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Abstract

This paper proposes a transformed quasi maximum likelihood (TQML) estimator for short T dy-
namic �xed e¤ects panel data models allowing for interactive e¤ects through a multi-factor error
structure. The proposed estimator is robust to the heterogeneity of the initial values and common
unobserved e¤ects, whilst at the same time allowing for standard �xed and time e¤ects. It is applica-
ble to both stationary and unit root cases. The order condition for identi�cation of the number of
interactive e¤ects is established, and conditions are derived under which the parameters are almost
surely locally identi�ed. It is shown that global identi�cation in the presence of the lagged dependent
variable cannot be guaranteed. The TQML estimator is proven to be consistent and asymptotically
normally distributed. A sequential multiple testing likelihood ratio procedure is also proposed for
estimation of the number of factors which is shown to be consistent. Finite sample results obtained
from Monte Carlo simulations show that the proposed procedure for determining the number of factors
performs very well and the TQML estimator has small bias and RMSE, and correct empirical size in
most settings. The practical use of the TQML approach is demonstrated by means of two empirical
illustrations from the literature on cross county crime rates and cross country growth regressions.
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1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data models where
the time dimension (T ) is short and �xed relative to the cross section dimension (N), which is large.
Both generalised method of moments (GMM) and likelihood approaches have been advanced to estimate
such panel data models. See, for example, Anderson and Hsiao (1981), Arellano and Bond (1991),
Arellano and Bover (1995), Ahn and Schmidt (1995), Blundell and Bond (1998), Hsiao et al. (2002),
Binder et al. (2005) and Moral-Benito (2013). As a natural extension of the traditional two-way error
component model, the recent literature considers the case where individual and time e¤ects are included
in a multiplicative manner.1 Such a structure is termed time-varying individual e¤ects by Ahn et al.
(2001, 2013) or interactive �xed e¤ects by Bai (2009), otherwise characterised as a multi-factor error
structure.

Main contributions to this literature include the papers by Phillips and Sul (2007) and Sara�dis
and Robertson (2009) who investigate the implications of ignoring the interactive �xed e¤ects for the
behaviour of the �xed e¤ects and GMM estimators, respectively.2 Ahn et al. (2001) consider a single factor
error structure and propose a quasi-di¤erencing approach to eliminate the factor, subsequently applying
GMM to consistently estimate the parameters. The quasi-di¤erencing transformation was originally
proposed by Chamberlain (1984) and implemented by Holtz-Eakin et al. (1988) in the context of a
bivariate panel autoregression. Nauges and Thomas (2003) follow the same approach, and in addition
to prior �rst-di¤erencing to eliminate the �xed e¤ects, they also consider a single factor structure for
the errors. Ahn et al. (2013) extend their quasi-di¤erencing approach to a multi-factor error structure.
More recently, Hayakawa (2012) proposes a GMM estimator based on the projection method to deal with
short dynamic panel data models with interactive �xed e¤ects, while Robertson and Sara�dis (2015)
propose an instrumental variable estimation procedure that introduces new parameters to represent the
unobserved covariances between the instruments and the unobserved factors. Comments on the latter
approach are provided by Ahn (2015) and Hayakawa (2016). As an alternative to GMM, Bai (2013)
proposes a quasi-maximum likelihood (QML) approach applied to the original dynamic panel data model
without di¤erencing, treating time e¤ects as free parameters. To deal with possible correlations between
the factor loadings and the regressors Bai follows Mundlak (1978) and Chamberlain (1982) and speci�es
linear relationships between the factor loadings and the regressors to be estimated along with the other
parameters. A survey of short T panel data models with interactive e¤ects can be found in Sara�dis and
Wansbeek (2012).

Building on the work of Hsiao et al. (2002), this paper proposes a transformed QML approach
(TQML), applied to the short T dynamic panel data model after �rst-di¤erencing, that allows for in-
teractive e¤ects in addition to the standard individual and time �xed e¤ects. In this way we directly
address the empirical question of whether inclusion of individual and time e¤ects are su¢ cient to deal
with error cross-sectional dependence in short T panels. Our approach also accounts for heterogeneity
of the initial values and the common factors in an integrated framework, and allows the initial values to
be correlated with the �xed e¤ects and other model parameters. We establish the order condition for
identi�cation of the number of interactive e¤ects, discuss identi�cation based on moment conditions and
the likelihood framework, and �nally derive conditions under which the parameters are almost surely
locally identi�ed. It it shown that global identi�cation in the presence of the lagged dependent variable
cannot be guaranteed. These results can be useful for the development of QML theory in the case of more
general models. The TQML estimator is shown to be consistent and asymptotically normally distributed

1The terms individual e¤ects and �xed e¤ects are used interchangeably, as are the terms interactive e¤ects and common
factors.

2For the case of panel models with interactive �xed e¤ects when N and T are both large, see, for example, Pesaran
(2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios et al. (2011).
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both for stationary and unit root cases. We also propose a sequential multiple testing likelihood ratio
(MTLR) procedure to estimate the number of interactive e¤ects and show that it delivers a consistent
estimator of the true number of factors, and has the added advantage that it does not depend on an
arbitrary choice of a maximum number of factors as required in the large N and T factor literature.

The theoretical results are further supported by means of extensive Monte Carlo experiments, covering
both stationary and unit root cases, showing that the methods proposed for estimating the number of
factors and the unknown parameters of the model perform well in most settings. It is also shown that
the TQML estimator compares favourably to the QML estimator of Bai (2013) and the GMM type
estimators proposed in the literature, and interestingly enough is reasonably robust to a number of
important departures from its underlying assumptions. The practical use of the TQML approach is
demonstrated with two empirical illustrations from the literature, focusing on the importance of allowing
for interactive e¤ects in empirical analysis. The �rst illustration estimates a dynamic version of the panel
data model considered by Cornwell and Trumbull (1994) and Baltagi (2006) to explain the incidence of
crime across counties in North Carolina; the second illustration estimates growth regressions using the
recent data analysed by Acemoglu et al. (2019). In the case of both illustrations we �nd statistically
signi�cant evidence of interactive e¤ects, even after allowing for �xed and time e¤ects.

Our contribution di¤ers from Bai (2013) in a number of important respects, despite the fact that
both approaches make use of the likelihood framework. First, our procedure applies maximum likelihood
estimation after �rst-di¤erencing that eliminates the individual e¤ects, whereas Bai (2013) considers the
model in levels. Second, we assume the initial values, yi0; i = 1; 2; :::; N , follow the postulated dynamic
processes from some arbitrary initial values, thus also allowing the underlying processes to have unit roots.
Bai notes that "the initial observation yi0 may or may not follow the [considered] dynamic process" but
in his analysis he follows Bhargava and Sargan (1983) and assumes (rather than derives) initial values can
be modelled as linear projections on the regressors and the factor loadings. Third, we address the issue
of identi�cation of short T dynamic panel data models with a multi-factor error structure, and propose a
sequential multiple testing likelihood procedure for estimating the number of factors, topics that are not
addressed by Bai (2013).

The rest of this paper is organised as follows. Section 2 discusses the relation to the literature. Section
3 sets out the dynamic panel data model and its assumptions. Section 4 considers the quasi maximum
likelihood estimation with details of derivations given in Appendix S.3. Identi�cation of the number of
factors and the parameters of the model are discussed in Section 5. Section 6 establishes the asymptotic
properties of the TQML estimator. Section 7 presents the sequential MTLR procedure for estimating the
number of factors. Section 8 describes the Monte Carlo experiments and provides �nite sample results on
the performance of the sequential MTLR estimator for the number of factors, and the proposed TQML
estimator. Empirical illustrations are provided in Section 9. The �nal section presents some concluding
remarks. All technical proofs are provided in the Appendix. Details of alternative GMM estimators used
in the Monte Carlo experiments together with additional Monte Carlo results are provided in an online
supplement.

Notations: Let w = (w1; w2; :::; wn)
0 and A = (aij) be an n � 1 vector and an n � n matrix,

respectively. Denote the Euclidean norm of w and the Frobenius norm of A by kwk =
�
�ni=1w

2
i

�1=2 and
kAk = [tr(A0A)]1=2 respectively, and the largest and smallest eigenvalue of A by �max(A) and �min(A).
If fyng1n=1 is any real sequence and fxng

1
n=1 is a sequence of positive real numbers, then yn = O(xn)

if there exists a positive �nite constant K such that jynj =xn � K for all n. yn = o(xn) if yn=xn ! 0
as n ! 1. If fyng1n=1 and fxng

1
n=1 are both positive sequences of real numbers, then yn = 	 (xn)

if there exists N0 � 1 and positive �nite constants K0 and K1 such that infn�N0 (yn=xn) � K0 and
supn�N0 (yn=xn) � K1. Positive, possibly large, �xed constants will be denoted by K; K0; K1 and so
on, that could take di¤erent values in di¤erent equations. c, cmin and cmax will also denote positive �xed
constants. Small positive constants will be denoted by �. E0(:) denotes expectations taken under the true
probability measure. !p and

a:s:! denote convergence in probability and almost sure (a.s.) convergence,
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respectively. !d denotes convergence in distribution for �xed T and as N !1.

2 Related literature

For the purpose of relating our approach to the literature we start with a simple dynamic panel data
model with a single common factor and abstract from �xed e¤ects. Adding more factors and �xed and
time e¤ects does not materially change the narrative. Speci�cally we consider the simple dynamic panel
data model

yit = yi;t�1 + �xit + �ift + "it; for t = 1; 2; 3; :::; T , i = 1; 2; :::; N; (1)

where xit is strictly exogenous, such that E(xit"jt0) = 0 for all i; j; t and t0. It will be assumed that �i
and xi are uncorrelated and have zero means, namely E(xit) = 0; E(�i) = 0, and E(xit�i) = 0, for all i
and t. These assumptions are made to simplify the derivations of rank conditions for identi�cation and
are not needed. The key assumptions are that conditional on ft, (yit; xit and "it) are cross-sectionally
independent, and ft 6= 0, for some t, in addition to xit being strictly exogenous. "it s IID(0; �2i ), with
supi(�

2
i ) < cmax <1, and infi(�2i ) > cmin > 0. Also for the purpose of illustration we assume the initial

values, yi0, are obtained by projection of yi0 onto xi = (xi1; xi2; :::; xiT )0 and f0, and assume the following
data generating process (DGP) for yi0:

yi0 = �
0
0xi + �if0 + �i; i = 1; 2; :::; N; (2)

where �i s IID(0; �2i;v) is distributed independently of f"it, t = 1; 2; :::; Tg and �2i;v could di¤er from �2i :
Since T is short, how initial values, yi0 for i = 1; 2; :::; N are generated play a crucial role in identi�cation
and estimation of the unknown parameters of interest, namely  and �.

There are two main approaches to identi�cation and estimation of  and �. The �rst one builds
on the pioneering contribution of Holtz-Eakin et al. (1988) and employs a quasi-di¤erencing procedure
to eliminate the factor loadings, �i, viewed as nuisance (incidental) parameters. The second approach
advanced by Bai (2013) treats �i as free parameters and estimates them together with the factors, ft,
and the parameters of interest using the maximum likelihood approach. In what follows we consider
these two approaches and highlight their main underlying assumptions, and discuss their relations to the
transformed quasi-ML approach that we propose in this paper. With this in mind we also introduce a
new GMM method which treats the factors, ft, as given constants and avoids the incidental parameter
problem by conditioning on

dN (�) = N�1
NX
i=1

�2i (3)

rather than the individual factor loadings, �i. The limiting value of dN (�) as N ! 1, depends on the
degree of pervasiveness (strength) of the factor. In general we could have

PN
i=1 �

2
i = 	(N�), where �

measures the strength of the factor. When the factor is strong � = 1 and limN!1 [dN (�)] = �d(�) > c > 0.
But when the factor is not strong (� < 1) limN!1 [dN (�)] = 0. It is typically assumed that � = 1, but
it is also of interest to consider the possibility of weak factors and their implications for identi�cation
and estimation under di¤erent estimation approaches. We shall also see that once we allow the initial
values to depend on the loadings, �i, for consistent estimation of  all the methods we consider require
the orthogonality assumption

E (�i"it) = 0, for all i and t. (4)

In their more recent contribution, Ahn et al. (2013, ALS) consider a multi-factor panel regression
where they allow a subset of the regressors to be weakly exogenous, and use lags and leads of the strictly
exogenous regressors as instruments for the weakly exogenous variables (see Section 3.2 of ALS). As a
result, their set up does not apply to a pure dynamic panel data model without any exogenous regressors.3

3ALS do not consider dynamics in their Monte Carlo experiments either.
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It is, therefore, important that the properties of the GMM approach are speci�cally investigated for the
dynamic speci�cation in (1). In what follows we consider two alternative approaches considered in the
literature to eliminate the factor loadings.

2.1 Quasi-di¤erenced GMM estimator

The quasi-di¤erencing idea was introduced by Holtz-Eakin et al. (1988) and has been adopted in the
literature by a number of authors. Eliminating the incidental parameters �i from (1) by quasi �rst-
di¤erencing yields:

yit � btyi;t�1 =  (yi;t�1 � btyi;t�2) + � (xit � btxi;t�1) + �it; for t = 2; 3; :::; T; (5)

where
�it = "it � bt"i;t�1 (6)

and bt = ft=ft�1. The values of bt for t = 2; 3; :::; T are treated as given unknown constants to be
estimated along with  and �. Note that bt is invariant to the scaling of ft, and the importance of the
unobserved factor, ft, is determined by dN (�) de�ned by (3).

Using (5) we note that under the strict exogeneity assumption we have

E (xis�it) = E [xis ("it � bt"i;t�1)] = 0 for t = 1; 2; :::; T and s = 1; 2; ::; T;

and no further assumptions concerning the factor loadings are required. But when � = 0, we need to use
yi0 and yi1 as instruments and for these to be valid, we also require that

E (�i"it) = 0, for all i and t:

To see this note that (recall that yi0 = �00xi + �if0 + �i, with xi = (xi1; xi2; :::; xiT )
0)

E (yi0�it) = E [yi0 ("it � bt"i;t�1)] ; for t = 2; 3; :::
= E

��
�00xi + �if0 + �i

�
("it � bt"i;t�1)

�
= f0E [�i ("it � bt"i;t�1)] :

Therefore, in general where f0 6= 0, it is required that E (�i"it) = btE (�i"i;t�1) ; which will be met for
all values of bt if E (�i"it) = 0, for all t. This condition is also required when we consider using yi1 as an
instrument. In what follows we assume that E (�i"it) = 0, holds.

For illustrative purposes we focus on the relatively simple case where T = 3, and assume the available
observations are (yi0; yit; xit, t = 1; 2; 3; i = 1; 2; :::; N). Let zi = (yi0; yi1; xi1; xi2; xi3)

0 = (w0i;x
0
i)
0 be

the set of instruments under consideration and write the moment conditions as E [mN (�0)] = 0; where
� = (; �; b3)

0, b3 = f3=f2, f2 6= 0, �0 is the true value of �, and

mN (�) = N�1
NX
i=1

zi�i3 (�) : (7)

Note that under quasi-di¤erencing f2 6= 0 and E (�i"it) = 0 are the necessary conditions for identi�-
cation. There are also other moment conditions that could be used. For example E (yi0�i2) = 0, and
E (xis�i2) = 0, and E (xis�i1) = 0, for s = 1; 2; 3. But including these moment conditions involve the
additional parameters, b1 and b2 and do not materially impact the nature of the rank conditions needed
for identi�cation of  and �.

We �rst note that
�i3 (�) = yi3 � (b3 + ) yi2 + b3yi1 � �xi3 + b3�xi2; (8)

from which it follows immediately that when � = 0 it will not be possible to distinguish between  and b3,
and these parameters are not identi�ed. Notice also that in this case considering the additional moment
condition E (yi0�i2) = 0 yields

E fyi0 [yi2 � (b2 + ) yi1 + b2yi0 � �xi2 + b2�xi1]g = 0;
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and when � = 0; again we have the same identi�cation problem - we are only able to consistently estimate
b2 +  and b2, and further a priori information is needed to distinguish between  and b2. For example,
if it is known that jj < 1 and we end up with two estimates one inside and another outside the unit
circle we could then use the small root to represent .

Another possibility would be when it is known with certainty that � 6= 0. In such a case it is possible
to estimate  by GMM subject to the usual rank conditions. In the present application it is required
that the 5� 3 matrix D and the 5� 5 matrix S de�ned by

@mN (�)

@�0
!p D, and NmN (�)m

0
N (�)!p S;

are both full rank for all � 2 R3. Details of the derivations of D and S are provided in Section S.2 of

the online supplement, where it is shown that S is positive de�nite so long as �xx = N�1
XN

i=1
xix

0
i is

a positive de�nite matrix.4 Also it is shown that

D =�

0@ q1 f0f2 �d(�) �00�xx(e3 � be2)
q2 (f0 + f1) f2 �d(�) �01�xx(e3 � be2)

�xx [( � b)�1 + �e2] 0 �xx(e3 � be2)

1A ;

where es is a 3� 1 vector of zeros except for its sth element which is unity,

q1 = �00�xx [( � b)�1 + �e2] + f0 [( � b) (f0 + f1) + f2] �d(�) + ( � b)��2;
q2 = �01�xx [( � b)�1 + �e2] + (f0 + f1) [( � b) (f0 + f1) + f2] �d(�) + ( � b)

�
1 + 2

�
��2

�1 = �0 + �e1, ��2 = limN!1N
�1PN

i=1 �
2
i , and �d(�) = limN!1N

�1PN
i=1 �

2
i . It is now clear that D

does not have full rank for all values of � 2 R3. For example, as anticipated earlier, D becomes rank
de�cient when �d(�) = 0, namely if the common factor, ft; is not strong. Even when �d(�) > 0, the rank
condition fails if f0 = f1 = 0. Recall that the validity of the moment condition (7) only requires that
f2 6= 0, and is silent regarding the values of f0 and f1. We have already seen that there is an identi�cation
problem when � = 0. The D matrix for this case is given by

D =�
�

f0 [( � b) (f0 + f1) + f2] �d(�) + ( � b)��2 f0f2 �d(�)
(f0 + f1) [( � b) (f0 + f1) + f2] �d(�) + ( � b)

�
1 + 2

�
��2 (f0 + f1) f2 �d(�)

�
:

It is easily seen that jDj = � �d(�)��2(�b) (f1 � f0) f2 which could take zero values for  = f0=f1 and/or
 = b = f3=f2 even if ft 6= 0 for t = 1; 2; 3 and the factor is strong, namely �d(�) 6= 0. In short, there is
no guarantee that the minimand for the quasi-di¤erenced GMM estimator will have a unique solution.

2.2 Ahn et al. (2013) GMM approach

Ahn et al. (2013) use a di¤erent normalisation to eliminate the factor loadings, �i. In the case of a single
factor model their approach reduces to using the normalisation fT = 1 to eliminate the factor loadings,
�i. It is implicitly assumed that fT is known a priori to be non-zero. In the case of the application
considered above (with T = 3), setting f3 = 1 yields �i = yi3�yi2��xi3�"i3, and we obtain (assuming
f2 6= 0)

yi2 = yi1 + �xi2 + f2 (yi3 � yi2 � �xi3 � "i3) + "i2;

that can be written equivalently as (with a = 1=f2)

vi3( ) = "i3 � a"i2 = yi3 � (a+ )yi2 + ayi1 � (xi3 � axi2)�
4To simplify the notations in deriving D we have assumed that �2i;v = �

2
i .
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which has the same form as (8), with  = (; a; �)0: So long as the same a priori information is imposed on
whether ft are zero or not, the manner by which �i is eliminated is non-consequential. As an alternative
normalisation suppose that we set f2 = 1, and use

�i = yi2 � yi1 � �xi2 � "i2;

to eliminate �i from the equations for yi3, for i = 1; 2; :::; N . Then

yi3 = yi2 + �xi3 + f3 (yi2 � yi1 � �xi2 � "i2) + "i3;

and not-surprisingly we again arrive at (8) with b3 = f3. Therefore, the same identi�cation issues
discussed above in relation to the quasi-GMM approach would also apply to the ALS type normalisation.

For the set of nonlinear moment conditions proposed by Ahn et al. (2001, 2013), Hayakawa (2016)
shows that these do not always satisfy the global identi�cation assumption which is necessary for consis-
tency of GMM estimation. He further shows that the same problem occurs for the moment conditions
proposed by Robertson and Sara�dis (2015) and Hayakawa (2012), since their moment conditions be-
come identical to those of Ahn et al. (2001, 2013) in some cases. The results are demonstrated for the
ALS model yit = �0xit + �0ift + "it where xit is allowed to include a lagged dependent variable yi;t�1.
It readily follows from his results that for the case of a pure dynamic panel model with no additional
regressors, a quadratic equation in  arises leading generally to two solutions for  and could lead to
global identi�cation failure.

2.3 Likelihood approach Bai (2013)

The likelihood method advanced by Bai (2013), instead of eliminating the factor loadings, treats �i as
random variables. He considers both cases, when �i are distributed independently of the regressors as
well as when they are modelled as linear functions of them, with the errors distributed independently over
i. He proposes two estimation approaches one where he follows the approach of Bhargava and Sargan
(1983) and models the initial values in terms of cross section averages of the regressors, independently
of the dynamic processes generating yit for t = 1; 2; :::; T and another conditional on the initial values,
yi0.5 When T is short Bai motivates and formulates the likelihood by treating the factor loadings as
random and estimates their sample variance matrix to avoid the incidental parameter problem, which
is what we propose to do in this paper as well. However, we di¤er from Bai in two respects. We
explicitly model �xed e¤ects and work with �rst di¤erences of the panel regression model, thus allowing
for arbitrary correlations between �xed e¤ects and the regressors, whilst under Bai�s approach the �xed
e¤ects are implicitly treated as random or are assumed to be linearly correlated with the regressors à
la the Mundlak-Chambelain projection device. We also provide a more general treatment of the initial
values that explicitly relates �yi1 = yi1 � yi0 to the unobserved past history of the dynamic panel under
consideration that allows for initialisations from a �nite past as well as unit roots. In addition we establish
the condition under which the Mundlak type linear projection can be justi�ed for the dynamic panel data
model. Furthermore, we allow the regressors to share one or all of the latent factors that drives yit. It is
also perhaps worth noting that Bai does not provide any proofs for the short T case, and simply states
that "the standard theory of the quasi-maximum likelihood applies". He also simply states that � and
 are identi�ed subject to an order condition without considering whether the related rank condition is
also met. See Section 4.1 of Bai (2013). In contrast, we provide a detailed analysis of the identi�cation,
estimation and inference problems whilst also allowing for interactive e¤ects in the process generating
the regressors. Lastly, Bai does not provide a method for selecting the number of factors when T is �xed
as N tends to in�nity.

5When T is �xed and N ! 1, the conditional likelihood approach is applicable only when the initial values, yi0,i =
1; 2; :::; N; do not depend on  and/or �.
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With regard to accommodating �xed e¤ects, under the method of Bai (2013) the unit-speci�c intercept
is absorbed in the interactive factor part and treated as another factor to be estimated, so that the number
of factors in this case is em = m + 1. In the dynamic AR(1) panel data model, for example, where the
process has started in the distant past, the unit-speci�c intercept does not imply that f1t = 1 for all t,
but f10 = 1=(1�) whilst f1t = 1, for t = 1; 2 : : : : This has bearing on what normalisation can be validly
imposed on f1t, f2t;..., femt for t = 0; 1; : : : ; T; as discussed below. When xit is included then other issues
arise relating to the past values of xit for t = �1;�2; : : : that need to be resolved; another issue that
Bai (2013) does not address explicitly, but simply assumes a process for yi0. Moreover, by treating unit-
speci�c intercepts as a factor, Bai�s approach requires the use of the Mundlak-Chamberlain projection
device to account for possible correlation between the corresponding loadings (the �xed e¤ects) and xit,
and rules out the unit-speci�c intercepts to be spatially correlated and/or heteroskedastic, which could
be restrictive and renders Bai�s approach inconsistent. Some small sample evidence on the adverse e¤ects
of spatially correlated �xed e¤ects on Bai�s QMLE is provided in Section 8.2.3.

To illustrate the issue of normalisation, consider the panel AR(1) model

yit = �i + yi;t�1 + �xit + �ift + "it; for t = 1; 2; 3; :::; T; i = 1; 2; :::; N:

To simplify the analysis suppose that jj < 1, "it � IID(0; �2), sups jf�sj < K, and that fyitg has started
in the distant past. Then

yi0 =
�i
1�  + �i

P1
s=0 

sf�s +
P1

s=0 
s"i;�s:

Suppose that
P1

s=0 
sf�s = f�0 exists (this follows if jf�0 j < K): Then

yi0 =
�i
1�  + �if

�
0 + �i;

where �i =
P1

s=0 
s"i;�s, and

P1
s=0 

sf�s = f�0 . Also, E(�i) = 0, E(�
2
i ) =

�2

1�2 = !2. For T = 3

yi0 =
�i
1�  + �if

�
0 + �i

yi1 = yi0 + �i + �if1 + "i1

yi2 = yi1 + �i + �if2 + "i2

yi3 = yi2 + �i + �if3 + "i3:

Bai treats the above model as a two factor model with ft = (f1t; f2t)0; �i = (�i1; �i2)0 = (�i; �i)0 where

F =

0BBBBB@
f10 f20
f11 f21
f12 f22
...

...
f1T f2T

1CCCCCA =

0BBBBB@
1=(1� ) f�0

1 f1
1 f2
...

...
1 fT

1CCCCCA :

In this application the identi�cation restrictions used in Bai (2013), namely F+ = (I2;F
0
2)
0 which sets

f10 =
1
1� = 1; f11 = f20 = 0; and f21 = 1; imposes an invalid restriction on the �rst column of F. To

impose valid identi�cation restrictions, a priori knowledge regarding the presence of individual-speci�c
e¤ects and the initialisation of fyitg are needed. It is easily seen that adding time e¤ects does not alter
the above conclusions.
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2.4 Bias-corrected method of moments

Bai�s short T log-likelihood approach and the transformed quasi maximum likelihood (TQML) proposed
in this paper estimate the moments of the factor loadings, �i, instead of eliminating them. To illustrate
how the two approaches are related, as with the likelihood approaches we derive moment conditions
without �rst eliminating �i. We refer to this as the bias-corrected method of moments as in Chudik and
Pesaran (2021). For the purpose of illustration and without loss of generality we abstract from exogenous
regressors and focus on the simple case where � = 0 and �0 = 0; and set T = 3. Using (1) and (2), under
the orthogonality condition given by (4) we have

E

"
N�1

NX
i=1

yi0 (yit � yi;t�1)
#
= f0ftE [dN (�)] ; for t = 1; 2; (9)

E

"
N�1

NX
i=1

(yit � yi;t�1)2
#
= f2t E [dN (�)] + E

 
N�1

NX
i=1

"2it

!
; for t = 1; 2 (10)

where dN (�) is de�ned by (3) and6

E

"
N�1

NX
i=1

(yi1 � yi0) (yi2 � yi1)
#
= f1f2E [dN (�)] : (11)

Assuming further that E("2it) = �2i , then E
�
N�1PN

i=1 "
2
it

�
= ��2N , and using (10) we have

E

"
N�1

NX
i=1

(yi2 � yi1)2 �N�1
NX
i=1

(yi1 � yi0)2
#
=
�
f22 � f21

�
E [dN (�)] : (12)

The four moment conditions (9), (11) and (12) can now be used to estimate . To this end it is useful
to distinguish between strong and weak factor cases, namely when dN (�)! �d > 0, and dN (�)!0,
respectively. When the factor is weak we have

limN!1E

"
N�1

NX
i=1

yi0 (yit � yi;t�1)
#
= 0; for t = 1; 2

limN!1E

"
N�1

NX
i=1

(yi1 � yi0) (yi2 � yi1)
#
= 0;

and these moment conditions can be used to uniquely identify , even if E("2i1) 6= E("2i2). This result is
in contrast to the quasi-di¤erenced GMM approach that breaks down under a weak factor scenario.

When the factor is strong, dN (�) >0; we need to use a normalisation since �i (or dN (�) in the present
context) can not be identi�ed from ft. Here it is convenient to set f2 = 1 and eliminate dN (�) from (9),
(11) and (12) to yield

E
h
N�1PN

i=1 yi0 (yi2 � yi1)
i

E
h
N�1PN

i=1 yi0 (yi1 � yi0)
i = f2

f1
=
1

f1
;

and
E
h
N�1PN

i=1 (yi2 � yi1)
2 �N�1PN

i=1 (yi1 � yi0)
2
i

E
h
N�1PN

i=1 (yi1 � yi0) (yi2 � yi1)
i =

f22 � f21
f2f1

=
1� f21
f1

:

6We also have E
�
N�1PN

i=1 y
2
i0

�
= f20E [dN (�)]+E

�
N�1PN

i=1 �
2
i

�
: But since in general E

�
�2i
�
6= E

�
�2it
�
this moment

condition does not help with identi�cation of .
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Further eliminating f1 we obtain

E
h
N�1PN

i=1 (yi2 � yi1)
2 �N�1PN

i=1 (yi1 � yi0)
2
i

E
h
N�1PN

i=1 (yi1 � yi0) (yi2 � yi1)
i

=
E
h
N�1PN

i=1 yi0 (yi2 � yi1)
i

E
h
N�1PN

i=1 yi0 (yi1 � yi0)
i � E

h
N�1PN

i=1 yi0 (yi1 � yi0)
i

E
h
N�1PN

i=1 yi0 (yi2 � yi1)
i ;

which can be used to estimate . But there is no guarantee that the real solution to the above moment
condition will be unique.

3 The dynamic panel data model

In this paper we consider a multi-variate and multi-factor version of (1), but explicitly allow for �xed
and time e¤ects. Although, as noted by Bai (2013) and others, heterogeneous individual e¤ects can
be implicitly allowed for in interactive factor models, standard GMM and likelihood approaches require
such e¤ects to be uncorrelated with the errors. See the orthogonality condition given by (4). But in
practice most researchers start with panel data models with �xed e¤ects, where such e¤ects are allowed
to have non-zero correlations with the errors and the regressors. Finally, by starting with a standard panel
data model our estimation strategy enables the researchers to investigate the importance of allowing for
(additional) interactive e¤ects for their empirical analysis.

Accordingly we consider the following standard dynamic panel data model with time and �xed e¤ects

yit = �i + �t + yi;t�1 + �
0xit + �

0
ift + uit; for t = 1; 2; :::; T; and i = 1; 2; :::; N; (13)

where xit is a k�1 vector of regressors that vary both across i and t, jj < K, � is a k�1 vector of unknown
coe¢ cients, with k�k < K, and K denotes a �nite positive constant. �i and �t denote unit-speci�c �xed
e¤ects and time e¤ects, respectively. ft = (f1t; f2t; :::; fmt)

0, an m � 1 vector of unobserved common
factors, and �i = (�i1; �i2; :::; �im)

0; an m � 1 vector of associated factor loadings, with uit denoting the
remaining idiosyncratic error terms. This speci�cation includes a number of models considered in the
literature and reviewed in Section 1 as special cases. It also provides a direct generalisation of Hsiao
and Tahmiscioglu (2008) who consider estimation of (13) with IID errors using the transformed MLE
procedure. The explicit inclusion of time e¤ects, �t, in the model also allows us, without loss of generality,
to assume the factor loadings, �i, have zero means. Note that �t + �

0
ift can be written equivalently as

�0ift, where �i = �i � �, and �t = �0ft, where � =E(�i).
We consider T to be �xed, and allow N ! 1, under which the unit root case where jj = 1 is also

covered. It is assumed that the observations fyi0; yit;xit, for t = 1; 2; :::; T ; i = 1; 2; :::; Ng are available for
estimation of  and �, which are the parameters of interest. We propose an extension of the transformed
MLE by treating the unknown factors as �xed parameters to be estimated for each t, but assume the factor
loadings to be random and distributed independently of the errors, uit. In addition, we contribute to the
analysis of identi�cation of short T dynamic models with a multiple factor error structure, and derive
order conditions for identi�cation of m and the parameters of interest,  and �. Initially, we develop our
proposed estimation method assuming thatm is known, and consider the problem of consistent estimation
of m in Section 7.1.

We make the following assumptions:

Assumption 1 The idiosyncratic errors, uit, for i = 1; 2; :::; N are distributed independently across i
and over t with zero means and constant variance, �2, such that 0 < �2 < K, and supi;tE juitj4+� < K.
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Assumption 2 The time e¤ects, �t, for t = 1; 2; :::; T , and the m � 1 vector of factors ft, vary across
t, so that dt = ��t 6= 0 and gt = �ft 6= 0 at least for some t = 2; :::; T; m < T; and supt kgtk < K and
supt jdtj < K. For a �xed T , �t and gt, for t = 1; 2; :::; T are taken as �xed constants.

Assumption 3 The unobserved m � 1 factor loadings, �i, for i = 1; 2; ::::; N are distributed indepen-
dently of ujt, for all i, j and t; and are independently and identically distributed across i with zero means,
and a �nite covariance matrix, namely, �i s IID(0;
�); where 
� is an m � m symmetric positive
de�nite matrix with k
�k < K and supiE k�ik4+� < K.

Assumption 4 The unit speci�c �xed e¤ects, �i, for i = 1; 2; :::; N are allowed to be correlated with
xjt, �j, and ujt, for all i; j and t, and could be deterministic and uniformly bounded, supi j�ij < K, or
stochastic and uniformly bounded, supiE j�ij < K.

Assumption 5 The �rst-di¤erence of the regressors, �xit, for i = 1; 2; ::::; N follows the multi-factor
model

�xit = �x;t +Ei;xgx;t + vit, for all t = ::::� 2;�1; 0; 1; 2; :::; (14)

where vit (the idiosyncratic component) follows the general linear stationary process vit =
P1

j=0	j"i;t�j ;
�x;t is a k � 1 vector of time e¤ects, gx;t = (gx;1t; gx;2t; :::; gx;mxt)

0 is a mx � 1 vector of common
factors, Ei;x =

�
�i1;x;�i2;x; :::;�i;mx;x

�
is a k � mx matrix of loadings, with �ij;x a k � 1 vector as-

sociated with the jth factor gx;jt, 	j for j = 0; 1; ::: are k � k matrices of �xed constants such thatP1
j=0 k	jk < K, suptE k�x;tk < K, and supj;tE jgx;jtj < K. Furthermore, conditional on the common

factors, Ei;x is distributed independently over i, and of �i and uit0 for all i; t, and t
0, E

�
�ij;x jI�;g

�
= 0;

E
�
�ij;x�

0
ij0;x jI�;g

�
= Vj if j = j0 and E

�
�ij;x�

0
ij0;x jI�;g

�
= 0, where I�;g = (�x;T ; �x;T�1; �x;T�2; :::;gx;T ;

gx;T�1;gx;T�2; :::) for all j 6= j0 = 1; 2; :::;mx, supi;j E
�ij;x4+� < K, "it s IID(0; Ik) with supi;tE k"itk4+�

< K for some small � > 0, and "it are distributed independently of �x;t0, gx;t0, ujt0 for all i,j; t and t0.

Remark 1 The time e¤ects and factors in the �yit and �xit equations, namely ��t 6= 0, gt, �x;t and
gx;t, are assumed to be draws from stochastic processes, but the analysis is carried out conditional on given
values of dt = ��t 6= 0, gt, �x;t and gx;t, over the estimation sample t = 1; 2; :::; T . As it is standard
in short T panels, dt and gt, for t = 1; 2; :::; T are treated as free parameters and estimated subject to
suitable normalisation restrictions. But for the derivation of the initial values, �yi0, for i = 1; 2; :::; N ,
we require the time e¤ects and factors for t < 0 to follow stable processes so that the distribution of �yi0
conditional on the observed values, f�yit and �xit, for t = 1; 2; :::; Tg, can be obtained.

Assumptions 1, 2 and 4 are standard in the literature on short T dynamic panels. Assumption 1 can
be relaxed to allow for time series heteroskedasticity so that V ar(uit) = �2t , as shown in Section S.10 of
the online supplement. Bai (2013) allows for time series heteroskedasticity while the GMM framework
of Ahn et al. (2013) accommodates heteroskedasticity and/or serial correlation in a static model. In
our context, serial correlation in the idiosyncratic errors can be entertained by allowing for a higher
order autoregressive model. Assumption 2 is innocuous and requires time e¤ects and the factors to be
time-varying, otherwise they can not be distinguished from the �xed e¤ects. Note that the case where
�t = � and/or ft = f for all t is already covered by the presence of the �xed-e¤ects, �i. Assumption 3
imposes strong restrictions on the distribution of the factor loadings, �i, and is required for identi�cation
of the factors and the parameters. Ahn et al. (2013) entertain the same assumption for their factor
loadings, which they treat as random alongside the factors which are taken to be �xed parameters. This
assumption could be somewhat relaxed as noted in what follows. In contrast, Assumption 4 does not
impose any restrictions on the �xed e¤ects, �i; and allows them to be correlated with the regressors
as well as with the composite errors, �it. In this way, as noted above, our model speci�cation can be
viewed as a direct generalisation of the standard time and �xed e¤ects models considered routinely in
the empirical literature.
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As noted above, our speci�cation also di¤ers from the one considered by Bai (2013) and Ahn et al.
(2013) who do not model the �xed e¤ects explicitly but assume that the �xed e¤ects can be captured
implicitly through the interactive e¤ects, for example, by setting f1t = 1. In the context of our set up,
following this line of reasoning leads to a random coe¢ cient speci�cation, which is likely to be restrictive
in practice. Bai (2013) does consider the possible dependence of �i1 on the regressors, using the methods
of Mundlak (1978) and Chamberlain (1982), whereby it is assumed that the random components of �i,
namely �i1, is given by

�i1 =
TX
t=1

b0t [xit � E (xit)] + "�i1 ; for i = 1; 2; :::; N; (15)

where (b01;b
0
2; :::;b

0
T )
0 is aTk � 1 vector of coe¢ cients to be estimated and "�i1are mean zero cross-

sectionally independent random variables distributed independently of ujt0 for all i; j, and t0. This speci-
�cation ensures that E (�i1) = 0, as required, but depends on E (xit) which is unobserved. To make this
scheme operational it is typically assumed that E (xit) is �xed so that it can be absorbed in an intercept.
But in the more general context where xit could be non-stationary, the use of the Mundlak scheme as
applied in (15) directly to xit could be problematic. The quasi-di¤erenced GMM approach also allows for
correlation between the regressors and the random factor loadings. In our context, possible correlation
between �i and the regressors �xi can be dealt with using the Mundlak device as set out above for the
case of �xed e¤ects, but applied to �xi.7

Assumption 5 provides a general linear multi-factor time series speci�cation for �xit. This is done for
convenience. We could have equally started with a model for xit. This assumption postulates that �xit
is composed of three components, a k � 1 vector of time e¤ects, �x;t, a multifactor component with mx

common factors, gx;t, and a stationary component vit which is assumed to be cross-sectionally indepen-
dent. The assumption that the factor loadings, �ij;x, j = 1; 2; :::;mx have zero mean and are uncorrelated
over j is made for convenience, and can be relaxed without any consequences for the subsequent analysis.

Remark 2 Our assumptions require uit and vit to be uncorrelated which rules out classical simultaneity
and measurement errors. The assumption that uit and vit and their factor loadings, �i and Ei;x, are
independently distributed can, however, be relaxed by considering a vector autoregressive version of (13),
where zit = (yit;x0it)

0 is modelled jointly as in Holtz-Eakin et al. (1988) and Binder et al. (2005).

Finally, while the composite error term, �it = �i
0ft + uit; in (13) is cross-sectionally heteroskedastic

through the presence of the interactive e¤ects, allowing explicitly for the same in the idiosyncratic error,
uit; can be pursued along the lines of Hayakawa and Pesaran (2015). These authors extend the cross-
sectionally independent homoskedastic idiosyncratic errors of Hsiao et al. (2002) to the heteroskedastic
case. These extensions are not considered here as they are beyond the scope of the present focus of the
paper.

