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Abstract

This note contains supplementary material for Onatski and Wang (2016)

(OW in what follows).

1 Supplementary Material for Section 2 of OW

1.1 Proof of Corollary OW3

Since the a.s. limits of PBr,p,T/ (pT ) and PB0,p,T/ (pT ) are the same as long

as r/p → 0, we shall only compute the latter limit. Under the simultaneous

asymptotic regime, p, T →c ∞, we have

PB0,p,T/ (pT )
a.s.→
∫
λdW (λ; c/ (1 + c) , 2/ (1 + c)).

Using the explicit formula for the density of the Wachter distribution (OW9), we

obtain,∫
λdW (λ; c/ (1 + c) , 2/ (1 + c)) =

1 + c

2πc

∫ b+

b−

√
(b+ − λ) (λ− b−)

1− λ dλ (1)

+ max {0, 2− 1/c} ,

where

b± = c
(√

2∓
√

1− c
)−2

.
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Denote
∫
λdW (λ; c/ (1 + c) , 2/ (1 + c))−max {0, 2− 1/c} as I. Let

x = (λ− b−) / (b+ − b−)

so that λ = b− + (b+ − b−)x. Then

I =
1 + c

2cπ

∫ 1

0

(b+ − b−)2
√

(1− x)x

1− b− − (b+ − b−)x
dx.

Changing variables to θ where x = (1− cos θ) /2 so that dx = 1
2

sin θdθ, we obtain

I = −1 + c

8cπ

∫ π

0

(b+ − b−)2 sin2 θ
2−b+−b−

2
+ b+−b−

2
cos θ

dθ.

Further, letting z = cos θ + i sin θ so that

cos θ =
z + z−1

2
, sin θ =

z − z−1

2i
, and dθ =

dz

iz
,

we obtain

I = − 1 + c

16cπi

∮
|z|=1

(b+ − b−)2
(
z−z−1

2

)2

2−b+−b−
2

+ b+−b−
2

z+z−1

2

dz

z
,

where the contour integral is taken over the unit circle in the complex plane. Noting

that
2− b+ − b−

2
+
b+ − b−

2

z + z−1

2
= (a+ bz)

(
a+ bz−1

)
,

where

a =

√
1− b− +

√
1− b+

2
, b =

√
1− b− −

√
1− b+

2
,

we represent I in the following form

I = − 1 + c

64cπi

∮
|z|=1

(b+ − b−)2 (z2 − 1)
2

a (a+ bz) (z + b/a)

dz

z2
.

Since a > b > 0, the integrand has poles at 0 and −b/a. The corresponding residues
are

r0 =
1 + c

2c

(
a2 + b2

)
,

and

r−b/a = −1 + c

2c

(
a2 − b2

)
,
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so that

I =
1 + c

2c

(
a2 + b2

)
− 1 + c

2c

(
a2 − b2

)
.

Noting that

a2 + b2 =
−c+ 2c2 + 1

(c+ 1)2

and

a2 − b2 =
1− 2c

1 + c
,

we further simplify the above expression for I to obtain

I =
2c

c+ 1
.

Therefore,∫
λdW (λ; c/ (1 + c) , 2/ (1 + c)) =

2c

c+ 1
+ max {0, 2− 1/c} ,

and

PB0,p,T/ (pT )
a.s.→ 2c

c+ 1
+ max {0, 2− 1/c} .

1.2 Proof of Corollary OW4

As explained in OW, for c < 1/2, we have

1

Tp
LRr,p,T ≥ −

1

p

p∑
j=r+1

log(1− λj).

Therefore,

1

Tp
LRr,p,T ≥ −

∫
log (1− λ) dFp,T (λ) +

1

p

r∑
j=1

log(1− λj).

If r/p → 0 as p, T →c ∞, the second term on the right hand side of the above

display converges to zero. Therefore, almost surely,

lim
p,T→c∞

inf
1

pT
LRr,p,T ≥ −

∫
log (1− λ) dW (λ; c/ (1 + c) , 2/ (1 + c))

= −
∫

log (1− λ) dW (λ; c/ (1 + c) , 2/ (1 + c)).
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Denoting −
∫

log (1− λ) dW (λ; c/ (1 + c) , 2/ (1 + c)) as I, and using the explicit
formula for the density of the Wachter distribution (OW9), we obtain

I = −1 + c

2πc

∫ b+

b−

log (1− λ)

√
(b+ − λ) (λ− b−)

λ (1− λ)
dλ,

where

b± = c
(√

2∓
√

1− c
)−2

.

Let x = (λ− b−) / (b+ − b−) so that λ = b− + (b+ − b−)x. Then

I = −1 + c

2cπ

∫ 1

0

log (1− b− − (b+ − b−)x)
√

(1− x)x (b+ − b−)2

((b+ − b−)x+ b−) (1− b− − (b+ − b−)x)
dx.

Changing variables to θ where x = (1− cos θ) /2 so that dx = 1
2

sin θdθ, we obtain

I = −1 + c

8cπ

∫ π

0

log
(

2−b+−b−
2

+ b+−b−
2

cos θ
)

(b+ − b−)2 sin2 θ(
b++b−

2
− b+−b−

2
cos θ

)(
2−b+−b−

2
+ b+−b−

2
cos θ

)dθ.

Further, letting z = cos θ + i sin θ so that

cos θ =
z + z−1

2
, sin θ =

z − z−1

2i
, and dθ =

dz

iz
,

we obtain

I =
1 + c

16cπi

∮
|z|=1

log
(

2−b+−b−
2

+ b+−b−
2

z+z−1

2

)
(b+ − b−)2

(
z−z−1

2

)2(
b++b−

2
− b+−b−

2
z+z−1

2

)(
2−b+−b−

2
+ b+−b−

2
z+z−1

2

) dz

z
,

where the contour integral is taken over the unit circle in the complex plane. Noting

that
2− b+ − b−

2
+
b+ − b−

2

z + z−1

2
= (a+ bz)

(
a+ bz−1

)
,

where

a =

√
1− b− +

√
1− b+

2
, b =

√
1− b− −

√
1− b+

2
,

and that
b+ + b−

2
− b+ − b−

2

z + z−1

2
= (e− dz)

(
e− dz−1

)
,
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where

e =

√
b+ +

√
b−

2
, d =

√
b+ −

√
b−

2
,

we represent I in the following form

I =
1 + c

4cπi

∮
|z|=1

log ((a+ bz) (a+ bz−1)) (ed)2 (z2 − 1)
2

(e− dz) (ez − d) (a+ bz) (az + b)

dz

z

=
1 + c

4cπi

∮
|z|=1

log ((a+ bz) (a+ bz−1)) ed2 (z2 − 1)
2

a (e− dz)
(
z − d

e

)
(a+ bz)

(
z + b

a

) dz

z
.

The integral has form I =

∮
|z|=1

log (q(z)q (z−1))H (z) z−1dz withH(z) = H (z−1).

Hence, expanding the logarithm yields two identical terms, so that

I =
1 + c

2cπi

∮
|z|=1

log (a+ bz) ed2 (z2 − 1)
2

a (e− dz)
(
z − d

e

)
(a+ bz)

(
z + b

a

) dz

z
.

Since a > b > 0 and e > d > 0, log (a+ bz) is analytic inside the unit circle and

the integrand has three simple poles there: 0, −b/a, and d/e. The corresponding
residues are

r0 = −1 + c

c

ed

ab
log a = −1 + c

c
log a,

r−b/a =
1 + c

c

log
(
a− b2

a

)
e2d2 (a2 − b2)

ab (ae+ db) (be+ ad)

=
1 + c

c

√
1− b−

√
1− b+ log

(
a− b2

a

)
=

1− 2c

c
log

(
a− b2

a

)
,

and

rd/e =
1 + c

c

log
(
a+ bd

e

)
ed (e2 − d2)

(ae+ bd) (be+ ad)

=
1 + c

c

√
b+

√
b− log

(
a+

bd

e

)
= log

(
a+

bd

e

)
.
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Summing up, we obtain

I = −1 + c

c
log a+

1− 2c

c
log

(
a− b2

a

)
+ log

(
a+

bd

e

)
.

Noting that

a =

√
1− c

1 + c
,

a2 − b2 =
1− 2c

1 + c
,

e =

√
2c

1 + c
,

and

ae+ bd =

√
2c (1− c)
1 + c

we further simplify the above expression for I to obtain

I =
1 + c

c
log (1 + c)− 1− c

c
log (1− c) +

1− 2c

c
log (1− 2c) .

