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Abstract

A time-varying probability density function, or the corresponding cumulative distribution function,

may be estimated nonparametrically by using a kernel and weighting the observations using schemes

derived from time series modelling. The parameters, including the bandwidth, may be estimated by

maximum likelihood or cross-validation. Diagnostic checks may be carried out directly on residuals

given by the predictive cumulative distribution function. Since tracking the distribution is only

viable if it changes relatively slowly, the technique may need to be combined with a filter for scale

and/or location. The methods are applied to data on the NASDAQ index and the Hong Kong and

Korean stock market indices.

Keywords: exponential smoothing, probability integral transform, time-varying quantiles, signal

extraction, stock returns.

1. Introduction

A probability density function (PDF), or the corresponding cumulative distribution function

(CDF), may be estimated nonparametrically by using a kernel. If the density is thought to change

over time, observations may be weighted by introducing ideas derived from time series modelling.

Although it has long been known that updating can be carried out recursively—see the discussion

in Markovich (2007, pp.73-74)—there has been little or no exploration of the kind of weighting

typically used in filtering for the mean or variance. For example, Hall & Patil (1994), suggest

analysing evolving densities by moving blocks of data (which are then combined with suitable

weighting).
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One of the simplest time series weighting schemes takes the form of an exponentially weighted

moving average (EWMA). This is widely used to estimate the level of a series and hence future

observations. A similar scheme may be used to estimate the conditional variance. Such a scheme

is widely used under the heading ‘Riskmetrics’ but a firmer theoretical underpinning is given by

the integrated generalized autoregressive heteroskedasticity (GARCH) model. Other models imply

other weighting schemes and hence other recursions for updating the estimates of parameters that

are evolving over time. For example, changing growth rates and seasonal patterns can easily be

accommodated. The recursions are usually combined with an assumption about the form of the

one-step ahead predictive distribution and as a result a likelihood function can be constructed

and then maximized with respect to the unknown parameters in the model. Once a model has

been fitted, the one-step ahead predictions may be subjected to diagnostic checking by reference

to the predictive distribution. Most commonly the predictive distribution is Gaussian and tests

are carried out on the standardized residuals.

It is shown here that similar ideas carry over to the nonparametric estimation of a time-varying

density or distribution function. Not only can updating be carried out recursively, but a likelihood

function can be constructed from the predictive distributions. Hence dynamic parameters, such as

the discount parameter in the EWMA, may be estimated by maximum likelihood. Furthermore

the dynamic specification may be checked by using the residuals given by the predictive cumulative

distribution function. The methods are those appropriate for the probability integral transform,

as described in Diebold, Gunther, & Tay (1998).

Time varying quantiles may be extracted from the cumulative distribution function. In the

time-invariant case there are efficiency gains for estimating quantiles this way as compared with

simply using the sample quantiles calculated from the order statistics, but the gains are small; see

Sheather & Marron (1990). There has been considerable interest in the last few years in estimating

changing quantiles. The conditional autoregressive value at risk (CAViaR) approach of Engle &

Manganelli (2004) models quantiles in terms of functions of past observations. De Rossi & Harvey

(2009) adopt a different method, based on ideas from signal extraction and using only indicator

variables. One drawback to the CAViaR approach is that, as pointed out by Gourieroux & Jasiak

(2008), the quantiles may cross. This cannot happen with the cumulative distribution function.

Section 2 discusses linear filters and in section 3 filters for estimating time-varying densities are
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developed. Attention is focussed on the EWMA and a stable filter with an extra parameter. We also

explain how to estimate the densities using a two-sided filter that is the equivalent of smoothing, or

signal extraction, in time series and how to construct algorithms for weighting schemes associated

with more general time series models. The ways in which bandwidth selection methods designed for

time-invariant distributions may be adapted to deal with changing distributions are explored and

estimation by maximum likelihood and cross-validation is discussed. Section 4 describes diagnostic

checking with the probability integral transforms of the predictions. Section 5 discusses time-

varying quantiles. Section 6 applies the methods to the NASDAQ index, while the link with

tracking changes in the copula is illustrated in section 7.

2. Filters

A linear filter is a scheme for weighting current and past observations in order to estimate an

unobserved component or a future value of the series. Thus the estimator of the level at time t

could be written as

mt =

t−1∑
i=0

wt,iyt−i, t = 1, . . . , T,

where wt,i are weights. One way of putting more weight on the most recent observations is to let

the weights decline exponentially. If t is large then wt,i = (1 − ω)ωi, i = 0, 1, 2, . . ., where ω is a

discount parameter in the range 0 ≤ ω < 1. (The weights sum to unity in the limit as t → ∞).

The attraction of exponential weighting is that estimates can be updated by a simple recursion,

that is

mt = ωmt−1 + (1− ω)yt, t = 1, . . . , T

with m0 = 0 or m1 = y1. The filter can also be expressed in terms of the one step ahead prediction,

so mt is replaced by mt+1|t. These are also the predictions of the series, that is ŷt+1|t = mt+1|t.