We follow the standard practice and eliminate the �xed e¤ects by application of the �rst-di¤erence
operator to both sides of (13):

�yit = �yi;t�1 + �
0�xit + dt + g

0
t�i +�uit, for t = 2; 3; ::::; T ; i = 1; 2; :::; N; (16)

where dt = ��t 6= 0 and gt = �ft 6= 0 for some t � 2, and

�it = g
0
t�i +�uit, for t = 2; 3; :::; T: (17)

For t = 1 (16) is not de�ned as �yi1 depends on the unobserved �yi0; which in turn depends on the
past history of the regressors, �xit for t � 0 which are not observed. To derive the joint probability

7Though we do not pursue this idea in the present paper, we do investigate the e¤ect of such correlations on the proposed
TQML estimator in our Monte Carlo experiments, where we also consider the e¤ect of weakly correlated factor loadings.
Our �ndings suggest that neither of these have a signi�cant impact on the results.
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distribution of (�yi1;�yi2; : : : ;�yiT ) the process generating �yi1 in terms of the available observations
is also required. For this purpose we need to specify the data generating process of �xit, which we do
under Assumption 5, as well as the initialisation of �yi;�S+1, for some S > 0, which we formalise in the
following assumption.

Assumption 6 Suppose that for each i, f�yitg is started from time t = �S + 1, for some S > 0, with
the initial �rst di¤erences, �yi;�S+1, as random draws from a distribution such that

E (�yi;�S+1 j�xi; I�;g ) = aS + �
0
S�xi; (18)

where �xi = (�x0i1;�x
0
i2; :::;�x

0
iT )

0 is the kT � 1 vector of observations on the regressors, I�;g =
(�x;T ; �x;T�1; �x;T�2; :::;gx;T ;gx;T�1;gx;T�2; :::), aS is a �xed coe¢ cient that allows for non-zero means,
and �S is the kT � 1 vector of coe¢ cients, such that supS jaS j < K, and supS k�Sk < K. Furthermore,
let $i = �yi;�S+1 � E (�yi;�S+1 j�xi; I�;g ) ; and suppose that $i s IID(0;�2$), 0 < �2$ < K, and
supiE j$ij4+� < K:

Equation (18) can be viewed as a linear projection of �yi;�S+1 on the observables, �xi, and allows
the initial values, yi;�S and yi;�S+1 to depend on the �xed e¤ects, �i, as well as other parameters. Also
it is redundant if jj < 1 and S is su¢ ciently large, and does not apply if there are no regressors in (13).
The main restriction here is the assumed linearity of (18). One can think of Assumption 6 as "implicitly"
using Mundlak-type projections for �yi;�S+1. Using �rst di¤erences allows us to make less restrictive
assumptions about �i to the extent that such assumption implicitly involves �i.

It is possible to dispense with Assumptions 5 and 6 by postulating a model for the initial �rst-
di¤erences, �yi1, similar to what we assumed for yi0 in our discussion of the GMM approach (see equation
(2)). Under the GMM approach, the moment conditions take the initial values yi0 (or �yi1), as given.
But as we have seen a model for the initial values is required if we are to check the validity of the rank
condition typically assumed when the GMM approach is used in the literature.

3.1 Modelling initial values

Given the above assumptions, we can now derive an expression for �yi1 that depends on the observables
and the unknown parameters only. Using (16), and starting from some arbitrary point in the past at
t = �S + 1 with �yi;�S+1 as given we obtain the following expression

�yi1 = S�yi;�S+1 +
S�1X
j=0

j�0�xi;1�j + ed1 + eg01�i + S�1X
j=0

j�ui;1�j ; (19)

where ed1 = PS�1
j=0 

jd1�j , and eg1 =PS�1
j=0 

jg1�j . In the case of models without regressors �yi1 is fully
determined under Assumptions 1 to 3. But when the model includes regressors and S > 2, the distribution
of �yi1 also depends on the k (S � 2)�1 vector of past observations �x0i = (�x0i0;�x0i;�1; :::;�x0i;�S+3)0,
not available to the researcher. To deal with this missing observation problem, Hsiao et al. (2002) propose
back-casting these missing data points from �xi which is observed. Following a similar procedure, we
�rst note that under Assumption 6

�x0i = �
0
x +

mxX
j=1

�
g0x;j 
 �ij;x

�
+ v0i , and �xi = �x +

mxX
j=1

�
gx;j 
 �ij;x

�
+ vi; (20)

where �0x = (�
0
x;0; �

0
x;�1; :::; �

0
x;�S+3)

0; g0x;j = (gx;j;0; gx;j;�1; :::; gx;j;�S+3)
0, and v0i =

�
v0i0;v

0
i;�1; :::;v

0
i;�S+3

�0
,

and similarly �x = (�0x;1; �
0
x;2; :::; �

0
x;T ), gx;j = (gx;j1; gx;j2; :::; gx;jT )

0, and vi = (v0i1;v
0
i2; :::;v

0
iT )

0. Also
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E
�
�x0i

�
= �0x; E (�xi) = �x, and using linear projections, we have

8

E
�
�x0i j�xi

�
= �0x +
01


�1
11 (�xi � �x) (21)

where


11 =

mxX
j=1

�
gx;jg

0
x;j 
Vj

�
+ E

�
viv

0
i

�
, 
01 =

mxX
j=1

�
g0x;jg

0
x;j 
Vj

�
+ E

�
v0i v

0
i

�
:

Since vit is a stationary process with zero means and variance-covariances that do not depend on i, it
then readily follows that E (viv0i) = 
v;11 and E

�
v0i v

0
i

�
= 
v;01 that also do not depend on i. Now using

(21) along with (18) we have

E

0@S�yi;�S+1 + S�1X
j=0

j�0�xi;1�j j�xi

1A = a+ �0�xi; (22)

where a and � are �xed parameters that are complicated functions of  and �, the parameters of the xit
process as well as the parameters of the initial values. Now let

�i =

0@S�yi;�S+1 + S�1X
j=0

j�0�xi;1�j

1A� E
0@S�yi;�S+1 + S�1X

j=0

j�0�xi;1�j j�xi; I�;g

1A (23)

= S [�yi;�S+1 � E (�yi;�S+1 j�xi; I�;g )] + �0
S�1X
j=0

j [�xi;1�j � E (�xi;1�j j�xi; I�;g )] ;

and note that under Assumption 6�yi;�S+1�E (�yi;�S+1 j�xi; I�;g ) = $i s IID(0;�2$), and supiE j$ij4+� <
K. Also, under Assumption 5

�xi;1�j � E (�xi;1�j j�xi; I�;g ) = [Ei;x � E (Ei;x j�xi; I�;g )]gx;1�j + vi;1�j � E (vi;1�j j�xi; I�;g )
= Ei;xgx;1�j + vi;1�j ;

and overall

�i = S$i + �
0
S�1X
j=0

j (Ei;xgx;1�j + vi;1�j) :

Therefore, f�ig is a sequence of cross-sectionally independent random variables with zero means. Also in
view of Assumptions 5 and 6 and by application of the Minkowski inequality to both sides of �i we have
supi j�ij4+� < K.9 Hence, using (22) and (23) in (19) we obtain

�yi1 = d1 + �
0�xi + �i1; (24)

where d1 = a+ ed1,
�i1 = eg01�i + vi1; (25)

and

vi1 =

S�1X
j=0

j�ui;1�j + �i: (26)

In the analysis that follows we treat d1 and � as unknown parameters to be estimated along with the
parameters of interest  and �. We also note that vi1 s IID(0; !�2), and vi1 is distributed independently

8This result provides an optimal linear approximation when the regressors are not normally distributed.
9Note that under Assumption 5 supi;t E k�xitk

4+� < K. See Lemma 1.
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of �xi and �i. Further, by application of the Minkowski inequality to (26) we have supiE jvi1j4+� < K,
and under Assumptions 5 and 6, supi V ar (�i) < K; as a result 0 < !min < ! < !max < 1, where !min
and !max are �xed constants, with ! taken as a free parameter to be estimated together with other model
parameters.

Finally, using (26) we have

Cov (vi1;�uit) =

�
��2 for t = 2
0 for t = 3; 4; :::; T

. (27)

Remark 3 As noted earlier, in the case where jj < 1 and S ! 1 we have �yi1 = d1 + �
0�xi + �i1;

where �i1 is de�ned by (25), with vi1 given by vi1 =
P1

j=0 
j�ui;1�j + �i; and

�i =
1X
j=0

j�0�xi;1�j � E

0@ 1X
j=0

j�0�xi;1�j j�xi; I�;g

1A :

where I�;g = (�x;T ; �x;T�1; �x;T�2; :::;gx;T ;gx;T�1;gx;T�2; :::). Since �xit, �i, and uit0 are independently
distributed for all i, t and t0, it then follows that vi1 is distributed independently of �i and �xi, with
E (vi1) = 0, and

V ar (vi1) = V ar

0@ 1X
j=0

j�ui;1�j

1A+ V ar (�i) = 2�2

1 + 
+ V ar (�i) > 0:

In the case of pure AR(1) panels, we have the further parametric restriction, V ar (vi1) = 2�2

1+ , which, if
imposed, can increase estimation e¢ ciency.

3.2 The full model speci�cation

We can now combine the processes for �yi1 and �yit conditional on �yi;t�1, for t = 2; 3; :::; T to write
down the quasi-likelihood function of the �rst-di¤erenced model. Writing (16) and (24) in matrix notation
we note that

�yi = �Wi'+ �i; �i = G�i+ri; (28)

where �yi = (�yi1;�yi2; :::;�yiT )
0, �Wi is the T � (T + Tk + k + 1) matrix given by

�Wi =

0BBB@
1
0
...
0

0 : : : 0
1 : : : 0
... : : :

...
0 : : : 1

�x0i 0
0 �x0i2
...

...
0 �x0iT

0
�yi1
...

�yi;T�1

1CCCA ; (29)

' =
�
d0;�0;�0; 

�0 with d = (d1; d2; :::; dT )0; G0 = (eg1;g2; :::;gT ), ri = (vi1;�ui2; :::;�uiT )
0 ; and �i =�e�i1; �i2; � � � ; �iT�0 ; and recall that e�i1 = eg01�i + vi1, and �it = g0t�i +�uit; for t = 2; 3; :::; T .

In using the �rst-di¤erenced speci�cation (28), it is �rst worth noting that despite the presence of com-
mon factors in�yit and�xit; the composite errors, �i, and the regressors�xi = (�x

0
i1;�x

0
i2; :::;�x

0
iT ) are

independently distributed over i; conditional on �x;t and gx;t. This follows since under the above assump-
tions the cross sectional-variation of �xi; given by (20), is governed by vi and

�
�ij;x, for j = 1; 2; :::;mx

	
that are assumed to be distributed independently of �i and �uit for all i and t (see Assumption 5)). For
future reference it is also convenient to partition �Wi, as �Wi = (�Zi;�yi;�1) and write (28) as

�yi = �Zi�+�yi;�1 + �i; (30)

where � =
�
d0;�0;�0

�0.
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4 Transformed quasi maximum likelihood estimation

Consider the panel data model given by (28) and note that under Assumption 1, and using (25) and (27),
we have (recall also that vi1 s IID(0; !�2))

E(rir
0
i) = �2
; (31)

where

E(rir
0
i) = �2

0BBBBBBB@

! �1 0

�1 2
. . . 0
. . .
. . . 2 �1

0 �1 2

1CCCCCCCA
= �2
; (32)

and 
 = 
(!). Since j
j = 1 + T (! � 1) ; ! needs to satisfy ! > 1 � 1
T to ensure that 
 is positive

de�nite. Also, since �i and ri are independently distributed, conditional on �x;t and gx;t we have

V ar(�i) = �� ( ) = �2
+G
�G
0 = �2

�

+QQ0

�
(33)

where Q = (1=�)G

1=2
� , rank (Q) = m; and  =

�
!; �2; vec(Q)0

�0.
Our parameters of primary interest are given by ' =

�
d0;�0;�0; 

�0
=
�
�0; 

�0
; with the interactive

e¤ects treated as nuisance parameters. In consequence, we shall also focus on conditions under which
'0 the true value of ', can be identi�ed, globally or locally. We are only interested in controlling for
the latent interactive e¤ects, and not in their interpretation. This is re�ected in the above speci�cation
of Q; the parameter associated with such e¤ects. Given that QQ0 is of reduced rank m < T , it is not
possible to identify Q without additional restrictions. This is because for any orthonormal m�m matrix
C; QQ0 = Q�Q�0 where Q� = QC. To avoid such non-trivial identi�cation m(m� 1)=2 restrictions need
to be imposed on Q.10 The number of non-redundant parameters in Q is then mT �m(m � 1)=2 (see
also Hayashi et al. (2007, p.507)).

The quasi-log-likelihood of the transformed model (28) is given by

`N (�) = `N (�;; ) = �
NT

2
ln (2�)� N

2
ln j�� ( )j �

1

2

NX
i=1

�0i(�;)�� ( )
�1 �i(�;) (34)

�i(�;) = �yi ��Zi���yi;�1 (35)

and it is assumed that ' =
�
�0; 

�0 does not depend on  . For �xed m and T , the above log-likelihood
function depends on a �xed number of unknown parameters, which are collected in the [T (m+ k + 1)�
m(m� 1)=2 + k + 3]� 1 vector � =

�
�0; ; 0

�0.11
5 Identi�cation

We begin our identi�cation analysis by focusing on the identi�cation of d and  in the panel AR(1) model
before turning to the general likelihood framework allowing also for exogenous regressors. Prior to this,
for identi�cation of the number of interactive e¤ects we derive the order condition on m and T; and show
that mmax = T � 2 is an important input in the determination of m0, the true value of m. We also show
that the same order condition applies irrespective of whether the model contains exogenous regressors.
10Note that m(m+1)=2 restrictions are imposed by expressing G
�G0 as QQ0: For the m2 restrictions typically imposed

on V ar(G�i) in traditional factor analysis an additional m(m� 1)=2 restrictions need to be placed on Q:
11 In the Monte Carlo and empirical applications that follow the TQML estimates are obtained by maximising a concen-

trated version of the likelihood function in (34). This is derived using an eigenvalue approach which greatly simpli�es the
computations. For details see Section S.3 of the online supplement.
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5.1 Order condition

We �rst consider the order condition on m and T associated with the AR(1) model. Using (16) and (24),
we have

�yi1 = d1 + eg01�i + vi1,
�yit � �yi;t�1 = dt + g

0
t�i +�uit, for t = 2; 3; ::::; T; (36)

which can be written as B ()�yi = d+G�i+ri = d+ �i, for i = 1; 2; :::; N; where d = (d1; :::; dT )
0 ;

�yi and �i are as de�ned above, and

B () =

0BBB@
1 0 � � � 0
� 1 � � � 0
...

. . . . . .
...

0 � � � � 1

1CCCA : (37)

Note also that, jB ()j=1, and

B�1 () =

0BBBB@
1 0 0 0

 1
. . . 0

...
. . . . . . 0

T�1 � � �  1

1CCCCA ; (38)

and hence �yi = a+B�1 () �i; where

a = B�1 ()d =

0BBBB@
1 0 0 0

 1
. . . 0

...
. . . . . . 0

T�1 � � �  1

1CCCCA
0BBB@

d1
d2
...
dT

1CCCA =

0BBB@
d1

d1 + d2
...

T�1d1 + T�2d2 + ::::+ dT�1 + dT

1CCCA : (39)

The parameters associated with this model are � = (d0;; 0)0 = (d0;%0)0 with % =
�
; 0

�0
; and recall

 =
�
!; �2; vec(Q)0

�0
: In deriving the order condition on m and T for the AR(1) model, and the ARX(1)

that follows, it su¢ ces to focus on the identi�cation of % as none of the remaining parameters of either
model depend on m.

For the AR(1) model since d is a T � 1 unrestricted parameter vector, then a is also unrestricted,
namely knowing a will not help with identi�cation , or any of the remaining parameters in  : Hence, the
identi�cation of % =

�
; 0

�0 can only come from the T (T + 1)=2 distinct elements of V ar(�yi) = ��y
which are given by

��y = B()�1V ar(�i)B
0()�1

= �2B()�1
�

+QQ0

�
B0()�1 = � (%) ; (40)

where ��y can be consistently estimated. Since Q enters � (%) as A = QQ0; we need to consider the
unknown elements of the symmetric matrix A under di¤erent rank conditions. First it is clear that if A
has full rank, namely if rank(A) = T , then % cannot be identi�ed. Therefore, to identify %; we must have
rank (A) = rank (Q) = m < T . Recall also from Section 4 that the number of non-redundant elements
of Q is given by mT �m(m� 1)=2. The order condition necessary for identi�cation of % is then given by

T (T + 1)=2 � 3 + Tm�m(m� 1)=2: (41)

This order condition is satis�ed if T � 3; for m = 0; 1; 2; ::;mmax where mmax is the largest value of m
that satis�es (41), that is mmax = T � 2.
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Consider now the more general case where the panel AR(1) model also contains exogenous regressors.
For this case note that the system of equations (28) can be written equivalently as

�yi = a+g�Xi ()�+B
�1 () �i; (42)

where a; B�1 () and �i are as de�ned above, � = (�0;�0)0, g�Xi () = B�1 ()�Xi, and �Xi is the
T � (Tk + k) matrix of observations on the exogenous regressors de�ned by

�Xi =

0BBB@
�x0i 0
0 �x0i2
...

...
0 �x0iT

1CCCA : (43)

The parameters associated with the ARX(1) model in (42) are � = (d0;�0;; 0)0 = (d0;�0;%
0
)0;

with  as de�ned earlier. Here, as above, d and � are unrestricted parameters in the sense that
knowing them will not help identi�cation of % since � (%) does not depend on d and �. But it is
already established that identi�cation of  is based on the covariance of B�1 () �i, which is given by
� (%) = �2B()�1 (
+QQ0)B0()�1 if the order condition (41) is met. Hence, it follows that the same
order condition given by (41) continues to hold in the case of the ARX(1) model.

5.2 Rank condition

Subject to the order condition, (41), being satis�ed we now consider if the mapping

��y = �2B()�1
�

+QQ0

�
B0()�1;

provides a unique solution for ; in terms of ��y. The moment conditions implicit in this mapping
can also be obtained explicitly using (36). To simplify the exposition we use g1 for eg1, abstract from
exogenous regressors and set T = 3 which implies mmax = T � 2 = 1, and assume that the observations
yi0; yi1; yi2; and yi3 are available for the units i = 1; 2; :::; N . We have the following relations

�yi1 = d1 + g1�i + vi1;

�yi2 � �yi1 = d2 + g2�i +�ui2;

�yi3 � �yi2 = d3 + g3�i +�ui3:

It is clear that d1 is identi�ed since d1 = E (�yi1) ; and can be consistently estimated by d̂1N =
N�1PN

i=1�yi1. To identify d2 and d3 we need to know . But since dt = E (�yit � �yi;t�1), we can
eliminate dt from the above equations to obtain

�yi1 � E (�yi1) = g1�i + vi1; (44)

[�yi2 � E (�yi2)]�  [�yi1 � E (�yi1)] = g2�i +�ui2, (45)

[�yi3 � E (�yi3)]�  [�yi2 � E (�yi2)] = g3�i +�ui3: (46)

Recall that vi1 � IID(0; !�2); �uit � IID(0; 2�2) for t = 2; 3; E(�ui2vi1) = E(�ui2�ui3) = ��2; and
E(�ui3vi1) = 0. Furthermore, by assumption �i is distributed independently of (vi1;�ui2;�ui3): Here
we assume the factor, gt, is strong and set �2� = 1. Using (44)-(46) we obtain the moment conditions

m11 = �11 � (g21 + !�2) = 0; (47)

m22 = �22 � 2�12 + 2�11 � (g22 + 2�2) = 0; (48)

m33 = �33 � 2�23 + 2�22 � (g23 + 2�2) = 0; (49)

m12 = �12 � �11 � (g1g2 � �2) = 0; (50)

m13 = �13 � �12 � g1g3 = 0; (51)

m23 = �23 � (�13 + �22) + 2�12 � (g2g3 � �2) = 0; (52)
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where
�tt0 = Cov (�yit;�yit0) = Ef[�yit � E (�yit)] [�yit0 � E (�yit0)]g; 8t; t0 = 1; 2; 3:

As  only enters equations (48)-(52), the moment condition in (47), m11(�) = 0, is not informative about
 but can be used to identify !. The �ve equations (48)-(52) can then be solved for the unknowns
� =

�
; �2; g1; g2; g3

�0, with global identi�cation requiring that the solution to m(�) = 0; where m(�) =
(m22;m33;m12;m13;m23)

0; is unique in terms of �tt0 , which can be estimated consistently (as N ! 1)
by �̂tt0 = 1

N

PN
i=1(�yit ���yt)(�yit0 ���yt0), where ��yt = N�1PN

i=1�yit.
A unique solution for  can be obtained if g1 = 0, but not more generally when g1 6= 0. To see this

note that when g1 = 0; using (51) we have �13 � �12 = 0; and , d1, d2 and d3 are uniquely identi�ed,
by

 =
Ef[�yi1 � E (�yi1)] [�yi3 � E (�yi3)]g
Ef[�yi1 � E (�yi1)] [�yi2 � E (�yi2)]g

,

E (�yi1) = d1, E (�yi2) = d2 + d1, E (�yi3) = d3 + d2 + 
2d3.

The remaining moment conditions can also be used to identify �2 and !; as well as g2 and g3 if the sign
of g2 is set a priori.12 But as soon as it is assumed that �yi1 also depends on �i (i.e. g1 6= 0); then the
resultant moment conditions need not have a unique solution. In general the rank condition required for
a unique solution is given by rank

�
@m(�)=@�0

�
= 5; where

@m(�)

@�0
= �

0BBBB@
2(�12 � �11) 2 0 2g2 0
2(�23 � �22) 2 0 0 2g3

�11 �1 g2 g1 0
�12 0 g3 0 g1

�13 + �22 � 2�12 1 0 g3 g2

1CCCCA :

It is clear that the rank condition is not met if g2 = g3 = 0; since in this case g1 cannot be identi�ed.
Using (44) and noting that V ar(vi1) = !�2, then V ar (�yi1) = g21�

2
� + !�2, and even if one sets �2� = 1

this moment condition can not be used to identify both ! and g1. To identify g1; moment conditions for
observations 2 and 3 must be used.

5.3 Identi�cation in the likelihood setting

We now turn to the general likelihood framework allowing also for exogenous regressors. Recall � =�
'0; 0

�0
=
�
�0; ; 0

�0
; with � =

�
d0;�0;�0

�0,  = (!; �2;q0)0 and q =vec(Q); where � collects the para-
meters associated with the initial values, the regressors, �xi, and the time-e¤ects, and as de�ned earlier,
% = (; 0)0 collects the non-linear parameters. Consider the average log-likelihood function de�ned by
(34) expressed as

�̀
N (�; ; ) = N�1`N (�; ; ) = �

T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

NX
i=1

�0i(�;)�� ( )
�1 �i(�;); (53)

where �i(�;) is given by (35).
We require the following additional assumption.

Assumption 7 (i) � 2 � = �� � � � � ; where ��= �d������ and � = �!�����q,
with �d, ��, �� and �q compact subsets of Rnd, Rn� , Rn� , and Rnq , respectively; �, �! and
�� are compact subsets of R; where nd = T , n� = kT , n� = k, and nq = Tm � m(m � 1)=2;
12Equations m22 and m23; for example, can be used to globally identify g2 and g3 respectively, once the sign of g2 is �xed.

See also the related discussion, for examle, in Bai and Ng (2013) in the case of the pure factor model.
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�0 =
�
'00; 

0
0

�0
=
�
�00; 0; 

0
0

�0 lies in the interior of � (ii) the likelihood �̀N (�) is continuous in �
and for some cmax > cmin > 0, cmin � inf 2� �min [��( )] < sup 2� �max [��( )] � cmax, (iii)

A ( ) = limN!1N�1PN
i=1E

�
�W0

i�� ( )
�1�Wi

�
is positive de�nite almost surely uniformly on

 2 � :
13

Assumption 7(i) is standard and rules out parameter values on the boundary of the parameter space.
The eigenvalue conditions on �� ( ) in Assumption 7 (ii) ensure that ��( ) is uniformly bounded.14

Assumption 7(iii) is required for identi�cation of �0 and 0, and also implies that Az ( ) and �y( ),
de�ned by

Az ( ) = lim
N!1

N�1
NX
i=1

E
�
�Z0i�� ( )

�1�Zi
�
and �y( ) = lim

N!1
N�1

NX
i=1

E
�
�y0i�1�� ( )

�1�yi�1
�
;

are strictly positive de�nite uniformly on  2 � , where �Zi is the matrix of time dummies and
observations on �xi, and �yi�1 = (0;�yi1; :::;�yi;T�1)0, as de�ned by the partition of �Wi in (29). For
 we need to distinguish between the case where S is �xed (namely initialisation is from a �nite past)
and when S !1. Under the former, it is only required that jj < K; which includes the unit root case
(jj = 1). Under the latter (when S !1) , we must have jj < 1.

Given Assumptions 1-7, the global identi�cation condition requires f(�; ; ) = limN!1E0
�
�̀
N (�; ; )

�
to attain a unique maximum at �0 = (�0; 0; 0) 2 �.

Using results (A.25) and (A.26) in Lemma 4, we have

�̀
N (�0; 0; 0)� �̀N (�; ; )

a:s:! lim
N!1

E0
�
�̀
N (�0; 0; 0)� �̀N (�; ; )

�
; (54)

where

2 lim
N!1

E0
�
�̀
N (�0; 0; 0)� �̀N (�; ; )

�
= (� � �0)0Az ( ) (� � �0)+( � 0)2 �y( )+w (%;%0) ; (55)

w (%;%0) = � ( ; 0) + 2 ( � 0)� ( ; 0) ; (56)

and
� ( ; 0) = tr

h
�� ( )

�1�� ( 0)
i
� ln (j�� ( 0)j = j�� ( )j)� T: (57)

Also
� ( ; 0) = tr

n
[�� ( )��� ( 0)] �� ( )

�1 � (0)
o
; (58)

where � (0) is the lower triangular matrix with zero diagonal elements

� (0) =

0BBBBB@
0 0 � � � 0 0
1 0 � � � 0 0
...

...
. . .

...
...

T�30 T�40 � � � 0 0

T�20 T�30 � � � 1 0

1CCCCCA : (59)

To investigate identi�cation of the parameters of interest, namely �0 and 0, we �rst write (55) more
compactly as

f("�; " ;%;%0) = "
0
�Az ( ) "� + �y( )"

2
 + w (%;%0) :

13All expectations are taken with respect to the true parameter vector �0, even when not explicitly denoted by E0(:).
14Note also that �� ( ) is positive de�nite for every  2 � ; when the order condition is met and ! > 1� 1

T
. Recall that

under the latter 
 is a positive de�nite matrix and Q is rank de�cient, and under Assumption 1, 0 < �2 < K.
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We also note that by the information inequality f("�; " ;%;%0) � 0 for all values of "�; " , %, and %0.
Global identi�cation of �0 and 0, requires that f("�; " ;%;%0) = 0 solves uniquely for "� = 0, and " = 0,
for all values of % and %0. Furthermore, we have that

f("�; " ;%;%0) = "
0
�Az ( ) "�+�y( )"

2
+w (%;%0) � �min [Az ( )] "

0
�"�+�y( )"

2
+w (%;%0) � 0: (60)

It is now easily established that �0 and 0 are globally identi�ed if w (%;%0) � 0 for all values of  and
 . Note that since the right hand side of (60) is non-negative, then if w (%;%0) � 0 we must also have
�min [Az ( )] "

0
�"� � 0 and �y( )"2 � 0: Then condition f("�; " ;%;%0) = 0 can occur if and only if

�min [Az ( )] "
0
�"� = 0, and �y( )"

2
 = 0; (61)

noting further that, if �min [Az ( )] "
0
�"� > 0 and/or �y( )"2 > 0, then f("�; " ;%;%0) > 0 for sure, so

long as w (%;%0) � 0. It now follows that since by Assumption 7(iii) �min [Az ( )] > 0, and �y( ) > 0,
then conditions in (61) hold if and only if "� = 0 and " = 0, and the desired result is established.

But in general it is not possible to be sure that w (%;%0) is non-negative. Consider now w (%;%0), and
note that its second component, � ( ; 0) ; can be written as

� ( ; 0) = tr [B]� ln (B)� T;

where B = �� ( )
�1�� ( 0) which is a positive de�nite matrix, and using result 10 on p.44 of Lütkepohl

(1996) we have that � ( ; 0) � 0.
Also,

� ( ; 0) = tr
n
[�� ( )��� ( 0)] �� ( )

�1 � (0)
o

= tr
n
[IT��� ( 0)�� ( )

�1] � (0)
o

� tr[IT��� ( 0)�� ( )
�1] �min[� (0)]; (62)

and since �min[� (0)] = 0; then � ( ; 0) � 0, as well. Overall, for values of % 6= %0, w (%;%0) =
� ( ; 0) + 2 ( � 0)� ( ; 0) is ensured to be non-negative only if ( � 0) > 0, otherwise the second
term of w (%;%0) could become su¢ ciently large and negative such that w (%;%0) < 0. Therefore, to
ensure global identi�cation of �0 and 0 for all values of  and  it is required that � ( ; 0) = 0. But
as shown in the example below, this can occur if the distribution of the initial �rst di¤erences, �yi1 does
not depend on the latent factor, which renders �yi1 uncorrelated with �yit, for t � 2.

Finally, it is worth noting that even if � ( ; 0) = 0, global identi�cation of  0 will involve additional
restrictions on  , since � ( ; 0) = 0 only ensures equality of eigenvalues of �� ( ) and �� ( 0), which
does not necessarily imply that  =  0. Identi�cation of  0 is ensured if �� ( ) and �� ( 0) commute,
as the simple example below illustrates.

Remark 4 The above results clearly highlight the fact that in general it is not possible to guarantee
global identi�cation in the presence of the lagged dependent variable. Allowing for regressors �xi and
the associated initial values component, as well as the time e¤ects, do not alter this conclusion. These
results are also in line with the moment condition based identi�cation results discussed earlier. Further
insights into conditions related to global identi�cation using the likelihood framework are illustrated by the
example that follows.

Example 1 To keep the illustration as simple as possible we consider the panel data model without �xed
e¤ects given by

yi1 = �if1 + vi;

yi2 = yi1 + �if2 + ui2;
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for i = 1; 2; :::; N , and assume that �i, vi; and ui2 are cross-sectionally, and mutually independent, have
zero means, with variances, �2�, �

2
v and �

2
2, respectively. As shown earlier global identi�cation is possible

when the initial values, yi1, do not depend on the common factor. It is clear that in this model 0, the
true value of , is not identi�ed, unless f1 = 0. Under this restriction 0 is identi�ed using the moment
condition E0 [yi1 (yi2 � yi1)] = 0. Consider now the application of the likelihood approach to this simple
model under f1 = 0. In this case

�� ( ) =

�
�2v 0
0 �2

�
;

with  = (�2v; �
2), �2 = f22�

2
� + �

2
2 > 0. Using (55) we have

2 lim
N!1

E0
�
�̀
N (0; 0)� �̀N (; )

�
= ( � 0)2 �y( ) + � ( ; 0) + 2 ( � 0)� ( ; 0) ; (63)

where �y( ) = limN!1N�1PN
i=1E

�
y0i;�1�� ( )

�1 yi;�1
�
; yi;�1 = (0; yi1); which simpli�es to �y( ) =

��2 limN!1N�1PN
i=1 y

2
i1 = �2v=�

2,

� ( ; 0) = tr
h
�� ( )

�1�� ( 0)
i
� ln (j�� ( 0)j = j�� ( )j)� 2

=

�
�20
�2
� ln

�
�20
�2

�
� 1
�
+

"
�20;v
�2v

� ln
 
�20;v
�2v

!
� 1
#
� 0;

and

� ( ; 0) = tr
n
[�� ( )��� ( 0)] �� ( )

�1 � (0)
o

= � tr
n
�� ( 0)�� ( )

�1 � (0)
o

= � tr
( 

�20;v
�2v

0

0
�20
�2

!�
0 0
1 0

�)
= 0:

Hence,
2 lim
N!1

E0
�
�̀
N (0; 0)� �̀N (; )

�
= ( � 0)2 �y( ) + � ( ; 0) :

We further have that �
2
0
�2
� ln

�
�20
�2

�
�1 � 0 and �20;v

�2v
� ln

�
�20;v
�2v

�
�1 � 0, with equalities holding if and only

if �2 = �20 and �
2
v = �20;v, respectively. Note also that in this simple example the matrices �� ( ) and

�� ( 0) commute. It then follows that we must also have  = 0 if and only if �y( ) > 0. In fact, the
diagonality of �� ( ) and �y( ) =�2v=�

2 > 0 are both necessary and su¢ cient for global identi�cation of
0. A similar outcome also follows if we allow for �xed e¤ects and work with the �rst-di¤erenced version
of the panel. But for the �rst-di¤erenced version we need T = 3 with g1 = 0. The likelihood approach can
now be applied to

�yi1 = �ui1;

�yi2 � �yi1 = g2�i +�ui2;

�yi3 � �yi2 = g3�i +�ui3:

Since due to �rst-di¤erencing Cov (�ui1;�ui2) = ��2, to ensure the diagonality of �� ( ) for this
application, noting that Cov (�ui1; g3�i +�ui3; ) = 0; it is su¢ cient to apply the likelihood approach to

�yi1 = �ui1;

�yi3 � �yi2 = g3�i +�ui3;

with �i() = (�yi1;�yi3 � �yi2)0. In this set up one can �rst obtain a uniquely consistent estimator
using �yi1 and �yi3 � �yi2, and then use this consistent estimator as initial value for a more e¢ cient
ML estimation that also makes use of the relations �yi2 � �yi1 = g2�i +�ui2; for i = 1; 2; :::; N .
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5.3.1 Local identi�cation

As global identi�cation of �0 and 0 on the parameter space � cannot be guaranteed, we proceed by
considering a restriction of � on which identi�cation and consistency will be shown.15 To this end we
introduce the following de�nition:

De�nition 1 Let N�(%0) be a set in the closed neighbourhood of %0 de�ned by

N�(%0) = f% 2 � �� : k%� %0k � �g

for some � > 0, such that

w (%;%0) = � ( ; 0) + 2 ( � 0)� ( ; 0) � 0; (64)

for all values of  2 � and  2 � where � is a compact subset of R and � = �!�����q; with
�! and �� compact subsets of R; and �q a compact subset of Rnq , with nq = Tm�m(m� 1)=2:

In view of the local nature of our analysis, from hereon we consider the more restricted parameter
space as set out in the following assumption.

Assumption 8 � 2 �� = ���N�(%0); where �� = �d������ and N�(%0) is speci�ed in De�nition 1;
� = �!�����q, with �d, ��, �� and �q compact subsets of Rnd, Rn� , Rn� , and Rnq , respectively;
�! and �� are compact subsets of R; where nd = T , n� = kT , n� = k, and nq = Tm�m(m�1)=2; N�(%0)
is given in De�nition 1, �� is a compact subset of Rn� with n� = 3+T (k+1)+k+Tm�m(m�1)=2;and
�0 = ('

0
0; 

0
0)
0 =

�
�00; 0; 

0
0

�0 lies in the interior of ��.

We now have:

Proposition 1 Consider the model given by (13), with the associated log-likelihood function for �rst-
di¤erences given by (34). Suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition
(41) hold. Then �0 and 0 are almost surely (locally) identi�ed on ��.

The proof follows noting that for all values of � 2 ��, condition (64) is met and hence local identi�-
cation of �0 and 0 is established using (60). In what follows we also assume that  0 is locally identi�ed
under suitable additional restrictions on �� ( ) such that � ( ; 0) = 0 ensures that  0 =  . Note
that under local identi�cation of 0 and �0 we also have � ( ; 0) = 0, but as noted earlier this by itself
does not necessarily ensure that  =  0. Under local identi�cation of 0 and �0; in order for  0 to
also be locally identi�ed it is further required that �� ( 0) and �� ( ) have the same eigenvectors and
eigenvalues, and this is ensured if on �� the two matrices �� ( 0) and �� ( ) commute, as previously
mentioned.

6 Asymptotic properties of the transformed QML estimator

The analysis of consistency and asymptotic normality of the TQML estimator, b� =argmax�2�� �̀N (�),
now follows by application of standard results from the literature. Almost sure local consistency of b�
follows, for example, from a straightforward adaptation of Theorem 9.3.1 of Davidson (2000). Speci�cally
under Assumptions 1-7(ii),(iii), and 8 we have: (i) �� as a subset of � is compact, (ii) setting �CN (�) =
�2�̀N (�), and �C (�) = E0[ �CN (�)], �CN (�)

a:s:! �C (�) uniformly on �� as shown in the proof of 2 in the

15This approach is typical in the time series literature under QMLE theory, see for example Lumsdaine (1996) for the
GARCH model, Allen et al. (2008) for the case of the Logarithmic Autoregressive Conditional Duration model, Kristensen
and Rahbek (2010) for nonlinear error-correction models, and Han and Kristensen (2014) for GARCH-X models with
stationary and nonstationary covariates, among others.
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Appendix, (iii) �0; an interior point of ��; is the unique minimum of �C (�) on �� by Proposition 1 and
given that �� ( 0) and �� ( ) commute. Therefore, all three conditions of Theorem 9.3.1 of Davidson
are satis�ed and b� a:s:! �0 on the set ��.

The asymptotic distribution of b� is derived by taking a Taylor expansion of @ �̀N (b�)
@� = 0 at �0 and

checking the asymptotic behaviour of the score function, �sN (�) =
@ �̀N (�)
@� ; and Hessian matrix, HN (�) =

�@2 �̀N (�)
@�@�0

. If E0
h
�̀
N (�0)
@�

i
= 0 and HN (��)

a:s:! H(�0); the asymptotic normality of the TQML estimator

will follow from the mean value theorem:

0 =
p
N�sN (b�) = pN�sN (�0)�HN (��)

p
N(b� � �0) (65)

where �� lies between b� and �0. The resultant asymptotic distribution is summarised in the following
theorem:

Theorem 2 Consider the dynamic panel data model with interactive e¤ects given by (13). Suppose
that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41) and Proposition 1 hold, and
that �� ( 0) and �� ( ) commute. Denote the TQML estimator of �0 by b� =argmax�2�� �̀N (�), where
�̀
N (�) is given by (53). Then, b� is almost surely locally consistent for �0 on �� and

p
N(b� � �0)!d N

�
0;H�1(�0)J (�0)H

�1(�0)
�
; (66)

where H(�0) = limN!1E0

h
�@2 �̀N (�0)

@�@�0

i
and J (�0) = limN!1E0

h
N @ �̀N (�0)

@�
@ �̀N (�0)
@�0

i
are assumed to exist

and be positive de�nite.

When �i ('0) is Gaussian
p
N(b� � �0) !d N

�
0;H�1(�0)

�
: A consistent estimator for the variance

in (66) can be obtained by substituting b� for �0 in the expressions for J (�0) and H(�0).
Remark 5 Since in general we do not have global identi�cation, in practice when computing the proposed
TQML estimator it is advisable that a number of di¤erent initial parameter vectors are considered in the
optimisation procedure to ensure, as far as possible, that the resultant estimates correspond to the locally
consistent maximum.