2 Supplementary Material for Section 3 of OW

2.1 Proof of Theorem OW6

First, let us show that the weak limit F0 (λ) of Fγ (λ) as γ → 0 exists and equals the

continuous part of the Marchenko-Pastur distribution with density (OW21). By de-

finition and TheoremOW1, Fγ (λ) is the (scaled)Wachter d.f.W (γλ; γ/ (1 + γ) , 2γ/ (1 + γ)) .

Therefore, by (OW9) and (OW10), the density, fγ(λ), and the boundaries of the

support,
[
b̂−, b̂+

]
, of the distribution Fγ equal

fγ(λ) =
1 + γ

2π

√(
b̂+ − λ

)(
λ− b̂−

)
λ (1− γλ)

, and

b̂± =
(√

2∓
√

1− γ
)−2

.

As γ → 0, b̂± → a±, where a± =
(
1±
√

2
)2
as in (OW20), and fγ(λ) converges

to the density given by (OW21). This implies the weak convergence of Fγ (λ) to

F0 (λ) with F0 supported on [a−, a+] and having density (OW21).
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To establish the theorem, it remains to show that, as p → ∞, Fp,∞(λ) weakly

converges to F0(λ), in probability. Recall that the weak convergence is metrized

by the Lévy distance L (·, ·). We need to show that for any δ > 0, there exists p0

such that (s.t.) for all p > p0,

Pr (L (F0, Fp,∞) < δ) > 1− δ. (2)

Let γ > 0 be so small that

L (F0, Fγ) < δ/4. (3)

For any p, let Tγ be the smallest even integer satisfying p/Tγ ≤ γ. That is,

Tγ = min
T∈2Z
{T : p/T ≤ γ} .

For any T∞ > Tγ, by the triangle inequality, we have

L (F0, Fp,∞) ≤ L (F0, Fγ) + L
(
Fγ, Fp,Tγ

)
+ L

(
Fp,Tγ , Fp,T∞

)
+ L (Fp,T∞ , Fp,∞) , (4)

where Fp,Tγ and Fp,T∞ denote the empirical distributions of eigenvalues of

T

p
CD−1C ′A−1, (5)

with T = Tγ and T = T∞, respectively.

By Theorem OW1, L
(
Fγ, Fp,Tγ

)
a.s. converges to zero as p → ∞. Therefore,

for all suffi ciently large p, we have

Pr
(
L
(
Fγ, Fp,Tγ

)
< δ/4

)
> 1− δ/4. (6)

Further, as shown by Johansen (1988, 1991), for any p, as T∞ →∞, the eigenvalues
of (5) with T = T∞ jointly converge in distribution to those of

1

p

∫ 1

0

(dB)B′
(∫ 1

0

BB′du

)−1 ∫ 1

0

B (dB)′ . (7)

Therefore, for any p and all suffi ciently large T∞, we have

Pr (L (Fp,T∞ , Fp,∞) < δ/4) > 1− δ/4. (8)
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Let us denote the sum of L (F0, Fγ) , L
(
Fγ, Fp,Tγ

)
, and L (Fp,T∞ , Fp,∞) as

Lγ,p,T∞ . By (4), we have

L (F0, Fp,∞) ≤ Lγ,p,T∞ + L
(
Fp,Tγ , Fp,T∞

)
. (9)

Inequalities (3), (6), and (8) show that for any δ > 0, there exists γδ > 0 s.t. for

any positive γ < γδ, there is a pγ s.t. for any p > pγ, there is a Tp s.t. for any

T∞ > Tp

Pr (Lγ,p,T∞ < 3δ/4) > 1− δ/2. (10)

The subscripts in γδ, pγ and Tp signify dependence on the value of the corresponding

parameter. Inequalities (10) and (9) would establish (2) as long as we are able to

show that for any δ > 0, there exists γ̃δ > 0 s.t. for any positive γ < γ̃δ, there is a

p̃γ s.t. for any p > p̃γ and any T̃p, there exists T∞ > T̃p s.t.

Pr
(
L
(
Fp,Tγ , Fp,T∞

)
< δ/4

)
> 1− δ/2. (11)

Let us denote ξ =
√
Tε, where ε is a p×T matrix with i.i.d. N(0, 1/T ) entries,

as defined in Section OW2. We shall assume that, as p, T change, ξ represents

p× T sections of a fixed infinite array of i.i.d. standard normal random variables.

Consider

Mp,T =
T

p

(
ξξ′

T

)−1/2
ξ∆′2ξ

′

T

(
ξ∆1ξ

′

T

)−1
ξ∆2ξ

′

T

(
ξξ′

T

)−1/2

.

So defined matrixMp,T is identical to the real symmetric matrix T
p
A−1/2CD−1C ′A−1/2.

The above definition is formulated in terms of ξ to clarify that Mp,T depends on T

not only via the term T/p, but also through A,C, andD. Note that Fp,Tγ and Fp,T∞
are the empirical distributions of eigenvalues ofMp,Tγ andMp,T∞ , respectively. The

following lemma is established in the next section of this note.

Lemma 1 For any τ > 0 there exists γτ > 0 s.t. for any positive γ < γτ , there is

a p̃γ s.t. for any p > p̃γ and any T̃p, there exists T∞ > T̃p s.t. with probability larger

than 1 − τ , Mp,Tγ −Mp,T∞ can be represented as the sum of two real symmetric

matrices S and R,

Mp,Tγ −Mp,T∞ = S +R,

where ‖S‖ ≤ K
√
γ, rankR ≤ τp, and K is an absolute constant.

Finally, let FSR be the empirical distribution of eigenvalues of Mp,Tγ − S =

8



Mp,T∞+R. Then, by Theorem A45 (norm inequality) of Bai and Silverstein (2010),

L
(
Fp,Tγ , FSR

)
≤ ‖S‖ ≤ K

√
γ,

whereas by their Theorem A43 (rank inequality),

L (FSR, Fp,T∞) ≤ 1

p
rankR ≤ τ .

Therefore, by Lemma 1 and the triangle inequality, for any τ > 0 there exists

γτ > 0 s.t. for any positive γ < γτ , there is a p̃γ s.t. for any p > p̃γ and any T̃p,

there exists T∞ > T̃p s.t.

Pr
(
L
(
Fp,Tγ , Fp,T∞

)
< τ +K

√
γ
)
> 1− τ .

For τ = δ/8, this inequality implies (11) with γ̃δ = min
{
γτ , (δ/8K)2} . Combining

(11) with (10) yields (2), which completes the proof.

2.2 Proof of Lemma 1

Consider some positive γ < 1. For any p, let

Tγ = min
T∈2Z
{T : p/T ≤ γ} ,

and let T = T∞ > Tγ. Consider a partition ξ =
[
ξγ, ξ∞

]
, where ξγ and ξ∞ are

p×Tγ and p×(T∞−Tγ), respectively. Further, let∆1γ and∆2γ be defined similarly

to ∆1 and ∆2 with T replaced by Tγ. Define

Aγ =
ξγξ
′
γ

Tγ
, Dγ =

ξγ∆1γξ
′
γ

Tγ
, and Cγ =

ξγ∆
′
2γξ
′
γ

Tγ
.

Then

Mp,Tγ =
Tγ
p
A−1/2
γ CγD

−1
γ C ′γA

−1/2
γ , and

Mp,T∞ =
T

p
A−1/2CD−1C ′A−1/2.

Geman (1980) and Silverstein (1985) established the a.s. convergence (as p→
∞) of the largest and the smallest eigenvalues (which we shall denote as λmax and
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λmin) of Aγ to
(
1 +
√
γ
)2
and

(
1−√γ

)2
, respectively. Hence,

λmax

(
A−1/2
γ

) a.s→ (1−√γ)−1 , and

λmin

(
A−1/2
γ

) a.s.→ (1 +
√
γ)−1 .

For γ < 1/4,

(1−√γ)−1 − 1 < 2
√
γ and 1− (1 +

√
γ)−1 <

√
γ.

Therefore, for such γ, with probability arbitrarily close to one for all suffi ciently

large p, ∥∥A−1/2
γ − Ip

∥∥ ≤ 3
√
γ. (12)

Moreover, the inequality ∥∥A−1/2 − Ip
∥∥ ≤ 3

√
γ (13)

holds with probability arbitrarily close to one for all suffi ciently large p as well. To

see this, consider a pγ × T∞ matrix η with pγ = bγT∞c ≥ p (here b·c denotes the
integer part of a real number), such that the upper p×T∞ block of η coincides with
ξ, and the remaining part of η consists of i.i.d. N(0, 1) variables independent from

ξ. Note that A can be viewed as a p× p principal submatrix of Aγ∞ ≡ ηη′/T∞. By

Theorem 4.3.15 of Horn and Johnson (1985),

λmin (Aγ∞) ≤ λmin (A) ≤ λmax (A) ≤ λmax (Aγ∞) . (14)

Since Aγ∞ is the sample covariance matrix with pγ = bγT∞c , its largest and
smallest eigenvalues a.s. converge to the same limits as those of Aγ, and thus, (14)

yields (13).

