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Abstract

We consider five different classes of multivariate statistical problems iden-
tified by James (1964). Each of these problems is related to the eigenvalues
of E71H where H and E are proportional to high-dimensional Wishart ma-
trices. Under the null hypothesis, both Wisharts are central with identity
covariance. Under the alternative, the non-centrality or the covariance pa-
rameter of H has a single eigenvalue, a spike, that stands alone. When the
spike is larger than a case-specific phase transition threshold, one of the
eigenvalues of E~!1H separates from the bulk. This makes the alternative
easily detectable, so that reasonable statistical tests have asymptotic power
one. In contrast, when the spike is sub-critical, that is lies below the thresh-
old, none of the eigenvalues separates from the bulk, which makes the testing
problem more interesting from the statistical perspective. In such cases, we
show that the log likelihood ratio processes parameterized by the value of
the sub-critical spike converge to Gaussian processes with logarithmic corre-
lation. We use this result to derive the asymptotic power envelopes for tests
for the presence of a spike in the data representing each of the five cases in

James’ classification.

1 Introduction

High-dimensional multivariate models and methods, such as regression, principal
components, and canonical correlation analysis, have become subject of much re-
cent research. In contrast to the classical framework where the dimensionality is
fixed, the current focus is on situations where the dimensionality diverges to infin-
ity together with the sample size. In this context, spiked models that deviate from

a reference model along a small fixed number of unknown directions have proven



to be a fruitful research tool. A basic statistical question that arises in the analysis
of spiked models is how to test for the presence of spikes in the data.

James (1964) arranges multivariate statistical problems in five different groups
with broadly similar features. His classification corresponds to the five types of
the hypergeometric functions ,Fj that often occur in multivariate distributions. In
this paper, we describe spiked models that represent each of James’ classes, and
derive the asymptotic behavior of the corresponding likelihood ratios, that is the
ratios of the joint densities of the relevant data under the alternative hypothesis,
which assumes the presence of the spikes, to that under the null of no spikes.
In each of the cases, the relevant data consist of the maximal invariant statistic
represented by eigenvalues of a large random matrix. We consider the asymptotic
regime where the dimensionality of the data and the number of observations go to
infinity proportionally.

We find that the measures corresponding to the joint distributions of the eigen-
values under the alternative hypothesis and under the null are mutually contiguous
when the values of the spikes are below a phase transition threshold. The value
of the threshold depends on the problem’s type. Furthermore, we find that the
log likelihood ratio processes parametrized by the values of the spikes are asymp-
totically Gaussian, with logarithmic mean and autocovariance functions. These
findings allow us to compute the asymptotic power envelopes for the tests for the
presence of spikes in five multivariate models representing each of James’ classes.

Our analysis is based on the classical results that assume Gaussianity. All the
likelihood ratios that we study correspond to the joint densities of the solutions to

the basic equation of classical multivariate statistics,
det (H — A\E) =0, (1)

where H and E are proportional to Wishart matrices.

The five different cases that we study are: 1) E is a known deterministic matrix,
and H is a central Wishart matrix with covariance equal to a low-rank perturbation
of E; 2) both E and H are central Wisharts with unknown covariance matrices
that differ by a matrix of low rank; 3) E is a known deterministic matrix, and
H is a non-central Wishart matrix with covariance equal to E and with a low-
rank non-centrality; 4) E is a central Wishart matrix, while H is a non-central
one with the same unknown covariance matrix and with a low-rank non-centrality;

5) E is a central Wishart, while H is a non-central Wishart conditionally on a



random low-rank non-centrality parameter. These five cases can be linked via
sufficiency and invariance arguments to a principal components problem, a signal
detection problem, hypotheses testing in multivariate regression with known and
with unknown error covariance, and a canonical correlation problem, respectively.
We briefly discuss the links in the next section of the paper.

The main steps of our asymptotic analysis are the same for all the five cases.
The likelihood ratios have explicit forms that involve hypergeometric functions
of two high-dimensional matrix arguments. However, the low-rank nature of the
alternatives that we consider ensures that one of the arguments have low rank. For
tractability, we focus on the special case of rank-one alternatives. In such case,
using the recent result of Dharmawansa and Johnstone (2014), we represent the
hypergeometric function of two high-dimensional matrix arguments in the form of
a contour integral that involves a scalar hypergeometric function of the same type.
Then we deform the contour of integration so that the integral becomes amenable
to Laplace approximation analysis (see Olver (1997), chapter 4).

Using the Laplace approximation technique, we show that the log likelihood
ratios are asymptotically equivalent to random quadratic functions of the spike
parameters. The randomness in the quadratic function enters via a linear spectral
statistic of a large random matrix of either sample covariance or F-ratio type.
Using CLT for the linear spectral statistics, established by Bai and Silverstein
(2004) for the sample-covariance-type random matrices and by Zheng (2012) for the
F-ratio-type random matrices, we derive the asymptotic Gaussianity and obtain
the mean and the autocovariance functions of the log likelihood ratio processes.

The derived asymptotics of the log likelihood processes shows that the corre-
sponding statistical experiments do not converge to Gaussian shift experiments.
In other words, the experiments that consist of observing the solutions to equation
(1) parameterized by the values of the spikes under the alternative hypothesis are
not of the Locally Asymptotically Normal (LAN) type. This implies that there are
no ready-to-use optimality results associated with LAN experiments that can be
applied in our setting. However at the fundamental level, the derived asymptotics
of the log likelihood ratio processes is all that is needed for the asymptotic analysis
of the risk of the corresponding statistical decisions.

In this paper, we use the derived asymptotics together with the Neyman-
Pearson lemma and Le Cam’s third lemma (see van der Vaart (1998)), to find
simple analytic expressions for the asymptotic power envelopes for the statistical

tests of the null hypothesis of no spikes in the data. The form of the envelope is



different depending on whether both H and E in the corresponding equation (1)
are Wisharts or only H is Wishart whereas F is deterministic.

For most of the cases, as the value of the spike under the alternative increases,
the envelope, at first, rises very slowly. Then, as the spike approaches the phase
transition, the rise quickly accelerates and the envelope ‘hits’ unity at the threshold.
However, in cases of two Wisharts and when the dimensionality is not much smaller
than the degrees of freedom of E, the envelope rises much faster. In such cases, the
information in all the eigenvalues of £~ H might be useful for detecting population
spikes which lie far below the phase transition threshold.

A type of the analysis performed in this paper has been previously implemented
in the study of the principal components case by Onatski et al (2013). Our work
extends theirs to the remaining four cases in James’ classification of multivariate
statistical problems. One of the hardest challenges in such an extension is the rig-
orous implementation of the Laplace approximation step. With this goal in mind,
we have developed asymptotic approximations to the hypergeometric functions | F}
and o F which are uniform in certain domains of the complex plane.

A trivial observation that the solutions to equation (1) can be interpreted as
the eigenvalues of random matrix F~'H relates our work to the vast literature on
the spectrum of large random matrices. We refer the reader to Bai and Silverstein
(2006) for a recent book-long treatment of the subject. Three extensively studied
classical ensembles of random matrices are the Gaussian, Laguerre and Jacobi en-
sembles (see Mehta (2004)). However, only the Laguerre and Jacobi ensembles are
relevant for the five scenarios for (1) that correspond to James’ five-fold classifica-
tion of multivariate statistical problems. This prompts us to search for a “missing”
class in James’ system that could be linked to the Gaussian ensemble.

Such a class is easy to obtain by taking the limit of \/ni (H — I,) as ny — oo,
where n; and p are H’s degrees of freedom and dimensionality, respectively. The
corresponding statistical problem can be called “symmetric matrix denoising”.
Under the null hypothesis, the observations are given by a pxp matrix Z/,/p with Z
from the Gaussian Orthogonal Ensemble. Under the alternative, the observations
are given by Z/,/p+ ®, where ® is a deterministic symmetric matrix of low rank.
We call this situation “case zero”, and add it to James’ classification. We derive
the asymptotics of the corresponding log likelihood ratio and obtain the related
asymptotic power envelope.

Many existing results in the random matrix literature do not require that the

data are Gaussian. This suggests that some results about tests for the presence
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of the spikes in the data may remain valid without the Gaussianity. One may for
example consider H and F in (1) that, although have the form of sample covariance
matrices, do not come from the underlying Gaussian distribution, and study the
properties of the corresponding tests. We leave this line of research to the future.

Since the explicit form of the joint distribution of the solutions to (1) is only
known in the Gaussian case, it seems unlikely that one would be able to completely
summarize the asymptotic behavior of the corresponding non-Gaussian statistical
experiments. We hope that the results of this paper, that provide such a summary
under the Gaussianity, can serve as a useful benchmark for the future studies that
would relax our assumptions.

The rest of the paper is organized as follows. In the next section, we relate
the five different cases of equation (1) to the classical multivariate statistical prob-
lems representing different cells of James’ (1964) five-fold classification system. In
Section 3, we obtain explicit expressions for the likelihood ratios. Section 4 repre-
sents the likelihood ratios in the form of contour integrals. Section 5 performs the
Laplace approximation analysis. Section 6 derives the asymptotic power envelopes.

Section 7 concludes. Technical proofs are given in the Appendix.