Thus the recursion can be written

mt+1|t = mt|t−1 + (1− ω)νt, t = 1, . . . , T, (1)

where νt = yt − ŷt|t−1 is the one-step ahead prediction error or innovation.

The exponential weighting filter may be rationalized as the steady-state solution of an unob-

served components model consisting of a random walk plus noise. The model, known as the local
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level model, is

yt = µt + εt, εt ∼ NID(0, σ2ε), t = 1, . . . , T, (2)

µt = µt−1 + ηt, ηt ∼ NID(0, σ2η).

where the disturbances εt and ηt are mutually independent and the notation NID
(
0, σ2

)
denotes

normally and independently distributed with mean zero and variance σ2. The Kalman filter for

the optimal estimator of µt based on information at time t is

mt+1|t = (1− kt)mt|t−1 + ktyt, t = 1, . . . , T, (3)

where kt = pt|t−1/
(
pt|t−1 + 1

)
is the gain, and

pt+1|t = pt|t−1 −
[
p2t|t−1/

(
1 + pt|t−1

)]
+ q, t = 1, . . . , T,

where q = σ2η/σ
2
ε is the signal-noise ratio; see Harvey (2006, 1989, p.175). The MSE of mt+1|t

is σ2εpt+1|t. With a diffuse prior, m1|0 = 0 and as p1|0 → ∞, k1 → 1. Hence m2|1 = y1 and

p2|1 = 1 + q. The steady-state solution for kt is 1 − ω, where the parameter ω is a monotonic

function of q = σ2η/σ
2
ε . The likelihood function may be constructed from the one-step ahead

prediction errors and maximized with respect to ω. Diagnostics may be performed on the residuals.

A backward smoothing filter is described in the appendix. The weights implicitly used in the

smoother, that is the weights in

mt|T =
T∑
t=1

wt,iyi, t = 1, . . . , T,

may be computed using the algorithm of Koopman & Harvey (2003). In a large sample, it follows

from Whittle (1984) that

wt,i ≈ {(1− ω)/(1 + ω)}
[
ω|t−i| + ω2T−t−i+1 + ωt+i−1

]
, t, i = 1, . . . , T, (4)

while in the middle of such a sample

wt,i ≈
1− ω
1 + ω

ω|t−i|, i = 1, . . . , T. (5)

These formulae are not used in our computations, but they are useful in showing the nature of the

weighting patterns.
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The random walk in (2) may be replaced by a stationary first-order autoregressive process.

More complex models, perhaps with slopes and seasonals, may be set up and the appropriate

filters derived by putting the model in state space form. Again the likelihood function may be

constructed from the one-step ahead prediction errors given by the Kalman filter and the implicit

weights for filtering and smoothing obtained from the algorithm of Koopman & Harvey (2003).

A nonlinear class of models may be constructed by applying the linear filters obtained from

unobserved component models to transformations of the observations that reflect quantities of

interest. For example, if the mean is fixed at zero, but the variance changes we might consider the

filter

σ2t+1|t = (1− ω)y2t + ωσ2t|t−1 = σ2t|t−1 + (1− ω)(y2t − σ2t|t−1), t = 1, . . . , T,

where the notation σ2t+1|t accords with that used by Andersen, Bollerslev, Christoffersen, & Diebold

(2006) for the variance in a GARCH model. This scheme is an EWMA in squares, with y2t −σ2t|t−1
playing a similar role to the innovation in (1). It corresponds to integrated GARCH, where the

predictive distribution in the Gaussian case is yt | Yt−1 ∼ N(0, σ2t|t−1). The more general filter

σ2t+1|t = (1− ω∗ − ω)σ2 + ω∗y2t + ωσ2t|t−1, t = 1, . . . , T,

is stable when ω∗ + ω < 1 and hence is able to generate a stationary series. Estimation may

be simplified by setting σ2 equal to the (unconditional) variance in the sample; this is known as

‘variance targeting’, as in Laurent (2007, p. 25).

If the above filtering schemes are viewed as approximations to an unobserved variance, the

smoother that would correspond to the filter in a linear unobserved components model may be

useful as a descriptive device.

The next section shows how filters may be applied to the whole distribution, rather than to

selected moments.

3. Dynamic kernel density estimation

Using a sample of T observations drawn from a distribution F (y) with a corresponding proba-

bility density function f(y), a kernel estimator of f(y) at point y is given by

f̂T (y) =
1

Th

T∑
i=1

K

(
y − yi
h

)
, (6)
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where K(·) is the kernel and h is the bandwidth. The kernel, K(·), is a bounded PDF which

is symmetric about the origin. The quadratic (Epanechnikov) kernel is ‘optimal’ if the choice

is restricted to nonnegative kernels and the criterion is taken to be the asymptotic minimum

integrated squared error for a fixed density; cf. Tsybakov (2009, Ch. 1). However, as the efficiency

loss from using suboptimal kernels is typically small, the Gaussian kernel, whose relative efficiency

is 0.95, is often used in practice; see e.g. Wand & Jones (1995, p. 31).

