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Abstract

We consider five different classes of multivariate statistical problems iden-

tified by James (1964). Each of these problems is related to the eigenvalues

of E−1H where H and E are proportional to high-dimensional Wishart ma-

trices. Under the null hypothesis, both Wisharts are central with identity

covariance. Under the alternative, the non-centrality or the covariance pa-

rameter of H has a single eigenvalue, a spike, that stands alone. When the

spike is larger than a case-specific phase transition threshold, one of the

eigenvalues of E−1H separates from the bulk. This makes the alternative

easily detectable, so that reasonable statistical tests have asymptotic power

one. In contrast, when the spike is sub-critical, that is lies below the thresh-

old, none of the eigenvalues separates from the bulk, which makes the testing

problem more interesting from the statistical perspective. In such cases, we

show that the log likelihood ratio processes parameterized by the value of

the sub-critical spike converge to Gaussian processes with logarithmic corre-

lation. We use this result to derive the asymptotic power envelopes for tests

for the presence of a spike in the data representing each of the five cases in

James’classification.

1 Introduction

High-dimensional multivariate models and methods, such as regression, principal

components, and canonical correlation analysis, have become subject of much re-

cent research. In contrast to the classical framework where the dimensionality is

fixed, the current focus is on situations where the dimensionality diverges to infin-

ity together with the sample size. In this context, spiked models that deviate from

a reference model along a small fixed number of unknown directions have proven
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to be a fruitful research tool. A basic statistical question that arises in the analysis

of spiked models is how to test for the presence of spikes in the data.

James (1964) arranges multivariate statistical problems in five different groups

with broadly similar features. His classification corresponds to the five types of

the hypergeometric functions pFq that often occur in multivariate distributions. In

this paper, we describe spiked models that represent each of James’classes, and

derive the asymptotic behavior of the corresponding likelihood ratios, that is the

ratios of the joint densities of the relevant data under the alternative hypothesis,

which assumes the presence of the spikes, to that under the null of no spikes.

In each of the cases, the relevant data consist of the maximal invariant statistic

represented by eigenvalues of a large random matrix. We consider the asymptotic

regime where the dimensionality of the data and the number of observations go to

infinity proportionally.

We find that the measures corresponding to the joint distributions of the eigen-

values under the alternative hypothesis and under the null are mutually contiguous

when the values of the spikes are below a phase transition threshold. The value

of the threshold depends on the problem’s type. Furthermore, we find that the

log likelihood ratio processes parametrized by the values of the spikes are asymp-

totically Gaussian, with logarithmic mean and autocovariance functions. These

findings allow us to compute the asymptotic power envelopes for the tests for the

presence of spikes in five multivariate models representing each of James’classes.

Our analysis is based on the classical results that assume Gaussianity. All the

likelihood ratios that we study correspond to the joint densities of the solutions to

the basic equation of classical multivariate statistics,

det (H − λE) = 0, (1)

where H and E are proportional to Wishart matrices.

The five different cases that we study are: 1) E is a known deterministic matrix,

andH is a central Wishart matrix with covariance equal to a low-rank perturbation

of E; 2) both E and H are central Wisharts with unknown covariance matrices

that differ by a matrix of low rank; 3) E is a known deterministic matrix, and

H is a non-central Wishart matrix with covariance equal to E and with a low-

rank non-centrality; 4) E is a central Wishart matrix, while H is a non-central

one with the same unknown covariance matrix and with a low-rank non-centrality;

5) E is a central Wishart, while H is a non-central Wishart conditionally on a
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random low-rank non-centrality parameter. These five cases can be linked via

suffi ciency and invariance arguments to a principal components problem, a signal

detection problem, hypotheses testing in multivariate regression with known and

with unknown error covariance, and a canonical correlation problem, respectively.

We briefly discuss the links in the next section of the paper.

The main steps of our asymptotic analysis are the same for all the five cases.

The likelihood ratios have explicit forms that involve hypergeometric functions

of two high-dimensional matrix arguments. However, the low-rank nature of the

alternatives that we consider ensures that one of the arguments have low rank. For

tractability, we focus on the special case of rank-one alternatives. In such case,

using the recent result of Dharmawansa and Johnstone (2014), we represent the

hypergeometric function of two high-dimensional matrix arguments in the form of

a contour integral that involves a scalar hypergeometric function of the same type.

Then we deform the contour of integration so that the integral becomes amenable

to Laplace approximation analysis (see Olver (1997), chapter 4).

Using the Laplace approximation technique, we show that the log likelihood

ratios are asymptotically equivalent to random quadratic functions of the spike

parameters. The randomness in the quadratic function enters via a linear spectral

statistic of a large random matrix of either sample covariance or F -ratio type.

Using CLT for the linear spectral statistics, established by Bai and Silverstein

(2004) for the sample-covariance-type randommatrices and by Zheng (2012) for the

F -ratio-type random matrices, we derive the asymptotic Gaussianity and obtain

the mean and the autocovariance functions of the log likelihood ratio processes.

The derived asymptotics of the log likelihood processes shows that the corre-

sponding statistical experiments do not converge to Gaussian shift experiments.

In other words, the experiments that consist of observing the solutions to equation

(1) parameterized by the values of the spikes under the alternative hypothesis are

not of the Locally Asymptotically Normal (LAN) type. This implies that there are

no ready-to-use optimality results associated with LAN experiments that can be

applied in our setting. However at the fundamental level, the derived asymptotics

of the log likelihood ratio processes is all that is needed for the asymptotic analysis

of the risk of the corresponding statistical decisions.

In this paper, we use the derived asymptotics together with the Neyman-

Pearson lemma and Le Cam’s third lemma (see van der Vaart (1998)), to find

simple analytic expressions for the asymptotic power envelopes for the statistical

tests of the null hypothesis of no spikes in the data. The form of the envelope is
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different depending on whether both H and E in the corresponding equation (1)

are Wisharts or only H is Wishart whereas E is deterministic.

For most of the cases, as the value of the spike under the alternative increases,

the envelope, at first, rises very slowly. Then, as the spike approaches the phase

transition, the rise quickly accelerates and the envelope ‘hits’unity at the threshold.

However, in cases of twoWisharts and when the dimensionality is not much smaller

than the degrees of freedom of E, the envelope rises much faster. In such cases, the

information in all the eigenvalues of E−1H might be useful for detecting population

spikes which lie far below the phase transition threshold.

A type of the analysis performed in this paper has been previously implemented

in the study of the principal components case by Onatski et al (2013). Our work

extends theirs to the remaining four cases in James’classification of multivariate

statistical problems. One of the hardest challenges in such an extension is the rig-

orous implementation of the Laplace approximation step. With this goal in mind,

we have developed asymptotic approximations to the hypergeometric functions 1F1

and 2F1 which are uniform in certain domains of the complex plane.

A trivial observation that the solutions to equation (1) can be interpreted as

the eigenvalues of random matrix E−1H relates our work to the vast literature on

the spectrum of large random matrices. We refer the reader to Bai and Silverstein

(2006) for a recent book-long treatment of the subject. Three extensively studied

classical ensembles of random matrices are the Gaussian, Laguerre and Jacobi en-

sembles (see Mehta (2004)). However, only the Laguerre and Jacobi ensembles are

relevant for the five scenarios for (1) that correspond to James’five-fold classifica-

tion of multivariate statistical problems. This prompts us to search for a “missing”

class in James’system that could be linked to the Gaussian ensemble.

Such a class is easy to obtain by taking the limit of
√
n1 (H − Ip) as n1 →∞,

where n1 and p are H’s degrees of freedom and dimensionality, respectively. The

corresponding statistical problem can be called “symmetric matrix denoising”.

Under the null hypothesis, the observations are given by a p×pmatrix Z/√p with Z
from the Gaussian Orthogonal Ensemble. Under the alternative, the observations

are given by Z/
√
p+ Φ, where Φ is a deterministic symmetric matrix of low rank.

We call this situation “case zero”, and add it to James’classification. We derive

the asymptotics of the corresponding log likelihood ratio and obtain the related

asymptotic power envelope.

Many existing results in the random matrix literature do not require that the

data are Gaussian. This suggests that some results about tests for the presence

4



of the spikes in the data may remain valid without the Gaussianity. One may for

example considerH and E in (1) that, although have the form of sample covariance

matrices, do not come from the underlying Gaussian distribution, and study the

properties of the corresponding tests. We leave this line of research to the future.

Since the explicit form of the joint distribution of the solutions to (1) is only

known in the Gaussian case, it seems unlikely that one would be able to completely

summarize the asymptotic behavior of the corresponding non-Gaussian statistical

experiments. We hope that the results of this paper, that provide such a summary

under the Gaussianity, can serve as a useful benchmark for the future studies that

would relax our assumptions.

The rest of the paper is organized as follows. In the next section, we relate

the five different cases of equation (1) to the classical multivariate statistical prob-

lems representing different cells of James’(1964) five-fold classification system. In

Section 3, we obtain explicit expressions for the likelihood ratios. Section 4 repre-

sents the likelihood ratios in the form of contour integrals. Section 5 performs the

Laplace approximation analysis. Section 6 derives the asymptotic power envelopes.

Section 7 concludes. Technical proofs are given in the Appendix.

2 Links to classical statistical problems

Case 1 corresponds to the problem of using n1 i.i.d. Np (0,Ω) (p-dimensional

Gaussian) observations to test the null hypothesis that the population covariance

Ω equals a given matrix Σ. The alternative of interest is

Ω = Σ + ψθψ′

with unknown θ > 0 and ψ, where ψ is normalized so that
∥∥Σ−1/2ψ

∥∥ = 1.

Without loss of generality, we may assume that Σ = Ip. Then under the

null, the data are isotropic noise, whereas under the alternative, the first principal

component explains a larger portion of the variation than the other principal com-

ponents. We therefore label Case 1 as the ‘principal components analysis’(PCA)

case.

The null and the alternative hypotheses can be formulated in terms of the

spectral ‘spike’parameter θ as

H0 : θ0 = 0 and H1 : θ0 = θ > 0, (2)
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where θ0 is the true value of the ‘spike’. This testing problem remains invariant

under the multiplication of the p×n1 data matrix from the left and from the right by

orthogonal matrices, and under the corresponding transformation in the parameter

space. A maximal invariant statistic consists of the solutions λ1 ≥ ... ≥ λp of

equation (1) withH equal to the sample covariance matrix and E = Σ. We restrict

attention to the invariant tests. Therefore, the relevant data are summarized by

λ1, ..., λp.

Case 2 is represented by the problem of testing the equality of covariance matri-

ces, Ω and Σ, corresponding to two independent p-dimensional zero-mean Gaussian

samples of sizes n1 and n2. Throughout the paper, we shall assume that

p ≤ min {n1, n2} .

