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Abstract
This note contains proofs of lemmas 4, 5, 6, 11, 12 and 13 in Onatski,
Moreira and Hallin (2011), Asymptotic power of sphericity tests for highdi-

mensional data, where we refer to for definitions and notation.

A Proof of Lemma 4

The original contour K is such that the singularities = = Ay,...,z = A, of the
integrand remain inside, whereas the singularity z = %S remains outside the
domain encircled by K. Sufficient conditions for K to be similarly located with

respect to the singularities of the integrand, and for f(z) and g(z) to be well-defined

on K are
min_zo(h) > max {b,, \1 } (A1)
he(o,ﬁ]
and
h Zo(h)
max —— < 1. A2
he(o,}}%] 1+h S (A2)
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Hence, to establish Lemma 4 it is enough to show that (A1) and (A2) hold with
probability approaching one as p,n — oo so that ¢, — c.
_ .\ 2

Let us fix a positive € such that ¢ < (x/c/ h— \/E) . Consider the event F

that holds if and only if the following four inequalities simultaneously hold:

mmhe(Oh]( o(h) —b,) > e, (A3)
‘b . 1+ﬁ2j < ¢/4, (A4)
1+ﬁ2) < /4, (A5)

minhe(oﬁ] (%S—Zo(h)) > e (A6)

Clearly, E implies (A1) and (A2). On the other hand, Pr (F) — 1 as n,p — oo so

that ¢, — c. Indeed, by definition of zy(h) and b,,

Therefore, as ¢, — ¢,

s (i) = ()

which is larger than e by assumption. Hence, the probability of (A3) converges to
one. Further, b, — (14 1/c)* by definition, while \; — (14 /¢)° almost surely
under our null hypothesis, as shown, for example, in Geman (1980). Thus, the
probabilities of (A4) and (A5) converge to one too. Finally, by definition of zy(h),

Hihzo(h) = h + ¢, so that

: 1+h 1+h .
miny, ¢ (g ) (TS — zo(h)> = (S—h—cp).

But under our null hypothesis S/p — 1 in probability, as n,p — oo so that ¢, — c.



This follows, for example, from Theorem 1.1 of Bai and Silverstein (2004). Hence,
the probability of (A6) also converges to one. It remains to note that 1 — Pr (E)

equals the probability of the union of the events complementary to (A3)-(A6).

B Proof of Lemma 5

We have shown, in the proof of Lemma 4, that Pr(E) — 1. Therefore, it is
sufficient to prove Lemma 5 under the assumption that £ holds. Event £ implies
that f(z) and g(z) are analytic at zo(h) for any h € (0,h]. Furthermore, still
under £,

d 1 d?

h = &f(zﬂz:zo(h) =0and f, = 2d22 (Z)|Z:Z0(h) <0

Indeed, by definition, zo(h) is a critical point of f(z) when h < /G- But E implies

h < /G- Otherwise,

zo(h)—bpz<\/%—\/5>2:0<e

at h = /¢, < h, which contradicts (A3). Further, a direct computation based on
(3.3), (3.6), and (3.7)! shows that
1 h?

=i T arny <Y (87)

First, let us focus on the analysis of §,. e ) g(z)dz. Olver (1997) derives a
useful representation for the part of 56}(1 e "/(?)g(2)dz that corresponds to a portion
of K close to its boundary point, which in our case is zo(h). To make our exposition

self-contained, we sketch Olver’s derivation; for details, we refer the reader to pages

'Here and throughout this Supplement, numerical references are for equations in the main
text.



121-124 of Olver’s book.

Let us introduce new variables v and w by the equations

w?=v=[(2) = fo, (A8)

where the branch of w is determined by lim {arg (w)} = 0 as z — 29(h) along K,
and by continuity elsewhere.

Consider w as a function of z. Since f; = 0, there exists a small neighborhood of
2o(h), where the indicated branch of w(z) is an analytic function. Moreover, there
exists a small number p(h) > 0 such that w(z) maps the disk |z — zo(h)| < p(h)
conformally on a domain €2 containing w = 0.

Let z1(h) be a point of K; chosen sufficiently close to zo(h) to insure that
the disk |w| < |f(z1(h)) — fo|"/? is contained in Q. Then the portion [z, 21] =
[20(h), z1(h)] of contour K; can be deformed, without changing the value of the
integral ff[zo,zﬂ e () g(2)dz, to make its w(z) map a straight line.

Transformation to the variable v gives
7{ e @ g(2)dz = e % e "p(v)do, (A9)
[z0,21] [0,7(m)]

where

r(h) = f(21(R)) — for plv) = % (A10)

and the path for the integral on the right-hand side of (A9) is also a straight line.

For small |v| # 0, ¢(v) has a convergent expansion of the form

QO(U) — Z aSrU(Sfl)/27 (All)
s=0

in which the coefficients a, are related to fs and g,. The formulae for ag, a;, and



ay are given, for example, on p.86 of Olver (1997). We use them in the statement
of Lemma 5.