The choice of bandwidth is more important than the choice of kernel. One possible approach is

cross-validation, but rule-of-thumb methods are common in applied work and they usually deliver

satisfactory results. Examples include a normal reference rule and rule-of-thumb bandwidths as in

Silverman (1986, p. 47).

The kernel estimator of the cumulative distribution function is given by

F̂T (y) =
1

T

T∑
i=1

H

(
y − yi
h

)
,

where H(·) is a kernel which now takes the form of a CDF. A kernel of this form may be obtained

by integrating the kernel in (6).

The properties of kernel density estimators have been studied for dependent data; see Wand &

Jones (1995). However the target PDF is an unconditional distribution, whereas here the aim is

to estimate a conditional distribution.

3.1. Filtering and smoothing

In order to estimate a time varying density, a weighting scheme may be introduced into the

kernel estimator so that (6) becomes

f̂t(y) =
1

h

t∑
i=1

K

(
y − yi
h

)
wt,i, t = 1, . . . , T, (7)

while, for the distribution function,

F̂t(y) =
t∑
i=1

H

(
y − yi
h

)
wt,i. (8)

In both cases,
∑t

i=1wt,i = 1, t = 1, . . . , T . The weights, wt,i, i = 1, . . . , t, t = 1, . . . , T , change over

time, although in the steady-state, wt,i = wt−i.

Similarly for smoothing

f̂t|T (y) =
1

h

T∑
i=1

K

(
y − yi
h

)
wt,i, t = 1, . . . , T,
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and

F̂t|T (y) =

T∑
i=1

H

(
y − yi
h

)
wt,i, (9)

with
∑T

i=1wt,i = 1, t = 1, . . . , T .

3.2. Recursions

Simple exponential weighting gives recursions similar to those of section 2. Thus for the CDF

F̂t(y) = ωF̂t−1(y) + (1− ω)H

(
y − yt
h

)
, t = 1, . . . , T.

Schemes of this kind are not new; see, for example, Wegman & Davies (1979).

The above recursion can be re-written with F̂t+1|t(y) replacing F̂t(y). A simple re-arrangement

then gives

F̂t+1|t(y) = F̂t|t−1(y) + (1− ω)Vt(y), 0 ≤ ω < 1, t = 1, . . . , T,

where

Vt(y) = H

(
y − yt
h

)
− F̂t|t−1(y) (10)

plays a similar role to the innovation1 in (1). However, Vt(y) < 0 when yt > y. Note also that

−F̂t|t−1(y) ≤ Vt(y) ≤ 1− F̂t|t−1(y).

An analogous recursion can be written down for the PDF. To be specific

f̂t+1|t(y) = f̂t|t−1(y) + (1− ω)νt(y), 0 ≤ ω < 1, t = 1, . . . , T,

where the innovation is

νt(y) =
1

h
K

(
y − yt
h

)
− f̂t|t−1(y), (11)

with −f̂t|t−1(y) ≤ νt(y) ≤ h−1K(0).

The filter can be initialized with f̂1|0(y) = 0 and, in order to ensure that the weights discounting

past observations sum to unity, ω may be set to 1− kt, where kt is defined in (3), until such time,

t = m, as the filter is deemed to have converged. Alternatively f̂m+1|m(y) may be computed

directly from (7). The CDF recursion for F̂t+1|t(y) may be similarly initialized from the first m

observations.

1In a Gaussian model, H(yt) = yt and F̂t|t−1(y) = ŷt|t−1. The only impact is on location and νt is a scalar.
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The stable filter is

F̂t+1|t(y) = (1− ω∗ − ω)F (y) + ω∗H

(
y − yt
h

)
+ ωF̂t|t−1(y), t = 1, . . . , T, (12)

where F (y) is the unconditional kernel density for the whole sample (‘distribution targeting’).

Setting the initial condition as F̂1|0(y) = F (y) means that the weight attached to F (y) at time t is

(1− ω∗), but that it gradually goes to (1− ω∗ − ω). We can also write

F̂t+1|t(y) = (1− ω∗ − ω)F (y) + (ω∗ + ω)F̂t|t−1(y) + ω∗νt, t = 1, . . . , T.

More complex weighting schemes, derived from unobserved components models, may also be

adopted. For example an integrated random walk trend yields a cubic spline and the Kalman filter

may be reduced to a single equation recursion which for the CDF is

F̂t+1|t(y) = 2F̂t|t−1(y)− F̂t−1|t−2(y) + k1ω
∗H

(
y − yt
h

)
+ k2ω

∗H

(
y − yt−1

h

)
,

where k1 and k2 are parameters that depend on a signal-noise ratio in the original unobserved

components model.

The above filters for F̂t+1|t(y) and f̂t+1|t(y) may be run by defining a grid of N points in

the range [ymin, ymax]. To implement the smoother recursively, as described in the appendix for

the random walk plus noise, it is necessary to store the N × (T − m) matrix of innovations. It

is also necessary to store rt or mt|t−1, depending on which algorithm is used. Alternatively we

could just compute the weights for a given t, t = m + 1, . . . , T , with the algorithm in Koopman

& Harvey (2003), and so construct filtered and smoothed estimates of the PDF or CDF directly

from the formulae in the previous sub-section. When the aim is to compute estimation criteria,

residuals and a limited number of quantiles, algorithms based on the direct approach seem to be

more computationally efficient. A full set of filtering and smoothing recursions for a grid is not

necessary unless an estimate of the density is required for each time period.

