1) panel data model with different
values of m and N (?=2)
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Figure B3(ix): Power functions for 3 in the ARX(1) panel data model with different
values of m and N (k2=2)
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S.9 Monte Carlo experiments for the robustness analysis

C1: Initial values deviating from the steady state distribution

Table C1(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure
(02=1,Kk2=1)

v
T=57,=04 T=5r =08 T=107,=04 T =10, v,=038
mo 0 1 2 0 1 2 0 1 2 0 1 2
N AR(1)
100 994 99.7 87.8 99.2 99.7 96.2 99.7 99.5 99.7 99.6 99.5 99.7
300 99.7 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 100.0  99.9 100.0 100.0 99.9 100.0 100.0 99.8 100.0 100.0
1000 99.9 100.0 100.0  99.8 100.0 100.0 99.9 100.0 100.0 99.5 100.0 100.0
ARX(1)
100 99.7 100.0 96.5 99.5 99.9 96.8 994 99.6 99.7 99.6 99.6 99.8
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 99.8
500 99.9 99.9 100.0 99.9 99.9 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 99.9 100.0 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note: y;; is generated as y;r = a; + d¢ + Yyie—1 + Brit + (i4y Cip = n;ft + uiy for

1=1,2,..,N;t=1,..,T with y;0 = K159 + K200 (ui0/0) and k1, k2 = 1.2,0.8. Under
mo =0, Yit = ; + 6t +7Yi,t—1 + Bxi¢ + uie. In the case of the AR(1) panel data model,
B = 0. m is estimated using the sequential MTLR procedure described in Section 7.1

with ay =

p
N(T—2)

and p = 0.05. See also the note to Table 1.

Table C1(ii): Bias(x100), RMSE(x100) and Size(x100) of ~ for the AR(1) panel data model,

using the estimated number of factors, m (k2 = 1)

T=5,v =04

T =5, 79 =08

T =10, v, = 0.4

T =10, v, =038

Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
N mog=0
100 0.56 9.26 6.4 0.74 12.46 22.0 -0.02 3.83 6.1 1.91 7.86 15.4
300 -0.01 4.47 5.5 1.17 9.10 19.2 -0.05 2.22 5.3 0.71 4.73 8.3
500 0.02 3.36 4.7 1.39 7.73 15.4 -0.01 1.72 5.8 0.24 3.03 6.4
1000 0.01 2.41 4.7 1.04 6.07 11.2 -0.01 1.25 5.6 0.20 2.39 6.0
mo =1
100 0.73 11.21 5.7 1.27 13.68 24.2 -0.04 4.52 5.9 0.38 5.37 6.6
300 -0.08 5.71 5.0 1.16 9.98 16.7 0.01 2.55 4.8 0.08 2.73 4.9
500 0.09 4.19 3.7 1.35 8.22 11.5 -0.06 2.06 6.4 0.02 2.15 5.4
1000 0.04 3.07 5.2 0.91 6.22 7.8 -0.03 1.42 4.8 -0.02 1.46 4.9
mo = 2
100 4.81 17.79 14.6 1.69 14.06 23.8 -0.13 5.57 5.1 0.34 6.25 7.0
300 0.28 5.72 3.2 1.63 9.90 14.2 0.02 3.07 4.8 0.09 3.16 3.7
500 0.08 4.36 2.9 1.34 8.16 9.6 -0.10 2.35 4.6 -0.08 2.36 4.3
1000 0.03 2.99 3.6 0.75 5.82 5.8 0.00 1.75 4.7 0.03 1.65 4.4

Note: « is the coefficient of the lagged dependent variable given in (13) in the absence of the x;; regressors. See also the note

to Table C1(i).
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Table C1(iii): Bias(x100), RMSE(x100) and Size(x100) of v and /3 for the ARX(1) panel

data model, using the estimated number of factors, m (02 =1, k? = 1)

