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Abstract
This note contains supplementary material for Onatski and Wang (2016)
(OW in what follows).

1 Supplementary Material for Section 2 of OW

1.1 Proof of Corollary OW3

Since the a.s. limits of PB, ,r/(pT) and PBy,r/ (pT) are the same as long

as r/p — 0, we shall only compute the latter limit. Under the simultaneous

asymptOtiC regime, b, T —c 00, We have
PBoyr/ (0T) ™% [ MW (Ne/ (1+¢),2/ (1+¢)).

Using the explicit formula for the density of the Wachter distribution (OW9), we

obtain,

2mc 1—A
+max{0,2 —1/c},

/AdW()\;c/(1+c),2/(1+c)) = 1+C/b+ \/<b+_)\)()\_b_)d>\ (1)

where

bi:c(ﬂ;m)‘z.
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Denote [ AdW(A;¢/(1+¢),2/(1+¢)) —max{0,2 —1/c} as Z. Let

r=(—b)/(bs —b)

so that A=0b_+ (by —b_)x. Then

poLee 00T,
2 Jy 1—b_—(by —b_)x

Changing variables to # where z = (1 — cos#) /2 so that dz = %sin 6df, we obtain

T . 2 .2
I:_l—i—c/ (by —b_)"sin“0 a0,

2—br—b_ | br—b_
8em 5 + =5 cos 0

Further, letting z = cos§ + isin 6 so that

-1 _ -1 d
TE gng=? Q_Z and df = &
1

1z

cosf =

we obtain

2
2 [ z—z1
7= 1+c (by =) ( 2 ) dz
o 16¢mi 2-by —b_ + by—b_ 2421 ?
|z|=1 2 2 2

Y

where the contour integral is taken over the unit circle in the complex plane. Noting
that

2—b+—b_+b+_b_z+z_1

5 5 5 (a+b2) (a+bz7"),

where

a

:\/1—b_+\/1—b+ b_\/l—b_—\/l—b+
2 T 2 ’

we represent Z in the following form

s _ltc ]{ (by —b_)? (22 —1)°dz
~ 6deri a(a+bz)(z+bja) 22

|z|=1

Since a > b > 0, the integrand has poles at 0 and —b/a. The corresponding residues

are
_l+4c

To =
2c

(a* +0%),

and

1+
R )
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so that

Noting that

2R —c+202;|—1
(c+1)
and
R 1—20’
1+c¢

Therefore,
2
/)\dW()\;c/(l +0),2/(140) = — =+ max{0,2 - 1/c},

and ,
PBoyr/ (0T) = % +max {0,2 — 1/c}.
Cc

1.2 Proof of Corollary OW4

As explained in OW, for ¢ < 1/2, we have

1

1 & —
T_pLRr’p’T Z —_— Z log(l — /\])

j=r+1
Therefore,

1 — 1 e~—
T_pLRT’p’T > — /log (1= XN dF,r (\) + p Zlog(l —Aj)-
j=1

If r/p — 0 as p,T —. oo, the second term on the right hand side of the above

display converges to zero. Therefore, almost surely,

1 —
lim inf p_TLRr’p’T > — /log (1=XN)dW(Xe/(1+¢),2/(1+¢))

p,T—c00

_ —/log(l AW e/ (14 ¢),2/ (1 +¢).



Denoting — [log (1 — A)dW(X;¢/ (1+¢),2/ (1 +c¢)) as Z, and using the explicit
formula for the density of the Wachter distribution (OW9), we obtain

where

-2
bi:C<\/§:F\/1—C) .
Let 2 =(A—=0_)/(by —b_) sothat A\=0b_+ (by —b_)x. Then

T —

_1+C/110g(1_b‘<b+—b>w> (=)o (b, =)
2em Jo (by —b_)x+b_)(1—b_—(by —b_)x) .

Changing variables to 6 where z = (1 — cos ) /2 so that dz = § sin 6d¢, we obtain

1= dé.

14e /7r log (2_b;_b’ + b*;b’ Ccos 0) (by —b_)*sin®6
0

botb_  bi—b_ 2by—b_ | bi—b_
8cm (%—%cos@)( + + =5 Cos@)

2
Further, letting z = cos § + isin 6 so that

-1 -1 d
it ,sin@zz 2,z ,andd@z.—z,

1 1z

cosf =

we obtain

Y

2
2—by—b_ by —b_ z z71 2 Zfzfl
_ch[log( e g btz ) 4, b ) (55 g,
 16cri <b++b7 _ by—bo z—&-z*l) (2—b+—b7 4 obebe z+z*1> z
2 2 2 2 2 2

2]=1

where the contour integral is taken over the unit circle in the complex plane. Noting
that

2—b+—b7+b+—b72+2_1

_ -1
5 5 5 =(a+0bz) (a+bz"),

where

a

:\/1—b,+\/1—b+ b_\/l—b,—\/l—m
2 T 2 ’

and that ; ) ) ; .
+; — — +; _Z+2Z =(e—dz) (e—dz""),




where

. by + /b= J— by — /b
2 ’ 2 ’
we represent Z in the following form

(e—dz)(ez—d)(a+bz)(az+0b) =z

7 _ Lte ]{ log ((a 4 bz) (a + bz2)) (ed)? (22 — 1)* dz
4emi
|z|=1

_1+c ]{ log ((a 4 bz) (a + bz1)) ed? (2% — 1) d=

ale—dz)(z—9%)(a+b2)(z+2) 2z~

4emi
|z]=1

The integral has form Z = j{ log (q(2)q (z7Y)) H (2) z*dz with H(z) = H (271).
|z|=1
Hence, expanding the logarithm yields two identical terms, so that

A

e—dz)(z— %) (a+bz)(z+2) 2

a

1+e f log (a + bz) ed? (2% — 1) dz
a(

2cmi

|2|=1 N

Since @ > b > 0 and e > d > 0, log (a + bz) is analytic inside the unit circle and
the integrand has three simple poles there: 0, —b/a, and d/e. The corresponding

residues are

1+4+ced l+c
ro = — —loga = — log a,
c ab c
14 clog (a—%) e2d? (a® — b?)
T=ba =TT T Gb (ae + db) (be + ad)
1 2
_ +C\/1—b_\/1—b+log<a—b—)
c a
1—2c ( bz)
= logla——],
c a
and
1+clog (a+ %) ed(e? — d?)
Tdje =

c (ae + bd) (be + ad)

- o (+@)

(%)
= logla+—).
e




Summing up, we obtain
1 1-2 b? bd
7T=-— +Cloch— Clog<a——)+log<a+—>.
c c a e

Noting that

and
2¢(1—¢)

1+c¢

we further simplify the above expression for Z to obtain

ae + bd =

1+c 1—-c 1—-2c

I= log (1+¢) — log (1 —¢)+

log (1 — 2¢).

2 Supplementary Material for Section 3 of OW

2.1 Proof of Theorem OW6

First, let us show that the weak limit Fj () of F, (A) as v — 0 exists and equals the
continuous part of the Marchenko-Pastur distribution with density (OW21). By de-

finition and Theorem OW1, F, (A) is the (scaled) Wachter d.f. W (yA;v/ (1 +7),2v/ (1 + 7)) .
Therefore, by (OW9) and (OW10), the density, f,()), and the boundaries of the

support, [13_, 34 , of the distribution F, equal

- ()
27 AL —=~A)
b= (VEEVT0)

Asy — 0, by — ay, where ay = (1+ \/5)2 as in (OW20), and f,()\) converges
to the density given by (OW21). This implies the weak convergence of F, (\) to
Fy (A\) with Fy supported on [a_, ay] and having density (OW21).