3.3. Estimation

The recursive nature of the filter leads naturally to maximum likelihood (ML) estimation of

the bandwidth, h, and any parameters governing the dynamics, such as the discount factor, ω, in

exponential weighting. The log-likelihood function, normalized by the sample size, is

`(ω, h) =
1

T −m

T−1∑
t=m

ln f̂t|t−1(yt+1) =
1

T −m

T−1∑
t=m

ln

[
1

h

t∑
i=1

K

(
yt+1 − yi

h

)
wt,i(ω)

]
, (13)
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where wt,i(ω) are the weights, which may be obtained as described in section 2, and m is some

preset number of observations used to initialise the procedure. The value of m will depend on the

sample at hand, but it may not be unreasonable to suggest setting m = 50 or 100 if the sample

size is big. The main consideration is that the predictions are meaningful.

The log-likelihood (13) can be maximized subject to ω ∈ (0, 1] and h > 0 using constrained max-

imization with numerical derivatives obtained via finite differencing. Using a non-negative kernel

with unbounded support, such as a Gaussian kernel, theoretically guarantees that f̂t|t−1(yt+1) > 0

for all t = m, . . . , T − 1. The problem arises when the density is evaluated at outlier points in that

the estimate is numerically zero. In those cases f̂t|t−1(·) can be set equal to a very small positive

number.

From the theoretical point of view, it is interesting to note that as in a linear Gaussian model,

such as (2), the likelihood can be written in terms of the innovations since, from (11), f̂t|t−1(yt) =

h−1K(0)− νt(yt) for t = m+ 1, . . . , T . Thus, instead of re-computing the density estimate at each

t using the data up to t − 1 inclusive, the recursive formulae given in section 3 can, in principle,

be used. However, in order to evaluate the log-likelihood (13), the grid for the recursion will need

to include all the sample values of yt.

For smoothing, the parameters can be estimated by maximizing the likelihood cross-validation

(CV) criterion

CV (ω, h) =
1

T

T∑
t=1

ln f̂(−t)|T (yt) =
1

T

T∑
t=1

ln

1

h

T∑
i=1
i 6=t

K

(
yt − yi
h

)
wt,T,i(ω)

 , (14)

where wt,T,i(ω) is given by a two-sided smoothing filter such as (4).

Alternatively, one can simply choose the same parameters as for filtering.

The number of parameters to be estimated could be reduced by setting the bandwidth according

to a rule of thumb, h = cT−1/5, where the constant c depends on the spread of the data2 and

T = T (ω) is set equal to the effective sample size. In this case the likelihood and the CV criterion

are maximized only with respect to ω. In the steady-state of the local level model, the mean square

error (MSE) of the contemporaneous filtered estimator, mt, of the level is σ2ε(1−ω). If the level were

2For instance, if the kernel is the Gaussian density, and the underlying distribution is normal with vari-
ance σ2, the constant in the asymptotically optimal bandwidth is c = 1.06σ. Another popular choice is

c = 1.06 min
(
σ̂, ÎQR/1.34

)
, where ÎQR is the sample interquartile range; see Silverman (1986).
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fixed, the MSE of the sample mean would be σ2ε/T . This suggests an effective sample size for the

filtering of T (ω) = 1/(1−ω). For smoothing the suggestion is T (ω) = (1 +ω)/(1−ω) ≈ 2/(1−ω),

provided that t is not too close to the beginning or end of the sample. Thus when the bandwidth

selection criterion is proportional to T−1/5, the bandwidth for filtering will be bigger by a factor

of approximately 21/5 = 1.15.

Estimation procedure thus involves first maximizing the likelihood function (13) or the CV

criterion (14) whereby obtaining estimates of the smoothing parameter, ω, and the bandwidth

h. These estimates are then used to compute the estimates of the PDF, CDF and quantiles.

CDF (filtered or smoothed) can be computed by applying formulae (8) and (9) directly. Quantile

functions can be obtained by inverting estimated CDFs as described in section 5.1 below.

3.4. Correcting for changing mean and variance

If the series displays trending movements there is clearly a problem in implementing the pre-

ceding algorithms for estimating time-varying distributions. A possible solution is to model the

level separately, for example by a random walk plus noise, and then to adjust the observations so

that the dynamic kernel estimation is applied to the innovations. Thus H(·) in (10), or K(·), is

re-defined by replacing yt by yt −mt|t−1. Serial correlation may be similarly handled by fitting an

autoregressive–moving average (ARMA) model.

The most straightforward option for dealing with short-term movements in variance is to fit a

GARCH model for the conditional variance. Then H(·) becomes

H

(
y − (yt −mt|t−1)

hσt|t−1

)
= H

(
y − yt +mt|t−1

hσt|t−1

)
.