T =5, vy =04

T =5 v, =038

T =10, 7, =04

T =10, 7 = 0.8

Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
o
N mog=0
100 -0.12 3.64 5.7 -0.05 3.15 6.8 -0.06 1.99 5.7 -0.03 1.41 6.8
300 -0.04 2.08 6.1 -0.06 1.79 5.7 0.07 1.17 6.1 0.03 0.80 5.7
500 0.02 1.55 5.3 0.01 1.34 5.1 -0.01 0.88 5.3 0.00 0.60 5.1
1000 -0.05 1.14 5.6 -0.04 0.98 5.6 0.00 0.64 5.6 0.00 0.44 5.6
mo =1
100 0.12 4.60 5.4 0.26 4.98 5.4 -0.10 2.22 6.1 -0.07 1.60 6.4
300 -0.04 2.56 4.6 0.01 2.68 4.2 0.03 1.25 5.7 0.03 0.87 4.7
500 0.02 1.97 4.0 0.03 2.03 3.7 -0.02 0.96 5.1 -0.02 0.69 5.5
1000 -0.06 1.44 5.0 -0.04 1.48 4.7 0.01 0.69 5.5 0.00 0.49 5.4
mo = 2
100 0.41 5.09 6.1 0.52 5.27 4.9 -0.10 2.42 6.0 -0.06 1.66 5.4
300 0.04 2.64 4.1 0.08 2.78 4.0 -0.06 1.38 5.4 -0.02 0.96 4.9
500 0.07 2.09 4.6 0.10 2.22 4.9 -0.03 1.02 4.2 -0.01 0.73 4.5
1000 0.05 1.49 4.0 0.05 1.54 4.5 0.02 0.73 4.4 0.01 0.51 4.4
B
mo =0
100 -0.05 4.45 5.8 -0.04 4.57 5.8 -0.02 3.03 5.8 -0.02 3.02 5.8
300 0.02 2.53 5.7 0.00 2.58 5.6 -0.05 1.73 5.7 -0.03 1.71 5.6
500 0.04 1.92 5.1 0.04 1.97 4.8 0.00 1.34 5.1 0.00 1.33 4.8
1000 0.00 1.38 5.1 0.00 1.41 5.1 0.01 0.96 5.1 0.01 0.95 5.1
mo =1
100 0.01 6.02 5.7 0.08 6.19 5.5 0.09 3.98 6.2 0.08 3.98 6.2
300 -0.14 3.41 4.9 -0.12 3.48 5.1 0.01 2.29 5.8 0.02 2.28 5.5
500 0.09 2.67 5.4 0.10 2.73 5.2 0.00 1.74 5.1 0.00 1.72 5.1
1000 0.04 1.88 5.8 0.05 1.92 5.5 0.03 1.21 4.3 0.04 1.20 4.7
mo = 2
100 0.28 8.34 6.3 0.43 8.59 5.9 0.14 6.26 5.2 0.15 6.24 5.2
300 0.18 4.62 5.3 0.21 4.68 5.3 0.09 3.63 5.4 0.08 3.61 5.5
500 0.12 3.56 5.1 0.15 3.64 5.2 0.02 2.84 5.9 0.01 2.84 5.8
1000 -0.06 2.51 4.7 -0.05 2.55 5.0 0.04 1.96 5.3 0.05 1.95 5.4
Note: v and 3 are the coefficients of the lagged dependent variable and the x;; regressor given in (13). See also the note to

Table C1(i).

C2: Alternative p-values (p = 0.01, p = 0.10) for implementing the MTLR test
» Results for p = 0.01

Table C2(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure

(62=1,k%>=1)

T=51=04 T=517=08 T=10,7=04 T=10,7,=038
mo 01 2 01 2 0 1 2 0 1 2
N AR(D)
100 99.7 99.9 80.4 99.7 99.9 93.1 99.9 99.8 99.9 100.0 99.8 99.9
300  99.9 100.0 100.0 99.9 100.0 100.0 99.8 100.0 100.0 99.9 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0

ARX(D)

100 100.0 100.0 93.3 100.0 100.0 94.3 99.8 99.7 99.9 99.8 99.7 99.9
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: m is estimated using the sequential MTLR procedure described in Section 7.1

with ay =

p
N(T—2)
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Table C2(ii): Bias(x100), RMSE(x100) and Size (x100) of « for the AR(1) panel data
model, using the estimated number of factors, m (k2 = 1)

T=5, v, =04 T =5 v, =038 T =10, v, = 0.4 T =10, 7, = 0.8

Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)