2 Links to classical statistical problems

Case 1 corresponds to the problem of using n; iid. N, (0,9Q) (p-dimensional
Gaussian) observations to test the null hypothesis that the population covariance

() equals a given matrix >. The alternative of interest is
Q=3+ oy

with unknown 6 > 0 and ¢, where ¢ is normalized so that ||S~1/2y| = 1.
Without loss of generality, we may assume that > = I,. Then under the
null, the data are isotropic noise, whereas under the alternative, the first principal
component explains a larger portion of the variation than the other principal com-
ponents. We therefore label Case 1 as the ‘principal components analysis’ (PCA)
case.
The null and the alternative hypotheses can be formulated in terms of the

spectral ‘spike’ parameter 6 as

H0:90:OandH1:(90:9>0, (2)



where 6, is the true value of the ‘spike’. This testing problem remains invariant
under the multiplication of the pxn; data matrix from the left and from the right by
orthogonal matrices, and under the corresponding transformation in the parameter
space. A maximal invariant statistic consists of the solutions A; > ... > A, of
equation (1) with H equal to the sample covariance matrix and £ = .. We restrict
attention to the invariant tests. Therefore, the relevant data are summarized by
Ay ooy Ap.

Case 2 is represented by the problem of testing the equality of covariance matri-
ces, {2 and X, corresponding to two independent p-dimensional zero-mean Gaussian

samples of sizes n; and ns. Throughout the paper, we shall assume that
p < min{ny,ny}.

The assumption p < n, is made to ensure the almost sure invertibility of matrix
E in (1), whereas the assumption p < n; is made to reduce the number of various
situations which need to be considered. Such a reduction makes our exposition
more concise.

Returning to Case 2, the alternative hypothesis is the same as in the PCA
case. Similar invariance considerations lead to tests based on the eigenvalues of
the F-ratio of the sample covariance matrices. Matrix H from (1) equals the
sample covariance corresponding to the observations that might contain a ‘signal’
responsible for the covariance spike, whereas matrix E equals the other sample
covariance matrix. We label Case 2 as the ‘signal detection’ (SigD) case. In this

case, we find it more convenient to work with the p solutions to the equation

det (H—)\ <E+Z—;H)) =0, (3)

which we also denote A\; > ... > ), to make the notations as uniform across the
different cases as possible. Note that as the number of observations in the second
sample, ng, diverges to infinity while n; and p are held constant, equation (3)
reduces to equation (1), FE converges to X, and SigD reduces to PCA.

Cases 3 and 4 occur in multivariate regression
Y=XpB+¢

when the goal is to test linear restrictions on the matrix of coefficients 3. Case 3



corresponds to the situation where the covariance matrix ¥ of the i.i.d. Gaussian
rows of the error matrix € is known. We label this case as ‘regression with known
variance’ (REGy). Case 4 corresponds to the unknown X, and we label it as
‘regression with unknown variance’ (REG).

As explained in Muirhead (1982), pp. 433-434, the problem of testing linear
restrictions on  can be cast in the canonical form, where the matrix of transformed
response variables is split into three parts, Y;*, Y5, and Y3". Matrix ;" is ny X p,
where p is the number of response variables and n; is the number of restrictions.

Under the null hypothesis, EY;* = 0, whereas under the alternative,

EY" = vmbpy’, (4)

where 6 > 0, || S7Y2¢|| = 1, and |¢|| = 1. Matrices Y5 and Y5 are (¢ —ny) X p
and (T — q) x p, respectively, where ¢ is the number of regressors and T is the
number of observations. These matrices have, respectively, unrestricted and zero
means under both the null and the alternative.

For REGy, sufficiency and invariance arguments lead to tests based on the
solutions Ay, ..., A, of (1) with

H=Y"Y{/n; and F = X.

These solutions represent a multivariate analog of the difference between the sum of
squared residuals in the restricted and unrestricted regressions. For REG, similar

arguments lead to tests based on the p solutions Ay, ..., A, of (3) with
H =YY /n; and E = Y;'YS /na,

where ny = T'—q. These solutions represent a multivariate analog of the ratio of the
difference between the sum of squared residuals in the restricted and unrestricted
regressions to the sum of squared residuals in the restricted regression. Note that,
as ny — oo while n; and p are held constant, REG reduces to REG.

Case 5 occurs in situations where the researcher would like to test for the
independence between Gaussian vectors x; € RP and y; € R™, given zero mean

observations with ¢ = 1, ..., n; +ns. Partition the population and sample covariance



. . /
matrices of the observations (z}, ;)" as

<me 2:173;) and (Sxx Swy)
Eym Eyy Syx Syy

respectively. Under the null hypothesis, ¥,, = 0. The alternative of interest is

7119 ’
Say = ||~
Y \/n10+n1+n2¢90

where the vectors of nuisance parameters ¢ € R and ¢ € R™ are normalized so
that
=222l = (=5, ¢l = 1.

z vy

The peculiar form of the expression under the square root is chosen so as to simplify
various expressions in the analysis that follow.
The test can be based on the sample canonical correlations Ay, ..., A,, which are
solutions to (1) with
H= S’M,Sy’ylSylr and £ = S,,.

We label Case 5 as the ‘canonical correlation analysis’ (CCA) case. Remarkably,
the sample canonical correlations also solve (3) with different H and F, such that
E'is a central Wishart matrix and H is a non-central Wishart matrix conditionally
on a random non-centrality parameter (for details, see Theorem 11.3.2 of Muirhead
(1982)).

Finally, as discussed in the Introduction, we also consider Case 0, which we
label as the ‘symmetric matrix denoising’ (SMD) case. Given a p X p matrix
X = ®+7/,/p, where Z is a noise matrix from the Gaussian Orthogonal Ensemble
(GOE), a researcher would like to make inference about a symmetric rank-one
“signal” matrix ® = 10¢’. Recall, that a symmetric matrix Z belongs to GOE if

its diagonal and sub-diagonal entries are independently distributed as

The null and the alternative hypotheses are given by (2). The nuisance ¢ €
R? is normalized so that ||¢)|| = 1. The problem remains invariant under the
multiplication of X from the left by an orthogonal matrix, and from the right by
its transpose. A maximal invariant statistic consists of the solutions Ay, ..., A, to
(1) with H = X and E = I,. We consider tests based on Ay, ..., Ap.
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The SMD case can be viewed as a degenerate version of all of the above cases.

For example, consider REG( with

BY}" =y (p/n1)1/2 ny 0y,

so that the original value of the spike 6 (see equation (4)) is scaled by (p/n;)"?.
Suppose now that n; diverges to infinity while p is held constant. Then, by a

Central Limit Theorem (CLT),

SRS~ gy = 2]+ ol + op (n1'?). )

where Z belongs to GOE and n = ¥7%/2¢). On the other hand, equation (1) is
equivalent to
det (S7V2HE ™12 - \I,) = 0. (6)

Multiplying it by 1/n1/p and using (5), we see that equation (6) degenerates to

det (Z/\/p +n0n — pul,) =0 with = /ny/p (A —1).

Hence, REG( degenerates to SMD.

For the reader’s convenience, we summarize links between the different cases
and the definitions of the corresponding matrices H and F in Figure 1. We denote
the p-dimensional Wishart distribution with n degrees of freedom, covariance para-
meter 3, and non-centrality parameter U as W), (n, X, U) . Recall that, if A = B'B,
where the n x p matrix B is N (M, I, ® £), then A ~ W, (n, X, ¥) with the non-
centrality ¥ = S7!M'M. Notation W, (n,Y) is used for the central Wishart
distribution. Without loss of generality, we assume that X = I,,.

All the cases eventually degenerate to SMD via sequential asymptotic links.
Cases SMD, PCA, and REGy, forming the upper half of the diagram, correspond
to random H and deterministic £. The cases in the lower half of the diagram
correspond to both H and E being random. Cases PCA and SigD are “parallel” to
cases REG(y and REG in the sense that the alternative hypothesis is characterized
by a rank one perturbation of the covariance and of the non-centrality parameter
of H for the former and for the latter two cases, respectively. Case CCA “stands
alone” because of the different structure of H and F. As discussed above, CCA can
be reinterpreted in terms of H and F such that F is Wishart, but H is a non-central

Wishart only after conditioning on a random non-centrality parameter.



SMD
H=GOE/\/p+®

E=1I
] — 00 / Ny — 0O
8 — y/p/mb 8 — +/p/mab
PCA REG
mH= Wp(nl,fp +¢) mH= Wp(n]_, Ip,nl‘I)
flg — 00 fla — 00 113 — OO
SigD REG
'an = W:,(ﬂ-l, Ip + @) ‘an = Wp(nl, Ip, nl*I')
e E = Wy(ne, I) CCA 1 E = Wy(ng, I)

E=8,

Figure 1: Matrices H and E, and links between the different cases. Matrix ® has
the form 10y’ with 6 > 0 and [|¢|| = 1.

10



Case ;F; () a b Uy

SMD oFy exp(—pb?/4) B Op/2

PCA oFy (1+6) ™/ O /2(1+9))
SigD  1Fy, (1+6) ™/ n/2 O/ (na(1+6))
REGy oF1 exp(—n10/2) _ ni/2 0On?/4

REG 1F; exp(—n10/2) n/2 ni/2 0n?/(2ny)

CCA  F, (L4+nmf/n)™* (n/2,n/2) ni/2 6n2/(n2+ ngny (14 6))

Table 1: Parameters of the explicit expression (7) for the likelihood ratios. Here
n =ni + no.