Finally, define ¢, (v), k = 0,1,2, ... by the relations ¢,(0) = a; and
k-1
QO(U):ZCZ (=D/2 4 =D2 (1) for v # 0. (A12)
s=0

Then the integral on the right-hand side of (A9) can be rearranged in the form

il s+1 a
7{ e "y r ( ) n(s+81)/2 — e (h) +era(h), (A13)
[0.7(M)] s=0
where
k—1
s+1 Qg
€k71 (h) = ;F ( 5 ,T(h)n) W’ (A14)
cra(h) = f k=120 (1) o, (A15)
0,7 (R)]

and

I'(a,2) = exxo‘/ e (14 8) e
0

is the incomplete Gamma function.

This completes our sketch of Olver’s derivation. The remaining part of the
proof of Lemma 5 is mostly concerned with two auxiliary lemmas establishing
uniform asymptotic properties of €51 (h) and € 2 (k) . The first of these two lemmas
provides explicit forms for p(h), z1(h), and 7(h) allowing further analysis of their

dependence on h.

Lemma Al. Let B(a,R) and B (a, R) denote, respectively, the open and
closed balls in the complex plane with center at « and radius R. Further, let
= min {z(h) — max {b,, \1} , BLS — 2(h) }, p(h) = 5527(h), 21(h) = z0(h) +
r(h), and 7(h) = f(z1(h)) — fo. If event E holds, then,

| =

<.~
>
~—

.26

©
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() Forany ¢, ¢, from B (zo(h), p(h), we have | (C,) = w (C1)| > 3 [ £2%] 16, = ¢l

(ii) The function w(z) is a one-to-one mapping of B (zy(h), p(h)) on an open set

Q). The inverse function z(w) is analytic in Q;

(iii) There exist positive constants 7, and 79 such that Re7(h) > 7y and Im 7 (h) <

o for all h € (0,A];
(iv) B (0,2 ]T(h)|1/2> is contained in Q.
Proof. Throughout this proof, we simplify the notation and write zg, 21, 7,
p, and 7 instead of z9(h), z1(h), r(h), p(h), and T(h), respectively. First, we show

that w(z) is analytic in B (2, p) and that w' (2) = 21/2. Let fU)(z) denote the

j-th order derivative of f(z). Consider the Taylor expansion of fU)(z) at 2 :

k
fO) (z) = Z éf(ﬁs) (20) (2 — 20)° + Rjgt1-

s=0

In general, for any z € B (2, R), the remainder R, satisfies
x | fUHD (@) (A16)

From definition (3.3) of f(z), we have

£ 1) = 2 (-1 (s - 1) / (L= N °dF,(\) fors>2. (A7)

Ift € B (zp,37), then |t — A| > £ (2o — A) for any X in the support of F,,. Therefore,

|t . )\ls—‘rl >

SoTT (20 — A)°r,



and using (A17) we get

1 (0] < =

(s) (20)| for s > 2. (A18)

Combining this with (A16), we obtain for k4 j > 2 and z € B (zo, ’ZE? k== 27"),

k
z— 2 .
| Rjper1| < % | £ (20)] . (A19)

Further, since

1 ,
Rjr = Ef(kﬂ) (20) (= — 20)" + Rj1,

(A19) implies that, for k +j > 2 and z € B( ,2112 k=j=2 ),

1 .
— | FE) (20)] |2 — 20l < [Rjl < 5

S ’f kt+7) (20 | |z — zo| (A20)

2k'

Next, since fM (z9) = 0, inequalities (A20) imply that
1
|f(2) = f(20)| = [Ro2| > ~ |f (20)] 12 — 20f” = 5 |fal |2 — 2o (A21)

for any z € B (29, %7) . Since f, # 0, inequality (A21) implies that f(z) — f(z0)
does not have zeros in B (zo, 2%7’) except a zero of the second order at z = z.

Therefore,

f2) = () _ w(z)

(z — 20)2 (2 — 20)

is analytic inside B (zo, %), which includes B (2o, p), and converges to f21/ ? as

2 — 2. This implies that w (2) is analytic in B (2, p) and w' (20) = 21/2.
Now, let us show that, for any z € B (z, p),
, 1
[w' (2) = w' (20)| < 5 [0 (20)]- (A22)



Indeed, since

and w' (z0) = 21/2 # 0,

Nl

= (1 %> (ramets) (A28)

Note that for any 3; and y, such that |ys| < 1,

‘ L+u _1‘ < lya] + [92] (A24)

V1I+yo 1 —|y] ’

where the principal branch of the square root is used. This follows from the facts

that, for |y| < 1, |VIT+ 2| > 1—|y2] and |1+ y1 — VT + 42| < [y1]+ 92| . Setting

R12

)

=577 and yp = _ s
2f2 (2 — 20) fo (2 = 20)°

and using (A23), (A20) and the fact that, for any z € B (2, p),

'M

1@ (20)

|Z—Zo| < g,

which follows from (A18), we get

Hence, (A22) holds.
Finally, let ¢; and (, be any two points in B (zo, p), and let y(t) = (1 — ), +

t(,, where t € [0,1]. We have

' / —w' (2 _w(C2)_w(C1)_w/ p
/0 (0 (4(0)) = ) it = = (20).



