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Abstract

This note contains an elementary proof of Corollary 1, a proof of formula
(24), and a derivation of the asymptotic power of some previously proposed
tests of sphericity and equality of the covariance matrix to the identity ma-
trix.

A Elementary proof of Corollary 1.

Let ~A = diag (~a1; :::; ~ap) and ~B = diag
�
~b1; :::;~bp

�
be such that ~a1 > ::: > ~ap > 0

and ~b1 > ::: > ~bp > 0: The right-hand side of (12)1 is understood as

lim
~A!A; ~B!B

Qp�1
k=1 k!

Vp

�
~A
�
Vp

�
~B
� det
1�i;j�p

�
e~ai

~bj
�
:

We will take this limit sequentially: �rst as ~A! A and then as ~B ! B: This ap-
proach is without loss of generality because the left hand side of (12) is a continuous
function of ~aj and ~bj with j = 1; :::; p.

Let us consider a p � p matrix L with i; j-th element Lij =
Pp�1

t=0
1
t!

�
~ai~bj

�t
.

Note that e~ai~bj = (1 + o(1))Lij; where o (1)! 0 when ~ai ! 0. Furthermore,

det
1�i;j�p

�
e~ai

~bj
�
= (1 + o(1)) det

�
[e1; :::; er] [u1; :::; ur]

0 + L
�

= (1 + o(1)) det (L) det
�
[e1; :::; er] [u1; :::; ur]

0 L�1 + Ip
�

= (1 + o(1)) det (L) det
�
Ir + [u1; :::; ur]

0 L�1 [e1; :::; er]
�
;

where ej is the j-th column of Ip and u0s is the s-th row of
�
e~ai

~bj

�
1�i;j�p

minus the

s-th row of L. Since the i-th row of L multiplied by L�1ej equals the Kronecker�s

1Here and throughout this Supplement, numerical references are for equations in the main
text.
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delta �ij, we further have

det
1�i;j�p

�
e~ai

~bj
�
= (1 + o(1)) det (L) det

�
[w1; :::; wr]

0 L�1 [e1; :::; er]
�
; (SA1)

where w0s is the s-th row of
�
e~ai

~bj

�
1�i;j�p

.

Now, note that
L = V~aDV

0
~b
; (SA2)

where D = diag
�
1
0!
; 1
1!
; :::; 1

(p�1)!

�
; and Vx denotes the Vandermonde matrix with

Vx;ij = xj�1i and determinant Vp(X); where X = diag(x1; :::; xp): As shown by
Klinger (1967) (see his formula 6),

�
V �1
x

�
ij
= (�1)p�i �p�i (x�j)Qp

s=1;s 6=j (xj � xs)
; (SA3)

where �k (x1; :::; xp) =
Pp

j1<:::<jk
xj1 :::xjk denotes the elementary symmetric poly-

nomial and �k (x�j) = �k (x1; :::; xj�1; xj+1; :::; xp).
Formula (SA3) implies that

lim
~A!A

�
V �1
~a

�
ij
= 0 (SA4)

for i � p� r and j � r: Indeed, for such i and j; �p�i (~a�j) has degree larger than
or equal to r; whereas the number of non-zero elements among ~a1; :::; ~aj�1; ~aj; :::; ~ap
in the limit as ~A! A is r � 1. From (SA2), (SA3), and (SA4), we get

lim
~a!a

�
L�1

�
ij
=

rX
t=1

(p� t)!�t�1

�
~b�i

�
�t�1 (a�j)Qp

s=1;s 6=i

�
~bi � ~bs

�Qp
s=1;s 6=j (aj � as)

(SA5)

for j � r.

Using (SA1) and (SA5), we conclude that lim ~A!A

Qp�1
k=1 k!