Inequalities (12) and (13) imply that it is suffi cient to establish Lemma 1 with

Mp,Tγ and Mp,T∞ replaced by

M̃p,Tγ = Cγ

(
p

Tγ
Dγ

)−1

C ′γ, and M̃p,T∞ = C
( p
T
D
)−1

C ′.

Let

αD =

(
p

Tγ
Dγ

)1/2 ( p
T
D
)−1

(
p

Tγ
Dγ

)1/2

− Ip

and

αC = C − Cγ.
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The following lemma is proven in the next section of this note.

Lemma 2 For any τ > 0 there exists γτ > 0 s.t. for any positive γ < γτ , there

is a p̃γ s.t. for any p > p̃γ and any T̃p, there exists T∞ > T̃p s.t. with probability

larger than 1− τ ,

‖αD − ᾱD‖ ≤ Kγ and ‖αC‖ ≤ K
√
γ,

where ᾱD is a matrix with rank no larger than τp, and K is an absolute constant.

Using the identity

C
( p
T
D
)−1

C ′ = (Cγ + αC)

(
p

Tγ
Dγ

)−1/2

(Ip + αD)

(
p

Tγ
Dγ

)−1/2 (
C ′γ + α′C

)
,

it is straightforward to verify that

M̃p,T∞ − M̃p,Tγ = (β1 + β′1) + β2 + (β3 + β′3) + β4, (15)

where

β1 = αC

(
p

Tγ
Dγ

)−1

C ′γ,

β2 = Cγ

(
p

Tγ
Dγ

)−1/2

αD

(
p

Tγ
Dγ

)−1/2

C ′γ,

β3 = αC

(
p

Tγ
Dγ

)−1/2

αD

(
p

Tγ
Dγ

)−1/2

C ′γ,

and

β4 = αC

(
p

Tγ
Dγ

)−1/2

(Ip + αD)

(
p

Tγ
Dγ

)−1/2

α′C .

To bound the norms of the β’s, in addition to Lemma 2, we need the following

lemma, which we also establish in the next section of this note.

Lemma 3 As p → ∞, the empirical distribution of eigenvalues of Dγ a.s. con-

verges to a nonrandom distribution with support bounded below by (17γ)−1 for

suffi ciently small γ.

Consider the following decomposition of β1 in the product of four terms, given
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in the square brackets,

β1 = [αC ]

[(
p

Tγ
Dγ

)−1/2
][(

p

Tγ
Dγ

)−1/2

C ′γA
−1/2
γ

] [
A1/2
γ

]
.

By Lemma 2, with high probability,

‖αC‖ ≤ K
√
γ. (16)

Further, since λmax (Aγ)
a.s.→
(
1 +
√
γ
)2
, we have, with high probability

‖Aγ‖ ≤ K, (17)

where K may refer to different constants in different formulae.

Next, by Lemma 3, there exists a decomposition(
p

Tγ
Dγ

)−1/2

= x1 + x2 (18)

where ‖x1‖ remains bounded in probability by an absolute constant and x2 has

rank no larger than τp for arbitrarily small τ and suffi ciently large p. The term x2

is needed because Lemma 3 does not establish the a.s. convergence of the smallest

eigenvalue of Dγ. It only concerns with the a.s. convergence of the empirical

distribution of the eigenvalues of Dγ.

Similarly, we can show that(
p

Tγ
Dγ

)−1/2

C ′γA
−1/2
γ = x3 + x4, (19)

where ‖x3‖ remains bounded in probability by an absolute constant and x4 has

rank no larger than τp for arbitrarily small τ and suffi ciently large p. Indeed, the

squared singular values of
(
p
Tγ
Dγ

)−1/2

C ′γA
−1/2
γ equal the eigenvalues of

Cγ

(
p

Tγ
Dγ

)−1

C ′γ (Aγ)
−1 . (20)

By Theorem OW1, the empirical distribution of these eigenvalues a.s. converges to

a distribution with the upper boundary of support
(√

2−
√

1− γ
)−2

. Therefore,

for any τ > 0, with high probability for suffi ciently large p, there are no more than
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τp singular values of
(
p
Tγ
Dγ

)−1/2

C ′γA
−1/2
γ that are larger than

(√
2−
√

1− γ
)−1

,

which establishes the existence of the decomposition (19).

Combining (16), (17), (18), and (19), we conclude that with high probability,

for all suffi ciently large p, β1 can be decomposed in the sum of a matrix of norm no

larger than K
√
γ and a matrix of rank no larger than τp. Similar decompositions

are valid for β2, ..., β4. The corresponding proofs are very similar to the proof for

β1 and we omit them. Using the decompositions for β1, ..., β4 in (15) completes

the proof.

2.3 Proofs of Lemmas 2 and 3

2.3.1 Proof of Lemma 2

Let us, first, focus on αD. Define

α ≡ (Ip + αD)−1 − Ip.

It is suffi cient to prove that, with high probability, for suffi ciently large p, α can

be decomposed into the sum of a term with norm no larger than K
√
γ and a term

with rank no larger than τp. By definition of αD, we have

α =

(
p

Tγ
Dγ

)−1/2(
p

T
D − p

Tγ
Dγ

)(
p

Tγ
Dγ

)−1/2

.

Recall that ∆1 and ∆2 are T = T∞-dimensional matrices with T∞ > Tγ. Con-

sider partitions ∆1 = diag {∆11,∆12} and ∆2 = diag {∆21,∆22} , where ∆11 and

∆21 are Tγ × Tγ. Using this notation, represent α in the form

α =

(
p

Tγ
Dγ

)−1/2(
p
ξγ∆11ξ

′
γ

T 2
∞

− p

Tγ
Dγ + p

ξ∞∆12ξ
′
∞

T 2
∞

)(
p

Tγ
Dγ

)−1/2

(21)

By Lemma 3, the proportion of the eigenvalues of
(
p
Tγ
Dγ

)−1/2

that are larger

than 5 converges to zero in probability as p → ∞. In particular, with probability
arbitrary close to one, this proportion is smaller than any fixed small positive τ for

suffi ciently large p. This implies that, with high probability,
(
p
Tγ
Dγ

)−1/2

can be

represented as a matrix of rank no larger than τp plus a matrix of norm no larger

than 5.

13



Further, consider

p
ξγ∆11ξ

′
γ

T 2
∞

− p

Tγ
Dγ = pξγ

(
∆11

T 2
∞
− ∆1γ

T 2
γ

)
ξ′γ.

Recall that the diagonal elements of∆11 (except the first two) have form 1
2

(1− cos 2πj/T∞)−1

with j ≤ Tγ/2. The diagonal elements of ∆1γ have a similar form with T∞ replaced

by Tγ. Since

cosx = 1− 1

2
x2 +

1

4!
x4 cos t

for some t ∈ [0, x], we have

1

2T 2
∞

(1− cos 2πj/T∞)−1 =
1

(2πj)2

(
1− cos t

12

(2πj)2

T 2
∞

)−1

for some t ∈ [0, π] , and hence

1

2T 2
∞

(1− cos 2πj/T∞)−1 − 1

(2πj)2 =
cos t

12T 2
∞

(
1− cos t

12

(2πj)2

T 2
∞

)−1

.

Since j ≤ Tγ/2 and T∞ > Tγ, we have

1− cos t

12

(2πj)2

T 2
∞

> 1− π2

12
>

1

12
,

and thus ∣∣∣∣ 1

2T 2
∞

(1− cos 2πj/T )−1 − 1

(2πj)2

∣∣∣∣ < 1

T 2
∞
.

A similar inequality holds for the elements of ∆1γ:∣∣∣∣ 1

2T 2
γ

(1− cos 2πj/Tγ)
−1 − 1

(2πj)2

∣∣∣∣ < 1

T 2
γ

.

Therefore, ∣∣∣∣ 1

2T 2
∞

(1− cos 2πj/T∞)−1 − 1

2T 2
γ

(1− cos 2πj/T0)−1

∣∣∣∣ < 2

T 2
γ

.

The absolute value of the difference of the first two diagonal elements of ∆11/T
2
∞

14



and ∆1γ/T
2
γ is obviously smaller than 2/T 2

γ too. To summarize,∥∥∥∥pξγ∆11ξ
′
γ

T 2
∞

− p

Tγ
Dγ

∥∥∥∥ < ∥∥∥∥2
p

Tγ

ξγξ
′
γ

Tγ

∥∥∥∥ < 4γ (22)

with high probability for suffi ciently small γ. To obtain the last inequality we used

the fact that the largest eigenvalue of ξγξ
′
γ/Tγ a.s. converges to

(
1 +
√
γ
)2
.

