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Abstract

Johansen’s (1988, 1991) likelihood ratio test for cointegration rank of a

Gaussian VAR depends only on the squared sample canonical correlations be-

tween current changes and past levels of a simple transformation of the data.

We study the asymptotic behavior of the empirical distribution of those squared

canonical correlations when the number of observations and the dimensional-

ity of the VAR diverge to infinity simultaneously and proportionally. We find

that the distribution almost surely weakly converges to the so-called Wachter

distribution. This finding provides a theoretical explanation for the observed

tendency of Johansen’s test to find “spurious cointegration”. It also sheds light

on the workings and limitations of the Bartlett correction approach to the over-

rejection problem. We propose a simple graphical device, similar to the scree

plot, for a preliminary assessment of cointegration in high-dimensional VARs.

1 Introduction

Johansen’s (1988, 1991) likelihood ratio (LR) test for cointegration rank is a very

popular econometric technique. However, it is rarely applied to systems of more than

three or four variables. On the other hand, there exist many applications involving

much larger systems. For example, Davis (2003) discusses a possibility of applying

the test to the data on seven aggregated and individual commodity prices to test

Lewbel’s (1996) generalization of the Hicks-Leontief composite commodity theorem.
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In a recent study of exchange rate predictability, Engel, Mark, and West (2015) con-

template a possibility of determining the cointegration rank of a system of seventeen

OECD exchange rates. Banerjee, Marcellino, and Osbat (2004) emphasize the im-

portance of testing for no cross-sectional cointegration in panel cointegration analysis

(see Breitung and Pesaran (2008) and Choi (2015)), and the cross-sectional dimension

of modern macroeconomic panels can easily be as large as forty.

The main reason why the LR test is rarely used in the analysis of relatively

large systems is its poor finite sample performance. Even for small systems, the test

based on the asymptotic critical values does not perform well (see Johansen (2002)).

For large systems, the size distortions become overwhelming, leading to severe over-

rejection of the null in favour of too much cointegration as shown in many simulation

studies, including Ho and Sorensen (1996) and Gonzalo and Pitarakis (1995, 1999).

In this paper, we study the asymptotic behavior of the sample canonical corre-

lations that the LR statistic is based on, when the number of observations and the

system’s dimensionality go to infinity simultaneously and proportionally. We show

that the empirical distribution of the squared sample canonical correlations almost

surely converges to the so-called Wachter distribution, originally derived by Wachter

(1980) as the limit of the empirical distribution of the eigenvalues of the multivariate

beta matrix of growing dimension and degrees of freedom. Our analytical findings

explain the observed over-rejection of the null hypothesis by the LR test, shed new

light on the workings and limitations of the Bartlett-type correction approach to the

problem (see Johansen (2002)), and lead us to propose a very simple graphical de-

vice, similar to the scree plot, for a preliminary analysis of the validity of cointegration

hypotheses in large vector autoregressions.

The basic framework for our analysis is standard. Consider a p-dimensional VAR

in the error correction form

∆Xt = ΠXt−1 +

k−1∑
i=1

Γi∆Xt−i + ΦDt + εt, (1)

where Dt and εt are vectors of deterministic terms and zero-mean Gaussian errors

with unconstrained covariance matrix, respectively. The LR statistic for the test

of the null hypothesis of no more than r cointegrating relationships between the p
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elements of Xt against the alternative of more than r such relationships is given by

LRr,p,T = −T
p∑

i=r+1

log (1− λi) , (2)

where T is the sample size, and λ1 ≥ ... ≥ λp are the squared sample canonical

correlation coeffi cients between residuals in the regressions of ∆Xt and Xt−1 on the

lagged differences ∆Xt−i, i = 1, ..., k − 1, and the deterministic terms. In the ab-

sence of the lagged differences and deterministic terms, the λ’s are the eigenvalues

of S01S−111 S
′
01S
−1
00 , where S00 and S11 are the sample covariance matrices of ∆Xt and

Xt−1, respectively, while S01 is the cross sample covariance matrix.

Johansen (1991) shows that the asymptotic distribution of LRr,p,T under the as-

ymptotic regime where T → ∞ while p remains fixed, can be expressed in terms of

the eigenvalues of a matrix whose entries are explicit functions of a p− r-dimensional
Brownian motion. Unfortunately, for relatively large p, this asymptotics does not

produce good finite sample approximations, as evidenced by the over-rejection phe-

nomenon mentioned above. Therefore, in this paper, we consider a simultaneous

asymptotic regime p, T →c ∞ where both p and T diverge to infinity so that

p/T → c ∈ (0, 1] , (3)

while p remains no larger than T . Our Monte Carlo analysis shows that the cor-

responding asymptotic approximations are relatively accurate even for such small

sample sizes as p = 10 and T = 20.

The basic specification for the data generating process (1) that we consider has

k = 1. In the next section, we discuss extensions to more general VARs with low-

rank Γi matrices and additional common factor terms. We also explain there that our

main results hold independently from whether a deterministic vector Dt with fixed

or slowly-growing dimension is present or absent from the VAR.

Our study focuses on the behavior of the empirical distribution function (d.f.) of

the squared sample canonical correlations,

Fp,T (λ) =
1

p

p∑
i=1

1 {λi ≤ λ} , (4)

where 1 {·} denotes the indicator function. We find that, under the null of r cointe-
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grating relationships, as p, T →c ∞ while r/p→ 0, almost surely (a.s.),

Fp,T (λ)⇒ Wc (λ) ≡ W (λ; c/(1 + c), 2c/(1 + c)) , (5)

where ⇒ denotes the weak convergence of d.f.’s (see Billingsley (1995), p.191), and

W (λ; γ1, γ2) denotes theWachter d.f. with parameters γ1 and γ2, described in detail

in the next section.

As explained below, convergence (5) guarantees an a.s. asymptotic lower bound

for the scaled LR statistic,

lim inf
p,T→c∞

LRr,p,T/p
2 ≥ −1

c

∫
log (1− λ) dWc (λ) . (6)

In contrast, we show that under the standard asymptotic regime where T → ∞
while p is held fixed, LRr,p,T/p

2 concentrates around 2 for relatively large p. A direct

calculation reveals that 2 is smaller than the lower bound (6), for all c > 0, with the

gap growing as c increases. That is, the standard asymptotic distribution of the LR

statistic is centered at a too low level, especially for relatively large p. This explains

the tendency of the asymptotic LR test to over-reject the null.

The reason for the poor centering delivered by the standard asymptotic approxi-

mation is that it classifies terms (p/T )j in the asymptotic expansion of the LR statistic

as O (T−j) . When p is relatively large, such terms substantially contribute to the fi-

nite sample distribution of the statistic, but are ignored as asymptotically negligible.

In contrast, the simultaneous asymptotics classifies all terms (p/T )j as O(1). They

are not ignored asymptotically, which improves the centering of the simultaneous

asymptotic approximation relative to the standard one.

Using bound (6), we construct a Bartlett-type correction factor for the standard

LR test, hence, addressing a long-standing problem (see Johansen (2002)). As we

show below, for p/T < 1/3, the value of our theoretical correction factor is very close

to the simulation-based factor described in Johansen, Hansen and Fachin (2005).

However, for larger p/T , the values diverge. Johansen, Hansen and Fachin’s (2005)

simulations do not consider combinations of p and T with p/T > 1/3, and the func-

tional form that they use to fit the simulated correction factors does not work well

uniformly in p/T .

The weak convergence result (5) can be put to a more direct use by comparing the
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quantiles of the empirical distribution of the squared sample canonical correlations

with the quantiles of the limiting Wachter distribution. Under the null, the former

quantiles plotted against the latter ones should form a 45◦ line, asymptotically. Devi-

ations of such aWachter quantile-quantile (q-q) plot from the line indicate violations

of the null. Creating Wachter plots requires practically no additional computations

beyond those needed to compute the LR statistic, and we propose to use this simple

graphical device for a preliminary analysis of cointegration in large VARs.

Our study is the first to derive the limit of the empirical d.f. of the squared sample

canonical correlations between random walk Xt−1 and its innovations ∆Xt. Wachter

(1980) shows that W (λ; γ1, γ2) is the weak limit of the empirical d.f. of the squared

sample canonical correlations between q- and m-dimensional independent Gaussian

white noises with the size of the sample n, when q,m, n→∞ so that q/n→ γ1 and

m/n → γ2. Yang and Pan (2012) show that Wachter’s (1980) result holds without

the Gaussianity assumption for i.i.d. data with finite second moments. Our proofs do

not rely on those previous results. The novelty and diffi culty of our setting is that Xt

and ∆Xt are not independent processes. This requires original ideas for our proofs.

Our paper opens up a new direction for the asymptotic analysis of panel VAR

cointegration tests based on the sample canonical correlations. One such test is de-

veloped in Larsson and Lyhagen (2007) (see also Larsson, Lyhagen, and Lothgren

(2001) and Groen and Kleibergen (2003)). Larsson and Lyhagen (2007) are reluctant

to recommend their test for large VARs. They suggest that for the analysis of rela-

tively large panels it may be better to rely on tighter parameterized models, such as

that of Bai and Ng (2004).

We conjecture that the Larsson-Lyhagen test, as well as the LR test, based on

the simultaneous asymptotics work well in panels with comparable cross-sectional and

temporal dimensions. The results of this paper can be used to describe the appropriate

centering of the corresponding test statistics. The next step would be to derive the

simultaneous asymptotic distribution of scaled deviations of such statistics from the

centering values. We expect the simultaneous asymptotic distribution of LRr,p,T to

be Gaussian, as is often the case for averages of regular functions of eigenvalues of

large random matrices (see Bai and Silverstein (2010) and Paul and Aue (2014)). We

are currently pursuing this line of research.