The assumption p ≤ n2 is made to ensure the almost sure invertibility of matrix

E in (1), whereas the assumption p ≤ n1 is made to reduce the number of various

situations which need to be considered. Such a reduction makes our exposition

more concise.

Returning to Case 2, the alternative hypothesis is the same as in the PCA

case. Similar invariance considerations lead to tests based on the eigenvalues of

the F -ratio of the sample covariance matrices. Matrix H from (1) equals the

sample covariance corresponding to the observations that might contain a ‘signal’

responsible for the covariance spike, whereas matrix E equals the other sample

covariance matrix. We label Case 2 as the ‘signal detection’(SigD) case. In this

case, we find it more convenient to work with the p solutions to the equation

det

(
H − λ

(
E +

n1

n2

H

))
= 0, (3)

which we also denote λ1 ≥ ... ≥ λp to make the notations as uniform across the

different cases as possible. Note that as the number of observations in the second

sample, n2, diverges to infinity while n1 and p are held constant, equation (3)

reduces to equation (1), E converges to Σ, and SigD reduces to PCA.

Cases 3 and 4 occur in multivariate regression

Y = Xβ + ε

when the goal is to test linear restrictions on the matrix of coeffi cients β. Case 3

6



corresponds to the situation where the covariance matrix Σ of the i.i.d. Gaussian

rows of the error matrix ε is known. We label this case as ‘regression with known

variance’ (REG0). Case 4 corresponds to the unknown Σ, and we label it as

‘regression with unknown variance’(REG).

As explained in Muirhead (1982), pp. 433-434, the problem of testing linear

restrictions on β can be cast in the canonical form, where the matrix of transformed

response variables is split into three parts, Y ∗1 , Y
∗

2 , and Y
∗

3 . Matrix Y
∗

1 is n1 × p,
where p is the number of response variables and n1 is the number of restrictions.

Under the null hypothesis, EY ∗1 = 0, whereas under the alternative,

EY ∗1 =
√
n1θϕψ

′, (4)

where θ > 0,
∥∥Σ−1/2ψ

∥∥ = 1, and ‖ϕ‖ = 1. Matrices Y ∗2 and Y
∗

3 are (q − n1) × p
and (T − q) × p, respectively, where q is the number of regressors and T is the

number of observations. These matrices have, respectively, unrestricted and zero

means under both the null and the alternative.

For REG0, suffi ciency and invariance arguments lead to tests based on the

solutions λ1, ..., λp of (1) with

H = Y ∗′1 Y
∗

1 /n1 and E = Σ.

These solutions represent a multivariate analog of the difference between the sum of

squared residuals in the restricted and unrestricted regressions. For REG, similar

arguments lead to tests based on the p solutions λ1, ..., λp of (3) with

H = Y ∗′1 Y
∗

1 /n1 and E = Y ∗′3 Y
∗

3 /n2,

where n2 = T−q. These solutions represent a multivariate analog of the ratio of the
difference between the sum of squared residuals in the restricted and unrestricted

regressions to the sum of squared residuals in the restricted regression. Note that,

as n2 →∞ while n1 and p are held constant, REG reduces to REG0.

Case 5 occurs in situations where the researcher would like to test for the

independence between Gaussian vectors xt ∈ Rp and yt ∈ Rn1 , given zero mean
observations with t = 1, ..., n1 +n2. Partition the population and sample covariance
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matrices of the observations (x′t, y
′
t)
′ as(

Σxx Σxy

Σyx Σyy

)
and

(
Sxx Sxy

Syx Syy

)
,

respectively. Under the null hypothesis, Σxy = 0. The alternative of interest is

Σxy =

√
n1θ

n1θ + n1 + n2

ψϕ′,

where the vectors of nuisance parameters ψ ∈ Rp and ϕ ∈ Rn1 are normalized so
that ∥∥Σ−1/2

xx ψ
∥∥ =

∥∥Σ−1/2
yy ϕ

∥∥ = 1.

The peculiar form of the expression under the square root is chosen so as to simplify

various expressions in the analysis that follow.

The test can be based on the sample canonical correlations λ1, ..., λp, which are

solutions to (1) with

H = SxyS
−1
yy Syx and E = Sxx.

We label Case 5 as the ‘canonical correlation analysis’(CCA) case. Remarkably,

the sample canonical correlations also solve (3) with different H and E, such that

E is a central Wishart matrix and H is a non-central Wishart matrix conditionally

on a random non-centrality parameter (for details, see Theorem 11.3.2 of Muirhead

(1982)).

Finally, as discussed in the Introduction, we also consider Case 0, which we

label as the ‘symmetric matrix denoising’ (SMD) case. Given a p × p matrix

X = Φ+Z/
√
p, where Z is a noise matrix from the Gaussian Orthogonal Ensemble

(GOE), a researcher would like to make inference about a symmetric rank-one

“signal”matrix Φ = ψθψ′. Recall, that a symmetric matrix Z belongs to GOE if

its diagonal and sub-diagonal entries are independently distributed as

Zii ∼ N (0, 2) and Zij ∼ N (0, 1) if i > j.

The null and the alternative hypotheses are given by (2). The nuisance ψ ∈
Rp is normalized so that ‖ψ‖ = 1. The problem remains invariant under the

multiplication of X from the left by an orthogonal matrix, and from the right by

its transpose. A maximal invariant statistic consists of the solutions λ1, ..., λp to

(1) with H = X and E = Ip. We consider tests based on λ1, ..., λp.
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The SMD case can be viewed as a degenerate version of all of the above cases.

For example, consider REG0 with

EY ∗1 =

√
(p/n1)1/2 n1θϕψ

′,

so that the original value of the spike θ (see equation (4)) is scaled by (p/n1)1/2.

Suppose now that n1 diverges to infinity while p is held constant. Then, by a

Central Limit Theorem (CLT),

Σ−1/2HΣ−1/2 − Ip = Z/
√
n1 +

√
p/n1ηθη

′ + oP

(
n
−1/2
1

)
, (5)

where Z belongs to GOE and η = Σ−1/2ψ. On the other hand, equation (1) is

equivalent to

det
(
Σ−1/2HΣ−1/2 − λIp

)
= 0. (6)

Multiplying it by
√
n1/p and using (5), we see that equation (6) degenerates to

det (Z/
√
p+ ηθη′ − µIp) = 0 with µ =

√
n1/p (λ− 1) .

Hence, REG0 degenerates to SMD.

For the reader’s convenience, we summarize links between the different cases

and the definitions of the corresponding matrices H and E in Figure 1. We denote

the p-dimensional Wishart distribution with n degrees of freedom, covariance para-

meter Σ, and non-centrality parameter Ψ asWp (n,Σ,Ψ) . Recall that, if A = B′B,

where the n× p matrix B is N (M, In ⊗ Σ) , then A ∼ Wp (n,Σ,Ψ) with the non-

centrality Ψ = Σ−1M ′M . Notation Wp (n,Σ) is used for the central Wishart

distribution. Without loss of generality, we assume that Σ = Ip.

All the cases eventually degenerate to SMD via sequential asymptotic links.

Cases SMD, PCA, and REG0, forming the upper half of the diagram, correspond

to random H and deterministic E. The cases in the lower half of the diagram

correspond to both H and E being random. Cases PCA and SigD are “parallel”to

cases REG0 and REG in the sense that the alternative hypothesis is characterized

by a rank one perturbation of the covariance and of the non-centrality parameter

of H for the former and for the latter two cases, respectively. Case CCA “stands

alone”because of the different structure of H and E. As discussed above, CCA can

be reinterpreted in terms ofH and E such that E is Wishart, butH is a non-central

Wishart only after conditioning on a random non-centrality parameter.
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Figure 1: Matrices H and E, and links between the different cases. Matrix Φ has
the form ψθψ′ with θ ≥ 0 and ‖ψ‖ = 1.
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Case p̄Fq̄ α (θ) a b Ψ11

SMD 0F0 exp (−pθ2/4) _ _ θp/2

PCA 0F0 (1 + θ)−n1/2 _ _ θn1/(2 (1 + θ))

SigD 1F0 (1 + θ)−n1/2 n/2 _ θn1/ (n2 (1 + θ))

REG0 0F1 exp (−n1θ/2) _ n1/2 θn2
1/4

REG 1F1 exp (−n1θ/2) n/2 n1/2 θn2
1/ (2n2)

CCA 2F1 (1 + n1θ/n)−n/2 (n/2, n/2) n1/2 θn2
1/ (n2

2 + n2n1 (1 + θ))

Table 1: Parameters of the explicit expression (7) for the likelihood ratios. Here
n ≡ n1 + n2.

3 The likelihood ratios

Our goal is to study the asymptotic behavior of the likelihood ratios, which are

defined as the ratios of the joint density of λ1, ..., λp under the alternative to that

under the null hypothesis, where both densities are evaluated at the observed values

of the λ’s. Let

Λ = diag {λ1, ..., λp} ,

and let us denote the likelihood ratio corresponding to particular case ‘Case’=

‘SMD’, ‘PCA’, etc. as L(Case) (θ; Λ) . Then

L(Case) (θ; Λ) = α (θ) p̄Fq̄ (a, b; Ψ,Λ) , (7)

where Ψ is a p-dimensional matrix diag {Ψ11, 0, ..., 0} , and the values of Ψ11, α (θ) ,

p̄, q̄, a, and b are as given in Table 1.

We prove that L(SMD) (θ; Λ) is as in (7) in the Appendix. For PCA, the explicit

form of the likelihood ratio is derived in Onatski et al (2013). For SigD, REG0, and

REG, the expressions (7) with the parameters given in Table 1 follow, respectively,

from equations (65), (68), and (73) of James (1964). For CCA, the expression is a

corollary of Theorem 11.3.2 of Muirhead (1982).

Recall that hypergeometric functions of two matrix arguments Ψ and Λ are

defined as

p̄Fq̄ (a, b; Ψ,Λ) =

∞∑
k=0

1

k!

∑
κ`k

(a1)κ ... (ap̄)κ
(b1)κ ... (bq̄)κ

Cκ (Ψ)Cκ (Λ)

Cκ (Ip)
,
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where a = (a1, ..., ap̄) and b = (b1, ...., bq̄) are parameters, κ are partitions of the

integer k, (aj)κ and (bi)κ are the generalized Pochhammer symbols, and Cκ are the

zonal polynomials (see Muirhead (1982), Definition 7.3.2). As mentioned in the

Introduction, James’(1964) classification of the multivariate statistical problems

is based on the type of p̄Fq̄ that occur in related probability distributions. The

function 0F0 of exponential type corresponds to the first class represented by PCA;

the function 1F0 of binomial type corresponds to the second class represented by

SigD; the function 0F1 of Bessel type is associated with the third class represented

by REG0; the confluent hypergeometric function 1F1 is associated with the fourth

class represented by REG; and the Gaussian hypergeometric function 2F1 corre-

sponds to the fifth class represented by CCA. Note that some links between the

cases illustrated in Figure 1 can also be established via asymptotic relations be-

tween the hypergeometric functions in the different rows of Table 1. For example,

the links REG7→REG0 and SigD7→PCA as n2 → ∞ while p and n1 are held con-

stant follow from the confluence relations (see, for example, chapter 3.5 of Luke

(1969))

0F1 (b; Ψ,Λ) = lim
a→∞ 1F1

(
a, b; a−1Ψ,Λ

)
and

0F0 (Ψ,Λ) = lim
a→∞ 1F0

(
a; a−1Ψ,Λ

)
.