, and
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To establish the theorem, it remains to show that, as p — oo, F}, (\) weakly
converges to Fy(A), in probability. Recall that the weak convergence is metrized
by the Lévy distance L (-,-). We need to show that for any 6 > 0, there exists pyg
such that (s.t.) for all p > po,

Pr (L (Fo, Fpoo) <0) >1—06. (2)
Let v > 0 be so small that
L(Fy, F,) <§/4. (3)
For any p, let T, be the smallest even integer satisfying p/7, < . That is,
Twzirpréiz%{T:p/Tgfy}.
For any T, > T, by the triangle inequality, we have
L (Fo, Fpoo) < L(Fo, Fy) + L (Fw Fp,Tw) +L (Fp,Tw Fp,Too) + L (Fp 1 Fpo) 5 (4)
where F, 7. and F), 1, denote the empirical distributions of eigenvalues of

%Cch”Al, (5)

with T' =T and T = T, respectively.
By Theorem OW1, L (Fv, Fp;pv) a.s. converges to zero as p — oo. Therefore,

for all sufficiently large p, we have
Pr (L (F,, For,) <6/4) >1—6/4. (6)

Further, as shown by Johansen (1988, 1991), for any p, as T,,, — 00, the eigenvalues
of (5) with T' = T, jointly converge in distribution to those of

% /01 (dB) B’ (/01 BB’du) h /01 B(dB)'. (7)

Therefore, for any p and all sufficiently large T, we have

Pr (L (Fyr, Fpoo) < 6/4) > 1 — 6/4. (8)



Let us denote the sum of L (Fy, F,), L (Fy,F,r,), and L(F,1.,Fpo) as
L1, By (4), we have

L (Fo, Fpm) <Lypr.+L (Fp,Tw Fp7Too) : (9)

Inequalities (3), (6), and (8) show that for any § > 0, there exists v5 > 0 s.t. for
any positive v < ;, there is a p, s.t. for any p > p,, there is a T}, s.t. for any
To > 1T,

Pr(L,,r, <30/4)>1-46/2. (10)

The subscripts in 74, p, and 7T}, signify dependence on the value of the corresponding
parameter. Inequalities (10) and (9) would establish (2) as long as we are able to
show that for any J > 0, there exists 75 > 0 s.t. for any positive v < 75, there is a
D~ s.t. for any p > p, and any Tp, there exists T, > Tp s.t.

Pr (L (Fyr,, Fpr.) <6/4) >1—-0/2. (11)

Let us denote & = /T, where ¢ is a p x T matrix with i.i.d. N(0,1/T) entries,
as defined in Section OW2. We shall assume that, as p, T change, ¢ represents
p x T sections of a fixed infinite array of i.i.d. standard normal random variables.

Consider

Mo (§>/ AL (sms’)l 0t (g)/ ’
pt =y T T T T \T '

So defined matrix M, is identical to the real symmetric matrix £ A~/2CD~'C"A~1/2,
The above definition is formulated in terms of £ to clarify that M, depends on T’
not only via the term 7'/p, but also through A, C, and D. Note that F, 7. and F}, 7,
are the empirical distributions of eigenvalues of M), r and M), r._, respectively. The

following lemma is established in the next section of this note.

Lemma 1 For any 7 > 0 there exists v, > 0 s.t. for any positive v < .., there is
ap,y s.t. for any p > p, and any Tp, there exists Tn, > Tp s.t. with probability larger
than 1 — 7, M,1 — M,1, can be represented as the sum of two real symmetric
matrices S and R,

Myz, = Mz, =S+ R,

where ||S|| < K/v, rank R < 7p, and K is an absolute constant.

Finally, let Fsr be the empirical distribution of eigenvalues of M, — S =

8



M,

» 1o + R. Then, by Theorem A45 (norm inequality) of Bai and Silverstein (2010),

ﬁ(Fp,Ta,aFSR) S HSH S Kﬁa

whereas by their Theorem A43 (rank inequality),
1
L(Fsp, Fpr,) < —rank R < 7.
p

Therefore, by Lemma 1 and the triangle inequality, for any 7 > 0 there exists
7, > 0 s.t. for any positive v < 7y, there is a p, s.t. for any p > p, and any Tp,
there exists T, > Tp s.t.

Pr(L(For, For.) <7+ K\7)>1-T.

For 7 = §/8, this inequality implies (11) with ;5 = min {~,, (§/8K )2} . Combining
(11) with (10) yields (2), which completes the proof.

2.2 Proof of Lemma 1

Consider some positive v < 1. For any p, let

pr— 1 N <
T, = min{T: p/T' < 7},
and let 7" = T, > T,. Consider a partition { = [57,500] , where . and &, are
px T, and px (T —T,), respectively. Further, let Ay, and Ay, be defined similarly
to Ay and A, with T replaced by T’,. Define

£,& £, A1 05,8
A, =20 p =220 and €, = 2220
Y T’y ol Tfy ol T,y

Then

T
M,r, = —VA;1/2C’7D;10:/A_1/2, and

P v
T -1/2 -1, A—1/2
M,r, = —AY2OD7'C'ATY2
p
Geman (1980) and Silverstein (1985) established the a.s. convergence (as p —

o0) of the largest and the smallest eigenvalues (which we shall denote as Apax and



Amin) of A, to (1+ \/7)2 and (1 — ﬂ)z, respectively. Hence,

For v < 1/4,

1-—ym '—1<2y/7and1—(14+,7) " <7

Therefore, for such v, with probability arbitrarily close to one for all sufficiently
large p,

|ASY2 = 1| < 3. (12)
Moreover, the inequality

A7V — || <3~ (13)

holds with probability arbitrarily close to one for all sufficiently large p as well. To
see this, consider a p, X T, matrix n with p, = |77 | > p (here |-| denotes the
integer part of a real number), such that the upper p x T, block of 7 coincides with
¢, and the remaining part of n consists of i.i.d. N(0,1) variables independent from
€. Note that A can be viewed as a p X p principal submatrix of A, = n1'/T. By
Theorem 4.3.15 of Horn and Johnson (1985),

Amin (Ayo0) < Amin (A) < Amax (A) < Amax (Ayoo) - (14)

Since A, is the sample covariance matrix with p, = |71, its largest and
smallest eigenvalues a.s. converge to the same limits as those of A, and thus, (14)
yields (13).

Inequalities (12) and (13) imply that it is sufficient to establish Lemma 1 with
M, 1, and M, . replaced by

- -1 . ~1
Mz, = C, (TEDW) !/, and Mp,Tmzo(%m .
vy
Let » 1/2 D oN-1/p 1/2
w=(70) @) (52) -
and



The following lemma is proven in the next section of this note.

Lemma 2 For any 7 > 0 there exists v, > 0 s.t. for any positive v < ., there
is a py 8.t. for any p > p, and any Tp, there exists T, > Tp s.t. with probability

larger than 1 — T,
lop — apll < Ky and [lac|l < K/,
where ap s a matrix with rank no larger than Tp, and K is an absolute constant.

Using the identity

_ -1/2 -1/2
p i p P b
C (ﬁ)) C' = (C, +ac) (TDO (I, + ap) (TDV) (C +ag)

Y Y

it is straightforward to verify that

My, — My, = (By + B1) + By + (B + B5) + Ba, (15)
where .
mse(f0) e
P —1/2 D —1/2 /
e (fn) " (g0) e
—1/2 p —1/2
mac(f) e (f0) e
and P —1/2 D —1/2
B, = ac (ﬁDw) (I, + ap) <iD7> Qg

To bound the norms of the ’s, in addition to Lemma 2, we need the following

lemma, which we also establish in the next section of this note.

Lemma 3 As p — oo, the empirical distribution of eigenvalues of D, a.s. con-
verges to a monrandom distribution with support bounded below by (17’y)_1 for

sufficiently small .