3 The likelihood ratios

Our goal is to study the asymptotic behavior of the likelihood ratios, which are
defined as the ratios of the joint density of Ay, ..., A, under the alternative to that
under the null hypothesis, where both densities are evaluated at the observed values
of the \’s. Let

A =diag {\1, ..., A},

and let us denote the likelihood ratio corresponding to particular case ‘Case’ =
‘SMD’, ‘PCA’, etc. as L) (§; A). Then

L) (9 A) = o (0) 5F (a,b; 9, A) , (7)

where ¥ is a p-dimensional matrix diag {U13,0, ...,0} , and the values of ¥y1, o (6),
P, 4, a, and b are as given in Table 1.

We prove that LMD) (9; A) is as in (7) in the Appendix. For PCA, the explicit
form of the likelihood ratio is derived in Onatski et al (2013). For SigD, REG, and
REG, the expressions (7) with the parameters given in Table 1 follow, respectively,
from equations (65), (68), and (73) of James (1964). For CCA, the expression is a
corollary of Theorem 11.3.2 of Muirhead (1982).

Recall that hypergeometric functions of two matrix arguments ¥ and A are
defined as

. 1 (al)n (a’ﬁ)n Cﬁ (\IJ) Cﬁ (A>
@B VD= 50 G ), Gy
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where a = (ay,...,a5) and b = (by,....,b;) are parameters, x are partitions of the
integer k, (a;), and (b;), are the generalized Pochhammer symbols, and C,, are the
zonal polynomials (see Muirhead (1982), Definition 7.3.2). As mentioned in the
Introduction, James’ (1964) classification of the multivariate statistical problems
is based on the type of ;Fj; that occur in related probability distributions. The
function Fj of exponential type corresponds to the first class represented by PCA;
the function  Fy of binomial type corresponds to the second class represented by
SigD; the function oF; of Bessel type is associated with the third class represented
by REGy; the confluent hypergeometric function 1 F; is associated with the fourth
class represented by REG; and the Gaussian hypergeometric function oF) corre-
sponds to the fifth class represented by CCA. Note that some links between the
cases illustrated in Figure 1 can also be established via asymptotic relations be-
tween the hypergeometric functions in the different rows of Table 1. For example,
the links REG—REG( and SigD—PCA as ny — oo while p and n; are held con-
stant follow from the confluence relations (see, for example, chapter 3.5 of Luke
(1969))

oF1 (b; ¥, A) = lim 1 Fy (a,b; a_llll,A) and
OF() (W,A) = lim 1F0 (CL, CLil\II,A) .

a—00

In the next section, we shall study the asymptotic behavior of the likelihood

ratios (7) as ny, ng, and p go to infinity so that

clzn%—wyle(o,l) andcgzn%—vyge(o,l]. (8)
We denote this asymptotic regime as n,p —. oo, where n = {ny,n,} and v =
{71,772} . To make our exposition as uniform as possible, we use this notation for
all the cases, even though the simpler ones, such as SMD, do not refer to n. In the
Conclusion, we briefly discuss possible extensions of our analysis to the situations
with v, > 1.

We are interested in the asymptotics of the likelihood ratios under the null
hypothesis, that is when the true value of the spike, 6y, equals zero. Before turning
to the next section, let us provide a relevant background on the asymptotics of
A. Under the null, Ay, ..., A, are the eigenvalues of GOE/,/p in SMD case; of
W, (n1,1,) /n1 in PCA and REGq cases; and of a scaled (by a factor of na/n;)

p-dimensional multivariate beta matrix with parameters n;/2 and ny/2 in SigD,
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Case FI™  density for f_ <\ < g4 By Threshold 6
SMD  SC  &/(Br =N (A—5) +2 1

REG, MP 2N \/(5+ —A)A=5) (1 + ﬁ)z an

Sigh + i1\ +
REG w 27T”Y1P;\1(’Y1PYE’)/2>\) \/(6+ o A) (/\ - B_) N (ffﬂ:’y2> 15,
CCA

Table 2: The semi-circle, Marchenko-Pastur, and (scaled) Wachter distributions.
Here p = /71 + 72 — 7172. In the case where v; > 1, which is not considered in
this paper, the Marchenko-Pastur and Wachter distributions will also have mass
(y1—1) /7 at zero. Column ‘Threshold §’ reports the values of the phase transition
thresholds.

REG, and CCA cases. For a definition of the multivariate beta, see Muirhead
(1982), p. 110.
Let

. 1L
P () =23 "1{)\;, <A}
zojzz1 !

be the empirical distribution of Ay,...;\,. As is well known (see Bai (1999)), as

n,p —, 00, F(Case) almost surely (a.s.) weakly converges
F(Case) = F’lyim’

where Fiim is the semi-circle distribution F°¢ in SMD case; the Marchenko-Pastur
distribution /" in PCA and REG cases; and the (scaled) Wachter distribution
FVW in SigD, REG, and CCA cases. Table 2 reports the explicit forms of these
limiting distributions. Note that the cumulative distribution functions F. }/im (\) are
linked in the sense that F1V (X) — F2/7 (X) when 75 — 0 and FX7 (/1A + 1) —
F3¢(\) when v, — 0.

For what follows it will be important that the centered linear spectral statistics

p

>t —p [0 aRm (), (9)

J=1

where ¢ is a ‘well-behaved’ function, converge in distribution to Gaussian random
variables. The corresponding CLTs are established in Bai and Yao (2005), Bai and
Silverstein (2004), and Zheng (2012) for the cases of the semi-circle, Marchenko-
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Pastur, and Wachter limiting distributions, respectively. Note that the centering
constant is defined in terms of FI™ where ¢ = {c;,co}. That is, the “correct
centering” can be computed using the densities from Table 2, where v; and 7, are
replaced by ¢; = p/n; and cs = p/ny, respectively.

Finally, let us note the behavior of the largest eigenvalue A\; under the alter-
native hypothesis. As is well known, A\; a.s. converges to the upper boundary of
support of Fiim as long as @ remains below the phase transition threshold §. The
value of the threshold is reported in the last column of Table 2. When 6 > 6, \;
separates from ‘the bulk’ of the other eigenvalues and a.s. converges to a point
strictly above the upper boundary of the support of Fiim. For details, we refer the
reader to Maida (2007), Baik and Silverstein (2006), Nadakuditi and Silverstein
(2010), Onatski (2007), Dharmawansa et al (2014a), and Bao et al (2014) for cases
SMD, PCA, SigD, REGq, REG, and CCA, respectively.

The fact that A\; converges to different limits under the null and under the
alternative hypothesis sheds light on the behavior of the likelihood ratio when 6 is
above the phase transition threshold. In such cases, which can be called the cases
of super-critical 0, the likelihood ratio degenerates. The sequences of measures
corresponding to the distributions of A under the null and under super-critical
alternatives are asymptotically mutually singular as n, p —., 0o (see Montanari et
al (2014) and Onatski et al (2013) for a detailed analysis of SMD and PCA cases).
In contrast, as we shall show below, the sequences of measures corresponding to
the distributions of A under the null and under sub-critical alternatives (6 is below
the threshold) are mutually contiguous, and the likelihood ratio converges to a

Gaussian process.

4 Contour integral representation

Asymptotic behavior of the likelihood ratios (7) depends on that of ;F; (a, b; ¥, A).
There is a large and well established literature on the asymptotics of ;F; (a, b; U, A)
when the parameters and the norm of the matrix arguments grow while the di-
mensionality of the latter remains fixed (see Muirhead (1978) for a review). In
contrast, relatively little is known about the asymptotic regime that allows the
dimensionality of the matrix arguments W, A diverge to infinity. In this paper,
we investigate such an asymptotic regime. We exploit the fact that, since we

study single-spiked models, the matrix argument W has rank one. This allows us
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to represent ;F; (a,b; ¥, A) in the form of a contour integral of a hypergeometric
function with a single scalar argument. Such a representation implies contour in-
tegral representations for the corresponding likelihood ratios, which we summarize
in the following lemma. The results of the lemma are used below to derive the
asymptotics of the likelihood ratios via the Laplace approximation.

In what follows, we omit the superscripts ‘(Case)’ and ‘lim’ for quantities such
as L(C59) (9; A) | F(Cos9) ()} and FI™ ()) to simplify our notation. However, we

shall use these superscripts to identify particular instances, when necessary.

Lemma 1 Assume that p < min{ny,ns}. Let K be a contour in the complex
plane C that starts at —oo, encircles 0 and Ay, ..., A, counterclockwise, and returns

to —oo. Then

I'(s+1)a(d)qgs < ~1/2

L(o:) =~ /KﬁFq- (a—s.b—s: \Ifuz)jlj[l (2= \)Y2dz, (10)
where s = p/2 — 1, the values of a (0), V11, a, b, p, and q for the different cases
are given in Table 1; a — s and b — s denote vectors with elements a; — s and
b; — s, respectively; the hypergeometric function under the integral is the standard

hypergeometric function of a scalar argument; and

In cases SigD and CCA, we require, in addition, that the contour KC does not

intersect [\111_11, oo) , which ensures the analyticity of the integrand in an open subset
of C that includes K.