The disadvantage of pre-filtering is that the treatment of the scale and mean becomes decoupled

from the estimation of the distribution as a whole.

4. Specification and diagnostic checking

The probability integral transform (PIT) of an observation from a given distribution has a

uniform distribution in the range [0, 1]. Hence the hypothesis that a set of observations come

from a particular parametric distribution can be tested. One possibility is to use the Kolmogorov-

Smirnov test.

The PITs are often used to assess forecasting schemes; see Dawid (1984) or Diebold et al.

(1998). Here the PIT is given directly by the predictive kernel CDF, that is the PIT of the t-th
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observation is F̂t|t−1(yt), t = m + 1, . . . , T . As with the evaluation of f̂t|t−1(yt) in the likelihood

function, the calculation at each point in time need only be done for y = yt.

The PITs may be expressed in terms of innovations. Specifically,

F̂t|t−1(yt) = H(0)− Vt|t−1(yt) = 0.5− Vt|t−1(yt).

Hence E(Vt|t−1(yt)) = 0 as E(Ft(yt)) = 0.5.

If the PITs are not uniformly distributed, their shape can be informative. For example, a

humped distribution indicates that the forecasts are too narrow and that the tails are not adequately

accounted for; see Laurent (2007, p. 98). Plots of the autocorrelation functions (ACFs) of the

PITs, and of absolute values3 and powers of the demeaned PITs, may indicate the source of serial

dependence. Tests statistics for detecting serial correlation, such as Box-Ljung, and stationarity

test statistics may be used, but it should be noted that their asymptotic distribution is unknown.

There may sometimes be advantages in transforming to normality as in Berkowitz (2001).

5. Time-varying quantiles

A plot showing how the quantiles have evolved over time provides a good visual impression

of the changing distribution. The first sub-section below explains how quantiles can be computed

from the kernel estimates.

Rather than estimating a time-varying distribution, time-varying quantiles may be computed

directly, either by formulating a model for a particular quantile or using a nonparametric procedure.

The second sub-section reviews some of these procedures and contrasts them with the kernel

approach.

5.1. Kernel-based estimation

When the distribution is constant, the τ -quantile, ξ(τ), 0 < τ < 1, can be estimated from

the distribution function by solving F̂ (y) = τ , ie F̂−1(τ) = ξ̂(τ). Nadaraya (1964) shows that

ξ̂(τ) is consistent and asymptotically normal with the same asymptotic distribution as the sample

quantile. Azzalini (1981) proposes the use of a Newton-Raphson procedures for finding ξ̂(τ).

Filtered and smoothed estimators of changing quantiles can be similarly computed from time-

varying CDF’s. Thus, for filtering, ξ̂t|t−1(τ) = F̂−1t|t−1(τ), for t = m, . . . , T . The iterative procedure

3The absolute value of a demeaned PIT is also uniformly distributed, unlike its square.
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to calculate ξ̂t|t−1(τ) is based on the direct evaluation of F̂t|t−1(y) in the vicinity of the quantile. To

reduce computational time, a good starting value can be obtained from a preliminary estimate of

a CDF by (linear) interpolation4. Alternatively, for t = m+ 1, . . . , T , the estimate in the previous

time period may be used as a starting value.

The estimates of bandwidth obtained by ML or CV suffer from the drawback that the asymp-

totically optimal choice of bandwidth for a kernel estimator of a CDF is proportional to T−
1
3 ,

whilst the optimal bandwidth for a PDF is proportional to T−
1
5 ; see, for example, Azzalini (1981).

A bandwidth for a kernel estimator of a CDF can be found by cross-validation, as in Bowman,

Hall, & Prvan (1998), or by a rule of thumb approach, as in Altman & Léger (1995). It may

be worth experimenting with these bandwidth selection criteria for quantile estimation. Similar

considerations might apply to computation of the PITs.

5.2. Direct estimation of individual quantiles

Yu & Jones (1998) adopt a nonparametric approach. Their (smoothed) estimate, ξ̂t(τ), of the

τ -quantile is obtained by (iteratively) solving

h∑
j=−h

K(
j

h
)IQ(yt+j − ξ̂t) = 0,

where ξ̂t = ξ̂t(τ), K(·) is a weighting kernel (applied over time), h is a bandwidth and IQ(·) is the

quantile indicator function

IQ(yt − ξt) =

 τ − 1, if yt < ξt,

τ, if yt > ξt,
t = 1, . . . , T.

IQ(0) is not determined, but in the present context we can set IQ(0) = 0. Adding and subtracting

ξ̂t to each of the IQ(yt+j − ξ̂t) terms in the sum leads to an alternative expression

ξ̂t =
1∑h

j=−hK(j/h)

h∑
j=−h

K(
j

h
)[ξ̂t + IQ(yt+j − ξ̂t)]. (15)

4 To be precise, in our code, the CDF is first estimated on a grid of K points ξ1, . . . , ξK , and the initial estimate

of ξt is obtained by finding ξlo = maxj

(
ξj : F̂t(ξj) ≤ τ

)
and ξup = minj

(
ξj : F̂t(ξj) ≥ τ

)
, and linearly interpolating

between them. This is then used as a starting value in solving F̂t(ξt) = τ for ξt. The final solution can usually be
found in just a few iterations (we used Matlab routine fzero). In fact, with large K, the precision of the initial
estimate of ξt will be sufficient for all practical purposes.