Consider the following decomposition of 3, in the product of four terms, given

11



in the square brackets,

» —1/2 » ~1/2
61 = [OKC’} <iD’Y> (iD’y> O,/YA;I/2 [A,IY/Q] .
By Lemma 2, with high probability,
lac|l < Ky/7. (16)

Further, since Amax (4,) =5 (14 \/7)2 , we have, with high probability
14, < K, (17)

where K may refer to different constants in different formulae.

Next, by Lemma 3, there exists a decomposition

» ~1/2
(_D“Y) =T+ X9 (18)
TV

where ||z;|| remains bounded in probability by an absolute constant and z, has
rank no larger than 7p for arbitrarily small 7 and sufficiently large p. The term x,
is needed because Lemma 3 does not establish the a.s. convergence of the smallest
eigenvalue of D,. It only concerns with the a.s. convergence of the empirical
distribution of the eigenvalues of D, .

Similarly, we can show that

~1/2

Y

where ||x3|| remains bounded in probability by an absolute constant and z4 has
rank no larger than 7p for arbitrarily small 7 and sufficiently large p. Indeed, the

—i/2
squared singular values of (%DO o4 A;l/Q equal the eigenvalues of

¢, (£0,) Tyt (20)

~

By Theorem OW1, the empirical distribution of these eigenvalues a.s. converges to
a distribution with the upper boundary of support (\/_ — /11— ’y) 2 Therefore,
for any 7 > 0, with high probability for sufficiently large p, there are no more than

12



/2 _ _
C’;Ayl/2 that are larger than (v2 — /T —7) ' :
which establishes the existence of the decomposition (19).

Combining (16), (17), (18), and (19), we conclude that with high probability,

for all sufficiently large p, 5; can be decomposed in the sum of a matrix of norm no

7p singular values of <T%D7)

larger than K,/y and a matrix of rank no larger than 7p. Similar decompositions
are valid for (,, ..., 3,. The corresponding proofs are very similar to the proof for
f, and we omit them. Using the decompositions for (5, ..., 3, in (15) completes

the proof.

2.3 Proofs of Lemmas 2 and 3
2.3.1 Proof of Lemma 2

Let us, first, focus on ap. Define
a=(I,+ap) ' =1,

It is sufficient to prove that, with high probability, for sufficiently large p, o can
be decomposed into the sum of a term with norm no larger than K',/y and a term

with rank no larger than 7p. By definition of ap, we have

D ~1/2 » » » ~1/2
=| =D =D ——D —D .
) (Tv 7) (T T, V) (Tv 7)

Recall that A; and A, are T = T-dimensional matrices with T, > T,. Con-
sider partitions A; = diag {A11, A2} and Ay = diag {Ag, Ags}, where Ay and

Ay are T, x T',. Using this notation, represent « in the form

~1/2 / / —1/2

p &AnE,  p A1\ [ p

o= (2p ) <p— _ Py ptebele) (P, (21)
(T g T2 T, T2 T, 7

gl gl
—1/2

By Lemma 3, the proportion of the eigenvalues of <%D7> that are larger
than 5 converges to zero in probability as p — oco. In particular, with probability
arbitrary close to one, this proportion is smaller than any fixed small positive 7 for
sufficiently large p. This implies that, with high probability, <T%Dv> e can be
represented as a matrix of rank no larger than 7p plus a matrix of norm no larger
than 5.

13



Further, consider

5 A11£/ P An Al
o) o) ¥

Recall that the diagonal elements of Ay; (except the first two) have form (1 — cos 27/ )"
with j <T,/2. The diagonal elements of A;, have a similar form with T, replaced
by T’,. Since

1, 1,

cosr=1— 2>+ —x

5 I cost

for some ¢ € [0, 2|, we have

-1
N2
1 (1 —cos2mj/T) " = ! (1 _ cost (2m)) )

272 (2m)? 12 1%

for some t € [0, 7], and hence

1 1 t t2mj)?\
—(1—00827{7’/7}0)71— cos (1— cost (27)) >

272 (2nj)? 1272 12 12
Since j <T,/2 and Ty, > T.,, we have

t (2mj)? 2 1
cost (27j) o1

— [ — > J—
12 12 127 12’
and thus . . |
— (1 — o /T) ' — —— | < —.
A similar inequality holds for the elements of Ay,:
1 . 1 1
— (1 —cos2mj/T,) — ——| < =.
‘2T 3 ! (2mj)?| T2

Therefore,

: — 1 e 2
(1 —cos2mj/T) " — ﬁ“ —cos 21y /Tp) 1‘ < 73
o]

v

o

The absolute value of the difference of the first two diagonal elements of Aq; /T2

14



and Ay,/ Tv2 is obviously smaller than 2/ Tf too. To summarize,

2D P _ngl"Y
! TV TW

§7A11ffy p

<

with high probability for sufficiently small . To obtain the last inequality we used
the fact that the largest eigenvalue of 575’7 /T, a.s. converges to (1 + \/7)2 .
YA

Consider now the component pT—§2§,°° of (21). Since, as is straightforward to

verify, 1 — cosz > x?/6 for x € [0, 7], we have
2T2 (1 — cos 2mj /Ts) > (275)% /3. (23)

Let us represent Ay as diag {Alz’l, ey A12,(Tmew)/Tw} , where each block Ay, is
T,-dimensional. We can choose T\, so that (T — T7) /T, is an integer, so such a
representation is possible. Using the fact that the diagonal elements of Ao ;/T. 2

have form

1
272 (1 —cos27mj/Ty)

with j =47, /2+1,...,(i+1)T,/2 — 1,
we find that the upper bound on the diagonal elements of Ay, /T2 equals
[2T2 (1 — cosiTym/Tw)] -

By (23), this is no larger than 3/ (izT})*.
Let us decompose &, conformably with Aj, so that £ = [50071, ey E oo, (Too —Tw)/Tv] :

Then, from the above, we have

(Too—T5) /Ty

3p 1
EE D I

v i=1

€ocD128
p T2

éoo,zf/oo,i
T, ‘

The Gaussian concentration inequality for the singular values of a rectangular
matrix with i.i.d. Gaussian entries (see Theorem II1.13 of Davidson and Szarek
(2001)) implies that, for any ¢ > 0,

/ 2
00,15 00,1 Tt2
Pr(‘fﬁ 2(1—1—”£—i—7§)><exp{—7 }
ol T’Y 2

T

15



Take t = i'/*. Then,

(TOO_T’Y)/T’Y ! 2
E : €o0,i€ o0, H ( | D Z T 21/2
i=1 ( T’Y T’Y

Clearly, the right hand side of the above inequality can be made arbitrarily small

by choosing sufficiently large T’,. Therefore, with large probability, for sufficiently

2
are smaller than (1 + /T% + 2'1/4) and

2
(Too—T)/ Ty (1 + /& + i1/4)
< 3 3 VT
’ - 7T2T’y 2‘2

i=1

oo,ibooi
large T’,, all HT

< Kvy (24)

‘ €oc D128
T2

for some constant K that does not depend on «y. Using the definition of a, (22),
and (24) and recalling that, with high probability, (T%D» e can be represented
as a matrix of rank no larger than 7p plus a matrix of norm no larger than 5, we
obtain that o can be represented as sum of a matrix of rank no larger than 37p
plus a matrix of norm no larger than K+, where K is some absolute constant.