Vp( ~A)Vp( ~B)
det1�i;j�p

�
e~ai

~bj

�
equals the determinant of an r � r matrix G with

Gij =

pX
l=1

rX
t=1

eai
~bl (p� t)!�t�1

�
~b�l

�
�t�1 (a�j)Qp

s=1;s 6=l

�
~bl � ~bs

�Qp
s=1;s 6=j (aj � as)

:

Using the identity �t�1
�
~b�l

�
= �t�1

�
~b
�
� �t�2

�
~b�l

�
~bl recursively, we get

�t�1

�
~b�l

�
=

tX
u=1

(�1)u�1 �t�u
�
~b
�
~bu�1l :
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Therefore, we can write

Gij =

pX
l=1

rX
t=1

tX
u=1

eai
~bl (p� t)! (�1)u�1 �t�u

�
~b
�
~bu�1l �t�1 (a�j)Qp

s=1;s 6=l

�
~bl � ~bs

�Qp
s=1;s 6=j (aj � as)

=

rX
t=1

tX
u=1

1

2�i

I
K

(�1)u�1 eaiz (p� t)!�t�u

�
~b
�
zu�1�t�1 (a�j)Qp

s=1

�
z � ~bs

�Qp
s=1;s 6=j (aj � as)

dz

=
rX
u=1

(�1)u�1

2�i

I
K

eaizzu�1dzQp
s=1

�
z � ~bs

� rX
t=u

(p� t)!�t�u

�
~b
�
�t�1 (a�j)Qp

s=1;s 6=j (aj � as)

whereK is a contour in the complex plane that encircles counter-clockwise ~b1; :::;~bp:
Assuming that K is chosen so that ~b1; :::;~bp and b1; :::; bp remain inside K as

~B ! B; we get
lim
~B!B

G = HK

where H and K are r � r matrices with

Hij =
1

2�i

I
K

eaizzj�1dzQp
s=1 (z � bs)

and

Kij =
rX
t=i

(�1)i�1 (p� t)!�t�i (b)�t�1 (a�j)Qp
s=1;s 6=j (aj � as)

:

Let M be an r � r matrix with i; j-th element

Mij =
(�1)i�1 (p� i)!�i�1 (a�j)Qp

s=1;s 6=j (aj � as)
:

Note that the rows of matrixK are obtained from the corresponding rows of matrix
M by adding linear combinations of other rows of M . Therefore,

detK = detM =
(�1)r(r�1)=2

Qr
t=1 (p� t)!Qr

t=1

Qp
s=1;s 6=t (at � as)

det
1�i;j�r

(�i�1 (a�j))

=
(�1)r(r�1)=2

Qr
t=1 (p� t)!Qr

t=1 a
p�r
t (�1)r(r�1)=2 (Vr (A))2

det
1�i;j�r

(�i�1 (a�j))

As shown on pp.41-42 of Macdonald (1995),

det
1�i;j�r

(�i�1 (a�j)) = (�1)r(r�1)=2 Vr (A) ;

where Vr (A) is the Vandermonde determinant associated with a1; :::; ar. Therefore,

detK =
(�1)r(r�1)=2

Qr
t=1 (p� t)!Qr

t=1 a
p�r
t Vr (A)

;
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and �nally,

lim
~A!A; ~B!B

Qp�1
k=1 k!

Vp

�
~A
�
Vp

�
~B
� det
1�i;j�p

�
e~ai

~bj
�
= detH detK

=
(�1)r(r�1)=2

Qr
t=1 (p� t)!

Vr (A)
Qr
t=1 a

p�r
t

det
1�i;j�r

�
1

2�i

I
K

eaizzj�1dzQp
s=1 (z � bs)

�
:�

B Proof of formula (24)

We start as in the proof of (23), which is given in the main text. Lemma 5 in
Onatski, Moreira and Hallin (2012) (OMH in what follows) implies thatI