In the next section, we shall study the asymptotic behavior of the likelihood

ratios (7) as n1, n2, and p go to infinity so that

c1 ≡
p

n1

→ γ1 ∈ (0, 1) and c2 ≡
p

n2

→ γ2 ∈ (0, 1] . (8)

We denote this asymptotic regime as n, p →γ ∞, where n = {n1, n2} and γ =

{γ1, γ2} . To make our exposition as uniform as possible, we use this notation for

all the cases, even though the simpler ones, such as SMD, do not refer to n. In the

Conclusion, we briefly discuss possible extensions of our analysis to the situations

with γ1 ≥ 1.

We are interested in the asymptotics of the likelihood ratios under the null

hypothesis, that is when the true value of the spike, θ0, equals zero. Before turning

to the next section, let us provide a relevant background on the asymptotics of

Λ. Under the null, λ1, ..., λp are the eigenvalues of GOE/
√
p in SMD case; of

Wp (n1, Ip) /n1 in PCA and REG0 cases; and of a scaled (by a factor of n2/n1)

p-dimensional multivariate beta matrix with parameters n1/2 and n2/2 in SigD,
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Case F lim
γ density for β− ≤ λ ≤ β+ β± Threshold θ̄

SMD SC 1
2π

√
(β+ − λ) (λ− β−) ±2 1

PCA
REG0

MP 1
2πγ1λ

√
(β+ − λ) (λ− β−)

(
1±√γ1

)2 √
γ1

SigD
REG
CCA

W γ1+γ2
2πγ1λ(γ1−γ2λ)

√
(β+ − λ) (λ− β−) γ1

(
ρ±1
ρ±γ2

)2
γ2+ρ
1−γ2

Table 2: The semi-circle, Marchenko-Pastur, and (scaled) Wachter distributions.
Here ρ =

√
γ1 + γ2 − γ1γ2. In the case where γ1 > 1, which is not considered in

this paper, the Marchenko-Pastur and Wachter distributions will also have mass
(γ1−1)/γ1 at zero. Column ‘Threshold θ̄’reports the values of the phase transition
thresholds.

REG, and CCA cases. For a definition of the multivariate beta, see Muirhead

(1982), p. 110.

Let

F̂ (Case) (λ) =
1

p

p∑
j=1

1 {λj ≤ λ}

be the empirical distribution of λ1, ..., λp. As is well known (see Bai (1999)), as

n, p→γ ∞, F̂ (Case) almost surely (a.s.) weakly converges

F̂ (Case) ⇒ F lim
γ ,

where F lim
γ is the semi-circle distribution F SC in SMD case; the Marchenko-Pastur

distribution FMP
γ1

in PCA and REG0 cases; and the (scaled) Wachter distribution

FW
γ in SigD, REG, and CCA cases. Table 2 reports the explicit forms of these

limiting distributions. Note that the cumulative distribution functions F lim
γ (λ) are

linked in the sense that FW
γ (λ)→ FMP

γ1
(λ) when γ2 → 0 and FMP

γ1

(√
γ1λ+ 1

)
→

F SC (λ) when γ1 → 0.

For what follows it will be important that the centered linear spectral statistics

p∑
j=1

ϕ (λj)− p
∫
ϕ (λ) dF lim

c (λ) , (9)

where ϕ is a ‘well-behaved’function, converge in distribution to Gaussian random

variables. The corresponding CLTs are established in Bai and Yao (2005), Bai and

Silverstein (2004), and Zheng (2012) for the cases of the semi-circle, Marchenko-
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Pastur, and Wachter limiting distributions, respectively. Note that the centering

constant is defined in terms of F lim
c , where c = {c1, c2} . That is, the “correct

centering”can be computed using the densities from Table 2, where γ1 and γ2 are

replaced by c1 ≡ p/n1 and c2 ≡ p/n2, respectively.

Finally, let us note the behavior of the largest eigenvalue λ1 under the alter-

native hypothesis. As is well known, λ1 a.s. converges to the upper boundary of

support of F lim
γ as long as θ remains below the phase transition threshold θ̄. The

value of the threshold is reported in the last column of Table 2. When θ > θ̄, λ1

separates from ‘the bulk’of the other eigenvalues and a.s. converges to a point

strictly above the upper boundary of the support of F lim
γ . For details, we refer the

reader to Maïda (2007), Baik and Silverstein (2006), Nadakuditi and Silverstein

(2010), Onatski (2007), Dharmawansa et al (2014a), and Bao et al (2014) for cases

SMD, PCA, SigD, REG0, REG, and CCA, respectively.

The fact that λ1 converges to different limits under the null and under the

alternative hypothesis sheds light on the behavior of the likelihood ratio when θ is

above the phase transition threshold. In such cases, which can be called the cases

of super-critical θ, the likelihood ratio degenerates. The sequences of measures

corresponding to the distributions of Λ under the null and under super-critical

alternatives are asymptotically mutually singular as n, p→γ ∞ (see Montanari et

al (2014) and Onatski et al (2013) for a detailed analysis of SMD and PCA cases).

In contrast, as we shall show below, the sequences of measures corresponding to

the distributions of Λ under the null and under sub-critical alternatives (θ is below

the threshold) are mutually contiguous, and the likelihood ratio converges to a

Gaussian process.

4 Contour integral representation

Asymptotic behavior of the likelihood ratios (7) depends on that of p̄Fq̄ (a, b; Ψ,Λ).

There is a large and well established literature on the asymptotics of p̄Fq̄ (a, b; Ψ,Λ)

when the parameters and the norm of the matrix arguments grow while the di-

mensionality of the latter remains fixed (see Muirhead (1978) for a review). In

contrast, relatively little is known about the asymptotic regime that allows the

dimensionality of the matrix arguments Ψ,Λ diverge to infinity. In this paper,

we investigate such an asymptotic regime. We exploit the fact that, since we

study single-spiked models, the matrix argument Ψ has rank one. This allows us
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to represent p̄Fq̄ (a, b; Ψ,Λ) in the form of a contour integral of a hypergeometric

function with a single scalar argument. Such a representation implies contour in-

tegral representations for the corresponding likelihood ratios, which we summarize

in the following lemma. The results of the lemma are used below to derive the

asymptotics of the likelihood ratios via the Laplace approximation.

In what follows, we omit the superscripts ‘(Case)’and ‘lim’for quantities such

as L(Case) (θ; Λ) , F̂ (Case) (λ) , and F lim
c (λ) to simplify our notation. However, we

shall use these superscripts to identify particular instances, when necessary.

Lemma 1 Assume that p ≤ min {n1, n2} . Let K be a contour in the complex

plane C that starts at −∞, encircles 0 and λ1, ..., λp counterclockwise, and returns

to −∞. Then

L (θ; Λ) =
Γ (s+ 1)α (θ) qs

Ψs
112πi

∫
K
p̄Fq̄ (a− s, b− s; Ψ11z)

p∏
j=1

(z − λj)−1/2 dz, (10)

where s = p/2 − 1, the values of α (θ) , Ψ11, a, b, p̄, and q̄ for the different cases

are given in Table 1; a − s and b − s denote vectors with elements aj − s and

bj − s, respectively; the hypergeometric function under the integral is the standard
hypergeometric function of a scalar argument; and

qs =

p̄∏
j=1

Γ (aj − s)
Γ (aj)

q̄∏
i=1

Γ (bi)

Γ (bi − s)
.

In cases SigD and CCA, we require, in addition, that the contour K does not

intersect
[
Ψ−1

11 ,∞
)
, which ensures the analyticity of the integrand in an open subset

of C that includes K.

The statement of the lemma immediately follows from Proposition 1 of Dhar-

mawansa and Johnstone (2014) and from equation (7). Our next step is to apply

the Laplace approximation to integrals (10). To this end, we shall transform the

right hand side of (10) so that it has a “Laplace form”

L (θ; Λ) =
√
πp

1

2πi

∫
K

exp {−pf(z)} g(z)dz. (11)

Leaving
√
πp/ (2πi) separate from g(z) allows us to choose f(z) and g(z) that are

bounded in probability, and makes some of the expressions below more compact.
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Case 2fI gI/(1 + o(1))
SMD 1 + θ2/2 + ln θ θ

PCA 1 + 1−c1
c1

ln (1 + θ) + ln θ
c1

θc−1
1 (1 + θ)−1

SigD 2f
(PCA)
I − 1 + ln c1+c2

c1
− r2

c1c2
ln r2

c1+c2
θc−2

1 (1 + θ)−1 r (c1 + c2)1/2

REG0 1 + θ+c1
c1

+ ln θ
c1

+ 1−c1
c1

ln (1− c1) θc−1
1 (1− c1)−1/2

REG 2f
(REG0)
I − 1 + ln c1+c2

c1
− r2

c1c2
ln r2

c1+c2
θc−2

1 (1− c1)−1/2 r (c1 + c2)1/2

CCA 2f
(REG)
I − 1− θ

c1
− r2

c1c2
ln r2

c1l
θc−3

1 (1− c1)−1/2 r2 (c1 + c2) l−1

Table 3: Values of 2fI and gI/(1 + o(1)) for the different cases. The terms o(1)
do not depend on θ and converge to zero as n, p→γ ∞. The term r2 is defined as
r2 = c1 + c2 − c1c2. The term l ≡ l(θ) is defined as l(θ) = 1 + (1 + θ)c2/c1.

In order to apply the Laplace approximation, we shall deform the contour of in-

tegration so that it passes through a critical point z0 of f(z) and is such that

Re f(z) is strictly increasing as z moves away from z0 along the contour, at least

in a vicinity of z0.

4.1 The Laplace form

We shall transform (10) to (11) in three steps. As a result, functions f and g will

have the forms of a sum and a product,

f (z) = fI + fII (z) + fIII (z) and

g(z) = gI × gII (z)× gIII(z),

where fI and gI do not depend on z.