Let us now focus on an. Write a in the following form

! §A’+172§’7 SOOA/—I—[OO,WQ/SQO
a2:<—2£7€oo+’y( 21TooT/) —C'y>+ (22 Ti T/)

Let us denote Ay, + I, /2 as A%, and Ay, + Ir, /2 as Aév Then

€L SCRTRME o (3 2 68
T T,

_ O =—
2T T K 2T 27,

By definition, the block-diagonal elements of Al (except the first block) have form

< 0 1 sin 275 /Too )
2 1—cos2mj/Too

1 sin 275 / Too 0

2

1—cos27j/Teo

The block-diagonal elements of A’QW have a similar form with T, replaced by T.

Now,

costy 5 1 costy 4
and cosx =1— -z + —=g
3! 2 4!

sinyx = x —

16



for some t1,ty € [0, 2] . Therefore, we have

1 osin2mj/Toe 2m)/Too — <51 (27 /To )’
21 —cos2m)j/Tos (27 /Too)? — <52 (27) ) Too)*
11— <=h(2m5/T,,)°
21/ Too 1 — <522 (27 /T’

so that
1 sin2mj/Tw 1 (2m)/T)? < — b
o1 —cos2mj/Toe 27 27j 1 — L (2m)/To.)’
and thus,
1 sin27j/Ty 1 - 67mj
2T 1 —cos2mj/T  2mj T2
Similarly,
1 sin2n7j/T, 1 67
2T, 1 —cos2mj /T, 2mj T

Let £, be a p x (T, —2) /2 matrix that consists of the odd columns of
(starting from the third one) and let ., be a p x (T}, — 2) /2 matrix that consists
of the even columns (starting from the fourth one) of &, . Finally, let £ o be the
p X 2 matrix of the first two columns of £ . Then, the latter two inequalities and
the fact that j < % imply that

A A 1 1
&, (T:: - TJ) & =E0 <—m + ﬁ) o+ T8 —ETE,,

where I' is a diagonal matrix with diagonal elements smaller than 37 /7, by absolute

value. Since with high probability

1 1\
4 <9
570( 2Too 2T7> 570 > 27,
we have R .
Al A
o (- 3) e <o aleareal )
gl

On the other hand, }}571F§;2|| is the square root of the largest eigenvalue of

g'yl F£;2572 Fffyl :

17



Note that the rank of T7F§'72§72F is no larger than p, and there exists an orthog-
onal transformation R such that RT7F£’72§72FR’ is diagonal with only the first
p diagonal elements potentially non-zero. Furthermore, these non-zero diagonal

elements will coincide with the eigenvalues of
T’Y£72F2£;Q'
But

(377)2 5725;/2
2 T,/2

T’Yg'y2r2€i}/2 S

Assuming that ~ is small, with high probability,

g’y2€'ly?

< 2.
T,/2

Hence, the only p potentially non-zero diagonal elements of RTVFS’WQQQFR’ are
smaller than (37)” with high probability.
Let &.; be the p X p matrix that consists of the first p columns of £ ; R'. Note

that the entries of £ ;; are i.i.d. standard normals. Then, we have

(37)°

f’ylrffﬂg’y?rgfyl < T&’yllgiﬂl .

o

Since the norm of 57115’711 /p is smaller than 5 with high probability,

16,1 T€ 56,,TE || < (97)*

with high probability. Combining this with (25), we obtain

AL ALY
& | 7 - ) el <200 +9mA). (26)
T, T,
Further,
g &8 1 g, 1 &8
SR a ikl | | A | i | - <4
H o or || Sz T2 | || S

with high probability, for sufficiently large p, T" and small v. Combining this with

18



(26), we obtain

Next, consider

€ & (Bt I /)

- C
2T Ty K

<2(y+10m/7) .

€oo (AbotITog 1., /2)Ehs
Teo

part of as. Let £, be a p x (T —

(27)

T

o

) /2

matrix that consists of the odd columns of £, and let £, be a p x (T — T7,) /2

matrix that consists of the even columns of ¢ . Then,

£oo (Al22 + [Too*Tw/2) gloo
T

= 5002T£f>ol - 500le{>027

where

. 1 sin 27 /T
T=d
a8 { 9T 1 — 0527/ Toe }

with j running from 77, /2 to T, /2 — 1. We have
2

éoo (A/22 + IToo—Tw/Q) 5/00
T

<4 ||5002T51001H2 =4 H€OO2T£,001£001T€,002H .

Let R be the orthogonal matrix such that RY¢. €., TR’ is diagonal. Note that
the rank of Y&/ _,&. ;T is no larger than p. Therefore, there are only p potentially

non-zero elements on the diagonal of RYE. €., TR'. Without loss of generality,

these are the first p elements. Let £, be the first p columns of £_,R’. Then, we

have

2

goo (A/22 + IToo_T’v/Q) 5/00

v < A€o | IRYE1 6o TR

= 4 ||€oo21€2>021|| HgoolfrzggolH ’

Consider the decomposition

o1 = [5«;1@ ---:5001,(T007Tw)/n} )

and note that
T2 = diag {Tf, e T%TOO—TW)/TW}
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with

sin <z%%—”> 1 sin ((z% + % — 1) %—“)
Ti = dlag = g eeny =
2T% 1 — cos (z%%) 2T% 1 — cos ((z% + % — 1) %)
Note that
: T 2 2
1 sin ((@7” + k;) K) 1 cos? (z— + k> T
2T0°1—cos<z%+k: %) 213, 1—cos( )T—”
1 1
QTOQO 1 — cos %
- 3 1
T,??TQ 72
Therefore,
(Too=T5)/Ty
“5001T2£;ol” S Z Hgool,zfrgggol,z”
i=1
Too—T5) /T
< ( i)/ T3 1 gool,zflool,i
- — 2T,$7r2 12 T,/2

Using the large deviation inequality argument as above, we conclude that with

high probability,
1
[€ocr T260en || < K

where K is an absolute constant. Therefore,

where K is an absolute constant. This implies that, with high probability,

§oo (Do + Ire 7 /2) €
T

< 4K£ §oo216o021

<K
Tfy = 17,

oo (A + Ity /2) £,
T

< KA

for some absolute constant /K. Combining this with (27), we obtain

el < K\/y

20



for some absolute constant K.

2.3.2 Proof of Lemma 3

Let m = m(z) be the Stieltjes transform of the limiting spectral distribution (LSD)
of D, = § A& /T,. By Silverstein and Bai (1995), for any z € C*, m is the unique

solution in m € C* of the equation

tdH (t
_ / (28)
m 1+ fymt

where H (t) is the limit of the empirical distribution of the diagonal elements of A,,.
Let Srsp be the support of the LSD of D.,. By continuity, the Stieltjes transform
can be defined on Sf g, where the superscript ¢ denotes the complementary set.
On any open subset of S¢ ¢, m(z) still satisfies (28).

Silverstein and Choi (1995) show that S¢¢, can be found as follows. Find
Sm C R, such that for any m € S,,, z(m) is well defined by (28) and has positive
derivative at m. Then S¢g,, coincides with z(S,,).

Since
Ay —dlag{r I, ..., o, /2_7}

with 7, j41 = (2 — 2cos 27 /T,) , we have

H(t) = * arccos (1 - i)

T 2t

Therefore, z(m) is well defined for m < —4/v and m > 0.

Direct computations similar to those in the proof of Lemma OW14, given below,

yield
1 1
z = ——+ for m > 0, and (29)
m o \/v2m? + 4ym
1 1
z = —— — for m < —4/~, (30)
mo\/y*m? + 4dym
so that
d L 1 - v2m + 2y
dm m? " (y2m2 + 4ym)*/?
where “—" correspond to m > 0 and “+” correspond to m < —4/~.
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For m > 0, %z > 0 if and only if
v (ym +4)® > m (ym + 2)* .
Denoting ym as x, we can rewrite the above condition as
V(x+4)° —z(x+2)7>0.