N mog=0

100 0.44 8.64 6.1 0.73 12.11 21.2 -0.02 3.75 6.4 1.96 7.89 16.3
300 -0.03 4.26 5.4 1.41 9.26 19.2 -0.04 2.18 5.1 0.69 4.61 8.7
500 0.03 3.22 4.8 1.48 7.7 14.5 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.02 6.07 12.1 -0.01 1.22 5.4 0.22 2.37 5.8
mo =1
100 0.45 9.32 5.1 1.43 13.00 19.6 -0.04 4.19 6.1 0.25 4.61 4.9
300 -0.10 4.98 5.1 0.99 9.04 11.9 0.02 2.38 4.5 0.08 2.41 4.7
500 0.05 3.68 3.9 0.96 7.12 7.1 -0.05 1.91 6.0 0.01 1.88 5.4
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 4.9 0.00 1.30 4.2
mo = 2
100 6.94 20.36 17.9 1.93 13.52 20.9 -0.09 5.13 5.9 0.19 5.32 5.3
300 0.20 4.99 3.9 1.38 8.97 10.3 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 3.1 0.98 7.06 6.3 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 3.3 0.45 4.81 4.4 0.00 1.59 4.7 0.01 1.44 4.0

Note: « is the coefficient of the lagged dependent variable given in (13) in the absence of the x;+ regressors. See also
the note to Table C2(i).

Table C2(iii): Bias(x100), RMSE(x100) and Size (x100) of v and g for the ARX(1)

panel data model, using the estimated number of factors, m (02 =1, k? = 1)

T =5,v =04 T =5,v)=0.8 T =10,v9=04 T =10,v,=0.8
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
o
N mog=0
100 -0.14 3.45 5.9 -0.07 2.98 6.6 -0.05 1.94 5.4 -0.03 1.36 5.9
300 -0.04 1.97 5.6 -0.05 1.70 6.0 0.08 1.14 5.3 0.04 0.77 5.0
500 0.02 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.2 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8
mo =1
100 0.09 4.28 5.1 0.23 4.74 5.2 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.82 4.0
500 0.01 1.83 3.8 0.03 1.91 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4
mo =
100 0.46 4.84 6.3 0.48 4.99 4.6 -0.09 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1
[E]
mo =0
100 -0.06 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.00 2.58 5.8 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8
mo =1
100 -0.01 5.98 5.6 0.05 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.10 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.87 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7
mo = 2
100 0.27 8.35 6.4 0.41 8.57 5.9 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

Note: v and 3 are the coefficients of the lagged dependent variable and the x;; regressor given in (13). See also the
note to Table C2(i).
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» Results for p =0.10

Table C2(iv): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure
(62=1,K%=1)

T=57,=04 T=5 =08 T=10,7 =04 T=10,7,=038
mo 0 1 2 0 1 2 0 1 2 0 1 2
N AR(D)
100 99.4 995 91.7 99.0 995 975 99.3 994 994 99.3 99.5 994
300 99.7 99.9 100.0 99.7 100.0 100.0  99.7 99.9 99.9  99.7 100.0 99.9
500 99.9 100.0 100.0 99.6 100.0 100.0  99.8 99.9 100.0  99.9 99.9 100.0
1000 99.9 100.0 100.0 99.8 100.0 100.0  99.6 100.0 100.0  99.5 100.0 100.0
ARX(1)
100 995 99.8 97.6 994 99.7 98.0 992 994 996 99.1 99.4 99.6
300 99.8 100.0 100.0 99.7 100.0 100.0 100.0 99.9 99.7 100.0 99.9 99.8
500 99.8 99.9 100.0 99.9 99.9 100.0  99.9 100.0 100.0  99.9 100.0 100.0
1000 99.9 99.9 100.0 99.8 99.9 100.0  99.9 100.0 100.0  99.9 100.0 100.0

Note: m is estimated using the sequential MTLR procedure described in Section 7.1

with ay = W and p = 0.10. See also the note to Table 1.