The rest of this paper is structured as follows. In Section 2, we prove the conver-

gence of Fp,T (λ) to the Wachter d.f. under the simultaneous asymptotics. Section 3
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derives the sequential limit of the empirical d.f. of the squared sample canonical corre-

lations as, first T →∞ and then p→∞. It then uses differences between the sequen-
tial and simultaneous limits to explain the over-rejection phenomenon, and to design

a theoretical Bartlett-type correction factor for the LR statistic in high-dimensional

VARs. Section 4 contains a Monte Carlo study and illustrates the proposed Wachter

q-q plot technique using a macroeconomic panel. Section 5 concludes. All proofs are

given in the Appendix and Supplementary Material (SM).

2 Convergence to the Wachter distribution

Consider the following basic version of (1)

∆Xt = ΠXt−1 + ΦDt + εt (7)

with dD-dimensional vector of deterministic regressorsDt. Let R0t and R1t be the vec-

tors of residuals from the OLS regressions of ∆Xt onDt, andXt−1 onDt, respectively.

Define

S00 =
1

T

T∑
t=1

R0tR
′
0t, S01 =

1

T

T∑
t=1

R0tR
′
1t, and S11 =

1

T

T∑
t=1

R1tR
′
1t, (8)

and let λ1 ≥ ... ≥ λp be the eigenvalues of S01S−111 S
′
01S
−1
00 .

The main goal of this section is to establish the a.s. weak convergence of the empir-

ical d.f. of the λ’s to the Wachter d.f., under the null of r cointegrating relationships,

when p, T →c ∞. The Wachter distribution with d.f. W (λ; γ1, γ2) and parameters

γ1, γ2 ∈ (0, 1) has density

fW (λ; γ1, γ2) =
1

2πγ1

√
(b+ − λ) (λ− b−)

λ (1− λ)
(9)

on [b−, b+] ⊆ [0, 1] with

b± =
(√

γ1(1− γ2)±
√
γ2(1− γ1)

)2
, (10)

and atoms of size max {0, 1− γ2/γ1} at zero, and max {0, 1− (1− γ2)/γ1} at unity.
We assume that model (7) may be misspecified in the sense that the true data
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generating process is described by the following generalization of (1)

∆Xt = ΠXt−1 +

k−1∑
i=1

Γi∆Xt−i + ΨFt + εt, (11)

where εt, t = 1, ..., T, are still i.i.d. N(0,Σ) with arbitrary Σ > 0, rank Π = r,

but k is not necessarily unity, and Ft is a dF -dimensional vector of deterministic or

stochastic variables that does not necessarily coincide with Dt. For example, some

of the components of Ft may be common factors not observed and not modelled

by the econometrician. Further, we do not put any restrictions on the roots of the

characteristic polynomial associated with (11). In particular, explosive behavior and

seasonal unit roots are allowed. Finally, no constraints on Ft, and the initial values

X1−k, ..., X0, apart from the asymptotic requirements on dF and k as spelled out in

the following theorem, are imposed.

Theorem 1 Suppose that the data are generated by (11), and let Γ = [Γ1, ...,Γk−1].

If
1

p
(dD + dF + r + k + rank Γ)→ 0 (12)

as p, T →c ∞ while p remains no larger than T , then, almost surely,

Fp,T (λ)⇒ Wc (λ) ≡ W (λ; c/(1 + c), 2c/(1 + c)) . (13)

Theorem 1 implies that the weak limits of Fp,T (λ) corresponding to the general

model (11) and to the basic model ∆Xt = ΠXt−1 + εt are the same as long as (12)

holds. Condition (12) guarantees that the difference between the general and basic

versions of S01S−111 S
′
01S
−1
00 have rank R that is less than proportional to p (and to T ).

Then, by the so-called rank inequality (Theorem A43 in Bai and Silverstein (2010)),

the Lévy distance between the general and basic versions of Fp,T (λ) is no larger than

R/p, which converges to zero as p, T →c ∞. Since the Lévy distance metrizes the
weak convergence (see Billingsley (1995), problem 14.5), the limiting d.f. is the same

for both versions. For further details, see the proof of Theorem 1 in the Appendix.

Remark 2 In standard cases where Dt is represented by (1, t) , it is customary to

impose restrictions on Φ so that there is no quadratic trend in Xt (see Johansen

(1995), ch. 6.2). Then, the LR test is based on the eigenvalues of S∗01S
∗−1
11 S∗′01S

∗−1
00 ,
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Figure 1: Quantile functions of Wc (λ) for c = 1/5, c = 1/2, and c = 4/5.

defined similarly to S01S−111 S
′
01S
−1
00 by replacing Xt−1 with

(
X ′t−1, t

)′
and regressing

∆Xt and
(
X ′t−1, t

)′
on constant only to obtain R0t and R1t. The empirical d.f. of so

modified eigenvalues still converges to Wc (λ) because the difference between matrices

S∗01S
∗−1
11 S∗′01S

∗−1
00 and S01S−111 S

′
01S
−1
00 has small rank.

Figure 1 shows quantile plots of Wc (λ) for different values of c. For c = 1/5, the

dimensionality of the data constitutes 20% of the sample size. The corresponding

Wachter limit of Fp,T (λ) is supported on [0.04, 0.74]. In particular, we expect λ1 be

larger than 0.7 for large p, T even in the absence of any cointegrating relationships.

For c = 1/2, the upper boundary of support of the Wachter limit is unity. This

accords with Gonzalo and Pitarakis’(1995, Lemma 2.3.1) finding that as T/p → 2,

λ1 → 1. For c = 4/5, the Wachter limit has mass 3/4 at unity.

Wachter (1980) derives W (λ; γ1, γ2) as the weak limit of the empirical d.f. of

eigenvalues of the p-dimensional beta1 matrix Bp (n1/2, n2/2) with n1, n2 degrees of

freedom as p, n1, n2 → ∞ so that p/n1 → γ1/γ2 and p/n2 → γ1/(1 − γ2). The

eigenvalues of multivariate beta matrices are related to many important concepts in

multivariate statistics, including canonical correlations, multiple discriminant ratios,

and MANOVA. In particular, the squared sample canonical correlations between q-
1For the definition of the multivariate beta see Muirhead (1982), p.110.
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and m-dimensional independent Gaussian samples of size n are jointly distributed as

the eigenvalues of Bq (m/2, (n−m)/2) , where q ≤ m and n ≥ q+m. Therefore, their

empirical d.f. weakly converges to W (λ; γ1, γ2) with γ1 = lim q/n and γ2 = limm/n.

Note that the latter limit coincides withWc (λ) when n = T+p, q = p, andm = 2p.

Hence, Theorem 1 implies that the limiting empirical distribution of the squared

sample canonical correlations between T observations of p-dimensional random walk

and its own innovations is the same as that between T+p observations of independent

p- and 2p-dimensional white noises. This suggests that there might exist a deep

connection between these two settings, which is yet to be discovered.

In the context of multiple discriminant analysis, Wachter (1976) proposes to use

a q-q plot, where the multiple discriminant ratios are plotted against quantiles of

W (λ; γ1, γ2), as a simple graphical method that helps one “recognize hopeless from

promising analyses at an early stage.”Nowadays, such q-q plots are called Wachter

plots (see Johnstone (2001)). Theorem 1 implies that the Wachter plot can be used

as a simple preliminary assessment of cointegration hypotheses in large VARs.

As an illustration, Figure 2 shows a Wachter plot of the simulated sample squared

canonical correlations corresponding to a 20-dimensional VAR(1) model (7) with Π =

diag {−I3, 0× I17} so that there are three white noise and seventeen random walk

components of Xt. No deterministic terms are included. We set T = 200 and c =

1/10. The graph clearly shows three canonical correlations that destroy the 45◦ line

fit, so that the null hypothesis of no cointegration is compromised.

Theorem 1 does not provide any explanation to the fact that exactly three canon-

ical correlations deviate from the 45◦ line in Figure 2. To interpret deviations of

the Wachter plots from the 45◦ line, it is desirable to investigate behavior of Fp,T (λ)

under various alternatives. So far, we were able to obtain a clear result only for the

“extreme”alternative, where Xt is a vector of independent white noises. Under such

an alternative,

Fp,T (λ)⇒ W (λ; c/(2− c), 1/(2− c)) . (14)

We plan to publish a full proof of this and some related results elsewhere.

The a.s. weak convergence of Fp,T (λ) established in Theorem 1 implies the a.s. con-

vergence of bounded continuous functionals of Fp,T (λ) . An example of such a func-

tional is the scaled Pillai-Bartlett statistic for the null of no more than r cointegrating
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Figure 2: Wachter plot of the squared canonical correlations corresponding to 20-
dimensional series with 3 components being white noises and the other components
being independent random walks. p = 20, T = 200.

relationships (see Gonzalo and Pitarakis (1995))

1

Tp
PBr,p,T =

1

p

p∑
j=r+1

λj,

which is asymptotically equivalent to the LR statistic under the standard asymptotic

regime. Since, by definition, λj ∈ [0, 1] , we have

1

Tp
PBr,p,T =

∫
f(λ)dFp,T (λ)− 1

p

r∑
j=1

λj, (15)

where f is the bounded continuous function

f(λ) =


0 for λ < 0

λ for λ ∈ [0, 1]

1 for λ > 1.

.

As long as r/p → 0 as p, T →c ∞, the second term on the right hand side of (15)
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converges to zero. Therefore, Theorem 1 implies that PB/ (Tp) a.s. converges to∫
f(λ)dWc (λ) . A direct calculation based on (9), which we report in the SM, yields

the following corollary.