7 Estimating the number of factors

There are a number of studies that provide information criteria for selecting the number of factors
including Bai and Ng (2002), Onatski (2010), Kapetanios (2010), Ahn and Horenstein (2013), among
others. However, these are not applicable to short T panel data sets, and require both N and T to
be large. In the case of short T panels Ahn et al. (2013) estimate the true number of factors, m0;
within a GMM framework using the Sargan-Hansen misspeci�cation statistic in a sequential manner, as
well as information criteria. To ensure consistency of the selected number of factors under the former
case, following Bauer and Hackl (1988) and Cragg and Donald (1997), Ahn et al. (2013) choose the
signi�cance level bN such that bN ! 0 and � ln(bN )=N ! 0 as N ! 1. Using simulations they �nd
that the sequential method could produce better estimates if the signi�cance level depends also on T (in
addition to N), when the regressors and �0ift are not highly correlated, but do not provide theoretical
details on how best to allow for T as well as N in their selection procedure. In what follows we consider
a sequential likelihood ratio (LR) testing procedure, but adjust the signi�cance level of the tests to take
account of the multiple testing nature of the procedure in terms of T , as well as adjusting the size of the
tests in terms of N to ensure consistency of the selected number of factors. We provide a formal theory
that should be of general interest for the analysis of short T factor models.
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7.1 A sequential multiple testing likelihood ratio procedure for estimating the num-
ber of factors

We �rst consider the problem of testing H0: m = m0 against H1: m = mmax, where mmax is the largest
value of m that satis�es the order condition (41), namely mmax = T � 2. This is in contrast to the
problem of selecting m in the case of large N and T factor models where it is often based on an arbitrary

choice of mmax. Under H0, the maximised log-likelihood function, `N
�b�m0

�
, is computed by maximising

(53) subject to r0 over-identifying restrictions given by

r0 = T (T + 1)=2� 3� [Tm0 �m0(m0 � 1)=2] : (67)

Denote the exactly identi�ed estimator of � (under H1) by b�mmax with its dimension n
�
� = 3 + T (k +

1) + k + (T � 2)(T + 3)=2, and the constrained estimator of � under H0 : m = m0 < T � 2 by b�m0 . The
latter estimator is obtained under r (�0) = 0, where r (�0) is the r0 � 1 vector of restrictions on `N (�),
the log-likelihood function de�ned by (34), implied by setting m = m0. The LR statistic for testing H0:
m = m0 against H1: m = mmax = T � 2; is then given by

LRN (m0;mmax) = 2
h
`N

�b�mmax

�
� `N

�b�m0

�i
; for m0 = 0; 1; 2; ::; T � 3: (68)

The following theorem provides the asymptotic distribution of LRN under the null and �-local alterna-
tives, the latter to be de�ned below.

Theorem 3 Consider the dynamic panel data model given by (13), and suppose that Theorem 2 holds.
Denote the constrained TQML estimator of � obtained under H0 : m = m0 by b�m0 and its unconstrained
estimator by b�mmax, where mmax = T � 2. Also let the restrictions imposed under H0 be given by
r (�0) = 0, where r (�0) is the r0 � 1 vector function of � implied by setting m = m0 where r0 =
T (T + 1)=2 � 3 � [Tm0 �m0 (m0 � 1) =2]. Then: (a) under the null H0 : m = m0 (or equivalently
under r (�0) = 0), the log-likelihood ratio statistic LRN ; de�ned by (68), has the following asymptotic
distribution (for a �xed T , and as N !1)

LRN !d

r0X
j=1

wjz
2
j ; (69)

where zj � IIDN (0; 1) ; w1; w2; :::; wr0 are the strictly positive eigenvalues of the symmetric matrix

A0 = J
1=2
0 H�1

0 R
0
0

�
R0H

�1
0 R

0
0

��1
R0H

�1
0 J

1=2
0 ; (70)

with J0 = J (�0) ; H0 = H (�0) ; and R0 = R (�0) ; where R (�0) = @r (�0) =@�
0 is of dimension (r0�n��)

with n�� = 3 + T (k + 1) + k + (T � 2)(T + 3)=2; such that rank [R (�0)] = r0, (b) furthermore, under
�-local alternatives H1N : �1N = �0 +N��=2�; where � is a n�� � 1 vector of constants such that �0� > 0
and 0 < � < 1; we have

N�(1��)=2LRN�N (1��)=2�0Sc�

2
p
�0S0bSb�

a� N(0; 1); (71)

where Sc and S0bSb are symmetric positive de�nite matrices de�ned by

Sc = R
0
0

�
R0H

�1
0 R

0
0

��1
R0; (72)

and
S0bSb = R

0
0

�
R0H

�1
0 R

0
0

��1
R0H

�1
0 J0H

�1
0 R

0
0

�
R0H

�1
0 R

0
0

��1
R0; (73)

respectively.
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Remark 6 It is worth noting that the concept of �-local alternatives extends the standard Pitman se-
quence of local alternatives where � is set to � = 1. By considering alternatives that tend towards the null
at a slower rate, with � < 1, we are able to allow both Types I and II errors to tend to zero.

Remark 7 Note that the non-zero eigenvalues of A0 (given by (70)) are also the eigenvalues of�
R0H

�1
0 R

0
0

��1 �
R0H

�1
0 J0H

�1
0 R

0
0

�
: Hence, if J0 = H0; this matrix becomes equal to Ir0 and we have

wi = 1; (i = 1; 2; :::; r0); which yields the familiar result

LRN !d �
2
r0 ; under r (�0) = 0;

where �2r0 is a central chi-squared variate with r0 degrees of freedom.

Theorem 3 shows that the use of the LR test in the non-Gaussian setting is non-standard and requires
an explicit derivation when H0 : r (�0) = 0. Furthermore, even in the standard case the use of the
sequential LR procedure for the estimation of m is subject to the multiple testing problem and does not
guarantee that m0 , the true value of m, will be estimated consistently. This is a well known problem in
the sequential testing literature. In this paper, we deal with both of these problems by letting the overall
size of the sequential LR tests decline with N at a suitable rate, which we show yields the desired result
even if the underlying individual LR tests are non-standard.

Proposition 2 Suppose that the assumptions of Theorem 3 hold, and that under the null hypothesis H0
the LR test statistic LRN given by (68) is distributed as

Pr0
i=1wi�

2
i (1), where the weights w1 � w2 � ::: �

wr0 > 0 are �nite constants, and �
2
i (1) for i = 1; 2; :::; h are independently distributed central chi-squared

variates with 1 degree of freedom. Denote the type I error probability of the test by �N , and the critical
value of the test by c2N (r0). If c

2
N (r0)!1 as N !1; then limN!1�N = 0.

Corollary 1 Under the assumptions of Theorem 3, de�ne the critical value of the test by c2N (r0) with
c2N (r0)!1 as N !1; and the type II error probability by �N . For all �-local alternatives H1N : �1N =
�0 +N

��=2�; with �0� >0,

lim
N!1

�N = lim
N!1

Pr
�
LRN � c2N (r0) jH1N

�
= 0; (74)

so long as � < 1; and N�(1��)c2N (r0)! 0; as N !1.

Remark 8 From Proposition 2 and Corollary 1 it follows that if c2N (r0) ! 1 as N ! 1 such that
N�(1��)c2N (r0) ! 0; then limN!1�N = limN!1�N = 0; assuming that the relevant Hessian matrices
are non-singular and the restrictions are full rank. To see that both these conditions are met if �N = p=N �

with � a �nite positive constant, using (A.56) in the Appendix we have that

c2N (r0)

N (1��) �
2w1r0 ln

�
r0
�N

�
N (1��) =

2w1r0 ln
�
r0N�

p

�
N (1��) = O

�
� ln(N)

N (1��)

�
; (75)

Since ln(N) ! 1 as N ! 1, then for any � > 0 it follows that c2N (r0) ! 1 as N ! 1: Also, as
N ! 1; then ln(N)=N (1��) ! 0; so long as � is not too close to unity, and it will be surely met if � is
close to 1=2. Hence c2N (r0)=N

(1��) ! 0 as c2N (r0)!1 with N !1.

Remark 9 When �N is set as �N = p=N �, the parameter p (0 < p < 1) can be viewed as the nominal size
of the test. The Neyman-Pearson case is obtained if we set � = 0. The case of � > 0 relates to the Cherno¤
test procedure that aims at minimizing Pr(H0)�N+Pr(H1)�N , where 0 < Pr(H0) < 1 and 0 < Pr(H1) < 1
are prior probabilities of H0 and H1, respectively. When N is �nite the solution to this problem depends
on the prior probabilities. But in the case of chi-squared tests, we have Pr(H0)�N + Pr(H1)�N ! 0 as
N !1, irrespective of the prior probabilities Pr(H0) and Pr(H1), so long as �N = p=N � for � > 0 and
p > 0.
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Remark 10 In �nite samples the choice of p and � can matter, though for moderate values of N the
choice of p is likely to be of second order importance. In the simulation results that follow we set � = 1
and p = 5%, and investigate the robustness of the results to other choices of p.

Theorem 3 together with Corollary 1 and Proposition 2, can now be used to develop a sequential
procedure for estimating (selecting) m that accounts for the multiple testing nature of the approach, and
is consistent for the true number of factors m0. Consistency is ensured as long as Proposition 2 and
Corollary 1 both hold, which in conjunction with Remark 8 e¤ectively requires the size of the sequential
LR tests to decline with N:

As m0 is unknown and could be T � 2, we assume the sequential procedure involves T � 2 separate
tests, although in some applications we might end up stopping the sequential procedure having carried
out a fewer number of tests than T � 2. Let the hypotheses of interest be H0;T�2;H1;T�2; :::;HT�3;T�2
(the total available as determined by the order condition) with the �rst and second subscripts denoting
the number of factors speci�ed under the null and alternative hypothesis respectively, and write the T �2
LR tests as

Pr [LRN (m0 = t� 1;mmax = T � 2) > CVN;t�1;T�2 jHt�1;T�2 ] � pN;t�1;T�2; for t = 1; 2; :::; T � 2;

where LRN (m0;mmax) is given by (68), CVN;t�1;T�2 is the critical value for the test of Ht�1;T�2, and
pN;t�1;T�2 is the realised p-value for Ht�1;T�2.

The sequential testing procedure begins by using the likelihood ratio statistic LRN to test H0;T�2;
that is the null hypothesis m = 0 against the alternative m = T �2. If the null hypothesis is rejected, one
proceeds to test H1;T�2; that is the null hypothesis m = 1 against the alternative m = T �2, and so forth.
This sequential process is continued until the LRN test fails to reject the null hypothesis associated with
Hm0;mmax . The estimated number of factors, bm; is then equal to the number of factors speci�ed under the
null hypothesis associated with this event of non-rejection. If LRN rejects the null hypothesis associated
with all H0;T�2;H1;T�2; :::;HT�3;T�2 then bm is set equal to T � 2.

The overall size of the test is given by the family-wise error rate (FWER) de�ned by

FWERN = Pr
h
[T�2t=1 (LRN (m0 = t� 1;mmax = T � 2) > CVN;t�1;T�2 jHt�1;T�2 )

i
:

Suppose that we wish to control FWERN to lie below a pre-determined value, p. An exact solution to
this problem depends on the nature of the dependence across the underlying tests, which is generally
di¢ cult to obtain. But one could derive bounds on FWERN using, for example, the Bonferroni (1936)
or Holm (1979) procedures. Both of these procedures are valid for all possible degrees of dependence
across the individual tests, and as a result tend to be conservative in the sense that the actual size will
be lower than the overall target size of p. Using the union bound we have

Pr
n
[T�2t=1 [LRN (m0 = t� 1;mmax = T � 2) > CVN;t�1;T�2 jHt�1;T�2 ]

o
�

T�2X
t=1

Pr (LRN (m0 = t� 1;mmax = T � 2) > CVN;t�1;T�2 jHt�1;T�2 ) �
T�2X
t=1

pN;t�1;T�2:

Hence, to obtain FWERN � p, it is su¢ cient to set pN;t�1;T�2 � p=(T � 2). To ensure consistency of
the sequential LR procedure, in line with the earlier discussion and the theorem that follows, p=(T �
2) is further adjusted so that �N = p=N(T � 2).16 The individual critical values, CVN;t�1;T�2 for
performing the sequential MTLR procedure are based on the critical values of the �2 distribution, namely

16Substituting for �N = p=N(T � 2) in (75), it is easy to see that the required conditions that ensure consistency of the
test continue to be satis�ed.
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�2r0 [p=N (T � 2)], where p=N(T � 2) is the right-tail probability of the individual tests and r0 = T (T +
1)=2� 3� [Tm0 �m0 (m0 � 1) =2].17

Local consistency of bm for m0 on �� is established in the following theorem.

Theorem 4 Let bm be the number of factors obtained using the sequential likelihood ratio procedure based
on the statistic LRN given by (68), for which Theorem 3, Corollary 1 and Proposition 2 hold. Then bm
is almost surely locally consistent for m0 on ��:

8 Small sample properties of the transformed QML estimator

In this section, we investigate the �nite sample properties of the proposed estimator using Monte Carlo
(MC) simulations. We start by presenting the MC design.

8.1 Monte Carlo design

The observations on yit are generated assuming k = 1 (one exogenous regressor) and m0 unobserved
factors as

yit = �i + �t + yi;t�1 + �xit + �it; (76a)

�it =

m0X
`=1

�`if`t + uit = �
0
ift + uit; (76b)

for i = 1; 2; :::; N and t = 1; 2; :::; T . Together with the initial observation for t = 0 which will be set
below, this yields T observations for estimation after �rst-di¤erencing. The �xed e¤ects �i are generated
as �i � IIDN (0; 1). The factor loadings, �i = (�1i; �2i; :::; �m0;i)

0 are generated as

�`i � IIDN
�
0;
�2

m0

�
; ` = 1; 2; :::;m0: (77)

We have scaled the variance of �`i, �
2
�`
, by 1=m0 to ensure that the relative importance of the factor

component of �it is not a¤ected by the choice of m0. We also consider the case where m0 = 0 for which
we set V ar (�`i) = 0 for all `. The strength of the factors is controlled by the parameter �

2.
The idiosyncratic errors, uit, for t = 0; 1; :::; T and i = 1; 2; :::; N are generated as uit � IID �p

12
(�26�6)

where �26 is a chi-square variate with six degrees of freedom. The regressors, xit, for i = 1; 2; :::; N are
generated as

xit = �xi +

mxX
`=1

#i`f`t + vit; vit = �xvi;t�1 +
�
1� �2x

�1=2
"it; for t = 1; 2; :::; T; (78)

with �x = 0:95, and "it � IIDN (0; �2vi). We set mx at mx = 2, but consider di¤erent values of
m0. In this way we allow for interactive e¤ects in the fxitg processes for all values of m0, including
when m0 = 0. We draw vi0 from the steady state distribution of vit, namely vi0 � IIDN (0; �2vi), for
i = 1; 2; :::; N . This in turn ensures that V ar (vit) = �2vi. These error variances are drawn as �

2
vi � IID

1
4(�

2
2+2)�

2
v, thus ensuring that E

�
�2vi
�
= �2v. The factor loadings in the xit equations, #i`; are generated

as #i` � IIDN (0; �2#`); for ` = 1; 2; :::;mx. To establish that the �t of the model is not a¤ected by the
number of factors (m0 andmx) in what follows we set �2#` = �2v=mx, for all `. Finally, we set �xi = �i+vi,

17Note that Pr
�Pr0
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2
N

�
� Pr

�
wi
Pr0
i=1 z

2
i < c

2
N

�
= Pr

�Pr0
i=1 z

2
i < (c

2
N=wi)

�
and for c2N ! 1 as N ! 1;
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i instead of
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2
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2
N will still deliver a

consistent estimator of m:
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where vi � IIDN (0; 1), for all i. This speci�cation ensures that the �xed e¤ects, �i, are correlated with
the regressors, xit.

We generate the time e¤ects, �t, and unobserved common factors, f`t, as �t = 1
2(t

2 � t); for t =
1; 2; :::; T; and

f`t = �`ff`;t�1 +
�
1� �2f`

�1=2
"f`t, "f`t � IIDN (0; 1), for ` = 1; 2; :::;m0, and t = 1; 2; :::; T; (79)

with �f` = �f = 0:5, and f`;0 = 0 for ` = 1; 2; :::;m0. Setting the initial values of f`t to zero is not
restrictive since any non-zero sample means for the f 0`ts would be absorbed by the values of the �xed
e¤ects, �i, and the estimation results would be invariant to the choice of f`;0.

To investigate the performance of our proposed estimator and its robustness to the relative importance
of the common factors in the generation of yit, we calibrate the variance of xit relative to the regression
noise, �it, as well as the variance of the factors �

0
ift to the idiosyncratic components, uit. More speci�cally

we consider the following ratios

�f;NT =
N�1PN

i=1 �
0
i

�
T�1

PT
t=1 ftf

0
t

�
�i

N�1T�1
PT

t=1

PN
i=1 u

2
it

; (80)

�x;NT =
N�1T�1

PT
t=1

PN
i=1 (xit � �xi)

2

N�1T�1
PT

t=1

PN
i=1 �

2
it

; (81)

and to simplify the derivations we re-scale the values of the factors such that they are orthonormalised,
namely

T�1
PT

t=1 f`t = 0; T
�1PT

t=1 f
2
`t = 1, T

�1PT
t=1 f`tf`0t = 0, for all ` and ` 6= `0: (82)

Under the above scaling and using (77) we have (for any �nite T ) and as N !1

�f = lim
N!1

�f;NT =
E (�0i�i)

�2
=
�2

�2
: (83)

Similarly, using (78) and (76b) we have

�x =
lim
N!1

h
N�1T�1

PT
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PN
i=1 (

Pmx
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2
i

lim
N!1

h
N�1T�1

PT
t=1

PN
i=1 (�

0
ift + uit)

2
i

=
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=

2�2v=�
2

1 + �2=�2
: (84)

To control the ratios �f and �x; without loss of generality, we set �2 = 1, and consider the values of
�2 = f1=4; 1=2; 1; 2g and �2v = f1=2; 1; 3=2g. These combinations allow us to examine the extent to
which the small sample results are dependent on �2 and �2v that measure the relative importance of the
unobserved common factors, ft, and the idiosyncratic components of xit.

To set the initial values, fyi0; i = 1; 2; :::; Ng, we distinguish between the case where jj < 1, and
the unit-root case where  = 1. Under the former, for each i, we generate yi0 from the steady state
distribution of fyitg, and set18

yi0 = �i0 + �i0 (ui0=�) ; for i = 1; 2; :::; N (85)

where

�i0 =
�i + ��xi
1�  , �2i0 =

�2 + ax�2�2iv + afai
1� 2 ; (86)

18For the derivation of �i0 and �i0 see Section S.4 of the online supplement.
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ax =
1 + �x
1� �x

, af =
1 + �f
1� �f

; (87)

ai =
m0X
`=1

�2`i + �
2
mxX
`=1

#2`i + 2�
Pmin(m0,mx)

`=1 �`i#`i; (88)

and ui0 is generated as above. To check the robustness of our MC analysis to the choice of the initial values,
we also consider generating yit with �i0 and �i0 in (85) replaced by �1�i0 and �2�i0 and experiment with
the values of �1; �2 = 1:2; 0:8. For the remaining parameters we consider � = 0 (the pure autoregressive
case) and � = 1, and experiment with medium and high values of , namely  = 0:4 and 0:8.

In the unit root case ( = 1) we avoid incidental parameters in �rst di¤erences by �rst generating
the �rst-di¤erences and then cumulating them to obtain yit from some arbitrary values for yi0. The
�rst-di¤erences are generated as

�yi1 = ��1 + ��xi1 +��i1, (89)

�yit = ��t + �yi;t�1 + ��xit +��it; t = 2; 3; :::; T; (90)

with �yi0 = 0, for i = 1; 2; :::; N . The regressors and error processes are generated as above.

8.2 Monte Carlo results

We begin by reporting on the performance of the sequential MTLR procedure for estimating m0, the true
number of latent factors. We then report on the bias and root mean square error (RMSE) of the TQML
estimator of the parameters ( and �), as well as size and power using the number of factors estimated
by the MTLR procedure. Throughout we consider the parameter choices 0 = f0:4; 0:8g and �0 = 1,
the sample size con�gurations T = f5; 10g and N = f100; 300; 500; 1000g, and values of m0 = f0; 1; 2g.
Thereafter, we provide results comparing the TQML estimator with the QML estimator of Bai (2013),
which we denote by Bai-QML, and separately with the GMM quasi-di¤erence (QD) and �rst-di¤erence
(FD) estimator of ALS (where the latter takes the �rst-di¤erence prior to applying the quasi-di¤erence
approach by Ahn et al. (2013)), assuming m0 is known.19 Finally, we turn to the unit root case (0 = 1),
and end with a summary discussion of the main results from our robustness analysis. In the paper we focus
on the baseline case where �2 = �2v = 1; results for other values of �

2 = f1=4; 1=2; 2g and �2v = f1=2; 3=2g
are provided in the online supplement and are discussed only brie�y to save space. Further, we only
report results for non-Gaussian errors. The results for the case of Gaussian errors are available upon
request.

All panel regressions related to the TQML approach are estimated including both individual and time
e¤ects as well as an intercept, and regressors (in the case of the ARX(1) model), associated with �yi1;
as in (24). Time e¤ects are explicitly included in the regressions for the Bai-QML estimator while for
the GMM regressions deviation from cross section averages is taken prior to estimation to remove the
time e¤ects; for both these set of regressions the individual e¤ects are subsumed within the interactive
e¤ects. For further details related to the computation of the quasi-log-likelihood for Bai-QML and the
GMM estimators see Sections S.5 and S.6 respectively of the online supplement. Not surprisingly, the
conditional QML estimator of Bai (2013) did not perform well given that under our MC design yi0 depends
on the model�s unknown parameters, and therefore is not included.

Unless otherwise stated, the sequential MTLR procedure is implemented using the LRN (mmax;m0)
statistic for testing m = m0 = f0; 1; 2; ::; T � 3g against m = mmax = T � 2, with signi�cance level
�N = p

N(T�2) and p = 0:05; using the critical values of the chi-square distribution with degrees of
freedom as given by (67). The standard errors used for inference are based on equation (66) with all
derivatives computed numerically. All tests are carried out at the 5% signi�cance level and all experiments
are replicated 2000 times.
19To simplify the comparisons we thought it more instructive to base our comparisons assuming that m0 is known. Also,

as will be seen, under our approach m is generally well estimated.
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8.2.1 Selecting the number of factors

Table 1 reports the number of times (in %) that the estimated number of factors, bm; is equal to the true
number of factors, m0, following the sequential MTLR procedure outlined in Section 7.1. The results
refer to the baseline case where �2 = �2v = 1 and show that bm performs well for most parameter values
and sample sizes. Even when N = 100; the true number of factors is estimated quite precisely except
for the ARX(1) panel data model when T = 5 and m0 = 2. However, by the time N reaches 300 the
probability of selecting the true number of factors approaches 100%, across all parameter values. The
results for other values of �2 and �2v are given in Tables A1(i) and A1(ii) in the online supplement.
As to be expected, the empirical frequency of correctly selecting m0 declines as the value of �2 (which
measures the strength of the factors relative to the idiosyncratic error) is reduced for small N . However,
as N increases the probability of selecting the true number of factors improves and approaches 100%,
as to be expected given the consistency of the proposed procedure. Table A1(ii) further shows that the
performance of bm is not that much a¤ected as other values of �2v are considered.

8.2.2 Performance of the TQML estimator

We next consider the small sample performance of the TQML estimator of  and �, after estimating m
by the sequential MTLR procedure.

AR(1) For this panel data model, bias, RMSE, and empirical size for the TQML estimator of  are
reported in Table 2. The overall performance of the bias and RMSE is favourable with a few exceptions
when T = 5; N � 100 and m0 = 2. Speci�cally when 0 = 0:4, we need N larger than 100, particularly
if m0 = 2. The bias and size distortions are more serious when 0 = 0:8, and much larger sample sizes
are required. However, as predicted by the asymptotic theory, the results improve as N increases. The
performance of the TQML estimator improves considerably as T is increased to T = 10, and evidence
of size distortions is limited to a few cases where m0 = 0 and 0 = 0:8, and N � 300. The results for
all combinations of �2 = f1=4; 1=2; 1; 2g and �2v = f1=2; 1; 3=2g are reported in Tables A2(i) and A2(ii)
in the online supplement. As with the estimation of m discussed above, the performance of the TQML
estimator deteriorates as �2 is reduced towards zero, and large sample sizes (N and/or T ) are required
for satisfactory outcomes in the case of the AR(1) speci�cation. The power functions in Figure 1 show
that overall the power is satisfactory. While power is low when 0 = 0:8 for small N; it improves as N
increases. Power functions across alternative values of �2 are shown in Figures A3(i), A3(iv) and A3(vii)
in the online supplement. The shape of these functions becomes quite distorted if the factors are very
weak relative to the signal (namely for small values of �2), particularly when T = 5 and 0 = 0:8; or
0 = 0:4 and m0 = 2:

ARX(1) Simulation results for the ARX(1) panel data model are provided in Table 3, and show the
much better small sample performance as compared to the AR(1) model. This seems to be primarily
due to the additional source of variations from the regressor. The bias and RMSE for the estimators of
 and � are both very small in all cases, and empirical sizes are also close to their nominal levels. In
addition, as shown in Figure 2, power is reasonably high. From Table A2(iii) in the online supplement
we also note that biases are very small across all values of �2. As �2 reduces, the RMSE of  increases
while that of � decreases. Di¤erences in RMSE across �2 for each of these parameters tends to decrease
as N increases. Furthermore, Table A2(iv) shows that empirical sizes behave well across all values of
�2 with only a couple of exceptions for N = 100 and smaller values of �2. Power functions across the
di¤erent values of �2, as shown in Figures A3(ii)-A3(iii), A3(v)-A3(vi) and A3(viii)-A3(ix) of the online
supplement, are similar to those of Figure 2 given below for �2 = 1. Results for the other values of �2v
(namely 1=2 and 3=2) are very similar to those of �2v = 1, and are available upon request.
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8.2.3 Comparison of TQML with alternative estimators

We begin by presenting results for the TQML and Bai-QML estimators followed by the GMM estimator
proposed by ALS, for the AR(1) panel data model initially and for the ARX(1) subsequently. The
GMM estimators we consider include the quasi-di¤erence and �rst-di¤erence ALS one step and two step
estimators, denoted by QD1, QD2, FD1 and FD2, respectively.

For the comparison of TQML with the Bai-QML estimator, we provide results both for the IID
speci�cation of �xed e¤ects (used in the Monte Carlo design of Section 8.1), namely �i � IIDN (0; 1); as
well as for spatially correlated �xed e¤ects. Under the latter the N � 1 vector of �xed e¤ects, � = (�1;
�2; :::; �N )

0; is generated as the �rst-order spatial autoregressive process

� = ��W�+ "�; or � =(IN � ��W)�1 "�;

with heteroskedastic errors "� = ("�;1; "�;2; :::; "�;N )0; where �� = 0:9;

W =

0BBBBBBBBB@

0 1 0 0 : : : 0
1=2 0 1=2 0 0

0 1=2 0
. . .

...

0 0
. . . . . . 1=2 0

... 1=2 0 1=2
0 0 : : : 0 1 0

1CCCCCCCCCA
; (91)

and for each i, "�;i are drawn as IIDN (0; �2"�;i) with

�2"�;i =

�
1; for i = 1; 2; :::; N=2;
2; for i = N=2 + 1; :::; N:

The TQML estimator is fully robust to the way �xed e¤ects for yit and xit are generated (random or
correlated). Hence, the results for TQML under both the above �xed e¤ect speci�cations are identical,
and it does not matter which �xed e¤ects speci�cation is used.20 Also, since the GMM estimators �rst
eliminate the �xed e¤ects (GMM based on QD does it implicitly) to save space for the GMM estimators
we show results only under the IID speci�cation of the �xed e¤ects.

In line with the discussion in Section 2.3, for the Bai-QML estimator the Mundlak-Chamberlain
projection of the regressor equation �xed e¤ects, �xi; (recall �xi = �i+vi, where vi � IIDN (0; 1), for all
i) on xi is used to deal with the dependence of �xi on �i. In addition, the number of factors included in
the regressions for the computation of the Bai-QML estimator is em0 = m0 + 1; and following Bai (2013)
we use the factor normalisation F+ = (Iem;F02)0 : The same number of factors is used for the QD GMM
estimators given that the individual e¤ects are subsumed within the interactive e¤ects, while m0 is used
for the FD GMM estimators that employ prior �rst-di¤erencing; the same normalisation is also used on
the factor matrix for these estimators.

AR(1): TQML and Bai-QML Table 4 reports the bias and RMSE of  for the TQML and Bai-
QML estimators in the case of the AR(1) panel data model. Results show that the Bai-QML estimator
performs very poorly in terms of bias and RMSE for both values of 0. The same is true with regard
to size as seen from the results for the two estimators summarised in Table 5, which show the Bai-QML
estimator to have severe size distortions. The poor performance of the Bai-QML estimator in terms of
bias, RMSE and size is, on the whole, more pronounced when the �xed e¤ects are spatially correlated

20The use of the Mundlak-Chamberlain projection for the Bai-QML estimator helps in the present MC design because �ix
for i = 1; 2; :::; N are generated as a linear function of �i. It would not have helped if the �ix were generated as a general
(for example quadratic) function of �i. The TQML estimator is not a¤ected even if �i and �ix are non-linearly related.
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compared to the IID case. In contrast, the TQML estimator performs well, requiring larger values of
N only when fT = 5, 0 = 0:8g to reduce the mild biases observed for this parameter combination.
The small size distortion of TQML in the case of fN = 100; T = 5, 0 = 0:8g; vanish when larger
values of N = f300; 500g are considered. Power functions for fT = 5, N = 500g, are shown in Figures
3a and 3b for the IID and spatially correlated �xed e¤ects, respectively. The TQML estimator shows
satisfactory power as the distance from the null hypothesis increases, with the power curves exhibiting
slight asymmetry for the case of 0 = 0:8: While power appears higher for the Bai-QML estimator, this
is accompanied by evidence of large size distortions which are higher for the case of 0 = 0:8; and even
more so when the �xed e¤ects are spatially correlated as compared to the IID results.

AR(1): TQML and GMM In comparing the TQML and GMM estimators, results for the AR(1)
panel data model are only reported for T = 10 as the GMM estimators are not computable for the case of
T = 5 due to failure of the order condition. Results in Table 6 show that the TQML estimator performs
substantially better than the GMM estimators in terms of bias and RMSE. When  = 0:8; the GMM
estimators, especially FD1 and FD2, perform very poorly possibly due to weak instruments, whereas the
TQML estimator has small bias and RMSE. With regard to size shown in Table 7, the GMM estimators
display substantial size distortions while the TQML estimator has empirical size close to the nominal
value, except for the case where  = 0:8 and N = 100.

ARX(1): TQML and Bai-QML Bias and RMSE of  and � for the ARX(1) panel data model
are given in Table 8. While the bias is generally small for the TQML estimator for  and � across all
parameter combinations, for the Bai-QML estimator these are larger, and much more so in the case of
spatially correlated �xed e¤ects. The same holds for the RMSE. Empirical size is reported in Table 9,
which shows the TQML estimator to have little size distortions for all parameter con�gurations, even
for T = 5 and N = 100. In contrast, the performance of the Bai-QML estimator varies considerably
depending on the parameter values, the number of latent factors, and the way �xed e¤ects are generated.
For example, Bai-QML shows little size distortion when T = 5; N > 100 and 0 = 0:4. But signi�cant
size distortions occur when 0 = 0:8, and the extent of these become more pronounced under spatially
correlated �xed e¤ects, and as m0 is increased to 2. Power functions for T = 5 and N = 500 are shown
in Figures 4 and 5 for the IID and spatially correlated �xed e¤ects, respectively. These �gures show
that under IID �xed e¤ects the Bai-QML estimator for  exhibits similar power performance compared
to the TQML estimator when 0 = 0:4, and moderately lower power for 0 = 0:8. For �, when m0 = 1
across both values of 0; the Bai-QML estimator continues to show lower power as compared to TQML,
which becomes extremely lower in the case of m0 = 2. The picture is qualitatively similar for spatially
correlated �xed e¤ects, however with more pronounced power discrepancies. For 0 = 0:8 the large size
distortions for  and � do not allow for a meaningful power comparison of the two estimators. The power
performance of the TQML estimator is satisfactory across all parameter combinations.

ARX(1): TQML and GMM Table 10 reports the bias and RMSE of  and � for the TQML and
GMM estimators and shows that the TQML estimator has better small sample properties both in terms
of bias and RMSE. The same also follows if we consider the size of the tests based on these estimators
summarised in Table 11. For the GMM estimators, the performance crucially depends on the speci�c
values of 0; m0; N and T; and there is no GMM estimator that performs well for all combinations, which
is in contrast to the TQML estimator that performs well for all cases considered. For instance, when
T = 5; FD1 and FD2 tend to have correct empirical sizes when N is large. However, they tend to have
large size distortions when T is increased to T = 10 for m0 = 1. QD2 and FD2 tend to have larger size
distortions than QD1 and FD1. This is partly due to the downward bias of the standard errors used in
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the two-step estimators.21

8.2.4 The unit root case

The results for the unit root case are very similar to those already reported for the stationary case.
Table 12 reports the number of factors correctly selected (in %) by the sequential MTLR procedure
when 0 = 1. As can be seen, the results are uniformly good for all values of m0, N and T . Also the
e¤ects of deviating from the baseline values of �2 and �2v on the empirical frequency of correctly selecting
the true number of factors are similar to the stationary case. See Tables B1(i) and B1(ii) in the online
supplement. The results for bias, RMSE and size of the TQML estimator when 0 = 1 are summarised
in Tables 13 and 14 for the AR(1) and ARX(1) panel data models, respectively. These show that the
bias and RMSE are reasonably small, and the empirical size for  is slightly below the nominal value.
The e¤ects of deviating from the baseline value of �2 are reported in Tables B2(i) and B2(ii) of the online
supplement, and show that the bias and RMSE become smaller as the value of �2 is reduced, which is
di¤erent from the stationary case. Power is also reasonably high as shown in Figures 6 and 7 for the
AR(1) and ARX(1) panel data models, respectively, when �2 = 1. The power plots for other values of
�2, namely f1=4; 1=2; 2g, are given in Figures B3(i), B3(iv), and B3(vii) of the online supplement for the
AR(1) model, and Figures B3(ii)-B3(iii), B3(v)-B3(vi) and B3(viii)-B3(ix) for the ARX(1).

8.2.5 Robustness of baseline MC results

Lastly we investigate the performance of our selection and estimation strategy under a number of devi-
ations from the baseline model. Speci�cally, we consider the following scenarios: (i) initial values that
deviate from the steady state distribution, whereby yi0 is generated as in (85) but with means and vari-
ances given by �1�i0 and �2�i0; with �1; �2 = 1:2; 0:8; (ii) implementing the sequential MTLR procedure
with di¤erent p-values, namely p = f0:01; 0:10g; instead of our baseline value of p = 0:05; (iii) factor
loadings that are correlated with the regressors; and (iv) factor loadings that are mutually weakly cor-
related. Further details on the data generating process for the last two cases and related results can be
found in Section S.9 of the online supplement.

As shown in Tables C1(i)-C1(iii) of the online supplement, deviating the initial values from those of
the steady state distribution has only a limited e¤ect on the results with the performance of our estimator
remaining reasonably good overall. The only e¤ect observed is for the AR(1) panel data model for which
size distortions are slightly more pronounced for T = 5, 0 = 0:8 and N � 500 as compared to the case
where yi0 are drawn from the steady state distribution. For the rest of the results, including those of
the ARX(1) model bias and RMSE values are still reasonably small with empirical sizes close to their
nominal value across all parameter con�gurations.

Regarding the use of alternative values of p in implementing the MTLR test, as can be seen from
Tables C2(i)-C2(iii) for p = 0:01 and Tables C2(iv)-C2(vi) for p = 0:10, the results are very similar and
in some cases even better than those obtained in Tables 1-3 for p = 0:05.

When the factor loadings are correlated with the regressor, from Tables C3(i)-C3(iii) of the online
supplement, we �nd that the sequential MTLR procedure estimates the number of factors very precisely
across all parameters, the bias is su¢ ciently small, and empirical size is close to the nominal level, with
one exception, namely, when N = 100; T = 5 and 0 = 0:8 for the AR(1) model. When the factor
loadings are weakly correlated, as shown in Tables C4(i)-C4(iii) in the online supplement, the results are
very similar to those in Tables 1-3 where such correlation is absent. The same also applies if we consider
the estimates for the ARX(1) model.

21Since both QD2 and FD2 are nonlinear GMM estimators, it is not straightforward to apply the Windmeijer (2005)
correction.
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9 Empirical illustrations

We investigate the importance of allowing for interactive e¤ects in empirical analysis by applying our
selection and estimation strategy to two empirical problems addressed in the literature. In the �rst
illustration we estimate a dynamic version of the model considered by Cornwell and Trumbull (1994)
and subsequently by Baltagi (2006), to explain the incidence of crime across N = 90 counties in North
Carolina over the period 1981-1987 (T = 6). In the second illustration, we use the data set recently
analysed by Acemoglu et al. (2019) to estimate output regressions on a balanced panel of N = 82
countries using T = 5 �ve-year time intervals over the period 1981-2005. All regressions include both
individual and time e¤ects, plus the regressors associated with the initial observation of the dependent
variable in �rst di¤erences. The presence of interactive e¤ects is investigated by �rst estimating m, the
number of unobserved factors, subject to mmax = T � 2. Results are presented for the parameters of
interest, namely the coe¢ cient of the lagged dependent variable and the regressors; estimates for the
remaining parameters (such as time e¤ects) are available upon request.

9.1 Cross county crime rate regressions

The crime rate in county i, year t (yit) is explained by the deterrent variables, namely the probability of
arrest (Pit;A), the probability of conviction given arrest (Pit;C), the probability of a prison sentence given
a conviction (Pit;P ), average prison sentence in days (Sit), and a number of other variables such as popula-
tion density (Densityit), percent young male (YMit), the wage rates in manufacturing (WMFit), and the
wage rate in transportation, utilities and communication industries (WTUCit).22 The panel regressions
estimated by Cornwell and Trumbull (1994) and Baltagi (2006) are static and could be misspeci�ed since
jurisdictions with high crime rates in one year are likely to continue to have high crime rates into the
near future. By including lagged crime rates (yi;t�1) in the model we account for the possible persistence
of crime rates over time, and by allowing for unobserved common e¤ects we take account of possible
persistence and spill-over e¤ects of crimes across counties.

To investigate the importance of the interactive e¤ects we �rst estimated m (the number of latent
factors) using the proposed sequential MTLR procedure, with the nominal value of the test, p, set to
5%, and the maximum number of factors, mmax = T � 2 = 4 (see Section 7.1). We obtain bm = 3 and
reject the null hypothesis that the panel regressions are not subject to interactive e¤ects, despite the
fact that they include country and year �xed e¤ects. The estimate of m is reasonably robust to the
choice of p values and we obtain the same estimate (bm = 3) if we set p = 10%, although setting p = 1%
yields bm = 2. In Table 15 we report the results for bm = 3, along with the estimates without interactive
e¤ects (with m = 0). We �rst note that irrespective of whether we allow for interactive e¤ects or not,
there is clear evidence of dynamics and the coe¢ cient of the lagged crime rate is highly signi�cant, even
though when we allow for interactive e¤ects this coe¢ cient falls from 0:501 to 0:402, but remains highly
signi�cant. Amongst the xit = (Pit;A; Pit;C ; Pit;P ; Sit; Densityit; Y Mit;WMFit;WTUCit)

0 variables, only
the deterrent variables and the wage rate in manufacturing are statistically signi�cant once we allow for
interactive e¤ects. The results are similar when we do not allow for interactive e¤ects, with the exception
of the WTUCit variable which is marginally signi�cant when m = 0. It is also worth noting that all the
estimated coe¢ cients that are statistically signi�cant have the correct signs when bm = 3.