Table C2(v): Bias(x100), RMSE(x100) and Size (x100) of v for the AR(1) panel data
model, using the estimated number of factors, m (k* = 1)

T =5, v, =04 T =5, vy = 0.8 T =10, v = 0.4 T =10, vo = 0.8
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
N mg=0
100 0.40 8.71 6.2 0.59 12.38 21.3 -0.03 3.77 6.4 1.94 7.91 16.4
300 -0.02 4.26 5.4 1.39 9.32 19.2 -0.04 2.18 5.1 0.67 4.60 8.7
500 0.03 3.22 4.8 1.42 7.85 14.6 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.00 6.08 12.1 -0.01 1.22 5.4 0.18 2.24 5.7
mo =1
100 0.41 9.41 5.1 1.34 13.23 19.7 -0.05 4.21 9.6 0.23 4.64 19.3
300 -0.08 5.02 5.1 1.00 9.04 11.9 0.02 2.38 3.9 0.08 2.41 10.3
500 0.05 3.68 3.9 0.94 7.16 7.1 -0.05 1.91 3.1 0.01 1.88 6.3
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 3.3 0.00 1.30 4.4
mo = 2
100 3.15 14.91 6.1 1.76 13.30 4.9 -0.08 5.13 5.9 0.18 5.33 5.3
300 0.20 4.99 4.5 1.38 8.97 4.7 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 6.0 0.98 7.06 5.4 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 4.9 0.45 4.81 4.2 0.00 1.59 4.7 0.01 1.44 4.0

Note: 7 is the coefficient of the lagged dependent variable given in (13) in the absence of the x;; regressors. See also
the note to Table C2(iv).
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Table C2(vi): Bias(x100), RMSE(x100) and Size (x100) of v and  for the ARX(1)

panel data model, using the estimated number of factors, m (02 =1, k? = 1)

T =5, 75 =04

T =5, v, =08

T =10, 7o =04

T =10, 7 = 0.8

Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
o
N mog=0
100 -0.14 3.45 5.9 -0.07 3.03 6.6 -0.06 1.95 5.4 -0.03 1.37 5.8
300 -0.04 1.97 5.6 -0.05 1.74 6.1 0.08 1.14 5.3 0.04 0.77 5.1
500 0.01 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.1 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8
mo =1
100 0.10 4.30 5.1 0.23 4.76 5.3 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.83 4.0
500 0.01 1.83 3.8 0.02 1.92 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4
mo = 2
100 0.34 4.68 5.7 0.45 4.97 4.7 -0.08 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1
[E]
mo =0
100 -0.05 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.00 2.58 5.9 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8
mo =1
100 -0.01 5.99 5.6 0.06 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.09 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.88 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7
mo = 2
100 0.27 8.33 6.4 0.41 8.55 5.8 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

Note: v and 3 are the coefficients of the lagged dependent variable and the x;; regressor given in (13). See also the

note to Table C2(iv).

C3: Correlation of factor loadings and regressors

In this experiment we allow the factor loadings n; in the Monte Carlo design outlined in Section 8.1 to

be correlated with the regressors x;; according to

2
Mie = Ky~ |:<\/T\_7i/0—v> + Uig] , for 0 =1,2,...,mg
0

(S.55)

where ¥; = T ! Z?zlvit, with v;; representing the idiosyncratic component of x;;, defined by (78), and

vy ~ IIDN (0,1), for £ = 1,2,...,mg. The above formulation ensures that Var (n;,) =

K-
mo’

as in the

baseline case where the loadings are uncorrelated with the regressors. The rest of the parameters are as
described in Section 8.1.
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Table C3(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure

(62=1,k2=1)

5, 0

T=5 v =04 T=5 =08 T=10,v =04 T =10, v, =038
mo 1 2 I 2 I 2 I 2

N AR(D)

100 99.7 1000 99.6 1000 ~99.6 998 995 99.7
300 100.0 100.0  100.0 100.0  100.0 100.0  100.0 100.0
500 100.0 100.0  100.0 100.0  100.0 100.0  100.0 100.0
1000 100.0 100.0  100.0 100.0  100.0 100.0  100.0 100.0

ARX(D)

100 999 1000 ~99.9 100.0 ~99.6 99.7 T 99.6 99.7
300 100.0 100.0  100.0 100.0  100.0 99.9  99.9 99.8
500 99.9 100.0  99.9 100.0  100.0 100.0  100.0 100.0
1000 99.9 100.0  99.9 100.0  100.0 100.0  100.0 100.0