The statement of the lemma immediately follows from Proposition 1 of Dhar-
mawansa and Johnstone (2014) and from equation (7). Our next step is to apply
the Laplace approximation to integrals (10). To this end, we shall transform the
right hand side of (10) so that it has a “Laplace form”

L(8:0) = VATs; [ exp{-pf(:)}al:)d (11)

Leaving /7p/ (27i) separate from g(z) allows us to choose f(z) and g(z) that are

bounded in probability, and makes some of the expressions below more compact.
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Case 2f; g1/(1+0(1))

SMD 1+ 6%/2+nf 0

PCA 1+52m(1+6)+nt fcr' (1+0)7"

SigD 2f(PCA — 14 Inate — % In lecz 02 (1+60)""r (e +co)'?
REG, 1+%2 +Inl +1an(l—¢) fcrt (1—cy) /2

REG 2f(REG°) 1+1Inate2 — % In Cli@ 0c72 (1 —c1) 27 (c1 + )2
CCA  2ffF9 10 _ 2 0 (1— ) 212 (cp + ) 17}

Table 3: Values of 2f; and g;/(1 + o(1)) for the different cases. The terms o(1)
do not depend on 6 and converge to zero as n,p —., co. The term r? is defined as
r? = ¢1 + ¢y — ¢1¢o. The term [ = [(0) is defined as [(0) =1+ (1 + 0)ca/cy.

In order to apply the Laplace approximation, we shall deform the contour of in-
tegration so that it passes through a critical point zq of f(z) and is such that
Re f(z) is strictly increasing as z moves away from z, along the contour, at least

in a vicinity of zg.

4.1 The Laplace form

We shall transform (10) to (11) in three steps. As a result, functions f and g will

have the forms of a sum and a product,

f(z)=fr+ fir(2)+ fir (2) and
g(Z) =91 X g11 (Z) X g[[[(z),

where f; and g; do not depend on z.
First, using the definitions of « (0), ¢s, ¥1; and employing Stirling’s approxi-

mation, we obtain a decomposition

C(s+1)a(8)qgs
VY,
where g; remains boudned as n,p —, co. The values of 2f; and g; are given in

Table 3. It should be noted that f(REG fI(CCA) — fI(REGO) and fI(SigD) — f](PCA)

as cg — 0.

=exp{—pfi}ar, (12)
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Next, we consider the decomposition

(2= N\) " = exp {—pfir(2)} g1 (2), (13)

p
=1

J

where

2fr1(z) = /ln (z = A)dEFe(N), (14)

and

a11(2) = exp {—g /m (=N (F () - F (V) } | (15)

For f;;(z) and g;7(2) to be well-defined we need z not to belong to the support
of F,, which we assume.! Note that g;;(z) is the exponent of a linear spectral
statistic, which converges to a Gaussian random variable as n,p —, oo under
the null hypothesis. Since F}V(X\) — FMP(X) as ¢; — 0, we have ff(}qigD)(z) =
€ CCA . CA REG
Fi77(2) = f17“V(2) converging to fi; " (2) = fi777)(2).
Finally, we obtain a decomposition
ol (a—s,b—s,Vn2) = exp{—pfrr1(2)} grrr(2). (16)
For SMD, PCA, and SigD, the corresponding ;F; can be expressed in terms of

elementary functions, and we set

—20 for SMD
2frir(z) = ¢ =20/ (c1 (1 +60)) for PCA (17)
In[1—cp20/ {cy (1 +0)}7?/ (c1c2) for SigD

and

1 for SMD and PCA
grr(z) = { ' . (18)

[1— 20/ {c1 (146)}]" for SigD

As cg — 0, fl(}q;gD)(z) converges to fI(fICA)(z). Since, as has been shown above, a

similar convergence holds for f; and f;;, we have f(519P)(z) — f(PCA () as ¢y — 0.
Combining (14) and (17) with the information supplied by Table 3, we also see
that f(PON(z) — fEMD)(2) as ¢; — 0 after the transformations 6 — ,/c10 and
z > /ciz+ 1.

Unfortunately, for REGq, REG, and CCA, the corresponding ;F; do not admit

!By definition, contour K encircles the support of a , and hence z € K does not belong to such
support.
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exact representations in terms of elementary functions. Therefore, we shall consider

their asymptotic approximations instead. Let

m=(ny—p)/2ande=(n—p)/(n1—p).

Further, let

20/ (1 —c;)? for j =0
nj =1 20cy/[c1(1—¢p)] forj=1, (19)
20c3/ [c31(0)] for j =2
where
1(0) =1+ (1+0)cy/cr. (20)
With this notation, we have
oF1 (m+ 1;m?n) = Fy for REG,
ﬁFq = 1F1 (m6+1,m+1,mn1) EFl for REG . (21)

oy (me+1,me+1;m+ 1;n) = F, for CCA

The function Fj can be expressed in terms of the modified Bessel function of
the first kind 7, (-) as (see Abramowitz and Stegun (1964), equation 9.6.47)

Fo=T(m+1) (m*m) "™ I, <2mn3/2) . (22)

This representation allows us to use a known uniform asymptotic approximation of
the Bessel function (see Abramowitz and Stegun (1964), equation 9.7.7) to obtain

the following lemma. Let

0o (t) =Int—t—mno/t+1andty= <1+\/1+4770) /2. (23)
Further, for any § > 0, let {295 be the set of 19 € C such that
largmo| < m — 0, and gy # 0.

Lemma 2 As m — oo, we have

Fo = (1 +4n0) ™" exp {=mego (to)} (1 + 0(1)) . (24)

The convergence o(1) — 0 holds uniformly with respect to ng € Qs for any § > 0.
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We would like to point out that the right hand side of (24) can be formally
linked, via (22), to the saddle-point approximation of the integral representation
(see Watson (1944), p. 181)

1/2 776”/26’” ) 1
I, <2m770 ) = T/ exp {—mpo (1)}t~ dt.

Point ¢, can be interpreted as a saddle point of ¢ (¢), and the term (1 + 4770)_1/ 4
in (24) can be interpreted as a factor of (¢! (o)) />

To obtain uniform asymptotic approximations to functions F; and F5, we use
the contour integral representations (see Olver et al (2010), equations 13.4.9 and

15.6.2)

c (1+)
Fy=5= i exp {—mep; (1)} ; () dt, (25)
where
_T'm+1)T(m(e—-1)+1)
Cm = ['(me+1) ’ (26)
) —mt—elnt+(e—1)In(t—1) for j =1
Pl { et/ (1) + - Dha(-1) forj—2
and
- for j =1
vilt) = { t—1)" A —nt)" forj=2" 23)

For j = 2, the contour does not encircle 1/7,, and the representation is valid for
ne such that |arg (1 —n2)| < m. We obtain the following lemma by deriving a

saddle-point approximation to the integral in (25). The relevant saddle points are

1 2 :
— 77«—14—\/(7]—1) +4577«} for j=1
tp=q { ! ’ ’ (29)
m{—u V1t (e — 1)nj} for j = 2
We shall need the following additional notation. Let
wj = arg ¢ (t;) +m and wy; = arg (t; — 1), (30)

where the branches of arg (-) are chosen so that |w; + 2wg;| < 7/2. Further, for any
small 6 > 0 let €5 be the set of (¢,71) € R x C such that 6 <e—1<1/6, and

Rem > —2e+ 1, dist (1, R\ [0,00)) > 6, |m]| < 1/6.
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Figure 2: Cross-sections of the sets {5 for ¢ = 2 and 0 = 0.1. The horizontal and
vertical axes correspond to the real and purely imaginary numbers, respectively.

Similarly, let Q55 be the set of (¢,75) € R x C such that 6 <e—1<1/4, and
dist (7727R\ [07 1]) > 57 |772’ < 1/6

Here, for any A C C and B C C, dist (A, B) = inf,capep |a — b| . Figure 2 shows

cross-sections of €5 and 295 for fixed .

Lemma 3 As m — oo, we have for j = 1,2
—iws —1/2
Fy = Cotty (t5) 7972 2mmg] (1) exp {—mep; ()} (1 +0(1).  (31)

The convergence o(1) — 0 holds uniformly with respect to (e,m) € Qs for any
0> 0.

Point-wise asymptotic approximation (31) was established in Passemier et al
(2014) for j = 1, and in Paris (2013a,b) for j = 2. However, those papers do
not study the uniformity of the approximation error, which is important for our
analysis. A proof of Lemma 3 is available from the authors upon request. We shall
report it elsewhere.

Using Lemmas 2, 3, and Stirling’s approximation

O = Mexp {m(e—1)n(e —1) —melne} (1 +o(1))  (32)
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we set the components of the “Laplace form” (16) of ;F; for cases REGq, REG,
and CCA as follows

1501 ©@o (to) for REGO
2fi(2) =4 |
-2 (py () telne—(e—1)In(e —1)) for REG and CCA
(33)
and
() = (1+4m0) " (14 0 (1)) for REG
gt Ve fr2e il |l (tj)rl/Q ¥; (t;) (1 +0(1)) for REG and CCA

(34)

To express t; and 7; in terms of z, one should use (29) and (19). We do not need
to know how exactly o (1) in (34) depend on z. For our purposes, the knowledge
of the fact that o (1) are analytic functions of n; that converge to zero uniformly
with respect to (g,7;) € 5 is sufficient. The analyticity of o(1) follows from the
analyticity of the functions on the left hand sides, and of the factors of 14 o(1) on
the right hand sides of the equations (24) and (31).

Using the definitions of ¢, and ¢;, it is straightforward to verify that f }EEG)<Z)
and fI(ICICA)(z) converge to f}f}EGO)(z) as ¢ — 0. Since, as has been shown
above, a similar convergence holds for f; and f;;, we have fEG)(z), f(CCA () —
fIEGO)(2) as ¢y — 0. Elementary calculations that use equations (14), (23), (33)
together with the explicit forms of f](REGO) and fI(SMD) given in Table 3 show
that fEEG)(2) — fSMD)(2) as ¢y — 0 after transformations  +— /c16 and

z = \/ez+ 1.