22Cornwell and Trumbull (1994) and Baltagi (2006) consider a number of other variables such as wage rates in other
industries and the number of police, which we exclude to simplify the exposition.
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Table 15: Dynamic panel estimates of crime rates (yit) across 90
counties in North Carolina over the period 1981-1987

(T = 6; N = 90)
Explanatory Variables (yi;t�1;xit) bm = 3 m = 0

Lagged crime rate (yi;t�1)
0.402���

(0.108)
0.501���

(0.086)

Probability of arrest (Pit;A)
-0.301���

(0.072)
-0.221���

(0.070)

Probability of conviction given arrest (Pit;C)
-0.193���

(0.032)
-0.147���

(0.055)

Probability of prison given conviction (Pit;P )
-0.154���

(0.042)
-0.137���

(0.051)

Severity of punishment (Sit)
-0.093���

(0.035)
-0.130���

(0.048)

Population density (Densityit )
0.172
(0.459)

0.148
(0.430)

Wage: transportation, utilities & communication (WTUCit)
0.016
(0.019)

0.033�

(0.019)

Wage: manufacturing (WMFGit)
-0.563���

(0.158)
-0.431���

(0.105)

Percent young male (YMit)
0.839
(0.694)

0.601
(0.664)

Note: The estimates allow for county and year �xed e¤ects. T is the number of
time periods used in TQML estimation after �rst di¤erencing. bm is the latent factors
estimated using the sequential MTLR procedure described in Section 7.1 with mmax =
T � 2 = 4 and �N = 0:05=(N(T � 2)). Figures in parentheses are standard errors that
are computed according to equation (66). ���;�� ;� denote signi�cance at the 1%, 5%
and 10% levels, respectively.

9.2 Cross country growth regressions

There is a large empirical literature on cross country growth regressions, using cross section as well as
panel data sets. Examples include Barro (1991), Mankiw et al. (1992), Sala-i-Martin (1996), Islam (1995),
Caselli et al. (1996) and Lee et al. (1997, 1998). Our application is closest to the panel regressions by
Islam (1995) and Caselli et al. (1996) who estimate dynamic panel regressions with time and �xed e¤ects
using log GDP per capita at �ve-year time intervals. A similar approach is also used by Acemoglu et al.
(2019) who focus on the e¤ect of democracy on GDP per capita. However, none of these studies allow
for interactive e¤ects. In our empirical application we regress log GDP per capita (yit) measured over
�ve-year intervals on yi;t�1, log investment-output ratio, log total factor productivity (TFP), log trade
share in GDP, log infant mortality, and a dichotomous democracy variable. As noted above, the data set
used covers N = 82 countries with T = 5 �ve-yearly periods spanning 1981-2005.23

For this illustration the number of latent factors (m) was estimated to be bm = 2, using the sequential
MTLR procedure with p = 5% and mmax = T �2 = 3. The same result was obtained setting p = 1% and
10%. The parameter estimates together with their standard errors for bm = 2 and m = 0 are summarised
in Table 16. As can be seen, allowing for interactive e¤ects substantially lowers the degree of output
persistence from 0:583 to 0:246, raises the coe¢ cient of log TFP from 0.547 to 0.870, and increases the
size and signi�cance of the coe¢ cient of infant mortality on output from �0:042 (and not signi�cant ) to
�0:075 (and highly signi�cant). The negative and signi�cant e¤ect of infant mortality on GDP is also
found in similar growth regressions by Somé et al. (2019). They explore the impact of healthcare on
economic growth in Africa, but do not allow for error cross-sectional dependence in their analysis. The
trade share and democracy variables both have a positive sign though are found to be insigni�cant. The

23For further information on the data and related sources see Acemoglu et al. (2019).
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latter �nding is in line with recent results by Jacob and Osang (2018) who perform a dynamic panel
analysis using GMM for a sample of more than 160 countries based on T = 10 �ve year averages. In
contrast Acemoglu et al. (2019) �nd that democracy does cause GDP using an annual panel data of
T = 50 observations without allowing for interactive e¤ects. The only parameter estimate which has not
been a¤ected by the inclusion of interactive e¤ects is the coe¢ cient of the investment-output ratio, which
is estimated at 0.078 when m = 0 as compared to 0.071 when bm = 2.

The empirical illustrations provided suggest that allowing for error cross-sectional dependence in
dynamic panels could be important and ought to be considered in applied research.

Table 16: Dynamic panel regressions for cross
country log per capita output equations (yit)
(1981-2005, �ve yearly T = 5; N = 82)
Explanatory Variables bm = 2 m = 0

Lagged log GDP per capita (yi;t�1)
0.246���

(0.063)
0.583���

(0.042)

Log investment output ratio (INVit)
0.071���

(0.014)
0.078���

(0.018)

Log total factor productivity (TFPit)
0.870���

(0.051)
0.547���

(0.059)

Log trade share in GDP (Tradeit)
0.010
(0.019)

0.047��

(0.021)

Log infant mortality
-0.075���

(0.029)
-0.042
(0.027)

Democracy indicator
0.012
(0.014)

0.008
(0.017)

Note: bm is the estimated number of factors using the sequential
MTLR procedure described in Section 7.1 with mmax = T � 2 = 3
and �N = 0:05=(N(T � 2)). See also the note to Table 15.

10 Conclusion

This paper proposes a quasi maximum likelihood estimator for short dynamic panel data models with
unobserved multiple common factors, where individual and time �xed e¤ects are also explicitly included.
This provides a natural extension of Hsiao et al. (2002) to panel data models with a multi-factor error
structure. Our contribution can also be viewed as extending the standard dynamic panel data models
with �xed and time e¤ects, routinely used in the empirical literature, to allow for error cross sectional
dependence through interactive e¤ects.

We have also contributed to the literature on short T factor models with regard to identi�cation
and estimation of the number of unobserved factors, as well as parameter identi�cation. Our proposed
sequential multiple testing likelihood ratio (MTLR) procedure can be particularly relevant to the analysis
of short T factor models. Monte Carlo results provide small sample evidence in support of the proposed
TQML estimator and show that the sequential MTLR procedure performs very well in selecting the
number of unobserved factors in most settings. The same is also true for the performance of the TQML
estimator in terms of bias, RMSE and empirical size, and power. Empirical illustrations involving cross
county crime and growth regressions suggest that allowing for interactive e¤ects in dynamic panels could
be important and ought to be considered in applied work.

Although we allow the error variances to vary across units through the di¤erences in factor loadings,
it is assumed that the unit speci�c errors are cross sectionally homoskedastic, which is rather restrictive.
However, our theoretical derivations can be readily adapted to cover the heteroskedastic error case, as
was done in the recent paper by Hayakawa and Pesaran (2015) for models without unobserved common
factors. It would also be interesting to extend the analysis to panel VAR models with interactive e¤ects.
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Tables and Figures for the Monte Carlo Results

Table 1: Empirical frequency of correctly selecting the true number of factors, m0,
using the sequential MTLR procedure (�2 = �2v = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

m0 0 1 2 0 1 2 0 1 2 0 1 2
N AR(1)
100 99.4 99.7 88.9 99.2 99.8 96.3 99.5 99.6 99.7 99.7 99.5 99.7
300 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 99.9 100.0
1000 99.9 100.0 100.0 99.9 100.0 100.0 99.7 100.0 100.0 99.6 100.0 100.0

ARX(1)
100 99.7 98.7 31.0 99.6 99.2 33.0 99.3 99.6 99.7 99.4 99.6 99.7
300 100.0 100.0 99.5 99.9 100.0 99.5 100.0 100.0 99.9 100.0 99.9 99.9
500 99.9 99.9 100.0 99.9 99.9 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 99.9 100.0 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: yit is generated as yit = �i+�t+yi;t�1+�xit+�it; �it =
Pm0
`=1 �`if`t+uit = �

0
ift+uit; for i = 1; 2; :::; N ; t =

1; :::; T; with yi0 = �i0 + �i0 (ui0=�) where �i0 = (�i + ��xi)=(1 � ) and �2i0 = (�2+ax�2�2iv+afai)=(1 �
2): In addition, ax = (1 + �x)=(1 � �x), af = (1 + �f )=(1 � �f ) and ai =

Pm0
`=1 �

2
`i + �2

Pmx
`=1 #

2
`i +

2�
Pm in(m0,mx)
`=1 �`i#`i; where �`i � IIDN

�
0; �

2

m0

�
; ` = 1; 2; :::;m0; #i` � IIDN (0; �2#`); for ` = 1; 2; :::;mx;

with �2#` = �2v=mx, for all `; �x = 0:95; mx = 2; and � = 1: The idiosyncratic errors are generated as uit �
IID �p

12
(�26 � 6) for i = 1; 2; :::; N ; t = 0; 1; :::; T where �26 is a chi-square variate with 6 degrees of freedom and

�2 = 1. The �xed e¤ects are generated as �i � IIDN (0; 1). The regressors, xit, for i = 1; 2; :::; N are generated

as xit = �xi +
Pmx
`=1 #i`f`t+vit; with vit = �xvi;t�1 +

�
1� �2x

�1=2
"it; for t = 1; 2; :::; T; "it � IIDN (0; �2vi),

vi0 � IIDN (0; �2vi), for i = 1; 2; :::; N , with �2vi � IID 1
4
(�22+2)�

2
v and �xi = �i+ vi, where vi � IIDN (0; 1), for

all i. Each ft is generated once and the same f 0ts are used throughout the replications. In the AR(1) case � = 0
and under m0 = 0; �it collapses to uit:

Table 2: Bias(�100), RMSE(�100) and Size (�100) of  for the AR(1) panel data
model, using the estimated number of factors, bm (�2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

N m0 = 0
100 0.42 8.69 6.2 0.65 12.29 21.3 -0.03 3.76 6.5 1.94 7.90 16.4
300 -0.03 4.26 5.4 1.42 9.26 19.2 -0.04 2.18 5.1 0.68 4.62 8.7
500 0.03 3.22 4.8 1.46 7.80 14.6 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.02 6.07 12.1 -0.01 1.22 5.4 0.18 2.24 5.7

m0 = 1
100 0.41 9.39 5.1 1.42 12.99 19.6 -0.05 4.20 6.1 0.23 4.64 4.9
300 -0.09 4.99 5.1 1.00 9.04 11.9 0.02 2.38 4.5 0.08 2.41 4.7
500 0.05 3.68 3.9 0.96 7.12 7.1 -0.06 1.90 6.0 0.01 1.88 5.4
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 4.9 0.00 1.30 4.2

m0 = 2
100 4.09 16.38 11.5 1.82 16.38 19.8 -0.08 5.12 5.8 0.19 5.32 5.3
300 0.20 4.99 3.9 1.38 4.99 10.3 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 3.1 0.98 3.81 6.3 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 3.3 0.45 2.62 4.4 0.00 1.59 4.7 0.01 1.44 4.0

See the note to Table 1.
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Table 3: Bias(�100), RMSE(�100) and Size (�100) of  and � for the ARX(1) panel
data model, using the estimated number of factors, bm (�2 = �2v = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)


N m0 = 0
100 -0.15 3.45 5.9 -0.07 3.02 6.6 -0.06 1.95 5.4 -0.03 1.37 5.8
300 -0.04 1.97 5.6 -0.05 1.71 6.1 0.08 1.14 5.3 0.04 0.77 5.1
500 0.02 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.1 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8

m0 = 1
100 0.09 4.30 5.1 0.23 4.74 5.2 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.83 4.0
500 0.01 1.83 3.8 0.02 1.92 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4

m0 = 2
100 0.37 4.70 5.8 0.47 4.99 4.7 -0.09 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1

�
m0 = 0

100 -0.06 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.01 2.58 5.8 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8

m0 = 1
100 -0.01 5.99 5.6 0.06 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.09 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.88 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7

m0 = 2
100 0.27 8.33 6.5 0.41 8.56 5.8 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

See the note to Table 1.
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Table 4: Bias(�100) and RMSE(�100) of  for the TQML and Bai-QML estimators
in the case of the AR(1) panel data model, using the true number of factors, m0

(�2 = �2v = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8

Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)
TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML

IID spatial IID spatial IID spatial IID spatial


N m0 = 1
100 0.60 11.16 44.34 9.44 22.94 50.47 1.52 12.52 17.20 13.00 15.34 18.62
300 0.04 3.79 37.16 5.04 12.89 46.07 1.51 10.92 17.33 9.32 14.16 18.51
500 -0.01 3.08 33.53 3.87 11.25 43.76 0.96 9.54 17.01 7.36 13.33 18.38
1000 0.05 2.69 30.01 2.70 9.96 41.23 0.53 8.20 16.86 5.01 12.13 18.67

m0 = 2
100 0.52 9.02 41.71 9.69 21.17 49.13 1.34 10.04 17.70 12.86 14.47 18.54
300 0.01 4.16 33.97 4.97 13.71 44.17 1.20 8.70 18.05 9.03 13.06 18.61
500 0.16 3.76 32.06 3.78 12.27 42.88 1.12 7.69 18.35 7.17 12.03 18.76
1000 -0.11 3.40 28.35 2.69 11.70 40.29 0.27 6.09 18.50 4.91 10.63 18.87

T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)

TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial IID spatial IID spatial IID spatial


N m0 = 1
100 -0.06 17.36 41.58 4.37 31.54 51.83 0.26 1.45 15.86 4.80 35.39 20.89
300 -0.05 15.79 43.83 2.46 30.46 52.12 0.03 -0.73 16.74 2.48 40.26 19.70
500 0.00 14.77 44.31 1.86 32.80 52.37 0.06 -0.06 17.05 1.83 39.96 19.59
1000 -0.03 17.36 45.23 1.32 29.83 51.74 -0.02 -0.31 17.07 1.33 38.67 19.83

m0 = 2
100 -0.06 8.87 39.48 5.12 53.23 51.44 0.18 -10.56 14.18 5.08 46.78 17.13
300 -0.11 6.93 41.71 2.82 55.25 51.57 -0.01 -9.14 14.79 2.75 44.75 16.83
500 -0.09 10.08 43.39 2.16 52.25 51.20 -0.04 -11.78 15.25 2.11 47.13 17.19
1000 0.04 7.58 43.13 1.57 53.65 51.11 0.05 -10.87 15.03 1.48 46.24 16.74

Note: �i; i = 1; :::; N; are the �xed e¤ects in the yit equation given by (13) in the absence of regressors.
Under IID these are generated as �i � IIDN (0; 1) and under spatial as spatially correlated according to
� =(IN � ��W)�1 "� with heteroskedastic errors "� = ("�;1; "�;2; :::; "�;N )

0; where �� = 0:9; the matrix W
is speci�ed as in (91) and for each i, "�;i are drawn as IIDN (0; �2"�;i) with �

2
"�;i

= 1; for i = 1; 2; :::; N=2; and
�2"�;i = 2; for N=2 + 1; :::; N: TQML is invariant to how the �xed e¤ects are generated. The factor normalisation

for the Bai-QML estimator is based on F =
�
I em;F02�0 : See also the note to Table 1.

Table 5: Size(�100) of  for the TQML and Bai-QML estimators in the case
of the AR(1) panel data model, using the true number of factors, m0

(�2 = �2v = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial IID spatial IID spatial IID spatial


N m0 = 1
100 4.6 35.1 76.5 21.3 79.6 72.7 6.5 15.4 40.2 7.2 37.1 44.3
300 5.0 14.8 65.6 12.3 69.5 69.6 5.8 18.3 44.6 5.0 44.6 46.2
500 5.4 13.9 60.5 8.8 61.9 67.1 5.3 21.2 47.2 4.8 47.8 43.5
1000 4.8 12.0 55.5 4.9 51.9 64.4 5.3 21.7 48.1 4.6 47.4 45.8

m0 = 2
100 4.8 29.65 70.4 18.1 65.9 78.2 4.8 47.35 63.8 4.4 54.7 72.7
300 4.0 15.90 57.9 10.1 56.9 75.8 4.9 54.80 68.5 4.7 59.7 78.1
500 2.7 13.65 55.5 6.3 49.0 76.5 3.7 55.85 69.5 5.1 65.1 80.8
1000 3.6 14.60 49.4 4.3 39.7 75.7 5.3 57.70 69.6 4.7 66.5 80.7

See the note to Table 4.
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Table 6: Bias(�100) and RMSE(�100) of  for the TQML
and GMM estimators in the case of the AR(1) panel data
model, using the true number of factors, m0 (T = 10; �

2 = 1)
Bias (�100) RMSE (�100)

TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

m0 1
N 0 = 0:4
100 -0.06 47.59 46.28 -77.87 -71.71 4.37 48.52 47.71 79.19 73.47
300 -0.05 48.22 45.18 -67.05 -55.28 2.46 49.30 47.25 68.19 56.85
500 0.00 47.26 42.83 -62.18 -48.23 1.86 48.63 45.64 62.83 49.40
1000 -0.03 44.17 37.98 -55.13 -39.34 1.32 46.17 42.08 55.69 40.28

0 = 0:8
100 0.26 17.82 17.85 -103.25 -100.24 4.80 17.86 17.89 104.33 102.19
300 0.03 17.83 17.74 -89.22 -77.41 2.48 18.18 18.07 90.14 79.44
500 0.06 17.57 17.44 -81.44 -65.55 1.83 18.90 18.81 82.30 67.37
1000 -0.02 17.50 17.35 -72.58 -52.73 1.33 18.87 18.82 73.30 54.20
m0 2
N 0 = 0:4
100 -0.06 36.71 36.04 -31.72 -28.39 5.12 42.41 42.49 56.67 55.29
300 -0.11 31.22 29.25 -11.99 -7.84 2.82 40.23 38.88 37.23 32.67
500 -0.09 25.70 23.64 -1.81 0.31 2.16 36.29 34.28 23.75 19.81
1000 0.04 16.64 14.62 2.66 2.90 1.57 28.58 26.14 10.95 8.99

0 = 0:8
100 0.18 14.76 14.79 -97.44 -97.95 5.08 22.92 23.33 110.76 112.19
300 -0.01 15.15 15.00 -68.59 -67.07 2.75 23.47 23.67 89.36 88.73
500 -0.04 16.02 15.94 -46.19 -43.19 2.11 21.06 21.08 71.95 69.03
1000 0.05 14.93 14.81 -27.04 -23.18 1.48 22.68 22.72 53.52 48.06

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-di¤erence and �rst-di¤erence
ALS one step and two step estimators respectively computed as described in Sec-
tion II. See also the note to Table 1.

Table 7: Size(�100) of  for the TQML and GMM
estimators in the case of the AR(1) panel data model,
using the true number of factors, m0 (T = 10; �2 = 1)

TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2

m0 1 2
N 0 = 0:4
100 6.5 95.5 98.4 97.7 100.0 4.8 73.9 81.8 51.5 71.0
300 5.8 95.3 98.7 97.9 100.0 4.9 64.2 70.2 34.1 50.2
500 5.3 95.1 99.6 97.8 100.0 3.7 54.5 61.8 22.5 38.0
1000 5.3 92.2 99.5 97.8 100.0 5.3 41.1 48.4 15.0 27.3

0 = 0:8
100 7.2 99.8 100.0 98.8 100.0 4.4 95.8 97.3 80.2 86.4
300 5.0 100.0 100.0 98.3 100.0 4.7 96.7 97.2 62.1 72.0
500 4.8 99.9 100.0 98.2 100.0 5.1 96.8 97.3 46.6 58.3
1000 4.6 99.8 100.0 98.7 100.0 4.7 95.4 96.3 32.4 43.8

See the note to Table 6.
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Table 8: Bias(�100) and RMSE(�100) of  and � for the TQML and Bai-QML
estimators in the case of the ARX(1) panel data model, using the true number of

factors, m0 (�2 = �2v = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8

Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)
TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML

IID spatial IID spatial IID spatial IID spatial


N m0 = 1
100 0.09 1.59 1.98 4.28 6.95 8.49 0.23 2.31 4.90 4.74 5.75 7.93
300 -0.05 0.07 0.35 2.39 2.82 4.21 -0.02 0.87 3.26 2.56 3.58 6.35
500 0.02 0.12 0.25 1.82 2.27 3.16 0.02 0.60 2.81 1.91 2.82 5.86
1000 -0.04 0.05 0.07 1.35 1.43 1.76 -0.02 0.41 2.25 1.41 2.13 5.21

m0 = 2
100 0.22 2.96 3.41 4.48 10.35 12.18 0.41 2.41 5.38 4.89 6.47 8.97
300 0.03 0.46 1.23 2.46 3.98 7.24 0.07 1.05 4.21 2.63 3.94 7.57
500 0.07 0.28 1.07 1.94 3.08 6.83 0.09 0.57 3.82 2.10 2.97 7.02
1000 0.05 0.23 0.88 1.39 2.70 6.12 0.05 0.31 3.59 1.47 2.00 6.79

�
m0 = 1

100 -0.01 0.57 0.81 5.98 7.45 7.72 0.06 0.98 1.18 6.16 7.25 8.50
300 -0.15 0.06 0.05 3.39 3.83 4.17 -0.14 0.47 0.51 3.46 4.10 5.97
500 0.09 0.08 0.08 2.65 3.03 3.21 0.10 0.36 0.30 2.70 3.21 5.15
1000 0.05 0.01 0.00 1.87 2.03 2.02 0.06 0.17 0.23 1.91 2.19 3.97

m0 = 2
100 0.25 0.88 1.43 8.30 31.26 34.36 0.38 -0.14 -3.77 8.51 30.55 34.03
300 0.17 0.97 -0.30 4.61 17.16 16.92 0.20 0.53 -4.01 4.66 17.68 27.14
500 0.11 0.68 -0.54 3.55 13.22 13.82 0.14 0.60 -4.37 3.63 13.61 19.30
1000 -0.06 0.01 -0.75 2.51 9.16 10.46 -0.05 0.02 -6.41 2.55 9.41 23.16

T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)

TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial IID spatial IID spatial IID spatial


N m0 = 1
100 -0.10 3.46 1.18 2.15 11.42 7.30 -0.07 1.16 2.81 1.53 18.51 6.01
300 0.03 3.27 1.12 1.20 10.17 6.93 0.02 2.50 2.59 0.82 14.31 6.72
500 -0.02 3.62 1.18 0.92 10.05 6.98 -0.01 1.45 2.21 0.65 17.73 5.35
1000 0.01 3.46 0.80 0.67 9.05 5.80 0.00 2.25 2.22 0.46 14.20 5.20

m0 = 2
100 -0.10 5.66 12.20 2.33 21.98 24.14 -0.06 -0.04 6.56 1.58 20.16 10.11
300 -0.06 5.67 10.44 1.33 22.84 21.98 -0.02 0.75 6.70 0.91 21.30 9.85
500 -0.03 5.09 9.37 0.98 25.66 20.77 -0.01 -0.61 6.46 0.69 21.96 10.77
1000 0.02 5.80 8.99 0.70 21.67 20.72 0.01 0.54 6.63 0.48 18.43 9.96

�
m0 = 1

100 0.10 -1.25 -0.79 3.98 12.39 7.21 0.07 3.32 -1.73 3.98 40.08 12.53
300 0.01 -1.10 -1.01 2.29 9.96 6.54 0.02 2.57 -2.84 2.28 38.77 11.99
500 0.00 -1.69 -1.00 1.74 10.30 6.24 0.00 2.47 -2.42 1.72 30.21 9.75
1000 0.03 -1.48 -0.52 1.21 8.03 5.38 0.04 1.14 -2.27 1.20 26.98 9.32

m0 = 2
100 0.15 0.88 -11.76 6.27 35.52 32.59 0.15 4.18 -12.85 6.25 77.77 38.09
300 0.09 1.48 -10.90 3.63 32.50 25.17 0.08 5.91 -14.21 3.61 68.38 40.00
500 0.02 0.58 -9.52 2.85 32.43 24.73 0.01 9.55 -14.12 2.84 85.11 38.50
1000 0.04 1.33 -8.51 1.96 36.25 29.94 0.05 9.65 -13.29 1.95 87.15 44.42

Note: �i; i = 1; :::; N; are the �xed e¤ects in the yit equation given by (13). The regressor equation �xed e¤ects,
�xi; are generated as �xi = �i + vi, where vi � IIDN (0; 1) for all i: For the Bai-QML estimator the Mundlak-
Chamberlain projection of �xi on the regressors is used to deal with the dependence of �xi on �i. See also the
note to Tables 1 and 4.
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Table 9: Size(�100) of  and � for the TQML and Bai-QML estimators in
the case of the ARX(1) panel data model, using the true number of factors,

m0 (�2 = �2v = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

TQML Bai-QML TQML Bai-QML TQML Bai-QML TQML Bai-QML
IID spatial IID spatial IID spatial IID spatial


N m0 = 1
100 5.1 12.8 11.9 5.2 37.9 55.4 6.0 18.8 9.2 6.5 38.2 29.1
300 4.4 4.5 6.3 5.1 17.5 34.8 5.2 19.2 7.4 4.0 45.6 24.8
500 3.7 5.0 5.6 3.9 12.4 31.0 5.5 20.6 7.4 5.1 45.2 22.1
1000 4.5 4.6 5.1 4.5 8.4 25.0 5.4 20.7 7.0 5.4 47.7 20.9

m0 = 2
100 4.9 14.9 14.2 4.4 31.0 46.3 5.8 25.4 31.9 5.9 41.4 37.5
300 4.1 5.7 8.2 4.8 15.7 38.8 5.4 35.2 27.1 4.8 50.6 38.1
500 3.6 5.7 8.3 4.6 10.9 34.4 4.3 36.3 24.8 4.7 51.4 39.1
1000 3.6 5.2 7.5 4.2 6.5 31.4 4.3 40.4 24.6 4.1 52.6 39.6

�
m0 = 1

100 5.6 7.7 8.1 5.5 8.9 13.4 6.3 13.2 8.0 6.2 10.0 11.8
300 4.9 4.2 5.4 4.9 6.6 13.8 6.0 16.6 7.4 5.6 13.3 14.8
500 5.5 5.6 5.9 5.3 6.5 16.6 5.2 18.3 6.2 5.2 16.4 13.2
1000 5.5 3.9 4.0 5.7 5.3 16.6 4.4 18.4 6.8 4.7 20.3 13.9

m0 = 2
100 6.1 19.4 18.4 5.7 16.9 21.5 4.9 13.1 26.4 5.0 14.5 22.8
300 5.1 7.2 6.0 5.2 9.5 22.8 5.3 18.9 23.9 5.4 19.8 26.2
500 5.0 6.1 7.0 5.0 7.7 23.4 5.7 21.9 21.5 5.9 21.0 28.2
1000 4.9 4.1 5.9 5.2 5.6 23.9 5.3 26.0 22.5 5.3 26.3 31.2

See the note to Table 8.
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Table 10: Bias(�100) and RMSE(�100) of  and � for the TQML and GMM estimators in the case of the ARX(1)
model, using the true number of factors, m0 (�2 = �2v = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8
Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)

TQML GMM TQML GMM TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2


N m0 = 1
100 0.09 17.79 17.50 -12.27 -7.22 4.28 20.97 20.70 14.84 10.08 0.23 6.53 6.56 -13.27 -7.43 4.74 7.64 7.41 15.41 9.75
300 -0.05 13.06 12.97 -5.74 -2.36 2.39 17.65 17.30 7.67 4.16 -0.02 6.09 6.07 -5.83 -2.10 2.56 7.11 6.79 7.83 3.78
500 0.02 9.46 9.37 -3.18 -1.24 1.82 14.83 14.46 5.24 2.76 0.02 5.72 5.61 -3.13 -1.04 1.91 6.76 6.40 5.28 2.51
1000 -0.04 4.88 4.82 -1.65 -0.65 1.35 10.67 10.28 3.58 1.90 -0.02 5.04 4.89 -1.59 -0.54 1.41 6.15 5.81 3.61 1.75

m0 = 2
100 0.22 4.44 4.43 -2.59 -1.69 4.48 11.80 12.14 8.92 8.00 0.41 2.29 2.20 -2.99 -1.97 4.89 6.69 6.93 8.91 8.10
300 0.03 2.90 2.72 -1.05 -0.65 2.46 7.98 8.09 5.21 4.48 0.07 2.21 2.16 -1.10 -0.62 2.63 5.19 5.26 5.12 4.45
500 0.07 2.38 2.31 -0.63 -0.29 1.94 6.84 6.87 4.14 3.48 0.09 2.19 2.19 -0.56 -0.35 2.10 4.65 4.64 4.02 3.41
1000 0.05 1.26 1.20 -0.20 -0.16 1.39 4.90 4.96 2.76 2.47 0.05 2.03 1.99 -0.22 -0.20 1.47 4.03 4.05 2.66 2.43

�
m0 = 1

100 -0.01 -7.21 -6.90 -5.79 -3.95 5.98 15.03 15.98 10.19 8.69 0.06 -5.52 -4.75 -6.64 -4.17 6.16 10.86 10.61 10.69 8.59
300 -0.15 -4.56 -4.08 -2.88 -1.49 3.39 11.48 12.45 5.94 4.54 -0.14 -4.34 -3.33 -3.12 -1.37 3.46 8.07 7.44 6.11 4.41
500 0.09 -2.20 -1.85 -1.44 -0.68 2.65 9.32 10.07 4.44 3.37 0.10 -2.81 -2.06 -1.52 -0.58 2.70 6.76 6.04 4.49 3.28
1000 0.05 -0.48 -0.24 -0.61 -0.28 1.87 6.61 7.19 3.10 2.30 0.06 -1.32 -0.57 -0.64 -0.22 1.91 5.59 5.01 3.13 2.25

m0 = 2
100 0.25 5.01 3.88 -1.87 -1.28 8.30 24.95 25.10 29.55 26.36 0.38 2.18 1.88 -0.39 -0.22 8.51 23.47 23.79 29.23 26.58
300 0.17 2.96 2.45 -1.23 -0.26 4.61 14.87 14.81 15.97 14.12 0.20 1.19 1.07 -1.09 -0.18 4.66 13.43 13.41 15.97 13.98
500 0.11 2.73 2.43 -0.86 -0.07 3.55 11.39 11.53 12.32 10.49 0.14 1.50 1.31 -0.56 0.15 3.63 10.21 10.18 12.52 10.56
1000 -0.06 1.21 1.02 -0.77 -0.42 2.51 8.37 8.25 8.84 7.48 -0.05 0.78 0.74 -0.45 -0.25 2.55 7.57 7.61 8.79 7.62

T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)

TQML GMM TQML GMM TQML GMM TQML GMM
QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2


N m0 = 1
100 -0.10 - - - - 2.15 - - - - -0.07 - - - - 1.53 - - - -
300 0.03 23.02 20.54 -36.09 -29.68 1.20 23.20 20.83 39.30 32.20 0.02 9.00 8.38 -30.82 -25.17 0.82 9.02 8.42 38.40 30.66
500 -0.02 23.53 20.57 -31.31 -23.92 0.92 23.68 20.84 36.43 27.44 -0.01 9.08 8.34 -22.91 -17.22 0.65 9.10 8.38 33.64 23.99
1000 0.01 23.54 20.25 -22.35 -15.88 0.67 23.68 20.55 31.55 21.37 0.00 9.17 8.41 -13.70 -9.64 0.46 9.19 8.46 27.53 17.10

m0 = 2
100 -0.10 20.28 19.91 1.39 1.39 2.33 21.79 21.58 5.99 5.75 -0.06 8.85 8.79 -2.28 -2.15 1.58 9.07 9.03 5.30 4.99
300 -0.06 14.83 13.15 1.59 1.18 1.33 18.67 18.42 3.44 2.51 -0.02 8.36 7.78 -0.08 -0.05 0.91 8.66 8.17 2.65 1.64
500 -0.03 8.70 6.57 1.16 0.72 0.98 13.32 13.16 2.63 1.68 -0.01 7.69 6.73 0.11 0.05 0.69 8.17 7.37 2.07 1.13
1000 0.02 2.06 0.63 0.61 0.33 0.70 4.38 3.40 1.81 1.02 0.01 5.25 3.91 0.10 0.06 0.48 6.43 5.19 1.49 0.69

�
m0 = 1

100 0.10 - - - - 3.98 - - - - 0.07 - - - - 3.98 - - - -
300 0.01 -14.30 -10.49 -25.76 -20.57 2.29 15.53 12.16 27.96 22.35 0.02 -17.89 -13.42 -29.17 -23.31 2.28 18.46 14.37 34.13 27.09
500 0.00 -15.12 -10.59 -24.08 -17.52 1.74 16.08 12.02 26.81 19.45 0.00 -18.52 -13.21 -25.03 -17.96 1.72 19.01 14.25 31.59 22.36
1000 0.03 -14.75 -9.88 -19.83 -13.18 1.21 15.62 11.10 24.54 15.68 0.04 -19.25 -13.74 -18.97 -12.15 1.20 19.73 14.94 28.02 17.16

m0 = 2
100 0.15 -14.47 -14.06 -0.75 -0.97 6.27 20.18 20.19 12.90 12.64 0.15 -18.71 -18.27 -0.17 -0.21 6.25 21.62 21.42 12.59 12.31
300 0.09 -11.44 -10.77 -0.70 -0.71 3.63 19.80 20.12 8.52 7.14 0.08 -16.43 -13.14 0.17 0.07 3.61 18.99 16.88 8.34 6.98
500 0.02 -6.51 -5.81 -0.41 -0.38 2.85 16.45 15.48 7.30 5.41 0.01 -13.57 -8.91 0.19 0.03 2.84 16.99 13.91 7.22 5.34
1000 0.04 -0.65 -0.48 -0.28 -0.15 1.96 9.53 5.32 5.22 3.51 0.05 -6.33 -1.72 -0.01 -0.01 1.95 11.87 7.71 5.20 3.49

Note: GMM QD1, QD2, FD1 and FD2 are the quasi-di¤erence and �rst- di¤erence ALS one step and two step estimators respectively computed as described
in Section II of the online supplement. "-" signi�es that results are not available which is due to the number of moment conditions exceeding the sample size.
See also the note to Table 1.
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Table 11: Size(�100) of  and � for the TQML and GMM estimators in the case of the ARX(1)
panel data model, using the true number of factors, m0 (�2 = �2v = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
TQML GMM TQML GMM TQML GMM TQML GMM

QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2 QD1 QD2 FD1 FD2


N m0 = 1
100 5.1 87.1 89.3 41.2 42.2 5.2 93.0 95.8 48.8 48.0 6.0 - - - - 6.5 - - - -
300 4.4 69.3 70.9 23.5 17.3 5.1 89.5 90.8 24.6 17.3 5.2 99.9 100.0 96.5 99.8 4.0 100.0 100.0 96.6 100.0
500 3.7 54.2 55.8 13.7 9.9 3.9 85.9 86.8 13.0 9.5 5.5 99.9 99.9 97.1 100.0 5.1 100.0 100.0 96.8 100.0
1000 4.5 34.4 35.7 10.0 8.7 4.5 77.4 77.6 9.9 8.9 5.4 100.0 100.0 96.0 100.0 5.4 100.0 100.0 96.4 100.0

m0 = 2
100 4.9 21.3 26.8 5.7 10.6 4.4 38.0 42.6 5.8 10.3 5.8 93.7 98.0 9.2 74.0 5.9 97.9 99.3 11.7 78.2
300 4.1 17.2 20.6 3.2 6.7 4.8 40.4 42.6 4.5 6.3 5.4 72.1 75.3 9.8 34.5 4.8 95.4 96.1 5.4 29.3
500 3.6 17.4 19.8 3.0 5.4 4.6 39.8 41.7 3.0 5.6 4.3 51.1 48.7 9.6 23.6 4.7 90.5 89.9 5.1 19.1
1000 3.6 9.5 11.7 2.3 4.4 4.2 35.6 37.2 2.1 4.2 4.3 18.7 16.1 7.1 13.7 4.1 69.4 65.1 4.6 11.1

�
m0 = 1

100 5.6 36.8 48.9 15.2 20.7 5.5 22.1 31.1 18.0 21.1 6.3 - - - - 6.2 - - - -
300 4.9 45.1 53.3 10.3 11.3 4.9 33.5 35.1 10.5 11.0 6.0 89.0 89.3 92.4 96.1 5.6 98.9 98.0 83.5 91.2
500 5.5 41.0 48.6 8.3 8.8 5.3 36.2 36.2 7.5 8.5 5.2 93.2 92.0 88.0 93.5 5.2 98.8 96.5 74.5 84.7
1000 5.5 29.5 34.2 5.5 7.9 5.7 39.3 42.4 5.5 7.4 4.4 94.5 93.3 78.3 84.0 4.7 98.4 95.9 64.3 76.1

m0 = 2
100 6.1 15.5 20.0 10.2 17.6 5.7 11.7 18.2 10.0 18.0 4.9 52.8 83.6 8.3 65.1 5.0 69.0 90.5 8.7 64.4
300 5.1 12.6 16.0 6.3 12.3 5.2 10.2 13.4 6.4 11.5 5.3 52.6 63.5 7.2 25.8 5.4 75.4 75.1 6.6 25.1
500 5.0 11.8 13.6 6.0 8.7 5.0 8.8 10.3 5.9 9.0 5.7 34.9 40.9 7.1 19.6 5.9 69.0 62.6 7.1 19.1
1000 4.9 10.1 10.9 6.3 8.4 5.2 8.3 10.3 6.7 9.3 5.3 11.8 16.3 5.6 11.6 5.3 41.8 34.3 5.3 11.7

See the note to Table 10.

Table 12: Empirical frequency of correctly selecting the true number of factors, m0,
using the sequential MTLR procedure when 0 = 1 (�

2 = �2v = 1)
T = 5 T = 10

m0 0 1 2 0 1 2
N AR(1)
100 99.5 99.6 96.5 99.5 99.6 99.6
300 99.8 99.9 100.0 100.0 99.9 100.0
500 99.8 100.0 100.0 100.0 99.9 100.0
1000 99.9 100.0 100.0 99.9 100.0 100.0

ARX(1)
100 99.6 99.9 97.2 99.3 99.7 99.8
300 100.0 100.0 100.0 100.0 100.0 99.9
500 99.9 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 99.9 100.0

Note: First-di¤erences are generated as �yit = ��t + �yi;t�1 + ��xit + ��it; t = 2; 3; :::; T; with ��it =Pm0
`=1 �`i�f`t+�uit = �

0
i�ft+�uit; �yi1 = ��1+��xi1+��i1 and �yi0 = 0, for i = 1; 2; :::; N , and  = � = 1.

The �rst-di¤erences are then cumulated and yit is obtained using arbitrary values for yi0: The idiosyncratic errors
are generated as uit � IID �p

12
(�26 � 6) for i = 1; 2; :::; N ; t = 0; 1; :::; T where �26 is a chi-square variate with

6 degrees of freedom and �2 = 1. The �xed e¤ects are generated as �i � IIDN (0; 1) and the factor loadings
are speci�ed as �`i � IIDN

�
0; �

2

m0

�
; ` = 1; 2; :::;m0: The regressors, xit, for i = 1; 2; :::; N are generated as

xit = �xi +
Pmx
`=1 #i`f`t+vit; vit = �xvi;t�1 +

�
1� �2x

�1=2
"it; for t = 1; 2; :::; T; with �x = 0:95; mx = 2;

#i` � IIDN (0; �2#`); for ` = 1; 2; :::;mx; and �2#` = �2v=mx for all `; "it � IIDN (0; �2vi), vi0 � IIDN (0; �2vi), for
i = 1; 2; :::; N , with �2vi � IID 1

4
(�22 + 2)�

2
v and �xi = �i + vi, where vi � IIDN (0; 1), for all i. The remaining

parameters are generated as described in Section 8.1. Each ft is generated once and the same f 0ts are used throughout
the replications. In the AR(1) case � = 0 and under m0 = 0; �it collapses to uit:
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Table 13: Bias(�100), RMSE(�100) and
Size (�100) of  for the AR(1) panel data
model, using the estimated number of
factors, bm; when 0 = 1 (�2 = 1)

T = 5 T = 10
Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

m0 = 0
100 -1.49 2.74 3.8 -0.53 1.24 3.3
300 -0.89 1.69 3.1 -0.33 0.50 4.2
500 -0.67 1.08 2.6 -0.26 0.37 2.5
1000 -0.53 1.25 2.4 -0.20 0.33 3.0

m0 = 1
100 -2.99 5.70 5.4 -0.61 1.01 3.0
300 -1.83 3.43 4.9 -0.39 0.95 2.8
500 -1.34 2.25 3.7 -0.31 0.46 2.9
1000 -0.97 1.64 3.4 -0.24 0.33 2.4

m0 = 2
100 -3.00 5.09 5.1 -0.61 1.01 3.8
300 -1.70 2.93 3.9 -0.39 0.95 2.3
500 -1.37 2.30 3.2 -0.31 0.46 2.4
1000 -0.99 1.65 3.3 -0.24 0.33 2.1

See the note to Table 12.