First, using the definitions of α (θ) , qs, Ψ11 and employing Stirling’s approxi-

mation, we obtain a decomposition

Γ (s+ 1)α (θ) qs√
πpΨs

11

= exp {−pfI} gI , (12)

where gI remains boudned as n, p →γ ∞. The values of 2fI and gI are given in

Table 3. It should be noted that f (REG)
I , f

(CCA)
I → f

(REG0)
I and f (SigD)

I → f
(PCA)
I

as c2 → 0.
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Next, we consider the decomposition

p∏
j=1

(z − λj)−1/2 = exp {−pfII(z)} gII(z), (13)

where

2fII(z) =

∫
ln (z − λ) dFc(λ), (14)

and

gII(z) = exp

{
−p

2

∫
ln (z − λ) d

(
F̂ (λ)− Fc (λ)

)}
. (15)

For fII(z) and gII(z) to be well-defined we need z not to belong to the support

of Fc, which we assume.1 Note that gII(z) is the exponent of a linear spectral

statistic, which converges to a Gaussian random variable as n, p →γ ∞ under

the null hypothesis. Since FW
c (λ) → FMP

c1
(λ) as c2 → 0, we have f (SigD)

II (z) =

f
(REG)
II (z) = f

(CCA)
II (z) converging to f (PCA)

II (z) = f
(REG0)
II (z).

Finally, we obtain a decomposition

p̄Fq̄ (a− s, b− s; Ψ11z) = exp {−pfIII(z)} gIII(z). (16)

For SMD, PCA, and SigD, the corresponding p̄Fq̄ can be expressed in terms of

elementary functions, and we set

2fIII(z) =


−zθ for SMD

−zθ/ (c1 (1 + θ)) for PCA

ln [1− c2zθ/ {c1 (1 + θ)}] r2/ (c1c2) for SigD

, (17)

and

gIII(z) =

{
1 for SMD and PCA

[1− c2zθ/ {c1 (1 + θ)}]−1 for SigD
. (18)

As c2 → 0, f (SigD)
III (z) converges to f (PCA)

III (z). Since, as has been shown above, a

similar convergence holds for fI and fII , we have f (SigD)(z)→ f (PCA)(z) as c2 → 0.

Combining (14) and (17) with the information supplied by Table 3, we also see

that f (PCA)(z) → f (SMD)(z) as c1 → 0 after the transformations θ 7→ √c1θ and

z 7→ √c1z + 1.

Unfortunately, for REG0, REG, and CCA, the corresponding p̄Fq̄ do not admit

1By definition, contour K encircles the support of F̂ , and hence z ∈ K does not belong to such
support.
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exact representations in terms of elementary functions. Therefore, we shall consider

their asymptotic approximations instead. Let

m = (n1 − p) /2 and ε = (n− p) / (n1 − p) .

Further, let

ηj =


zθ/ (1− c1)2 for j = 0

zθc2/ [c1 (1− c1)] for j = 1

zθc2
2/ [c2

1l (θ)] for j = 2

, (19)

where

l (θ) = 1 + (1 + θ) c2/c1. (20)

With this notation, we have

p̄Fq̄ =


0F1 (m+ 1;m2η0) ≡ F0 for REG0

1F1 (mε+ 1,m+ 1;mη1) ≡ F1 for REG

2F1 (mε+ 1,mε+ 1;m+ 1; η2) ≡ F2 for CCA

. (21)

The function F0 can be expressed in terms of the modified Bessel function of

the first kind Im (·) as (see Abramowitz and Stegun (1964), equation 9.6.47)

F0 = Γ (m+ 1)
(
m2η0

)−m/2
Im

(
2mη

1/2
0

)
. (22)

This representation allows us to use a known uniform asymptotic approximation of

the Bessel function (see Abramowitz and Stegun (1964), equation 9.7.7) to obtain

the following lemma. Let

ϕ0 (t) = ln t− t− η0/t+ 1 and t0 =
(

1 +
√

1 + 4η0

)
/2. (23)

Further, for any δ > 0, let Ω0δ be the set of η0 ∈ C such that

|arg η0| ≤ π − δ, and η0 6= 0.

Lemma 2 As m→∞, we have

F0 = (1 + 4η0)−1/4 exp {−mϕ0 (t0)} (1 + o(1)) . (24)

The convergence o(1)→ 0 holds uniformly with respect to η0 ∈ Ω0δ for any δ > 0.
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We would like to point out that the right hand side of (24) can be formally

linked, via (22), to the saddle-point approximation of the integral representation

(see Watson (1944), p. 181)

Im

(
2mη

1/2
0

)
=
η
m/2
0 em

2πi

∫ (0+)

−∞
exp {−mϕ0 (t)} t−1dt.

Point t0 can be interpreted as a saddle point of ϕ0 (t) , and the term (1 + 4η0)−1/4

in (24) can be interpreted as a factor of (ϕ′′0 (t0))−1/2.

To obtain uniform asymptotic approximations to functions F1 and F2, we use

the contour integral representations (see Olver et al (2010), equations 13.4.9 and

15.6.2)

Fj =
Cm
2πi

∫ (1+)

0

exp {−mϕj (t)}ψj (t) dt, (25)

where

Cm =
Γ (m+ 1) Γ (m (ε− 1) + 1)

Γ (mε+ 1)
, (26)

ϕj(t) =

{
−ηjt− ε ln t+ (ε− 1) ln (t− 1) for j = 1

−ε ln (t/ (1− ηjt)) + (ε− 1) ln (t− 1) for j = 2
, (27)

and

ψj (t) =

{
(t− 1)−1 for j = 1

(t− 1)−1 (1− ηjt)−1 for j = 2
. (28)

For j = 2, the contour does not encircle 1/η2, and the representation is valid for

η2 such that |arg (1− η2)| < π. We obtain the following lemma by deriving a

saddle-point approximation to the integral in (25). The relevant saddle points are

tj =


1

2ηj

{
ηj − 1 +

√
(ηj − 1)2 + 4εηj

}
for j = 1

1
2ηj(ε−1)

{
−1 +

√
1 + 4ε (ε− 1) ηj

}
for j = 2

. (29)

We shall need the following additional notation. Let

ωj = argϕ′′j (tj) + π and ω0j = arg (tj − 1) , (30)

where the branches of arg (·) are chosen so that |ωj + 2ω0j| ≤ π/2. Further, for any

small δ > 0 let Ω1δ be the set of (ε, η1) ∈ R× C such that δ ≤ ε− 1 ≤ 1/δ, and

Re η1 ≥ −2ε+ 1, dist (η1,R\ [0,∞)) ≥ δ, |η1| ≤ 1/δ.
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Figure 2: Cross-sections of the sets Ωjδ for ε = 2 and δ = 0.1. The horizontal and
vertical axes correspond to the real and purely imaginary numbers, respectively.

Similarly, let Ω2δ be the set of (ε, η2) ∈ R× C such that δ ≤ ε− 1 ≤ 1/δ, and

dist (η2,R\ [0, 1]) ≥ δ, |η2| ≤ 1/δ.

Here, for any A ⊆ C and B ⊆ C, dist (A,B) = infa∈A,b∈B |a− b| . Figure 2 shows
cross-sections of Ω1δ and Ω2δ for fixed ε.

Lemma 3 As m→∞, we have for j = 1, 2

Fj = Cmψj (tj) e
−iωj/2

∣∣2πmϕ′′j (tj)
∣∣−1/2

exp {−mϕj (tj)} (1 + o(1)) . (31)

The convergence o(1) → 0 holds uniformly with respect to (ε, η) ∈ Ωjδ for any

δ > 0.

Point-wise asymptotic approximation (31) was established in Passemier et al

(2014) for j = 1, and in Paris (2013a,b) for j = 2. However, those papers do

not study the uniformity of the approximation error, which is important for our

analysis. A proof of Lemma 3 is available from the authors upon request. We shall

report it elsewhere.

Using Lemmas 2, 3, and Stirling’s approximation

Cm =

√
πp (1− c1)

r
exp {m (ε− 1) ln (ε− 1)−mε ln ε} (1 + o(1)) (32)
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we set the components of the “Laplace form”(16) of p̄Fq̄ for cases REG0, REG,

and CCA as follows

2fIII(z) =

{
1−c1
c1
ϕ0 (t0) for REG0

1−c1
c1

(ϕj (tj) + ε ln ε− (ε− 1) ln (ε− 1)) for REG and CCA
(33)

and

gIII(z) =

{
(1 + 4η0)−1/4 (1 + o (1)) for REG0√
c1/r2e−iωj/2

∣∣ϕ′′j (tj)
∣∣−1/2

ψj (tj) (1 + o (1)) for REG and CCA
.

(34)

To express tj and ηj in terms of z, one should use (29) and (19). We do not need

to know how exactly o (1) in (34) depend on z. For our purposes, the knowledge

of the fact that o (1) are analytic functions of ηj that converge to zero uniformly

with respect to (ε, ηj) ∈ Ωjδ is suffi cient. The analyticity of o(1) follows from the

analyticity of the functions on the left hand sides, and of the factors of 1 + o(1) on

the right hand sides of the equations (24) and (31).

Using the definitions of ϕj and tj, it is straightforward to verify that f
(REG)
III (z)

and f
(CCA)
III (z) converge to f

(REG0)
III (z) as c2 → 0. Since, as has been shown

above, a similar convergence holds for fI and fII , we have f (REG)(z), f (CCA)(z)→
f (REG0)(z) as c2 → 0. Elementary calculations that use equations (14), (23), (33)

together with the explicit forms of f (REG0)
I and f

(SMD)
I given in Table 3 show

that f (REG0)(z) → f (SMD)(z) as c1 → 0 after transformations θ 7→ √
c1θ and

z 7→ √c1z + 1.

4.2 Contours of steep descent

We shall now show how to deform contours K in (11) into the contours of steep
descent. First, we find saddle points of functions f(z) for each of the six cases.

Note that the derivative of fII(z) equals minus half of the Stieltjes transform

mc (z) of the corresponding limiting spectral distribution Fc. Although the Stieltjes

transform is formally defined on C+, the definition remains valid on the part of

the real line outside the support [b−, b+] of Fc. Since we assume that γ1 ≤ 1, Fc

does not have any non-trivial mass at 0 for suffi ciently large n and p.

To find saddle points of f(z) we solve equation

mc (z) = 2dfIII(z)/dz. (35)

21



In the Appendix, we find real solutions to (35), z0, that satisfy inequality z0 > b+.

These solutions are reported in the following lemma.

Lemma 4 Let b+ be the upper boundary of support of Fc, and θ̄ be the threshold

corresponding to Fγ as given in Table 2. Then, for θ ∈
(
0, θ̄
)
and suffi ciently large

n and p as n, p→γ ∞,

z0 =


θ + 1/θ for SMD

(1 + θ) (θ + c1) /θ for PCA and REG0

(1 + θ) (θ + c1) / [θl (θ)] for SigD, REG, and CCA

(36)

satisfy inequality z0 > b+ and solve equation (35).