Corollary 3 Under the assumptions of Theorem 1, as p, T →c ∞, a.s.,

PBr,p,T/ (Tp)→ 2c/ (1 + c) + max {0, 2− 1/c} .

A similar analysis of the LR statistic (2) is less straightforward because log (1− λ)

is unbounded on λ ∈ [0, 1] . In fact, for c > 1/2, LRr,p,T is ill-defined because a

non-negligible proportion of the squared sample canonical correlations exactly equal

unity. However for c < 1/2, we can obtain the a.s. asymptotic lower bound on

LRr,p,T/ (Tp) . Note that for such c, the upper bound of the support of Wc (λ) equals

b+ = c
(√

2−
√

1− c
)−2

< 1. Let

log (1− λ) =


0 for λ < 0

log(1− λ) for λ ∈ [0, b+]

log(1− b+) for λ > b+.

(16)

Clearly, log (1− λ) is a bounded continuous function and

1

Tp
LRr,p,T ≥ −

1

p

p∑
j=r+1

log(1− λj).

Hence, we have the following a.s. lower bound on LRr,p,T/ (Tp) (the corresponding

calculations are reported in the SM).

Corollary 4 Under the assumptions of Theorem 1, for c < 1/2, as p, T →c ∞, a.s.,

lim inf
p,T→c∞

1

Tp
LRr,p,T ≥

1 + c

c
ln (1 + c)− 1− c

c
ln (1− c) +

1− 2c

c
ln (1− 2c) .

Remark 5 We conjecture that the above lower bound is, in fact, the a.s. limit of
LRr,p,T/ (Tp) . To prove this conjecture, one needs to show that λr+1 is a.s. bounded

away from unity so that the unboundedness of log (1− λ) is not consequential. We

leave this for future research.
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Corollary 4 suggests an appropriate “centering point”for the scaled LR statistic

when p and T are large. As we show in the next section, the standard asymptotic

distribution concentrates around a very different point for large p. To study such

a concentration, in the next section, we consider the sequential asymptotic regime

where first T →∞, and then p→∞.

3 A comparison to sequential asymptotics

3.1 Sequential asymptotics

To obtain useful results under the sequential asymptotics, we study eigenvalues of the

scaled matrix
T

p
S01S

−1
11 S

′
01S
−1
00 . (17)

Under the simultaneous asymptotic regime, the behavior of the scaled and unscaled

eigenvalues is the same up to the factor c−1 = limT/p. In contrast, as T →∞ while

p remains fixed, the unscaled eigenvalues converge to zero, while scaled ones do not.

We shall denote the empirical d.f. of eigenvalues of the scaled matrix as F (s)p,T (λ).

Without loss of generality (see Lemmas 10 and 11 in the Appendix), we focus on

the case of the simple data generating process

∆Xt = εt, t = 1, ..., T, and X0 = 0, (18)

and on the situation where the econometrician does not include any deterministic

regressors in his or her model, that is dD = 0. For simplicity, in the rest of this

section, we assume that r = 0, and consider statistics LR0,p,T rather than a more

general LRr,p,T .

Under the above simplifications, Johansen’s (1988, 1991) results imply that, as

T →∞ while p is held fixed, the eigenvalues of the scaled matrix (17) jointly converge

in distribution to the eigenvalues of

1

p

∫ 1

0

(dB)B′
(∫ 1

0

BB′du

)−1 ∫ 1

0

B (dB)′ , (19)

where B is a p-dimensional Brownian motion. We denote the eigenvalues of (19) as

λ
(∞)
j , and their empirical d.f. as Fp,∞ (λ) .
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It is reasonable to expect that, as p → ∞, Fp,∞ (λ) becomes close to the limit of

the empirical d.f. of eigenvalues of (17) under a simultaneous, rather than sequential,

asymptotic regime p, T →γ ∞, where γ is close to zero. We denote such a limit
as Fγ (λ) . This expectation turns out to be correct in the sense that the following

theorem holds. Its proof is given in the SM.

Theorem 6 Let F0 (λ) be the weak limit of Fγ (λ) as γ → 0. Then, as p → ∞,
Fp,∞ (λ) ⇒ F0 (λ) , in probability. The d.f. F0 (λ) corresponds to a distribution sup-

ported on [a−, a+] with

a± =
(

1±
√

2
)2
, (20)

and having density

f (λ) =
1

2π

√
(a+ − λ) (λ− a−)

λ
. (21)

A reader familiar with Large Random Matrix Theory (see Bai and Silverstein

(2010)) might recognize that F0 (λ) is the d.f. of the continuous part of a special case

of the Marchenko-Pastur distribution (Marchenko and Pastur (1967)). The general

Marchenko-Pastur distribution has density

fMP

(
λ;κ, σ2

)
=

1

2πσ2κ

√
(a+ − λ) (λ− a−)

λ

over [a−, a+] with a± = σ2 (1±
√
κ)
2 and a point mass max {0, 1− 1/κ} at zero.

Density (21) is two times fMP (λ;κ, σ2) with κ = 2 and σ2 = 1. The multiplication

by two is needed because the mass 1/2 at zero is not a part of the distribution F0.

According to Theorem 6, for any δ1, δ2 > 0 and all suffi ciently large p,

Pr

(
1

p

p∑
j=1

λ
(∞)
j ≥

∫
λdF0 (λ)− δ1

)
≥ 1− δ2. (22)

A direct calculation, which we report in the SM, shows that
∫
λdF0 (λ) = 2. On the

other hand, as T →∞ while p remains fixed,

LR0,p,T
d→ p

p∑
j=1

λ
(∞)
j as T →∞. (23)

Hence, we have the following corollary.
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Corollary 7 As first T → ∞, and then p → ∞, the lower probability bound on
LR0,p,T/ (2p2) is unity in the following sense. As T → ∞ while p is held fixed,

LR0,p,T/ (2p2) converges in distribution to
∑p

j=1
λ
(∞)
j / (2p) . Further, for any δ1, δ2 >

0 and all suffi ciently large p, the probability Pr
{∑p

j=1
λ
(∞)
j / (2p) ≥ 1− δ1

}
is no

smaller than 1− δ2.

The reason why we claim only the lower bound on LR0,p,T/ (2p2) is that Theorem

6 is silent about the behavior of the individual eigenvalues λ(∞)j , the largest of which

may, in principle, quickly diverge to infinity. We suspect that 2 is not just the

lower bound, but also the probability limit of
∑p

j=1
λ
(∞)
j /p, so that the sequential

probability limit of LR0,p,T/ (2p2) is unity. Verification of this conjecture requires

more work, similar to that discussed in Remark 5.

Corollary 7 is consistent with the numerical finding of Johansen, Hansen and

Fachin (2005, Table 2) that, as T becomes large while p is being fixed, the sample

mean of the LR statistic is well approximated by a polynomial 2p2 + αp (see also

Johansen (1988) and Gonzalo and Pitarakis (1995)). The value of α depends on

how many deterministic regressors are included in the VAR. Our theoretical result

captures the ‘highest order’sequential asymptotic behavior of the LR statistic, which

remains (bounded below by) 2p2 independent on the number of the deterministic

regressors.

The concentration of the LR statistic around 2p2 explains why the critical values

of the LR test are so large for large values of p. For example, MacKinnon, Haug and

Michelis (1999) report the 5% critical value 311.09 for p = 12. The transformation

LR0,p,T 7→ LR0,p,T/p− 2p

makes the LR statistic ‘well-behaved’ under the sequential asymptotics and leads

to more conventional critical values. The division by p reduces the ‘second order

behavior’to OP(1), while subtracting 2p eliminates the remaining explosive ‘highest

order term’. We report the corresponding transformed 95% critical values alongside

the original ones in Table 1.

The transformed critical values resemble 97-99 percentiles of N(0, 1). Since the

LR test is one-sided, the resemblance is coincidental. However, we do expect the

sequential asymptotic distribution of the transformed LR statistic (as well as its

simultaneous asymptotic distribution) to be normal (possibly with non-zero mean
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p Unadjusted CV CV/p− 2p p Unadjusted CV CV/p− 2p
1 4.13 2.13 7 111.79 1.97
2 12.32 2.16 8 143.64 1.96
3 24.28 2.09 9 179.48 1.94
4 40.17 2.04 10 219.38 1.94
5 60.06 2.01 11 263.25 1.93
6 83.94 1.99 12 311.09 1.92

Table 1: The 95% asymptotic critical values (CV) for Johansen’s LR test. The
unadjsuted values are taken from the first column of Table II in MacKinnon, Haug
and Michelis (1999).

and non-unit variance). A formal analysis of this conjecture is left for future research.

3.2 The over-rejection, and the Bartlett correction

In this subsection, let us assume that the following conjecture holds.

Conjecture 8 The simultaneous and sequential asymptotic lower bounds for the
scaled LR statistics derived in Corollaries 4 and 7 represent the corresponding si-

multaneous and sequential asymptotic limits. Specifically, for c < 1/2,

lim
p,T→c∞

1

2p2
LR0,p,T =

1 + c

2c2
ln (1 + c)− 1− c

2c2
ln (1− c) +

1− 2c

2c2
ln (1− 2c) , (24)

plim
p→∞

lim
T→∞

1

2p2
LR0,p,T = 1. (25)

Figure 3 plots the right hand side of (24). It is larger than unity (dashed line)

for all c ∈ (0, 1/2) with the gap increasing in c. The Monte Carlo analysis in the

next section shows that ‘typical’values of the LR statistic in finite samples with com-

parable p and T are concentrated around the solid line. In contrast, the ‘standard’

asymptotic critical values are concentrated around the dashed line. Hence, the stan-

dard asymptotic distribution of the LR statistic is centered at a too low level. This

explains the over-rejection of the null of no cointegration by the standard asymptotic

LR test.