Consider now the component p ξ∞∆12ξ
′
∞

T 2∞
of (21). Since, as is straightforward to

verify, 1− cosx > x2/6 for x ∈ [0, π] , we have

2T 2
∞ (1− cos 2πj/T∞) > (2πj)2 /3. (23)

Let us represent ∆12 as diag
{

∆12,1, ...,∆12,(T∞−Tγ)/Tγ

}
, where each block ∆12,i is

Tγ-dimensional. We can choose T∞ so that (T∞ − Tγ) /Tγ is an integer, so such a
representation is possible. Using the fact that the diagonal elements of ∆12,i/T

2
∞

have form

1

2T 2
∞ (1− cos 2πj/T∞)

with j = iTγ/2 + 1, ..., (i+ 1)Tγ/2− 1,

we find that the upper bound on the diagonal elements of ∆12,i/T
2
∞ equals[

2T 2
∞ (1− cos iTγπ/T∞)

]−1
.

By (23), this is no larger than 3/ (iπTγ)
2.

Let us decompose ξ∞ conformably with∆12 so that ξ∞ =
[
ξ∞,1, ..., ξ∞,(T∞−Tγ)/Tγ

]
.

Then, from the above, we have

∥∥∥∥pξ∞∆12ξ
′
∞

T 2
∞

∥∥∥∥ ≤ 3p

π2Tγ

(T∞−Tγ)/Tγ∑
i=1

1

i2

∥∥∥∥ξ∞,iξ′∞,iTγ

∥∥∥∥ .
The Gaussian concentration inequality for the singular values of a rectangular

matrix with i.i.d. Gaussian entries (see Theorem II.13 of Davidson and Szarek

(2001)) implies that, for any t > 0,

Pr

(∥∥∥∥ξ∞,iξ′∞,iTγ

∥∥∥∥ ≥ (1 +

√
p

Tγ
+ t

)2
)
< exp

{
−Tγt

2

2

}
.

15



Take t = i1/4. Then,

(T∞−Tγ)/Tγ∑
i=1

Pr

(∥∥∥∥ξ∞,iξ′∞,iTγ

∥∥∥∥ ≥ (1 +

√
p

Tγ
+ i1/4

)2
)
<
∞∑
i=1

exp

{
−Tγi

1/2

2

}
.

Clearly, the right hand side of the above inequality can be made arbitrarily small

by choosing suffi ciently large Tγ. Therefore, with large probability, for suffi ciently

large Tγ, all
∥∥∥ ξ∞,iξ′∞,iTγ

∥∥∥ are smaller than (1 +
√

p
Tγ

+ i1/4
)2

and

∥∥∥∥pξ∞∆12ξ
′
∞

T 2
∞

∥∥∥∥ ≤ 3p

π2Tγ

(T∞−Tγ)/Tγ∑
i=1

(
1 +

√
p
Tγ

+ i1/4
)2

i2
≤ Kγ (24)

for some constant K that does not depend on γ. Using the definition of α, (22),

and (24) and recalling that, with high probability,
(
p
Tγ
Dγ

)−1/2

can be represented

as a matrix of rank no larger than τp plus a matrix of norm no larger than 5, we

obtain that α can be represented as sum of a matrix of rank no larger than 3τp

plus a matrix of norm no larger than K̄γ, where K̄ is some absolute constant.

Let us now focus on α2. Write α2 in the following form

α2 =

(
− ξξ′

2T∞
+
ξγ
(
∆′21 + ITγ/2

)
ξ′γ

T∞
− Cγ

)
+
ξ∞
(
∆′22 + IT∞−Tγ/2

)
ξ′∞

T∞
.

Let us denote ∆′21 + ITγ/2 as ∆̂′21 and ∆′2γ + ITγ/2 as ∆̂′2γ. Then

− ξξ′

2T∞
+
ξγ
(
∆′21 + ITγ/2

)
ξ′γ

T∞
− Cγ = − ξξ′

2T∞
+ ξγ

(
∆̂′21

T∞
−

∆̂′2γ
Tγ

)
ξ′γ +

ξγξ
′
γ

2Tγ
.

By definition, the block-diagonal elements of ∆̂′21 (except the first block) have form(
0 −1

2
sin 2πj/T∞

1−cos 2πj/T∞
1
2

sin 2πj/T∞
1−cos 2πj/T∞

0

)

The block-diagonal elements of ∆̂′2γ have a similar form with T∞ replaced by Tγ.

Now,

sinx = x− cos t1
3!

x3 and cosx = 1− 1

2
x2 +

cos t2
4!

x4

16



for some t1, t2 ∈ [0, x] . Therefore, we have

1

2

sin 2πj/T∞
1− cos 2πj/T∞

=
2πj/T∞ − cos t1

6
(2πj/T∞)3

(2πj/T∞)2 − cos t2
12

(2πj/T∞)4

=
1

2πj/T∞

1− cos t1
6

(2πj/T∞)2

1− cos t2
12

(2πj/T∞)2 ,

so that

1

2T∞

sin 2πj/T∞
1− cos 2πj/T∞

− 1

2πj
=

(2πj/T∞)2

2πj

cos t2
12
− cos t1

6

1− cos t2
12

(2πj/T∞)2

and thus, ∣∣∣∣ 1

2T∞

sin 2πj/T∞
1− cos 2πj/T∞

− 1

2πj

∣∣∣∣ < 6πj

T 2
∞
.

Similarly, ∣∣∣∣ 1

2Tγ

sin 2πj/Tγ
1− cos 2πj/Tγ

− 1

2πj

∣∣∣∣ < 6πj

T 2
γ

.

Let ξγ1 be a p × (Tγ − 2) /2 matrix that consists of the odd columns of ξγ
(starting from the third one) and let ξγ2 be a p× (Tγ − 2) /2 matrix that consists

of the even columns (starting from the fourth one) of ξγ. Finally, let ξγ0 be the

p× 2 matrix of the first two columns of ξγ. Then, the latter two inequalities and

the fact that j ≤ Tγ
2
imply that

ξγ

(
∆̂′21

T∞
−

∆̂′2γ
Tγ

)
ξ′γ = ξγ0

(
− 1

2T∞
+

1

2Tγ

)
ξ′γ0 + ξγ2Γξ′γ1 − ξγ1Γξ′γ2,

where Γ is a diagonal matrix with diagonal elements smaller than 3π/Tγ by absolute

value. Since with high probability∥∥∥∥ξγ0

(
− 1

2T∞
+

1

2Tγ

)
ξ′γ0

∥∥∥∥ ≤ 2γ,

we have ∥∥∥∥∥ξγ
(

∆̂′21

T
−

∆̂′2γ
Tγ

)
ξ′γ

∥∥∥∥∥ ≤ 2γ + 2
∥∥ξγ1Γξ′γ2

∥∥ . (25)

On the other hand,
∥∥ξγ1Γξ′γ2

∥∥ is the square root of the largest eigenvalue of
ξγ1Γξ′γ2ξγ2Γξ′γ1.
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Note that the rank of TγΓξ
′
γ2ξγ2Γ is no larger than p, and there exists an orthog-

onal transformation R such that RTγΓξ
′
γ2ξγ2ΓR′ is diagonal with only the first

p diagonal elements potentially non-zero. Furthermore, these non-zero diagonal

elements will coincide with the eigenvalues of

Tγξγ2Γ2ξ′γ2.

But

Tγξγ2Γ2ξ′γ2 ≤
(3π)2

2

ξγ2ξ
′
γ2

Tγ/2
.

Assuming that γ is small, with high probability,∥∥∥∥ξγ2ξ
′
γ2

Tγ/2

∥∥∥∥ < 2.

Hence, the only p potentially non-zero diagonal elements of RTγΓξ
′
γ2ξγ2ΓR′ are

smaller than (3π)2 with high probability.

Let ξγ11 be the p× p matrix that consists of the first p columns of ξγ1R
′. Note

that the entries of ξγ11 are i.i.d. standard normals. Then, we have

ξγ1Γξ′γ2ξγ2Γξ′γ1 ≤
(3π)2

Tγ
ξγ11ξ

′
γ11.