4.2 Contours of steep descent

We shall now show how to deform contours K in (11) into the contours of steep
descent. First, we find saddle points of functions f(z) for each of the six cases.
Note that the derivative of fr;(z) equals minus half of the Stieltjes transform
me (2) of the corresponding limiting spectral distribution Fi.. Although the Stieltjes
transform is formally defined on C*, the definition remains valid on the part of
the real line outside the support [b_,b,] of F.. Since we assume that v, < 1, Fy
does not have any non-trivial mass at 0 for sufficiently large n and p.

To find saddle points of f(z) we solve equation

me (2) = 2dfr11(2)/dz. (35)
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In the Appendix, we find real solutions to (35), zo, that satisfy inequality zq > b..

These solutions are reported in the following lemma.

Lemma 4 Let by be the upper boundary of support of F,, and 0 be the threshold
corresponding to F, as given in Table 2. Then, for 0 € (0, 9_) and sufficiently large

n andp asn,p —- 00,

6+1/0 for SMD
(140)(0@+c1)/0 for PCA and REG, (36)
(14+0)(@+c1)/[01(0)] for SigD, REG, and CCA

20

satisfy inequality zo > by and solve equation (35).

As ¢y — 0 while ¢; stays constant, the value of zy for SigD, REG, and CCA
converges to that for PCA and REGq. The latter value in its turn converges to
the value of zy for SMD when ¢; — 0, after the transformations 6 — ,/c;0 and

29 — /€120 + 1. Precisely, solving equation

Vaz+1 =1+ ab) (Vab + i) ) (Veib)

for zg and taking limit as ¢; — 0 yields zo = 6 + 1/6.

For the rest of the paper, assume that 0 € (O, 9). We deform contour K in (11)
so that it passes through the saddle point zy as follows. Let K = K, U K_, where
KC_ is the complex conjugate of K, and K, = K; UK,. For SMD, PCA, and SigD,
let

Ki={z+it:0<t <2z} and (37)
Ko ={z+1i22: —00o <z < z}. (38)

The deformed contour is shown on Figure 3.

Note that the singularities of the integrand in (11) are situated at z = A; (plus
an additional singularity at z = ¢;(1 + )/ (fcy) < 2z for SigD). Since \; “3 3,
and zp > b, inequality zy > A; must hold with probability approaching one as
n,p —, 0o. Therefore by Cauchy’s theorem, the deformation of the contour does
not change the value of L (6; A) with probability approaching one as n,p —., co.

Strictly speaking, the deformation of the contour is not continuous because
does not approach K_ at —oo. In particular, in contrast to the original contour,

the deformed one is not “closed” at —oo. Nevertheless, such an “opening up” at

22



K,

i2Z0
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—iQZ()

Figure 3: Deformed contour I for SMD, PCA, and SigD.

—oo does not lead to the change of the value of the integral because the integrand

converges fast to zero by absolute value as Re z — —o0.

Remark 5 In the event of asymptotically negligeable probability that the deformed
contour K does not encircle all \;, we not only loose the equality (11) but also face
the difficulty that function g(z) ceases to be well defined as the definition of gr;(z2)
contains a logarithm of a non-positive number. To eliminate any ambiguity, if such

an event holds we shall redefine gr;(z) as unity.

For REGy and CCA, let

)

=)’/ 40 for REG
= (1—¢1)’1(0)/[46r?] for CCA

and let

K1 =1z 4|20 — z1|exp{iv} : v € [0,7/2]} and
Ko={z1—x+ |20 — z1]exp{in/2} : © > 0} .

The corresponding contour K is shown on Figure 4. Similarly to the SMD, PCA
and SigD cases, the deformation of the contour in (11) to K does not change the

value of L (f; A) with probability approaching one as n,p —., co.
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Figure 4: Deformed contour K for REGy and CCA.

For REG, deformed contour K in z-plane is simpler to describe as an image of

a contour C in 7-plane, where 7 = n;t; with

m = z0cy/ [c1 (1 — 1) (39)

and ?; as defined in (29). Let C = C; UC_, where C_ is the complex conjugate of
C, and C. = C; UCs, and let

Ci={—-e+|mo+telexp{iv}:v€[0,7/2]} and
Co={—c—a+|r+e|lexp{in/2} : x> 0},

where 7o = (0 +¢1) /(1 — 1) .
Using (39) and the identity

m=r1(r+1)/(r+¢), (40)
we obtain (1 e)r(rt)
“= 602 T+ ¢ i (41)

We define the deformed contour K in z-plane as the image of C under the trasfor-
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mation 7 — z given by (41). The parts K., K_, K1 and Cy of K are defined as the
images of the corresponding parts of C. Note that 7y is transformed to zy so that
IC passes through the saddle point zj.

The following lemma is proven in the Appendix. It shows that KC; are contours
of steep descent of — Re f (z) for all the six cases, SMD, PCA, SigD, REGy, REG,
and CCA.

Lemma 6 For any of the six cases that we study, as z moves along the corre-

sponding K1 away from zy, — Re f (2) is strictly decreasing.

5 Laplace approximation

The goal of this section is to derive Laplace approximations to the integrals

L) = Vg [ e {-pf(2)}g(2):

for the six cases that we study. First, consider a general integral

Ip7w = / eipqsp,w(z)xp’w(z)dzj
K

p,w

where p — 00, w is a k-dimensional parameter that belongs to a subset € of R¥,
K, is a path in C that starts at a,, and ends at b, ,, and for sufficiently large p,
®pw(2) is a single-valued holomorphic function of z in a domain 7, that contains
Kpw-

We allow x,.(2) to be a random element of the normed space of continuous
functions on K, ., with the supremum norm. Furthermore, we suppose that for any
d > 0, there exists p such that for any p > p, x, . (%) is a single-valued holomorphic
function of z in the domain 7}, ,, with probability larger than 1 —4. In what follows,
we shall omit subscripts p and w from the notation ¢, ., Xpw, Kpw, etc. to make
it lighter.

Suppose that ¢’ (z) = 0 at zy which is an interior point of I, and suppose
that Re ¢(z) is strictly increasing as z moves away from z, along the path. In
other words, the path K is a contour of steep descent of —Re(z). Denote a
closed segment of K contained between z; and 2, as [21, 22],.. Similarly denote the
segments that exclude one or both endpoints as [21, 22),, (21, 22), and (21, 22) -

Let 8 be the limiting value of arg (2 — 2p) on the principal branch as z — z, along
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(20,0)c. Finally, let ¢, and x, with s = 0,1, ... be the coefficients in the power

series representations

$(2) = bz —2)", x(2) =D _xs(z—=0)" (42)

We assume that there exist positive constants C1, ..., Cy that do not depend on

p and on w, such that for all w € Q, for sufficiently large p :

A0 The length of the path K is bounded, uniformly over w € €2 and all sufficiently

large p. Furthermore,

sup |z — 29| > C1, and sup |z — z| > C4
ZG(ZQ,b),C ZE(G,ZO),C

A1 Functions ¢ (z) and x(z) are holomorphic in the ball |z — zy| < C
A2 The coefficient ¢, satisfies Cy < |po| < C3

A3 The third derivative of ¢ (z) satisfies inequality

sup [ (2) d="] < C

|z—20]|<C1

A4 For any positive ¢ < (', which does not depend on p and w, and for all
z1 € K such that |z; — 29| = ¢, there exist positive constants Cs, Cs, such
that

Re (¢ (z1) — ¢o) > Cs and |Im (¢ (21) — ¢o)| < Cs

A5 For a subset © of C that consists of all points whose Euclidean distance from

K is no larger than C',
sup |x(z)| = Op(1)

z€0

as p — 00, where Op(1) is uniform in w € Q.

The following lemma is a fairly straightforward extension of Theorem 7.1 of
Olver (1997), p. 127 to the situation where functions ¢(z), x(z) and the contour
KC depend on p and w. In Olver’s original theorem, which uses different notation,
both the functions and the contour are fixed. A proof of the extension is available

from the authors upon request.
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Case Value of D, Case  Value of D,

SMD 1-— 92 REGO C1 (1 +c1 + 29) (Cl - (92)
PCA ¢ (1 —60%)(1+6)° REG cih(e,+0+(1+60)0) /1

SigD 2k (1+60)* /I CCA Sh(2(c1+0)+1(1—c)) /(B (c1+ )

Table 4: The values of Dy = 02(—2d?f(2)/dz?)"1. Here [ = () is as defined in
(20) and h = h(0) = ¢; + c2(1 + 0)% — 62.

Lemma 7 Under assumptions A0-Ab, for any positive integer k, as p — 00, we

have

K—

1
1\ a Op (1)
o —po j : 2s P
Ip7w — 26 poo [ F (8 + 5) p5+1/2 _|_ p’i+1/2

s=0

Y

where Op (1) is uniform in w € Q0 and the coefficients a; can be expressed through
¢; and x; defined above. In particular we have ag = XO/[2¢;/Q], where qb;/z =
exp {(log |¢2| + arg ¢o) /2} with the branch of arg ¢y chosen so that |arg ¢o + 23| <
/2.

We use Lemma 7 to obtain the Laplace approximation to

1
Li(6;A) = 7rp—/ e PP g(2)dz. (43)
’C1U’€1

2mi
Then we show that L; (0; A) asymptotically dominates the “residual” L (6;A) —
L1 (0;A). For this analysis, it is important to know the values of f(z9) and
d?f(z)/dz?. We derive them in the Appendix. It turns out that as long as
0 € [0,0), f(z0) = 0 for all the six cases that we study. The values of d?f(z)/dz?
are all negative. The explicit form of Dy = 62 (—2d2f(2)/dz2)"", which is some-
what shorter than that for d?f(zy)/dz? is reported in Table 4. We formulate the
main result of this section in the following theorem. Its proof is given in the

Appendix.