A popular approach to addressing the over-rejection problem is based on the

Bartlett-type correction of the LR statistic. It was explored in much detail in various

studies, including Johansen (2002). The idea is to scale the LR statistic so that
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Figure 3: The asymptotic limits (under Conjecture 8) of the scaled LR statistic
L0,p,T/ (2p2) . Dashed line: sequential asymptotic limit. Solid line: simultaneous as-
ymptotic limit.

its finite sample distribution better fits the asymptotic distribution of the unscaled

statistic. Specifically, let Ep,∞ be the mean of the asymptotic distribution under the

fixed-p, large-T asymptotic regime. Then, if the finite sample mean, Ep,T , satisfies

Ep,T = Ep,∞ (1 + a(p)/T + o (1/T )) , (26)

the scaled statistic is defined as LR/ (1 + a(p)/T ) . By construction, the fit between

the scaled mean and the original asymptotic mean is improved by an order of mag-

nitude. Although, as shown by Jensen and Wood (1997) in the context of unit root

testing, the fit between higher moments does not improve by an order of magnitude,

it may become substantially better (see Nielsen (1997)).

A theoretical analysis of the adjustment factor 1 + a(p)/T can be rather involved.

In general, a(p) will depend not only on p, but also on all the parameters of the

VAR. However, for Gaussian VAR(1) without deterministic terms, under the null of

no cointegration, a(p) depends only on p.

For p = 1, the exact expression for a(p) was derived in Larsson (1998). Given the

diffi culty of the theoretical analysis of a(p), Johansen (2002) proposes to numerically

evaluate the Bartlett correction factor BCp,T ≡ Ep,T/Ep,∞ by simulation. Johansen,
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Hansen and Fachin (2005) simulate BCp,T for various values of p ≤ 10 and T ≤ 3000

and fit a function of the form

BC∗p,T = exp
{
a1p/T + a2 (p/T )2 +

[
a3 (p/T )2 + b

]
/T
}

to the obtained results. For relatively large values of T, the term
[
a3 (p/T )2 + b

]
/T

in the above expression is small. When it is ignored, the fitted function becomes

particularly simple:

B̃Cp,T = exp
{

0.549p/T + 0.552 (p/T )2
}
.

Our simultaneous and sequential asymptotic results shed light on the workings of

B̃Cp,T . Given that Conjecture 8 holds,

limp,T→c∞ LR0,p,T
p limT→∞,p→∞ LR0,p,T

=
1 + c

2c2
ln (1 + c)− 1− c

2c2
ln (1− c) +

1− 2c

2c2
ln (1− 2c) .

Therefore, for non-negligible p/T, we expect BCp,T to be well approximated by

B̂Cp,T =
1 + ĉ

2ĉ2
ln (1 + ĉ)− 1− ĉ

2ĉ2
ln (1− ĉ) +

1− 2ĉ

2ĉ2
ln (1− 2ĉ) ,

where ĉ = p/T is the finite sample analog of c.

Figure 4 superimposes the graphs of B̂Cp,T and B̃Cp,T as functions of ĉ. For p/T ≤
0.3, there is a strikingly good fit between the two curves, with the maximum distance

between them 0.0067. For p/T > 0.3 the quality of the fit quickly deteriorates. This

can be explained by the fact that all p, T -pairs used in Johansen, Hansen and Fachin’s

(2005) simulations are such that p/T < 0.3.

4 Monte Carlo and some examples

4.1 Monte Carlo experiments

Throughout this section, the analysis is based on 1000 Monte Carlo replications. First,

we generate pure random walk data with zero starting values for p = 10, T = 100 and

p = 10, T = 20. Figure 5 shows the Tukey boxplots summarizing the MC distribution

of each of the λi, i = 1, ..., 10 (sorted in the ascending order throughout this section).
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Figure 4: Bartlett correction factors as functions of p/T. Solid line: the factor based
on simultaneous asymptotics. Dashed line: numerical approximation from Johansen,
Hansen and Fachin (2005).

The boxplots are superimposed with the quantile function of the Wachter limit with

c = 1/10 for the left panel and c = 1/2 for the right panel. Precisely, for x = i, we

show the value the 100 (i− 1/2) /p quantile of the Wachter limit. For i = 1, 2, ..., 10,

these are the 5-th,15-th,...,95-th quantiles of W (λ; c/ (1 + c) , 2c/ (1 + c)) . Even for

such small values of p and T, the theoretical quantiles track the location of the MC

distribution of the empirical quantiles very well.

The dispersion of the MC distributions around the theoretical quantile is quite

large for the chosen small values of p and T. To see how such a dispersion changes

when p and T increase while p/T remains fixed, we generated pure random walk data

with p = 20, T = 200 and p = 100, T = 1000 for p/T = 1/10, and with p = 20, T = 40

and p = 100, T = 200 for p/T = 1/2. Instead of reporting the Tukey boxplots, we

plot only the 5-th and 95-th percentiles of the MC distributions of the λi, i = 1, ..., p

against 100 (i− 1/2) /p quantiles of the corresponding Wachter limit. The plots are

shown on Figure 6. We see that the [5%,95%] ranges of the MC distributions of λi are

still considerably large for p = 20. These ranges become much smaller for p = 100.

The behavior of the smallest squared canonical correlation λ1 in Figures 5 and 6

is special in that its MC distribution lies below the corresponding Wachter quantile.

This does not contradict our theoretical results because a weak limit of the empirical
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Figure 5: The Tukey boxplots for 1000 MC simulations of ten sample squared canon-
ical correlations correponding to pure random walk data. The boxplots are superim-
posed with the quantile function of the Wachter limit.

Figure 6: The q-q Wachter plots for pure random walk data. The dashed line is the
45◦ line. The solid lines are the 5-th and the 95-th percentiles of the MC distributions
of λi, which are plotted against 100(i− 1/2)/p quantiles of the Wachter limit.
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distribution of λ’s is not affected by an arbitrary change in a finite (or slowly growing)

number of them. In fact, we find it somewhat surprising that only the distribution

of λ1 is not well-alligned with the derived theoretical limit. Our proofs are based

on several low rank alterations of the matrix S01S−111 S
′
01S
−1
00 , and there is nothing in

them that guarantee that only one eigenvalue of S01S−111 S
′
01S
−1
00 behaves in a “special”

way. In future work, it would be interesting to investigate behavior of the extreme

eigenvalues of S01S−111 S
′
01S
−1
00 theoretically.

Our next Monte Carlo experiment simulates data that are not random walk. In-

stead, the data are stationary VAR(1) with zero mean, zero initial value, and Π = ρIp.

We consider three cases of ρ : 0, 0.5, and 0.95. Figure 7 shows the Wachter plots with

solid lines representing 5th and 95-th percentiles of the MC distributions of λi plotted

against the 100(i− 1/2)/p quantiles of the corresponding Wachter limit. The dashed

line correspond to the null case where the data are pure random walk (shown for

comparison).

The lower panel of the figure corresponds to the most persistent alternative with

ρ = 0.95. Samples with p = 20 seem to be too small to generate substantial differences

in the behavior of Wachter plots under the null and under such persistent alternatives.

The less persistent alternative with ρ = 0.5 is easily discriminated against by the

Wachter plot for p/T = 1/10 (left panel). The discrimination power of the plot for

p/T = 1/5 (central panel) is weaker. For p/T = 1/2 there is still some discrimination

power left, but the location of the Wachter plot under alternative “switches”the side

relative to the 45◦ line.

The plots easily discriminate against white noise (ρ = 0) alternative for c = 1/10

and c = 1/5, but not for c = 1/2. This accords with (14), which implies that the

empirical d.f.’s of the squared sample canonical correlations based on random walk

and on white noise data converge to the same limit when c = 1/2.

Results reported in Figure 7 indicate that for relatively small p and p/T,Wachter

plots can be effective in discriminating against alternatives to the null of no cointegra-

tion, where the cointegrating linear combinations of the data are not very persistent.

Further, tests of no cointegration hypothesis that may be developed using simulta-

neous asymptotics would probably need to be two-sided. It is because the location

of the Wachter plot under the alternative may “switch sides”relative to the 45◦ de-

pending on the persistence of the data under the alternative. Finally, cases with c

close to 1/2 must be analyzed with much care. For such cases, the behavior of the
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Figure 7: The q-qWachter plots for stationary dataXt = ρXt−1+εt. Solid lines: 5 and
95 percentiles of the MC distribution of λi plotted against 100(i − 1/2)/p quantile
of the Wachter limit. Dashed lines correspond to 5 and 95 percentiles of the MC
distribution of λi for pure random walk data (the null).
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sample canonical correlations become similar under extremely different random walk

and white noise data generating processes.

Our final MC experiment studies the finite sample behavior of LR0,p,T/ (2p2) .We

simulate pure random walk data with p = 10 and p = 100 and T varying so that p/T

equals 1/10,2/10,...,5/10. Corollary 4 shows that the simultaneous asymptotic lower

bound on LR0,p,T/ (2p2) has form

1 + c

2c2
ln (1 + c)− 1− c

2c2
ln (1− c) +

1− 2c

2c2
ln (1− 2c) . (27)

Figure 8 shows the Tukey boxplots of the MC distributions of LR0,p,T/ (2p2) corre-

sponding to p/T = 1/10, ..., 5/10 with p = 10 (left panel), and p = 100 (right panel).

The boxplots are superimposed with the plot of (27) with c replaced by p/T . For

p = 10, we also show (horizontal dashed line) the standard 95% asymptotic critical

value (scaled by 1/(2p2)) taken from MacKinnon, Haug and Michelis (1999, Table

II). For p = 100, the standard critical values are not available, and we show the

dashed horizontal line at unit height instead. This is the sequential asymptotic lower

bound on LR0,p,T/ (2p2) as established in Corollary 7. The reported results support

our conjecture that the simultaneous asymptotic lower bound (27) is, in fact, the

simultaneous asymptotic limit of LR0,p,T/ (2p2) for c < 1/2.