Since the norm of ξγ11ξ
′
γ11/p is smaller than 5 with high probability,

∥∥ξγ1Γξ′γ2ξγ2Γξ′γ1

∥∥ ≤ (9π)2 γ

with high probability. Combining this with (25), we obtain∥∥∥∥∥ξγ
(

∆̂′21

T∞
−

∆̂′2γ
Tγ

)
ξ′γ

∥∥∥∥∥ ≤ 2 (γ + 9π
√
γ) . (26)

Further, ∥∥∥∥− ξξ′

2T∞
+
ξγξ
′
γ

2Tγ

∥∥∥∥ ≤ 1

2

∥∥∥∥Ip − ξξ′

T∞

∥∥∥∥+
1

2

∥∥∥∥Ip − ξγξ
′
γ

Tγ

∥∥∥∥ ≤ 4
√
γ

with high probability, for suffi ciently large p, T and small γ. Combining this with
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(26), we obtain∥∥∥∥∥− ξξ′

2T∞
+
ξγ
(
∆′21 + ITγ/2

)
ξ′1

T∞
− Cγ

∥∥∥∥∥ ≤ 2 (γ + 10π
√
γ) . (27)

Next, consider
ξ∞(∆′22+IT∞−Tγ /2)ξ′∞

T∞
part of α2. Let ξ∞1 be a p × (T∞ − Tγ) /2

matrix that consists of the odd columns of ξ∞, and let ξ∞2 be a p× (T∞ − Tγ) /2
matrix that consists of the even columns of ξ∞. Then,

ξ∞
(
∆′22 + IT∞−Tγ/2

)
ξ′∞

T∞
= ξ∞2Υξ′∞1 − ξ∞1Υξ′∞2,

where

Υ = diag

{
1

2T∞

sin 2πj/T∞
1− cos 2πj/T∞

}
with j running from Tγ/2 to T∞/2− 1. We have∥∥∥∥∥ξ∞

(
∆′22 + IT∞−Tγ/2

)
ξ′∞

T∞

∥∥∥∥∥
2

≤ 4 ‖ξ∞2Υξ′∞1‖
2

= 4 ‖ξ∞2Υξ′∞1ξ∞1Υξ′∞2‖ .

Let R be the orthogonal matrix such that RΥξ′∞1ξ∞1ΥR′ is diagonal. Note that

the rank of Υξ′∞1ξ∞1Υ is no larger than p. Therefore, there are only p potentially

non-zero elements on the diagonal of RΥξ′∞1ξ∞1ΥR′. Without loss of generality,

these are the first p elements. Let ξ∞21 be the first p columns of ξ∞2R
′. Then, we

have ∥∥∥∥∥ξ∞
(
∆′22 + IT∞−Tγ/2

)
ξ′∞

T∞

∥∥∥∥∥
2

≤ 4 ‖ξ∞21ξ
′
∞21‖ ‖RΥξ′∞1ξ∞1ΥR′‖

= 4 ‖ξ∞21ξ
′
∞21‖

∥∥ξ∞1Υ2ξ′∞1

∥∥ .
Consider the decomposition

ξ∞1 =
[
ξ∞1,1, ..., ξ∞1,(T∞−Tγ)/Tγ

]
,

and note that

Υ2 = diag
{

Υ2
1, ...,Υ

2
(T∞−Tγ)/Tγ

}
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with

Υi = diag

 1

2T∞

sin
(
iTγ

2
2π
T∞

)
1− cos

(
iTγ

2
2π
T∞

) , ..., 1

2T∞

sin
((
iTγ

2
+ Tγ

2
− 1
)

2π
T∞

)
1− cos

((
iTγ

2
+ Tγ

2
− 1
)

2π
T∞

)
 .

Note that 1

2T∞

sin
((
iTγ

2
+ k
)

2π
T∞

)
1− cos

((
iTγ

2
+ k
)

2π
T∞

)
2

=
1

2T 2
∞

cos2
(
iTγ

2
+ k
)

π
T∞

1− cos
(
iTγ

2
+ k
)

2π
T∞

≤ 1

2T 2
∞

1

1− cos iTγπ

T∞

<
3

T 2
γ π

2

1

i2
.

Therefore,

∥∥ξ∞1Υ2ξ′∞1

∥∥ ≤ (T∞−Tγ)/Tγ∑
i=1

∥∥ξ∞1,iΥ
2
i ξ
′
∞1,i

∥∥
≤

(T∞−Tγ)/Tγ∑
i=1

3

2T 2
γ π

2

1

i2

∥∥∥∥ξ∞1,iξ
′
∞1,i

Tγ/2

∥∥∥∥ .
Using the large deviation inequality argument as above, we conclude that with

high probability, ∥∥ξ∞1Υ2ξ′∞1

∥∥ ≤ K
1

Tγ
,

where K is an absolute constant. Therefore,∥∥∥∥∥ξ∞
(
∆′22 + IT∞−Tγ/2

)
ξ′∞

T∞

∥∥∥∥∥
2

≤ 4K
p

Tγ

∥∥∥∥ξ∞21ξ
′
∞21

p

∥∥∥∥ ≤ K1γ,

where K1 is an absolute constant. This implies that, with high probability,∥∥∥∥∥ξ∞
(
∆′22 + IT∞−Tγ/2

)
ξ′∞

T∞

∥∥∥∥∥ ≤ K
√
γ

for some absolute constant K. Combining this with (27), we obtain

‖α2‖ ≤ K
√
γ
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for some absolute constant K.

2.3.2 Proof of Lemma 3

Letm ≡ m(z) be the Stieltjes transform of the limiting spectral distribution (LSD)

ofDγ ≡ ξγ∆1γξ
′
γ/Tγ. By Silverstein and Bai (1995), for any z ∈ C+, m is the unique

solution in m ∈ C+ of the equation

z = − 1

m
+

∫
tdH(t)

1 + γmt
, (28)

whereH (t) is the limit of the empirical distribution of the diagonal elements of∆1γ.

Let SLSD be the support of the LSD of Dγ. By continuity, the Stieltjes transform

can be defined on ScLSD, where the superscript c denotes the complementary set.

On any open subset of ScLSD, m(z) still satisfies (28).

Silverstein and Choi (1995) show that ScLSD can be found as follows. Find

Sm ⊂ R, such that for any m ∈ Sm, z(m) is well defined by (28) and has positive

derivative at m. Then ScLSD coincides with z(Sm).

Since

∆1γ = diag
{
r−1
γ1 I2, ..., r

−1
γTγ/2

I2

}
with rγ.j+1 = (2− 2 cos 2πj/Tγ) , we have

H(t) =
1

π
arccos

(
1− 1

2t

)
.

Therefore, z(m) is well defined for m < −4/γ and m > 0.

Direct computations similar to those in the proof of Lemma OW14, given below,

yield

z = − 1

m
+

1√
γ2m2 + 4γm

for m > 0, and (29)

z = − 1

m
− 1√

γ2m2 + 4γm
for m < −4/γ, (30)

so that
d

dm
z =

1

m2
∓ γ2m+ 2γ

(γ2m2 + 4γm)3/2

where “−”correspond to m > 0 and “+”correspond to m < −4/γ.
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For m > 0, d
dm
z > 0 if and only if

γ (γm+ 4)3 > m (γm+ 2)2 .

Denoting γm as x, we can rewrite the above condition as

γ2 (x+ 4)3 − x (x+ 2)2 > 0.

For suffi ciently small γ > 0, the function on the left hand side of this inequality

is strictly decreasing on x ≥ 0, positive at x = 0, and negative as x → ∞. Let
x0 ≡ γm0 > 0 be such that the left hand side becomes zero. Then, a part of ScLSD
consists of the image of (0,m0) under (29).

For m < −4/γ, d
dm
z > 0 if and only if

γ (γm+ 4)3 < m (γm+ 2)2 .

Denoting γm+ 4 as x < 0, we rewrite this condition as

γ2x3 < (x− 4) (x− 2)2 .

For suffi ciently small γ, this inequality is never satisfied for x < 0. Hence ScLSD
consists entirely of the image of (0,m0) under (29).

Note that as m ↓ 0, z ↓ −∞. Hence, ScLSD must have the form (−∞, d−) ,

where d− is the lower bound of the support of the LSD. Incidentally, we see that

the LSD is unbounded from above. Further, for suffi ciently small γ,

d− = − γ

x0

+
1√

x2
0 + 4x0

.

Since x0 satisfies

γ2 (x+ 4)3 − x (x+ 2)2 = 0, (31)

we must have √
x2

0 + 4x0 =
x0(x0 + 2)

γ (x0 + 4)

and

d− =
2γ

x0(x0 + 2)
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Finally, from (31), we have

x0 = 16γ2 + o
(
γ2
)
.

Therefore,

d− =
1

16γ
(1 + o(1)) >

1

17γ

for suffi ciently small γ.

2.4 Calculation of the integral in equation (OW22)

Using the explicit formula for the density of the continuous part of the Marchenko-

Pastur distribution (OW21), we obtain∫
µdF0 (µ) =

∫ a+

a−

µ

2π

√
(a+ − µ) (µ− a−)

µ
dµ,

where

a± =
(

1±
√

2
)2

.