Therefore, using (A22), we obtain

w(C2)_w<C1)_w/Z lw’z
T (0)| < 5 o/ (z0)].

This inequality and the fact that w' (z9) = f21 /2 imply part (i) of the lemma.

Part (ii) of the lemma is a simple consequence of part (i) and of the analyticity
of w(z) in B(zy, p), established above. Indeed, by the open mapping theorem, € is
an open set. Next, by (i), w(z) is one-to-one mapping of B(zp, p) on € and has a
non-zero derivative in B(zg, p). Further, let ¢ (w) be defined on Q by ¢ (w (z)) = z.

Fix @ € Q. Then ¢ (w) = Z for a unique Z in B(z, p). If w € Q and ¢ (w) = z, we

have

Y(w) - p(@) 2=

w— W w(z) —w(2)
By (i), w — w as z — Z, and the latter equality implies ¢’ (1) = w,l(g). Therefore,
z(w) = 4 (w) is an analytic inverse of w(z) on €.
To see that part (iii) holds, note that
Rer — 2 (|22 a7, () (A25)
2 20 — A P ’

and for any A such that 0 < \ < zy, we have

Zl—)\
Zo—)\

1T
9'262’0

2|

When E holds, the latter expression is bounded from below by a fixed constant
that is strictly larger than one for all h € (0, ﬁ} . Therefore, when E holds, (A25)

implies that Re7 > 71 > 0, for all h € (0, B], where 7, is fixed.



Next, by definition of 7, we have

But
h - h
T Z
1+h 1487

=c,+h,

which is smaller than a fixed positive number for all h € (0, B} when £ holds. Here

the boundedness of h is obvious whereas the boundedness of ¢, follows from (A4).

ar =X <z
& ZO—)\ 2

for all i € (0, h] because Re 2—3 = 1. Hence, there exists 79 such that [Im7| < 75

Further,

for all h € (O, ﬁ} )
Finally, part (iv) of the lemma can be established as follows. Note that by
part (i),
[w (20 + pe’?) = w (20)] > £’ (20)]

for any 6 € [0,27]. Therefore, for any w; such that |w; —w(z)| < £ [w' (20)], we
have

min jwi — w (20 + pe) | > g |w' (20)] -

By a corollary to the maximum modulus theorem (see Rudin (1987), p.212), the
latter inequality implies that the function w (z) — w; has a zero in B(zp, p). Thus,

region  includes B(0, £ |’ (20)|). On the other hand,
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Indeed, consider the identity
= f (20) (z1 — 20) + Ro2.
Since fM) (2) = 0, (A20) together with (A7) imply
7l < 2 1fol o1 = 2P
Since w' (20) = f /2 and |21 — 20| = 557, the latter inequality implies that
2|7'/? < g ' (20)].

Therefore, € includes B(0,2|r]"/?).a

Before proceeding with the proof of Lemma 5, we still need one more auxiliary

lemma.

Lemma A2. Under the null hypothesis, sup.ce, |9(2)| = Op(1) as n,p — oo
so that ¢, — ¢, where ©; = {z: |Re(z) — 20(h)| < ir(h)} and O,(1) is uniform

over h e (0,h].

Proof. First, consider the case when g(z) = exp (—3A,(2)), where

Ap(2)

/ In (= A)dZF, (\)

o) oo

This statistic A,(z) is a special form of a linear spectral statistic

p

M) =S e —p / o () dF, ()

J=1

11



studied by Bai and Silverstein (2004). According to their Theorem 1.1, if ¢ (+)
is analytic on an open set containing interval Z., = [0, (1+ \/5)2], then the se-
quence {A, (¢)} is tight. That is, for any 6 > 0 there exists a bound B such that
Pr(|A, (p)| < B) > 1— 0 for every A, () from the sequence.

A close inspection of Bai and Silverstein’s (2004, pp.562-563) proof of tight-
ness reveals that the bound B can be chosen so that it depends on ¢ (-) only
through its supremum over an open area A that includes Z. and where ¢ (+) is
analytic. In particular, if we denote by ® a family of functions ¢ (x), each of
which is analytic in the area A = {z : sup,cz |z — A| < ¢}, and if @ is such that

SUDgcq SUPe 4 ¢ (7)] < 00, then {sup,cq [A, (¢)|} is tight.
Let @ = {p(z) =In (1 —£) : z € Oy}, where

Oy = {z : Re(2) > (1—}-\/5)2—1—25}.