Table 14: Bias(�100), RMSE(�100) and
Size(�100) of  and � for the ARX(1) panel
data model, using the estimated number of
factors, bm; when 0 = 1 (�2 = �2v = 1)

T = 5 T = 10
Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)


m0 = 0

100 -1.28 2.17 3.7 -0.43 0.67 3.3
300 -0.77 1.27 3.4 -0.26 0.37 2.1
500 -0.58 0.94 3.2 -0.22 0.30 2.5
1000 -0.46 0.70 3.3 -0.18 0.23 2.9

m0 = 1
100 -2.00 3.46 3.9 -0.53 0.84 3.6
300 -1.24 2.05 2.3 -0.31 0.46 2.3
500 -0.97 1.61 2.3 -0.26 0.37 2.8
1000 -0.75 1.23 3.5 -0.20 0.26 2.2

m0 = 2
100 -2.02 3.52 3.5 -0.50 0.80 2.4
300 -1.19 2.06 3.0 -0.32 0.47 2.1
500 -0.97 1.61 2.5 -0.27 0.39 2.5
1000 -0.71 1.16 2.8 -0.20 0.26 2.0

�
m0 = 0

100 -0.58 4.47 5.5 -0.13 3.01 6.2
300 -0.30 2.55 5.0 -0.09 1.72 5.6
500 -0.21 1.94 4.0 -0.05 1.33 5.3
1000 -0.18 1.39 4.4 -0.03 0.95 4.8

m0 = 1
100 -0.97 5.95 4.5 -0.02 3.95 6.0
300 -0.69 3.38 4.2 -0.04 2.27 5.3
500 -0.36 2.62 4.5 -0.05 1.72 4.5
1000 -0.27 1.87 4.4 0.00 1.20 3.8

m0 = 2
100 -0.59 8.26 5.1 0.28 6.25 5.2
300 -0.29 4.61 4.5 0.17 3.60 5.0
500 -0.27 3.56 3.9 0.09 2.83 5.8
1000 -0.34 2.54 4.6 0.11 1.95 4.7

See the note to Table 12.
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Figure 1: Power functions for  in the case of the AR(1) panel data model with different values of m 
and N 

  
 
Panel A: T=5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Panel B: T=10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:                                                                                  .  �̂� is estimated  using the sequential MTLR procedure                                                                        
described in Section 7.1 with αN=p/N(T-2) and p=0.05;  is the coefficient of the lagged dependent variable in 
(13) in the absence of the xit regressors. See also the note to Table 1. 
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Figure 2a: Power functions for  in the case of the ARX(1) panel data model with different values of 
m and N 
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Panel B: T=10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:                                                                      . �̂� is estimated  using the sequential MTLR procedure                                                                        

described in Section 7.1 with αN=p/N(T-2) and p=0.05;  is the coefficient of the lagged dependent variable in 

(13). See also the note to Table 1.  
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Figure 2b: Power functions for  in the case of the ARX(1) panel data model with different values of 
m and N  

 

Panel A: T=5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:                                                                                   .   is the coefficient of the xit regressors in (13). See 

also the note to Figure 2a.  
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Figure 3a: Power functions for  in the case of the AR(1) panel data model with T=5, N=500, 

m=m̃0=m0+1, and iIIDN(0,1) 

Panel A: m0=1 
 
 
 
 
 
 
 
 
 
 
 
Panel B: m0=2 

 
 
 

 

 

 
 
 

Note: 5% nominal value. i are the fixed effects and  is the coefficient of 

the lagged dependent variable in (13) in the absence of the xit regressors. See also the note to Table 1. 

 

Figure 3b: Power functions for  in the case of the AR(1) panel data model with T=5, N=500, 

m=m̃0=m0+1, and i spatially correlated 

 

Panel A: m0=1 
 
 
 
 
 
 
 
 
 
 
 
Panel B: m0=2 

 
 
 

 

 

 
 
 

Note: 5% nominal value. See also the note to Figure 3a. 
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Figure 4a: Power functions for  in the case of the ARX(1) panel data model with T=5, N=500, 0=1, 

m=m̃0=m0+1, and iIIDN(0,1) 

 
Panel A: m0=1 
 
 
 
 
 
 
 
 
 
 
 
Panel B: m0=2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Note: 5% nominal value. i are the fixed effects and  is the coefficient of 

the lagged dependent variable in (13). See also the note to Table 1. 

 

Figure 4b: Power functions for  in the case of the ARX(1) panel data model with T=5, N=500, 0=1, 

m=m0 with iIIDN(0,1) 
 

Panel A: m0=1 

  
Panel B: m0=2 

 
 

Note: 5% nominal value. i are the fixed effects and  is the coefficient 

of the xit regressors in (13). See also the note to Table 1. 
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Figure 5a: Power functions for  in the case of the ARX(1) panel data model with T=5, N=500, 0=1, 

m=m̃0=m0+1, and i spatially correlated 

 
Panel A: m0=1 
 
 
 

 
 
 
 
 
 
 
 
 
Panel B: m0=2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Note: 5% nominal value. i are the fixed effects and  is the coefficient of 

the lagged dependent variable in (13). See also the note to Table 1. 

 

Figure 5b: Power functions for  in the case of the ARX(1) panel data model with T=5, N=500, 0=1, 

m=m̃0=m0+1, and i spatially correlated 
Panel A: m0=1 
 
 
 
 
 
 
 
 
 
 
 
Panel B: m0=2 
 

 

 

 

 

 
 

Note: 5% nominal value. i are the fixed effects and  is the coefficient 

of the xit regressors in (13). See also the note to Table 1. 
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Figure 6: Power functions for  in the case of the AR(1) panel data model with different values of m 
and N 

 
Panel A: T=5 

 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

 

Note:                                                                                  .  �̂� is estimated  using the sequential MTLR procedure                                                                        
described in Section 7.1 with αN=p/N(T-2) and p=0.05;  is the coefficient of the lagged dependent variable in 
(13) in the absence of the xit regressors. See also the note to Table 4. 
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Figure 7a: Power functions for  in the case of the ARX(1) panel data model with different values of 
m and N 

 
Panel A: T=5 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

Note:                                                                      . �̂� is estimated  using the sequential MTLR procedure                                                                        

described in Section 7.1 with αN=p/N(T-2) and p=0.05;  is the coefficient of the lagged dependent variable in 

(13). See also the note to Table 4. 

 

Figure 7b: Power functions for estimation of  in the ARX(1) model with different values of m and N  
 

Panel A: T=5 

 

 

 

Panel B: T=10 

 

 

 
Panel B: T=10 

 

 

 

 

 
 
 
Note:                                                                                  .  is the coefficient of the xit  regressors in (13). See also 

the note to Figure 7a.  
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Appendix

A.1 Lemmas and their proofs

Lemma 1 Consider the composite random variable; �it, i = 1; 2; :::; N , for t = 1 de�ned by (25), and
for t = 2; 3; :::; T de�ned by (17). Then under Assumptions 1, 2, 3, 5, and 6, the following moment
conditions hold:24

sup
i
E
�
j�itj4+�

�
< K, for t = 1; 2; :::; T , (A.1)

and
sup
i;t
E
�
k�xitk4+�

�
< K. (A.2)

Proof. Result (A.1) follows by applying Minkowski�s inequality to the elements of �i = (�i1; �i2; � � � ; �iT )0.
Speci�cally, for t = 2; 3; :::; T; �it = g

0
t�i +�uit and we have�

E j�itj4+�
� 1
4+�

=
�
E
��g0t�i +�uit��4+�� 1

4+�

�
�
E
��g0t�i��4+�� 1

4+�
+
�
E j�uitj4+�

� 1
4+�

� kgtk
�
E k�ik4+�

� 1
4+�

+
�
E j�uitj4+�

� 1
4+�

:

Under Assumptions 1, 2 and 3 supt kgtk < K; supiE k�ik4+� < K and supi;tE j�uitj4+� < K: Similarly
for t = 1; �i1 = eg01�i + vi1, and keg1k < K and supiE jvi1j4+� < K (see (26) and related results). Hence,�
E j�itj4+�

� 1
4+� � K, for t = 1; 2; :::; T and (A.1) follows as required. To establish condition (A.2), using

(14) we �rst note that

k�xitk � k�x;tk+
mxX
j=1

jgx;jtj
�ij;x+ 1X

j=0

k	jk k"i;t�jk ;

and by the Minkowski inequality for in�nite sums we have

(E k�xitkp)1=p � k�x;tk+
mxX
j=1

jgx;jtj
�
E
�ij;xp�1=p + 1X

j=0

k	jk (E k"i;t�jkp)1=p ;

for any p � 1. Set p = 4 + �, and note that under Assumption 5, supt k�x;tk < K; supj;t jgx;jtj < K,

supi;j E
�ij;x4+� < K, supi;tE k"itk4+� < K; and

P1
j=0 k	jk < K. Therefore,

�
E k�xitk4+�

�1=(4+�)
�

K, and (A.2) follows as required.

Lemma 2 Consider the T � 1 vector of composite errors �i = (�i1; �i2; :::�iT )
0, where �i1 is de�ned by

(25) and �it, for t = 2; 3; :::; T are de�ned by (17). Suppose that the conditions of Lemma 1 hold and T
is �xed. Then

sup
i
E k�ik4 < K <1; (A.3)

sup
i
E kZik4 < K, sup

i
E k�yik4 < K, and sup

i
E k�Wik4 < K <1: (A.4)

24 It is worth emphasising that this and other lemmas are established for a �nite T and conditional on given values of time
e¤ects, namely gt; �t, �x;t;and, gx;t; for t = 1; 2; :::; T:
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Proof. To obtain (A.3) note that

k�ik4 =
�i�0i2 = tr ��i�0i�i�0i� = ��0i�i�2 =

 
TX
t=1

�2it

!2
:

Then by Minkowski�s inequality we have

E k�ik4 = E

 
TX
t=1

�2it

!2
�
 

TX
t=1

�
E
�
�4it
��1=2!2

;

and since supiE(j�itj4+�) < K for t = 1; 2; :::; T from result (A.1) of Lemma 1; result (A.3) follows
noting that T is �xed. To establish (A.4), note that �Wi = (IT ;�Xi;�yi;�1) = (IT ;�Xi;L�yi), where
�yi;�1 = (0;�yi1; :::;�yi;T�1)

0; �Xi and �yi are given by (43) and (42), and recall L is the lag matrix
operator which is given explicitly by

L =

0BBBBBB@
0 0 � � � � � � 0
1 0 � � � � � � 0
... 1 0 � � �

...
...
...
. . . . . .

...
0 0 � � � 1 0

1CCCCCCA ; (A.5)

with kLk2 = T�1. It is now easily seen that k�Wik2 � T+k�Xik2+(T � 1) k�yik2, and by Minkowski�s
inequality we obtain�

E k�Wik4
�1=2

� T +
�
E k�Xik4

�1=2
+ (T � 1)

�
E k�yik4

�1=2
:

Also k�Xik2 = k�xi1k2 + 2
PT

t=2 k�xitk
2, and since by result (A.2) of Lemma 1

supi;tE
�
k�xitk4+�

�
< K, it then follows that supiE k�Xik4 < K. Similarly, using (42), we have

k�yik � kak+
B�1 () k�k k�Xik+

B�1 () k�ik ;
and by assumption kak < K, k�k < K, and

B�1 () < K. Also by result (A.1) of Lemma 1
supi;tE j�itj4+� < K; and it is already established that supiE k�Xik4 < K. Hence,�

E k�yik4
�1=4

� kak+
B�1 () k�k�E k�Xik4

�1=4
+
B�1 ()�E k�ik4�1=4 ;

and it follows that supiE k�yik4 < K, as required.

Lemma 3 Consider the model given by (28) and let

�i (') = �yi ��Wi'; �� ( ) = E
�
�i (') �

0
i (')

�
:

De�ne
di( ;'0) = �W

0
i�� ( )

�1 �i ('0) ; (A.6)

and suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41) hold. Then

E0 [di( ;'0)] = b ( ;'0) = [0;0;�� ( ; 0)]
0 ; (A.7)

where
� ( ; 0) = tr f[�� ( )��� ( 0)]C ( ;0)g (A.8)
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and

C ( ;0) = �� ( )
�1

0BBBBB@
0 0 � � � 0 0
1 0 � � � 0 0
...

...
. . .

...
...

T�30 T�40 � � � 0 0

T�20 T�30 � � � 1 0

1CCCCCA : (A.9)

Furthermore
E0 [di( 0;'0)] = 0, for i = 1; 2; :::; N; (A.10)

bN ( ;'0) =
1

N

NX
i=1

di( ;'0)
a:s:! b ( ;'0) = [0;0;�� ( ; 0)]0 ; (A.11)

bN ( 0;'0) =
1

N

NX
i=1

�W0
i�� ( 0)

�1 �i ('0)
a:s:! 0; (A.12)

and

�N;� ( 0) =
1

N

NX
i=1

�i ('0) �i ('0)
0 a:s:! �� ( 0) : (A.13)

Proof. First recall that � = ('0; 0)0 with ' = (�0;)0, � =
�
d0;�0

�0
=
�
d0;�0;�0

�0 where � = ��0;�0�0
and  =

�
!; �2; vec(Q)0

�0
: Under (28),

�i ('0) = �yi ��Wi'0 = G0�0i+r0i; (A.14)

where G0;�0i, and r0i denote the values of G; �i and ri evaluated at  =  0. It is now easily seen
that E0 [�i ('0)] = 0, and V ar [�i ('0)] = E0

�
�i ('0) �

0
i ('0)

�
= �� ( 0). Also under Assumptions 1-6,

�i (') = G�i+ri are independently distributed over i for all values of � 2 ��, and �xit is independently
distributed from uit and �i. Partition �Wi as �Wi = (IT ;�Xi;�yi;�1), where IT is the identity matrix
of order T , �Xi is given by (43) and �yi;�1 = (0;�yi1; :::;�yi;T�1)0 = L�yi; where L and �yi are given
by (A.5) and (42). Also, using (42) and evaluating it at � = �0we have

�yi = B (0)
�1 (�Xi�0 + d0) +B (0)

�1 �i ('0) ; (A.15)

where B () is de�ned by (37). Consider now (A.6), and note that

di( ;'0) =�W
0
i�� ( )

�1 �i ('0) =

0@ �� ( )
�1 �i ('0)

�Xi�� ( )
�1 �i ('0)

�y0iL
0�� ( )

�1 �i ('0)

1A =

0@ d1i ( ;'0)
d2i ( ;'0)
d3i ( ;'0)

1A : (A.16)

Further, using (A.15), write d3i ( ;'0) as

d3i ( ;'0) =
h
B (0)

�1 (�Xi�0 + d0) +B (0)
�1 �i ('0)

i0
L0�� ( )

�1 �i ('0) (A.17)

= (�Xi�0 + d0)
0B (0)

0�1 L0�� ( )
�1 �i ('0) + �

0
i ('0)B (0)

0�1 L0�� ( )
�1 �i ('0) :

Also under Assumptions 1, 3, and 5, �Xi and �i ('0) are cross-sectionally independently distributed,
and E0 [�i ('0)] = 0. Hence

E0 [d1i ( ;'0)] = 0, and E0 [d2i ( ;'0)] = 0, for all i; (A.18)
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and

E0 [d3i ( ;'0)] = E0

h
�0i ('0)B (0)

0�1 L0�� ( )
�1 �i ('0)

i
= tr

n
B (0)

0�1 L0�� ( )
�1E0

�
�i ('0) �

0
i ('0)

�o
= tr

h
�� ( 0)�� ( )

�1 LB (0)
�1
i
:

Also, using (38) and (A.5), we have

� (0) = LB (0)
�1 =

0BBBBB@
0 0 � � � 0 0
1 0 � � � 0 0
...

...
. . .

...
...

T�30 T�40 � � � 0 0

T�20 T�30 � � � 1 0

1CCCCCA :

Hence, tr
h
LB (0)

�1
i
= 0, and E0 [d3i ( ;'0)] can be written as

E0 [d3i ( ;'0)] = � tr f[�� ( )��� ( 0)]C ( ;0)g = �� ( ; 0) ; (A.19)

where C ( ;0) = �� ( )
�1 LB (0)

�1. Using (A.19) and (A.18) now yields (A.7), as required. Result
(A.10) then follows immediately, noting that E0 [d3i ( 0;'0)] =

tr
h
�� ( 0)�� ( 0)

�1 LB (0)
�1
i
= tr

h
LB (0)

�1
i
= 0. To establish (A.11), since �Xi and �i ('0)

are cross-sectionally independent for i = 1; 2; :::; N it follows that di( ;'0) are also independently
distributed across i. Hence to show that bN ( ;'0) =

1
N

PN
i=1 di( ;'0) converges almost surely to

limN!1
1
N

PN
i=1E0 [di( ;'0)] ; it is su¢ cient to show that

supiE0 kdi( ;'0)k
2 < K. Consider each of the three terms of di( ;'0) in turn. First, from result (A.3)

and Liapunov�s inequality we have that E k�ik2 < K <1 and noting that by assumption 7(ii) �� ( )
�1

is positive de�nite uniformly in  2 � , then

sup
i
E0 kd1i( ;'0)k

2 �
�� ( )

�1
2 sup

i
E0 k�i ('0)k2 < K: (A.20)

Similarly, using in addition result (A.4) we have

sup
i
E0 kd2i( ;'0)k

2 � sup
i
E k�Xik2

�� ( )
�1
2 sup

i
E0 k�i ('0)k2 < K. (A.21)

Finally, applying the Minkowski inequality to (A.17) we have

h
E0 kd3i( ;'0)k

2
i1=2

�
�
E0

(�Xi�0 + d0)
0B (0)

0�1 L0�� ( )
�1 �i ('0)

2�1=2
+

�
E0

�0i ('0)B (0)0�1 L0�� ( )
�1 �i ('0)

2�1=2 ;
E0

(�Xi�0 + d0)
0B (0)

0�1 L0�� ( )
�1 �i ('0)

2 � E0 k�Xi�0 + d0k2
B (0)0�1 L0�� ( )

�1
2

�E0 k�i ('0)k2 ;

E0

�0i ('0)B (0)0�1 L0�� ( 0)
�1 �i ('0)

2 �
B (0)0�1 L0�� ( )

�1
2E0 k�i ('0)k4 :
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But
B (0)0�1 L0�� ( )

�1
2 � �� ( )

�1
2 kLk2 B (0)�12, and it is easily seen that kLk2 = T �

1; and
B (0)�1 � PT

t=1 j0j
t�1 < K. Also, by results of Lemma 2, supiE0 k�i ('0)k4 < K; and�� ( )

�1
 < K, by assumption. Further, E0 k�Xi�0 + d0k2 � k�0k2E k�Xik2 + kd0k2 which is

uniformly bounded under results (A.4) of Lemma 2, noting that �0 and d0 are de�ned on a compact
set and are bounded as well. Therefore, supiE0 kd3i( ;'0)k

2 < K. Now using this result together with
(A.20) and (A.21) in (A.16) we have

sup
i
E0 kdi( ;'0)k

2=sup
i
E0

�W0
i�� ( )

�1 �i ('0)
2 < K;

which establishes that di( ;'0) is uniformly L2-bounded, besides being cross-sectionally independent.
Hence,

bN ( ;'0) = N�1
NX
i=1

di( ;'0)
a:s:! lim

N!1
N�1

NX
i=1

E0 [di( ;'0)] = [0;0;�� ( ; 0)]
0 ;

which establishes (A.11). Result (A.12) follows from the above by setting  =  0 and noting from (A.10)
that E0 [di( 0;'0)] = 0. Finally, since supiE0

�i ('0) �0i ('0)2 < K, for a �nite T (see result (A.3) of
Lemma 2), and by assumption �i ('0) �

0
i ('0) are distributed independently over i, then

�N;� ( 0) =
1

N

NX
i=1

�i ('0) �i ('0)
0 a:s:! lim

N!1

1

N

NX
i=1

E0
�
�i ('0) �i ('0)

0� ;
and result (A.13) follows, since E0

�
�i ('0) �

0
i ('0)

�
= �� ( 0).

Lemma 4 Consider the average log-likelihood function

�̀
N (�) = �̀N ('; ) = �

T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

NX
i=1

�i (')
0�� ( )

�1 �i (') (A.22)

�̀
N (�) = N�1`N (�) and `N (�) is de�ned by (34). Then under Assumptions 1-7(ii),(iii) and 8, and the
order condition (41), we have

�̀
N (�0)

a:s:! �T
2
ln (2�)� 1

2
log j�� ( 0)j �

T

2
; (A.23)

and

�̀
N (�)

a:s:! �T
2
ln (2�)� 1

2
ln j�� ( )j �

1

2
tr
h
�� ( )

�1�� ( 0)
i

(A.24)

�1
2
('�'0)0A ( ) ('�'0)� ( � 0)� ( ; 0) ;

where � ( ; 0) is de�ned by (A.8). Also

�̀
N (�0)� �̀N (�)

a:s:! lim
N!1

E0
�
�̀
N (�0)� �̀N (�)

�
� 0; (A.25)

where

lim
N!1

E0
�
�̀
N (�0)� �̀N (�)

�
=

1

2
tr
h
�� ( )

�1�� ( 0)
i
� 1
2
log (j�� ( 0)j = j�� ( )j)�

T

2

+
1

2
('�'0)0A ( ) ('�'0) + ( � 0)� ( ; 0) : (A.26)
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Proof. Result (A.23) follows by evaluating (A.22) under � = �0, and using (A.13) from Lemma 3. To
establish (A.24) we �rst note that for any � 2 ��, �i (') = �i ('0)��Wi ('�'0), and using this result
in (A.22) we have

�̀
N (�) = �T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

� PN
i=1 [�i ('0)��Wi ('�'0)]0�� ( )

�1

� [�i ('0)��Wi ('�'0)]

�

= �T
2
ln (2�)� 1

2
ln j�� ( )j �

1

2

264 tr
�
�� ( )

�1
h
1
N

PN
i=1 �i ('0) �i ('0)

0
i�

�2 ('�'0)0 bN ( ;'0)
+ ('�'0)0AN ( ) ('�'0)

375 ;
(A.27)

where

AN ( ) =
1

N

NX
i=1

�W0
i�� ( )

�1�Wi; bN ( ;'0) =
1

N

NX
i=1

di( ;'0); (A.28)

and di( ;'0) = �W
0
i�� ( )

�1 �i ('0), as de�ned by (A.6).
Next consider AN ( ) =

1
N

PN
i=1�W

0
i�� ( )

�1�Wi and note that

sup
i
E
�W0

i�� ( )
�1�Wi

2 < �� ( )
�1
2 sup

i
E k�Wik4 < K;

where
�� ( )

�1
 < K under condition (ii) of Assumption 7, and supiE k�Wik4 < K by Lemma 2.

Also under Assumptions 1, 3, and 5, �Wi are cross-sectionally independent. This follows since �xi are
independent across i by Assumption 5 (see also the expression for �xi given by (20)), and �yit being
a function of �xit and �it (see (42)) are also cross-sectionally independent noting that �it are cross-
sectionally independent under Assumptions 1 and 3. Hence, AN ( )

a:s:! A ( ) for every  2 � (see,
for example, Davidson (1994, Theorem 19.4)).

Result (A.24) then follows using (A.11) and (A.13) from Lemma 3 in (A.27) evaluated at �0 and �,
respectively. Results (A.25) and (A.26) follow from the sure convergence property of (A.23) and (A.24).
That limN!1E0

�
�̀
N (�0)� �̀N (�)

�
� 0 follows from the Kullback�Leibler type information inequality

and Jensen�s inequality (see for example Section 2.1 of Lee and Yu (2016)).

Lemma 5 Consider the average log-likelihood function de�ned by (53) and (35):

�̀
N (�) = �T

2
ln (2�)� 1

2
ln j�� ( )j �

1

2N

NX
i=1

�0i(')�� ( )
�1 �i(');

�i(') = �yi ��Wi';

and suppose that Assumptions 1-7(ii),(iii) and 8, as well as the order condition (41), hold . Denote the
average score function by �sN (�) = @ �̀N (�) =@�. Then

�sN (�0)
a:s! 0; (A.29)

p
N�sN (�0)!d N [0;J (�0)] ; (A.30)

where

J (�0) = lim
N!1

1

N

NX
i=1

E
�
!i (�0)!

0
i (�0)

�
; (A.31)

!i (�0) =

�
�W0

i�� ( 0)
�1 �i('0)

�i (�0)

�
; (A.32)
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with the jth element of �i (�0) given by

�ij (�0) =
1

2
�0i('0)�� ( 0)

�1 @�� ( 0)

@ j
�� ( 0)

�1 �i('0)�
1

2
tr

�
�� ( 0)

�1 @�� ( 0)

@ j

�
: (A.33)

A consistent estimator of J (�0) is given by

bJ�b�� = 1

N

NX
i=1

!i

�b��!0i �b�� ; (A.34)

where b� = argmax�2�� �̀N (�).
Proof. Let �sN (�) =

�
�s0N;'(�);�s

0
N; (�)

�0
;  =

�
 1;  2; ::::;  n 

�0
, where n = dim( ) = 1 + Tm �

m(m� 1)=2, and note that

�sN;'(�) =
@ �̀N (�)

@'
=
1

N

NX
i=1

�W0
i�� ( )

�1 �i(');

�sN; j (�) =
@ �̀N (�)

@ j
= �1

2

@ ln j�� ( )j
@ j

+
1

2N

NX
i=1

�0i(')�� ( )
�1 @�� ( )

@ j
�� ( )

�1 �i(');

for j = 1; 2; :::; n . Using (A.6), and result (A.12) of Lemma 3, it then readily follows that

�sN;'(�0) =
1

N

NX
i=1

di (�0)
a:s! 0; (A.35)

Also

E0

�
�0i('0)�� ( 0)

�1 @�� ( 0)

@ j
�� ( 0)

�1 �i('0)

�
= tr

�
�� ( 0)

�1 @�� ( 0)

@ j

�
;

and using well known results on the partial derivatives of the determinants, we have (see, for example,
Magnus and Neudecker (1988, p.151)).

@ ln j�� ( 0)j
@ j

= tr

�
�� ( 0)

�1 @�� ( 0)

@ j

�
;

and hence �sN; (�) can be written alternatively as

�sN; j (�0) =
@ �̀N (�0)

@ j
=
1

N

NX
i=1

�ij :

where

�ij (�0) =
1

2
�0i('0)�� ( 0)

�1 @�� ( 0)

@ j
�� ( 0)

�1 �i('0)�
1

2
tr

�
�� ( 0)

�1 @�� ( 0)

@ j

�
: (A.36)

Therefore,

�sN (�0) =

�
�sN;'(�0)
�sN; (�0)

�
=

 
1
N

PN
i=1 di(�0)

1
N

PN
i=1 �i(�0)

!
;

where �i (�0) =
�
�i1 (�0) ; �i2 (�0) ; :::; �i;n (�0)

�0.
sup
i
E k�i (�0)k2 = sup

i
E
�
� 0i (�0)�i (�0)

�
=

n X
j=1

sup
i
E
�
�2ij (�0)

�
� n sup

i;j
E j�ij (�0)j2 ;
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and application of Minkowski�s inequality to (A.36) yields

sup
i
E j�ij (�0)j2 �

1

4

"�� ( 0)
�1
2 @�� ( 0)

@ j

�sup
i
E k�i('0)k4

�1=2
+ jCj

#2
;

where C = tr
h
�� ( 0)

�1 @��( 0)
@ j

i
: But under Assumption 7(ii) and noting that n is �nite, we also

have
@��( 0)@ j

 < K and
�� ( 0)

�1
 < K, and from result (A.3) supiE k�i('0)k4 < K. Therefore,

supiE k�i (�0)k2 < K. Also recall that �i('0) are independently distributed over i, which implies
that �i are also independently distributed across i. Therefore, �i have zero means (by construction), are
independently distributed over i and have bounded second-order moments, which ensure that �sN; (�0)

a:s!
0, and together with (A.35) yields �sN (�0)

a:s! 0, as required. Consider now the limiting distribution ofp
N�sN (�0) and note that

p
N�sN (�0) =

� p
N�sN;'(�0)p
N�sN; (�0)

�
=

1p
N

 PN
i=1 di(�0)PN
i=1 �i (�0)

!
=

1p
N

NX
i=1

!i (�0) ;

where !i (�0) =
�
d0i(�0);�

0
i (�0)

�0
, and it is already established that !i (�0) are independently distributed

over i, have zero means and bounded second-order moments. Therefore, by the Liapounov central limit
theorem and the Cramér-Wold device we have25

p
N�sN (�0) !d N [0;J (�0)] ;where J (�0) is given by

(A.31), as required.
p
Nconsistency of bJ�b�� for J (�0) follows from the local consistency of b� for �0 on

��, and the independence of !i (�0) over i.

A.2 Proofs of Propositions and Theorems

Proof of Theorem 2. Firstly, under the assumptions of the theorem it su¢ ces to show that �CN (�) =
�2�̀N (�)

a:s:! �C (�) uniformly on �� (see Section 6), which together with the result in Proposition 1 and
that �� ( 0) and �� ( ) commute deliver local consistency. From results in Lemma 4 (see (A.25) and
(A.26)) it follows that �CN (�) = �2�̀N (�)

a:s:! �C (�) for every � 2 ��, where

�CN (�) = �CN ('; ) = T ln (2�) + ln j�� ( )j+
1

N

NX
i=1

�i (')
0�� ( )

�1 �i (')

and

�C (�) = �C ('; ) = � ( ; 0) + ('�'0)0A ( ) ('�'0) + 2 ( � 0)�( ; 0) + C( 0);

and the term C does not depend on �. Since �̀N (�) is continuous in � by assumption, this pointwise
result holds uniformly on �� by the uniform law of large numbers, so long as the dominance condition

E sup
�2��

����0i(')�� ( )
�1 �i(') + T ln (2�) + ln j�� ( )j

��� <1
holds; see for example Pötscher and Prucha (2001, Theorem 23).

Since T is �nite, it is su¢ cient to show that

E sup
�2��

����0i(')�� ( )
�1 �i(') + ln j�� ( )j

��� <1:
25See, for example, White (2001, Theorem 5.10).
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We have that

E sup
�2��

����0i(')�� ( )
�1 �i(') + ln j�� ( )j

��� � E sup
�2��

����0i(')�� ( )
�1 �i(')

���+ sup
 2� 

jln j�� ( )jj :

Starting with the second term and using Assumption 7(ii) and the property that for any positive de�nite
real n� n matrix A; ln jAj � tr(A)� n;

sup
 2� 

jln j�� ( )jj � sup
 2� 

jtr[�� ( )]� T j

� sup
 2� 

�PT
t=1 �t[�� ( )]

�
+ T

� T sup
 2� 

(�max[�� ( )])� T � T (cmax � 1) <1:

For the �rst term, de�ning �' = �� �N�(%0), we have

E sup
�2��

����0i(')�� ( )
�1 �i(')

��� � E sup
�2��

���tr[�i(')�0i(')�� ( )
�1]
���

� E sup
�2��

n
�max[�� ( )

�1] k�i(')k2
o

� E sup
 2� 

�max[�� ( )
�1]E sup

'2�'
k�i(')k2

� E

�
inf

 2� 
�min[�� ( )]

��1
E sup
'2�'

k�i(')k2

� 1

cmin
E sup
'2�'

k�i(')k2 :

Further

E sup
'2�'

k�i(')k2 = E sup
'2�'

k�yi ��Wi'k2

� E k�yik2 + E k�Wik2 sup
'2�'

k'k2 :

But given that �� is a compact set sup'2�' k'k
2 is bounded. Furthermore, from result (A.4) of Lemma

2 and Liapunov�s inequality we have that E k�yik2 < K < 1 and E k�Wik2 < K < 1: Since c�1min
is bounded by Assumption 7(ii) it follows that E sup�2��

����0i(')�� ( )
�1 �i(')

��� < 1 and hence the

dominance condition holds.
To establish asymptotic normality of b�, by application of the mean value theorem to �̀N (�) around

� = �0, we �rst note that

�̀
N (�)� �̀N (�0) = (� � �0)0�sN (�0)�

1

2
(� � �0)0HN (��) (� � �0) ; (A.37)

where �sN (�) = @ �̀N (�) =@�, HN (�) = �@2 �̀N (�) =@�@�0, and �� lies on a line segment joining � and �0.
By result (A.29) of Lemma 5, and combining (54) and (55) we have

�sN (�0)
a:s:! 0;

2
�
�̀
N (�0)� �̀N (�)

� a:s:! � ( ; 0) + 2 ( � 0)�( ; 0) + ('�'0)0A ( ) ('�'0) :

Hence, in view of (A.37) we must also have

(� � �0)0HN (��) (� � �0)
a:s:! � ( ; 0) + ('�'0)0A ( ) ('�'0) + 2 ( � 0)�( ; 0): (A.38)
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But by Proposition 1 and given that �� ( 0) and �� ( ) commute, on �� the right hand side of (A.38)
can be equal to zero if and only if � = �0, and hence we must also have

HN (��)
a:s:! H(�0); (A.39)

where H(�0) must be a positive de�nite matrix given by H(�0) = limN!1E0
�
�@2 �̀N (�0) =@�@�0

�
.

Applying the mean value theorem to �sN (b�) around b� = �0 we have
0 =

p
N�sN (b�) = pN�sN (�0)�HN (��)

p
N(b� � �0)

where �� lies on a line segment joining b� and �0. Then,
p
N(b� � �0) = H�1

N (
��)
hp

N�sN (�0)
i
:

Since �� lies between b� and �0 and b� is almost surely locally consistent for �0 on the set �� so is
��; and as in (A.39) above HN (��)

a:s:! H(�0). In addition, using result (A.30) of Lemma 5, we havep
N�sN (�0)!d N [0;J (�0)], where J (�0) is given by (A.31). Hence

p
N(b� � �0)!d N (0;V�) :

where V� has the familiar sandwich form

V� = H
�1(�0)J (�0)H

�1(�0):

Proof of Theorem 3. Denote the exactly identi�ed estimator of � (under H1) by b�mmax with its
dimension n�� = 3 + T (k + 1) + k + (T � 2)(T + 3)=2, and the constrained estimator of � under H0 :
m = m0 < T � 2 by b�m0 . The latter estimator is obtained under r (�0) = 0, where r (�0) is the r0 � 1
vector of restrictions on `N (�), the log-likelihood function de�ned by (34), implied by setting m = m0.
Since b�m0 is the constrained estimator of � under H0 : r (�0) = 0; by using the results from constrained
optimisation (see, for example, Davidson (2000, pp.289-290)), we have

p
N
�b�m0 � �0

�
a� F0

p
N�sN (�0) (A.40)

where �sN is the score function in Lemma 5 which satis�es

p
N�sN (�0)

d! N (0;J0) (A.41)

and
F0 = H

�1
0 �H�1

0 R
0
0

�
R0H

�1
0 R

0
0

��1
R0H

�1
0 : (A.42)

Also for the unconstrained estimator b�mmax , using result (65) in Section 6, we have

p
N
�b�mmax � �0

�
a� H�1

0

p
N�sN (�0) (A.43)

Consider now the mean value expansion of `N
�b�m0

�
around b� = b�mmax given by

`N

�b�m0

�
= `N

�b�mmax

�
+
@`N

�b�mmax

�
@�

0 �b�m0 � b�mmax

�
+
1

2

�b�m0 � b�mmax

�0 @2`N ����
@�@�0

!�b�m0 � b�mmax

�
;
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where �� lies on points between b�m0 and b�mmax . Since b�mmax is the unconstrained ML estimator, we have
@`N (b�mmax)=@� = 0, and

2
h
`N

�b�mmax

�
� `N

�b�m0

�i
=
p
N
�b�m0 � b�mmax

�0 �1
N

@2`N
�
��
�

@�@�0

!
p
N
�b�m0 � b�mmax

�
: (A.44)

Since b�mmax and b�m0

p! �0 under m = m0; we have ��
p! �0 and

2
h
`N

�b�mmax

�
� `N

�b�m0

�i
a�
p
N
�b�m0 � b�mmax

�0
H0

p
N
�b�m0 � b�mmax

�
: (A.45)

Using (A.40) and (A.43), we have the following result:
p
N
�b�mmax � b�m0

�
a�
�
H�1
0 � F0

�p
N�sN (�0) =

�
H�1
0 � F0

�
J
1=2
0 zn (�0) (A.46)

where z (�0) = J
�1=2
0

p
N�sN (�0)

d! N
�
0; In��

�
, which follows from (A.41). Then, using (A.46) in (A.44),

we have
2
h
`N

�b�mmax

�
� `N

�b�m0

�i
a� z (�0)0A0z (�0)

where

A0 = J
1=2
0

�
H�1
0 � F0

�
H0

�
H�1
0 � F0

�
J
1=2
0 = J

1=2
0 H�1

0 R
0
0

�
R0H

�1
0 R

0
0

��1
R0H

�1
0 J

1=2
0 : (A.47)

Since J1=20 H�1
0 is full rank under Theorem 2, then, rank (A0) = rank (R0) = r0; and, hence, only r0

eigenvalues of A0 are non-zero. Furthermore, since A0 is symmetric and positive semi-de�nite, the
r0 eigenvalues of A0 are positive, which are denoted by w1; w2; :::; wr0 > 0: Then, using the spectral
decomposition of A0; we obtain the following result

2
h
`N

�b�mmax

�
� `N

�b�m0

�i
a�

r0X
j=1

wjz
2
j

where zj � IIDN (0; 1), as required for the �rst part of the theorem under the H0.
Consider now the asymptotic distribution of the log-likelihood ratio statistic under the �-local alter-

native H1N : r (�1N ) = 0; where �1N = �0 +N��=2�; with �0� > 0. With a slight abuse of notation we
continue to denote by b�m0 the constrained estimator of � now underH1N , and by b�mmax the unconstrained
estimator of � under H1N . First note that (by the mean value theorem around �0)

p
N�sN (�1) =

p
N�sN (�0) +

p
N
@�sN (�

�
N )

@�
(�1N � �0) ; (A.48)

where the rows of @�sN (�) =@� are evaluated at ��, points between �0, and �1N . Also using (A.40) and
(A.43) under H1N we have

p
N
�b�mmax � b�m0

�
a�
�
H�1
1N � F1N

�p
N�sN (�1N )

where H1N = H(�1N ) and F1N is de�ned analogously to F0 given above, namely

F1N = H
�1
1N �H

�1
1NR

0
1N

�
R1NH

�1
1NR

0
1N

��1
R1NH

�1
1N ; (A.49)

with R1N = R(�1N ). Now using (A.48) we have

p
N
�b�mmax � b�m0

�
a�
�
H�1
1N � F1N

� �p
N�sN (�0) +

p
N
@�sN (�

�
N )

@�
(�1N � �0)

�
=
�
H�1
1N � F1N

� �p
N�sN (�0) +

p
N
@�sN (�

�)

@�
N��=2�

�
:
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Let z (�0) = J
�1=2
0

p
N�sN (�0) and note that under H1N

@�sN
�
��
�
N

�
@�

=
1

N

@2`N (�
�
N )

@�@�0
!p �H(�0) = �H0:

Then
p
N
�b�mmax � b�m0

�
a�
�
H�1
1N � F1N

�
J
1=2
0 z (�0)�

p
N
�
H�1
1N � F1N

�
H0N

��=2�; (A.50)

where, as noted above, z (�0)
a� N

�
0; In��

�
. The �rst component of (A.50) relates to the null hypothesis,

whilst the second component relates to the "non-centrality" parameter which diverges since � < 1. Note
also that, H1N = H(�0+N

��=2�) and R1N = R(�0+N
��=2�), and converge toH0 and R0, respectively,

which in view of (A.49), also implies that F1N ! F0, as N !1. Using (A.50) in (A.44) we now have

LRN = 2
h
`N

�b�mmax

�
� `N

�b�m0

�i
a�h�

H�1
0 � F0

�
J
1=2
0 z (�0)�N

(1��)
2
�
H�1
0 � F0

�
H0�

i0
H0

�
h�
H�1
0 � F0

�
J
1=2
0 z (�0)�N

(1��)
2
�
H�1
0 � F0

�
H0�

i
:

Recalling that
�
H�1
0 � F0

�
= H�1

0 R
0
0

�
R0H

�1
0 R

0
0

��1
R0H

�1
0 ( see (A.42)), LRN can also be written as

LRN
a� z (�0)0 Saz (�0)� 2N

(1��)
2 �0S0bz (�0)+N

(1��)�0Sc�; (A.51)

where

Sa = J
1=2
0 H�1

0 R
0
0

�
R0H

�1
0 R

0
0

��1
R0H

�1
0 J

1=2
0 ;

S0b = R00
�
R0H

�1
0 R

0
0

��1
R0H

�1
0 J

1=2
0 ;

Sc = R00
�
R0H

�1
0 R

0
0

��1
R0:

Under the assumptions of the theorem, H0 is positive de�nite and R0 is full rank and so

�min

�
R00
�
R0H

�1
0 R

0
0

��1
R0

�
> 0,

and since �0� >0, then

�0Sc� > �
0� �min

�
R00
�
R0H

�1
0 R

0
0

��1
R0

�
> 0: (A.52)

Recall also that J0 is positive de�nite. Then Sa is positive semi-de�nite with r0 non-zero eigenvalues
which we denote by w�i for i = 1; 2; :::; n. It is clear that under � = �0, Sa coincides with A0 given by
(A.47) and w�i = wi. In the present context it is still the case that z (�0)

0 Saz (�0) =
Pr0

j=1w
�
j z
2
j which is a

weighted average of chi-squared variates and is stochastically bounded, namely z (�0)
0 Saz (�0) = Op(1).