Let x = (µ− a−) / (a+ − a−) so that µ = a− + (a+ − a−)x. Then∫
µdF0 (µ) =

(a+ − a−)2

2π

∫ 1

0

√
(1− x)xdx

=
(a+ − a−)2

2π

π

8
= 2.

3 Supplementary Material for Appendix of OW

3.1 Proof of Lemma OW10

Write Xt in the VAR(k) form

Xt =

k∑
i=1

ΠiXt−i + ΨFt + εt,
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where Πi are such that Π =

k∑
i=1

Πi − Ip and Γi = −
∑k

j=i+1
Πj. Express Xt as a

function of the initial values, ε and F (see Theorem 2.1 in Johansen (1995))

Xt =
k∑
s=1

Ct−s

k−s+1∑
i=1

Πs+i−1X1−i +

t−1∑
j=0

Cj (εt−j + ΨFt−j) , (32)

where C0 = I and Cn is defined recursively by

Cn =

k∧n∑
j=1

Cn−jΠj, n = 1, 2, ...

Here k ∧ n denotes the minimum of k and n, and Πj = 0 for j > k. Let us denote

Π1 − I as Π∗1 and let Π∗j = Πj for j ≥ 2. Then, for n = 1, 2, ...,

∆Cn = Cn − Cn−1 =
k∧n∑
j=1

Cn−jΠ
∗
j =

n−1∑
j=1

∆Cn−j

j∧k∑
s=1

Π∗s +
n∧k∑
s=1

Π∗s. (33)

Clearly the column space of∆C1 is spanned by the column spaces ofΠ∗j , j = 1, ..., k.

Use this as the basis of induction. Suppose that the column spaces of each of ∆Cj

with j < n are spanned by the column spaces of Π∗j , j = 1, ..., k. The identity (33)

then implies that the column space of ∆Cn is spanned by the column spaces of Π∗j ,

j = 1, ..., k, too.

Now rewrite (32) as

Xt =
k∑
s=1

t−s∑
h=0

∆Ch

k∑
i=1

Πs+i−1X1−i +
t−1∑
j=0

j∑
h=0

∆Ch (εt−j + ΨFt−j)

where ∆C0 = C0 = Ip. Represent Xt as a sum X
(0)
t +X

(1)
t , where

X
(0)
t =

k∑
s=1

k∑
i=1

Πs+i−1X1−i +
t−1∑
j=0

(εt−j + ΨFt−j) and (34)

X
(1)
t =

k∑
s=1

t−s∑
h=1

∆Ch

k∑
i=1

Πs+i−1X1−i +

t−1∑
j=0

j∑
h=1

∆Ch (εt−j + ΨFt−j) . (35)

Since the column spaces of each of ∆Ch with h ≥ 1 are spanned by those of Π∗j ,

j = 1, ..., k, the space spanned by X(1)
t , t = 1, ..., T is also spanned by the columns

24



spaces of Π∗j , j = 1, ..., k. Since the union of the latter column spaces coincides

with the union of the column spaces of Π and Γ, we have

rankX(1) ≤ r + rank Γ, (36)

where X(1) = [X
(1)
1−k, ..., X

(1)
T ] with zero X(1)

1−k, ..., X
(1)
0 , and X(1)

t with t ≥ 1 defined

by (35).

Next, represent X(0)
t as a sum X

(00)
t and X̃t, where

X
(00)
t =

k∑
s=1

k∑
i=1

Πs+i−1X1−i + Ψ

t−1∑
j=0

Ft−j and (37)

X̃t =
t−1∑
j=0

εt−j, (38)

and let X(00) = [X
(00)
1−k , ..., X

(00)
T ] with X(00)

t = Xt for t = 1− k, ..., 0 and X(00)
t with

t ≥ 1 defined by (37). Note that the columns spaceX(00) is spanned by those of Π∗j ,

j = 1, ..., k, the column space of the matrix of the initial conditions [X1−k, ..., X0] ,

and the column space of Ψ. Therefore,

rankX(00) ≤ r + rank Γ + k + dF . (39)

Since X = X(1) +X(00) + X̃, inequalities (36) and (39) yield

rank
(
X − X̃

)
≤ 2 (r + rank Γ + k + dF ) .

3.2 Derivation of Equation (OW43)

Applying the Sherman-Morrison-Woodbury formula (OW41) to the right hand side

of

D−1 =
(
Dj + ε(j)∆1jε

′
(j)

)−1
,

we obtain

D−1 = D−1
j −D−1

j ε(j)

(
∆−1

1j + ε′(j)D
−1
j ε(j)

)−1
ε′(j)D

−1
j

= D−1
j −D−1

j ε(j) (rjI2 + sj)
−1 ε′(j)D

−1
j . (40)
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Using this and the identity

C = Cj + ε(j)∆
′
2jε
′
(j), (41)

we expand CD−1C ′ in the following form

CjD
−1
j C ′j + ε(j)∆

′
2jε
′
(j)D

−1
j C ′j − CjD−1

j ε(j) (rjI2 + sj)
−1 ε′(j)D

−1
j C ′j

+CjD
−1
j ε(j)∆2jε

′
(j) − ε(j)∆

′
2jε
′
(j)D

−1
j ε(j) (rjI2 + sj)

−1 ε′(j)D
−1
j C ′j

−CjD−1
j ε(j) (rjI2 + sj)

−1 ε′(j)D
−1
j ε(j)∆2jε

′
(j) + ε(j)∆

′
2jε
′
(j)D

−1
j ε(j)∆2jε

′
(j)

−ε(j)∆
′
2jε
′
(j)D

−1
j ε(j) (rjI2 + sj)

−1 ε′(j)D
−1
j ε(j)∆2jε

′
(j).

Recalling that ε′(j)D
−1
j ε(j) = sj, we further simplify this to obtain

CD−1C ′ = CjD
−1
j C ′j − CjD−1

j ε(j) (rjI2 + sj)
−1 ε′(j)D

−1
j C ′j

+ε(j)∆
′
2jrj (rjI2 + sj)

−1 ε′(j)D
−1
j C ′j

+CjD
−1
j ε(j) (rjI2 + sj)

−1 rj∆2jε
′
(j)

+ε(j)∆
′
2jsj (rjI2 + sj)

−1 rj∆2jε
′
(j).

Since M = CD−1C ′ − zA, it follows that

M−1 =
(
Mj + αjKjα

′
j

)−1
, (42)

where

Mj = CjD
−1
j C ′j − zAj,

αj = [ε(j), CjD
−1
j ε(j)]

and

Kj =

(
∆′2jsj (rjI2 + sj)

−1 rj∆2j − zI2 ∆′2jrj (rjI2 + sj)
−1

(rjI2 + sj)
−1 rj∆2j − (rjI2 + sj)

−1

)
.

Applying the Sherman-Morrison-Woodbury formula to the right hand side of (42),

we obtain

M−1 = M−1
j −M−1

j αj
(
K−1
j + α′jM

−1
j αj

)−1
α′jM

−1
j . (43)

Since

∆′2j∆2j = ∆1j = r−1
j I2, (44)
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we can write

Kj =

(
∆′2j 0

0 I2

)(
sj (rjI2 + sj)

−1 rj − zrjI2 (rjI2 + sj)
−1 rj

(rjI2 + sj)
−1 rj − (rjI2 + sj)

−1

)(
∆2j 0

0 I2

)
,

which implies that

K−1
j =

1

1− z

(
∆−1

2j 0

0 I2

)(
r−1
j I2 I2

I2 z (rjI2 + sj)− sj

)(
∆′−1

2j 0

0 I2

)
,

and therefore, using (44), we obtain

K−1
j =

(
1

1−zI2
1

1−zrj∆
′
2j

1
1−zrj∆2j

z
1−zrjI2 − sj

)
. (45)

Further, the definitions

uj = ε′(j)D
−1
j C ′jM

−1
j ε(j),

vj = ε′(j)M
−1
j ε(j), and

wj = ε′(j)D
−1
j C ′jM

−1
j CjD

−1
j ε(j)

yield

α′jM
−1
j αj =

(
vj u′j

uj wj

)
. (46)

Using (45) and (46) in (43), we obtain

M−1 = M−1
j −M−1

j αj

(
1

1−zI2 + vj
1

1−zrj∆
′
2j + u′j

1
1−zrj∆2j + uj

z
1−zrjI2 − sj + wj

)−1

α′jM
−1
j , (47)

which yields

ε′(j)M
−1ε(j) = vj − [vj, u

′
j]

(
1

1−zI2 + vj
1

1−zrj∆
′
2j + u′j

1
1−zrj∆2j + uj

z
1−zrjI2 − sj + wj

)−1 [
vj

uj

]

3.3 Proof of Lemma OW12

We start from an elementary lemma describing absolute central moments of a

quadratic form in i.i.d. normal random variables. Its proof is given in the next

section of this note.
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Lemma 4 Let ρ be a positive integer, Ω be a p× p deterministic complex matrix,
and ξ ∼ Np

(
0, 1

T
Ip
)
. Then

E
∣∣∣∣ξ′Ωξ − 1

T
tr Ω

∣∣∣∣2ρ ≤ Cρ ‖Ω‖2ρ pρ

T 2ρ
,

where

Cρ = 24ρ (2ρ+ 1)2ρ ρ2ρ+1.