12



De Rossi & Harvey (2006, 2009) estimate time-varying quantiles by smoothing with weighting

patterns derived from linear models for signal extraction. These quantiles have no more than Tτ

observations below and no more than T (1−τ) above. The weighting scheme derived from the local

level model gives

ξ̃t =
1− ω
1 + ω

∞∑
j=−∞

ω|j|[ξ̃t + IQ(yt+j − ξ̃t+j)],

in a doubly infinite sample; cf. (5). The nonparametric kernel K(j/h) in (15) is replaced by ω|j|

so giving an exponential decay. Note that the smoothed estimate, ξ̂t+j , is used instead of ξ̂t when

j is not zero. The time series model determines the shape of the kernel while the signal-noise ratio

plays a role similar to that of the bandwidth.

The smoothed estimate of a quantile at the end of the sample is the filtered estimate. The

model-based approach automatically determines a weighting pattern at the end of the sample. For

the EWMA scheme derived from the local level model, the filtered estimator must satisfy

ξ̃t|t = (1− ω)

∞∑
j=0

ωj [ξ̃t−j|t + IQ(yt−j − ξ̃t−j|t)].

Thus ξ̃t|t is an EWMA of the synthetic observations, ξ̃t−j|t+IQ(yt−j− ξ̃t−j|t). As new observations

become available, the smoothed estimates need to be revised. However, filtered estimates could be

used instead, so

ξ̂t+1|t(τ) = ξ̂t|t−1(τ) + (1− ω)νt(τ), (16)

where νt(τ) = IQ(yt−ξ̂t|t−1(τ)) is an indicator that plays an analogous role to that of the innovation

in the Kalman filter. Such a scheme would belong to the class of CAViaR models proposed by

Engle & Manganelli (2004) in the context of tracking value at risk. In CAViaR, the conditional

quantile is

ξ̂t+1|t(τ) = α0 +

q∑
i=1

βiξ̂t+1−i|t−i(τ) +
r∑
j=1

αjf(yt−j),

where f(yt) is a function of yt. Suggested forms include an adaptive model

ξt(τ) = ξt−1(τ) + γ{[1 + exp(δ[yt−1 − ξt−1(τ)])]−1 − τ}, (17)

where δ is a positive parameter. The recursion in (16) has the same form as the limiting case

(δ → ∞) of (17). Other CAViaR specifications, which are based on actual values, rather than

indicators, may suffer from a lack of robustness to additive outliers. That this is the case is clear

13



from an examination of Fig. 1 in Engle & Manganelli (2004, p. 373). More generally, recent

evidence on predictive performance in Kuester, Mittnik, & Paolella (2006, pp. 80–81) indicates a

preference for the adaptive specification.

The advantage of fitting individual quantiles is that different parameters may be estimated

for different quantiles. The disadvantage of having different parameters is that the quantiles may

cross; see Gourieroux & Jasiak (2008). If the parameters across quantiles have to be the same to

prevent quantiles crossing, the ability to have different models for different quantiles loses much of

its appeal.

6. Empirical application: NASDAQ index

Data on the NASDAQ index was obtained from Yahoo-Finance (http://uk.finance.yahoo.

com). The sample starts on 5th February 1971 and ends on 20th February 2009, thus covering

13,896 days. Once weekends and holidays are excluded, there are 9,597 observations. As is usually

the case with financial series, there is clear volatility clustering and the correlograms of the absolute

values and squares of demeaned returns are large and slowly decaying; see Fig. 1. Some of the

sample autocorrelations for the actual returns and their cubes also lie outside the lines drawn at

±2 standard deviations from the horizontal axis. The distribution of returns is heavy-tailed and

asymmetric.

6.1. Time-varying kernel

Fig. 2 shows filtered (upper panel) and smoothed (lower panel) time-varying quantiles of

NASDAQ returns for τ = 0.05, 0.25, 0.50, 0.75, 0.95. Exponential weights and an Epanechnikov

kernel were used throughout. The discount parameters for filtering and smoothing were estimated

by maximizing the log-likelihood and likelihood cross-validation criterion respectively5. The ML

estimates of the discount parameter and bandwidth are, respectively, ω̃ = 0.9928 and h̃ = 0.4286.

The CV estimates (for smoothing) are ω̂ = 0.9928 and ĥ = 0.2555.

The quantiles, which are plotted in Fig. 2, seem to track the changing distribution well.