Theorem 8 Suppose that the null hypothesis holds, that is, 6y = 0. Let 0 be the
threshold corresponding to F, as given in Table 2, and let € be an arbitrarily small

fixed positive number. Then for any 0 € ((), 0 — E} , as N, p —,, 00, we have

. o 9<ZO> -1
L@M—¢J&WWMﬁOﬂp% (44)
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where Op (p~') is uniform in 6 € (O, 6 — 6] and the principal branch of the square

root s taken.

6 Asymptotics of LR

Combining the results of Theorem 8 with the definitions of g(z) and the values of
—2d%f(z)/dz? (given in Table 4), it is straightforward to establish the following

theorem. Let

A, (0) = p/ln (20— N (F )~ Fe()

In accordance with the remark made above, we define A,(6) as zero in the event

of asymptotically negligeable probability that zy < A;.

Theorem 9 Suppose that the null hypothesis holds, that is 6y = 0. Let 0 be the
threshold corresponding to F, as given in Table 2, and let € be an arbitrarily small

fixed positive number. Then for any 0 € ((), 0 — 8} , as N, p —., 00, we have

L(0;A) =exp {—%AP(Q) + %ln (1 — [0, (9)]2)} (1+o0p(1)),

where
0 for SMD

op(0) =19 0/\/cx for PCA and REG,
Or/ (c1l(0)) for SigD, REG, and CCA

and op(1) is uniform in 6 € (0,0 —¢].

Statistic A, () is a linear spectral statistic. As follows from the CLT derived
by Bai and Yao (2005), Bai and Silverstein (2004), and Zheng (2012) for the
semi-circle, Marchenko-Pastur, and Wachter limiting distributions F, , respectively,
statistic A,(f) weakly converges to a Gaussian process indexed by 6 € (O, 6 — e} )
The explicit form of the mean and the covariance structure can be obtained from
the general formulae for the asymptotic mean and covariance of linear spectral
statistics given in Theorem 1.1 of Bai and Yao (2005) for SMD, in Theorem 1.1 of
Bai and Silverstein (2004) for PCA and REG, and in Theorem 4.1 and Example 4.1
of Zheng (2012) for the remaining cases. For PCA, the corresponding calculations
have been done in Onatski et al (2013). We omit details of the similar calculations
for the remaining cases to save space. The convergence of A,(f) and Theorem 9

imply the following theorem.
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Theorem 10 Suppose that the null hypothesis holds, that is 6y = 0. Let 6 be the
threshold corresponding to F, as given in Table 2, and let € be an arbitrarily small
fixed positive number. Further, let C [O, 0 — 6} be the space of continuous functions
on [0, 0 — 5] equipped with the supremum norm. ThenIn L (0; A) viewed as random
elements of C [0, 0 — 5] converge weakly to L (0) with Gaussian finite dimensional

distributions such that

BL(6) = {1 (1- [5(0)])

and )
Cov (L (01),L(6:)) = —3 In(1—6(01)0(02))
with
6 for SMD
§(0) =< 0/ for PCA and REG,

Op/ (71 + v2 + 0v) for SigD, REG, and CCA

Here p,v1,7v2 are the limits of r,c1,c2 as n,p —., 0.

Note that the theorem establishes the weak convergence of the log likelihood
ratio viewed as a random element of the space of continuous functions. This is
much stronger than simply the convergence of the finite dimensional distributions
of the log likelihood process. In particular, the theorem can be used to find the
asymptotic distribution of the supremum of the likelihood ratio, and thus, to find
the asymptotic critical values of the likelihood ratio test. We do not pursue this
line of research here.

Let {P,o} and {P, o} be the sequences of measures corresponding to the joint
distributions of A4, ..., A\, when 6y = 6 and when 6, = 0 respectively. Then Theorem
10 implies, via Le Cam’s first lemma, the mutual contiguity of {P,¢} and {P,¢} as
n,p —, 0o. This reveals the statistical meaning of the phase transition thresholds
as the upper boundaries of the contiguity regions for spiked models.

The precise form of the autocovariance of £ () shows that,? although the ex-
periment of observing Ay, ..., A, is asymptotically normal, it does not converge to
a Gaussian shift experiment. In particular, the optimality results available for
Gaussian shifts cannot be used in our framework. To analyze asymptotic risks of

various statistical problems related to the experiment of observing Ay, ..., \,, one

2Fyodorov et al (2013) have an interesting discussion of ubiquity of random processes with
logarithmic covariance structure in physics and engineering applications. In their paper, such
processes appear as limiting objects related to the behavior of the characteristic polynomials of
large matrices from Gaussian Unitary Ensemble.
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should directly use Theorem 10.

In this paper, we use Theorem 10 to derive the asymptotic power envelopes
for tests of the null hypothesis 6, = 0 against the alternative 6, > 0. Such a
power envelope has been derived by Onatski et al (2013) for the case of PCA. By
the Neyman-Pearson lemma, the most powerful test of the null against a point
alternative 6y = 6 would reject the null when In L (6; A) is above a critical value.
By Theorem 10 and Le Cam’s third lemma (see van der Vaart (1998), chapter 6),

InL(0: A) 5 N (}l In (1 — 5 (0)]2) ,—% n (1[5 (0)]2)>

under the null, and

InL(6:A) % N (&m (1-[5(O)P) ,—%m (1[5 (9)]2))

under the alternative. This implies the following theorem.

Theorem 11 Let § be the threshold corresponding to F, as giwen in Table 2. For
any 0 € [0,@), the value of the asymptotic power envelope for the tests of the
null 0y = 0 against the alternative 0y > 0 which are based on Ay, ..., \, and have

asymptotic size o is given by

PE@)=1-0 [@1 (1-a)— \/—%111(1 —[6 (9)]2)] .

Here ® denotes the standard normal cumulative distribution function. For 6 > 0

the value of the asymptotic power envelope equals one.

The envelopes are different only for the cases that correspond to different limit-
ing spectral distributions: the semi-circle, the Marchenko-Pastur, and the Wachter
distribution. Therefore, we can denote PE () as PESC () for SMD, as PEMF (0)
for PCA and REGy, and as PE" (0) for the remaining cases. Figure 5 shows the
graphs of the envelopes for o = 0.05 and y; = v, = 0.9. Such large values of y; and
~9 correspond to situations where the dimensionality p is not very different from
the “sample sizes” ny; and ns. Of course, the values of 7, and 7, are irrelevant for
PESY (), and the value of 7, is irrelevant for PEM? () .

Note that the asymptotic power envelope PEMP (§) can be obtained from
PEY (0) by sending 7, to zero. Further, PES () can be obtained from PEMF (0)
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1.2

20

Figure 5: The asymptotic power envelopes PE®C(0), PEM? (), and PEY () for
a =0.05, 71 =7 =0.9.
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by transformation ¢ —— /710. Further, note the difference in the horizontal scale
of the bottom panel of Figure 5 relative to the two other panels. For 7, = v, = 0.9
the phase transition threshold corresponding to Wachter distribution is relatively
large. It equals (y2 + p) /(1 — 72) ~ 18.9. Moreover, the value of PEY (#) be-
comes substantially larger than the nominal size « = 0.05 for 6 that are situated
far below this threshold. This suggests that the information in all the eigenvalues
A1, ..., Ap might be effectively used to detect spikes that are small relative to the
phase transition threshold in two sample problems. We leave a confirmation or

rejection of this speculation for future research.

7 Conclusion

This paper derives the asymptotics of the likelihood ratio processes corresponding
to the null hypothesis of no spikes and the alternative of a single spike in various
high-dimensional multivariate models. We cover all the five classes of multivariate
statistical problems identified by James (1964). In addition, we consider a sym-
metric matrix denoising problem that does not fit in James’ classification. We find
that, as the dimensionality and the number of observations go to infinity propor-
tionally, the log likelihood processes converge to Gaussian limits as long as the
value of the spike parameter is below corresponding phase transition thresholds.
We derive explicit formulae for the autocovariance and the mean of the limiting
processes and use them to obtain asymptotic power envelopes for tests for the
presence of a spike.

In this paper, we make the assumption that ny, > p to ensure the invertibility
of matrix £ in (1) with probability one. However, we also make the assumption
ny > p, which can be lifted without a substantial reformulation of the problem. We
make the latter assumption mostly to simplify our exposition. The assumption is
irrelevant for SMD. The PCA results are obtained in Onatski et al (2013) without
using this assumption. For SigD, our derivations (not reported here) show that the
equivalent of (7) for n; < p involves the hypergeometric function 5 F;. Therefore,
SigD with n; < p represents the fifth, rather than the second, group of multivariate
statistical problems according to James’ (1964) classification. The REGq problem
is symmetric with respect to n; and p after a simple reparametrization. For REG,
an equivalent of (7) for n; < p can be obtained using equation (74) of James

(1964). However, further analysis of REG in this situation needs more substantial
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changes to our analysis. In CCA case, the sample canonical correlations are only
well defined if ny > p. To summarize, when n; < p, the only interesting untreated

cases are SigD and REG. We leave their study for future research.

8 Appendix

8.1 SMD entry of Table 1

The explicit expression for L(EMP) (0; A) given in Table 1 follows from the following

lemma.