This family of functions satisfies the above requirements. Indeed,

sup
Tr€A,z€EO7

f): 1+ +¢ 1
2l (14 o)+ 2

so that each of () € ® is analytic in A. Moreover, since by definition

ln(l—f) zln)l—f‘—i-iarg(l—f),
z z z

we have
supsup |p ()] <In|l — R| + z,
ped zcA 2
where
R= sup f’ < 1.
T€EA,z€Op | 2

Therefore, {sup,cq |2, (¢)]} is tight and sup. e, [g(2)| = Op(1), where O,(1) does

12



not depend on h.
It remains to note that, as p,n — oo so that ¢, — c,

inf (Zg(h) — %T(h)) . %(h +1) (c+h) N

o - % (1+ \/5)2 > (14 \/5)2

almost surely. Therefore, for a sufficiently small ¢, Pr(0©; C ©,) — 1, and thus,
SUp,ce, |9(2)| = O,(1), where Oy(1) is uniform over h € (0,h] .
Now, consider the case when

B np—p+2 h =z n hz A, (2)
g(z)_eXp{ 2 hl(l 1+hS> °21+h 2 [°

Since, as has just been shown, sup, g, }eXp (—34,(2))| = O, (1), we only need to

prove that sup,.g, §(2) = O, (1), where

. B np—p+2 h =z nhRez
9(2)_6}@{ 2 Reln<1 1+hS> 21+h [

We have

h =z h =z
Reln(l_H—h§>:1n‘1_lJr—h§

o (1 Bez
" 1+h S )

Note that (A6) and the definition of ©; imply that

h Rez<1
1+~ S

for any z € ©4. In general, for any real x such that 0 < x < 1, we have

In(l—a)>——0

11—z

13



Therefore, for any z € ©4,

and we can write

ihRez
2cp 1+h

Ing(z) <

(p—cp-i—]%) (S—?ie;>l—1]. (A26)

From the definition of O,

hRez
1+h

< 1ﬁh <%r(h)+20(h)> < 3hn(h) =2 (h+a).

Further, S —p =M + ...+ X, —p = O, (1) by Theorem 1.1 of Bai and Silver-
stein (2004). Combining these facts with (A26), we get sup.cg, §(2) = O, (1)

uniformly over h € (O, B] Ro

Let us return to the proof of Lemma 5. Consider ¢(v)w as a function of w.

According to (A8) and (All), p(v)w has a convergent series representation

p(v)w = Z asw® (A27)

for sufficiently small |w|. Let us show that the series in (A27) converges for all

w € Q. Indeed, from (A10), we see that

p(v)w = (20/(2)) " g (2). (A28)

By Lemma A1 (ii), z, viewed as the inverse of w(z), is analytic in 2. Further, g (2)

14



and w’ (z) are analytic in z () = B (29 (h), p(h)) . Finally,
, 1
' (2)] > 5 | 2] (A29)

for z € B (20(h), p(h)) by Lemma A1 (i), and £ £0for h e (0, k] . Therefore,

¢(v)w must be analytic in € and the series (A27) must converge there.

Now, formula (A7) implies that infhe(o,ﬁ]{ S/ 2‘ /h} > 0. Therefore, from

Lemma A2 and (A29), we have

g9(2)

|~ hl0,(1), (A30)

suplp(iul= _ sup
weN z€B(z0(h),p(h))

where O,(1) is uniform in h € (0, 4] .

By Lemma Al (iii) and (iv), |7 (h)| > |[Re 7 (h)| > 71 and B (o, |Tl|1/2) is con-
tained in 2, where p(v)w is analytic. Using Cauchy’s estimates for the derivatives
of an analytic function (see Theorem 10.26 in Rudin (1987)), (A27) and (A30), we
get

lag) < |77 sup [p(v)w] = hTO,(1). (A31)
weB(0,|r1|*/2)

Next, Olver (1997, ch. 4, pp.109-110) shows that I' (o, () = O (e*C(O‘_l) as

|C| — o0, uniformly in the sector |arg (¢)| < 5 — 0 for an arbitrary positive 4. Let

2
us take o = 21 and ¢ = 7 (h)n. Lemma A1 (iii) shows that
|7 (h)n| > Tin — o0

and
T

arctan

|arg (7 (h) n)| =

T2
< arctan — < —,
T1 2

7(
ReT (h)

15



uniformly over h € (O, m . Therefore,

r <%1,T(h) n) ~0 <e—7<h>n (r (h)n)2 ) -0, (e—%m> (A32)

for any integer s, uniformly over h € (0, l_z} .

Equality (A32), the definition (A14) of €4 ; (h), and inequality (A31) imply that
ert (h) = K710, (e73 ™), (A33)

where O,(-) is uniform over h € (0,h] .

Next, consider w¥yp, (v) as a function of w. Since, by definition,

it can be interpreted as a remainder in the Taylor expansion of ¢ (v) w. As explained
above, such an expansion is valid in €2, which includes the ball B (O, 2|7 (h)|" 2)
by Lemma Al (iv). By a general formula for remainders in Taylor expansions, for

any w € B (0, |T(h)|1/2),

< b for (00 0)]. (A34)

‘wkéﬁk (U)‘ >

max
h

kL weB (o, (m)?)