The left panel of Figure 8 illustrates the “over-rejection phenomenon”. The hor-

izontal dashed line that corresponds to the standard 95% critical value is just above

the interquartile range of the MC distribution of LR0,p,T/ (2p2) for c = 1/10, is be-

low this range for c ≥ 3/10, and is below all 1000 MC replications of the scaled LR

statistic for c = 5/10.

Although the lower bound (27) seems to provide a very good centering point for

the scaled LR statistic, the MC distribution of this statistic is quite dispersed around

such a center for p = 10. As discussed above, we suspect that the scaled statistic

centered by (27) and appropriately rescaled has Gaussian simultaneous asymptotic

distribution. Supporting this conjecture, the Tukey plots on Figure 8, that correspond

to c < 1/2, look reasonably symmetric although some skewness is present for the left

panel where p = 10.
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4.2 Examples

Our first example uses T = 103 quarterly observations (1973q2-1998q4, with the

initial observation 1973q1) on bilateral US dollar log nominal exchange rates for p =

17OECD countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Germany, Japan, Italy, Korea, Netherlands, Norway, Spain, Sweden, Switzerland, and

the United Kingdom. The data are as in Engel, Mark, and West (2015), and were

downloaded from Charles Engel’s website at http: // www.ssc.wisc.edu / ~cengel /.

That data are available for a longer time period up to 2008q1, but we have chosen to

use only the “early sample”that does not include the Euro period.

Engel, Mark, and West (2015) point out that log nominal exchange rates are well

modelled by random walk, but may be cointegrated, which can be utilized to improve

individual exchange rate forecasts relative to the random walk forecast benchmark.

They propose to estimate the common stochastic trends in the exchange rates by

extracting a few factors from the panel. In principle, the number of factors to extract

can be determined using Johansen’s test for cointegrating rank, but Engel, Mark, and

West (2015) do not exploit this possibility, referring to Ho and Sorensen (1996) that

reports poor performance of the test for large p.

Figure 9 shows the Wachter plot for the log nominal exchange rate data. The

squared sample canonical correlations are computed as the eigenvalues of S01S−111 S
′
01S
−1
00 ,

where Sij are defined as in (8) with R0t and R1t being the demeaned changes and the

lagged levels of the log exchange rates, respectively. The dashed lines correspond to

the 5-th and 95-th percentiles of the MC distribution of the squared canonical corre-

lation coeffi cients under the null of no cointegration. To obtain these percentiles, we

generated data from model (7) with p = 17, T = 103, Π = 0, Dt = 1, and Φ being

i.i.d. N(0, Ip) vectors across the MC repetitions. Log exchange rates for 1973q1 was

used as the initial value of the generated series.

The figure shows a mild evidence for cointegration in the data with the largest

five λ’s being close to the corresponding 95-th percentiles of the MC distributions.

Recall, however, that the ability of the Wachter plot to differentiate against highly

persistent cointegration alternatives with p/T ≈ 1/5 is very low, so there well may be

more than five cointegrating relationships in the data. Whatever such relationships

are, the deviations from the corresponding long-run equilibrium are probably highly

persistent as no dramatic deviations from the 45◦ line are present in the Wachter plot.

Very different Wachter plots (shown in Figure 10) correspond to the log industrial
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Figure 8: The Tukey boxplots for the MC distributions of LR0,p,T/ (2p2) for various
p/T ratios. The boxplots are superimposed with the simultaneous asymptotic lower
bound on LR0,p,T/ (2p2) . Dashed line in the left panel correspond to 95% critical value
for the satandard asymptotic LR test (taken from MacKinnon, Haug and Michelis
(1999, Table II)). Dashed line in the right panel has ordinate equal one.

Figure 9: The Wachter plot for the bilateral US log nominal excahnge rates of 17
OECD countries. Dashed lines: 5% and 95% quantiles of the MC distribution of the
squared sample canonical correlations under the null of no cointegration.
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Figure 10: The Wachter plots for the industrial production indices and consumer
price indices of 18 OECD countries. Dashed lines: 5% and 95% quantiles of the
MC distribution of the squared sample canonical correlations under the null of no
cointegration.

production (IP) index data and the log consumer price index (CPI) data for the

same countries plus the US. These data are still the same as in Engel, Mark, and

West (2015). We used the long sample 1973q2:2008q1 (T = 140) because the IP

and CPI data are not affected by the introduction of the Euro to the same degree

as the exchange rate data. For the CPI data, we included both intercept and trend

in model (7) for the first differences because the level data seem to be quadratically

trending. The plots clearly indicate that the IP and CPI data are either stationary or

cointegrated with potentially many cointegrating relationships, short run deviations

from which are not very persistent.

5 Conclusion

In this paper, we consider the simultaneous, large-p, large-T , asymptotic behavior of

the squared sample canonical correlations between p-dimensional random walk and its

innovations. We find that the empirical distribution of these squared sample canoni-

cal correlations almost surely weakly converges to the so-called Wachter distribution

with parameters that depend only on the limit of p/T as p, T →c ∞. In contrast,
under the sequential asymptotics, when first T → ∞ and then p → ∞, we establish
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the convergence in probability to the so-called Marchenko-Pastur distribution. The

differences between the limiting distributions allow us to explain from a theoretical

point of view the tendency of the LR test for cointegration to severely over-reject

the null when the dimensionality of the data is relatively large. Furthermore, we de-

rive a simple analytic formula for the Bartlett-type correction factor in systems with

relatively large p/T ratio.

We propose a quick graphical method, the Wachter plot, for a preliminary analysis

of cointegration in large-dimensional systems. The Monte Carlo analysis shows that

the quantiles of the Wachter distribution constitute very good centering points for the

finite sample distributions of the corresponding squared sample canonical correlations.

The quality of the centering is excellent even for such small p and T as p = 10 and

T = 20. However, for such small values of p and T, the empirical distribution of the

squared sample canonical correlation can considerably fluctuate around the Wachter

limit. As p increases to 100, the fluctuations become numerically very small.

This paper opens up many directions for future research. First, it is important

to study the fluctuations of the empirical distribution around the Wachter limit. We

conjecture that linear combinations of reasonably smooth functions of the squared

sample canonical correlations, including the log(1 − λ) used by the LR statistic,

are asymptotically Gaussian after appropriate centering and scaling. A proof would

require different methods from those used here. We are currently investigating this

research direction.

Further, it would be desirable to remove the Gaussianity assumption on the data.

We believe that the existence of the finite fourth moments is suffi cient for the validity

of the Wachter limit. Next, it is interesting to study the simultaneous asymptotic

behavior of a few of the largest sample canonical correlations. This may lead to a

modification of Johansen’s maximum eigenvalue test. Last, but not least, a study of

the quality of bootstrap when p is large is needed. Our own very preliminary analysis

indicates that the currently available non-parametric bootstrap procedures (see, for

example, Cavaliere, Rahbek, and Taylor (2012)) might not work well for p/T as large

as, say, 1/3. We hope that our paper would stimulate further research along these

and other directions.
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6 Appendix. Proof of Theorem 1.

6.1 Reduction to pure random walk data.

Let G (λ) and G̃ (λ) be d.f.’s that may depend on p and T and are possibly random.

We shall call them asymptotically equivalent if the a.s. weak convergence G (λ) ⇒
F (λ) to some non-random d.f. F (λ) implies similar a.s. weak convergence for G̃(λ),

and vice versa. Let Si and S̃i with i = 0, 1, 2 be, possibly random, matrices that may

depend on p and T such that Si and S̃i are a.s. positive definite for i = 0, 1. Below,

we shall often refer to the following auxiliary lemma.

Lemma 9 If 1
p

rank
(
Si − S̃i

)
→ 0, a.s., as p, T →c ∞ for i = 0, 1, 2, then G (λ) and

G̃(λ) are asymptotically equivalent, where G (λ) and G̃ (λ) are the empirical d.f.’s of

eigenvalues of S2S−11 S ′2S
−1
0 and S̃2S̃−11 S̃ ′2S̃

−1
0 , respectively.

Proof of Lemma 9. Let R = rank
(
S2S

−1
1 S ′2S

−1
0 − S̃2S̃−11 S̃ ′2S̃

−1
0

)
. The a.s. conver-

gence 1
p

rank
(
Si − S̃i

)
→ 0 implies the a.s. convergence R/p→ 0. On the other hand,

by the rank inequality (Theorem A43 in Bai and Silverstein (2010)), L
(
G, G̃

)
≤ R/p,

where L
(
G, G̃

)
is the Lévy distance between G (λ) and G̃(λ). Since the Lévy dis-

tance metrizes the weak convergence, the a.s. convergence L
(
G, G̃

)
→ 0 yields the

asymptotic equivalence of G (λ) and G̃(λ).�
Now, let S0 = S00, S1 = S11, and S2 = S01, and let

S̃0 =
1

T

T∑
t=1

∆Xt∆X
′
t, S̃1 =

1

T

T∑
t=1

Xt−1X
′
t−1, and S̃2 =

1

T

T∑
t=1

∆XtX
′
t−1.