Lemma 12 For SMD case, the joint density of the diagonal elements of A evalu-

ated at the diagonal elements of x = diag {x1, ..., z,} with x1 > ... > x, equals

cp () exp {—pb*/4} o Fo (¥, ) , (45)

where ¢, (x) is a quantity that depends on p and x, but not on 0, and ¥ =
diag {0p/2,0,...,0}. The density under the null hypothesis is obtained from the

above expression by setting 6 = 0.

Proof: The proof is based on the “symmetrization trick” used by James (1955)
to derive the density of non-central Wishart distribution. Let Y = U’ XU, where
U is a random matrix from O(p) and X = Z/,/p + nfy’ with Z from GOE, 6 > 0,
and ||n|| = 1. Note that the eigenvalues of X and Y are the same. The joint density

of the functionally independent elements of Y evaluated at y is

(27T/p)_p(p+1)/4 9—p/2 /

b / N2
etr ¢ —— (uyu’ —nbny’)” ¢ (du),

where (du) is the normalized uniform measure over O(p). Taking the square under

etr and factorizing, we obtain an equivalent expression
_ 0
(2 /p) PP 972 oxpy {—]—)02} etr {—Z—?y2} / etr {p—uyu’nn/} (du).
4 47 7 Jow) 2

Now change the variables from y to (H,z), where y = HxH' is the spectral
decomposition of y, and integrate H out to obtain (45) with

B PP+ D/Ap(p-1)/4 D Ld
% () = Qn7imar, (p/2) & ("m ) JECEENE
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Here I (p/2) is the multivariate Gamma function (see Muirhead (1982), pp 61-63).
O

8.2 Proof of Lemma 4

It is sufficient to prove the lemma for SigD, REG and CCA. For PCA and REGy,
the lemma follows by taking the limits of SigD and REG cases as ¢ — 0. For
SMD, the lemma then follows by taking the limit of PCA case as ¢; — 0, after the
transformations 0 +— ,/c;0 and z — /c1z + 1.

Our proofs of the lemma are very similar for SigD, REG and CCA. Here we

show only the proof for SigD. First, note that the minimum of z; over 6 > 0 equals
r+1\?
b, =
r=a (r + 02>

0=0,=(co+7)/(1—cy).

and is achieved at

w

W (z) is well defined for z > b, and since 6, — 6 as n,p —., oo,

Therefore, since m

mY (20) must be well-defined for any 6 € (0,6) and for sufficiently large n, p.

Using an explicit expression for the Stieltjes transform of the limiting spectral
distribution of the multivariate F matrix, which is given by Bai and Silverstein

(2006) p.71, we obtain

(1 = 1) (1 —c22) + (1 —ca) 12
2¢12 (61 — ¢2)

me (2) =— (46)

\/((cl —c)z+ae (11— cl))2 —4erz (e — e2)

+ 2¢12 (€1 — ¢2)

Further,
Or?

A (140) — a0z

d (sigpD
2&f1(ng )(z) =

It now takes a direct algebra, which we perform using Maple’s symbolic algebra

software, to verify that zo solves equation (35).00
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8.3 Proof of Lemma 6

For SMD, PCA, and SigD, |z — )| is obviously strictly increasing for any A € R

and as z moves away from zo along K;. Therefore,
2Re f11(2) = /ln |z — A dFe (N)

is strictly increasing. On the other hand, by (17), Re f1;r (2) is non-decreasing.
Hence Re f (z) is strictly increasing.

For REGy and CCA, |z — A| is strictly increasing for any A > 0 as z moves
away from z, along KC; because the center of the circumference that includes &y
is a negative real number. Therefore, Re f;;(2) is strictly increasing. To show
that Re fi;7 (2) is strictly increasing too, it is sufficient to prove that Rey; (¢;) is
strictly increasing for j = 0,2. A proof of this fact relies on elementary calculus.
It is available from the authors upon request.

For REG, z moves away from zy along Ky when 7 moves away from 7y along
C;. Using (27), (33), and (40), we obtain

1—61
C1

Re f][[ (T) =

(—Ret+In|r+1]+eln|r+¢|+eclne).

On the other hand, |7 + €| remains constant on C; whereas both — Re 7 and |7 + 1
increase as 7 moves away from 7y along C;. To see that |7 + 1| indeed increases
recall that the center —¢ of the circumference that represents C; is to the left of
the point —1. Hence, Re fi;; () is strictly increasing.

To show that Re f;; () is strictly increasing too it is sufficient to verify that

P ca(l—c)7(T+1)

— A
Ocy T+e€

is strictly increasing for any A from the support of F,. Since |7 + ¢| remains con-

stant, it is sufficient to show that
yira)=|r(r+1)—a(r+e)

increases as 7 moves away from 7y along C; for any z = Mcy/ [c1 (1 — ¢1)].

Parameterize 7 € C; as —¢ + pe'®, a € [0,7/2]. Then elementary calculations

35



yield

v(rz)=pt+ (2e—14+2)"p* —2p° (26 — 1+ 2) cos
+e2(e—1)* +2(p*cos2a — (26 — 1+ z) pcosa) e (e — 1)

so that

dy (7,2) —9p{—

oo (26 —1+2) [p*+e(e—1)] +4pe(e — 1) cosa}. (47)

We would like to prove that the derivative dvy (7, z) /d cos v is negative. As is seen
from (47), the derivative is decreasing in  and increasing in cos a. Since x > 0 and
cosa < 1, it is sufficient to show that dv (7,0) /d cos a is negative for cosa = 1.
We have

dy(7,0) :—Zp(25—1){<p—w>2+

deosa | soe1 2e -1
% (e —1)\°

This is negative because the expression in the second line of the above display is

positive. Indeed,
cle—1) (26— 1) —4e? (e =1’ =e(e —1) > 0.

To summarize, both Re f;; (1) and Re f;;; (7) are strictly increasing as 7 moves
away from 7y along C;. Hence, the image of C;, Ky, is a contour of steep descent of

— Re f(2) in z-plane.

8.4 Values of f(z) and d?f(z)/dz>

Let us first show that f(zp) = 0. Recall that f(z) = fr + frr(2) + frrr(z). The
value of f; is given in Table 3. The value of f;7(2p) is straightforward to compute

using the definitions of f;;; and zg. The

by
2 s (20) = /b In (20 — ) dFs (A)
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takes on three different values: one for SMD, another for PCA and REGg, and the
third one for SigD, REG, and CCA.

Lemma 13 For SigD, REG, and CCA, for any 0 € (O,é) and for sufficiently

large n, p, we have

c1+ Co 7“2
In(1+0)— 1 —In el (0)].
C1 n(1+96) C1C2 n(Cl—i_@)—i_ClCQ nlat(®)

(48)

1—
2fr1(20) =2Inc; —Inf — a

Proof: We follow the usual strategy of reduction to a contour integral. First
make the change of variables A = o — 3 cos . In order to arrange that A = b_ and

b, at ¢ = 0 and 7 respectively, we set

b b_ 242 by —b_ 2rc?
o= + + :CI(T +C12)’ 6: + _ rcy . (49)
2 (Cl + Cz) 2 (Cl + Cg)
We obtain
cL+c [FF 2sin® pln (29 — a + B cos
2f (Zo) = Z 2 / b 4 ( - b 80) de
w1 Jo (a— pFcose) (1 — coa+ coff cosp)

after extending the integral from [0, 7] to [0, 27| using the symmetry of the inte-
grand about ¢ = 7. Now introduce z = €. Since cosp = (z + 27!) /2, we have

from (49) the factorizations

c1 (o — Beosp) = o (r—ciz) (r—az),
€1 — Coa + cpff cos p = 2’% (r+cez) (r+cz7),

20 — a+ [ eosp = q(2)q (z_l) with

a(:)= - i . ( 1 (0) )0+ 124/0] el (e)]) .

Our integral becomes

—(c1+e)r? / (z— 21 In(q(2)g (= 71) dz
c(r—acz

4ri 2

211 (20) = Y(r—ciz7V) (r+cz) (r+czt) 2z
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The integral has form [ = f{ln (q(2)q(z7Y) H (2) z7'dz with H(z) = H (z71).

Hence, expanding the logarithm yields two identical terms, so that

2f1r (Zo) =

—(c1+¢2) (22— 1)%Ing(z) dz
/c (r—c2) (

27i z—cJr)(r+cz)(z+efr) 2

For 6 € (0, é) and sufficiently large n, p, we have 6 € (O, ép) with8, = (ca +7) /(1 — c2).
On the other hand, for 0 € (0, ép) , the function In ¢ (z) is analytic inside the circle

|z| = 1, and so the whole integrand is analytic inside the circle except for simple
poles at z = 0,¢;/r and —cy/r. The residues at these poles are respectively

Cl—|—021n01\/C1l/9 _1—Clln01(1+9) 1—C2

C1
, and — In

C1Co ci+ey c1 Vlcql C2 Vel

and their sum, after collecting terms, yields formula (48).0]

Corollary 14 For PCA and REGy, for any 6 € (0,5) and for sufficiently large

n, p, we have

]_—Cl
C1

2f[[ (20) :lncl—lnﬁ— 1H(1+0)+9/01 (50)

Proof: The corollary is obtained from Lemma 13 by taking the limit as co —
0.0

Corollary 15 For SMD, for any 6 € (O, é) and for sufficiently large n, p, we have
2frr (20) = —Inf + 0%/2. (51)

Proof: We remarked earlier that SMD is a limit of PCA and REGq as ¢; — 0
after the transformations ¢ +— /c;0 and z +— /c1z + 1. In particular,

AMP) — im (279 —1)//er and FSC(\) = lim FMP (/e A+ 1) .
c1—0,0—,/c10 e1=0

These equations imply that

o f(SMD) ( (SMD)) _ li [2 (PCA) < (PCA)> | } )
JiT 20 clﬂo,lerg\/ao J1r &) n+/cy

Using this relationship together with Corollary 14 yields 277 (z0) = —In6 + 62/2
for SMD.[
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Combining equations (48), (50), and (51) with the explicit expressions for f;
and frr7 (z9), we obtain the desired result: f(z9) = 0 for all the six cases we
consider.