Note: y;; is generated as vy = o + 0¢ + Yyi,t—1 + Bxit + Cipy Cip = n;ft + u;¢ for
1=1,2,..,N;t =1,...,T with yjo = p;9+0io (uio/o). The factor loadings are generated
as 1;, = m/mio [(ﬁ\’/i/av) +'uig] ,for £ =1,2,...,mg where v; = 71 Z?:lvih and
vig ~ ITDN (0,1), for £ = 1,2,...,mp. In the case of the AR(1) panel data model,
B = 0. m is estimated using the sequential MTLR procedure described in Section 7.1

with any = ﬁ and p = 0.05. See also the note to Table 1.

Table C3(ii): Bias(x100), RMSE(x100) and Size(x100) of v for the AR(1) panel data model,
using the estimated number of factors, m, and the true number, mq (k% = 1)

T=5, v, =04 T =5, vy = 0.8 T =10, v, = 04 T =10, v, = 0.8
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100)  (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
N mg=1
100 0.20 7.36 6.4 1.21 10.81 10.5 -0.05 3.68 5.6 0.08 3.41 5.5
300 -0.13 3.96 5.6 0.30 6.30 6.4 0.01 2.09 4.9 0.04 1.83 5.0
500 0.02 2.91 4.7 0.34 4.67 4.1 -0.06 1.67 5.8 -0.01 1.43 5.3
1000 0.04 2.11 5.5 0.24 3.27 4.8 -0.01 1.16 5.3 0.00 1.00 4.6
mo = 2
100 0.23 7.37 5.1 1.33 10.68 9.3 -0.05 4.40 6.5 0.02 3.79 6.3
300 0.12 3.91 4.3 0.67 6.22 5.0 0.05 2.43 5.3 0.06 2.00 4.5
500 0.03 3.01 4.2 0.38 4.65 3.6 -0.09 1.87 4.8 -0.08 1.56 5.4
1000 0.01 2.06 4.2 0.17 3.15 3.7 -0.01 1.36 5.0 0.00 1.07 4.0

Note: « is the coefficient of the lagged dependent variable given in (1) in the absence of the x;; regressors. See also the note

to Table C3(i).
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Table C3(

111

): Bias(x100), RMSE(x100) and Size(x100) of v and 5 for the ARX(1) panel

data model, using the estimated number of factors, m, and the true number, mg (02 = 1, k% = 1)
T=25,v =04 T=25,v =038 T =10,v, =04 T =10,v,=0.8
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
o
N mo=1
100 0.02 4.01 5.9 0.10 4.49 5.8 -0.08 2.09 6.4 -0.05 1.51 6.3
300 -0.12 2.28 5.6 -0.14 2.48 6.4 0.04 1.16 5.4 0.04 0.80 4.2
500 -0.06 1.74 4.2 -0.11 1.85 4.2 -0.01 0.90 5.4 0.01 0.63 5.5
1000 -0.11 1.28 4.8 -0.15 1.36 5.2 0.02 0.65 5.5 0.03 0.45 5.5
mo = 2
100 0.07 4.27 5.8 0.19 4.73 5.7 -0.07 2.28 6.6 -0.02 1.57 6.2
300 -0.04 2.33 4.4 -0.06 2.55 5.0 -0.06 1.30 5.9 0.00 0.90 4.9
500 -0.04 1.84 4.4 -0.08 2.04 5.8 -0.03 0.96 5.1 0.01 0.68 5.5
1000 -0.06 1.32 4.6 -0.12 1.44 5.2 0.02 0.69 4.7 0.03 0.48 4.2
B
N mog=1
100 0.01 6.20 5.3 0.04 6.34 5.5 0.07 4.05 6.2 0.06 4.06 6.3
300 -0.15 3.53 5.1 -0.18 3.59 5.2 -0.01 2.33 5.6 0.00 2.32 5.5
500 0.07 2.77 5.6 0.04 2.81 5.3 -0.02 1.78 5.5 -0.02 1.76 5.4
1000 0.09 1.97 5.9 0.06 1.99 5.4 0.01 1.23 4.3 0.02 1.22 4.6
mo = 2
100 0.49 11.19 6.8 0.56 11.35 6.5 -0.18 7.56 5.5 -0.17 7.53 5.6
300 0.38 6.24 5.5 0.37 6.27 5.0 -0.27 4.37 5.4 -0.28 4.35 5.3
500 0.28 4.74 5.0 0.26 4.80 5.5 -0.30 3.43 6.0 -0.31 3.43 5.8
1000 0.02 3.35 5.1 -0.02 3.38 5.3 -0.26 2.36 4.7 -0.26 2.34 4.7
Note: v and 3 are the coefficients of the lagged dependent variable and the x;; regressor given in (13). See also the note to