Since R0t and R1t, which enter the definition (8) of Sij, are the residuals in the regres-

sions of ∆Xt on Dt and Xt−1 on Dt, respectively, we have maxi=0,1,2 rank
(
Si − S̃i

)
≤

dD. By assumption, dD/p → 0 as p, T →c ∞, so that by Lemma 9, Fp,T (λ) is as-

ymptotically equivalent to the empirical d.f. of eigenvalues of S̃2S̃−11 S̃ ′2S̃
−1
0 . Therefore,

we may and will replace R0t and R1t in the definitions (8) of Sij by ∆Xt and Xt−1,

respectively, without loss of generality. Furthermore, scaling Sij by T does not change
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the product S01S−111 S
′
01S
−1
00 , and thus, in the rest of the proof, we work with

S00 =

T∑
t=1

∆Xt∆X
′
t, S01 =

T∑
t=1

∆XtX
′
t−1, and S11 =

T∑
t=1

Xt−1X
′
t−1. (28)

Next, we show that, still without loss of generality, we may replace the data

generated process (11) by a pure random walk with zero initial value. Indeed, let X =

[X−k+1, ..., XT ], where X−k+1, ..., X0 are arbitrary and Xt with t ≥ 1 are generated

by (11). Further, let X̃−k+1, ..., X̃0 be zero vectors, X̃t =
∑t

s=1
εt for t ≥ 1, and

X̃ = [X̃−k+1, ..., X̃T ].

Lemma 10 rank
(
X − X̃

)
≤ 2 (r + rank Γ + k + dF ) .

A proof of this lemma is given in the SM. It is based on the representation of Xt

as a function of the initial values, ε and F (see Theorem 2.1 in Johansen (1995)),

and requires only elementary algebraic manipulations. Lemmas 10 and 9 together

with assumption (12) imply that replacing ∆Xt and Xt−1 in (28) by ∆X̃t and X̃t−1,

respectively, does not change the weak limit of Fp,T (λ). Hence, in the rest of the proof

of Theorem 1, without loss of generality, we assume that the data are generated by

∆Xt = εt, t = 1, ..., T, with X0 = 0. (29)

Since the sample canonical correlations are invariant with respect to the multiplication

of the data by any invertible matrix, we assume without loss of generality that the

variance of εt equals Σ = Ip/T. Further, we assume that T is even. The case of odd

T can be analyzed similarly, and we omit it to save space.

6.2 Block-diagonalization

Let ε = [ε1, ..., εT ] and let U be the upper-triangular matrix with ones above the main

diagonal and zeros on the diagonal. Then εU = [X0, ..., XT−1] so that

S00 = εε′, S01 = εU ′ε′, and S11 = εUU ′ε′. (30)
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We shall show that the empirical d.f. of the λ’s, Fp,T (λ) , is asymptotically equivalent

to the empirical d.f. F̂p,T (λ) of eigenvalues of CD−1C ′A−1, where

C = ε∆′2ε
′, D = ε∆1ε

′, and A = εε′,

∆1 is a diagonal matrix,

∆1 = diag
{
r−11 I2, ..., r

−1
T/2I2

}
, (31)

and ∆2 is a block-diagonal matrix,

∆2 = diag
{
r−11 (R1 − I2) , ..., r−1T/2

(
RT/2 − I2

)}
. (32)

Here I2 is the 2-dimensional identity matrix, and rj, Rj are defined as follows. Let

θ = −2π/T. Then for j = 1, 2, ..., T/2− 1,

rj+1 = 2− 2 cos jθ, Rj+1 =

(
cos jθ − sin jθ

sin jθ cos jθ

)
,

whereas r1 = 4, R1 = −I2.

Lemma 11 The d.f.’s Fp,T (λ) and F̂p,T (λ) are asymptotically equivalent.

Proof of Lemma 11. Let V be the circulant matrix (see Golub and Van Loan

(1996, p.201)) with the first column v = (−1, 1, 0, ..., 0)′ . Direct calculations show

that UV = IT − le′T and V U = IT − e1l′, where ej is the j-th column of IT , and l is
the vector of ones. Using these identities, it is straightforward to verify that

U = (V + e1e
′
1)
−1 − le′1, and (33)

UU ′ =
(
V ′V − (e1 − eT ) (e1 − eT )′ + eT e

′
T

)−1 − ll′. (34)

Now, let us define

C1 = ε (U + le′1)
′
ε′ and D1 = ε (UU ′ + ll′) ε′.

Using identities (30) for Sij and Lemma 9, we conclude that Fp,T (λ) is asymptoti-

cally equivalent to F (1)p,T (λ), where F (1)p,T (λ) is the empirical d.f. of the eigenvalues of
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C1D
−1
1 C ′1A

−1.

Further, (33) and (34) yield

C1 = ε (V + e1e
′
1)
−1
ε′ and

D1 = ε
(
V ′V − (e1 − eT ) (e1 − eT )′ + eT e

′
T

)−1
ε′.

Applying Lemma 9 one more time, we obtain the asymptotic equivalence of F (1)p,T (λ)

and F (2)p,T (λ) , where F (2)p,T (λ) is the empirical d.f. of the eigenvalues of C2D−12 C ′2A
−1

with

C2 = εV −1ε′ and D2 = ε (V ′V )
−1
ε′. (35)

As is well known (see, for example, Golub and Van Loan (1996), chapter 4.7.7), T ×T
circulant matrices can be expressed in terms of the discrete Fourier transformmatrices

F = {exp (iθ (s− 1) (t− 1))}Ts,t=1 with θ = −2π/T. Precisely,

V =
1

T
F∗ diag (Fv)F , and V ′V =

1

T
F∗ diag (Fw)F ,

where w = (2,−1, 0, ..., 0,−1)′ and the star superscript denotes transposition and

complex conjugation. For the s-th diagonal elements of diag (Fv) and diag (Fw) , we

have

diag (Fv)s = −1 + exp {iθ (s− 1)} , and diag (Fw)s = 2− 2 cos (s− 1) θ.

Note that diag (Fw)s = diag (Fw)T+2−s for s = 2, 3, ... Define a permutation ma-

trix P so that the equal diagonal elements of P ′ diag (Fw)P are grouped in adjacent

pairs. Precisely, let P = {pst}, where

pst =


1 if t = 2s− 1 for s = 1, ..., T/2

1 if t = 2 (T − s+ 2) modT for s = T/2 + 1, ..., T

0 otherwise

and let W be the unitary matrix

W =

(
I2 0

0 IT/2 ⊗ Z

)
with Z =

1√
2

(
1 1

i −i

)
,

30



where ⊗ denotes the Kronecker product. Further, let Q = 1√
T
WP ′F . As is easy to

check, Q is an orthogonal matrix. Furthermore,

V = Q′
(
∆−12 + 2e1e

′
1

)
Q, and V V ′ = Q′

(
∆−11 − 4e1e

′
1

)
Q,

where ∆1 and ∆2 are as defined in (31) and (32). Combining this with (35) and using

Lemma 9 once again, we obtain the asymptotic equivalence of F (2)p,T (λ) and F (3)p,T (λ) ,

where F (3)p,T (λ) is the empirical d.f. of the eigenvalues of C3D−13 C ′3A
−1 with

C3 = εQ′∆2Qε
′ and D3 = εQ′∆1Qε

′.

Because of the rotational invariance of the Gaussian distribution, the distributions of

εQ′ and ε are the same. Hence, F (3)p,T (λ) is asymptotically equivalent to F̂p,T (λ) , and

thus, F̂p,T (λ) is asymptotically equivalent to Fp,T (λ).�

6.3 A system of equations for the Stieltjes transform

Our proof of the a.s. weak convergence of F̂p,T (λ) to the Wachter distribution consists

of showing that the Stieltjes transform of F̂p,T (λ),

m̂p,T (z) =

∫
1

λ− z F̂p,T (dλ) , (36)

a.s. converges pointwise in z ∈ C+ = {ζ : Iζ > 0}, where Iζ denotes the imaginary
part of a complex number ζ, to the Stieltjes transform m(z) of the Wachter distribu-

tion. To establish such a convergence, we show that, if m is a limit of m̂p,T (z) along

any subsequence of p, T →c ∞, then it must satisfy a system of equations with unique
solution given by m(z). The a.s. convergence of F̂p,T (λ) (and thus, also of Fp,T (λ)) to

the Wachter distribution follows then from the Continuity Theorem for the Stieltjes

transforms (see, for example, Corollary 1 in Geronimo and Hill (2003)).

We shall write m̂ for the Stieltjes transform m̂p,T (z) to simplify notation. Let

M = CD−1C ′ − zA and M̃ = C ′A−1C − zD. (37)
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Then by definition (36), m̂ must satisfy the following equations

m̂ =
1

p
tr
[
AM−1] , (38)

m̂ =
1

p
tr
[
DM̃−1

]
. (39)

Let us study the above traces in detail. Define

ε(j) = [ε2j−1, ε2j] , j = 1, ..., T/2.

We now show that the traces in (38) and (39) can be expressed as functions of the

terms having form ε′(j)Ωjε(j), where Ωj is independent from ε(j). Then, we argue that

ε′(j)Ωjε(j) −
1

T
tr [Ωj] I2

a.s. converge to zero, and use this fact to derive equations that the limit of m̂, if it

exists, must satisfy.

First, consider (38). Note that

1

p
tr
[
AM−1] =

1

p

T/2∑
j=1

tr
[
ε′(j)M

−1ε(j)
]
. (40)

Let us introduce new notation:

∆1j = r−1j I2, ∆2j = r−1j (Rj − I2) ,

Cj = C − ε(j)∆′2jε′(j), Dj = D − ε(j)∆1jε
′
(j),

Aj = A− ε(j)ε′(j), and Mj = CjD
−1
j C ′j − zAj.

In addition, let

sj = ε′(j)D
−1
j ε(j), uj = ε′(j)D

−1
j C ′jM

−1
j ε(j),

vj = ε′(j)M
−1
j ε(j), and

wj = ε′(j)D
−1
j C ′jM

−1
j CjD

−1
j ε(j).