Post-multiplying both sides of (A.51) by N
�(1��)

2 ; and rearranging the terms we have

N
�(1��)

2 LRN �N
(1��)
2
�
�0Sc�

� a� �2�0S0bz (�0) +N
�(1��)

2 z (�0)
0 Saz (�0)

= �2�0S0bz (�0) + op (1) ;

since � < 1, and N
�(1��)

2 z (�0)
0 Saz (�0) !p 0, with N ! 1. Furthermore, since z (�0) s N(0; In��

); it
then follows that

N
�(1��)

2 LRN �N
(1��)
2 (�0Sc�)

2
p
�0SbS0b�

a� N(0; 1): (A.53)
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Note also that
S0bSb = R

0
0

�
R0H

�1
0 R

0
0

��1
R0H

�1
0 J0H

�1
0 R

0
0

�
R0H

�1
0 R

0
0

��1
R0;

and S0bSb is a positive de�nite matrix since by assumption rank(R0) = r0, and H0 and J0 are positive
de�nite matrices. Then

�0S0bSb� > �
0� �min

�
S0bSb

�
> 0. (A.54)

Proof of Corollary 1. The type II error probability of testing H0 : r(�0) = 0 against �-local
alternatives, H1N ; is given by

�N = Pr
�
LRN � c2N (r0) jH1N

�
;

which can be written equivalently as (recall that �0SbS0b� > 0)

�N = Pr

"
N

�(1��)
2 LRN �N

(1��)
2 (�0Sc�)

2
p
�0SbS0b�

� N
�(1��)

2 c2N (r0)�N
(1��)
2 (�0Sc�)

2
p
�0SbS0b�

jH1N

#

Now using result (71) of Theorem 3 and taking limits as N !1 we have (noting that � < 1)

lim
N!1

�N = lim
N!1

�

 
�N

(1��)
2 �0Sc�+N

�(1��)
2 c2N (r0)

2
p
�0S0bSb�

!

= lim
N!1

�

0B@�N
(1��)
2 �0Sc�

�
1� N�(1��)c2N (r0)

(�0Sc�)

�
2
p
�0S0bSb�

1CA ;

where �0Sc�=
p
�0S0bSb� > 0, which follows using (A.52) and (A.54) of Theorem 3. The desired result,

limN!1 (�N ) = 0, now follows since by assumption � < 1, and N
�(1��)c2N (r0)! 0 as N !1:

Proof of Proposition 2. Consider the type I error of the test and note that

�N = Pr
�
LRN > c2N (r0) jH0

�
= Pr

 
r0X
i=1

wiz
2
i > c2N (r0)

!
;

where zi s IIDN (0; 1). Using Lemma A1 of the theory supplement to Chudik et al. (2018) we have that

�N = Pr

 
r0X
i=1

wiz
2
i > c2N (r0)

!
�

r0X
i=1

Pr
�
wiz

2
i > r�10 c2N (r0)

�
:

Therefore, since wi > 0

�N �
r0X
i=1

Pr
�
z2i > (r0wi)

�1 c2N (r0)
�
� r0 sup

i
Pr
�
z2i > �2i c

2
N (r0)

�
; (A.55)

where �2i = (r0wi)
�1 > 0. But since zi s N(0; 1), then

Pr
�
z2i > �2i c

2
N (r0)

�
= 1� Pr (��i jcN (r0)j � zi � �i jcN (r0)j)
= 2� (��i jcN (r0)j) :

Using this result in (A.55) we have

�N � 2r0 sup
i
� (��i jcN (r0)j) = 2r0� (��min jcN (r0)j) = 2h [1� � (�min jcN (r0)j)] ;
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where �2min = r�10 infiw
�1
i = r�10 w�11 > 0. Hence � (�min jcN (r0)j) � 1� �N=2r0; and

�N � 2r0 [1� � (�min jcN (r0)j)] = 2r0� (��min jcN (r0)j) :

Since �min jcN (r0)j > 0, then by (A.1) in Lemma 1 of Bailey et al. (2019, BPS)

� (��min jcN (r0)j) � (1=2) exp
�
�1
2
�2minc

2
N (r0)

�
;

and hence

�N � r0 exp

�
�1
2
�2minc

2
N (r0)

�
= r0 exp

�
�c

2
N (r0)

2r0w1

�
:

Since w1 is bounded and strictly positive, it then follows that limN!1 �N = 0, so long as c2N (r0) !
1. Furthermore, due to the monotonicity property of �(:) we have that (for �N su¢ ciently small)

�min jcN (r0)j � ��1
�
1� �N

2r0

�
, or c2N (r0) � ��2min

h
��1

�
1� �N

2r0

�i2
: By Lemma 3 of BPS,

h
��1

�
1� �N

2r0

�i2
�

2 ln
�
r0
�N

�
; and hence it also follows that

c2N (r0) � 2��2min ln
�
r0
�N

�
= 2w1r0 ln

�
r0
�N

�
: (A.56)

Proof of Theorem 4. To show that bm is almost surely (locally) consistent for the true number of
factors m0 on ��; we will show that limN!1 Pr(bm = m0) = 1 on ��. Consider the event fbm > m0g on
��. For this event to be true it must be the case that for some t 2 f1; 2; :::; T � 2g, at a certain stage in
the sequential estimation, when testing H0: m = m0 = t � 1 against H1: m = mmax = T � 2; the null
hypothesis of the true number of factors is rejected. That is,

Pr(bm > m0) � P (9t; m0 is rejected jH0 )

�
m0+1X
t=1

Pr(LRN > c2N (r0) jH0 ); (A.57)

where c2N (r0) denotes the critical value of the test recalling that r0 is the number of over-identi�ed
restrictions imposed under the H0; given by (67). For any given t, using the result in Proposition 2 for
c2N (r0)!1 as N !1, we have

lim
N!1

�N = lim
N!1

Pr(LRN > c2N (r0) jH0 )

= lim
N!1

Pr

 
r0X
i=1

wiz
2
i > c2N (r0)

!
= 0; (A.58)

(recall that zi s IIDN (0; 1)). Then, from (A.57) using (A.58) it follows that

Pr(bm > m0) � (m0 + 1) max
1�t�m0+1

Pr(LRN > c2N (r0) jH0 )! 0 (A.59)

as N !1 on ��: Next consider the event fbm < m0g on ��, and note that

Pr(bm < m0) = Pr

�
max

1�t�T�2
LRN � c2N (r0) jH0 is false

�
�

T�2X
t=1

Pr
�
LRN � c2N (r0) jH0 is false

�
: (A.60)
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Using result (74) of Corollary 1, for N�(1��)c2N (r0) ! 0 as N ! 1 so long as � < 1;we have for the
probablity of type II error of the test that

lim
N!1

�N = lim
N!1

Pr
�
LRN � c2N (r0) jH0 is false

�
= 0: (A.61)

Then similar to the fbm > m0g case, from (A.60) and using (A.61) it readily follows that limN!1 Pr(bm <
m0) = 0 on �� which together with (A.59) establishes the desired result.
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S.1 Introduction

This supplement is organised as follows: Section S.2 provides the derivations for the rank conditions
associated with the quasi-di¤erenced GMM estimators given in the related literature section of the paper.
Section S.3 outlines the eigenvalue approach used for computing the TQML estimator. Section S.4 gives
the derivations of the initial values used for the Monte Carlo (MC) analysis. Sections S.5 and S.6 provide
details for the computation of the Bai-QML and GMM estimators, respectively. Sections S.7 and S.8 give
additional MC results for the stationary and unit root cases, respectively. To save space the results for
the ARX(1) model are given only for the case where �2v = 1. The results for other values, �

2
v = f0:5; 1:5g;

are very similar and are available upon request.
Section S.9 gives the details of the MC experiments we carried out for the robustness analysis and

the associated results, covering the e¤ects of initial values deviating from the steady state distribution
(applicable only for the stationary case), the use of alternative p-values (p = 0:01, p = 0:10) in imple-
menting the MTLR test, allowing for non-zero correlation of the factor loadings and the regressors, and
for weakly cross-correlated factor loadings. The last three experiments are presented for the stationary
case. Qualitatively similar results were obtained for the unit root case and are available upon request. All
results are given for �0 = 1 and are based on 2000 replications. Also, all MC results are obtained using
the Multiple Testing Likelihood Ratio (MTLR) test for selecting the number of factors with p = 0:05
unless otherwise stated. Lastly, Section S.10 discusses the case of time series heteroskedasticity in the
idiosyncratic errors.

S.2 Rank conditions for quasi-di¤erenced GMM estimators

Here we consider the rank conditions with respect to the moment conditions E [mN (�0)] = 0; de�ned by
(7) in the paper, where

mN (�) = N�1
NX
i=1

zi�i3 (�) ;

with zi = (w0i;x
0
i)
0, wi = (yi0; yi1)

0, xi = (xi1; xi2; xi3)0, and

�i3 (�) = yi3 � (b3 + ) yi2 + b3yi1 � �xi3 + b3�xi2:

To simplify the notations we denote b3 as b, so that � = (; b; �)0. Following standard results from the
GMM literature (see, for example, Chapter 10 of Pesaran (2015)) for identi�cation it is required that SN
(5� 5 matrix) and DN (5� 3 matrix) de�ned by

�i3 (�) = yi3 � (b3 + ) yi2 + b3yi1 � �xi3 + b3�xi2;

DN (�) =
@mN (�)

@�0
and SN (�) = NmN (�)m

0
N (�) ;

are full rank matrices and that S = limN!1 E0 [SN (�0)] is positive de�nite, andD = limN!1 E0 [DN (�0)]
has full column rank. To derive S and D note that

DN (�) = N�1
NX
i=1

zi
@�i3 (�)

@�0

= �
�
N�1PN

i=1 zi(yi2 � byi1); N�1PN
i=1 zi(yi2 � yi1 � �xi2); N�1PN

i=1 zi(xi3 � bxi2)
�
;(S.1)

and

SN (�) = N�1
NX
i=1

NX
j=1

�i3 (�) �j3 (�) ziz
0
j : (S.2)
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Consider �rst the limit of SN (�), and note that under the assumption of conditional cross sectional
independence we have

SN (�)!
p
S = lim

N!1
N�1

NX
i=1

E
�
ziz

0
i

�
E ("i3 � b"i2)2

S = (1 + b2) lim
N!1

N�1
NX
i=1

�2iE
�
ziz

0
i

�
:

Also

E
�
ziz

0
i

�
=

�
E(wiw

0
i) E(wix

0
i)

E(xiw
0
i) E(xix

0
i)

�
;

where

wi =

�
yi0
yi1

�
=

�
�00xi + �if0 + "i1

�01xi + �i(f0 + f1) + "i0 + "i1

�
;

�1 = �0 + �e1; (S.3)

and es is a 3� 1 vector of zeros except for its sth element which is unity.

E(wiw
0
i) =

�
�00E (xix

0
i)�0 + f

2
0�

2
i + �

2
i �00E (xix

0
i)�1 + f0(f0 + f1)�

2
i + �

2
i

: �01E (xix
0
i)�1 + (f0 + f1)

2�2i + �
2
i (1 + 

2)

�
:

E(wix
0
i) =

�
E (�00xi + �if0 + "i0)x

0
i

E [�01xi + �i(f0 + f1) + "i0 + "i1]x
0
i

�
=

�
�00E (xix

0
i)

�01E (xix
0
i)

�
:

Let

A = lim
N!1

N�1
NX
i=1

�2i
�
xix

0
i

�
, d�� = lim

N!1
N�1

NX
i=1

�2i�
2
i � 0, d�� = lim

N!1
N�1

NX
i=1

�4i > 0;

N�1
NX
i=1

�2iE(wiw
0
i) = limN!1

�
�00A�0 + f

2
0d�� + d�� �00A�1 + f0(f0 + f1)d�� + d��

�00A�1 + f0(f0 + f1)d�� + d�� �01A�1 + (f0 + f1)
2d�� + (1 + 2)d��

�
;

N�1
NX
i=1

�2iE(wix
0
i)=

�
�00A
�01A

�
=

�
�00A

�00A+ �e
0
1A

�
and note that

S = (1 + b2) limN!1

 
N�1PN

i=1 �
2
iE(wiw

0
i) N�1PN

i=1 �
2
iE(wix

0
i)

N�1PN
i=1 �

2
iE(xiw

0
i) N�1PN

i=1 �
2
iE(xix

0
i)

!

= (1 + b2)

0@ �00A�0 + f
2
0d�� + d�� �00A�1 + f0(f0 + f1)d�� + d�� �00A

�
0
1A�0 + f0(f0 + f1)d�� + d�� �01A�1 + (f0 + f1)

2d�� + (1 + 2)d�� �00A+ �e
0
1A

A�0 A�0 + �Ae1 A

1A :

It is clear that in general for S to be positive de�nite it is necessary that A is positive de�nite.
SinceA = limN!1N�1PN

i=1 �
2
i (xix

0
i) � infi(�2i ) limN!1N

�1PN
i=1 xix

0
i, and by assumption inf i(�

2
i ) >
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cmin > 0, then it is su¢ cient if E(xix0i) is a positive de�nite matrix, which is likely to be so if xit varies
su¢ ciently across t = 1; 2; 3: Note that even if �0 = 0 and d�� = 0 (cases to be considered below) then

S = (1 + b2)

0@ d�� d�� 0
d�� �2e01Ae1 + (1 + 

2)d�� �e01A
0 �Ae1 A

1A ;

which is a positive de�nite matrix so long as A > 0 and d�� > 0. This result holds even if � = 0.
Now consider DN de�ned by (S.1), and since yi2 � yi1 � �xi2 = �if2 + "i2, then DN can be written

equivalently as

DN = �
�
N�1PN

i=1 zi(yi2 � byi1); N�1PN
i=1 zi(�if2 + "i2); N�1PN

i=1 zi(xi3 � bxi2)
�
: (S.4)

First we note that

zi =

0BBBB@
yi0
yi1
xi1
xi2
xi3

1CCCCA =

0BBBB@
�00xi + �if0 + "i0

�01xi + �i(f0 + f1) + "i0 + "i1
xi1
xi2
xi3

1CCCCA ;

where �1 = �0 + �e1. Also

yi2 = �
0
2xi + �i

�
2f0 + f1 + f2

�
+ 2"i0 + "i1 + "i2; (S.5)

with
�2 = 2�0 + (e1 + e2)�: (S.6)

Furthermore, to simplify the exposition we assume xi have zero means and are uncorrelated with the
loadings, namely E(�ixit) = 0. Then it is easily established that

N�1
NX
i=1

zi(�if2 + "i2) =

0B@ N�1PN
i=1 yi0(�if2 + "i2)

N�1PN
i=1 yi1(�if2 + "i2)

N�1PN
i=1 xi(�if2 + "i2)

1CA
=

0B@ N�1PN
i=1 (�

0
0xi + �if0 + "i0) (�if2 + "i2)

N�1PN
i=1 (�

0
1xi + �i(f0 + f1) + "i0 + "i1) (�if2 + "i2)

N�1PN
i=1 xi(�if2 + "i2)

1CA
! p

0@ f0f2 �d(�)
(f0 + f1) f2 �d(�)

0

1A ;

where �d(�) = limN!1N�1PN
i=1 �

2
i . Similarly,

N�1
NX
i=1

zi(xi3 � bxi2)!p

0@ �00�xx(e3 � be2)
�01�xx(e3 � be2)
�xx(e3 � be2)

1A :

where �xx = limN!1N
�1PN

i=1 xix
0
i. Finally, to obtain the limit of the �rst column of DN , using (2)

and (S.5) we �rst note that

yi2 � byi1 = [( � b)�1 + �e2]0 xi + [( � b) (f0 + f1) + f2]�i + ( � b)"i0 + ( � b)"i1 + "i2:

Then it follows that

yi2 � byi1 = [( � b)�1 + �e2] + �i [( � b) (f0 + f1) + f2]
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N�1
NX
i=1

yi0 (yi2 � byi1)!p q1; N
�1

NX
i=1

yi1 (yi2 � byi1)!p q2;

where

q1 = �00�xx [( � b)�1 + �e2] + f0 [( � b) (f0 + f1) + f2] �d(�) + ( � b)��2; (S.7)

q2 = �01�xx [( � b)�1 + �e2] + (f0 + f1) [( � b) (f0 + f1) + f2] �d(�) + ( � b)
�
1 + 2

�
��2(S.8)

and ��2 = limN!1N
�1PN

i=1 �
2
i . Similarly

N�1
NX
i=1

xi (yi2 � byi1)!p �xx [( � b)�1 + �e2] :

Collecting the above results in (S.4), we have

DN !p D =�

0@ q1 f0f2 �d(�) �00�xx(e3 � be2)
q2 (f0 + f1) f2 �d(�) �01�xx(e3 � be2)

�xx [( � b)�1 + �e2] 0 �xx(e3 � be2)

1A : (S.9)

The rank of D depends on �, as well as the parameters of the xi process, and the strength of the common
factor, as measured by �d(�). It is not possible to be sure that D will be full rank for all values of �; the
rank could become de�cient due to the particular values that the incidental parameters, such as b and
�d(�) could take.

S.3 An eigenvalue approach for computing the TQML estimator

Consider the log-likelihood given in (34) without any restrictions on Q; which can be further written as

`N (�) = `N ('; ) = �
NT

2
ln (2�)� NT

2
ln(�2)

�N
2
ln
��
+QQ0��� 1

2�2

NX
i=1

�0i(')
�

+QQ0

��1
�i('): (S.10)

To compute the TQML estimator consider (S.10) and note that since 
 is a positive de�nite matrix
and QQ0 is rank de�cient (recall that m < T ), we have j
+QQ0j = j
j

��Im+Q0
�1Q�� ; and using the
Woodbury matrix identity�


+QQ0
��1

= 
�1 �
�1Q(Im +Q0
�1Q)�1Q0
�1 (S.11)

= 
�1 �
�1QA�1Q0
�1;

where A is a non-singular matrix de�ned by

A = Im +Q
0
�1Q: (S.12)

Using the above results in (S.10), and after some simpli�cation the quasi-log-likelihood function can be
written as

N�1`N (�) / �
T

2
ln(�2)� 1

2
ln j
j � 1

2
ln jAj � 1

2�2
�
tr
�
BN


�1�� tr �BN
�1QA�1Q0
�1�� ; (S.13)
where j
j = 1 + T (! � 1), and

BN (') = N�1
NX
i=1

�i(')�
0
i('): (S.14)
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For analytical convenience we further de�ne P = 
�1=2QA�1=2. Note that since A and 
 are non-
singular matrices, then rank (P) = m, as well. Further, it is easily seen that

Im �P0P= Im �A�1=2Q0
�1QA�1=2;

and using Q0
�1Q = A� Im from (S.12), we have

A�1 = Im �P0P: (S.15)

Similarly,
tr
�
BN


�1QA�1Q0
�1
�
= �2 tr

�
P0CN (�c)P

�
;

where
CN (�c) = ��2
�1=2BN (')


�1=2; (S.16)

and �c = ('0; !; �2)0 where subscript c refers to �c being the concentrated parameter vector.
Using the above results, the quasi-log-likelihood function given by (S.13) can now be written as

N�1`N (�c;P) / �
T

2
ln(�2)�1

2
ln [1 + T (! � 1)]+1

2
ln
��Im �P0P���1

2

�
tr [CN (�c)]� tr

�
P0CN (�c)P

�	
:

(S.17)
In line with the discussion in Section 4, P is not identi�ed without additional restrictions. It is easily
seen that the value of `N (�c;P) is invariant to the orthonormal transformation of P. To see this consider
the transformation eP = P�, where � is an m � m orthonormal matrix such that �0� = Im. Then it

is readily veri�ed that N�1`N (�c;P) = N�1`N
�
�c; eP�. Let P = (p1;p2; :::;pm), where pt is the tth

column of P, and pt is a T � 1 vector of unknown parameters. Since rank (P) = m, then P0P can be
diagonalised by an orthonormal transformation, and without loss of generality we impose the following
m(m� 1)=2 orthogonality conditions

p0tps = 0, for all s 6= t = 1; 2; :::;m: (S.18)

Under these restrictions the quasi-log-likelihood function, (S.17), simpli�es to

N�1`N (�c;P) / �
T

2
ln(�2)�1

2
ln [1 + T (! � 1)]+1

2

mX
t=1

ln
�
1� p0tpt

�
+
1

2

mX
t=1

p0tCN (�c)pt�
1

2
tr [CN (�c)] :

(S.19)
Taking �rst derivatives with respect to pt and setting these derivatives to zero now yields

CN (�c) bpt � � 1

1� bp0tbpt
� bpt = 0, for t = 1; 2; :::;m; (S.20)

where bpt is the quasi-maximum likelihood estimator of pt (in terms of �c). Therefore, bpt is the eigenvector
of CN (�c) associated with the �rst m largest non-zero eigenvalues of CN (�c), which we denote by
�1 (�c) > �2 (�c) > :::: > �m (�c) > 0. Note that CN (�c) is a symmetric positive de�nite matrix with all
real eigenvalues �t (�c) > 0; for t = 1; 2; :::; T . We also have

�t (�c) =
1

1� bp0tbpt ; and bp0tCN (�c) bpt = �t (�)� 1:

Hence, the concentrated quasi log-likelihood function in terms of �c can be written as

N�1`N (�c;m) / �
T

2
ln(�2)� 1

2
ln [1 + T (! � 1)]� 1

2

mX
t=1

ln [�t (�c)] +
1

2

mX
t=1

[�t (�c)� 1]�
1

2

TX
t=1

�t (�c) ;

(S.21)

S5



where �t (�c) is the tth eigenvalue of CN (�c), given by (S.16). This concentrated quasi log-likelihood
function can now be maximised with respect to �c = ('0; !; �2)0. The TQML estimators, b�t (�c), can
then be computed using the TQML estimator of �c and their corresponding variance covariance matrix
can be computed using the delta method. Due to the possibily of local maxima, in maximising (S.21) we
initialise the optimisation process with a number of starting values, randomly selected from the uniform
distribution, speci�cally

ini � U (�0:999; 0:999) ; �2ini � U(0:1; 1); !ini � U(1; 2);

with the initial values for the remaining parameters, namely � =
�
d0;�0;�0

�0 generated from a U(�1; 1):
With regard to the computation of bpt it is important to bear in mind that standard eigenvector rou-

tines provide eigenvectors that are typically orthonormalised. Whilst in the above analysis, bp1; bp2; ::::; bpm
are orthogonal to each other, their length is not unity and is given by bp0tbpt = 1� 1=�t (�c) :
S.4 Steady state distribution of yit in the stationary case

Consider the panel data model

yit = �i + �t + yi;t�1 + �xit + �it; jj < 1;

where

�it =

mX
`=1

�`if`t + uit; (S.22)

xit = �xi +

mxX
`=1

#`if`t + vit; (S.23)

for i = 1; 2; :::; N and t = 1; 2; :::; T . Also

vit = �xvi;t�1 +
�
1� �2x

�1=2
"it; j�xj < 1; for t = 1; :::; T; (S.24)

"it s IIDN (0; �2iv); and vi0 s IIDN (0; �2iv);

which ensures that V ar(vit) = �2iv. Further,

f`t = �`ff`;t�1 +
�
1� �2f`

�1=2
"f`t; "f`t � IIDN (0; 1);

with f`;0 = 0, for ` = 1; 2; :::;m; and t = 1; ::; T . Also to simplify the derivations we set �`f = �f for all
`. From the above speci�cations of vit and ft it readily follows that

E (vit) = 0; E (ft) = 0, Cov
�
vi;t�jvi;t�j0

�
= �2iv�

jj�j0j
x and Cov

�
ft�jft�j0

�
= �

jj�j0j
f Im: (S.25)

Due to the dependence of xit and �it on the same unobserved factors, the regressors and the errors
of the above regression are correlated. Following Pesaran and Smith (1994) we base the derivation of the
steady state distribution of yit on the following reduced form regressions

yit = e�i + �t + yi;t�1 + �vit + c0ift + uit; (S.26)

where

e�i = �i + ��xi; (S.27)

c0ift =
mX
`=1

�`if`t + �

mxX
`=1

#`if`t =

max(m;mx)X
`=1

c`if`t; (S.28)
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where c`i for all i and ` = 1; 2; :::;max(m;mx), are de�ned implicitly. Using the results in (S.25), and
noting that ft; uit0 and vis are mutually uncorrelated for all values of t; t0 and s, it then follows, conditional
on e�i and ci; that (without loss of generality we set �t = 0)

E (yitje�i; ci) = E (yi;t�1je�i; ci) + e�i (S.29)

V ar (yitje�i; ci) = 2V ar (yi;t�1je�i; ci) + �2V ar (vitje�i; ci) + c0iCov �ftf 0t� ci + �2 (S.30)

+2Cov
�
yi;t�1; c

0
iftje�i; ci�+ 2�Cov (yi;t�1; vitje�i; ci) :

Also, the steady state values of the covariances in the above expression are given by (upon using
(S.25))

Cov
�
yi;t�1; c

0
iftje�i; ci� =

1X
j=0

jc0iE
�
ft�j�1f

0
t

�
ci =

�
c0ici

� 1X
j=0

�j+1f j =
(c0ici) �f
1� �f

;

Cov (yi;t�1; vitje�i; ci) = ��2iv

1X
j=0

jE (vi;t�j�1vit) = ��2iv

1X
j=0

�j+1x j =
��x�

2
iv

1� �x
:

Using the above results in (S.30) and noting that in steady state E(yitje�i; ci) = E(yi0je�i; ci) and
V ar(yitje�i; ci) = V ar(yi0je�i; ci) we have

E (yitje�i; ci) = �i0 =
�i + ��xi
1�  ; (S.31)

V ar(yitje�i; ci) = �2i0 =
�2 + ax�2�2iv + afai

1� 2 ; (S.32)

where

ai = c0ici =
mX
`=1

�2`i + �
2
mxX
`=1

#2`i + 2�
Pmin(m,mx)

`=1 �`i#`i; (S.33)

and

ax =
�
1 + �x
1� �x

�
, and af =

�
1 + �f
1� �f

�
: (S.34)

S.5 Quasi-log-likelihood function of Bai (2013)

Consider
yit = yi;t�1 + �t + x

0
it� + f

0
t�i + "it; for t = 1; 2; 3; :::; T; i = 1; 2; :::; N; (S.35)

where xi = (xi1; :::;xiT )0, xi� = (IT
�0)vec(x0i) = (IT
�0)wi; �i = (�i1; �i2; :::; �i;em)0 = (�i; �i2; :::; �i;em)0;
ft = (f1t; f2t; :::; fem;t)0 with em = m+ 1; and

yi0 = ��0 +
PT

s=1 x
0
is�s + f

�0
0 �i + "

�
i0; (S.36)

with � = (�01; :::;�
0
T )
0:

To account for the correlation of the factor loading corresponding to the individual e¤ects with the
regressors xit; the Mundlak-Chamberlain projection is applied to the factor loadings �i:

Projecting �i on wi = vec(x0i)

�i = �+ �1xi1 + :::�TxiT + �i;

or
�i = �+ �wi + �i; (S.37)
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where � is the intercept, �i is the projection residual, �1; :::;�T are matrices (em � k) of projection
coe¢ cients. By de�nition E(�i) = 0; and the regressors are uncorrelated with the projection residual for
all t.

Substituting (S.37) into (S.35) and absorbing f 0t�i into �t, for t � 1,

yit = yi;t�1 + �t + x
0
it� + f

0
t�wi + f

0
t�i + "it; for t = 1; 2; 3; :::; T; i = 1; 2; :::; N; (S.38)

and
yi0 = ��0 +w

0
i� + f

�0
0 �i + "

�
i0: (S.39)

Stacking the system of T + 1 equations given by (S.38) and (S.39) yields

B+y+i = Cwi + �
+ + F+�i + "

+
i ;

where

y+i =

�
yi0
yi

�
; �+ =

�
��0
�

�
; F+ =

�
f�00
F

�
; "+i =

�
"�i0
"i

�
;

with

B+ =

26664
1 0 : : : 0
� 1 : : : 0
...

. . . . . .
...

0 : : : � 1

37775 ; C =

�
�0

IT 
 �0 + F�

�

and yi = (yi1; yi2; :::; yiT )0; � = (�1; �2; :::; �T )0; F = (f1; f2; :::; fT )0; "i = ("i1; "i2; :::; "iT )0:
Let �+ = F+��F

+0 +�", where �� = E(�i�
0
i) and �" = E("+i "

+0
i ) = diag(�20; �

2IT ). Furthermore,
let u+i = B

+y+i �Cwi ��+:
Following Bai (2013) we consider the following normalisation

F+ = (Iem;F02)0: (S.40)

The quasi-log-likelihood function for (yi0; yi1; :::; yiT ), conditional on wi; is then given by

`N _ �
N

2
ln
���+��� 1

2

NX
i=1

u+0i (�
+)�1u+i ;

where a number of random initial values are considered in maximising the above likelihood.

S.6 The GMM approach

Let us consider a GMM approach to estimate the dynamic panel data model with interactive e¤ects:

yit = �i +w
0
it� + �

0
ift + "it; (i = 1; 2; :::; N ; t = 1; 2; :::; T ) (S.41)

where wit = (yi;t�1;x0it)
0; � = (;�0)0; �i = (�1i; :::; �mi)0 and ft = (f1t; :::; fmt)0 are (m � 1) vectors and

"it are cross-sectionally and temporally uncorrelated. The individual speci�c e¤ects �i are allowed to be
correlated with xit, while xit is assumed to be strictly or weakly exogenous. A similar model is considered
in Ahn et al. (2013), but there are two di¤erences. The �rst is that the model under consideration is
a dynamic model whereas Ahn et al. (2013) consider a static model. This di¤erence does not cause a
serious problem in implementing GMM estimation: minor corrections when selecting the instruments
su¢ ce. The second di¤erence is that the current model contains time-invariant �xed e¤ects �i whereas
the model considered in Ahn et al. (2013) does not. Thus the method by Ahn et al. (2013) cannot be
applied directly in this case. Hence, we consider two approaches to use the method proposed by Ahn
et al. (2013). The �rst approach is to regard the time-invariant �xed e¤ects as an additional factor to
be estimated. The second approach is to take the �rst-di¤erences prior to applying the quasi-di¤erence
approach by Ahn et al. (2013), which is similar to Nauges and Thomas (2003). In the following, we
describe each approach.
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Approach 1: Quasi-di¤erencing

By incorporating �i into �0ift in (S.41), we have the following alternative expression

yit = w
0
it� +

e�0ieft + "it;
where e�i = (�i; �1i; :::; �mi)0 and eft = (1; f1t; :::; fmt)0. The model in matrix notation can be written as

yi =Wi� + eFe�i + "i; (S.42)

where yi = (yi1; :::; yiT )0;Wi = (wi1; :::;wiT )
0; "i = ("i1; :::; "iT )

0 and eF = (ef1; :::;efT )0 is a T � em matrix.
De�ne e	 = eF�F�1 where �F = (efT�em+1; :::;efT )0. To separately identify eF from e�i; em2 restrictions are
imposed on the factors such that eF = (	0; Iem)0 where	 is a (T� em)� emmatrix of unrestricted parameters
obtained as the �rst T � em rows of e	. Let HQ= (IT�em;�	)0; so that H0

Q
eF = (IT�em;�	)(	0; Iem)0 =

0(T�em)�em: Then, pre-multiplying equation (S.42) by H0
Q removes the unobservable e¤ects so that

H0
Qyi = H

0
QWi� +H

0
Q"i;

or

_yi = _Wi� +	�yi �	 �Wi� + _"i �	�"i (S.43)

= _Wi�+
�
IT�em 
 �y0i� vec(	)� �vec( �Wi)

0 
 IT�em� vec(�0 
	) + _"i �	�"i;
where _yi = (yi1; :::; yi;T�em)0; �yi = (yi;T�em+1; :::; yiT )0; _Wi = (wi1; :::;wi;T�em)0; �Wi = (wi;T�em+1; :::;wiT )

0;
	0= (�1; :::;�T�em), _"i = ("i1; :::; "i;T�em)0; and �"i = ("i;T�em+1; :::; "iT )0:

The tth equation is given by

yit = �
0wit + 

0
t�yi � 0t �Wi� + vit; (i = 1; :::; N ; t = 1; :::; T � em); (S.44)

where vit = ("it � �0t�"i). Since xit is strictly exogenous, a large number of moment conditions are
available. However, as using many instruments causes a large �nite sample bias, we consider (k +
1)(T � em)(T � em + 1)=2 + k(T � em)em moment conditions given by E[zitvit] = 0; for t = 1; :::; T � em;
where zit = (yi0; :::; yi;t�1;x0i1; :::;x

0
it;x

0
i;T�em+1; :::;x0iT )0. In addition to the commonly used instruments

(yi0; :::; yi;t�1;x0i1; :::;x
0
it); we also use x

0
i;T�em+1; :::;x0iT as instruments since they are included in the

regressor �W: In matrix notation the moment conditions can be written as E [Zivi(�)] = 0; where Zi =
diag(z0i1; :::; z

0
i;T�em), vi(�) = (vi1; :::; vi;T�em)0 and � = (�0; 0)0 with  = vec(	):

Then the one-step and two-step GMM estimators are given respectively by

b�QD1 = argmin
�

 
1

N

NX
i=1

vi(�)
0Zi

! 
1

N

NX
i=1

Z0iZi

!�1 
1

N

NX
i=1

Z0ivi(�)

!
; (S.45)

and

b�QD2 = argmin
�

 
1

N

NX
i=1

vi(�)
0Zi

! 
1

N

NX
i=1

Z0ivi(b�QD1)vi(b�QD1)0Zi
!�1 

1

N

NX
i=1

Z0ivi(�)

!
: (S.46)

The asymptotic covariance matrix of the above estimators is given, respectively, by

V ar(b�QD1) = N�1
� bG0

QD1
cW�1 bGQD1

��1 bG0
QD1

cW�1 b
QD1
cW�1 bGQD1

� bG0
QD1

cW�1 bGQD1

��1
(S.47)

V ar(b�QD2) = N�1
� bG0

QD2
b
�1QD2 bGQD2

��1
; (S.48)

where bGj= @�g(b�j)=@�0 for j = QD1; QD2, with gi(b�j) = Z0ivi(
b�j) and �g(b�j) = N�1PN

i=1 gi(
b�j);cW =N�1PN

i=1 Z
0
iZi; and b
j=N

�1PN
i=1 gi(

b�j)gi(b�j)0: The derivatives involved in bGj are computed nu-
merically.

S9



Approach 2: Quasi-di¤erencing after �rst-di¤erencing

Taking the �rst-di¤erences of model (S.41) to remove �i we have

�yit = �w
0
it� + �

0
i�ft +�"it; (i = 1; 2; :::; N ; t = 2; 3; :::; T )

where �wit = (�yi;t�1;�x0it)
0; � = (;�0)0; and �ft = ft� ft�1. The model in notation can be written as

�yi = �Wi� +�F�i +�"i; (S.49)

where�yi = (�yi2; :::;�yiT )0;�Wi = (�wi2; :::;�wiT )
0;�"i = (�"i2; :::;�"iT )

0 and�F = (�f2; :::;�fT )0

is a (T � 1)�m matrix. De�ne e� = �F ��F��1 where �F = (�fT�m+1; :::;�fT )0. To separately iden-
tify �F from �i; m

2 restrictions are imposed on the factors such that �F = (�0; Im)0 where � is a
(T � 1 � m) � m matrix of unrestricted parameters obtained as the �rst T � 1 � m rows of e�. Let
HD= (IT�1�m;��)

0; so that H0
D�F = (IT�1�m;��)(�0; Im)0 = 0(T�1�m)�m: Then, pre-multiplying

equation (S.49) by H0
D removes the unobservable e¤ects so that

H0
D�yi = H

0
D�Wi� +H

0
D�"i;

or

� _yi = � _Wi� +���yi ��� �Wi� + _"i ����"i
= � _Wi�+

�
IT�1�m 
��y0i

�
vec(�)�

�
vec(� �Wi)

0 
 IT�1�m
�
vec(�0 
�) + � _"i ����"i;

where � _yi = (�yi2; :::;�yi;T�m)
0; ��yi = (�yi;T�m+1; :::;�yiT )

0; � _Wi = (�wi2; :::;�wi;T�m)
0; � �Wi =

(�wi;T�m+1; :::;�wiT )
0; �0= (�2; :::;�T�m), � _"i = (�"i2; :::;�"i;T�m)

0; and
��"i = (�"i;T�m+1; :::;�"iT )

0:
The tth equation is given by

�yit = �
0�wit + �

0
t��yi � �0t� �Wi� +�vit; (i = 1; :::; N ; t = 2; :::; T �m); (S.50)

where �vit = (�"it � �0t��"i). Since xit is strictly exogenous, a large number of moment conditions
are available. However, since using many instruments causes a large �nite sample bias, we consider
(k+1)(T�1�m)(T�m)=2+k(T�1�m)m+k(T�1�m) moment conditions given by E[zit�vit] = 0; for
t = 2; :::; T �m; where zit = (yi0; :::; yi;t�1;x0i0;x0i1:::;x0it;x0i;T�m+1; :::;x0iT )0. In addition to the commonly
used instruments (yi0; :::; yi;t�1;x0i0; :::;x

0
it); we also use x

0
i;T�m+1; :::;x

0
iT as instruments since they are

included in the regressor � �W: Also, compared to the quasi-di¤erence approach, we additionally use xi0
as instruments. This is because without xi0; the local identi�cation assumption is not satis�ed for the
linear GMM estimator which is used as the starting value to obtain nonlinear GMM estimators. In matrix
notation the moment conditions can be written as E [Z0i�vi(�)] = 0; where Zi = diag(z0i2; :::; z

0
i;T�m),

�vi(�) = (�vi2; :::;�vi;T�m)
0 and � = (�0;�0)0 with � = vec(�):

Then the one-step and two-step GMM estimators are given respectively by

b�FD1 = argmin
�

 
1

N

NX
i=1

�vi(�)
0Zi

! 
1

N

NX
i=1

Z0iZi

!�1 
1

N

NX
i=1

Z0i�vi(�)

!
; (S.51)

and

b�FD2 = argmin
�

 
1

N

NX
i=1

�vi(�)
0Zi

! 
1

N

NX
i=1

Z0i�vi(b�FD1)�vi(b�FD1)0Zi
!�1 

1

N

NX
i=1

Z0i�vi(�)

!
:

(S.52)
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The asymptotic covariance matrix of the above estimators is given, respectively, by

V ar(b�FD1) = N�1
� bG0

FD1
cW�1 bGFD1

��1 bG0
FD1

cW�1 b
FD1
cW�1 bGFD1

� bG0
FD1

cW�1 bGFD1

��1
(S.53)

V ar(b�FD2) = N�1
� bG0

FD2
b
�1FD2 bGFD2

��1
; (S.54)

where bGj= @�g(b�j)=@�0 for j = FD1; FD2, with gi(b�j) = Z0i�vi(
b�j) and �g(b�j) = N�1PN

i=1 gi(
b�j);cW =N�1PN

i=1 Z
0
iZi; and b
j=N

�1PN
i=1 gi(

b�j)gi(b�j)0: The derivatives involved in bGj are computed nu-
merically.