Ki
e�nfi(z)g (z) dz = e�nfi0

"
g (zi0)�

1=2

f
1=2
i2 n1=2

+
Op (1)

hin3=2

#
; (SA6)

where g (z) = exp
�
�1
2
�p (z)

	
and Op (1) is uniform in hi 2

�
0; �h
�
. We would

like to extend (SA6) to the case where g (z) is replaced by a function of several
variables. Such an extension allows us to derive an asymptotic expression for the
repeated contour integral in (24).
It is convenient to rewrite the repeated integral on the left hand side of (24) in

the formI
K�(1)

e�nf�(1)(z1) �1 (z1) 
�1 (z1) :::

I
K�(r)

e�nf�(r)(zr) �r (zr) 
�r (z1; :::; zr) dzr:::dz1,

(SA7)
where, denoting hi

1+hi
as �i, we have

 �j (z) = zj�1
�
1� ��(j)

z

S

��p(n�r)�r(r+1)=2
exp

�
��p (z)� n��(j)z

	
,

and


�j (z1; :::; zj) =

 
1�

��(j)zj

S � ��(j)zj

Pj�1
i=1 ��(i)zi

S �
Pj�1

i=1 ��(i)zi

!�p(n�r)�r(r+1)=2
.

Note that the innermost integral in (SA7) has form
H
Ki e

�nfi(zr)g (zr) dzr with
i = �(r) and g (zr) =  �r (zr) 
�r (z1; :::; zr) so that g (zr) now depends on the
�additional variables�z1; :::; zr�1.
A careful reading of OMH�s proof of their Lemma 5 reveals that a version of

(SA6) remains valid for general functions g (z) that are analytic in the open ball

B (zi0; ri) with center at zi0 and radius ri = min
n
zi0 �max

�
�bp; �1

	
; 1+hi
hi
S � zi0

o
with probability approaching 1 as n; p ! 1. Precisely, for such general g (z) we
have I

Ki
e�nfi(z)g (z) dz = e�nfi0

g (zi0)�
1=2

f
1=2
i2 n1=2

+	1 +	2 +	3 (SA8)
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with

j	1j < C1e
�nfi0h�1i n�3=2 sup

z2 �B
jg (z)j ; (SA9)

j	2j < C1e
�nfi0e�nC2h�1i sup

z2Ki1[ �Ki1
jg (z)j ; and (SA10)

j	3j < C1

����I
Ki2[ �Ki2

e�nfi(z)g (z) dz

���� ; (SA11)

where �B is a closed ball with center at zi0 and radius 1
2
ri, and C1 and C2 are

positive constants. Moreover, for g (zr) =  �r (zr) 
�r (z1; :::; zr), 	1;	2 and 	3 are
functions of the �additional variables� z1; :::; zr�1 that are analytic in the region
represented by a direct product of r�1 open balls B

�
z�(i)0; r�(i)

�
with i = 1; :::; r�1

with probability approaching 1 as n; p!1.
Now, Lemma A2 in OMH implies that

sup
zr2 �B[Ki1[ �Ki1

�� �r (zr)�� = h1�r�(r)Op (1) (SA12)

uniformly in h�(r) 2
�
0; �h
�
: Further, an elementary analysis shows that

sup
zr2 �B[Ki1[ �Ki1

��
�r (z1; :::; zr)�� = Op (1) (SA13)

uniformly in h 2
�
0; �h
�r
and in (z1; :::; zr�1) 2 
r�1; where


r�1 =
�
z1; :::; zr�1 : Re zj < z�(j)0 + r�(j) and jIm zjj � 3z�(j)0 for all j � r � 1

	
.

Indeed, for zr 2 �B [ Ki1 [ �Ki1; h 2
�
0; �h
�r
; and for su¢ ciently large n and p;

we have: Re��(r)zr > 0, Re��(r)zr < 2��(r)z�(r)0 = 2
�
h�(r) + cp

�
< 2 (1 +

p
c)
2,

and
��Im��(r)zr�� < 3��(r)z�(r)0 < 3 (1 +

p
c)
2. Therefore, and since under the

null hypothesis S is asymptotically equivalent to p; Re
��(r)zr

S���(r)zr
is positive, and

is of order Op (p�1), whereas Im
��(r)zr

S���(r)zr
is of order Op (p�1) by absolute value.