For sufficiently small v > 0, the function on the left hand side of this inequality
is strictly decreasing on = > 0, positive at x = 0, and negative as x — o00. Let
xo = ymp > 0 be such that the left hand side becomes zero. Then, a part of S7 g,
consists of the image of (0,m) under (29).

For m < —4/v, sz > 0 if and only if
v(ym+4)* <m (ym +2)*.
Denoting ym + 4 as x < 0, we rewrite this condition as
vt < (z—4) (x —2)%.

For sufficiently small «, this inequality is never satisfied for z < 0. Hence S7 ¢
consists entirely of the image of (0,m) under (29).

Note that as m | 0, z | —oo. Hence, S¢¢, must have the form (—oo,d_),
where d_ is the lower bound of the support of the LSD. Incidentally, we see that
the LSD is unbounded from above. Further, for sufficiently small -,

— !
- To  \/x3+ Ary
Since x satisfies
V(@44 —z(z+2)" =0, (31)
we must have ( 2)
TolXo -+
\/ 12+ 4wy =
0 0 v (zo +4)
and 5
d = Y
xo(zo + 2)
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Finally, from (31), we have
z9 = 167>+ 0 (72) .

Therefore,

1 1
d = — (1+40(1) > —
167( +o(1)) 17~

for sufficiently small ~.

2.4 Calculation of the integral in equation (OW22)

Using the explicit formula for the density of the continuous part of the Marchenko-
Pastur distribution (OW21), we obtain

/MdFo(M) :/fﬂ%(w—u)(u—a)d%

2m o

where

0y = (1i\/§>2.

Let v = (u—a-)/(ay —a_) so that p=a_ + (ar —a_)x. Then

[mar = @

e )r
2T 8

3 Supplementary Material for Appendix of OW

3.1 Proof of Lemma OW10
Write X; in the VAR(k) form
k

Xt = Z HiXt_z‘ + \I[Ft + Et,

=1

23



k

k
where II; are such that II = E I, =1, and I'; = — E . I1;. Express X; as a
j=i
i=1

function of the initial values, ¢ and F' (see Theorem 2.1 in Johansen (1995))

k—s+1

ZCtSZHS+Z 1X1 Z+ZC €t]+\IJFt ]) (32)

where Cy = I and C),, is defined recursively by

kAn
Cn = ZCn—jHj7 n = 1,2,

=1

Here k A n denotes the minimum of k£ and n, and II; = 0 for j > k. Let us denote
II; — I as II] and let IT; = II; for j > 2. Then, for n = 1,2, ...,

kAn JNk nAk
AC, =Cp—Copy =Y Co T = Z AC,_; ZH* + Z 1. (33)
j=1

Clearly the column space of AC is spanned by the column spaces of IT7, j = 1, ..., k.
Use this as the basis of induction. Suppose that the column spaces of each of AC;
with j < n are spanned by the column spaces of IT}, j = 1, ..., k. The identity (33)
then implies that the column space of AC), is spanned by the column spaces of II7,
7 =1,...k, too.

Now rewrite (32) as

t—s

Xe=) > AC, ZHW 1X1_Z+ZZAO;Z (61— + VFj)

s=1 h=0 =0 h=0

where ACy = Cy = I,,. Represent X; as a sum Xt(o) + Xt(l), where

t—1

Xt(O) = ZZHerl 1X1 i Z(gtfj_'_\Dthj) and (34)

s=1 =1 7=0
J
x® - E;AChZHSH 1 X 1+20;A0h e j+UF,_;). (35)
s J

Since the column spaces of each of AC), with h > 1 are spanned by those of IT7,
7 =1, ..., k, the space spanned by Xt(l), t=1,...,T is also spanned by the columns
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spaces of II7, j = 1,..., k. Since the union of the latter column spaces coincides

with the union of the column spaces of II and I', we have
rank XV < r 4 rankT, (36)

where X =[x XI] with zero XV, .., X$", and XV with ¢ > 1 defined
by (35).

Next, represent Xt(o) as a sum Xt(oo) and X,, where

E ok -1
X = 3N M X+ Y Fyyand (37)
s=1 i=1 Jj=0

t—1
Xoo= > e (38)
j=0

and let X0 =[x X with X° = X, for t =1 —k,...,0 and X*” with

t > 1 defined by (37). Note that the columns space X (°?) is spanned by those of 117,
j =1,..., k, the column space of the matrix of the initial conditions [X;_y, ..., Xo|,

and the column space of W. Therefore,
rank X0 < 7 4 rank ' + k + dp. (39)
Since X = XM + X0 4 X inequalities (36) and (39) yield

rank(X—f() <2(r+rankl'+ k +dp).

3.2 Derivation of Equation (OW43)

Applying the Sherman-Morrison-Woodbury formula (OW41) to the right hand side
of
_ -1
D' = (D; +eAyeqy)

we obtain

_ _ _ _ _ -1 _
D™t = Dj - Dj 15(]’) (Aljl + EI(j)Dj 15(]’)) 5,(j)Dj '

_ _ —1 _
= Dj L Dj 15(]') (Tj[g + Sj) El(j)Dj 1. (40)
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Using this and the identity
C = Cj -+ E(j)Alzjé‘l(j), (41)
we expand C'D~C" in the following form

CiD; ' Cj + ) Aye(; D ' Cf = CiD7 ey (il + ) e D' C

+C;D; e Do) — j)A§j5/ ')Dflg(j (rjlo + ;)" €(;)D 10’

—C;D; e j) (rils + 5;) "' €l Dy ey Dajely) + £ Dbl D e()Agje(;
)A

J D 5(]) (TJIQ + S]>7 E(j)D] 5(])A2]€(])

Recalling that 6’( j)Dj’la(j) = s;, we further simplify this to obtain

— — — —1 —
CD 10, = Oij 10], — Cij 16(]') (Tj]g + Sj) 6,(j)Dj 10;
+5(j)A/2jrj (TjIQ + Sj) 5(] 10/
+Cij_1€(j) (7"]'[2 + Sj)i TjAsz(j)

e Abysy (rilo + s5) 7 i Dgse()-

Since M = CD~1C" — zA, it follows that

M~ = (M;+ ajKja;-)_l : (42)
where
M; = C;D;'Cj— zA;,
aj = e CiDj )]
and

oo [ By (2 + s5) " rilay — 2Ly Moy (rily +s;) .
! (7"]'[2—‘—8]')71 TjAgj —(?"jfg‘{’Sj)il

Applying the Sherman-Morrison-Woodbury formula to the right hand side of (42),
we obtain
_ _ _ _ 21\l _
M=M= M ay (K7 + oM ey) oM (43)

Since
A,QjAgj = Alj = T;llg, (44:)
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we can write

o[ Ay 0 sj(rila+ )"y —zrily (rila+s5) 7 7 Agj 0
! 0 ]2 (Tj]2+8j)_l T —(TjIQ—I-Sj)_l 0 IQ

which implies that

P Ayl 0 it I ALY 0
J 1—=z 0 12 IQ Z(?"]’IQ‘{'SJ‘) — 5j 0 [2 ’

and therefore, using (44), we obtain

' 1Al
-1 _ —z 2 2 )25
K ( 1 = j ) _ (45)
.7

1
=il il —

Further, the definitions

/( 1C/M 8]),
v; = 5’(J)M £(j), and

/

(

U}] = €])D 10, 1C'D 5 )

Uj:&T]

yield

. /<
o) Moy = ( Y ) (46)
Uj W

Using (45) and (46) in (43), we obtain

-1
1 1
M= M = Moy ( R Ay Ty ) af M, (47)