A straightforward algebra that involves multiple use of the Sherman-Morrison-
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Woodbury formula (see Golub and Van Loan (1996), p.50)

(V +XWY )−1 = V −1 − V −1X
(
W−1 + Y V −1X

)−1
Y V −1, (41)

and the identity

∆2j∆
′
2j = ∆′2j∆2j = ∆1j, (42)

establishes the following equality

ε′(j)M
−1ε(j) = vj − [vj, u

′
j]Ωj[vj, u

′
j]
′, (43)

where

Ωj =

(
1
1−zI2 + vj

1
1−zrj∆

′
2j + u′j

1
1−zrj∆2j + uj

z
1−zrjI2 − sj + wj

)−1
.

A derivation of (43) can be found in the SM.

Let us define

ŝ =
1

T
tr
[
D−1

]
, û =

1

T
tr
[
D−1C ′M−1] ,

v̂ =
1

T
tr
[
M−1] , and

ŵ =
1

T
tr
[
D−1C ′M−1CD−1

]
.

We have the following lemma, where ‖·‖ denotes the spectral norm. Its proof is given
in the SM.

Lemma 12 For all z ∈ C+, as p, T →c ∞, we have

max
j=1,...,T/2

‖sj − ŝI2‖
a.s.→ 0, max

j=1,...,T/2
‖uj − ûI2‖

a.s.→ 0

max
j=1,...,T/2

‖vj − v̂I2‖
a.s.→ 0, max

j=1,...,T/2
‖wj − ŵI2‖

a.s.→ 0.

The lemma yields an approximation to the right hand side of (43), which we use

in (40) and (38) to obtain the following result.

Proposition 13 There exists ζ > 0 such that, for any z with zero real part, Rz = 0,

33



and the imaginary part satisfying Iz > ζ, we have

m̂ =
1

2πc

∫ 2π

0

f1 (ϕ)

(1− z) f1 (ϕ) + f2 (ϕ)
dϕ+ o(1), where (44)

f1 (ϕ) =
(
ŵ − ŝ− 4 sin2 ϕ

)
v̂ − û2,

f2 (ϕ) = ŵ − ŝ− 4 sin2 ϕ (1− û− v̂) ,

and o(1)
a.s→ 0, as p, T →c ∞.

Proof of Proposition 13. Consider a 2 × 2 matrix Ŝj that is obtained from

ε′(j)M
−1ε(j) by replacing sj, vj, uj and wj in (43) with ŝI2, v̂I2, ûI2, and ŵI2, respec-

tively. We have

Ŝj = v̂I2 − [v̂I2, ûI2]Ω̂j[v̂I2, ûI2]
′,

where

Ω̂j =

(
1
1−zI2 + v̂I2

1
1−zrj∆

′
2j + ûI2

1
1−zrj∆2j + ûI2

z
1−zrjI2 + (ŵ − ŝ)I2

)−1
.

A simple algebra and the identity ∆2j + ∆′2j = −I2 yield

Ω̂j =
1− z
δj

Ω̃j, where (45)

Ω̃j =

(
z
1−zrjI2 + (ŵ − ŝ)I2 − 1

1−zrj∆
′
2j − ûI2

− 1
1−zrj∆2j − ûI2 1

1−zI2 + v̂I2

)
, (46)

and

δj = (ŵ − ŝ) (1 + v̂ − zv̂) + rj (û+ zv̂ − 1)− (1− z) û2.

By definition,

|ŝ| ≤ p

T

∥∥D−1∥∥ , |û| ≤ p

T
tr
∥∥D−1C ′M−1∥∥ ,

|v̂| ≤ p

T

∥∥M−1∥∥ , and |ŵ| ≤ p

T
tr
∥∥D−1C ′M−1CD−1

∥∥ .
In the proof of Lemma 12, we show that the norms ‖D−1‖ , ‖D−1C ′‖ , and ‖M−1‖
a.s. remain bounded as p, T →c ∞. Hence, ŝ, û, v̂, and ŵ are also a.s. bounded.
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Further, by definition,

rj∆2j = Rj − I2 and rj∆′2j = R′j − I2,

where Rj is an orthogonal matrix, so that ‖rj∆2j‖ and
∥∥rj∆′2j∥∥ are clearly bounded

uniformly in j. Therefore, the norm of matrix Ω̃j a.s. remains bounded as p, T →c ∞,
uniformly in j. Regarding δj, which appear in the denominator on the right hand side

of (45), the SM establishes the following result.

Lemma 14 There exists ζ > 0 such that, for any z with Rz = 0 and Iz > ζ, a.s.,

lim inf
p,T→c∞

max
j=1,...,T/2

|δj| > c2/
(
1− c2

)
.

The above results imply that, for z with Rz = 0 and Iz > ζ,
∥∥∥Ω̂j

∥∥∥ a.s. remains
bounded as p, T →c ∞, uniformly in j. Therefore, by Lemma 12,

ε′(j)M
−1ε(j) = Ŝj + o(1), (47)

where o(1)
a.s.→ 0 as p, T →c ∞, uniformly in j.

A straightforward algebra reveals that

Ŝj =
(ŵ − ŝ− rj) v̂ − û2

δj
.

Using this in equations (47) and (40), we obtain

m̂ =
2

p

T/2−1∑
j=0

(ŵ − ŝ− rj+1) v̂ − û2
δj+1

+ o(1)

=
2

p

T/2−1∑
j=1

f1 (jπ/T )

(1− z) f1 (jπ/T ) + f2 (jπ/T )
+ o(1),

where, in the latter expression, the term corresponding to j = 0 is included in the

o(1) term to take into account the special definition of r1.

As follows from Lemma 14 and the boundedness of ŝ, û, v̂, and ŵ, the derivative

d

dϕ

f1 (ϕ)

(1− z) f1 (ϕ) + f2 (ϕ)
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a.s. remains bounded by absolute value as p, T →c ∞, uniformly in ϕ ∈ [0, 2π] .

Therefore

2

p

T/2−1∑
j=1

f1 (jπ/T )

(1− z) f1 (jπ/T ) + f2 (jπ/T )
=

2

πc

∫ π/2

0

f1 (ϕ) dϕ

(1− z) f1 (ϕ) + f2 (ϕ)
+ o(1).

The statement of Proposition 13 now follows by noting that the latter integral is one

quarter of the integral over [0, 2π] .�
A similar analysis of equation (39) gives us another proposition, describing m̂ as

function of s̃, ũ, ṽ, and w̃, where

s̃ =
1

T
tr
[
A−1

]
, ũ =

1

T
tr
[
A−1CM̃−1

]
,

ṽ =
1

T
tr
[
M̃−1

]
, and

w̃ =
1

T
tr
[
A−1CM̃−1C ′A−1

]
.

We omit the proof because it is very similar to that of Proposition 13.

Proposition 15 There exists ζ > 0 such that, for any z with Rz = 0 and Iz > ζ,

we have

m̂ =
1

2πc

∫ 2π

0

g1
(1− z) g1 + g2 (ϕ)

dϕ+ o(1), where (48)

g1 = (w̃ − s̃− 1) ṽ − ũ2,
g2 (ϕ) = ṽ − 4 sin2 ϕ (s̃+ 1− ũ− w̃) ,

and o(1)
a.s.→ 0, as p, T →c ∞.

Although we now have two asymptotic equations for m̂, (44) and (48), they contain

eight unknowns: ŝ, û, v̂, ŵ, and the corresponding variables with tildes. Using a simple

algebra, we establish the following relationships between the unknowns with hats and

tildes. A proof can be found in the SM.

Lemma 16 We have the following three identities

û = ũ, zṽ + ŝ = ŵ, and zv̂ + s̃ = w̃. (49)

36



The identities (49) imply the following equality

(1− z) f1 (ϕ) + f2 (ϕ) = (1− z) g1 + g2 (ϕ) .

We denote the reciprocal of the common value of the right and left hand sides of this

equality as ĥ (z, ϕ) . A direct calculation shows that

ĥ (z, ϕ) =
(
(1− z)

(
zṽv̂ − û2

)
+ zṽ + 4 sin2 ϕ (zv̂ + û− 1)

)−1
, (50)

and the asymptotic relationships (44) and (48) can be written in the following form{
m̂ = 1

2πc

∫ 2π
0
ĥ (z, ϕ)

((
zṽ − 4 sin2 ϕ

)
v̂ − û2

)
dϕ+ o(1)

m̂ = 1
2πc

∫ 2π
0
ĥ (z, ϕ) ((zv̂ − 1) ṽ − û2) dϕ+ o(1)

. (51)

This can be viewed as an asymptotic system of two equations with four unknowns:

m̂, ṽ, v̂, and û. We shall now complete the system by establishing the other two as-

ymptotic relationships connecting these unknowns.

Multiplying both sides of the identity

MA−1 = CD−1C ′A−1 − zIp (52)

by AM−1, taking trace, dividing by p, and rearranging terms, we obtain

1 + zm̂ =
1

p
tr
[
CD−1C ′M−1] . (53)

Next, we analyze (53) similarly to the above analysis of (38). That is, first, we note

that
1

p
tr
[
CD−1C ′M−1] =

1

p

T/2∑
j=1

tr
[
∆′2jε

′
(j)D

−1C ′M−1ε(j)
]
. (54)

Then elementary algebra, based on the Sherman-Morrison-Woodbury formula (41),

yields

ε′(j)D
−1C ′M−1ε(j) = rj (rjI2 + sj)

−1 sj∆2j

(
vj −

[
vj, u

′
j

]
Ωj

[
vj, u

′
j

]′)
(55)

+rj (rjI2 + sj)
−1
(
uj − [uj, wj] Ωj

[
vj, u

′
j

]′)
.
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Multiplying both sides of (55) by ∆′2j and replacing sj, uj, vj, and wj by ŝI2, ûI2, v̂I2,

and ŵI2, respectively, yields an asymptotic approximation to ∆′2jε
′
(j)D

−1C ′M−1ε(j),

which can be used in (54) and (53) to produce the following result. Its proof, as well

as the proof of (55), are given in the SM.