Similarly, for (z1; :::; zr�1) 2 
r�1; h 2
�
0; �h
�r
, and for su¢ ciently large n and

p, Re
Pj�1
i=1 ��(i)zi

S�
Pj�1
i=1 ��(i)zi

is either negative, or positive, and then, is of order Op (p�1),

whereas Im
Pj�1
i=1 ��(i)zi

S�
Pj�1
i=1 ��(i)zi

is of order Op (p�1) by absolute value. These estimates

imply that, Re
�

��(j)zj

S���(j)zj

Pj�1
i=1 ��(i)zi

S�
Pj�1
i=1 ��(i)zi

�
is smaller than a positive quantity of or-

der Op (p�2) (although, when negative, it may be large by absolute value), which
implies (SA13).
The de�nition g (zr) =  �r (zr) 
�r (z1; :::; zr), along with (SA12) and (SA13)

imply that
sup

zr2 �B[Ki1[ �Ki1
jg (zr)j = h1�r�(r)Op (1) , (SA14)

5



where Op (1) is uniform in h 2
�
0; �h
�r
and in (z1; :::; zr�1) 2 
r�1.

Next, by de�nition of fi (�) ;  �r (�) ; and 
�r (�),

e�nf�(r)(zr)g (zr) =

 
1�

��(r)zr

S �
Pr�1

i=1 ��(i)zi

!�p(n�r)�r(r+1)=2
zr�1r

pY
j=1

(zr � �j)
�1 .

Since S is asymptotically equivalent to p; the base of the power representing the
�rst term on the right hand side of the above equality is larger than or equal to 1 by
absolute value for all zr such that Re zr < �3z�(j)0 and jIm zrj � 3z�(j)0; uniformly
in h 2

�
0; �h
�r
and in (z1; :::; zr�1) 2 
r�1; for su¢ ciently large n and p with

probability approaching 1. Since the exponent of the power is negative, the �rst
term itself is no larger than 1 by absolute value for all zr such that Re zr < �3z�(j)0
and jIm zrj � 3z�(j)0; uniformly in h 2

�
0; �h
�r
and in (z1; :::; zr�1) 2 
r�1.

Let us split the contour K�(r)2 into parts K�(r)2� and K�(r)2+; where K�(r)2�
includes all points of K�(r)2 with real part smaller than �3z�(j)0. For su¢ ciently
large n and p; we have with probability approaching 1,�����

I
K�(r)2�[ �K�(r)2�

e�nf�(r)(zr)g (zr) dzr

����� �I
K�(r)2�[ �K�(r)2�

�����zr�1r

pY
j=1

(zr � �j)
�1 dzr

����� � 2r
Z �3z�(j)0

�1
jxjr�1�p dx =

2r

p� r
e(r�p) ln(3z�(j)0) = e�nf�(j)0

�
6z�(j)0

�r
p� r

e�n[cp ln(3z�(j)0)�f�(j)0] �

e�nf�(j)0

�
6z�(j)0

�r
p� r

e�n[cp ln(z�(j)0)�f�(j)0]:

On the other hand, as shown in the main text,

cp ln
�
z�(j)0

�
� f�(j)0 > h�(j) + cp (SA15)

for h�(r) 2
�
0; �h
�
: Therefore,�����

I
K�(r)2�[ �K�(r)2�

e�nf�(r)(zr)g (zr) dzr

����� = e�nf�(j)0hr�(j)Op
�
e�

n
2
c
�
: (SA16)

where Op
�
e�

n
2
c
�
is uniform in h 2

�
0; �h
�r
and in (z1; :::; zr�1) 2 
r�1.