J 1 P
1702ty grile — s+ w;

which yields

-1
L1 + v L AL+, v,
eyM ey = v — [vj, ] ( ez 1-z 7725 7 J

1 .. . 2 T . )
1_ZTJA2]+U] Trila — 85 + w;

3.3 Proof of Lemma OW12

We start from an elementary lemma describing absolute central moments of a
quadratic form in i.i.d. normal random variables. Its proof is given in the next

section of this note.
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Lemma 4 Let p be a positive integer, ) be a p X p deterministic complex matriz,

and & ~ N, (0, 11,). Then

2 2
"Gl

E <

&Q¢ — %trﬂ

where
Cp = 2% (2p + 1)2p Pt

Consider a sequence {p,T} = {pr,T} such that pr, T —. co. We introduce
notation py to emphasize the fact that the sequence {p, T} with p,T —, oo can
be indexed by T" without loss of generality. Let us use Lemma 4 to prove that, as
pr, T —. 00,

rna}jcv2 l|s; — 81| = 0. (48)

Since the square of the spectral norm is no larger than the sum of the squared
elements of the matrix, it is sufficient to prove the element-wise convergences.
Take, for example, the element in the second row and the second column of s; —515.
We need to show that

_max ey D7 leg; — 8| =5 0. (49)
For any 7 > 0, let E;. be the event
EjT = {‘E/QJD]_1€2] — §‘ > 27-} .

The probability of F;. is bounded above as follows

Pr (Ej’l') S Pr (El,jT) + Pr (E27j7') s

where
1
Eij = { Eéij_lﬁzj — Ttr [D] 1] > 7'} , and
Eyjr = {'%tr [Dj‘l—D]‘ >r}.
Note that
1 T 1 1 B 4
HD] H S HD H B )\min <€A1€/) S )\min (AI) )\min (55,) B )\min (58/), (50)



where Ay, (+) denotes the smallest eigenvalue of a matrix. As shown by Bai and
Yin (1993),
)\min (€€I> (g (1 - \/E)2

when pr, T —. co. Fix 6 >4 (1 — \/5)72 . Then, almost surely, there exists Ts that
does not depend on j, such that

1D7 [ <8 (51)

for any T" > Ts. Let E; denote the expectation conditional on the event (51).
Lemma 4 yields

2 2
r < o) ”ppT‘

1
]Ej SIQij_lEQj — T tr [Dj_l] ~ T2p (52)
We have
Pr(By,) < Prj () Pr(|[D; <6) +Pr(||D;']| > 9)

< Pr;(Ey ;) +Pr ()\min (ee) < 4(571) ,

where Pr; is the probability conditional on the event (51). Markov’s inequality
together with (52) imply that

C'p52pppT
Pr (El,jT> S 729T2P

+ Pr (Amin (g2") < 4671). (53)

1

Further, since the rank of the positive semi-definite matrix D~ — D; " is no

larger than two, we have by Weyl’s theorem (see Theorem 4.3.6 in Horn and
Johnson (1985))

1 B 2 _
Ll - b)) < 2107

Therefore, using (50), we obtain

2 8
Pr (B, ) < Pr <f | D] > T) < Pr ()\min (eg') < le) : (54)

For Ay (€€) , we have the following large deviation inequality (Theorem II.13

in Davidson and Szarek (2001) establishes the inequality given below and a similar
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inequality for Apax (¢€”)). For any a > 0,

Pr (/\min (eg) < (1 —/pr/T — a)Q) <exp{-Ta’/2}. (55)

Let
a=(1-+c)/2—5"2>0,

and let T),;; be such that for all T' > T,

(1 — /pr/T — a>2 > max {451, ;T—l} (56)

and

C,6° ph.
202
Let To = max {75, T)s,} . Note that Ty does not depend on j. Inequalities (53-57)
imply that for all T' > Ty

exp{—Ta?/2} < (57)

3C,6%ph.
Pr (EJ ) S —TQPTQP .
Finally,
T/2 2
3C,0°"ph
/ -1 a p T
o {jﬁ}%/z Dy e =3[ > 27} = ler (Eir) < gt
j:
For p > 2,

2720201 ’
T=Tp+1
which yields (49) by the Borel-Cantelli lemma.
The convergence of the element in the first row and the first column of s; — 51

can be shown similarly to (49). For the off-diagonal elements, note that

. ] 0 Dt E2j-1
f J

Hence, we again can use Lemma 4 and the Borel-Cantelli lemma to obtain desired
results.

It remains to prove that



and to establish similar convergences for v; and w;. This can be accomplished
by closely following the strategy of the above proof of (48), which we leave to the
reader. The only two new aspects of the remaining proofs are related to the need for
bounds on the spectral norms of Dj_lc’;-Mj_l, Mj_l, and Dj_le’»Mj_leDj_l, and on
the differences between the traces of these matrices and the traces of D~*C'M 1,
M= and D71C'"M~*CD™!, respectively. Such bounds can be obtained using the

following lemma. Its proof is given in the next section of this note.

Lemma 5 Let z be as in the definition (OW37) of M, and let 3z > 0 be the

imaginary part of z. Then, we have

A max (€€7)

na |07 < Fe]

1 1
M < Gammey

The same bounds hold for the norms of M~* and D~'C". Further,

8

-1 as-1
‘tr (Mj M )l < (jz) /\min (56/)7

1/2 /
|tr (D;'CIM; — DT'C'M )| < M,
T (32) A2 (et

min

and
96 A max (€€7)

-1 -1 -1 -1 -1 -1

3.4 Proofs of Lemmas 4 and 5

3.4.1 Proof of Lemma 4

Without loss of generality, we can assume that 0 = A 4+ iB, where A and B are
real symmetric matrices. Indeed, the expression £'Q€ — % tr 2 does not change if 2
is replaced by 1 (2 + '), and the latter matrix obviously has the required form.
Using the Holder inequality, we obtain

1 2p 1 2p 1 2p
= TtrQ < 921 ((ngg — TtrA) + (g’Bg — TtrB) ) . (58)
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Let UdU’ be the spectral decomposition of A, where d = diag{dy,...,d,}. The

rotational invariance of the distribution N, (0, +1,) implies that
2p

E <§’A§ — %trA) ¥ =E (Z: d; (gf — %)) : (59)

Since E (522 — %) = 0, the right hand side of the above equality can be expanded

as

- LY E (€2 — 1)
=1 1<i1 <+ <ll<p.71+ ]l =2p t=1 Jt
J122,0 35122

Now, let 11; be the j-th raw moment of a x*(1) random variable. As is well known,

p; = (25 — 1)!! with a crude upper bound
By < 2jjj

Since the j-th absolute central moment of a y?(1) random variable is no larger

than y; + 1, we have, for any j > 1,

J 4+ 1 i (i J
Ble - Ll <t 20T
T Ti TJ
Further, clearly
|dil” < [[A]I” .

Using the latter two inequalities in (60), we obtain

P 2p p l
1 Al (4p +2) 2 2p)!
E<zdi (5?—;)) < AT+ 27 5 > %
i=1 =1 Ji+gi= t=1 Jt
J122,- Jz>2
LA™ (4p +2)* Z” 12

=1

Using another crude upper bound

p
> Pl < p
=1
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we conclude that

p 2p 2 2
1 AP (4p + 2)% g1y
i=1

Now note that ||A]| < ||2||. This follows, for example, from the equality

A+ B? = % (Q*Q + QOF)

where the superscript ‘«’ denotes the operation of transposition and complex con-

jugation. Therefore, (59) and (61) imply

2p 2p 2p 2p+1,p
E@M_%M)Smwmﬁﬁfap.