Further, for any w € B (0, |7'(h)|1/2>, a ball with radius |71|"/? centered in
w is contained in the ball B (O,Q |T(h)]1/2) C Q. Therefore, using (A30) and
Cauchy’s estimates for the derivatives of an analytic function (see Theorem 10.26
in Rudin (1987)), we get

dk

max = (wip (1)

weB(0,|7(h)[?)

< K| M sup |we (v)| = h10,(1). (A35)
we

16



Combining (A34) and (A35), we have

sup | (v)| = h10,(1).
ve(0,7(h)]

This equality together with (A31) and the fact that, by definition, ¢, (0) = ay
imply that

=h7'O,(1 A
o, (0)] = h70y(1), (A36)

where O,(1) is uniform in h € (0, 4] .

For €5 (h), the substitution of variable v = 7(h)Z in the integral (A15) yields

k+1

ek (h) = n_(kJ’l)/Q/ e_T(h)xI%T(h)Tgok (v) dz.
0
Therefore,

ena (n2] < max [ n/eR”W#%hmﬁ¥w:mw>

ve[0,7(h)
7Re7'(h)
< ma,x \gpk |/ EQ) yy 2 dy
But by Lemma A1 (iii),

Re(h) Re(h) T1
T~ Rer(m) + [mr ()]~ 71+ 7

for all h € (0,h]. Therefore, the integral in (A37) is bounded uniformly over
h € (0,h] . Using (A36), we conclude that

erz (h) = h7'0, (n~*F1/2). (A38)

17



Combining (A9), (A13), (A33), and (A38), we get

k—1
—nf(z —-n s+1 Qg O (1)
f eIt )g( dz =" ( F( ) n(s+1)/2 5 T hnzl)wl/ ) ) (A39)
=0

[z0,21] s

where O,(1) is uniform in h € (0, 4] .
Let us now consider the contribution of K /[zo, z1], that is the part of con-

tour K, excluding the segment [z, 2], to the contour integral ¢, e g(2)dz.

On Kl,

I
1+ z&‘ dF, (V)

Re(/(:) = fo) = 2 [ n 1 +i—mns

is an increasing function of Im (z) . Hence, on K;/|zy, z1],

Re(f (2) — fo) > Rer > 1.

Therefore,

< enoemm 74 l9()dz]
K1 /[z0,21]

= e oe 1 32(h)| O, (1)

% e @ g(2)dz
K1/[70,71]

= e Mo pT0,(1). (A40)

For the horizontal part K5 of K., consider first the case when

g(z) = exp {—3A, (2)} . We have

P
j{e"f(z)g(z)dz = %e%ﬁz H (z — )\j)f% dz| < egln(3z0(h))7{
=1

h
e%mzdz‘

2 2 J K>
h 7].
_(r o~ 3 (cpIn(320(h)— itz 20(h)) (A41)
21+h

18



But thzo(h) = h + ¢, so that

h
1+h

cpIn (329 (h)) — 2o (h) > ¢, In (20 (R)) — h > 2fo + ¢,.

Combining such a lower bound with (A41), we get

f e Pg(2)dz| = e RTIO (73%) = e RTIO, (e75) (A42)

2

where O, (e_%c) does not depend on h.

For the case when

np—p+2 h =z n hz A, (2)
= — |l ———= ) — = —
962) eXp{ 2 n< 1+hS> 21+h 2 J°
we have
h _n2722+2
—nf(z < —
7{6 I@g(2)dz| = 7{(1—H—h§) H(z—)\J) 2dz
2 2 =t
h . er72p+2
< —LZ1n(320(h)) s
= 0F ?{ ( 1 +hS) dz
K>
Further,
np—p+2 np—p+2
h z - 2 Zo(h) h €T - 2
- dz| < 1——- d
]{ ( 1+hS) i /oo ( 1+h5> ’
K>

_ 28 b b R
 np—p h 1+h S '

19



Hence, we can write

25 1+h _meopyy(1-h 20MW) _py s,
%6nf(z)g(z)dz < p—- —i}; e 2 1(1 e ) 2 In(3z0(h)) (A43)

2

Now, for any real x such that 0 <z < 1, we have In (1 — x) > —3*. Hence,

_npz—pln(l_LzO_W)<(p_cp) (S—hfi(?)_lghfi(?-

But

The O, (n™') quantity here is uniform over h € (0,h] in view of the facts that

S —p =0, (1) by Theorem 1.1 of Bai and Silverstein (2004),

hZO (h)
1+h

':|h+cp| < |h+ ¢

for all h € (0, B], and n and p diverge to infinity at the same rate. Therefore,
(A43) implies

—1
ferratene| = (Griy) o demes s o, ), ()

which, similarly to (A41), implies (A42).
Combining (A39), (A40), and (A42), we get

k—1
—nf(z —-n s+1 Qg O (1)
}[ e P g(2)dz = e o (} r( ; ) ozt hn(iﬂ)ﬂ) . (A45)