For the integral over K�(r)2+ [ �K�(r)2+; we have�����
I
K�(r)2+[ �K�(r)2+

e�nf�(r)(zr)g (zr) dzr

������8z�(j)0 sup
zr2K�(r)2+[ �K�(r)2+

��e�nf�(r)(zr)g (zr)��� (SA17)
8z�(j)0

�
6z�(j)0

�r�1
e�p ln(3z�(j)0) sup

zr2K�(r)2+[ �K�(r)2+

�����1� ��(r)zr

S�
Pr�1

i=1��(i)zi

�����
�p(n�r)�r(r+1)=2

:
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But for su¢ ciently large n and p; for (z1; :::; zr�1) 2 
r�1 and an arbitrary small
positive ";

inf
zr2K�(r)2+[ �K�(r)2+

�����1� ��(r)zr

S �
Pr�1

i=1 ��(i)zi

����� =

min
zr=z�(r)0�i3z�(r)0

�����1� ��(r)zr

S �
Pr�1

i=1 ��(i)zi

����� > 1�
��(r)z�(j)0

(1� ")S
:

Therefore,

sup
zr2K�(r)2+[ �K�(r)2+

�����1� ��(r)zr

S �
Pr�1

i=1 ��(i)zi

�����
�p(n�r)�r(r+1)=2

(SA18)

� e
(�p(n�r)�r(r+1)=2) ln

�
1�

��(r)z�(j)0
(1�")S

�
= en

��(r)z�(j)0
(1�") Op (1) ;

where Op (1) is uniform in h 2
�
0; �h
�r
and in (z1; :::; zr�1) 2 
r�1.

Combining (SA17) and (SA18), we get�����
I
K�(r)2+[ �K�(r)2+

e�nf�(r)(zr)g (zr) dzr

����� � 2
�
6z�(j)0

�r
e�p ln(3z�(j)0)+n

��(r)z�(j)0
(1�")

= 2
�
6z�(j)0

�r
e
�n
�
cp ln(3z�(j)0)�

h�(j)+cp

(1�")

�
Op (1) :

Since " can be chosen arbitrarily small, (SA15) implies then that�����
I
K�(r)2+[ �K�(r)2+

e�nf�(r)(zr)g (zr) dzr

����� = h�r�(j)e
�nf�(j)0Op

�
e�

nc
2

�
; (SA19)

where Op
�
e�

nc
2

�
is uniform in h 2

�
0; �h
�r
and in (z1; :::; zr�1) 2 
r�1.

Finally, (SA8-SA11), (SA14), (SA16), and (SA19) imply thatI
K�(r)

e�nf�(r)(zr) �r (zr) 
�r (z1; :::; zr) dzr =

e�nf�(j)0

 
 �r
�
z�(r)0

�

�r
�
z1; :::; zr�1; z�(r)0

�
�1=2

f
1=2
�(r)2n

1=2
+

Op (1)

hr�(r)n
3=2

!
;

where 
�r
�
z1; :::; zr�1; z�(r)0

�
andOp (1) are functions of z1; :::; zr�1 that are analytic

in (z1; :::; zr�1) 2 
r�1i=1B
�
z�(i)0; r�(i)

�
and bounded in probability uniformly in h 2�

0; �h
�r
and in (z1; :::; zr�1) 2 
r�1.

We now can use the uniform boundedness of 
�r
�
z1; :::; zr�1; z�(r)0

�
and ofOp (1)

to repeat the above analysis for the second, third, etc inner integrals in (SA7). In
the end, we obtain an asymptotic representation of (SA7) with the highest order
term

rY
j=1

(
e�nf�(j)0

 �j
�
z�(r)0

�

�j
�
z�(r)0; :::; z�(r)0

�
�1=2

f
1=2
�(j)2n

1=2

)
;
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and the second highest order term

1

n

rY
j=1

(
e�nf�(j)0

Opj (1)

hj�(j)n
1=2

)
;

where Opj (1) are random variables that are bounded in probability uniformly in
h 2

�
0; �h
�r
.�

C Asymptotic power of some previously proposed
tests

In this section, we consider examples of some of the tests of sphericity and of the
equality of the covariance matrix to the identity matrix that have been proposed
previously in the literature, and, in Proposition SA1, derive their asymptotic power
functions.