Table C3(i).

C4: Weakly cross-correlated factor loadings

Here we generate the factor loadings, 7,,, in the Monte Carlo design outlined in Section 8.1 to follow a
first-order spatial autoregressive process defined by

n,=aWn,+e, (=1,2,..,mg, (S.56)
where 1y = (014,205 -, Mne)
0 1 0 0 0
/2 0 1/2 0 0
0 1/2 0
W = , (S.57)
0 0 1/2 0
: /2 0 1/2
0 0 ... 0 1 0

and e; = (eqy, €a¢, ..., eng)’. For each i and £, e;p are drawn as II DN (0, 02,). To ensure N~ Zfil Var (n;,) =
7’%, for £ = 1,2,...,mp (which corresponds to the case of cross-sectionally independent factor loadings)
we set

K2 N
0%y = <mo> tr {(IN —aW) Iy —aW/) ™! (559

The rest of the parameters are as described in Section 8.1.
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Table C4(i): Empirical frequency of correctly selecting the true
number of factors, mg, using the sequential MTLR procedure

(62=1,k2=1)

5, 0

T=5 v =04 T=5 =08 T=10,v =04 T =10, v, =038
mo 1 2 I 2 I 2 I 2

N AR(D)

100 99.6 863 998 956 99.6 99.7 995 99.8
300 99.9 100.0  100.0 100.0  100.0 100.0  100.0 100.0
500 100.0 100.0  100.0 100.0  100.0 100.0  99.9 100.0
1000 100.0 100.0  100.0 100.0  100.0 100.0  100.0 100.0

ARX(D)

100 999 95.6 99.0 96.6 99.6 998 ~99.5 99.8
300 100.0 100.0  100.0 100.0  100.0 99.9  99.9 99.9
500 99.9 100.0  99.9 100.0  100.0 100.0  100.0 100.0
1000 99.9 100.0  99.9 100.0  100.0 100.0  100.0 100.0

Note: y; is generated as yi = a; + 6t + Yyiet—1 + Bzie + iy, Cp = mifr +
ug, for ¢ = 1,2,..,N;t = 1,..,T with y,0 = p;9 + cio(uio/o). The factor
loadings 1, = (N1g,Ma¢s--MNe) are generated as m, = aWmn, + e, for £ =
1,2,...,mg, where ey = (e1r,€2¢,...,en¢)’, with a = 0.4 and W is specified as in
equation (S.57). For each ¢ and ¢, e;; are drawn as IIDN(O,U@Z) with 0‘52 =
(:Tzo) {N/tr [(IN —aW) I (Iy — aW’)_l] } . In the case of the AR(1) panel data
model, 8 = 0. m is estimated using the sequential MTLR procedure described in Section
7.1 with ay = ﬁ and p = 0.05. See also the note to Table 1.

Table C4(ii): Bias(x100), RMSE(x100) and Size(x100) of v for the AR(1) model, using the

estimated number of factors, m, and the true number, mg (k% = 1)
T=5, v =04 T =5, 7o = 0.8 T =10, 75 =04 T =10, 75 = 0.8
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
N mog=1