However, as Fig. 3 shows, there is still some residual serial correlation in absolute values and

squares of the PITs. With raw data, changing volatility tends to show up more in absolute values

5Computations were performed in Matlab (www.mathworks.com); code is available on request from the second
named author.
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Figure 1: ACFs of NASDAQ returns.

aPanel A shows ACF of returns, yt, panels B, C and D show ACFs of (yt− ȳ)3, |yt− ȳ| and (yt− ȳ)2 respectively.
Lines parallel to the horizontal axis show ±2 standard deviations (ie 2/

√
T ).

than in squares, as in Fig. 1. One reason for this happening is that sample autocorrelations are

less sensitive to outliers when constructed from absolute values rather squares. However, the PITs

do not have heavy tails, and the absolute value sample autocorrelations are, in most cases, slightly

less than the corresponding sample autocorrelations computed from squares.

The first-order sample autocorrelation in the raw returns is rather high. It is even higher

in the PITs. This may be partly a consequence of the transformation, though the higher order

autocorrelations are, if anything, smaller than the corresponding autocorrelations for the raw

returns.

The sample autocorrelations of the third and fourth powers of the demeaned PITs (not shown

here) are, like those of the absolute values, small but persistent.

The histogram of PITs, shown in Fig. 3, is too high in the middle and too low at the ends,

showing departures from uniformity and hence imperfections in the forecasting scheme. The hump-

shaped distribution of the PITs indicates that the tail behaviour is not adequately captured. The

problem could be caused by the bandwidth being too wide, resulting in a degree of oversmoothing.

Forecasting performance might be improved by using different bandwidths for the tails and middle
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Figure 2: Filtered (upper panel) and smoothed (lower panel) time-varying quantiles of NASDAQ returns.
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Figure 3: ACFs and histogram of PITs.

aPanels A, B and C show ACFs of PITs, zt, absolute values, |zt− z̄|, and squares of the demeaned PITs, (zt− z̄)2,
respectively. Lines parallel to the horizontal axis show ±2 standard deviations (ie 2/

√
T ).

Panel D shows the histogram of PITs. Dashed lines show ±2 standard deviations (ie 2
√

(k − 1)/T , where k is the
number of bins).
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of the distribution.

Changing the basis for bandwidth selection is unlikely to correct the failure to pick up short

term serial correlation (at lag one) or to remove all the movements in volatility. The reason is that

a time-varying kernel can really only pick up long-term changes. Hence there may be a case for

pre-filtering.

6.2. ARMA-GARCH residuals

In order to pre-filter the NASDAQ data an MA(1) model with a GARCH(1,1)-t conditional

variance equation was fitted using the G@RCH 5 program of Laurent (2007). The GARCH param-

eters were estimated to be 0.0979 (the coefficient of the lagged squared observation) and 0.9010,

so the sum is close to the IGARCH boundary. The estimated MA(1) parameter was 0.2102, while

the degrees of freedom of the t-distribution was estimated to be 7.04.

Fitting a time-varying kernel to the GARCH residuals gave ML estimates of ω̃ = 0.9996 and

h̃ = 0.3595, and CV estimates ω̂ = 0.9991 and ĥ = 0.3339. The discount parameters are bigger

than those estimated for the raw data and since they are closer to one there is less scope for

picking up time variation, as can be seen from the quantiles in Fig. 4 (quantiles are shown for

τ = 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99). As might be anticipated, the pre-filtering effectively

renders the median and inter-quartile range constant. Any remaining time variation is to be found

in the high and low quantiles.

Some notion of the way in which tail dispersion changes can be obtained by plotting the ratio

of the τ to 1− τ range, for small τ , to the interquartile range, that is

α̃t(τ) =
ξ̃t(1− τ)− ξ̃t(τ)

ξ̃t(0.75)− ξ̃t(0.25)
, τ < 0.25,

where ξ̃t(τ) is an estimator that might be obtained by filtering or smoothing. Fig. 5 plots α̃t(τ)

for τ = 0.01 and 0.05 computed using smoothed quantiles. Note that α(0.05) is 2.44 for a normal

distribution and 2.66 for t7; the corresponding figures for α(0.01) are 3.45 and 4.22 respectively.

For a symmetric distribution ξ(τ) + ξ(1− τ)− 2ξ(0.5) is zero for all t = 1, . . . , T . Hence a plot

of the skewness measure

β̃t(τ) =
ξ̃t(1− τ) + ξ̃t(τ)− 2ξ̃t(0.5)

ξ̃t(1− τ)− ξ̃t(τ)
, τ < 0.5,

shows how the asymmetry captured by the complementary quantiles, ξt(τ) and ξt(1− τ), changes

over time. The statistic β(0.25) was originally proposed by Bowley in 1920; see Groeneveld &
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Figure 4: Smoothed time-varying quantiles of GARCH residuals.
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Meeden (1984) for a detailed discussion. The maximum value of β̃t(τ) is one, representing extreme

right (positive) skewness and the minimum value is minus one, representing extreme left skewness.

Fig. 5 plots β̃t(τ) for τ = 0.01, 0.05 and 0.25 using the smoothed quantiles. There is substantial

time variation in skewness: it is high in the late 70s, whereas around 2002–2005, the distribution

is almost symmetric.