Similarly, we have

2p 2p 20 2p+1,.p

Using the latter two inequalities in (58), we obtain

7 P2 20+ 1)

T2r =

E|¢'0Q¢ — %trQ

3.4.2 Proof of Lemma 5

By definition of M;, we have

1
A7V (a7 oDt epAr Y < e A

J J J

) = |

-1

IA

145 H (4,1 2cypy cras 2 — 21, )

On the other hand,

1
Amin (£€7)

477 < 1A~ ==y
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and

1
—1/2 1 ~-1/2
N (A7 20Dt era ) — |

H(A 20D AT z[p)_l

where A (+) is the k-th largest eigenvalue of a real symmetric matrix. The above

inequality implies that

-1

H( a7repireal - o) | <

1
3z’

and therefore,
1

N B W E=

The same bound for || M ~!|| is established similarly.

Further, we have

[F2ert \\DJIC‘C'D*I\\
HDj_l8 A, J)6 J)A2J)5 J)D 1”

where Ay is the block-diagonal matrix obtained from A, by removing its j-th
2 x 2 block, and £_;) is obtained from e by removing the 2j — 1-th and 2j-th

columns. On the other hand,

HD-—lfff@)A'zu)@' HE-0A20)e '_lH
S max ' ||D €- () A2(] AQ(J 8 (J i H

ee’)
= max 68/) ||D €-() Al(] 5 —(7) j lH
)

- max 55/ ||D

where we used the fact that A2(j Agjy = Ayj) with Ay(;) obtained from A; by
removing its j-th 2 x 2 block. Using (50), we obtain

< A ax (£€7)

Ip7 el < =gy (63)

The same bound for ||[D~1C’|| is established similarly.

Now, let us establish the bounds on the differences of traces. As follows from
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(47), M j_l differs from M~! by a matrix of rank no larger than 4. Therefore,
Jor (M7 = M| < 4| M;7 = M| < 4 (a7 (|7

Therefore,

8
(32) Muin (g€7)°
Similarly, D;'CjM; " differs from D~'C’M~! by a matrix with rank no larger

than 8. It is because

o (M~ ) <

D'CiM; =D O'MTY = DYCH (M =M + D (Cp - C) M
+ (D]—l o D_l> CIM_l,

where the rank of M j_l — M~ is no larger than 4, and the ranks of C} — C" and

D;l — D71 are no larger than 2 each. Therefore,

[tr (D G5 = D oM | < s ([ DG [+ ([ o e[ )
32AL2 (e

(32) A2 (e’)’

min

where we used (62) and (63). Finally, D;'CjM; ' C;D;* differs from D~'C'M~'CD™!

by a matrix with rank no larger than 12. Therefore,

96 Amax (€€7)

-1 -1 -1 -1 -1 -1
|tr (D;'C;M;'C; DY = DIC"MTICD )\g(%w. =l

3.5 Proof of Lemma OW14

First, let us prove that

Recall the definition of §

Let Fp (x) denote the empirical distribution of the eigenvalues of D, and let

Fip(z) = / L arp ()

r —z
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be its Stieltjes transform. Then, by Theorem 1.1 of Silverstein and Bai (1995), for

any z € C*, mp(z) a.s. converges to mp(z), which satisfies equation

L1 +/ 7dH (r)

mp(z) 1+ 71emp (2)]

where H (7) is the limit of the empirical distribution of the diagonal elements of
Aq, rj_l, j=1,...,T/2. Recall that

riy1 =2(1—cosbj), j=1,...T/2 1.

Therefore, H (1) is the cumulative distribution function of the random variable
[2(1 — cosU)]"", where U is distributed uniformly on the interval [0, 7] . This fact
implies that

1 1 du

- _mD(z)—F;/O 2(1—cosu) 4+ cmp (z)
ds

1
2mri s(2(1- 5+§71) + cmp(z))

I
|
+

3
S
O

1 1 ds
mp(z)  2mi (s2—(2+cmp(z))s+1)

The integrand has two poles at

emp(z) + 2 £ \/c2m%(2) + demp(z)
S19 = .
’ 2

Note that s1s9 = 1, which implies that one of them is inside the contour and the

other is outside. Therefore, we have

1 1
z = — +
mp(z) ~ $1— Sy

1 1
+
mp(2)  \/Em3(2) + demp(2)

(65)

where the choice of + or — sign depends on which of s; 5 is inside the contour.

Squaring and rearranging, we obtain

¢ (zmp(2) +1)% (emp(z) +4) — mp(z) = 0. (66)

36



Further, since min;—; 72 rl > 1/4, we have

.....

i ! a.s 1 - 2
N (D) = Auin (EA1)) > Amméfgg) o5 { 4\/5) .

a.s.

Therefore, mp(z) is analytic at z = 0, mp (0) = mp(0), and mp(0) satisfies
equation (66) with z = 0. That is,
a.s. 4c

ﬁ’LD (O) — mD(O) = 1— CQI

But § = Zmp (0) . Hence, we have (64).
Now, let us turn to the proof of the lemma. Elementary algebra yields the
following representation
0j =015 + %52]-,
where
0y =(rj+38)(20—-1),

and
11—z

02 = (2) (1 +0 — 20) = 5 (20) +1; (20) — — (z01)?

Note that for z € C*, o € C*. Hence, for z € C* such that Rz = 0, we have
MR (20) < 0 and
20— 1] > 1. (67)

This inequality and (64) imply that, for any z € C* such that Rz = 0,

2c?
0l > 17—

2
for sufficiently large p, T as p,T —. oo, almost surely.

Further, Lemma 5 implies that |zi|,|z0|, and |zw| remain bounded for suf-
ficiently large p,T as p, T —. 0o, almost surely. Moreover, the presence of the
imaginary part of z in the denominator of the bound on HM ]-_1 H in Lemma 5 imply
that, for z € C* such that Rz = 0, the value of the bound on |z4/|,|20|, and |2zw|
does not depend on z. In particular, for any such z, |0,;| is bounded for sufficiently
large p,T" as p,T" —. 0o, almost surely, uniformly in j, with the value of the bound

independent from z with Jz > (. Hence, by choosing ( sufficiently large, we can
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ensure that, for any z with Rz = 0 and Jz > (,

1 1
‘;5% < §|51j|,

and therefore
2

o>

which establishes the lemma.

3.6 Proof of Lemma OW16
The identity u =  is established by the following sequence of equalities

1

Ta = trD'C'M ' =trD7'C' (CD'C" — zA)~
= u(C 240" D) 't (¢ 2D ()" A)
= trA7IC(C'ATNC —2D) T = ATICM T = T

-1

The relationship z0 4+ § = w is obtained as follows

T(:p+38) = trD (zfp (CA'eD = 2L) T+ J,,)
= trD! (—Jp +C'ATICD T (C' AT CD T — 2L) T+ fp)
— trD! (Jp — DC'A(C) ! z>7

= DO (CD7IC" — A2) T CDT = T,

The identity 20 + 5 = w is obtained similarly to 20 + § = w by interchanging the
roles of D, C and A, (C".