Starting values

For the computation of the above nonlinear GMM estimators, starting values are required. When the
number of moment conditions is greater than the unknown reduced form parameters we use the linear
GMM estimator by Hayakawa (2012) as the starting value. This can reduce the computational time
compared to employing several random starting values which we use in the alternative case.

To de�ne the linear GMM estimator, let us de�ne L1 = L2 = 1 for em = 1; and L1 = (Iem;0em) and
L2 = (0em; Iem) for em > 1: Also, de�ne �yi =

�
yi;T�em; yi;T�em+1; ::; yiT �0 = �yi;T�em; �y0i�0 : Then, noting that

�Wi =
�
�yi;�1; �Xit

�
where �yi;�1=

�
yi;T�em; yi;T�em+1; ::; yiT�1�0, �yi = L2�yi and �yi;�1 = L1�yi; we have

_yi = _Wi� +	�yi �	 �Wi� + _"i �	�"i
= _Wi� +	L2�yi �	

�
L1�yi + �Xi�

�
+ _"i �	�"i

= _Wi� +	 (L2 � L1) �yi �	�Xi� + vi

= _Wi� +��yi �	�Xi� + vi

= _Wi�+
�
IT�em 
 �y0i� vec(�0)�

�
vec(�Xi)

0 
 IT�em� vec(�0 
	) + vi
= eXi� + vi

where � = 	 (L2 � L1) ; Xi =
�
_Wi; (IT�em 
 �y0i) ;�

�
vec(�Xi)

0 
 IT�em�� and � =�
�0; vec(�0)0; vec(�0 
	)0

�0
= (�01;�

0
2;�

0
3)
0 with �1 = �;�2 = vec(�0); �3 = vec(�0 
	): We consider

this particular model rather than the original model (S.43) because perfect multicollinearity between
�yi and �Wi occurs in (S.43) when em > 1: Since this is a linear model in � with moment conditions
E [Z0ivi(�)] = 0; a closed form solution is obtained as

b� =

24 1
N

NX
i=1

eX0iZi
! 

1

N

NX
i=1

Z0iZi

!�1 
1

N

NX
i=1

Z0i eXi

!35�1

�

24 1
N

NX
i=1

eX0iZi
! 

1

N

NX
i=1

Z0iZi

!�1 
1

N

NX
i=1

Z0i _yi

!35 :
Hence, b�1 and b�2 are consistent estimates of � and vec(�0), respectively. To recover 	 from the estimate
of �, since

vec
�
�0�=vec �(L2 � L1)0	0� = �IT�em 
 (L2 � L1)0� vec �	0� = Avec �	0� ;

vec (	0) is obtained as vec (	0) = (A0A)�1A0vec (�0) : In the computation of the nonlinear GMM es-
timators, estimates of � and vec (	0) are obtained from b�1 and b�2 and are used as the starting values
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of the numerical optimization. For those cases where random starting values are used  is generated as
U(�0:999; 0:999); � as U(�1; 1) and  j as  j0 � U(0:9; 1:1) where  j0 denotes the true value of  j ; jth
element of vec (	0) :

The same procedure can be used in approach 2 by replacing the yi�s andWi�s with their �rst di¤er-
ences.

The AR(1) panel data model

Estimation of the AR(1) model is exactly the same as above after removing all x�s from both the model
and instruments. However, for the starting value, we cannot use the linear estimator since the number of
moment conditions is always smaller than that of the unknown reduced form parameters. Hence in the
Monte Carlo simulations for this case we use random starting values. Speci�cally, we use

ini � U (�0:999; 0:999) ;  j;ini �  j;0 � U (�0:5; 0:5) ; (j = 1; :::; (T � em)em)
for approach 1 and

ini � U (�0:999; 0:999) ;  j;ini �  j;0 � U (�0:5; 0:5) ; (j = 1; :::; (T � 1�m)m)

for approach 2 where  j;0 is the true value of  j .

S.7 Monte Carlo Results for the Stationary Case

A1: Selecting the number of factors

Table A1(i): Empirical frequency of correctly selecting the true
number of factors, m0, using the sequential MTLR procedure in

the case of the AR(1) panel data model
T = 5

�2 0:25 0:5 1 2
m0 0 1 2 0 1 2 0 1 2 0 1 2
N 0 = 0:4
100 99.4 25.5 0.9 99.4 88.2 17.1 99.4 99.7 88.9 99.4 99.7 99.9
300 99.8 93.7 16.5 99.8 100.0 95.4 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 56.1 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 100.0 99.2 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0

0 = 0:8
100 99.2 53.4 1.5 99.2 98.7 28.7 99.2 99.8 96.3 99.2 99.7 100.0
300 99.8 99.6 23.3 99.8 100.0 98.9 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 65.2 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 100.0 99.7 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0

T = 10
�2 0:25 0:5 1 2
m0 0 1 2 0 1 2 0 1 2 0 1 2

0 = 0:4
100 99.5 97.1 13.2 99.5 99.6 90.8 99.5 99.6 99.7 99.5 99.6 99.7
300 99.8 100.0 95.4 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 99.9 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.7 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0

0 = 0:8
100 99.7 96.6 15.1 99.7 99.5 93.5 99.7 99.5 99.7 99.7 99.6 99.7
300 99.8 100.0 96.7 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 99.9
500 99.9 99.9 100.0 99.9 99.9 100.0 99.9 99.9 100.0 99.9 99.9 100.0
1000 99.6 100.0 100.0 99.6 100.0 100.0 99.6 100.0 100.0 99.6 100.0 100.0

Note: bm is estimated using the sequential MTLR procedure described in Section 7.1
with �N = p

N(T�2) and p = 0:05. See also the note to Table 1.
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Table A1(ii): Empirical frequency of correctly selecting the true number of factors, m0, using the
sequential MTLR procedure in the case of the ARX(1) panel data model

T = 5
�2 = 0:25 �2 = 0:5

m0 0 1 2 0 1 2
�2v 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5
N 0 = 0:4
100 99.7 99.7 99.8 46.3 51.5 52.6 1.1 1.2 1.2 99.2 99.3 99.3 97.9 98.1 98.1 17.7 18.3 18.5
300 99.9 100.0 100.0 99.7 99.9 100.0 21.9 23.5 23.3 99.4 100.0 100.0 100.0 100.0 100.0 97.2 97.6 97.7
500 99.8 99.9 99.9 99.9 99.9 99.9 67.4 69.0 69.1 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 99.6 99.7 99.7 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0 = 0:8
100 99.7 99.6 99.6 56.2 56.9 57.4 1.4 1.6 1.7 99.4 99.4 99.4 97.9 98.0 98.0 19.2 18.9 19.0
300 99.9 99.9 99.9 100.0 100.0 100.0 24.8 24.7 24.5 100.0 100.0 100.0 100.0 100.0 100.0 98.2 98.1 98.1
500 99.9 99.9 99.9 99.9 99.9 99.9 71.1 71.1 71.1 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

�2 = 1 �2 = 2
m0 0 1 2 0 1 2
�2v 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5
N 0 = 0:4
100 99.7 99.7 99.8 97.8 98.7 99.0 29.4 31.0 31.0 99.2 99.3 99.3 99.5 99.6 99.6 93.5 94.2 94.4
300 99.9 100.0 100.0 100.0 100.0 100.0 98.9 99.5 99.4 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 99.8 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0 = 0:8
100 99.7 99.6 99.6 99.1 99.2 99.3 32.6 33.0 33.1 99.4 99.4 99.4 99.5 99.6 99.6 94.4 94.7 94.4
300 99.9 99.9 99.9 100.0 100.0 100.0 99.5 99.5 99.5 100.0 100.0 100.0 100.0 99.9 99.9 99.8 99.8 99.8
500 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 10
�2 = 0:25 �2 = 0:5

m0 0 1 2 0 1 2
�2v 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5
N 0 = 0:4
100 99.2 99.3 99.3 97.9 98.1 98.1 17.7 18.3 18.5 99.2 99.3 99.3 99.5 99.6 99.6 93.5 94.2 94.4
300 99.4 100.0 100.0 100.0 100.0 100.0 97.2 97.6 97.7 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0 = 0:8
100 99.4 99.4 99.4 97.9 98.0 98.0 19.2 18.9 19.0 99.4 99.4 99.4 99.5 99.6 99.6 94.4 94.7 94.4
300 100.0 100.0 100.0 100.0 100.0 100.0 98.2 98.1 98.1 100.0 100.0 100.0 100.0 99.9 99.9 99.8 99.8 99.8
500 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

�2 = 1 �2 = 2
m0 0 1 2 0 1 2
�2v 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5
N 0 = 0:4
100 99.2 99.3 99.3 99.5 99.6 99.7 99.8 99.7 99.7 99.2 99.3 99.3 99.7 99.6 99.6 99.7 99.7 99.7
300 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0 = 0:8
100 99.4 99.4 99.4 99.5 99.6 99.6 99.7 99.7 99.7 99.4 99.4 99.4 99.5 99.6 99.6 99.7 99.7 99.7
300 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 99.9
500 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

See the note to Table A1(i).
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A2: Bias, RMSE and Size

Table A2(i): Bias(�100) and RMSE(�100) of  for the AR(1) panel data model,
using the estimated number of factors, bm

T = 5; 0 = 0:4 T = 5; 0 = 0:8
Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)

�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2
N m0 = 0
100 0.42 0.42 0.42 0.42 8.69 8.69 8.69 8.69 0.65 0.65 0.65 0.65 12.29 12.29 12.29 12.29
300 -0.03 -0.03 -0.03 -0.03 4.26 4.26 4.26 4.26 1.42 1.42 1.42 1.42 9.26 9.26 9.26 9.26
500 0.03 0.03 0.03 0.03 3.22 3.22 3.22 3.22 1.46 1.46 1.46 1.46 7.80 7.80 7.80 7.80
1000 0.00 0.00 0.00 0.00 2.29 2.29 2.29 2.29 1.02 1.02 1.02 1.02 6.07 6.07 6.07 6.07

m0 = 1
100 24.98 5.19 0.41 0.23 33.05 18.36 9.39 7.79 7.22 1.11 1.42 1.38 15.51 13.99 12.99 11.19
300 1.96 -0.05 -0.09 -0.11 11.04 5.64 4.99 4.17 1.20 1.28 1.00 0.46 11.06 10.41 9.04 6.86
500 0.15 0.10 0.05 0.01 4.53 4.17 3.68 3.07 1.68 1.46 0.96 0.40 9.48 8.64 7.12 5.09
1000 0.05 0.05 0.04 0.03 3.25 3.02 2.67 2.22 1.43 1.13 0.61 0.27 7.70 6.77 5.08 3.56

m0 = 2
100 6.61 13.75 4.09 0.34 13.61 25.13 16.38 7.89 7.09 5.07 1.82 1.50 14.00 15.66 16.38 11.31
300 5.43 1.25 0.20 0.13 10.92 8.49 4.99 4.14 6.76 1.81 1.38 0.81 13.80 10.54 4.99 6.82
500 3.12 0.08 0.05 0.04 8.58 4.36 3.81 3.16 4.31 1.50 0.98 0.49 11.71 8.74 3.81 5.12
1000 0.12 0.04 0.02 0.01 3.38 2.98 2.62 2.18 1.23 0.89 0.45 0.19 7.43 6.34 2.62 3.45

T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)

�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2
N m0 = 0
100 -0.03 -0.03 -0.03 -0.03 3.76 3.76 3.76 3.76 1.94 1.94 1.94 1.94 7.90 7.90 7.90 7.90
300 -0.04 -0.04 -0.04 -0.04 2.18 2.18 2.18 2.18 0.68 0.68 0.68 0.68 4.62 4.62 4.62 4.62
500 -0.01 -0.01 -0.01 -0.01 1.70 1.70 1.70 1.70 0.26 0.26 0.26 0.26 3.09 3.09 3.09 3.09
1000 -0.01 -0.01 -0.01 -0.01 1.22 1.22 1.22 1.22 0.18 0.18 0.18 0.18 2.24 2.24 2.24 2.24

m0 = 1
100 0.11 -0.04 -0.05 -0.06 4.87 4.52 4.20 3.75 1.08 0.50 0.23 0.08 7.05 5.83 4.64 3.48
300 0.03 0.02 0.02 0.01 2.67 2.55 2.38 2.13 0.24 0.15 0.08 0.04 3.53 2.98 2.41 1.89
500 -0.05 -0.06 -0.06 -0.05 2.11 2.03 1.90 1.70 0.07 0.04 0.01 -0.01 2.58 2.28 1.88 1.49
1000 -0.03 -0.02 -0.01 -0.01 1.48 1.42 1.32 1.17 0.00 0.00 0.00 0.00 1.74 1.55 1.30 1.03

m0 = 2
100 5.48 0.66 -0.08 -0.05 8.23 6.57 5.12 4.48 7.57 1.11 0.19 0.04 11.64 7.58 5.32 3.93
300 0.26 0.02 0.04 0.05 3.58 3.07 2.81 2.46 0.51 0.16 0.08 0.06 4.62 3.44 2.66 2.06
500 -0.12 -0.11 -0.10 -0.09 2.50 2.35 2.16 1.90 -0.06 -0.08 -0.09 -0.08 2.98 2.51 2.06 1.61
1000 -0.02 -0.01 0.00 0.00 1.84 1.74 1.59 1.39 0.03 0.03 0.01 0.00 2.02 1.75 1.44 1.11

Note:  is the coe¢ cient of the lagged dependent variable given in (1) in the absence of the xit regressors. See
also the note to Table 1.

Table A2(ii): Size(�100) of  for the AR(1) panel data model, using the
estimated number of factors, bm

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2
N m0 = 0
100 6.2 6.2 6.2 6.2 21.3 21.3 21.3 21.3 6.5 6.5 6.5 6.5 16.4 16.4 16.4 16.4
300 5.4 5.4 5.4 5.4 19.2 19.2 19.2 19.2 5.1 5.1 5.1 5.1 8.7 8.7 8.7 8.7
500 4.8 4.8 4.8 4.8 14.6 14.6 14.6 14.6 5.9 5.9 5.9 5.9 6.7 6.7 6.7 6.7
1000 4.5 4.5 4.5 4.5 12.1 12.1 12.1 12.1 5.4 5.4 5.4 5.4 5.7 5.7 5.7 5.7

m0 = 1
100 52.6 15.7 5.1 6.2 54.3 21.6 19.6 12.6 6.9 6.0 6.1 5.7 12.1 7.6 4.9 4.9
300 9.3 3.8 5.1 5.9 16.9 17.0 11.9 6.7 4.0 4.3 4.5 5.1 4.3 4.3 4.7 5.2
500 2.6 3.3 3.9 4.5 12.7 12.3 7.1 4.5 5.4 5.7 6.0 6.1 4.5 5.1 5.4 5.5
1000 3.2 4.2 4.7 5.2 10.0 8.1 4.7 4.5 4.7 4.9 4.9 5.0 4.5 4.6 4.2 4.1

m0 = 2
100 8.6 26.2 11.5 4.7 42.2 43.0 19.8 11.4 33.6 9.6 5.8 6.3 37.9 10.2 5.3 6.2
300 23.2 6.1 3.9 4.5 49.3 15.9 10.3 5.4 5.8 4.4 4.6 5.0 4.8 3.3 4.0 4.5
500 24.6 2.5 3.1 3.8 31.2 11.4 6.3 3.3 3.4 4.2 4.9 4.9 3.1 4.1 4.7 5.3
1000 2.6 2.6 3.3 3.8 7.8 6.6 4.4 3.9 3.4 4.0 4.7 4.9 3.6 4.0 4.0 4.3

See the note to Table A2(i).
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Table A2(iii): Bias(�100) and RMSE(�100) of  and � for the ARX(1) panel data
model, using the estimated number of factors, bm (�2v = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8
Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)

�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2


N m0 = 0
100 -0.15 -0.15 -0.15 -0.15 3.45 3.45 3.45 3.45 -0.07 -0.07 -0.07 -0.07 3.02 3.02 3.02 3.02
300 -0.04 -0.04 -0.04 -0.04 1.97 1.97 1.97 1.97 -0.05 -0.05 -0.05 -0.05 1.71 1.71 1.71 1.71
500 0.02 0.02 0.02 0.02 1.47 1.47 1.47 1.47 0.00 0.00 0.00 0.00 1.27 1.27 1.27 1.27
1000 -0.05 -0.05 -0.05 -0.05 1.08 1.08 1.08 1.08 -0.03 -0.03 -0.03 -0.03 0.93 0.93 0.93 0.93

m0 = 1
100 2.45 0.21 0.09 0.08 5.82 4.49 4.30 4.10 0.96 0.28 0.23 0.21 4.91 4.91 4.74 4.53
300 -0.03 -0.04 -0.05 -0.06 2.45 2.42 2.39 2.31 -0.02 -0.02 -0.02 -0.03 2.64 2.60 2.56 2.47
500 0.02 0.02 0.01 0.01 1.86 1.86 1.83 1.75 0.01 0.02 0.02 0.02 1.98 1.96 1.92 1.85
1000 -0.05 -0.05 -0.04 -0.04 1.37 1.37 1.35 1.29 -0.02 -0.02 -0.02 -0.02 1.44 1.43 1.41 1.36

m0 = 2
100 1.29 1.49 0.37 0.21 4.21 5.39 4.70 4.27 0.57 0.69 0.47 0.36 3.78 4.90 4.99 4.60
300 0.78 0.03 0.03 0.04 2.87 2.51 2.46 2.35 0.24 0.07 0.07 0.08 2.60 2.70 2.63 2.52
500 0.31 0.07 0.07 0.07 2.16 1.96 1.94 1.87 0.11 0.09 0.10 0.10 2.12 2.13 2.10 2.03
1000 0.06 0.05 0.05 0.05 1.41 1.41 1.39 1.33 0.05 0.05 0.05 0.05 1.51 1.49 1.47 1.41

�
N m0 = 0
100 -0.06 -0.06 -0.06 -0.06 4.44 4.44 4.44 4.44 -0.06 -0.06 -0.06 -0.06 4.55 4.55 4.55 4.55
300 0.02 0.02 0.02 0.02 2.53 2.53 2.53 2.53 0.01 0.01 0.01 0.01 2.58 2.58 2.58 2.58
500 0.04 0.04 0.04 0.04 1.92 1.92 1.92 1.92 0.04 0.04 0.04 0.04 1.97 1.97 1.97 1.97
1000 0.00 0.00 0.00 0.00 1.38 1.38 1.38 1.38 0.00 0.00 0.00 0.00 1.40 1.40 1.40 1.40

m0 = 1
100 0.39 0.01 -0.01 -0.01 5.48 5.69 5.99 6.19 0.33 0.07 0.06 0.04 5.67 5.90 6.16 6.33
300 -0.10 -0.13 -0.15 -0.16 3.00 3.20 3.39 3.52 -0.10 -0.12 -0.14 -0.15 3.11 3.29 3.46 3.57
500 0.09 0.09 0.09 0.08 2.35 2.51 2.65 2.75 0.10 0.10 0.09 0.08 2.43 2.58 2.70 2.79
1000 0.04 0.04 0.05 0.06 1.66 1.77 1.88 1.95 0.04 0.05 0.06 0.07 1.71 1.82 1.91 1.97

m0 = 2
100 0.27 0.29 0.27 0.33 5.73 6.85 8.33 10.58 0.28 0.38 0.41 0.44 5.88 7.11 8.56 10.75
300 0.22 0.15 0.18 0.20 3.23 3.75 4.62 5.89 0.22 0.18 0.20 0.23 3.32 3.84 4.67 5.91
500 0.10 0.09 0.11 0.14 2.49 2.90 3.55 4.51 0.11 0.12 0.14 0.17 2.60 3.00 3.63 4.57
1000 -0.03 -0.04 -0.06 -0.09 1.77 2.05 2.51 3.18 -0.02 -0.03 -0.05 -0.07 1.83 2.11 2.55 3.21

T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias(�100) RMSE(�100) Bias(�100) RMSE(�100)

�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2


N m0 = 0
100 -0.06 -0.06 -0.06 -0.06 1.95 1.95 1.95 1.95 -0.03 -0.03 -0.03 -0.03 1.37 1.37 1.37 1.37
300 0.08 0.08 0.08 0.08 1.14 1.14 1.14 1.14 0.04 0.04 0.04 0.04 0.77 0.77 0.77 0.77
500 -0.01 -0.01 -0.01 -0.01 0.86 0.86 0.86 0.86 0.00 0.00 0.00 0.00 0.58 0.58 0.58 0.58
1000 0.00 0.00 0.00 0.00 0.62 0.62 0.62 0.62 0.00 0.00 0.00 0.00 0.42 0.42 0.42 0.42

m0 = 1
100 -0.07 -0.10 -0.10 -0.11 2.23 2.19 2.15 2.09 -0.06 -0.07 -0.07 -0.07 1.60 1.57 1.54 1.49
300 0.03 0.03 0.03 0.03 1.23 1.22 1.20 1.16 0.02 0.02 0.02 0.02 0.85 0.84 0.83 0.79
500 -0.02 -0.02 -0.02 -0.02 0.94 0.93 0.92 0.90 -0.01 -0.01 -0.01 -0.01 0.67 0.66 0.65 0.63
1000 0.01 0.01 0.01 0.01 0.68 0.68 0.67 0.65 0.00 0.00 0.00 0.01 0.47 0.47 0.46 0.44

m0 = 2
100 1.17 0.02 -0.09 -0.08 2.81 2.43 2.33 2.27 0.31 -0.02 -0.05 -0.05 1.68 1.63 1.59 1.53
300 -0.04 -0.07 -0.06 -0.06 1.37 1.35 1.33 1.29 -0.02 -0.03 -0.02 -0.02 0.94 0.93 0.91 0.88
500 -0.03 -0.03 -0.03 -0.03 1.00 1.00 0.98 0.96 -0.01 -0.01 -0.01 -0.02 0.71 0.70 0.69 0.67
1000 0.02 0.02 0.02 0.02 0.71 0.71 0.70 0.69 0.01 0.01 0.01 0.01 0.49 0.49 0.48 0.47

�
N m0 = 0
100 -0.01 -0.01 -0.01 -0.01 3.04 3.04 3.04 3.04 -0.02 -0.02 -0.02 -0.02 3.02 3.02 3.02 3.02
300 -0.05 -0.05 -0.05 -0.05 1.73 1.73 1.73 1.73 -0.03 -0.03 -0.03 -0.03 1.71 1.71 1.71 1.71
500 0.00 0.00 0.00 0.00 1.34 1.34 1.34 1.34 0.00 0.00 0.00 0.00 1.33 1.33 1.33 1.33
1000 0.01 0.01 0.01 0.01 0.96 0.96 0.96 0.96 0.01 0.01 0.01 0.01 0.95 0.95 0.95 0.95

m0 = 1
100 0.09 0.09 0.09 0.10 3.73 3.87 3.98 4.04 0.07 0.08 0.07 0.08 3.73 3.87 3.98 4.04
300 0.01 0.01 0.01 0.01 2.15 2.24 2.29 2.32 0.02 0.02 0.02 0.02 2.14 2.22 2.28 2.31
500 0.01 0.01 0.00 0.00 1.61 1.69 1.74 1.78 0.01 0.00 0.00 -0.01 1.59 1.66 1.72 1.76
1000 0.03 0.03 0.03 0.03 1.13 1.18 1.21 1.23 0.03 0.03 0.04 0.04 1.12 1.17 1.20 1.22

m0 = 2
100 -0.20 0.09 0.15 0.15 4.55 5.25 6.27 7.46 0.12 0.13 0.13 0.15 4.51 5.23 6.24 7.42
300 0.10 0.10 0.09 0.08 2.55 3.02 3.63 4.29 0.10 0.09 0.08 0.07 2.53 3.00 3.61 4.27
500 0.01 0.01 0.02 0.03 1.99 2.36 2.85 3.36 0.01 0.01 0.01 0.03 1.98 2.36 2.84 3.35
1000 0.01 0.02 0.04 0.06 1.38 1.63 1.96 2.32 0.02 0.03 0.05 0.07 1.37 1.63 1.95 2.31

Note:  and � are the coe¢ cients of the lagged dependent variable and the xit regressor given in (1). See also
the note to Table A2(i). S15



Table A2(iv): Size(�100) of  and � for the ARX(1) panel data
model, using the estimated number of factors, bm (�2v = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2


N m0 = 0
100 5.9 5.9 5.9 5.9 6.6 6.6 6.6 6.6 5.4 5.4 5.4 5.4 5.8 5.8 5.8 5.8
300 5.6 5.6 5.6 5.6 6.1 6.1 6.1 6.1 5.3 5.3 5.3 5.3 5.1 5.1 5.1 5.1
500 5.1 5.1 5.1 5.1 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.5 4.3 4.3 4.3 4.3
1000 5.1 5.1 5.1 5.1 5.8 5.8 5.8 5.8 4.9 4.9 4.9 4.9 5.8 5.8 5.8 5.8

m0 = 1
100 14.8 4.6 5.1 5.7 5.4 4.4 5.2 5.8 5.8 5.7 6.0 6.1 5.8 6.3 6.5 6.6
300 3.0 3.8 4.4 4.9 3.2 4.4 5.1 5.4 5.4 5.4 5.2 5.6 3.7 4.2 4.0 4.0
500 2.3 3.0 3.8 3.9 2.4 3.4 3.9 4.1 5.3 5.4 5.5 5.3 4.8 5.0 5.1 5.4
1000 3.2 4.1 4.5 5.0 3.5 4.1 4.5 4.8 5.1 5.2 5.4 5.2 5.0 5.3 5.4 5.4

m0 = 2
100 7.5 8.8 5.8 5.7 6.2 4.5 4.7 5.1 11.1 5.3 5.8 6.5 6.6 5.3 5.9 6.3
300 8.0 3.3 4.1 4.4 4.4 3.7 4.8 5.3 4.0 5.1 5.4 5.5 3.4 4.4 4.8 4.8
500 5.6 2.9 3.6 4.3 3.0 3.3 4.6 5.1 3.4 3.8 4.3 4.9 3.7 4.4 4.7 5.0
1000 2.6 3.0 3.6 4.3 2.6 3.6 4.2 4.4 3.7 4.1 4.3 4.5 3.4 3.8 4.1 4.4

�
N m0 = 0
100 5.6 5.6 5.6 5.6 5.4 5.4 5.4 5.4 6.5 6.5 6.5 6.5 6.6 6.6 6.6 6.6
300 5.7 5.7 5.7 5.7 5.8 5.8 5.8 5.8 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
500 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.7 5.7 5.7 5.7 5.6 5.6 5.6 5.6
1000 5.0 5.0 5.0 5.0 4.9 4.9 4.9 4.9 5.6 5.6 5.6 5.6 5.8 5.8 5.8 5.8

m0 = 1
100 4.8 5.1 5.6 5.6 4.9 5.3 5.5 5.6 6.2 6.4 6.3 6.1 5.9 6.3 6.2 6.4
300 4.8 4.4 4.9 5.0 4.6 4.8 4.9 5.2 6.4 6.5 6.0 5.6 5.9 6.1 5.6 5.4
500 5.2 5.7 5.5 5.4 4.9 5.1 5.3 5.3 4.9 5.0 5.2 5.4 5.2 5.2 5.2 5.4
1000 5.1 5.6 5.5 5.8 5.2 5.4 5.7 5.6 4.4 4.5 4.4 4.4 4.6 4.7 4.7 4.6

m0 = 2
100 6.4 6.1 6.5 6.8 6.5 6.2 5.8 6.7 5.1 4.3 4.9 5.8 5.0 4.1 5.0 5.7
300 4.5 4.9 5.2 5.4 4.5 5.5 5.3 5.2 4.4 5.1 5.3 5.7 4.7 5.4 5.4 5.6
500 4.0 4.6 5.0 5.2 4.5 4.9 5.0 5.3 5.7 5.9 5.7 5.6 5.8 6.1 5.9 5.5
1000 5.4 5.3 4.9 4.9 4.8 5.1 5.2 4.8 5.9 5.7 5.3 4.9 6.2 6.0 5.3 5.0

See the note to Table A2(i).
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A3: Power Functions 
 

Figure A3(i): Power functions for  in the case of the AR(1) panel data model with different 

values of m and N (2=0.25) 
 
Panel A: T=5 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Panel B: T=10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:                                                                                  .  �̂� is estimated  using the sequential MTLR procedure                                                                        
described in Section 7.1 with αN=p/N(T-2) and p=0.05;  is the coefficient of the lagged dependent variable in 
(13) in the absence of the xit regressors. See also the note to Table 1. 
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Figure A3(ii): Power functions for  in the case of the ARX(1) panel data model with different values 

of m and N (2=0.25) 
 

Panel A: T=5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:                                                                      . �̂� is estimated  using the sequential MTLR procedure                                                                        

described in Section 7.1 with αN=p/N(T-2) and p=0.05;  is the coefficient of the lagged dependent variable in 

(13). See also the note to Table 1.  
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Figure A3(iii): Power functions for  in the case of the ARX(1) panel data model with different values 

of m and N (2=0.25)  
 

Panel A: T=5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:                                                                                  .    is the coefficient of the xit regressors in (13). See 

also the note to Figure  A3(ii).               
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Figure A3(iv): Power functions for  in the case of the AR(1) panel data model with different 

values of m and N (2=0.5) 
 
Panel A: T=5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Panel B: T=10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:                                                                                  . See also the note to Table A3(i). 
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Figure A3(v): Power functions for  in the case of the ARX(1) panel data model with different values 

of m and N (2=0.5) 
 

Panel A: T=5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:                                                                                  . See also the note to Table A3(ii). 
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Figure A3(vi): Power functions for  in the case of the ARX(1) panel data model with different values 

of m and N (2=0.5)  
 

Panel A: T=5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:                                                                                  . See also note to Figure A3(v).               
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Figure A3(vii): Power functions for  in the case of the AR(1) panel data model with different 

values of m and N (2=2) 
 
Panel A: T=5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Panel B: T=10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:                                                                                  . See also the note to Table A3(i). 
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Figure A3(viii): Power functions for  in the case of the ARX(1) panel data model with different 

values of m and N (2=2) 
 

Panel A: T=5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:                                                                                  . See also the note to Table A3(ii).  
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Figure A3(ix): Power functions for  in the case of the ARX(1) panel data model with different values 

of m and N (2=2)  
 

Panel A: T=5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:                                                                                  . See also the note to Figure A3(viii).               
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S.8 Unit Root Case (0 = 1)

B1: Selecting the number of factors

Table B1(i): Empirical frequency of correctly selecting the true
number of factors, m0, using the sequential MTLR procedure in the

case of the AR(1) panel data model
T = 5

�2 0:25 0:5 1 2
N n m0 0 1 2 0 1 2 0 1 2 0 1 2
100 99.5 58.8 1.4 99.5 98.8 32.1 99.5 99.6 96.5 99.5 99.6 100.0
300 99.8 100.0 29.7 99.8 99.9 98.9 99.8 99.9 100.0 99.8 99.9 100.0
500 99.8 100.0 74.7 99.8 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0
1000 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0

T = 10
�2 0:25 0:5 1 2

N n m0 0 1 2 0 1 2 0 1 2 0 1 2
100 99.5 97.6 18.7 99.5 99.6 94.8 99.5 99.6 99.6 99.5 99.6 99.6
300 100.0 99.9 97.8 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0
500 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0
1000 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0

Note: bm is estimated using the sequential MTLR procedure described in Section 7.1 with
�N = p

N(T�2) and p = 0:05. See also the note to Table 12.

Table B1(ii): Empirical frequency of correctly selecting the true number of factors, m0, using the
sequential MTLR procedure in the case of the ARX(1) panel data model

T = 5
N �2 = 0:25 �2 = 0:5
m0 0 1 2 0 1 2
�2v 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5
100 99.5 99.6 99.6 57.8 57.7 57.6 1.3 1.3 1.2 99.5 99.6 99.6 99.2 99.3 99.2 32.5 32.3 32.3
300 100.0 100.0 100.0 100.0 100.0 100.0 26.3 26.4 26.4 100.0 100.0 100.0 100.0 100.0 100.0 99.5 99.5 99.5
500 99.9 99.9 99.9 100.0 100.0 100.0 71.3 71.5 71.5 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

�2 = 1 �2 = 2
m0 0 1 2 0 1 2
�2v 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5
100 99.5 99.6 99.6 99.9 99.9 99.9 97.3 97.2 97.3 99.5 99.6 99.6 99.9 99.9 99.9 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 10
�2 = 0:25 �2 = 0:5

m0 0 1 2 0 1 2
�2v 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5
100 99.3 99.3 99.3 98.1 98.2 98.2 20.1 19.95 19.7 99.3 99.3 99.3 99.7 99.7 99.7 95.05 94.9 94.9
300 100.0 100.0 100.0 100.0 100.0 100.0 98.3 98.3 98.3 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0

�2 = 1 �2 = 2
m0 0 1 2 0 1 2
�2v 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5 0:5 1 1:5
100 99.3 99.3 99.3 99.7 99.7 99.7 100.0 99.8 99.8 99.3 99.3 99.3 99.7 99.7 99.7 99.6 99.6 99.7
300 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

See the note to Table B1(i).
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B2: Bias, RMSE and Size

Table B2(i): Bias(�100), RMSE(�100) and Size(�100) of 
for the AR(1) panel data model, using the estimated number of

factors, bm
T = 5

Bias(�100) RMSE(�100) Size(�100)
�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2
N m0 = 0
100 -1.49 -1.49 -1.49 -1.49 2.74 2.74 2.74 2.74 3.8 3.8 3.8 3.8
300 -0.89 -0.89 -0.89 -0.89 1.69 1.69 1.69 1.69 3.1 3.1 3.1 3.1
500 -0.67 -0.67 -0.67 -0.67 1.08 1.08 1.08 1.08 2.6 2.6 2.6 2.6
1000 -0.53 -0.53 -0.53 -0.53 1.25 1.25 1.25 1.25 2.4 2.4 2.4 2.4

m0 = 1
100 -2.81 -3.04 -2.99 -2.97 5.44 5.80 5.70 5.66 4.3 4.4 5.4 6.0
300 -1.87 -1.84 -1.83 -1.82 3.48 3.45 3.43 3.42 2.8 4.0 4.9 5.2
500 -1.38 -1.35 -1.34 -1.34 2.34 2.27 2.25 2.24 2.8 3.4 3.7 3.9
1000 -0.99 -0.98 -0.97 -0.97 1.67 1.65 1.64 1.64 2.2 3.3 3.4 3.9

m0 = 2
100 -2.01 -2.93 -3.00 -2.91 3.64 5.57 5.09 4.90 4.2 3.5 5.1 5.9
300 -1.65 -1.75 -1.70 -1.68 3.39 3.05 2.93 2.88 2.3 3.0 3.9 4.5
500 -1.43 -1.39 -1.37 -1.36 2.53 2.34 2.30 2.28 1.1 2.3 3.2 3.9
1000 -1.01 -0.99 -0.99 -0.98 1.70 1.66 1.65 1.65 1.4 2.5 3.3 3.7

T = 10
Bias(�100) RMSE(�100) Size(�100)

�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2
N m0 = 0
100 -0.53 -0.53 -0.53 -0.53 1.24 1.24 1.24 1.24 3.3 3.3 3.3 3.3
300 -0.33 -0.33 -0.33 -0.33 0.50 0.50 0.50 0.50 4.2 4.2 4.2 4.2
500 -0.26 -0.26 -0.26 -0.26 0.37 0.37 0.37 0.37 2.5 2.5 2.5 2.5
1000 -0.20 -0.20 -0.20 -0.20 0.33 0.33 0.33 0.33 3.0 3.0 3.0 3.0

m0 = 1
100 -0.63 -0.62 -0.61 -0.61 1.03 1.01 1.01 1.00 2.3 2.7 3.0 3.2
300 -0.40 -0.40 -0.39 -0.39 0.99 0.96 0.95 0.95 2.4 2.7 2.8 2.8
500 -0.31 -0.31 -0.31 -0.31 0.46 0.46 0.46 0.46 2.1 2.7 2.9 3.1
1000 -0.24 -0.24 -0.24 -0.24 0.33 0.33 0.33 0.33 2.2 2.3 2.4 2.6

m0 = 2
100 -0.67 -0.68 -0.65 -0.65 1.43 1.41 1.11 1.10 3.2 3.3 3.8 4.0
300 -0.39 -0.38 -0.39 -0.38 0.61 0.60 0.59 0.59 1.5 1.9 2.3 2.8
500 -0.32 -0.32 -0.31 -0.32 0.48 0.48 0.48 0.48 1.8 2.2 2.4 2.8
1000 -0.24 -0.24 -0.24 -0.24 0.33 0.33 0.33 0.33 1.4 1.8 2.1 2.2

Note:  is the coe¢ cient of the lagged dependent variable given in (13) in the
absence of the xit regressors. See also the note to Table B1(i).
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Table B2(ii): Bias(�100), RMSE(�100) and Size(�100) of
 and � for the ARX(1) panel data model, using the

estimated number of factors, bm (�2v = 1)
T = 5

Bias(�100) RMSE(�100) Size(�100)
�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2


N m0 = 0
100 -1.28 -1.28 -1.28 -1.28 2.17 2.17 2.17 2.17 3.7 3.7 3.7 3.7
300 -0.77 -0.77 -0.77 -0.77 1.27 1.27 1.27 1.27 3.4 3.4 3.4 3.4
500 -0.58 -0.58 -0.58 -0.58 0.94 0.94 0.94 0.94 3.2 3.2 3.2 3.2
1000 -0.46 -0.46 -0.46 -0.46 0.70 0.70 0.70 0.70 3.3 3.3 3.3 3.3

m0 = 1
100 -1.84 -1.98 -2.00 -2.02 3.16 3.42 3.46 3.49 2.9 2.9 3.9 4.5
300 -1.19 -1.22 -1.24 -1.26 1.97 2.01 2.05 2.08 1.8 2.3 2.3 2.9
500 -0.93 -0.95 -0.97 -0.98 1.54 1.58 1.61 1.63 2.3 2.6 2.3 3.0
1000 -0.70 -0.73 -0.75 -0.76 1.15 1.19 1.23 1.25 2.7 3.3 3.5 3.7

m0 = 2
100 -1.56 -1.96 -2.02 -2.07 2.68 3.38 3.52 3.59 4.2 3.2 3.5 4.2
300 -1.06 -1.16 -1.19 -1.22 1.81 2.01 2.06 2.11 1.8 2.6 3.0 3.5
500 -0.90 -0.94 -0.97 -1.00 1.51 1.56 1.61 1.66 1.3 1.9 2.5 2.7
1000 -0.66 -0.69 -0.71 -0.73 1.08 1.12 1.16 1.20 1.9 2.4 2.8 3.1