100 0.43 9.46 5.1 1.35 12.86 18.9 -0.06 4.22 5.8 0.23 4.70 5.1
300 -0.08 4.99 5.4 1.03 9.07 11.6 0.03 2.39 4.5 0.09 2.43 4.9
500 0.05 3.68 3.8 0.97 7.16 6.8 -0.06 1.90 5.5 0.01 1.88 5.5
1000 0.03 2.67 4.8 0.61 5.09 4.7 -0.02 1.32 5.3 0.00 1.30 4.5
mo = 2
100 5.11 17.99 13.7 1.99 13.35 19.6 -0.09 5.10 6.0 0.20 5.24 5.1
300 0.30 5.00 3.4 1.73 9.31 10.7 0.01 2.84 5.2 0.04 2.68 4.1
500 -0.01 3.85 3.8 0.89 7.17 7.0 -0.07 2.15 4.3 -0.06 2.05 4.3
1000 0.02 2.62 3.7 0.44 4.76 4.6 0.00 1.59 4.8 0.02 1.44 4.5

Note: « is the coefficient of the lagged dependent variable given in (13) in the absence of the x;; regressors. See also the note
to Table C4(i).
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Table C4(iii): Bias(x100), RMSE(x100) and Size(x100) of v and /3 for the ARX(1) panel
data model, using the estimated number of factors, m, and the true number, mg (02 = 1, k? = 1)

T =5,v =04 T =5,v)=0.8 T =10,v9=04 T =10,v,=0.8
Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size
(x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100) (x100)
o
N mog=1
100 0.09 4.30 5.0 0.22 4.73 5.6 -0.10 2.15 6.4 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.01 2.56 5.1 0.03 1.20 5.3 0.02 0.82 3.9
500 0.01 1.84 3.5 0.02 1.93 3.8 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.40 4.4 0.01 0.67 5.3 0.00 0.46 5.4
mo = 2
100 0.35 4.77 5.7 0.43 4.98 4.4 -0.08 2.31 5.5 -0.05 1.58 5.2
300 0.01 2.41 3.4 0.05 2.59 4.2 -0.08 1.33 5.3 -0.04 0.91 4.6
500 0.06 1.94 3.9 0.09 2.11 4.3 -0.03 0.97 4.6 -0.01 0.69 4.2
1000 0.06 1.36 3.2 0.06 1.45 3.8 0.02 0.70 4.7 0.01 0.48 4.1
[E]
N mog=1
100 0.00 6.01 5.5 0.06 6.18 5.3 0.09 3.97 6.3 0.08 3.98 6.0
300 -0.15 3.37 4.9 -0.14 3.44 5.2 0.01 2.29 5.4 0.02 2.28 5.7
500 0.09 2.66 5.7 0.09 2.71 5.4 0.00 1.74 5.0 0.00 1.72 4.8
1000 0.06 1.88 5.7 0.06 1.92 5.5 0.03 1.21 4.5 0.04 1.20 4.5
mo = 2
100 0.08 8.17 5.8 0.21 8.37 6.1 0.01 6.35 5.8 0.01 6.33 5.9
300 0.13 4.65 5.6 0.15 4.74 5.9 0.14 3.66 5.4 0.13 3.64 5.8
500 0.04 3.47 4.8 0.06 3.55 4.7 0.03 2.80 5.7 0.03 2.78 5.6
1000 -0.01 2.48 4.8 0.00 2.52 4.7 -0.04 1.99 5.2 -0.03 1.98 5.2

Note: v and 3 are the coefficients of the lagged dependent variable and the x;; regressor given in (13). See also the note to
Table C4(i).

S.10 The case of heteroskedastic errors

The log-likelihood function in (34) can be modified to allow for time series heteroskedasticity. This
involves replacing 02§ by

wo?  —o? 0 0 0 0
—0? oi+03 -0 - : 0 0
BE(rx)) = 0 -3  o3+4+03 - 0 0 :
0 0 0 0ty 0F, Jg ot 2_‘7:2r—1 )
0 0 0 e 0 —07_4 op_1+or

with the resultant log-likelihood maximised with respect to w, o3, 03, ..., 02T and the remaining parameters.
This extension does not pose additional difficulties, however it does impact the order conditions for
identification. There are an additional 7" — 1 new error variances to estimate and the order condition in
the case of an AR(1) model, for example, becomes T'(T'+ 1)/2 — (T'+2) > Tm — m(m — 1)/2, and a
larger T' is required for identification when m > 0. For instance for m = 1 we need T' > 4, and for m = 2
we need T' > 6.
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