As c2 → 0 while c1 stays constant, the value of z0 for SigD, REG, and CCA

converges to that for PCA and REG0. The latter value in its turn converges to

the value of z0 for SMD when c1 → 0, after the transformations θ 7→ √c1θ and

z0 7→
√
c1z0 + 1. Precisely, solving equation

√
c1z0 + 1 = (1 +

√
c1θ) (

√
c1θ + c1) / (

√
c1θ)

for z0 and taking limit as c1 → 0 yields z0 = θ + 1/θ.

For the rest of the paper, assume that θ ∈
(
0, θ̄
)
. We deform contour K in (11)

so that it passes through the saddle point z0 as follows. Let K = K+ ∪ K−, where
K− is the complex conjugate of K+ and K+ = K1∪K2. For SMD, PCA, and SigD,

let

K1 = {z0 + it : 0 ≤ t ≤ 2z0} and (37)

K2 = {x+ i2z0 : −∞ < x ≤ z0} . (38)

The deformed contour is shown on Figure 3.

Note that the singularities of the integrand in (11) are situated at z = λj (plus

an additional singularity at z = c1(1 + θ)/ (θc2) < z0 for SigD). Since λ1
a.s.→ β+

and z0 > b+, inequality z0 > λ1 must hold with probability approaching one as

n, p →γ ∞. Therefore by Cauchy’s theorem, the deformation of the contour does
not change the value of L (θ; Λ) with probability approaching one as n, p→γ ∞.
Strictly speaking, the deformation of the contour is not continuous because K+

does not approach K− at −∞. In particular, in contrast to the original contour,
the deformed one is not “closed”at −∞. Nevertheless, such an “opening up”at

22



Figure 3: Deformed contour K for SMD, PCA, and SigD.

−∞ does not lead to the change of the value of the integral because the integrand

converges fast to zero by absolute value as Re z → −∞.

Remark 5 In the event of asymptotically negligeable probability that the deformed
contour K does not encircle all λj, we not only loose the equality (11) but also face
the diffi culty that function g(z) ceases to be well defined as the definition of gII(z)

contains a logarithm of a non-positive number. To eliminate any ambiguity, if such

an event holds we shall redefine gII(z) as unity.

For REG0 and CCA, let

z1 =

{
− (1− c1)2 / [4θ] for REG0

−c1 (1− c1)2 l (θ) / [4θr2] for CCA
,

and let

K1 = {z1 + |z0 − z1| exp {iγ} : γ ∈ [0, π/2]} and
K2 = {z1 − x+ |z0 − z1| exp {iπ/2} : x ≥ 0} .

The corresponding contour K is shown on Figure 4. Similarly to the SMD, PCA
and SigD cases, the deformation of the contour in (11) to K does not change the
value of L (θ; Λ) with probability approaching one as n, p→γ ∞.
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Figure 4: Deformed contour K for REG0 and CCA.

For REG, deformed contour K in z-plane is simpler to describe as an image of
a contour C in τ -plane, where τ = η1t1 with

η1 = zθc2/ [c1 (1− c1)] (39)

and t1 as defined in (29). Let C = C+ ∪ C−, where C− is the complex conjugate of
C+ and C+ = C1 ∪ C2, and let

C1 = {−ε+ |τ0 + ε| exp {iγ} : γ ∈ [0, π/2]} and
C2 = {−ε− x+ |τ0 + ε| exp {iπ/2} : x ≥ 0} ,

where τ0 = (θ + c1) / (1− c1) .

Using (39) and the identity

η1 = τ (τ + 1) /(τ + ε), (40)

we obtain

z =
c1 (1− c1)

θc2

τ (τ + 1)

τ + ε
. (41)

We define the deformed contour K in z-plane as the image of C under the trasfor-
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mation τ → z given by (41). The parts K+,K−,K1 and K2 of K are defined as the
images of the corresponding parts of C. Note that τ0 is transformed to z0 so that

K passes through the saddle point z0.

The following lemma is proven in the Appendix. It shows that K1 are contours

of steep descent of −Re f (z) for all the six cases, SMD, PCA, SigD, REG0, REG,

and CCA.

Lemma 6 For any of the six cases that we study, as z moves along the corre-
sponding K1 away from z0, −Re f (z) is strictly decreasing.

5 Laplace approximation

The goal of this section is to derive Laplace approximations to the integrals

L (θ; Λ) =
√
πp

1

2πi

∫
K

exp {−pf(z)} g(z)dz

for the six cases that we study. First, consider a general integral

Ip,ω =

∫
Kp,ω

e−pφp,ω(z)χp,ω(z)dz,

where p → ∞, ω is a k-dimensional parameter that belongs to a subset Ω of Rk,
Kp,ω is a path in C that starts at ap,ω and ends at bp,ω, and for suffi ciently large p,
φp,ω(z) is a single-valued holomorphic function of z in a domain Tp,ω that contains

Kp,ω.
We allow χp,ω(z) to be a random element of the normed space of continuous

functions on Kp,ω with the supremum norm. Furthermore, we suppose that for any
δ > 0, there exists p̄ such that for any p > p̄, χp,ω(z) is a single-valued holomorphic

function of z in the domain Tp,ω with probability larger than 1−δ. In what follows,
we shall omit subscripts p and ω from the notation φp,ω, χp,ω, Kp,ω, etc. to make
it lighter.

Suppose that φ′ (z) = 0 at z0 which is an interior point of K, and suppose
that Reφ(z) is strictly increasing as z moves away from z0 along the path. In

other words, the path K is a contour of steep descent of −Reφ(z). Denote a

closed segment of K contained between z1 and z2 as [z1, z2]K. Similarly denote the

segments that exclude one or both endpoints as [z1, z2)K , (z1, z2]K , and (z1, z2)K.

Let β be the limiting value of arg (z − z0) on the principal branch as z → z0 along
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(z0, b)K. Finally, let φs and χs with s = 0, 1, ... be the coeffi cients in the power

series representations

φ (z) =

∞∑
s=0

φs (z − z0)s , χ(z) =
∞∑
s=0

χs (z − z0)s . (42)

We assume that there exist positive constants C1, ..., C4 that do not depend on

p and on ω, such that for all ω ∈ Ω, for suffi ciently large p :

A0 The length of the pathK is bounded, uniformly over ω ∈ Ω and all suffi ciently

large p. Furthermore,

sup
z∈(z0,b)K

|z − z0| > C1, and sup
z∈(a,z0)K

|z − z0| > C1

A1 Functions φ (z) and χ(z) are holomorphic in the ball |z − z0| ≤ C1

A2 The coeffi cient φ2 satisfies C2 ≤ |φ2| ≤ C3

A3 The third derivative of φ (z) satisfies inequality

sup
|z−z0|≤C1

∣∣d3φ (z) /dz3
∣∣ ≤ C4

A4 For any positive ε < C1, which does not depend on p and ω, and for all

z1 ∈ K such that |z1 − z0| = ε, there exist positive constants C5, C6, such

that

Re (φ (z1)− φ0) > C5 and |Im (φ (z1)− φ0)| < C6

A5 For a subset Θ of C that consists of all points whose Euclidean distance from
K is no larger than C1,

sup
z∈Θ
|χ(z)| = OP(1)

as p→∞, where OP(1) is uniform in ω ∈ Ω.

The following lemma is a fairly straightforward extension of Theorem 7.1 of

Olver (1997), p. 127 to the situation where functions φ(z), χ(z) and the contour

K depend on p and ω. In Olver’s original theorem, which uses different notation,
both the functions and the contour are fixed. A proof of the extension is available

from the authors upon request.
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Case Value of D2 Case Value of D2

SMD 1− θ2 REG0 c1 (1 + c1 + 2θ) (c1 − θ2)

PCA c1 (c1 − θ2) (1 + θ)2 REG c1h (c1 + θ + (1 + θ) l) /l4

SigD r2h (1 + θ)2 /l4 CCA c2
1h (2 (c1 + θ) + l (1− c1)) / (l3 (c1 + c2))

Table 4: The values of D2 ≡ θ2(−2d2f(z0)/dz2)−1. Here l ≡ l(θ) is as defined in
(20) and h ≡ h(θ) = c1 + c2(1 + θ)2 − θ2.

Lemma 7 Under assumptions A0-A5, for any positive integer κ, as p → ∞, we
have

Ip,ω = 2e−pφ0

[
κ−1∑
s=0

Γ

(
s+

1

2

)
a2s

ps+1/2
+
OP (1)

pκ+1/2

]
,

where OP (1) is uniform in ω ∈ Ω and the coeffi cients aj can be expressed through

φi and χi defined above. In particular we have a0 = χ0/[2φ
1/2
2 ], where φ1/2

2 =

exp {(log |φ2|+ arg φ2) /2} with the branch of arg φ2 chosen so that |arg φ2 + 2β| ≤
π/2.

We use Lemma 7 to obtain the Laplace approximation to

L1 (θ; Λ) =
√
πp

1

2πi

∫
K1∪K̄1

e−pf(z)g(z)dz. (43)

Then we show that L1 (θ; Λ) asymptotically dominates the “residual”L (θ; Λ) −
L1 (θ; Λ). For this analysis, it is important to know the values of f(z0) and

d2f(z0)/dz2. We derive them in the Appendix. It turns out that as long as

θ ∈
[
0, θ̄
)
, f(z0) = 0 for all the six cases that we study. The values of d2f(z0)/dz2

are all negative. The explicit form of D2 ≡ θ2 (−2d2f(z0)/dz2)
−1
, which is some-

what shorter than that for d2f(z0)/dz2 is reported in Table 4. We formulate the

main result of this section in the following theorem. Its proof is given in the

Appendix.

Theorem 8 Suppose that the null hypothesis holds, that is, θ0 = 0. Let θ̄ be the

threshold corresponding to Fγ as given in Table 2, and let ε be an arbitrarily small

fixed positive number. Then for any θ ∈
(
0, θ̄ − ε

]
, as n, p→γ ∞, we have

L (θ; Λ) =
g(z0)√

−2d2f(z0)/dz2
+OP

(
p−1
)
, (44)
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where OP (p−1) is uniform in θ ∈
(
0, θ̄ − ε

]
and the principal branch of the square

root is taken.

6 Asymptotics of LR

Combining the results of Theorem 8 with the definitions of g(z) and the values of

−2d2f(z0)/dz2 (given in Table 4), it is straightforward to establish the following

theorem. Let

∆p(θ) = p

∫
ln (z0 − λ) d

(
F̂ (λ)− Fc (λ)

)
.

In accordance with the remark made above, we define ∆p(θ) as zero in the event

of asymptotically negligeable probability that z0 ≤ λ1.