�
N m0 = 0
100 -0.58 -0.58 -0.58 -0.58 4.47 4.47 4.47 4.47 5.5 5.5 5.5 5.5
300 -0.30 -0.30 -0.30 -0.30 2.55 2.55 2.55 2.55 5.0 5.0 5.0 5.0
500 -0.21 -0.21 -0.21 -0.21 1.94 1.94 1.94 1.94 4.0 4.0 4.0 4.0
1000 -0.18 -0.18 -0.18 -0.18 1.39 1.39 1.39 1.39 4.4 4.4 4.4 4.4

m0 = 1
100 -0.84 -0.95 -0.97 -0.99 5.44 5.68 5.95 6.15 4.2 4.1 4.5 4.8
300 -0.62 -0.66 -0.69 -0.72 3.04 3.21 3.38 3.50 3.8 4.0 4.2 3.9
500 -0.32 -0.34 -0.36 -0.38 2.36 2.49 2.62 2.71 4.7 4.9 4.5 4.3
1000 -0.26 -0.27 -0.27 -0.27 1.68 1.78 1.87 1.94 3.9 4.1 4.4 4.5

m0 = 2
100 -0.61 -0.69 -0.59 -0.47 5.70 6.84 8.26 10.46 5.8 5.1 5.1 6.3
300 -0.30 -0.32 -0.29 -0.23 3.25 3.77 4.61 5.86 3.7 4.0 4.5 4.6
500 -0.30 -0.29 -0.27 -0.21 2.51 2.91 3.56 4.50 3.1 3.4 3.9 4.3
1000 -0.31 -0.33 -0.34 -0.35 1.81 2.09 2.54 3.20 4.2 4.5 4.6 4.3

T = 10
Bias(�100) RMSE(�100) Size(�100)

�2 0:25 0:5 1 2 0:25 0:5 1 2 0:25 0:5 1 2


N m0 = 0
100 -0.43 -0.43 -0.43 -0.43 0.67 0.67 0.67 0.67 3.3 3.3 3.3 3.3
300 -0.26 -0.26 -0.26 -0.26 0.37 0.37 0.37 0.37 2.1 2.1 2.1 2.1
500 -0.22 -0.22 -0.22 -0.22 0.30 0.30 0.30 0.30 2.5 2.5 2.5 2.5
1000 -0.18 -0.18 -0.18 -0.18 0.23 0.23 0.23 0.23 2.9 2.9 2.9 2.9

m0 = 1
100 -0.53 -0.53 -0.53 -0.53 0.84 0.84 0.84 0.84 3.0 3.6 3.6 3.6
300 -0.30 -0.30 -0.31 -0.31 0.45 0.45 0.46 0.46 1.9 2.0 2.3 2.1
500 -0.26 -0.26 -0.26 -0.26 0.37 0.37 0.37 0.37 2.0 2.5 2.8 2.5
1000 -0.20 -0.20 -0.20 -0.20 0.26 0.26 0.26 0.26 1.9 2.2 2.2 2.3

m0 = 2
100 -0.50 -0.49 -0.50 -0.50 0.79 0.79 0.80 0.81 2.7 2.0 2.4 2.8
300 -0.31 -0.31 -0.32 -0.32 0.46 0.47 0.47 0.48 2.0 2.0 2.1 1.9
500 -0.26 -0.26 -0.27 -0.27 0.37 0.38 0.39 0.39 2.3 2.4 2.5 2.8
1000 -0.19 -0.20 -0.20 -0.20 0.25 0.26 0.26 0.27 1.5 1.7 2.0 2.0

�
N m0 = 0
100 -0.13 -0.13 -0.13 -0.13 3.01 3.01 3.01 3.01 6.2 6.2 6.2 6.2
300 -0.09 -0.09 -0.09 -0.09 1.72 1.72 1.72 1.72 5.6 5.6 5.6 5.6
500 -0.05 -0.05 -0.05 -0.05 1.33 1.33 1.33 1.33 5.3 5.3 5.3 5.3
1000 -0.03 -0.03 -0.03 -0.03 0.95 0.95 0.95 0.95 4.8 4.8 4.8 4.8

m0 = 1
100 -0.04 -0.02 -0.02 -0.02 3.70 3.84 3.95 4.01 5.6 5.9 6.0 6.1
300 -0.05 -0.04 -0.04 -0.04 2.13 2.22 2.27 2.31 5.5 5.8 5.3 5.0
500 -0.04 -0.05 -0.05 -0.05 1.59 1.66 1.72 1.75 4.7 4.8 4.5 4.7
1000 -0.01 0.00 0.00 0.00 1.12 1.17 1.20 1.22 4.3 4.1 3.8 4.2

m0 = 2
100 0.00 0.14 0.28 0.42 4.51 5.22 6.25 7.44 4.6 4.2 5.2 5.1
300 0.07 0.11 0.17 0.24 2.52 2.99 3.60 4.27 4.4 4.9 5.0 5.0
500 -0.01 0.03 0.09 0.18 1.98 2.35 2.83 3.35 5.1 5.6 5.8 5.0
1000 0.00 0.05 0.11 0.18 1.37 1.63 1.95 2.31 5.5 4.9 4.7 4.0

Note:  and � are the coe¢ cients of the lagged dependent variable and the xit
regressor given in (13). See also the note to Table B1(i).
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B3: Power Functions  
 

Figure B3(i): Power functions for  in the case of the AR(1) panel data model with different 

values of m and N (2=0.25) 
 

Panel A: T=5 

 

 

 

 

 

 

 
Panel B: T=10 

 

 

 

 

 

 

 

 
Note:                                                                                  .  �̂� is estimated  using the sequential MTLR procedure                                                                        
described in Section 7.1 with αN=p/N(T-2) and p=0.05;  is the coefficient of the lagged dependent variable in 
(13) in the absence of the xit regressors. See also the note to Table 4. 
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Figure B3(ii): Power functions for  in the case of the ARX(1) panel data model with different 

values of m and N (2=0.25) 
 

Panel A: T=5 

 

 

 

 

 

 
 
Panel B: T=10 

 

 

 

 

 
 
 
 
Note:                                                                      . �̂� is estimated  using the sequential MTLR procedure                                                                        

described in Section 7.1 with αN=p/N(T-2) and p=0.05;  is the coefficient of the lagged dependent variable in 

(13). See also the note to Table 4. 

 

Figure B3(iii): Power functions for  in the case of the ARX(1) panel data model with different 

values of m and N (2=0.25) 
 

Panel A: T=5 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 
 
 
 
Note:                                                                                  .   is the coefficient of the xit regressors in (13). See   

also the note to Figure  B3(ii).               
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Figure B3(iv): Power functions for  in the case of the AR(1) panel data model with different 

values of m and N (2=0.5) 
 

Panel A: T=5 

 

 

 

 

 

 

 
Panel B: T=10 

 

 

 

 

 

 

 

 
Note:                                                                                  .  See also the note to Figure B3(i).               

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

S31 

 

0

20

40

60

80

100

0
.7

9

0
.8

2

0
.8

5

0
.8

8

0
.9

1

0
.9

4

0
.9

7

1
.0

0

1
.0

3

1
.0

6

1
.0

9

1
.1

2

1
.1

5

1
.1

8

1
.2

1

γ0=1, m0=1

0

20

40

60

80

100

0
.7

9

0
.8

2

0
.8

5

0
.8

8

0
.9

1

0
.9

4

0
.9

7

1
.0

0

1
.0

3

1
.0

6

1
.0

9

1
.1

2

1
.1

5

1
.1

8

1
.2

1

γ0=1, m0=2

0

20

40

60

80

100

0
.7

9

0
.8

2

0
.8

5

0
.8

8

0
.9

1

0
.9

4

0
.9

7

1
.0

0

1
.0

3

1
.0

6

1
.0

9

1
.1

2

1
.1

5

1
.1

8

1
.2

1

γ0=1, m0=1

0

20

40

60

80

100

0
.7

9

0
.8

2

0
.8

5

0
.8

8

0
.9

1

0
.9

4

0
.9

7

1
.0

0

1
.0

3

1
.0

6

1
.0

9

1
.1

2

1
.1

5

1
.1

8

1
.2

1

γ0=1, m0=2



Figure B3(v): Power functions for  in the case of the ARX(1) panel data model with different 

values of m and N (2=0.5) 
 

Panel A: T=5 

 

 

 

 

 

 
 
 
Panel B: T=10 

 

 

 

 

 
 
 
 
Note:                                                                                  . See also note to Figure B3(ii).               

 

Figure B3(vi): Power functions for  in the case of the ARX(1) panel data model with different 

values of m and N (2=0.5) 
 

Panel A: T=5 

 

 

 

 

 

 
 
Panel B: T=10 

 

 

 

 

 
 
 
 
 
Note:                                                                                  . See also the note to Figure  B3(v).               
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Figure B3(vii): Power functions for  in the case of the AR(1) panel data model with different 

values of m and N (2=2) 
 

Panel A: T=5 

 

 

 

 

 

 

 
 
Panel B: T=10 

 

 

 

 

 

 

 

Note:                                                                                  . See also the note to Figure B3(i).               
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Figure B3(viii): Power functions for  in the case of the ARX(1) panel data model with different 

values of m and N (2=2) 
 

Panel A: T=5 

 

 

 

 

 

 
 
Panel B: T=10 

 

 

 

 

 
 
 
Note:                                                                                  . See also the note to Figure B3(ii).               

 

Figure B3(ix): Power functions for  in the ARX(1) panel data model with different 

values of m and N (2=2) 
 

Panel A: T=5 

 

 

 

 

 

 

Panel B: T=10 

 

 

 

 

 

 
 
 
Note:                                                                                  . See also the note to Figure  B3(viii).               
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S.9 Monte Carlo experiments for the robustness analysis

C1: Initial values deviating from the steady state distribution

Table C1(i): Empirical frequency of correctly selecting the true
number of factors, m0, using the sequential MTLR procedure

(�2v = 1; �
2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
m0 0 1 2 0 1 2 0 1 2 0 1 2
N AR(1)
100 99.4 99.7 87.8 99.2 99.7 96.2 99.7 99.5 99.7 99.6 99.5 99.7
300 99.7 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0
500 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0 99.8 100.0 100.0
1000 99.9 100.0 100.0 99.8 100.0 100.0 99.9 100.0 100.0 99.5 100.0 100.0

ARX(1)
100 99.7 100.0 96.5 99.5 99.9 96.8 99.4 99.6 99.7 99.6 99.6 99.8
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 99.8
500 99.9 99.9 100.0 99.9 99.9 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 99.9 100.0 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: yit is generated as yit = �i + �t + yi;t�1 + �xit + �it; �it = �0ift + uit for
i = 1; 2; :::; N ; t = 1; :::; T with yi0 = �1�i0 + �2�i0 (ui0=�) and �1; �2 = 1:2; 0:8. Under
m0 = 0; yit = �i+ �t+ yi;t�1+�xit+uit: In the case of the AR(1) panel data model,
� = 0. bm is estimated using the sequential MTLR procedure described in Section 7.1
with �N = p

N(T�2) and p = 0:05. See also the note to Table 1.

Table C1(ii): Bias(�100), RMSE(�100) and Size(�100) of  for the AR(1) panel data model,
using the estimated number of factors, bm (�2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

N m0 = 0
100 0.56 9.26 6.4 0.74 12.46 22.0 -0.02 3.83 6.1 1.91 7.86 15.4
300 -0.01 4.47 5.5 1.17 9.10 19.2 -0.05 2.22 5.3 0.71 4.73 8.3
500 0.02 3.36 4.7 1.39 7.73 15.4 -0.01 1.72 5.8 0.24 3.03 6.4
1000 0.01 2.41 4.7 1.04 6.07 11.2 -0.01 1.25 5.6 0.20 2.39 6.0

m0 = 1
100 0.73 11.21 5.7 1.27 13.68 24.2 -0.04 4.52 5.9 0.38 5.37 6.6
300 -0.08 5.71 5.0 1.16 9.98 16.7 0.01 2.55 4.8 0.08 2.73 4.9
500 0.09 4.19 3.7 1.35 8.22 11.5 -0.06 2.06 6.4 0.02 2.15 5.4
1000 0.04 3.07 5.2 0.91 6.22 7.8 -0.03 1.42 4.8 -0.02 1.46 4.9

m0 = 2
100 4.81 17.79 14.6 1.69 14.06 23.8 -0.13 5.57 5.1 0.34 6.25 7.0
300 0.28 5.72 3.2 1.63 9.90 14.2 0.02 3.07 4.8 0.09 3.16 3.7
500 0.08 4.36 2.9 1.34 8.16 9.6 -0.10 2.35 4.6 -0.08 2.36 4.3
1000 0.03 2.99 3.6 0.75 5.82 5.8 0.00 1.75 4.7 0.03 1.65 4.4

Note:  is the coe¢ cient of the lagged dependent variable given in (13) in the absence of the xit regressors. See also the note
to Table C1(i).
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Table C1(iii): Bias(�100), RMSE(�100) and Size(�100) of  and � for the ARX(1) panel
data model, using the estimated number of factors, bm (�2v = 1; �

2 = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)


N m0 = 0
100 -0.12 3.64 5.7 -0.05 3.15 6.8 -0.06 1.99 5.7 -0.03 1.41 6.8
300 -0.04 2.08 6.1 -0.06 1.79 5.7 0.07 1.17 6.1 0.03 0.80 5.7
500 0.02 1.55 5.3 0.01 1.34 5.1 -0.01 0.88 5.3 0.00 0.60 5.1
1000 -0.05 1.14 5.6 -0.04 0.98 5.6 0.00 0.64 5.6 0.00 0.44 5.6

m0 = 1
100 0.12 4.60 5.4 0.26 4.98 5.4 -0.10 2.22 6.1 -0.07 1.60 6.4
300 -0.04 2.56 4.6 0.01 2.68 4.2 0.03 1.25 5.7 0.03 0.87 4.7
500 0.02 1.97 4.0 0.03 2.03 3.7 -0.02 0.96 5.1 -0.02 0.69 5.5
1000 -0.06 1.44 5.0 -0.04 1.48 4.7 0.01 0.69 5.5 0.00 0.49 5.4

m0 = 2
100 0.41 5.09 6.1 0.52 5.27 4.9 -0.10 2.42 6.0 -0.06 1.66 5.4
300 0.04 2.64 4.1 0.08 2.78 4.0 -0.06 1.38 5.4 -0.02 0.96 4.9
500 0.07 2.09 4.6 0.10 2.22 4.9 -0.03 1.02 4.2 -0.01 0.73 4.5
1000 0.05 1.49 4.0 0.05 1.54 4.5 0.02 0.73 4.4 0.01 0.51 4.4

�
m0 = 0

100 -0.05 4.45 5.8 -0.04 4.57 5.8 -0.02 3.03 5.8 -0.02 3.02 5.8
300 0.02 2.53 5.7 0.00 2.58 5.6 -0.05 1.73 5.7 -0.03 1.71 5.6
500 0.04 1.92 5.1 0.04 1.97 4.8 0.00 1.34 5.1 0.00 1.33 4.8
1000 0.00 1.38 5.1 0.00 1.41 5.1 0.01 0.96 5.1 0.01 0.95 5.1

m0 = 1
100 0.01 6.02 5.7 0.08 6.19 5.5 0.09 3.98 6.2 0.08 3.98 6.2
300 -0.14 3.41 4.9 -0.12 3.48 5.1 0.01 2.29 5.8 0.02 2.28 5.5
500 0.09 2.67 5.4 0.10 2.73 5.2 0.00 1.74 5.1 0.00 1.72 5.1
1000 0.04 1.88 5.8 0.05 1.92 5.5 0.03 1.21 4.3 0.04 1.20 4.7

m0 = 2
100 0.28 8.34 6.3 0.43 8.59 5.9 0.14 6.26 5.2 0.15 6.24 5.2
300 0.18 4.62 5.3 0.21 4.68 5.3 0.09 3.63 5.4 0.08 3.61 5.5
500 0.12 3.56 5.1 0.15 3.64 5.2 0.02 2.84 5.9 0.01 2.84 5.8
1000 -0.06 2.51 4.7 -0.05 2.55 5.0 0.04 1.96 5.3 0.05 1.95 5.4

Note:  and � are the coe¢ cients of the lagged dependent variable and the xit regressor given in (13). See also the note to
Table C1(i).

C2: Alternative p-values (p = 0:01, p = 0:10) for implementing the MTLR test

I Results for p = 0:01

Table C2(i): Empirical frequency of correctly selecting the true
number of factors, m0, using the sequential MTLR procedure

(�2v = 1; �
2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
m0 0 1 2 0 1 2 0 1 2 0 1 2
N AR(1)
100 99.7 99.9 80.4 99.7 99.9 93.1 99.9 99.8 99.9 100.0 99.8 99.9
300 99.9 100.0 100.0 99.9 100.0 100.0 99.8 100.0 100.0 99.9 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0

ARX(1)
100 100.0 100.0 93.3 100.0 100.0 94.3 99.8 99.7 99.9 99.8 99.7 99.9
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: bm is estimated using the sequential MTLR procedure described in Section 7.1
with �N = p

N(T�2) and p = 0:01. See also the note to Table 1.
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Table C2(ii): Bias(�100), RMSE(�100) and Size (�100) of  for the AR(1) panel data
model, using the estimated number of factors, bm (�2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

N m0 = 0
100 0.44 8.64 6.1 0.73 12.11 21.2 -0.02 3.75 6.4 1.96 7.89 16.3
300 -0.03 4.26 5.4 1.41 9.26 19.2 -0.04 2.18 5.1 0.69 4.61 8.7
500 0.03 3.22 4.8 1.48 7.77 14.5 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.02 6.07 12.1 -0.01 1.22 5.4 0.22 2.37 5.8

m0 = 1
100 0.45 9.32 5.1 1.43 13.00 19.6 -0.04 4.19 6.1 0.25 4.61 4.9
300 -0.10 4.98 5.1 0.99 9.04 11.9 0.02 2.38 4.5 0.08 2.41 4.7
500 0.05 3.68 3.9 0.96 7.12 7.1 -0.05 1.91 6.0 0.01 1.88 5.4
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 4.9 0.00 1.30 4.2

m0 = 2
100 6.94 20.36 17.9 1.93 13.52 20.9 -0.09 5.13 5.9 0.19 5.32 5.3
300 0.20 4.99 3.9 1.38 8.97 10.3 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 3.1 0.98 7.06 6.3 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 3.3 0.45 4.81 4.4 0.00 1.59 4.7 0.01 1.44 4.0

Note:  is the coe¢ cient of the lagged dependent variable given in (13) in the absence of the xit regressors. See also
the note to Table C2(i).

Table C2(iii): Bias(�100), RMSE(�100) and Size (�100) of  and � for the ARX(1)
panel data model, using the estimated number of factors, bm (�2v = 1; �

2 = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)


N m0 = 0
100 -0.14 3.45 5.9 -0.07 2.98 6.6 -0.05 1.94 5.4 -0.03 1.36 5.9
300 -0.04 1.97 5.6 -0.05 1.70 6.0 0.08 1.14 5.3 0.04 0.77 5.0
500 0.02 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.2 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8

m0 = 1
100 0.09 4.28 5.1 0.23 4.74 5.2 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.82 4.0
500 0.01 1.83 3.8 0.03 1.91 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4

m0 = 2
100 0.46 4.84 6.3 0.48 4.99 4.6 -0.09 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1

�
m0 = 0

100 -0.06 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.00 2.58 5.8 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8

m0 = 1
100 -0.01 5.98 5.6 0.05 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.10 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.87 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7

m0 = 2
100 0.27 8.35 6.4 0.41 8.57 5.9 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

Note:  and � are the coe¢ cients of the lagged dependent variable and the xit regressor given in (13). See also the
note to Table C2(i).
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I Results for p = 0:10

Table C2(iv): Empirical frequency of correctly selecting the true
number of factors, m0, using the sequential MTLR procedure

(�2v = 1; �
2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
m0 0 1 2 0 1 2 0 1 2 0 1 2
N AR(1)
100 99.4 99.5 91.7 99.0 99.5 97.5 99.3 99.4 99.4 99.3 99.5 99.4
300 99.7 99.9 100.0 99.7 100.0 100.0 99.7 99.9 99.9 99.7 100.0 99.9
500 99.9 100.0 100.0 99.6 100.0 100.0 99.8 99.9 100.0 99.9 99.9 100.0
1000 99.9 100.0 100.0 99.8 100.0 100.0 99.6 100.0 100.0 99.5 100.0 100.0

ARX(1)
100 99.5 99.8 97.6 99.4 99.7 98.0 99.2 99.4 99.6 99.1 99.4 99.6
300 99.8 100.0 100.0 99.7 100.0 100.0 100.0 99.9 99.7 100.0 99.9 99.8
500 99.8 99.9 100.0 99.9 99.9 100.0 99.9 100.0 100.0 99.9 100.0 100.0
1000 99.9 99.9 100.0 99.8 99.9 100.0 99.9 100.0 100.0 99.9 100.0 100.0

Note: bm is estimated using the sequential MTLR procedure described in Section 7.1
with �N = p

N(T�2) and p = 0:10. See also the note to Table 1.

Table C2(v): Bias(�100), RMSE(�100) and Size (�100) of  for the AR(1) panel data
model, using the estimated number of factors, bm (�2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

N m0 = 0
100 0.40 8.71 6.2 0.59 12.38 21.3 -0.03 3.77 6.4 1.94 7.91 16.4
300 -0.02 4.26 5.4 1.39 9.32 19.2 -0.04 2.18 5.1 0.67 4.60 8.7
500 0.03 3.22 4.8 1.42 7.85 14.6 -0.01 1.70 5.9 0.26 3.09 6.7
1000 0.00 2.29 4.5 1.00 6.08 12.1 -0.01 1.22 5.4 0.18 2.24 5.7

m0 = 1
100 0.41 9.41 5.1 1.34 13.23 19.7 -0.05 4.21 9.6 0.23 4.64 19.3
300 -0.08 5.02 5.1 1.00 9.04 11.9 0.02 2.38 3.9 0.08 2.41 10.3
500 0.05 3.68 3.9 0.94 7.16 7.1 -0.05 1.91 3.1 0.01 1.88 6.3
1000 0.04 2.67 4.7 0.61 5.08 4.7 -0.01 1.32 3.3 0.00 1.30 4.4

m0 = 2
100 3.15 14.91 6.1 1.76 13.30 4.9 -0.08 5.13 5.9 0.18 5.33 5.3
300 0.20 4.99 4.5 1.38 8.97 4.7 0.04 2.81 4.6 0.08 2.66 4.0
500 0.05 3.81 6.0 0.98 7.06 5.4 -0.10 2.16 4.9 -0.09 2.06 4.7
1000 0.02 2.62 4.9 0.45 4.81 4.2 0.00 1.59 4.7 0.01 1.44 4.0

Note:  is the coe¢ cient of the lagged dependent variable given in (13) in the absence of the xit regressors. See also
the note to Table C2(iv).
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Table C2(vi): Bias(�100), RMSE(�100) and Size (�100) of  and � for the ARX(1)
panel data model, using the estimated number of factors, bm (�2v = 1; �

2 = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)


N m0 = 0
100 -0.14 3.45 5.9 -0.07 3.03 6.6 -0.06 1.95 5.4 -0.03 1.37 5.8
300 -0.04 1.97 5.6 -0.05 1.74 6.1 0.08 1.14 5.3 0.04 0.77 5.1
500 0.01 1.47 5.1 0.00 1.27 4.4 -0.01 0.86 4.5 0.00 0.58 4.3
1000 -0.05 1.08 5.1 -0.03 0.93 5.8 0.00 0.62 4.9 0.00 0.42 5.8

m0 = 1
100 0.10 4.30 5.1 0.23 4.76 5.3 -0.10 2.15 6.0 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.02 2.56 5.1 0.03 1.20 5.2 0.02 0.83 4.0
500 0.01 1.83 3.8 0.02 1.92 3.9 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.41 4.5 0.01 0.67 5.4 0.00 0.46 5.4

m0 = 2
100 0.34 4.68 5.7 0.45 4.97 4.7 -0.08 2.33 5.8 -0.05 1.59 5.9
300 0.03 2.46 4.1 0.07 2.63 4.8 -0.06 1.33 5.4 -0.02 0.91 4.8
500 0.07 1.94 3.6 0.10 2.10 4.6 -0.03 0.98 4.3 -0.01 0.69 4.7
1000 0.05 1.39 3.6 0.05 1.47 4.2 0.02 0.70 4.3 0.01 0.48 4.1

�
m0 = 0

100 -0.05 4.44 5.6 -0.06 4.55 5.4 -0.01 3.04 6.5 -0.02 3.02 6.6
300 0.02 2.53 5.7 0.00 2.58 5.9 -0.05 1.73 6.0 -0.03 1.71 6.0
500 0.04 1.92 5.2 0.04 1.97 5.2 0.00 1.34 5.7 0.00 1.33 5.6
1000 0.00 1.38 5.0 0.00 1.40 4.9 0.01 0.96 5.6 0.01 0.95 5.8

m0 = 1
100 -0.01 5.99 5.6 0.06 6.16 5.5 0.09 3.98 6.3 0.07 3.98 6.2
300 -0.15 3.39 4.9 -0.14 3.46 4.9 0.01 2.29 6.0 0.02 2.28 5.6
500 0.09 2.65 5.5 0.09 2.70 5.3 0.00 1.74 5.2 0.00 1.72 5.2
1000 0.05 1.88 5.5 0.06 1.91 5.7 0.03 1.21 4.4 0.04 1.20 4.7

m0 = 2
100 0.27 8.33 6.4 0.41 8.55 5.8 0.15 6.27 4.9 0.13 6.24 5.0
300 0.18 4.62 5.2 0.20 4.67 5.3 0.09 3.63 5.3 0.08 3.61 5.4
500 0.11 3.55 5.0 0.14 3.63 5.0 0.02 2.85 5.7 0.01 2.84 5.9
1000 -0.06 2.51 4.9 -0.05 2.55 5.2 0.04 1.96 5.3 0.05 1.95 5.3

Note:  and � are the coe¢ cients of the lagged dependent variable and the xit regressor given in (13). See also the
note to Table C2(iv).

C3: Correlation of factor loadings and regressors

In this experiment we allow the factor loadings �i in the Monte Carlo design outlined in Section 8.1 to
be correlated with the regressors xit according to

�i` = �

r
2

m0

h�p
T v̄i=�v

�
+ �i`

i
; for ` = 1; 2; :::;m0 (S.55)

where v̄i = T�1
PT

t=1vit, with vit representing the idiosyncratic component of xit, de�ned by (78), and
�i` � IIDN (0; 1) ; for ` = 1; 2; :::;m0: The above formulation ensures that V ar (�i`) =

�2

m0
, as in the

baseline case where the loadings are uncorrelated with the regressors. The rest of the parameters are as
described in Section 8.1.
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Table C3(i): Empirical frequency of correctly selecting the true
number of factors, m0, using the sequential MTLR procedure

(�2v = 1; �
2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
m0 1 2 1 2 1 2 1 2
N AR(1)
100 99.7 100.0 99.6 100.0 99.6 99.8 99.5 99.7
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ARX(1)
100 99.9 100.0 99.9 100.0 99.6 99.7 99.6 99.7
300 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.8
500 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0
1000 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0

Note: yit is generated as yit = �i + �t + yi;t�1 + �xit + �it; �it = �0ift + uit for
i = 1; 2; :::; N ; t = 1; :::; T with yi0 = �i0+�i0 (ui0=�). The factor loadings are generated

as �i` = �
q

2
m0

h�p
T v̄i=�v

�
+ �i`

i
; for ` = 1; 2; :::;m0 where v̄i = T�1

PT
t=1vit, and

�i` � IIDN (0; 1) ; for ` = 1; 2; :::;m0: In the case of the AR(1) panel data model,
� = 0. bm is estimated using the sequential MTLR procedure described in Section 7.1
with �N = p

N(T�2) and p = 0:05. See also the note to Table 1.

Table C3(ii): Bias(�100), RMSE(�100) and Size(�100) of  for the AR(1) panel data model,
using the estimated number of factors, m, and the true number, m0 (�2 = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

N m0 = 1
100 0.20 7.36 6.4 1.21 10.81 10.5 -0.05 3.68 5.6 0.08 3.41 5.5
300 -0.13 3.96 5.6 0.30 6.30 6.4 0.01 2.09 4.9 0.04 1.83 5.0
500 0.02 2.91 4.7 0.34 4.67 4.1 -0.06 1.67 5.8 -0.01 1.43 5.3
1000 0.04 2.11 5.5 0.24 3.27 4.8 -0.01 1.16 5.3 0.00 1.00 4.6

m0 = 2
100 0.23 7.37 5.1 1.33 10.68 9.3 -0.05 4.40 6.5 0.02 3.79 6.3
300 0.12 3.91 4.3 0.67 6.22 5.0 0.05 2.43 5.3 0.06 2.00 4.5
500 0.03 3.01 4.2 0.38 4.65 3.6 -0.09 1.87 4.8 -0.08 1.56 5.4
1000 0.01 2.06 4.2 0.17 3.15 3.7 -0.01 1.36 5.0 0.00 1.07 4.0

Note:  is the coe¢ cient of the lagged dependent variable given in (1) in the absence of the xit regressors. See also the note
to Table C3(i).

S40



Table C3(iii): Bias(�100), RMSE(�100) and Size(�100) of  and � for the ARX(1) panel
data model, using the estimated number of factors, m, and the true number, m0 (�2v = 1; �

2 = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)


N m0 = 1
100 0.02 4.01 5.9 0.10 4.49 5.8 -0.08 2.09 6.4 -0.05 1.51 6.3
300 -0.12 2.28 5.6 -0.14 2.48 6.4 0.04 1.16 5.4 0.04 0.80 4.2
500 -0.06 1.74 4.2 -0.11 1.85 4.2 -0.01 0.90 5.4 0.01 0.63 5.5
1000 -0.11 1.28 4.8 -0.15 1.36 5.2 0.02 0.65 5.5 0.03 0.45 5.5

m0 = 2
100 0.07 4.27 5.8 0.19 4.73 5.7 -0.07 2.28 6.6 -0.02 1.57 6.2
300 -0.04 2.33 4.4 -0.06 2.55 5.0 -0.06 1.30 5.9 0.00 0.90 4.9
500 -0.04 1.84 4.4 -0.08 2.04 5.8 -0.03 0.96 5.1 0.01 0.68 5.5
1000 -0.06 1.32 4.6 -0.12 1.44 5.2 0.02 0.69 4.7 0.03 0.48 4.2

�
N m0 = 1
100 0.01 6.20 5.3 0.04 6.34 5.5 0.07 4.05 6.2 0.06 4.06 6.3
300 -0.15 3.53 5.1 -0.18 3.59 5.2 -0.01 2.33 5.6 0.00 2.32 5.5
500 0.07 2.77 5.6 0.04 2.81 5.3 -0.02 1.78 5.5 -0.02 1.76 5.4
1000 0.09 1.97 5.9 0.06 1.99 5.4 0.01 1.23 4.3 0.02 1.22 4.6

m0 = 2
100 0.49 11.19 6.8 0.56 11.35 6.5 -0.18 7.56 5.5 -0.17 7.53 5.6
300 0.38 6.24 5.5 0.37 6.27 5.0 -0.27 4.37 5.4 -0.28 4.35 5.3
500 0.28 4.74 5.0 0.26 4.80 5.5 -0.30 3.43 6.0 -0.31 3.43 5.8
1000 0.02 3.35 5.1 -0.02 3.38 5.3 -0.26 2.36 4.7 -0.26 2.34 4.7

Note:  and � are the coe¢ cients of the lagged dependent variable and the xit regressor given in (13). See also the note to
Table C3(i).

C4: Weakly cross-correlated factor loadings

Here we generate the factor loadings, �i`, in the Monte Carlo design outlined in Section 8.1 to follow a
�rst-order spatial autoregressive process de�ned by

�` = aW�` + e`; ` = 1; 2; :::;m0; (S.56)

where �` = (�1`; �2`; :::; �N`)
0;

W =

0BBBBBBBBB@

0 1 0 0 : : : 0
1=2 0 1=2 0 0

0 1=2 0
. . .

...

0 0
. . . . . . 1=2 0

... 1=2 0 1=2
0 0 : : : 0 1 0

1CCCCCCCCCA
; (S.57)

and e` = (e1`; e2`; :::; eN`)0. For each i and `, ei` are drawn as IIDN (0; �2e`). To ensureN�1PN
i=1 V ar (�i`) =

�2

m0
, for ` = 1; 2; :::;m0 (which corresponds to the case of cross-sectionally independent factor loadings)

we set

�2e` =

�
�2

m0

�8<: N

tr
h
(IN � aW)�1 (IN � aW0)�1

i
9=; : (S.58)

The rest of the parameters are as described in Section 8.1.
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Table C4(i): Empirical frequency of correctly selecting the true
number of factors, m0, using the sequential MTLR procedure

(�2v = 1; �
2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
m0 1 2 1 2 1 2 1 2
N AR(1)
100 99.6 86.3 99.8 95.6 99.6 99.7 99.5 99.8
300 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ARX(1)
100 99.9 95.6 99.9 96.6 99.6 99.8 99.5 99.8
300 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9
500 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0
1000 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0

Note: yit is generated as yit = �i + �t + yi;t�1 + �xit + �it; �it = �0ift +
uit, for i = 1; 2; :::; N ; t = 1; :::; T with yi0 = �i0 + �i0 (ui0=�). The factor
loadings �` = (�1`; �2`; :::; �N`)

0 are generated as �` = aW�` + e`; for ` =
1; 2; :::;m0; where e` = (e1`; e2`; :::; eN`)

0; with a = 0:4 and W is speci�ed as in
equation (S.57). For each i and `, ei` are drawn as IIDN (0; �2e`) with �2e` =�
�2

m0

�n
N= tr

h
(IN � aW)�1 (IN � aW0)�1

io
: In the case of the AR(1) panel data

model, � = 0. bm is estimated using the sequential MTLR procedure described in Section
7.1 with �N = p

N(T�2) and p = 0:05. See also the note to Table 1.

Table C4(ii): Bias(�100), RMSE(�100) and Size(�100) of  for the AR(1) model, using the
estimated number of factors, m, and the true number, m0 (�2 = 1)

T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8
Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

N m0 = 1
100 0.43 9.46 5.1 1.35 12.86 18.9 -0.06 4.22 5.8 0.23 4.70 5.1
300 -0.08 4.99 5.4 1.03 9.07 11.6 0.03 2.39 4.5 0.09 2.43 4.9
500 0.05 3.68 3.8 0.97 7.16 6.8 -0.06 1.90 5.5 0.01 1.88 5.5
1000 0.03 2.67 4.8 0.61 5.09 4.7 -0.02 1.32 5.3 0.00 1.30 4.5

m0 = 2
100 5.11 17.99 13.7 1.99 13.35 19.6 -0.09 5.10 6.0 0.20 5.24 5.1
300 0.30 5.00 3.4 1.73 9.31 10.7 0.01 2.84 5.2 0.04 2.68 4.1
500 -0.01 3.85 3.8 0.89 7.17 7.0 -0.07 2.15 4.3 -0.06 2.05 4.3
1000 0.02 2.62 3.7 0.44 4.76 4.6 0.00 1.59 4.8 0.02 1.44 4.5

Note:  is the coe¢ cient of the lagged dependent variable given in (13) in the absence of the xit regressors. See also the note
to Table C4(i).
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Table C4(iii): Bias(�100), RMSE(�100) and Size(�100) of  and � for the ARX(1) panel
data model, using the estimated number of factors, m, and the true number, m0 (�2v = 1; �

2 = 1)
T = 5; 0 = 0:4 T = 5; 0 = 0:8 T = 10; 0 = 0:4 T = 10; 0 = 0:8

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)

Bias
(�100)

RMSE
(�100)

Size
(�100)


N m0 = 1
100 0.09 4.30 5.0 0.22 4.73 5.6 -0.10 2.15 6.4 -0.07 1.54 6.5
300 -0.05 2.39 4.4 -0.01 2.56 5.1 0.03 1.20 5.3 0.02 0.82 3.9
500 0.01 1.84 3.5 0.02 1.93 3.8 -0.02 0.92 5.5 -0.01 0.65 5.1
1000 -0.04 1.35 4.5 -0.02 1.40 4.4 0.01 0.67 5.3 0.00 0.46 5.4

m0 = 2
100 0.35 4.77 5.7 0.43 4.98 4.4 -0.08 2.31 5.5 -0.05 1.58 5.2
300 0.01 2.41 3.4 0.05 2.59 4.2 -0.08 1.33 5.3 -0.04 0.91 4.6
500 0.06 1.94 3.9 0.09 2.11 4.3 -0.03 0.97 4.6 -0.01 0.69 4.2
1000 0.06 1.36 3.2 0.06 1.45 3.8 0.02 0.70 4.7 0.01 0.48 4.1

�
N m0 = 1
100 0.00 6.01 5.5 0.06 6.18 5.3 0.09 3.97 6.3 0.08 3.98 6.0
300 -0.15 3.37 4.9 -0.14 3.44 5.2 0.01 2.29 5.4 0.02 2.28 5.7
500 0.09 2.66 5.7 0.09 2.71 5.4 0.00 1.74 5.0 0.00 1.72 4.8
1000 0.06 1.88 5.7 0.06 1.92 5.5 0.03 1.21 4.5 0.04 1.20 4.5

m0 = 2
100 0.08 8.17 5.8 0.21 8.37 6.1 0.01 6.35 5.8 0.01 6.33 5.9
300 0.13 4.65 5.6 0.15 4.74 5.9 0.14 3.66 5.4 0.13 3.64 5.8
500 0.04 3.47 4.8 0.06 3.55 4.7 0.03 2.80 5.7 0.03 2.78 5.6
1000 -0.01 2.48 4.8 0.00 2.52 4.7 -0.04 1.99 5.2 -0.03 1.98 5.2

Note:  and � are the coe¢ cients of the lagged dependent variable and the xit regressor given in (13). See also the note to
Table C4(i).

S.10 The case of heteroskedastic errors

The log-likelihood function in (34) can be modi�ed to allow for time series heteroskedasticity. This
involves replacing �2
 by

E(rir
0
i) =

0BBBBBBBBB@

!�21 ��21 0 � � � 0 0 0

��21 �21 + �
2
2 ��22

. . .
... 0 0

0 ��22 �22 + �
2
3
. . .

... 0 0
...

...
...

. . .
...

...
...

0 0 0 � � � �2T�2 �2T�2 + �
2
T�1 ��2T�1

0 0 0 � � � 0 ��2T�1 �2T�1 + �
2
T

1CCCCCCCCCA
;

with the resultant log-likelihood maximised with respect to !; �21; �
2
2; :::; �

2
T and the remaining parameters.

This extension does not pose additional di¢ culties, however it does impact the order conditions for
identi�cation. There are an additional T � 1 new error variances to estimate and the order condition in
the case of an AR(1) model, for example, becomes T (T + 1)=2 � (T + 2) � Tm � m(m � 1)=2, and a
larger T is required for identi�cation when m > 0. For instance for m = 1 we need T � 4, and for m = 2
we need T � 6.
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