To compute d?f (2q) /dz?, note that —2d?f;7 (29) /dz* = dme (20) /dz. There-
fore d?fi7 (29) /d2? can be directly evaluated using explicit expressions for the
Stieltjes transforms of the semicircle, Marchenko-Pastur and Wachter distribu-

tions. Formula (46) gives such an explicit expression for m!” (2). The explicit

MP

MP (2) and m® (z) are well known. To perform the necessary

expressions for m
computations, we use Maple’s symbolic algebra software. Further, using the defi-
nition of fr;7(z), we directly evaluate d?f;r; (29) /d2z?. Combining the expressions
for the second derivatives of f;; and f;;7, we obtain values of the second derivative

of f reported in Table 4.C]

8.5 Proof of Theorem 8

First, let us show that

DAY 9(20) -1
hON = G ) o

where Op (1) is uniform with rspect to 0 € (O, 0 — 5} . Changing the variable of

integration in (43) from z to ¢ = 0z, we obtain
LI S
Ly (0;A) = Vaps— [ e x(0)dC, (53)
2m Jg
where

o(¢) = [ (¢/0), x(¢) = 9(¢/0)/0,

and K is the image of }C; UK; under the transformation z — (. The set of possible
values of 0 is Q) = (0,@— z—:].

Using Table 4 and the definitions of K, 2o, f(2), and g(2), it is straightforward
to verify that the assumptions A0-A4 of Lemma 7 hold for the integral in (53) for
all the six cases that we consider. The validity of A5 follows from Lemma 16 given

below and from the definitions of g (z). Let

5 =p [/ - d (PO - Fe). (54
so that A(() = —21ngr(¢/0).
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Lemma 16 Suppose that the null hypothesis holds, that is 6y = 0. Then there
exists a positive constant Cy, such that for a subset © of C that consists of all

points whose Euclidean distance from K is no larger than Cy, we have

ig@MA(C)I = Op(1)

as n,p —., 0o, where Op(1) is uniform with respect to 6 € Q = (0, 6 — 5] .

Proof: Let us rewrite (54) in the following equivalent form

AQ) =p [l =26/ d (F )~ Fe ).

Statistic A(() is a special form of a linear spectral statistic

A =p [ ¢a (FX) - R ()

studied by Bai and Yao (2005), Bai and Silverstein (2004), and Zheng (2012) for
the cases of the Semi-circle, Marchenko-Pastur, and Wachter limiting distributions,

respectively. These papers note that

where

i (€) = / A%gdﬁw, me (€) = / %_ngc )

are the Stieltjes transforms of F and F,, and P is a positively oriented contour in
an open neighborhood of the supports of F' and F,, where ¢ (¢) is analytic, that
encloses these supports. Further, the papers show that if the distance from P to
the supports of F and F, stays away from zero with probability approaching one

as n,p —. 0o, then

p ~
Ap) =~ [ o€ 1€)e + 00 (1), (55)
i Jp
where pM (€) is a truncated version of p [ (€) — me (€)] that weakly converges to
a random continuous function on P with Gaussian finite dimensional distributions.
Furthermore, Op (1) in (55) is uniform in ¢ that are analytic in the open neigh-

borhood of the supports of I and F, and such that supgep | (§)| < K for some
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constant K. Therefore, for any 6 > 0, there exists B > 0, such that

Pr (IA(cp)l < Bsuplw(é)l) ~1-6 (56)
EepP

for all n and p. Moreover, constant B does not depend on . Now, consider a

family of functions ¢ g (£)

{pco(§) =In(1-¢€0/C): (€O and 0§ € Q}.

By the definitions of © and €2, there exists an open neighborhood N of the supports
of F' and F, and a constant B, such that, with probability arbitrarily close to one,
for sufficiently large n and p, ¢ (§) are analytic in N for all ( € © and 6 € Q

and

sup sup sup |¢¢o (€)| < By.
0eQ) CeO EeN

Since A(p¢p) = A(C), we obtain from (56) that for any 6 > 0, there exists By > 0
such that for sufficiently large n and p,

Pr (sup sup |A(Q)| < Bg) >1-4.
6eQ (€O
In other words, sup.cg |A(¢)| = Op(1) uniformly over 6 € Q.0
Applying Lemma 7 to the integral in (53) and using the fact that f(zy) = 0,
we obtain (52). It remains to show that Ly (6; A) is asymptotically dominated by
Ly (0;A), where
Ly (0;A) = L(0;A) — L1 (6; 7).

For SMD, PCA, and SigD we have

p
_ﬂ-p - z —
|Ly (6; A)] = V%i ek ))gzgm(Z)H(Z—Aj) 12 4,
KoUK jil

< \/Eepflgl (on)—P/Q |€7prII(Z)g]][(Z)dZ‘
Vs 1o

20
< \/Eepflgl (220)—17/2/ efpfl”(m)gjn(l‘)ddi.
s

—0o0

Explicitly evaluating the latter integral and using the exact form of g;, available
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from Table 3, we obtain

12 (0 0)] < e (22) 2700 (14 0(1)),

NG

where o(1) does not depend on 0, C' =1 for SMD and PCA, and C' = \/c; + ¢2/r
for SigD. Therefore,

fpe—pﬂzw exp {—p (In(220)/2 — f1r (20))} (1 + o(1))

_ j%exp {_g/m (;g) ch(A)} (1+0(1)).

where we used the fact that f(z9) = 0. But In(2z/ (20 — A)) is positive and

bounded away from zero uniformly over 6 € (O, 6 — 5] with probability arbitrarily

Lz (0; A)] <

close to one, for sufficiently large n,p. Hence, there exists a positive constant K
such that
L2 (0; A)] < 2 (14 0(1))
2 (6; < e 0
VTP

with probability arbitrarily close to one for sufficiently large n, p. Combining this
inequality with (52), we establish Theorem 8 for SMD, PCA, and SigD.
For REG, we shall need the following lemma.

Lemma 17 For sufficiently large n and p, we have

loF1 (b — s;W112) | < 4y/mm |exp {—mpo(to)}] (57)
for any z and any 6 > 0.

Proof: We use the identity (see formula 9.6.3 in Abramowitz and Stegun
(1964))
I, (¢) = e_m“i/QJm (i) for —m < arg( < m/2,

where J,,, (+) is the Bessel function. The identity and (22) imply that

oF1 (b= 5;¥112) =T (m+ 1) (m®n) il (i2mné/2> : (58)
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On the other hand, for any ¢ and any positive K,

i (KQ)| < {1+ Sh;([;ﬂ } Cefi{\/llig} , (59)

(see Watson (1944), p.270). The latter inequality, equation (58), and the Stirling
formula for I" (m + 1) imply that (57) holds for sufficiently large m, for any z and
0 > 0. The constant 4 on the right hand side of (57) is not the smallest possible
one, but it is sufficient for our purposes.[]

Using inequality (57), we obtain for REGy

p

exp {=meo(to)} [] (= = ) 7dz|. (60)

=1

|Ls (0;A)] < 4e_pf’g1\/pm
Ko

It is straightforward to verify that Re (o) is strictly increasing as z is moving

along Ky towards —oo. Therefore, for any z € IC,,

Re o (to(2)) > Rego(to(2)),

where zZ = 21+ (29 — 21) is the point of Iy where Ky meets ;. The latter inequality
together with (60) yields

p

Ly (0; )] < e R Cg (g (2) vom | ]

K:2 jzl

1/2

Y
i |dz| .

Z—)\j

Since, for some constant 71, Re f (2) > f(20) + m = 71 and since, by Lemma 16,
4gy7 (Z) = Op (1) uniformly over 6 € (0,0 — €], we obtain
MY

| 140 1), (61)

p
L2 (6; )] < G_Imgn/pm/ 1T
K2 i

Note that for any z € Ky and any j = 1,...p, [(Z—X\;)/(z—A;)] < 1 and
|z — Aj| > |2|. Further, since 2y < |Z| and with probability arbitrary close to

one, for sufficiently large n and p, \; < zp, we have |z — \;| < |z — 2| < 2]Z].
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Thus, for p > 4, we have

[0

2 j=1

z— A M2

J
Z—)\j

o) < [ al/20 7 del =21 0()
Ka

Combining this with (61) and noting that g¢;|z| = O (1) uniformly over § €
(0, 6 — 5] , we obtain

L2 (0; A)] < \/pme ™ Op (1), (62)
where Op (1) is uniform with respect to 6 € (0,8 — €]. Theorem 8 for REG follows

from the latter equality and (52).
For REG and CCA, the Theorem follows from (52) and inequalities

| Lo (0; A)] < pe™™™0p (1), (63)

where 7, is a positive constant. We obtain (63) by combining the method used
to derive (62) with upper bounds on ;F; and ,F}, which we establish using the

integral representations (25). We omit details to save space.l
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