+ s=0
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Finally, note that

fe—”f(z)g(z)dfz:f @_”f(z)g@)dz—% e—nf(z)g<z)dZ,
K

+ K_

where K_ is a contour that coincides with K_ but has the opposite orientation.
As explained in Olver (1997, pp.121-122), a, with odd s in the asymptotic expan-
sion for ff(, e ™) g(2)dz coincides with the corresponding a, in the asymptotic
expansion for ¢, e "(?)g(2)dz. However, a, with even s in the two expansions
differ by the sign. Therefore, coefficients a, with odd s cancel out, but those with

even s double in the difference of the two expansions. Setting £ = 2m, we have

s 1\ a 0, (1)
—nf(2) — 9 - 25 p
é{e g(z)dz = 2e™/° <E F(S+2> nS+1/2+hnm+1/2> ;

s=0

which establishes Lemma 5.

C Proof of Lemma 6

2
Fix0<e< (\/C/ h— \/Z) , and consider the event £; that holds if and only if
(A4) and (A5) hold,

Zo<h) — bp > €

and

The fact that, with probability approaching 1, for all h € [ﬁ, oo), the integrals in
(2.9) and (2.10) do not change as K is deformed into K () can be established along
the same lines as in the proof of Lemma 4 by replacing event F with event Ej.

Similarly, an equivalent, for h > h, of Lemma 24, is easily proved along the

same steps. Hence, since Re ( flz)—f (zo (ﬁ))) is an increasing function of Im z

21



on K, (ﬁ),

D

e @ g(2)dz e_”f(zo(ﬁ)) z)dz
7{{@ g2)dz| < ;{{( 9(2)a]

= (=)o, (1). (A46)

Further, as in (A41) and (A44), we have

_ (31%) e~ 3 (eom(3:0(R))~2r0() o (1)

7{ ) e_"f(z)g(z)dz
= (=)o (1). (A47)

Combining (A46) and (A47), we get

7{ 0 e_”f(z)g(z)dz = e’"f<'z°(ﬁ))0p(1)‘

Similarly,

7{ (~)€—nf(z)g(z)dz (=)0, (1),

Lemma, 6 follows from the latter two equalities.

D Proof of Lemma 11

Consider

1= [ o) = ), ()
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where 1, () is defined in (3.2). Making the substitution A = 1 + ¢, — 2,/¢, cos

and replacing zo(h) by the right-hand side of (3.7), we get

1) = 2/”ln(h+h1cp+2\/c_pcose)sin29d9
0

T 1+c¢, —2,/¢,cos0
12
1 g In Ve R Vet sin?o
= = dé.
7r/0 1+¢, —2,/¢,cos0

Further, changing the variable of integration from 6 to z = e, we get

I(h) = 2me
|z|=1

dz. (A48)

L [ (Valh 4 VEz) (Ve b+ VR (- )
=3 2(V5 ) (v~ )

Representing the logarithm of a product as a sum of logarithms, splitting the

integral into two parts corresponding to the summands, and changing the variable

1

of integration in the second integral from 2z to 27", we get

dz. (A49)

1) 1 In (w/cp/h+\/ﬁz) (z—2z71)°
- 2mi 7{ (ver —2) (v = 1)
|z|=1

If h < /¢, then function In <\ /cp/h+ \/Ez) is analytic inside the ball |z| < 1.
Therefore, if ¢, < 1, the integrand in (A49) has singularities only at zero and ,/c,.
If ¢, > 1, the singularities are at zero and /1/c¢,. If ¢, = 1, the only singularity
is at zero. Computing the residues of the integrand at the singularity points and
using Cauchy’s theorem, we get

%ln(l—i—h)%—é—i—ln% if h <,/¢,and ¢, <1

- (A50)
Lem(1+42)+24+2me ifh< Gande =1
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If h > /c,, then represent the logarithm in (A48) in the form

In [(ZMvL \/E) (z‘l\/cp%Jr \/Eﬂ :

and proceed as above to get

- 2—=In(h+¢)+4+Eh if h> /G and ¢, <1 (A51)
1;%ln(l%—h)—i—%—i—lnh if h > /¢, and ¢, > 1

Now, it is straightforward to verify that Lemma 11 follows from (A50), (A51),

and from the facts that

=3 (T30 — o [ 1 alh) = 047, ().

that HLhzo(h) = h + ¢, and that the Marchenko-Pastur distribution has mass

max (0,1 — ¢, ') at zero.

E Proof of Lemma 12

Let zp; = lim zq (h;) as n, p — o0o. As follows from Bai and Silverstein (2004, p. 563),
By (aohs)) = 10 (o (hy) = 2) My (2) d
c

and

A, (20)) = 7{ In (20 (hy) — 2) M, (=) dz,
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where C is a fixed contour of integration encircling the support of the Marchenko-

Pastur distribution, but not z (h;) and z;, and

M) = > (=2 = [ @ =2 ),

J=1

Therefore,
Ap (20(hy)) — Ap (205) = 7{11& (M) M, (z)dz.