Theorem 9 Suppose that the null hypothesis holds, that is θ0 = 0. Let θ̄ be the

threshold corresponding to Fγ as given in Table 2, and let ε be an arbitrarily small

fixed positive number. Then for any θ ∈
(
0, θ̄ − ε

]
, as n, p→γ ∞, we have

L (θ; Λ) = exp

{
−1

2
∆p(θ) +

1

2
ln
(
1− [δp (θ)]2

)}
(1 + oP(1)) ,

where

δp (θ) =


θ for SMD

θ/
√
c1 for PCA and REG0

θr/ (c1l (θ)) for SigD, REG, and CCA

and oP(1) is uniform in θ ∈
(
0, θ̄ − ε

]
.

Statistic ∆p(θ) is a linear spectral statistic. As follows from the CLT derived

by Bai and Yao (2005), Bai and Silverstein (2004), and Zheng (2012) for the

semi-circle, Marchenko-Pastur, andWachter limiting distributions Fc , respectively,

statistic ∆p(θ) weakly converges to a Gaussian process indexed by θ ∈
(
0, θ̄ − ε

]
.

The explicit form of the mean and the covariance structure can be obtained from

the general formulae for the asymptotic mean and covariance of linear spectral

statistics given in Theorem 1.1 of Bai and Yao (2005) for SMD, in Theorem 1.1 of

Bai and Silverstein (2004) for PCA and REG0, and in Theorem 4.1 and Example 4.1

of Zheng (2012) for the remaining cases. For PCA, the corresponding calculations

have been done in Onatski et al (2013). We omit details of the similar calculations

for the remaining cases to save space. The convergence of ∆p(θ) and Theorem 9

imply the following theorem.
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Theorem 10 Suppose that the null hypothesis holds, that is θ0 = 0. Let θ̄ be the

threshold corresponding to Fγ as given in Table 2, and let ε be an arbitrarily small

fixed positive number. Further, let C
[
0, θ̄ − ε

]
be the space of continuous functions

on
[
0, θ̄ − ε

]
equipped with the supremum norm. Then lnL (θ; Λ) viewed as random

elements of C
[
0, θ̄ − ε

]
converge weakly to L (θ) with Gaussian finite dimensional

distributions such that

EL (θ) =
1

4
ln
(
1− [δ (θ)]2

)
and

Cov (L (θ1) ,L (θ2)) = −1

2
ln (1− δ (θ1) δ (θ2))

with

δ (θ) =


θ for SMD

θ/
√
γ1 for PCA and REG0

θρ/ (γ1 + γ2 + θγ2) for SigD, REG, and CCA

.

Here ρ, γ1, γ2 are the limits of r, c1, c2 as n, p→γ ∞.

Note that the theorem establishes the weak convergence of the log likelihood

ratio viewed as a random element of the space of continuous functions. This is

much stronger than simply the convergence of the finite dimensional distributions

of the log likelihood process. In particular, the theorem can be used to find the

asymptotic distribution of the supremum of the likelihood ratio, and thus, to find

the asymptotic critical values of the likelihood ratio test. We do not pursue this

line of research here.

Let {Pp,θ} and {Pp,0} be the sequences of measures corresponding to the joint
distributions of λ1, ..., λp when θ0 = θ and when θ0 = 0 respectively. Then Theorem

10 implies, via Le Cam’s first lemma, the mutual contiguity of {Pp,θ} and {Pp,0} as
n, p→γ ∞. This reveals the statistical meaning of the phase transition thresholds
as the upper boundaries of the contiguity regions for spiked models.

The precise form of the autocovariance of L (θ) shows that,2 although the ex-

periment of observing λ1, ..., λp is asymptotically normal, it does not converge to

a Gaussian shift experiment. In particular, the optimality results available for

Gaussian shifts cannot be used in our framework. To analyze asymptotic risks of

various statistical problems related to the experiment of observing λ1, ..., λp, one

2Fyodorov et al (2013) have an interesting discussion of ubiquity of random processes with
logarithmic covariance structure in physics and engineering applications. In their paper, such
processes appear as limiting objects related to the behavior of the characteristic polynomials of
large matrices from Gaussian Unitary Ensemble.
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should directly use Theorem 10.

In this paper, we use Theorem 10 to derive the asymptotic power envelopes

for tests of the null hypothesis θ0 = 0 against the alternative θ0 > 0. Such a

power envelope has been derived by Onatski et al (2013) for the case of PCA. By

the Neyman-Pearson lemma, the most powerful test of the null against a point

alternative θ0 = θ would reject the null when lnL (θ; Λ) is above a critical value.

By Theorem 10 and Le Cam’s third lemma (see van der Vaart (1998), chapter 6),

lnL (θ; Λ)
d→ N

(
1

4
ln
(
1− [δ (θ)]2

)
,−1

2
ln
(
1− [δ (θ)]2

))
under the null, and

lnL (θ; Λ)
d→ N

(
−1

4
ln
(
1− [δ (θ)]2

)
,−1

2
ln
(
1− [δ (θ)]2

))
under the alternative. This implies the following theorem.

Theorem 11 Let θ̄ be the threshold corresponding to Fγ as given in Table 2. For
any θ ∈

[
0, θ̄
)
, the value of the asymptotic power envelope for the tests of the

null θ0 = 0 against the alternative θ0 > 0 which are based on λ1, ..., λp and have

asymptotic size α is given by

PE (θ) = 1− Φ

[
Φ−1 (1− α)−

√
−1

2
ln
(
1− [δ (θ)]2

)]
.

Here Φ denotes the standard normal cumulative distribution function. For θ ≥ θ̄

the value of the asymptotic power envelope equals one.

The envelopes are different only for the cases that correspond to different limit-

ing spectral distributions: the semi-circle, the Marchenko-Pastur, and the Wachter

distribution. Therefore, we can denote PE (θ) as PESC (θ) for SMD, as PEMP (θ)

for PCA and REG0, and as PEW (θ) for the remaining cases. Figure 5 shows the

graphs of the envelopes for α = 0.05 and γ1 = γ2 = 0.9. Such large values of γ1 and

γ2 correspond to situations where the dimensionality p is not very different from

the “sample sizes”n1 and n2. Of course, the values of γ1 and γ2 are irrelevant for

PESC (θ), and the value of γ2 is irrelevant for PEMP (θ) .

Note that the asymptotic power envelope PEMP (θ) can be obtained from

PEW (θ) by sending γ2 to zero. Further, PESC (θ) can be obtained from PEMP (θ)
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Figure 5: The asymptotic power envelopes PESC(θ), PEMP (θ), and PEW (θ) for
α = 0.05, γ1 = γ2 = 0.9.
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by transformation θ 7−→ √γ1θ. Further, note the difference in the horizontal scale

of the bottom panel of Figure 5 relative to the two other panels. For γ1 = γ2 = 0.9

the phase transition threshold corresponding to Wachter distribution is relatively

large. It equals (γ2 + ρ) /(1 − γ2) ≈ 18.9. Moreover, the value of PEW (θ) be-

comes substantially larger than the nominal size α = 0.05 for θ that are situated

far below this threshold. This suggests that the information in all the eigenvalues

λ1, ..., λp might be effectively used to detect spikes that are small relative to the

phase transition threshold in two sample problems. We leave a confirmation or

rejection of this speculation for future research.

7 Conclusion

This paper derives the asymptotics of the likelihood ratio processes corresponding

to the null hypothesis of no spikes and the alternative of a single spike in various

high-dimensional multivariate models. We cover all the five classes of multivariate

statistical problems identified by James (1964). In addition, we consider a sym-

metric matrix denoising problem that does not fit in James’classification. We find

that, as the dimensionality and the number of observations go to infinity propor-

tionally, the log likelihood processes converge to Gaussian limits as long as the

value of the spike parameter is below corresponding phase transition thresholds.

We derive explicit formulae for the autocovariance and the mean of the limiting

processes and use them to obtain asymptotic power envelopes for tests for the

presence of a spike.

In this paper, we make the assumption that n2 ≥ p to ensure the invertibility

of matrix E in (1) with probability one. However, we also make the assumption

n1 ≥ p, which can be lifted without a substantial reformulation of the problem. We

make the latter assumption mostly to simplify our exposition. The assumption is

irrelevant for SMD. The PCA results are obtained in Onatski et al (2013) without

using this assumption. For SigD, our derivations (not reported here) show that the

equivalent of (7) for n1 < p involves the hypergeometric function 2F1. Therefore,

SigD with n1 < p represents the fifth, rather than the second, group of multivariate

statistical problems according to James’(1964) classification. The REG0 problem

is symmetric with respect to n1 and p after a simple reparametrization. For REG,

an equivalent of (7) for n1 < p can be obtained using equation (74) of James

(1964). However, further analysis of REG in this situation needs more substantial
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changes to our analysis. In CCA case, the sample canonical correlations are only

well defined if n1 ≥ p. To summarize, when n1 < p, the only interesting untreated

cases are SigD and REG. We leave their study for future research.

8 Appendix

8.1 SMD entry of Table 1

The explicit expression for L(SMD) (θ; Λ) given in Table 1 follows from the following

lemma.

Lemma 12 For SMD case, the joint density of the diagonal elements of Λ evalu-

ated at the diagonal elements of x = diag {x1, ..., xp} with x1 ≥ ... ≥ xp equals

cp (x) exp
{
−pθ2/4

}
0F0 (Ψ, x) , (45)

where cp (x) is a quantity that depends on p and x, but not on θ, and Ψ =

diag {θp/2, 0, ..., 0}. The density under the null hypothesis is obtained from the

above expression by setting θ = 0.

Proof: The proof is based on the “symmetrization trick”used by James (1955)
to derive the density of non-central Wishart distribution. Let Y = U ′XU, where

U is a random matrix from O(p) and X = Z/
√
p+ ηθη′ with Z from GOE, θ ≥ 0,

and ‖η‖ = 1. Note that the eigenvalues of X and Y are the same. The joint density

of the functionally independent elements of Y evaluated at y is

(2π/p)−p(p+1)/4 2−p/2
∫
O(p)

etr
{
−p

4
(uyu′ − ηθη′)2

}
(du),

where (du) is the normalized uniform measure over O(p). Taking the square under

etr and factorizing, we obtain an equivalent expression

(2π/p)−p(p+1)/4 2−p/2 exp
{
−p

4
θ2
}

etr
{
−p

4
y2
}∫
O(p)

etr

{
pθ

2
uyu′ηη′

}
(du).

Now change the variables from y to (H, x) , where y = HxH ′ is the spectral

decomposition of y, and integrate H out to obtain (45) with

cp (x) =
pp(p+1)/4πp(p−1)/4

2p(p−1)/4+pΓp (p/2)
etr
(
−p

4
x2
) p∏
i<j

(xi − xj) .
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Here Γp (p/2) is the multivariate Gamma function (see Muirhead (1982), pp 61-63).