Example 1 (John�s (1971) test of sphericity) John (1971) proposes testing
the sphericity hypothesis � = 0 against general alternatives using the test statistic

U =
1

p
tr

240@ �̂

(1=p) tr
�
�̂
� � Ip

1A235 ; (SA20)

where �̂ is the sample covariance matrix of the data. He shows that, when n >
p; such a test is locally most powerful invariant. Ledoit and Wolf (2002) study
John�s test in the case of real-valued data when p=n ! c 2 (0;1). They prove
that, under the null, nU � p

d! N (1; 4) : In Proposition SA1, we show that, in

the case of complex-valued data, under the null, nU � p
d! N(0; 2). Hence the

test with asymptotic size � rejects the null of sphericity whenever 1p
2
(nU � p) >

��1 (1� �).

Example 2 (The Ledoit-Wolf (2002) test of � = I:) Ledoit and Wolf (2002)
propose to use

W =
1

p
tr

��
�̂� I

�2�
� p

n

�
1

p
tr�̂

�2
+
p

n
(SA21)

as a test statistic for testing the hypothesis that the population covariance matrix is
unity. They show that, in the case of real-valued data, under the null, nW � p

d!
N (1; 4) : In Proposition SA1, we show that, in the case of complex-valued data,

under the null, nW � p
d! N(0; 2). As with the previous example, the null is

rejected at asymptotic size � whenever 1p
2
(nW � p) > ��1 (1� �) :
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Example 3 (The �corrected�LRT of Bai et al. (2009).) When n > p; Bai
et al. (2009) propose to use a corrected version CLR = tr �̂ � ln det �̂ � p �
p
�
1�

�
1� n

p

�
ln
�
1� p

n

��
of the likelihood ratio statistic based on the entire data,

as opposed to � or � only, to test the equality of the population covariance matrix
to the identity matrix against general alternatives. Under the null, for the case of
real-valued data, CLR d! N

�
�1
2
ln (1� c) ;�2 ln (1� c)� 2c

�
; and for the case of

complex-valued data, CLR d! N (0;� ln (1� c)� c) (still, as both n and p go to
in�nity, with p=n converging to c). The null hypothesis is rejected at asymptotic
level � whenever CLR is larger than (� ln (1� c)� c)1=2��1 (1� �).

Consider the tests described in Examples 1, 2 and 3, and denote by �J (h) ;
�LW (h) and �CLR (h) their respective asymptotic powers at asymptotic level �:

Proposition SA1. Let U and W be the test statistics de�ned in (SA20) and
(SA21). Under the null,

nU � p
d! N (0; 2) and nW � p

d! N (0; 2) : (SA22)

Further, the asymptotic power functions of the tests described in Examples 1-3
satisfy

�J (h) = �LW (h) = 1� �
 
��1 (1� �)� 1p

2

rX
i=1

h2i
c

!
; and (SA23)

�CLR (h) = 1� �
 
��1 (1� �)�

rX
j=1

hj � ln (1 + hj)p
� ln (1� c)� c

!
; (SA24)

for any h = (h1; :::; hr) such that hj <
p
c for j = 1; :::; r:

The asymptotic power functions of the tests from Examples 1, 2, and 3 are
non-trivial. Figure 1 compares these power functions to the corresponding power
envelopes for r = 2. Note that �CLR (h) depends on c. As c converges to one,
�CLR (h) converges to �; which corresponds to the case of trivial power. As c
converges to zero, �CLR (h) converges to �LW (h). In Figure 1, we provide a plot
of �CLR (h) that correspond to c = 0:5:
Since John�s test is invariant with respect to rotations and scalings of real-