The ACFs of the PITs, their squares and absolute values are shown in Fig. 6. There is far

less serial correlation than in the corresponding correlograms in Fig. 3 The histogram of PITs

from a time-varying kernel fitted to the ARMA-GARCH residuals, shown in Fig. 6, displays the

same hump-shaped pattern as was evident in the PITs from the raw data, but arguably to a lesser

extent.
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Figure 6: ACFs and histogram of PITs of GARCH residuals.

Panels A, B and C show ACFs of PITs, zt, absolute values, |zt− z̄|, and squares of the demeaned PITs, (zt− z̄)2,
respectively. Lines parallel to the horizontal axis show ±2 standard deviations (ie 2/

√
T ).

Panel D shows the histogram of PITs. Dashed lines show ±2 standard deviations (ie 2
√

(k − 1)/T , where k is the
number of bins).

7. Quantiles and copulas

The quantiles can be used as a first step in tracking probabilities associated with a copula;

see Harvey (2010) for a detailed discussion on this topic. For example, we may be interested in
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the probability that observations in two series are both below a certain quantile. The application

described in Harvey (2010) is for the Hong Kong (Hang Seng) and Korean (SET) stock market

indices. The time-varying quantiles for the returns for the two indices are obtained by a method

based on estimating time-varying histograms, rather than by the kernel approach adopted here.

The ML estimates for an exponentially weighted kernel density for Hong Kong returns are

ω̂ = 0.9947 and ĥ = 0.0050; for Korean returns they are ω̂ = 0.9948 and ĥ = 0.0036. In both

cases the Epanechnikov kernel was used. The filtered quantiles for τ = 0.05, 0.10, 0.25 and 0.50

are plotted in Fig. 7.
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Figure 7: Returns and filtered 0.05, 0.10, 0.25, and 0.50-th quantiles.

An indicator variable which takes the value one whenever observations in both series fall below

a certain quantile contains information on changes in the copula. For example, observations on
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Hong Kong and Korea returns that both fall below their respective 0.05-th quantiles are highlighted

with circles in Fig. 7. Filtering these indicator variables, perhaps also with exponential weighting,

yields estimates of the probabilities that both series are below their respective τ -th quantiles at

each point in time.

8. Conclusion

We have proposed a modification of the kernel density estimator that allows one to capture the

changes in the density, and hence quantiles, by weighting the observations using schemes derived

from time series models. The paper shows how the implied recursive procedures are of a similar

form to those used for filtering time series observations to extract evolving means or variances.

Associated smoothing schemes are obtained in the same way.

As is the case for many time series models, the likelihood function may be obtained from

the predictive distribution. Hence the parameters governing the dynamics of the kernel can be

estimated, together with the bandwidth, by maximum likelihood. Estimates for smoothing may

be obtained by cross-validation. The innovations produced by the predictive CDF are probability

integral transforms and can be used for diagnostic checking. If there is time variation in medians,

asymmetry and the tails of distributions, tracking the changes in the whole distribution, or in a

limited number of quantiles or quantile contrasts, may be informative.

Attention has been focussed on discounting past observations using exponential weighting.

Exponential weighting is very simple to apply. However, generalizations to other weighting schemes

are not difficult because the filters can be obtained from the state space forms of appropriate

time series models. One scheme that certainly warrants future investigation is the stable filter

corresponding to the standard stationary GARCH model.

The techniques were illustrated on NASDAQ, Hong Kong, and Korean stock market indices.

The applications show the advantages of the proposed methods, but also expose their limitations.

In particular the methods are only appropriate for monitoring distributions that change relatively

slowly over time, since otherwise the effective sample size is too small. Short bursts of volatility may

have to be accommodated by fitting a GARCH model. For tracking the copula, such prefiltering

may not be necessary as the proposed technique is again only suitable for slow changes. A second

limitation is that the bandwidth chosen by maximising the likelihood function or the likelihood

cross-validation criterion appears to result in a degree of oversmoothing, which manifests itself in
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the hump-shaped histogram of the probability integral transforms. It may be possible to mitigate

this effect by letting the bandwidth vary over the distribution, but the fundamental problem is that

there is not enough information to provide an accurate description of tail behaviour. Modifications,

such as combining kernel estimators with extreme value distributions for the tails, as in Markovich

(2007, pp. 101–111), may be worth exploring.
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Appendix. Smoothing in the local level model

The smoothed estimates for the Gaussian local level model (2) can be computed by saving the

innovations and Kalman gains from the filter (3) and using them in the backward recursions

rt−1 = (1− kt)rt + (1− kt)νt, t = T, . . . , 2,

where νt = yt −mt|t−1 and rT = 0, and

mt|T = mt|t−1 + pt|t−1rt−1, t = 1, . . . , T,

= mt|t−1 + kt(rt + νt)

Since r0 = (1 − k1)r1 + (1 − k1)ν1, initializing with a diffuse prior will give m1|T = (p1|0/(p1|0 +

1))(r1 + y1) which goes to r1 + y1 as p1|0 goes to infinity. The following forward recursion can also

be used

mt+1|T = mt|T + qrt, t = 1, . . . , T − 1,

with m1|T = r1 + y1; see Koopman (1993).
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