�

8.2 Proof of Lemma 4

It is suffi cient to prove the lemma for SigD, REG and CCA. For PCA and REG0,

the lemma follows by taking the limits of SigD and REG cases as c2 → 0. For

SMD, the lemma then follows by taking the limit of PCA case as c1 → 0, after the

transformations θ 7→ √c1θ and z 7→
√
c1z + 1.

Our proofs of the lemma are very similar for SigD, REG and CCA. Here we

show only the proof for SigD. First, note that the minimum of z0 over θ > 0 equals

b+ ≡ c1

(
r + 1

r + c2

)2

and is achieved at

θ = θ̄p ≡ (c2 + r) / (1− c2) .

Therefore, since mW
c (z) is well defined for z > b+ and since θ̄p → θ̄ as n, p→γ ∞,

mW
c (z0) must be well-defined for any θ ∈

(
0, θ̄
)
and for suffi ciently large n, p.

Using an explicit expression for the Stieltjes transform of the limiting spectral

distribution of the multivariate F matrix, which is given by Bai and Silverstein

(2006) p.71, we obtain

mW
c (z) = −(c1 − 1) (c1 − c2z) + (1− c2) c1z

2c1z (c1 − c2z)
(46)

+

√
((c1 − c2) z + c1 (1− c1))2 − 4c1z (c1 − c2z)

2c1z (c1 − c2z)
.

Further,

2
d

dz
f

(SigD)
III (z) = − θr2

c2
1 (1 + θ)− c1c2θz

.

It now takes a direct algebra, which we perform using Maple’s symbolic algebra

software, to verify that z0 solves equation (35).�
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8.3 Proof of Lemma 6

For SMD, PCA, and SigD, |z − λ| is obviously strictly increasing for any λ ∈ R
and as z moves away from z0 along K1. Therefore,

2 Re fII(z) ≡
∫

ln |z − λ| dFc (λ)

is strictly increasing. On the other hand, by (17), Re fIII (z) is non-decreasing.

Hence Re f (z) is strictly increasing.

For REG0 and CCA, |z − λ| is strictly increasing for any λ ≥ 0 as z moves

away from z0 along K1 because the center of the circumference that includes K1

is a negative real number. Therefore, Re fII(z) is strictly increasing. To show

that Re fIII (z) is strictly increasing too, it is suffi cient to prove that Reϕj (tj) is

strictly increasing for j = 0, 2. A proof of this fact relies on elementary calculus.

It is available from the authors upon request.

For REG, z moves away from z0 along K1 when τ moves away from τ0 along

C1. Using (27), (33), and (40), we obtain

Re fIII (τ) =
1− c1

c1

(−Re τ + ln |τ + 1|+ ε ln |τ + ε|+ ε ln ε) .

On the other hand, |τ + ε| remains constant on C1 whereas both −Re τ and |τ + 1|
increase as τ moves away from τ0 along C1. To see that |τ + 1| indeed increases
recall that the center −ε of the circumference that represents C1 is to the left of

the point −1. Hence, Re fIII (τ) is strictly increasing.

To show that Re fII (τ) is strictly increasing too it is suffi cient to verify that

|z − λ| ≡
∣∣∣∣c1 (1− c1)

θc2

τ (τ + 1)

τ + ε
− λ
∣∣∣∣

is strictly increasing for any λ from the support of Fc. Since |τ + ε| remains con-
stant, it is suffi cient to show that

γ (τ, x) ≡ |τ (τ + 1)− x (τ + ε)|2

increases as τ moves away from τ0 along C1 for any x = λθc2/ [c1 (1− c1)] .

Parameterize τ ∈ C1 as −ε + ρeiα, α ∈ [0, π/2] . Then elementary calculations
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yield

γ (τ, x) = ρ4 + (2ε− 1 + x)2 ρ2 − 2ρ3 (2ε− 1 + x) cosα

+ ε2 (ε− 1)2 + 2
(
ρ2 cos 2α− (2ε− 1 + x) ρ cosα

)
ε (ε− 1)

so that

dγ (τ, x)

d cosα
= 2ρ

{
− (2ε− 1 + x)

[
ρ2 + ε (ε− 1)

]
+ 4ρε (ε− 1) cosα

}
. (47)

We would like to prove that the derivative dγ (τ, x) /d cosα is negative. As is seen

from (47), the derivative is decreasing in x and increasing in cosα. Since x ≥ 0 and

cosα ≤ 1, it is suffi cient to show that dγ (τ, 0) /d cosα is negative for cosα = 1.

We have

dγ (τ, 0)

d cosα

∣∣∣∣
cosα=1

= −2ρ (2ε− 1)

{(
ρ− 2ε (ε− 1)

2ε− 1

)2

+

ε (ε− 1)−
(

2ε (ε− 1)

2ε− 1

)2
}
.

This is negative because the expression in the second line of the above display is

positive. Indeed,

ε (ε− 1) (2ε− 1)2 − 4ε2 (ε− 1)2 = ε (ε− 1) > 0.

To summarize, both Re fII (τ) and Re fIII (τ) are strictly increasing as τ moves

away from τ0 along C1. Hence, the image of C1, K1, is a contour of steep descent of

−Re f(z) in z-plane.

8.4 Values of f(z0) and d2f(z0)/dz
2

Let us first show that f(z0) = 0. Recall that f(z) = fI + fII(z) + fIII(z). The

value of fI is given in Table 3. The value of fIII(z0) is straightforward to compute

using the definitions of fIII and z0. The

2fII (z0) =

∫ b+

b−

ln (z0 − λ) dFc (λ)
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takes on three different values: one for SMD, another for PCA and REG0, and the

third one for SigD, REG, and CCA.

Lemma 13 For SigD, REG, and CCA, for any θ ∈
(
0, θ̄
)
and for suffi ciently

large n, p, we have

2fII (z0) = 2 ln c1 − ln θ − 1− c1

c1

ln (1 + θ)− c1 + c2

c1c2

ln (c1 + c2) +
r2

c1c2

ln [c1l (θ)] .

(48)

Proof: We follow the usual strategy of reduction to a contour integral. First
make the change of variables λ = α− β cosϕ. In order to arrange that λ = b− and

b+ at ϕ = 0 and π respectively, we set

α =
b+ + b−

2
=
c1 (r2 + c2

1)

(c1 + c2)2 , β =
b+ − b−

2
=

2rc2
1

(c1 + c2)2 . (49)

We obtain

2fII (z0) =
c1 + c2

4πc1

∫ 2π

0

β2 sin2 ϕ ln (z0 − α + β cosϕ)

(α− β cosϕ) (c1 − c2α + c2β cosϕ)
dϕ

after extending the integral from [0, π] to [0, 2π] using the symmetry of the inte-

grand about ϕ = π. Now introduce z = eiϕ. Since cosϕ = (z + z−1) /2, we have

from (49) the factorizations

c1 (α− β cosϕ) =
β

2r
(r − c1z)

(
r − c1z

−1
)
,

c1 − c2α + c2β cosϕ =
β

2r
(r + c2z)

(
r + c2z

−1
)
,

z0 − α + β cosϕ = q(z)q
(
z−1
)
with

q (z) =
c1

c1 + c2

(√
c1l (θ) /θ + rz

√
θ/ [c1l (θ)]

)
.

Our integral becomes

2fII (z0) =
− (c1 + c2) r2

4πi

∫
C

(z − z−1)
2

ln (q(z)q (z−1))

(r − c1z) (r − c1z−1) (r + c2z) (r + c2z−1)

dz

z
.
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The integral has form I =

∮
ln (q(z)q (z−1))H (z) z−1dz with H(z) = H (z−1).

Hence, expanding the logarithm yields two identical terms, so that

2fII (z0) =
− (c1 + c2)

2πi

∫
C

(z2 − 1)
2

ln q(z)

(r − c1z) (z − c1/r) (r + c2z) (z + c2/r)

dz

z
.

For θ ∈
(
0, θ̄
)
and suffi ciently large n, p, we have θ ∈

(
0, θ̄p

)
with θ̄p = (c2 + r) / (1− c2) .

On the other hand, for θ ∈
(
0, θ̄p

)
, the function ln q (z) is analytic inside the circle

|z| = 1, and so the whole integrand is analytic inside the circle except for simple

poles at z = 0, c1/r and −c2/r. The residues at these poles are respectively

c1 + c2

c1c2

ln
c1

√
c1l/θ

c1 + c2

,−1− c1

c1

ln
c1 (1 + θ)√

θc1l
, and − 1− c2

c2

ln
c1√
θc1l

and their sum, after collecting terms, yields formula (48).�

Corollary 14 For PCA and REG0, for any θ ∈
(
0, θ̄
)
and for suffi ciently large

n, p, we have

2fII (z0) = ln c1 − ln θ − 1− c1

c1

ln (1 + θ) + θ/c1. (50)

Proof: The corollary is obtained from Lemma 13 by taking the limit as c2 →
0.�

Corollary 15 For SMD, for any θ ∈
(
0, θ̄
)
and for suffi ciently large n, p, we have

2fII (z0) = − ln θ + θ2/2. (51)

Proof: We remarked earlier that SMD is a limit of PCA and REG0 as c1 → 0

after the transformations θ 7→ √c1θ and z 7→
√
c1z + 1. In particular,

z
(SMD)
0 = lim

c1→0,θ 7→√c1θ
(z

(PCA)
0 − 1)/

√
c1 and F SC (λ) = lim

c1→0
FMP
c (

√
c1λ+ 1) .

These equations imply that

2f
(SMD)
II

(
z

(SMD)
0

)
= lim

c1→0,θ 7→√c1θ

[
2f

(PCA)
II

(
z

(PCA)
0

)
− ln
√
c1

]
.

Using this relationship together with Corollary 14 yields 2fII (z0) = − ln θ + θ2/2

for SMD.�
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Combining equations (48), (50), and (51) with the explicit expressions for fI
and fIII (z0), we obtain the desired result: f (z0) = 0 for all the six cases we

consider.