Further, as can be shown using arguments similar to those given on p.563 of Bai

and Silverstein (2004),

fln (M) M, (z)dz = fln <M> M, (z)dz + 0,(1),
C

205 — R 205 — R
c

where {Mp (2),p=1,2, } is a tight sequence of random continuous functions

on C. On the other hand, as n,p — oo,

In (M) 0
205 — R

uniformly over C. Hence,

]{ln (M) NI, () dz = o,(1),

205 — %
c

and thus

Ay (20(hy)) — Ap (207) = 0p(1).

The latter equality implies that the vectors (S — p, A, (20(h1)) , ..., A, (20(hr))) and

(S —p, A, (201) , -y A (20,)) simultaneously diverge, or converge, in distribution,
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to the same limit.
Now, according to Theorem 1.1 of Bai and Silverstein (2004), (S — p, A, (z01) , ---,
A, (zo,)) converges in distribution to a Gaussian vector (7, &, ..., §,) with means En =

0,

1 cm® (2)

—cm? (2) (1+m(2))

dz, (A52)

covariances

In ( zoj — zl )In (zor — 22) dm (z1) dm (22)
Cov (5]7 gk; \% f (2;2))2 le sz ledZQ,
(A53)

221n zoj—zl) dm (z1) dm (29)
AbH4
Cov (§,m) =575 ¢ ]5 A s, (A9

and variance

where

m(z)=—(1—-c)z ' +em(2)

with m () given by (3.6) where ¢, is replaced by c. That is,

—z+c—1+\/(2—c—1)2—4c
2z ’

m(z) = (A56)

where the branch of the square root is chosen so that the real and the imaginary

parts of \/ (z—c— 1)2 — 4c have the same signs as the real and the imaginary parts
of z — ¢ — 1, respectively. The contours of integration in (A52)-(A55) are closed,
oriented counterclockwise, enclose zero and the support of the Marchenko-Pastur

distribution with parameter ¢, and do not enclose zy; and 2.
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The expressions for E¢;, Cov (;,£ k), Cov (&;,n) and Var (n) can be simplified
along the same steps as in Bai and Silverstein (2004, pp.596-599). Exactly following

the derivation of their formula 5.13, we get

J 4 2

pe (G = 0) (o = 1) 1 /b In(z0; —2) 4, (A57)

where a = (1 — /¢)* and b= (1 4+ 2)?.

Making substitution z = 1+ ¢ — 2y/ccos 6 as in the above proof of Lemma 11,

2
06

\e/hi+ /e’
(x—c—1)°
_ L i (Je/n ) de = n 1 Je/n,
= 5 M:lz ln( c/h]+\/h7]z>dz'—ln c/h;.

Using this in (A57), we get

In ((MJF \/h_j)Z (\/%— \/h_J)2> ~In/e/h;

In (1 - cflh?) )

and using similar steps to those used in that proof, we obtain
1" In(z— I
. / 108 gp— [T
T Ja \/ 4c — T Jo

E¢, =

J

[Nl NG

For the covariance Cov (fj,fk) we use formula 1.16 of Bai and Silverstein

(2004), to get

Cov (&, &) = —Lj{% In (20 — 2 (m)) In (Zof —20m2)) 4 s, (A58)

where
1 c

z(m):—g—i-l_'_m.

(A59)

Note that substituting m (z) as defined in (A56) in the right-hand side of (A59),
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we get z, so (A59) describes a function inverse to m (z) .
Let us split the double integral in (A58) into three parts according to the

decomposition

Cov (,,6,) = 5 [Var(€,) + Var (&) — Var (&, ~ &,)]

where
VaI‘ _ %% ln ZO] - Z )) In (ZOJ < (m2))dm1dm2, (AGO)
27‘(’2 ml m2)
Var(§,) = —=— j{j{ In (200 = 2 (my)) In (Zoj = (m2))dm1dm2, (A61)
m1 mz)
and

Z

zor—2(ma1) ok —2(m2)
Var (&, — &) = 5.2 7{% )

The contours of integration over m; and ms in (A60-A62) are obtained from

zoj z(ml) ln<zo]-—z(m2)>

the contours of integration over z; and 2, in (A53) by transformation m (z) . Recall
that by assumption the contours over z; and z; intersect the real line to the left of
zero and in between the upper boundary of the support of the Marchenko-Pastur
distribution, (1 4+ \/5)2, and min {zg;, zox } . Therefore, as can be shown using the
definition (A56) of m (z), the my-contour and ma-contour are clockwise oriented
and intersect the real line in between — (1+/¢)" and min {m (zo;) ,m (z05)} =
—max {h; (h; + o)ty (hy + c)_l} and to the right of zero. In particular, both
contours enclose 0, —h; (h; +¢)~" and —hy (hy +¢) ™", but not —1, — (1 +h;)~"
and — (14 hy)~"

Without loss of generality, assume that the mo-contour encloses the m;-contour.
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For fixed my, we have

%m oy =2 (m)) % ( St m)

(m1 — ms) 205 — 2 (ma)) (M1 — ma)

L 1/m2 — ¢/ (my +1)° -
n 7{ (207 +1/my — ¢/ (my + 1)) (my — m2)d b (AG3)

where the first equality follows from integration by parts and the fact that
In (20; — 2 (m4)) is a single-valued function along the mj-contour. To see this,

note that

205 (m1 + (1 —+ hj)il)
my + 1

In(zp; — 2 (m1)) =1n

h.
+ In (m1 + hj—]l—c) —Inm,.