Consider a sequence {p, T} ≡ {pT , T} such that pT , T →c ∞. We introduce
notation pT to emphasize the fact that the sequence {p, T} with p, T →c ∞ can

be indexed by T without loss of generality. Let us use Lemma 4 to prove that, as

pT , T →c ∞,
max

j=1,...,T/2
‖sj − ŝI2‖

a.s.→ 0. (48)

Since the square of the spectral norm is no larger than the sum of the squared

elements of the matrix, it is suffi cient to prove the element-wise convergences.

Take, for example, the element in the second row and the second column of sj−ŝI2.

We need to show that

max
j=1,...,T/2

∣∣ε′2jD−1
j ε2j − ŝ

∣∣ a.s.→ 0. (49)

For any τ > 0, let Ejτ be the event

Ejτ =
{∣∣ε′2jD−1

j ε2j − ŝ
∣∣ > 2τ

}
.

The probability of Ejτ is bounded above as follows

Pr (Ejτ ) ≤ Pr (E1,jτ ) + Pr (E2,jτ ) ,

where

E1,jτ =

{∣∣∣∣ε′2jD−1
j ε2j −

1

T
tr
[
D−1
j

]∣∣∣∣ > τ

}
, and

E2,jτ =

{∣∣∣∣ 1

T
tr
[
D−1
j −D

]∣∣∣∣ > τ

}
.

Note that

∥∥D−1
j

∥∥ ≤ ∥∥D−1
∥∥ =

1

λmin (ε∆1ε′)
≤ 1

λmin (∆1)λmin (εε′)
=

4

λmin (εε′)
, (50)
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where λmin (·) denotes the smallest eigenvalue of a matrix. As shown by Bai and
Yin (1993),

λmin (εε′)
a.s.→
(
1−
√
c
)2

when pT , T →c ∞. Fix δ > 4 (1−
√
c)
−2
. Then, almost surely, there exists Tδ that

does not depend on j, such that

∥∥D−1
j

∥∥ ≤ δ (51)

for any T > Tδ. Let Ej denote the expectation conditional on the event (51).
Lemma 4 yields

Ej
∣∣∣∣ε′2jD−1

j ε2j −
1

T
tr
[
D−1
j

]∣∣∣∣2ρ ≤ Cρδ
2ρpρT
T 2ρ

. (52)

We have

Pr (E1,jτ ) ≤ Prj (E1,jτ ) Pr
(∥∥D−1

j

∥∥ ≤ δ
)

+ Pr
(∥∥D−1

j

∥∥ > δ
)

≤ Prj (E1,jτ ) + Pr
(
λmin (εε′) < 4δ−1

)
,

where Prj is the probability conditional on the event (51). Markov’s inequality

together with (52) imply that

Pr (E1,jτ ) ≤
Cρδ

2ρpρT
τ 2ρT 2ρ

+ Pr
(
λmin (εε′) < 4δ−1

)
. (53)

Further, since the rank of the positive semi-definite matrix D−1 − D−1
j is no

larger than two, we have by Weyl’s theorem (see Theorem 4.3.6 in Horn and

Johnson (1985))
1

T

∣∣tr [D−1
j −D

]∣∣ ≤ 2

T

∥∥D−1
∥∥ .

Therefore, using (50), we obtain

Pr (E2,jτ ) ≤ Pr

(
2

T

∥∥D−1
∥∥ > τ

)
≤ Pr

(
λmin (εε′) <

8

T
τ−1

)
. (54)

For λmin (εε′) , we have the following large deviation inequality (Theorem II.13

in Davidson and Szarek (2001) establishes the inequality given below and a similar
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inequality for λmax (εε′)). For any α > 0,

Pr

(
λmin (εε′) <

(
1−

√
pT/T − α

)2
)
< exp

{
−Tα2/2

}
. (55)

Let

α =
(
1−
√
c
)
/2− δ−1/2 > 0,

and let Tρδτ be such that for all T > Tρδτ(
1−

√
pT/T − α

)2

> max

{
4δ−1,

8

T
τ−1

}
(56)

and

exp
{
−Tα2/2

}
<
Cρδ

2ρpρT
τ 2ρT 2ρ

. (57)

Let T0 = max {Tδ, Tρδτ} . Note that T0 does not depend on j. Inequalities (53-57)

imply that for all T > T0

Pr (Ejτ ) ≤
3Cρδ

2ρpρT
τ 2ρT 2ρ

.

Finally,

Pr

{
max

j=1,...,T/2

∣∣ε′2jD−1
j ε2j − ŝ

∣∣ > 2τ

}
≤

T/2∑
j=1

Pr (Ejτ ) ≤
3Cρδ

2ρpρT
2τ 2ρT 2ρ−1

.

For ρ ≥ 2,
∞∑

T=T0+1

3Cρδ
2ρpρT

2τ 2ρT 2ρ−1
<∞,

which yields (49) by the Borel-Cantelli lemma.

The convergence of the element in the first row and the first column of sj − ŝI2

can be shown similarly to (49). For the off-diagonal elements, note that

ε′2j−1D
−1
j ε2j =

1

2

(
ε′2j−1, ε

′
2j

)( 0 D−1
j

D−1
j 0

)(
ε2j−1

ε2j

)
.

Hence, we again can use Lemma 4 and the Borel-Cantelli lemma to obtain desired

results.

It remains to prove that

max
j=1,...,T/2

‖uj − ûI2‖
a.s→ 0,
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and to establish similar convergences for vj and wj. This can be accomplished

by closely following the strategy of the above proof of (48), which we leave to the

reader. The only two new aspects of the remaining proofs are related to the need for

bounds on the spectral norms of D−1
j C ′jM

−1
j , M−1

j , and D−1
j C ′jM

−1
j CjD

−1
j , and on

the differences between the traces of these matrices and the traces of D−1C ′M−1,

M−1, and D−1C ′M−1CD−1, respectively. Such bounds can be obtained using the

following lemma. Its proof is given in the next section of this note.

Lemma 5 Let z be as in the definition (OW37) of M , and let Iz > 0 be the

imaginary part of z. Then, we have

∥∥M−1
j

∥∥ ≤ 1

(Iz)λmin (εε′)
, and

∥∥D−1
j C ′j

∥∥2 ≤ 4λmax (εε′)

λmin (εε′)
.

The same bounds hold for the norms of M−1 and D−1C ′. Further,

∣∣tr (M−1
j −M−1

)∣∣ ≤ 8

(Iz)λmin (εε′)
,

∣∣tr (D−1
j C ′jM

−1
j −D−1C ′M−1

)∣∣ ≤ 32λ1/2
max (εε′)

(Iz)λ
3/2
min (εε′)

,

and ∣∣tr (D−1
j C ′jM

−1
j CjD

−1
j −D−1C ′M−1CD−1

)∣∣ ≤ 96λmax (εε′)

(Iz)λ2
min (εε′)

.

3.4 Proofs of Lemmas 4 and 5

3.4.1 Proof of Lemma 4

Without loss of generality, we can assume that Ω = A + iB, where A and B are

real symmetric matrices. Indeed, the expression ξ′Ωξ− 1
T

tr Ω does not change if Ω

is replaced by 1
2

(Ω + Ω′) , and the latter matrix obviously has the required form.

Using the Hölder inequality, we obtain∣∣∣∣ξ′Ωξ − 1

T
tr Ω

∣∣∣∣2ρ ≤ 22ρ−1

((
ξ′Aξ − 1

T
trA

)2ρ

+

(
ξ′Bξ − 1

T
trB

)2ρ
)
. (58)
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Let UdU ′ be the spectral decomposition of A, where d = diag {d1, ..., dp} . The
rotational invariance of the distribution Np

(
0, 1

T
Ip
)
implies that

E
(
ξ′Aξ − 1

T
trA

)2ρ

= E

(
p∑
i=1

di

(
ξ2
i −

1

T

))2ρ

. (59)

Since E
(
ξ2
i − 1

T

)
= 0, the right hand side of the above equality can be expanded

as
ρ∑
l=1

∑
1≤i1<···<il≤p

∑
j1+···jl=2ρ
j1≥2,··· ,jl≥2

(2ρ)!

l∏
t=1

(dit)
jt E

(
ξ2
it −

1
T

)jt
jt!