To compute d2f (z0) /dz2, note that −2d2fII (z0) /dz2 = dmc (z0) /dz. There-

fore d2fII (z0) /dz2 can be directly evaluated using explicit expressions for the

Stieltjes transforms of the semicircle, Marchenko-Pastur and Wachter distribu-

tions. Formula (46) gives such an explicit expression for mW
c (z) . The explicit

expressions for mMP
c (z) and mSC (z) are well known. To perform the necessary

computations, we use Maple’s symbolic algebra software. Further, using the defi-

nition of fIII(z), we directly evaluate d2fIII (z0) /dz2. Combining the expressions

for the second derivatives of fII and fIII , we obtain values of the second derivative

of f reported in Table 4.�

8.5 Proof of Theorem 8

First, let us show that

L1 (θ; Λ) =
g(z0)√

−2d2f(z0)/dz2
+OP

(
p−1
)
, (52)

where OP (1) is uniform with rspect to θ ∈
(
0, θ̄ − ε

]
. Changing the variable of

integration in (43) from z to ζ = θz, we obtain

L1 (θ; Λ) =
√
πp

1

2πi

∫
K̃
e−pφ(ζ)χ(ζ)dζ, (53)

where

φ(ζ) = f (ζ/θ) , χ(ζ) = g(ζ/θ)/θ,

and K̃ is the image of K1∪K̄1 under the transformation z 7→ ζ. The set of possible

values of θ is Ω ≡
(
0, θ̄ − ε

]
.

Using Table 4 and the definitions of K1, z0, f(z), and g(z), it is straightforward

to verify that the assumptions A0-A4 of Lemma 7 hold for the integral in (53) for

all the six cases that we consider. The validity of A5 follows from Lemma 16 given

below and from the definitions of g (z). Let

∆(ζ) = p

∫
ln (ζ/θ − λ) d

(
F̂ (λ)− Fc (λ)

)
, (54)

so that ∆(ζ) = −2 ln gII(ζ/θ).
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Lemma 16 Suppose that the null hypothesis holds, that is θ0 = 0. Then there

exists a positive constant C1, such that for a subset Θ of C that consists of all

points whose Euclidean distance from K̃ is no larger than C1, we have

sup
ζ∈Θ
|∆ (ζ)| = OP(1)

as n, p→γ ∞, where OP(1) is uniform with respect to θ ∈ Ω ≡
(
0, θ̄ − ε

]
.

Proof: Let us rewrite (54) in the following equivalent form

∆(ζ) = p

∫
ln (1− λθ/ζ) d

(
F̂ (λ)− Fc (λ)

)
.

Statistic ∆(ζ) is a special form of a linear spectral statistic

∆(ϕ) = p

∫
ϕ (λ) d

(
F̂ (λ)− Fc (λ)

)
studied by Bai and Yao (2005), Bai and Silverstein (2004), and Zheng (2012) for

the cases of the Semi-circle, Marchenko-Pastur, andWachter limiting distributions,

respectively. These papers note that

∆(ϕ) = − p

2πi

∫
P
ϕ (ξ) (m̂ (ξ)−mc (ξ)) dξ,

where

m̂ (ξ) =

∫
1

λ− ξdF̂ (ξ), mc (ξ) =

∫
1

λ− ξdFc (λ)

are the Stieltjes transforms of F̂ and Fc, and P is a positively oriented contour in
an open neighborhood of the supports of F̂ and Fc, where ϕ (ζ) is analytic, that

encloses these supports. Further, the papers show that if the distance from P to
the supports of F̂ and Fc stays away from zero with probability approaching one

as n, p→γ ∞, then

∆(ϕ) = − p

2πi

∫
P
ϕ (ξ) M̂(ξ)dξ +OP (1) , (55)

where pM̂(ξ) is a truncated version of p [m̂ (ξ)−mc (ξ)] that weakly converges to

a random continuous function on P with Gaussian finite dimensional distributions.
Furthermore, OP (1) in (55) is uniform in ϕ that are analytic in the open neigh-

borhood of the supports of F̂ and Fc and such that supξ∈P |ϕ (ξ)| < K for some
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constant K. Therefore, for any δ > 0, there exists B > 0, such that

Pr

(
|∆(ϕ)| ≤ B sup

ξ∈P
|ϕ (ξ)|

)
> 1− δ (56)

for all n and p. Moreover, constant B does not depend on ϕ. Now, consider a

family of functions ϕζ,θ (ξ)

{ϕζ,θ (ξ) = ln (1− ξθ/ζ) : ζ ∈ Θ and θ ∈ Ω} .

By the definitions of Θ and Ω, there exists an open neighborhoodN of the supports

of F̂ and Fc and a constant B1, such that, with probability arbitrarily close to one,

for suffi ciently large n and p, ϕζ,θ (ξ) are analytic in N for all ζ ∈ Θ and θ ∈ Ω

and

sup
θ∈Ω

sup
ζ∈Θ

sup
ξ∈N
|ϕζ,θ (ξ)| ≤ B1.

Since ∆(ϕζ,θ) = ∆(ζ), we obtain from (56) that for any δ > 0, there exists B2 > 0

such that for suffi ciently large n and p,

Pr

(
sup
θ∈Ω

sup
ζ∈Θ
|∆(ζ)| ≤ B2

)
> 1− δ.

In other words, supζ∈Θ |∆(ζ)| = OP(1) uniformly over θ ∈ Ω.�
Applying Lemma 7 to the integral in (53) and using the fact that f(z0) = 0,

we obtain (52). It remains to show that L2 (θ; Λ) is asymptotically dominated by

L1 (θ; Λ) , where

L2 (θ; Λ) = L (θ; Λ)− L1 (θ; Λ) .

For SMD, PCA, and SigD we have

|L2 (θ; Λ)| =
∣∣∣∣∣
√
πp

2πi

∫
K2∪K̄2

e−p(fI+fIII(z))gIgIII(z)

p∏
j=1

(z − λj)−1/2 dz

∣∣∣∣∣
≤
√
p

π
e−pfIgI (2z0)−p/2

∫
K2

∣∣e−pfIII(z)gIII(z)dz
∣∣

≤
√
p

π
e−pfIgI (2z0)−p/2

∫ z0

−∞
e−pfIII(x)gIII(x)dx.

Explicitly evaluating the latter integral and using the exact form of gI , available
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from Table 3, we obtain

|L2 (θ; Λ)| ≤ 2C
√
πp
e−pfI (2z0)−p/2 e−pfIII(z0) (1 + o(1)) ,

where o(1) does not depend on θ, C = 1 for SMD and PCA, and C =
√
c1 + c2/r

for SigD. Therefore,

|L2 (θ; Λ)| ≤ 2C
√
πp
e−pf(z0) exp {−p (ln(2z0)/2− fII (z0))} (1 + o(1))

=
2C
√
πp

exp

{
−p

2

∫
ln

(
2z0

z0 − λ

)
dFc(λ)

}
(1 + o(1)) ,

where we used the fact that f (z0) = 0. But ln (2z0/ (z0 − λ)) is positive and

bounded away from zero uniformly over θ ∈
(
0, θ̄ − ε

]
with probability arbitrarily

close to one, for suffi ciently large n, p. Hence, there exists a positive constant K

such that

|L2 (θ; Λ)| ≤ 2C
√
πp
e−pK (1 + o(1))

with probability arbitrarily close to one for suffi ciently large n, p. Combining this

inequality with (52), we establish Theorem 8 for SMD, PCA, and SigD.

For REG0, we shall need the following lemma.

Lemma 17 For suffi ciently large n and p, we have

|0F1 (b− s; Ψ11z) | < 4
√
πm |exp {−mϕ0(t0)}| (57)

for any z and any θ > 0.

Proof: We use the identity (see formula 9.6.3 in Abramowitz and Stegun
(1964))

Im (ζ) = e−mπi/2Jm (iζ) for − π < arg ζ ≤ π/2,

where Jm (·) is the Bessel function. The identity and (22) imply that

0F1 (b− s; Ψ11z) = Γ (m+ 1)
(
m2η0

)−m/2
e−mπi/2Jm

(
i2mη

1/2
0

)
. (58)
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On the other hand, for any ζ and any positive K,

|JK (Kζ)| ≤
{

1 +

∣∣∣∣sinKπKπ

∣∣∣∣}
∣∣∣∣∣∣∣
ζ exp

{√
1− ζ2

}
1 +

√
1− ζ2


K
∣∣∣∣∣∣∣ , (59)

(see Watson (1944), p.270). The latter inequality, equation (58), and the Stirling

formula for Γ (m+ 1) imply that (57) holds for suffi ciently large m, for any z and

θ > 0. The constant 4 on the right hand side of (57) is not the smallest possible

one, but it is suffi cient for our purposes.�
Using inequality (57), we obtain for REG0

|L2 (θ; Λ)| ≤ 4e−pfIgI
√
pm

∫
K2

∣∣∣∣∣exp {−mϕ0(t0)}
p∏
j=1

(z − λj)−1/2 dz

∣∣∣∣∣ . (60)

It is straightforward to verify that Reϕ0(t0) is strictly increasing as z is moving

along K2 towards −∞. Therefore, for any z ∈ K2,

Reϕ0 (t0(z)) > Reϕ0(t0(z̄)),

where z̄ = z1+i (z0 − z1) is the point ofK2 whereK2 meetsK1. The latter inequality

together with (60) yields

|L2 (θ; Λ)| ≤ 4e−pRe f(z̄)gI |gII (z̄)|√pm
∫
K2

p∏
j=1

∣∣∣∣ z̄ − λjz − λj

∣∣∣∣1/2 |dz| .
Since, for some constant τ1, Re f (z̄) > f (z0) + τ1 = τ1 and since, by Lemma 16,

4gII (z̄) = OP (1) uniformly over θ ∈
(
0, θ̄ − ε

]
, we obtain

|L2 (θ; Λ)| ≤ e−pτ1gI
√
pm

∫
K2

p∏
j=1

∣∣∣∣ z̄ − λjz − λj

∣∣∣∣1/2 |dz|OP (1) . (61)

Note that for any z ∈ K2 and any j = 1, ..., p, |(z̄ − λj) / (z − λj)| ≤ 1 and

|z − λj| > |z| . Further, since z0 < |z̄| and with probability arbitrary close to
one, for suffi ciently large n and p, λ1 < z0, we have |z̄ − λj| < |z̄ − z0| < 2 |z̄| .
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Thus, for p ≥ 4, we have∫
K2

p∏
j=1

∣∣∣∣ z̄ − λjz − λj

∣∣∣∣1/2 |dz| ≤ ∫
K2

4 |z/z̄|−2 |dz| = |z̄|O(1)

Combining this with (61) and noting that gI |z̄| = O (1) uniformly over θ ∈(
0, θ̄ − ε

]
, we obtain

|L2 (θ; Λ)| ≤ √pme−pτ1OP (1) , (62)

where OP (1) is uniform with respect to θ ∈
(
0, θ̄ − ε

]
. Theorem 8 for REG0 follows

from the latter equality and (52).

For REG and CCA, the Theorem follows from (52) and inequalities

|L2 (θ; Λ)| ≤ pe−pτ2OP (1) , (63)

where τ2 is a positive constant. We obtain (63) by combining the method used

to derive (62) with upper bounds on 1F1 and 2F1, which we establish using the

integral representations (25). We omit details to save space.�
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