3.7 Derivation of Equation (OW55)

Equations (40), (41), and (47) imply that

DilC/Mil = (D;1 — D;lé(j) (T’j]g + Sj)_l €/(j)D;1) (CJ/ + €(j)A2j€/(j))
X (M1 = M Q0 M)
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where a; = [6(]')70ng'_15(3')] and

-1
1 1 ! /
Q0. — =2+, 1A% +uj
J 1 z ’
1782ty grile — s+ w;

Opening up brackets, we obtain

DT'C'M™ = Dj'CIM; = Dite (rila + s;) " el Dy CIM
+D; e Baje(y My — Dy iMoo M
—Dj e (rila + 55) " () D5 ey Dyl M
+D5 e (rifa + ;)" ey Dy CIM; g0 M
—Dj e Ngely M Q0 M
+D; e (rifa +5,)" €y Dy e Doyl M g Qe My
Multiplying from the left by 5’( i) and from the right by ;), and using the definitions
of u;,v;,s;, and w;, we obtain
gD IO M ey = wy— s (rily + s;) "y -+ 5 A0,
— [uj, w;] Q; [vy, u;]/ — 55 (i1 + 5;) 7" 5,090,
5 (il + s5) 7" [, w;) Q5 [0, 5]
—s;80; [0j,05] o), 5]

+s; (riIo + 85) 7 8005 [v5,u5] Q [UJ‘?“;'],-

Rearranging terms and simplifying gives us

5,(]-)D_1C,M_15(j) = 7 (rj-l? + Sj)_l SjAQj (Uj - [Uja ’LL;:| Qj [Uj7 U’;],) (68)

+T’j (’I“j]g + Sj)il (Uj — [Uj, wj] Qj [?Jj, U;}I) .

3.8 Proof of Proposition OW17

Multiplying both sides of (68) by Aj;, we obtain

Abey DTIC'M ey = Ny (rily +55)7 80 <UJ — [vj,u}] Q; [Uj’“ﬂl>
j

Ay (s + 7)™ (g — [, 03] 9 [ ] ) - (69)
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Note that, for j =1,...,T/2 — 1,

1 ____singjf 1 __ cosjf/2

A 2 2—2cos j0 _ 2 2sin j0/2
Az ji1 = sin j6 1 - cos j6/2 _1
2—2cos j0 2 2sin jO/2 2

so that

1/2 —sinjl/2 —cosj0/2

Tj+1A2,j+1 = . . 5
cosjl/2  —sinjb/2
and thus, rjl.flAg,jH is bounded uniformly in j =1,...,7/2 — 1. For ri/QAl, we
have
1/2Al

Hence, 7"]1-/2A27j is bounded uniformly in j =1,...,7/2.

Replacing s;,u;,v;, and w; in (69) by §ls,4ls, 015, and wls, respectively, and
noting that
AIQJAQJ = Alj = T;1[2,

we obtain
AyelyDTIC"M e
- - i - (v12 (01, aly) O [@[2,11[2]’>
J
Ny (s — [l 1) Q (1o, L)) + o(1), (70)
J
where,

~ 1 —Z 7"]]2 SIQ + ’LZ)]Q _1lerjA/2j — QALIQ
T']AQJ — UIQ é[g + Q/}IQ ’

§; = (w— 3) 1+U—ZU)+T](U+ZU—1) (1—2)a?
and o(1) % 0, uniformly in j. The latter convergence follows from Lemma OW12
and the fact that the right hand side of (69) a.s. remains continuous function of

s, uj,v; and w; with bounded derivatives as p, T —. co. It can be shown using the
facts that: (i) HrjlﬂAgJ

is bounded uniformly in j = 1,...,7/2, as show above,
(i) |r; + 8|~ remains bounded as p, T — 0o, a.s. and uniformly in j, as follows
from (64), and (iii) QJH remains bounded as p, T —. 0o, a.s. and uniformly in j,
as shown in the proof of Proposition OW13.

Consider the first term on the right hand side of (70). Opening brackets and
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simplifying, we obtain

5
i+ S
= R (0 (0 — 8) Lo + ;0 (6 — 1) I + 10009 + 100N, — 0215) .

<@IQ — [ody, als) Q; [0, ﬂlg]')

Using the identity
AQj + Algj = _]2a

we further simply the above expression to get

N

S
r;+S

A s 8 (0w — a?)
01y — [0y, L) Q0 [0Iy, 0l ’) S A L)
< 2~ Dy L0y (01, 411 ;0 6 (ry+9)

L.

Similarly, for the second term on the right hand side of (70), we obtain

Tj / ~ A~ A A A~ N / Tj/a,
—A.<I—1,IQ» I,])z——A»
e Wly — [@ly, W] € [015, 0ly)] 5 2 T

ry (o — )
65 (r; + )

Summing up the latter two equations, and taking trace, we get

0 — 250 + 2000 — 202
J

Using this equation together with equations (OW53) and (OW54), we obtain

T/2 N ~n PN ~9
1 2 i — 280 + 200 — 2
I S L LR L ALY}
P 0,

Recall that ;11 = 2 — 2 cos j0 = 4sin® (jr/T) and 5;1 = h(z, jm/T). Therefore,

T/2—1
L4z == Y h(zjm/T) (4sin® (jr/T) &t — 280 + 2060 — 20°) + o(1).
p

j=1
Since, for z with Rz = 0 and Jz > (, the derivative

d r»
— [ (z.0) (dsin? pi — 250 + 200 — 2?)
¢
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a.s. remains bounded as p,T" —. 00, we obtain

1 /2 R
1+2m = — h(z, ) (4sin® pi — 250 + 200 — 24%) dy + o(1)
T Jo
1 2T R

= 5 i h(z,¢) (2sin® pi — §0 + 0w — %) dp + o(1).

Finally, using the identity

20+ 8§ =w,
we obtain

27

1 .
1+2m= 5a h(z,¢) (2sin® pi + 200 — @°) dp + o(1).
e Jo

3.9 Proof of Proposition OW18

Consider the identity

1 T/2 T/2
Z;Ztr Najely M es)] Ztr Aye;, D7IC'M e ;)] - (71)
7=1

Multiplying both sides of (68) by A;;, we obtain
Ayl DICM ey = (L2 +55) 7 50y (Uj = v, 0] [%‘»“ﬂ’) (72)
+ (Tj]g + Sj)il <Uj — [uj,wj} Qj [vj,u;-]/> .
Further, equation (OW43) gives us

Ngjeln M ey = Dgj (v — [, uf]v), uf]') . (73)

J

Subtracting (73) from (72), we obtain

Ayl DO M ey — Agjel M e

= ((rjl2+ ;)" 55— 12) Ao (Uj = [o, 0] [vj,u;-]/)
+ (rjl2 +57)" (Uj = [uy, ;] Q; [%“ﬂ)

= =1 (rila+55)7 Ay (Uj = [o5 5] Q5 [y, UQD

+ (rila + 55)" (uj = g, w;] Q; [%“}],) :
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Proceeding as in the above analysis of (69), we obtain

Aljél(j)DilclMilé'(j) — Agjgl(j)Milé'(j)
T - . - N
= ——— A, (—031. , -1 NITVANY DUAL .
50+ 9 2 ( 0815 + 10 (U ) Iz + 700 Agj + 100 2;)
—gfg + 0(1)

J

Taking trace, summing over j, dividing by p, and using (71), we obtain
1 <2 6+ 20
Ly )
P 9

Replacing the sum by an integral yields

1 2

3mc ), h(z,¢) (20sin® p + @) dp = o(1).

3.10 Derivation of Equation (OWT71)

Consider )
1 T 1
2m Jo x+2sin‘p

where z € C\ [-2,0]. Changing the variable of integration to z = exp {ip}, we

obtain
1 1 d
I — b ) —Z
27i x—(z—2"1)"/2 2
|z|=1
1 2z
= —— d
2mi 7{ (22 —21) (2° — 22) -
|z]=1
where

r12=c+1x+/z(x+2).

Since x1xy = 1, whereas |z1] # 1 and |z5| # 1, there are only two poles of the

integrand that are situated inside the unit circle. They are either x}/ 2, —x}/ 2,
which we shall call case 1, or :Lé/ 2, —xé/ 27 which we shall call case 2. By Cauchy’s
residue theorem,
7= 2 ,
Ty — T2



with “—” corresponding to case 1 and “4” corresponding to case 2. Whatever the

case, we have

7? = 1 = L .
($1—$2)2 z (v +2)
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