Proposition 17 There exists ζ > 0 such that, for any z with Rz = 0 and Iz > ζ,

we have

1 + zm̂ =
1

2πc

∫ 2π

0

ĥ (z, ϕ)
(
2û sin2 ϕ+ zṽv̂ − û2

)
dϕ+ o(1), where (56)

o(1)
a.s.→ 0, as p, T →c ∞.

One might think that the remaining asymptotic relationship can be obtained by

using the identity

M̃D−1 = C ′A−1CD−1 − zIp, (57)

which parallels (52). Unfortunately, following this idea delivers a relationship equiv-

alent to (56). Therefore, instead of using (57), we consider the identity

1

p
tr
[
C ′M−1] =

1

p
tr
[
DD−1C ′M−1] , (58)

which yields

1

p

T/2∑
j=1

tr
[
∆2jε

′
(j)M

−1ε(j)
]

=
1

p

T/2∑
j=1

tr
[
∆1jε

′
(j)D

−1C ′M−1ε(j)
]
. (59)

Then, we proceed as in the above analysis of (54) and (40) to obtain the remaining

asymptotic relationship. The proof of the following proposition is given in the SM.

Proposition 18 There exists ζ > 0 such that, for any z with Rz = 0 and Iz > ζ,

we have

0 =
1

2πc

∫ 2π

0

ĥ (z, ϕ)
(
4v̂ sin2 ϕ+ 2û

)
dϕ+ o(1), where (60)

o(1)
a.s.→ 0, as p, T →c ∞.

Summing up the results in Propositions 13, 15, 17, and 18, the unknowns m̂, v̂, ṽ,
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and û must satisfy the following system of asymptotic equations
m̂ = 1

2πc

∫ 2π
0
ĥ (z, ϕ)

((
zṽ − 4 sin2 ϕ

)
v̂ − û2

)
dϕ+ o(1)

m̂ = 1
2πc

∫ 2π
0
ĥ (z, ϕ) ((zv̂ − 1) ṽ − û2) dϕ+ o(1)

1 + zm̂ = 1
2πc

∫ 2π
0
ĥ (z, ϕ)

(
2û sin2 ϕ+ zṽv̂ − û2

)
dϕ+ o(1)

0 = 1
2πc

∫ 2π
0
ĥ (z, ϕ)

(
4v̂ sin2 ϕ+ 2û

)
dϕ+ o(1)

. (61)

6.4 Solving the system

The definition (36) of m̂ implies that |m̂| is bounded by (Iz)−1 . Further, as shown in

the proof of Proposition 13, û and v̂ are a.s. bounded by absolute value, and it can

be similarly shown that ṽ is a.s. bounded by absolute value. Therefore, there exists

a subsequence of p, T along which m̂, v̂, ṽ, and û a.s. converge to some limits m, v, y,

and u.

These limits must satisfy a non-asymptotic system of equations
m = 1

2πc

∫ 2π
0
h (z, ϕ)

((
zy − 4 sin2 ϕ

)
v − u2

)
dϕ

m = 1
2πc

∫ 2π
0
h (z, ϕ) ((zv − 1) y − u2) dϕ

1 + zm = 1
2πc

∫ 2π
0
h (z, ϕ)

(
2u sin2 ϕ+ zvy − u2

)
dϕ

0 = 1
2πc

∫ 2π
0
h (z, ϕ)

(
2v sin2 ϕ+ u

)
dϕ

, (62)

where

h (z, ϕ) =
[
(1− z)

(
zvy − u2

)
+ zy + 4 sin2 ϕ (zv + u− 1)

]−1
.

Let us consider, until further notice, only such z that Rz = 0 and Iz > ζ, for some

ζ > 0. Let us solve system (62) for m. Adding two times the last equation to the first

one, and subtracting the second equation we obtain

0 =
1

2πc

∫ 2π

0

h (z, ϕ) (y + 2u) dϕ. (63)

Note that
∫ 2π
0
h (z, ϕ) dϕ 6= 0. Otherwise, from the second equation of (62), we

have m = 0, which cannot be true. Indeed, for any 0 ≤ λ ≤ 1 and z with Rz = 0,

I

(
1

λ− z

)
=

Iz

λ2 + (Iz)2
≥ Iz

1 + (Iz)2
.

Therefore, Im̂ ≥ Iz/
(
1 + (Iz)2

)
, and m̂ cannot converge to m = 0.
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Since
∫ 2π
0
h (z, ϕ) dϕ 6= 0, (63) yields

y + 2u = 0 (64)

with y 6= 0 and u 6= 0 (if one of them equals zero, the other equals zero too, and

m = 0 by the second equation of (62), which is impossible). Since u 6= 0, the last

equation implies that v 6= 0 as well.

Further, subtracting from the third equation the sum of z times the second and

u/v times the last equation, and using (64), we obtain

1 =
1

2πc

∫ 2π

0

h (z, ϕ)
u

v
(2zv + u) (zv − v − 1) dϕ. (65)

This equation, together with the second equation of (62) yield

m =
v (2zv + u− 2)

(1 + v − zv) (2zv + u)
. (66)

Next, for the integrand in the last equation of (62), we have

h (z, ϕ)
(
2v sin2 ϕ+ u

)
=

1

2

v

zv + u− 1
(67)

+h (z, ϕ)
u

2

(
(1− z) v (2zv + u) + 2 (2zv + u− 1)

zv + u− 1

)
.

This assumes that

zv + u− 1 6= 0. (68)

If not, then

h (z, ϕ) =
[
(1− z)

(
zvy − u2

)
+ zy

]−1
would not depend on ϕ and the last equation of (62) would imply that u+v = 0. The

latter equation and the equality zv + u − 1 = 0 would yield v = − (1− z)−1 , which

when combined with the second equation of (62) would give us m = −c−1 (1− z)−1 .

This cannot be true because m, being a limit of m̂, must satisfy Im ≥ 0 for Iz > 0.

Equations (65), (67), and the last equation of (62) imply that

u =
2c

2c− 1− (1− z) v (1− c) − 2zv. (69)
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Combining this with (66) yields

m = v
1− c
c

. (70)

Finally, elementary calculations given in the SM show that(
1

2π

∫ 2π

0

1

x+ 2 sin2 ϕ
dϕ

)2
=

1

x (x+ 2)
, (71)

where x ∈ C\ [−2, 0]. Using (71), (65), and the definition of h (z, ϕ), we obtain the

following relationship(
2cv (zv + u− 1)

u (2zv + u) (zv − v − 1)

)2
(72)

=
4 (zv + u− 1)2

u ((1− z) (−2zv − u)− 2z) (−u+ uz + 2) (u+ 2vz − 2)
,

that holds as long as

u ((1− z) (−2zv − u)− 2z)

2 (zv + u− 1)
∈ C\ [−2, 0] .

The latter inclusion holds because otherwise h (z, ϕ) is not a bounded function of ϕ,

which would contradict Lemma 14.

Using (69) in (72), and simplifying, we find that there exist only three possibilities.

Either

v = − 1

1− z , (73)

or

1− (c+ cz − 1) v + z (1− z) (1− c) v2 = 0, (74)

or
c

1− c − (c+ cz − z) v + z (1− z) (1− c) v2 = 0. (75)

Equation (73) cannot hold because otherwise, (70) would imply that Im < 0,

which is impossible as argued above. Equation (74) taken together with (69) implies

that

u+ zv − 1 = 0,

41



which was ruled out above. This leaves us with (75), so that, using (70), we get

m =
− (z − c− cz)±

√
(z − c− cz)2 − 4c (1− z) z

2z (1− z) c
. (76)

For z ∈ C+ with Rz = 0, the imaginary part of the right hand side of (76) is

negative when ‘−’ is used in front of the square root. Here we choose the branch
of the square root, with the cut along the positive real semi-axis, which has positive

imaginary part. Since Im cannot be negative, we conclude that

m =
− (z − c− cz) +

√
(z − c− cz)2 − 4c (1− z) z

2z (1− z) c
. (77)

But the right hand side of the above equality is the value of the limit of the Stielt-

jes transforms of the eigenvalues of the multivariate beta matrix Bp (p, (T − p) /2) as

p, T →c ∞. This can be verified directly by using the formula for such a limit, given for
example in Theorem 1.6 of Bai, Hu, Pan and Zhou (2015). As follows from Wachter

(1980), the weak limit of the empirical distribution of the eigenvalues of the multivari-

ate beta matrix Bp (p, (T − p) /2) as p, T →c ∞ equals W (λ; c/ (1 + c) , 2c/ (1 + c)).

Equation (77) shows that, for z with Rz = 0 and Iz > ζ, any converging sub-

sequence of m̂ converges to the same limit. Hence, m̂ a.s. converges for all z with

Rz = 0 and Iz > ζ. Note that m̂ is a sequence of bounded analytic functions in the

domain {z : Iz > δ} , where δ is an arbitrary positive number. Therefore, by Vitaly’s
convergence theorem (see Titchmarsh (1939), p.168) m̂ a.s. converges to m, described

by (77), for any z ∈ C+. The a.s. convergence of F̂p,T (λ) (and thus, also of Fp,T (λ))

to the Wachter distribution follows from the Continuity Theorem for the Stieltjes

transforms (see, for example, Corollary 1 in Geronimo and Hill (2003)).
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