valued data, �J (h) is compared to the power envelope �� (h) : The asymptotic
power functions �LW (h) and �CLR (h) are compared to the power envelope �� (h)
because the Ledoit-Wolf test of � = I and the �corrected�likelihood ratio test for
real-valued data are invariant only with respect to the unitary transformations of
the data. We see that the power of the tests in examples 1-3 is increasing very
slowly and is very far below the corresponding power envelope. As discussed in
the main test, such a comparison is somewhat unfair to the tests from examples
1-3 because these tests are designed to test the null hypothesis against general
alternatives, as opposed to the spiked covariance alternative.
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Figure 1: Asymptotic power of John�s, Ledoit-Wolf and CLR tests (left panel) and
the corresponding power envelopes (right panel); r = 2; � = 0:05:
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Proof of proposition SA1
Note that

nU � p =
1

cp (S=p)
2

�
T � (1 + cp) p� (1 + cp)

�
S

p
+ 1

�
(S � p)

�
(SA25)

and

nW � p =
1

cp

�
T � (1 + cp) p�

�
2 + cp

�
S

p
+ 1

��
(S � p)

�
: (SA26)

Using these expressions and Lemma A3, we get, using notations of Lemma A3,

nU � p
d! N

�
0;
1

c2
�
Var� + 4(1 + c)2Var� � 4 (1 + c) Cov (�; �)

��
and

nW � p
d! N

�
0;
1

c2
�
Var� + 4(1 + c)2Var� � 4 (1 + c) Cov (�; �)

��
:

Hence, nU � p
d! N (0; 2) and nW � p

d! N (0; 2).
Let us now derive (SA23). Theorem 1, Lemma A3 and (SA25) imply that the

joint asymptotic distribution of 1p
2
(nU � p) and L� (h) under the null is Gaussian

and, using notations of Lemma A3,

Cov

�
nU � pp

2
;L� (h)

�
= � 1

c
p
2

rX
i=1

Cov (�; �i) +
2(1 + c)

c
p
2

rX
i=1

Cov (�; �i)

� 1

c2
p
2
Cov (�; �)

rX
j=1

hj +
2(1 + c)

c2
p
2
Var (�)

rX
j=1

hj

=
1

c
p
2

rX
i=1

h2i

As we show above, under the null, nU�pp
2

d! N (0; 1) : By Le Cam�s third lemma,

under the alternative h = (h1; :::; hr) ;
nU�pp

2
converges to a Gaussian random vari-

able with the same variance but with mean equal to Cov
�
nU�pp

2
;L� (h)

�
: Hence,

under the alternative, nU�pp
2

d! N

�
1
c
p
2

rP
i=1

h2i ; 1

�
; and the asymptotic power of

John�s test equals 1� �
�
��1 (1� �)� 1p

2

rP
i=1

h2i
c

�
.

Note that John�s test is invariant with respect to both unitary transformations
and arbitrary scalings of the data. Therefore, above we consider the joint distrib-
ution of nU�pp

2
and L� (h) ; rather than that of nU�pp

2
and L� (h) : In fact, as is easy

to check, the asymptotic covariance between nU�pp
2
and L� (h) is the same as that

between nU�pp
2
and L� (h) : So the asymptotic power of John�s test does not depend

on whether we specify �2 or not, as should be the case.
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In contrast to John�s test, Ledoit and Wolf�s test of � = I is not invariant with
respect to scalings of the data. Therefore, we will �rst �nd the joint asymptotic
distribution of nW�pp

2
and L� (h) under the null. Theorem 1, Lemma A3 and (SA26)

imply that this distribution is Gaussian and

Cov

�
nW � pp

2
;L� (h)

�
= � 1

c
p
2

rX
i=1

Cov (�; �i) +
2(1 + c)

c
p
2

rX
i=1

Cov (�; �i)

=
1

c
p
2

rX
i=1

h2i :

Hence, similarly to the case of nU�pp
2
; under the alternative, nW�pp

2

d! N

�
1
c
p
2

rP
i=1

h2i ; 1

�
;

and the asymptotic power of the Ledoit-Wold test equals 1��
�
��1 (1� �)� 1p

2

rP
i=1

h2i
c

�
.