The first of the latter three terms is a single-valued function along the m;-contour
because it does not have singularities inside the contour. The second and the third
terms are not single-valued, but their changes after passing once along the contour
cancel each other.

Now, the integrand in (A63) has first-order poles at 0, —h; (h; + c)fl, Mo, —1
and at — (1 +R;)~" and no other singularities. As explained above, only the first

two of the above poles are enclosed by the m;-contour. Using Cauchy’s residue

theorem, we get

%hl (ZOj — - (Tnzl))dml = 27TZ —L + 1 .
(my —msy) ma  mg+ hj(h; +c)

(A64)
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Let us denote —h; (h; + ¢)”" as ;. Using (A64) and (A60), we get

211 1 1
Vi) = 3% o - 2o (- - oy ) am
2m _ 1 1
= ﬁ In (]_ - ZOjIZ (mg)) (m—2 — M — 0]) dm2

By Cauchy’s residue theorem, the first term in the latter expression is equal to
—21n (1 — c‘lh?) . The second term equals zero because the integrand has anti-

2
derivative —% [ln (mfn—;gj)} which is a single-valued function along the contour.

Similarly, we can show that
Var(¢,) = —2In (1 — ¢ 'hj)

and that
(1—cthihg)”

Var(§; — &) =2In (1 — c*lhi) (=T

Combining these results, we get

Cov (6,6) = —Mn(1=c'h) ~In (1 -0
(1—cthyhy)’

=0 -7

= —2In(1—c 'hjhy).

—In

For Cov (¢;,7) and Cov (1,7), an analysis similar to but simpler than that
leading to the above formula for Cov (f 6 k) shows that Cov (f i 77) = —2h; and
Var (1) = 2c.
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F Proof of Lemma 13

First, note that
p

CLR=Y q(\) - /q(w)dfp (),

J=1

where ¢(x) = x — Inz — 1. Also, recall that, as shown in the proof of Lemma 12,
Ay (20(h) = Ay (20) + 0p(1),

where zy = lim z, (k) and

p

umziyuﬂi/wmawx

=1

with s(z) = In(zp —x). Therefore, in view of Theorem 1.1 of Bai and Silver-
stein (2004), CLR and A, (2(h)) jointly converge in distribution to a Gaussian

vector with covariance

s(z1)q(22) dm (z1) dm (29)
R = 271’2 %% Zl m(ZQ)) le dZQ ledZ2 (A65)

Here m (z) is as defined in (A56), and the contours of integration are closed, ori-
ented counterclockwise, enclose the support of the Marchenko-Pastur distribution
with parameter ¢ < 1, and do not enclose zy. Further, we will choose such contours
so that the z;-contour encloses 0, but the z;-contour does not.

Using Formula 1.16 of Bai and Silverstein (2004) we can simplify (A65) to get

_QQf%m%—zm»@ma4mmm—n

3 dmldmg,
(1 —my)

where




and the contours of integration over m; and ms are obtained from the contours
of integration over z; and z; in (A65) by the transformation m (z). In particular,

my-contour is oriented clockwise and encloses _W and 0 but not —1 and _1+_h’

whereas mo-contour is oriented counterclockwise and encloses C% and —1 but not

_F and 0.

Using (A64), we can write R = Ry + Ry + R3, where

1 1 1
R, = —— ——+ z (mg) dma,
! w%( ms m2+hj(hj+c)1) (mz) dm,
Ry = 17{ —i—l— ! — | Inz (my) dmy, and
T my - mg+ hj(hj +¢)

Rg = l% —i—i‘ 1 ] dmg.
T my - mg+ hj(hj +¢)

Since —— -+ mf is analytic in the area enclosed by the ms-contour,

R3 =0. Further, using Cauchy’s theorem and the fact that

we get Ry = —2h. Finally, integrating R, by parts, and using the fact that In z (my)

is a single-valued function on the msy-contour, we get

. A ¢
R — & f 2 U (g - In (s + By (b + ¢) 7)) dim,

g T ma2 + m2+1

The integrand in the above integral has only two singularities in the area enclosed
by the mo-contour: a pole at ﬁ and a pole at —1. Therefore, by Cauchy’s residue
theorem, we get Ry = 2In(1+ h). To summarize, R = Ry + Ry + Ry = —2h +
21In (1 + h), which establishes Lemma 13.
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