Now, let us turn to the proof of (SA24). Note that CLR =
pP
j=1

q(�j) �

p
R
q(x)dFp (x) ; where q(x) = x � lnx � 1: Therefore, using the arguments of

the proof of Lemma A3, we �nd that CLR and ��p (zj0) jointly converge in dis-
tribution to a Gaussian vector with covariance

Rj =
1

4�2

I I
ln (�zj0 � z1) q(z2)

(m (z1)�m (z2))
2

dm (z1)

dz1

dm (z2)

dz2
dz1dz2: (SA27)

Herem (z) is as de�ned in (62), and the contours of integration are closed, oriented
counterclockwise, enclose the support of the Marchenko-Pastur distribution with
parameter c < 1; and do not enclose �zj0: Further, we will choose such contours so
that the z1-contour encloses 0; but the z2-contour does not.
From our Theorem 1, the asymptotic covariance between CLR and L� (h)

under the null equals
Pr

j=1Rj: Let us �nd the value of Rj as a function of hj:
Using Formula 1.16 of Bai and Silverstein (2004) we can simplify (SA27) to get

R =
1

4�2

I I
ln (�zj0 � z (m1)) (z (m2)� ln z (m2)� 1)

(m1 �m2)
2 dm1dm2;

where z (m) = � 1
m
+ c

1+m
and the contours of integration over m1 and over m2 are

obtained from the contours of integration over z1 and z2 in (SA27) by the transfor-
mation m (z) : In particular, m1-contour is oriented clockwise and encloses � hj

hj+c

and 0 but not �1 and � 1
1+hj

; whereas m2-contour is oriented counterclockwise and

encloses 1
c�1 and �1 but not �

hj
hj+c

and 0:
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Using (67), we can write: Rj = R1j +R2j +R3j; where

R1j =
2�i

4�2

I  
� 1

m2

+
1

m2 + hj (hj + c)�1

!
z (m2) dm2;

R2j =
�2�i
4�2

I  
� 1

m2

+
1

m2 + hj (hj + c)�1

!
ln z (m2) dm2; and

R3j =
�2�i
4�2

I  
� 1

m2

+
1

m2 + hj (hj + c)�1

!
dm2:

Since � 1
m2
+ 1

m2+hj(hj+c)
�1 is analytic in the area enclosed by the m2-contour,

R3j = 0: Further, using Cauchy�s theorem and the fact that z (m2) = � 1
m2
+ c

1+m2
;

we get: R1j = hj: Finally, applying integration by parts formula to R2j; and using
the fact that ln z (m2) is a single-valued function on the m2-contour, we get

R2j =
2�i

4�2

I 1
m2
2
� c

(1+m2)
2

� 1
m2
+ c

m2+1

�
� lnm2 + ln

�
m2 + hj (hj + c)�1

��
dm2:

The integrand in the above integral has only two singularities in the area enclosed
by the m2-contour: a pole at 1

c�1 and a pole at �1: Therefore, by Cauchy�s residue
theorem, we get R2j = � ln (1 + hj) : To summarize, Rj = R1j + R2j + R3j =
hj � ln (1 + hj) :
Now, from Bai et al. (2009), we know that under the null,

CLR
d! N (0;� ln (1� c)� c) :

By Le Cam�s third lemma, under the alternative h = (h1; :::; hr) ; CLR converges
to a Gaussian random variable with the same variance but with mean equal toPr

j=1Rj: Hence, under the alternative,

CLR
d! N

 
rX
j=1

[hj � ln (1 + hj)] ;� ln (1� c)� c

!
:

Therefore, the power of the �corrected�likelihood ratio test of asymptotic size �

equals 1� �
�
��1 (1� �)�

Pr
j=1

hj�ln(1+hj)p
� ln(1�c)�c

�
:�
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