. (60)

Now, let µj be the j-th raw moment of a χ
2(1) random variable. As is well known,

µj = (2j − 1)!! with a crude upper bound

µj ≤ 2jjj.

Since the j-th absolute central moment of a χ2(1) random variable is no larger

than µj + 1, we have, for any j ≥ 1,

E
∣∣∣∣ξ2
i −

1

T

∣∣∣∣j ≤ µj + 1

T j
≤ 2j (j + 1)j

T j
.

Further, clearly

|di|j ≤ ‖A‖j .

Using the latter two inequalities in (60), we obtain

E

(
p∑
i=1

di

(
ξ2
i −

1

T

))2ρ

≤ ‖A‖2ρ (4ρ+ 2)2ρ

T 2ρ

ρ∑
l=1

pl
∑

j1+···jl=2ρ
j1≥2,··· ,jl≥2

l∏
t=1

(2ρ)!

jt!

≤ ‖A‖2ρ (4ρ+ 2)2ρ

T 2ρ

ρ∑
l=1

pll2ρ.

Using another crude upper bound

ρ∑
l=1

pll2ρ ≤ ρ2ρ+1pρ,
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we conclude that

E

(
p∑
i=1

di

(
ξ2
i −

1

T

))2ρ

≤ ‖A‖
2ρ (4ρ+ 2)2ρ ρ2ρ+1pρ

T 2ρ
. (61)

Now note that ‖A‖ ≤ ‖Ω‖. This follows, for example, from the equality

A2 +B2 =
1

2
(Ω∗Ω + ΩΩ∗) ,

where the superscript ‘∗’denotes the operation of transposition and complex con-
jugation. Therefore, (59) and (61) imply

E
(
ξ′Aξ − 1

T
trA

)2ρ

≤ ‖Ω‖
2ρ (4ρ+ 2)2ρ ρ2ρ+1pρ

T 2ρ
.

Similarly, we have

E
(
ξ′Bξ − 1

T
trB

)2ρ

≤ ‖Ω‖
2ρ (4ρ+ 2)2ρ ρ2ρ+1pρ

T 2ρ
.

Using the latter two inequalities in (58), we obtain

E
∣∣∣∣ξ′Ωξ − 1

T
tr Ω

∣∣∣∣2ρ ≤ ‖Ω‖2ρ 24ρ (2ρ+ 1)2ρ ρ2ρ+1pρ

T 2ρ
.�

3.4.2 Proof of Lemma 5

By definition of Mj, we have

∥∥M−1
j

∥∥ =

∥∥∥∥A−1/2
j

(
A
−1/2
j CjD

−1
j C ′jA

−1/2
j − zIp

)−1

A
−1/2
j

∥∥∥∥
≤

∥∥A−1
j

∥∥∥∥∥∥(A−1/2
j CjD

−1
j C ′jA

−1/2
j − zIp

)−1
∥∥∥∥ .

On the other hand,

∥∥A−1
j

∥∥ ≤ ∥∥A−1
∥∥ =

∥∥∥(εε′)
−1
∥∥∥ =

1

λmin (εε′)
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and∥∥∥∥(A−1/2
j CjD

−1
j C ′jA

−1/2
j − zIp

)−1
∥∥∥∥ ≤ max

k=1,...,p

1∣∣∣λk (A−1/2
j CjD

−1
j C ′jA

−1/2
j

)
− z
∣∣∣

where λk (·) is the k-th largest eigenvalue of a real symmetric matrix. The above
inequality implies that∥∥∥∥(A−1/2

j CjD
−1
j C ′jA

−1/2
j − zIp

)−1
∥∥∥∥ ≤ 1

Iz
,

and therefore, ∥∥M−1
j

∥∥ ≤ 1

(Iz)λmin (εε′)
. (62)

The same bound for ‖M−1‖ is established similarly.
Further, we have

∥∥D−1
j C ′j

∥∥2
=

∥∥D−1
j C ′jCjD

−1
j

∥∥
=

∥∥D−1
j ε−(j)∆

′
2(j)ε

′
−(j)ε−(j)∆2(j)ε

′
−(j)D

−1
j

∥∥ ,
where ∆2(j) is the block-diagonal matrix obtained from ∆2 by removing its j-th

2 × 2 block, and ε−(j) is obtained from ε by removing the 2j − 1-th and 2j-th

columns. On the other hand,

∥∥D−1
j ε−(j)∆

′
2(j)ε

′
−(j)ε−(j)∆2(j)ε

′
−(j)D

−1
j

∥∥
≤ λmax (εε′)

∥∥D−1
j ε−(j)∆

′
2(j)∆2(j)ε

′
−(j)D

−1
j

∥∥
= λmax (εε′)

∥∥D−1
j ε−(j)∆1(j)ε

′
−(j)D

−1
j

∥∥
= λmax (εε′)

∥∥D−1
j

∥∥ ,
where we used the fact that ∆′2(j)∆2(j) = ∆1(j) with ∆1(j) obtained from ∆1 by

removing its j-th 2× 2 block. Using (50), we obtain

∥∥D−1
j C ′j

∥∥2 ≤ 4λmax (εε′)

λmin (εε′)
. (63)

The same bound for ‖D−1C ′‖ is established similarly.
Now, let us establish the bounds on the differences of traces. As follows from
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(47), M−1
j differs from M−1 by a matrix of rank no larger than 4. Therefore,

∣∣tr (M−1
j −M−1

)∣∣ ≤ 4
∥∥M−1

j −M−1
∥∥ ≤ 4

(∥∥M−1
j

∥∥+
∥∥M−1

∥∥) .
Therefore, ∣∣tr (M−1

j −M−1
)∣∣ ≤ 8

(Iz)λmin (εε′)
.

Similarly, D−1
j C ′jM

−1
j differs from D−1C ′M−1 by a matrix with rank no larger

than 8. It is because

D−1
j C ′jM

−1
j −D−1C ′M−1 = D−1

j C ′j
(
M−1

j −M−1
)

+D−1
j

(
C ′j − C ′

)
M−1

+
(
D−1
j −D−1

)
C ′M−1,

where the rank of M−1
j −M−1 is no larger than 4, and the ranks of C ′j − C ′ and

D−1
j −D−1 are no larger than 2 each. Therefore,

∣∣tr (D−1
j C ′jM

−1
j −D−1C ′M−1

)∣∣ ≤ 8
(∥∥D−1

j C ′j
∥∥∥∥M−1

j

∥∥+
∥∥D−1C ′

∥∥∥∥M−1
∥∥)

≤ 32λ1/2
max (εε′)

(Iz)λ
3/2
min (εε′)

,

where we used (62) and (63). Finally,D−1
j C ′jM

−1
j CjD

−1
j differs fromD−1C ′M−1CD−1

by a matrix with rank no larger than 12. Therefore,

∣∣tr (D−1
j C ′jM

−1
j CjD

−1
j −D−1C ′M−1CD−1

)∣∣ ≤ 96λmax (εε′)

(Iz)λ2
min (εε′)

.

3.5 Proof of Lemma OW14

First, let us prove that

ŝ
a.s.→ 4c2/

(
1− c2

)
. (64)

Recall the definition of ŝ

ŝ =
1

T
tr
[
D−1

]
=

1

T
tr
[
(ε∆1ε

′)
−1
]
.

Let FD (x) denote the empirical distribution of the eigenvalues of D, and let

m̂D(z) =

∫
1

x− zdFD (x)
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be its Stieltjes transform. Then, by Theorem 1.1 of Silverstein and Bai (1995), for

any z ∈ C+, m̂D(z) a.s. converges to mD(z), which satisfies equation

z = − 1

mD(z)
+

∫
τdH (τ)

1 + τcmD (z)
,

where H (τ) is the limit of the empirical distribution of the diagonal elements of

∆1, r
−1
j , j = 1, ..., T/2. Recall that

rj+1 = 2 (1− cos θj) , j = 1, ..., T/2− 1.

Therefore, H (τ) is the cumulative distribution function of the random variable

[2 (1− cosU)]−1 , where U is distributed uniformly on the interval [0, π] . This fact

implies that

z = − 1

mD(z)
+

1

π

∫ π

0

du

2 (1− cosu) + cmD (z)

= − 1

mD(z)
+

1

2πi

∮
|s|=1

ds

s
(
2
(
1− s+s−1

2

)
+ cmD(z)

)
= − 1

mD(z)
− 1

2πi

∮
|s|=1

ds

(s2 − (2 + cmD(z)) s+ 1)
.

The integrand has two poles at

s1,2 =
cmD(z) + 2±

√
c2m2

D(z) + 4cmD(z)

2
.

Note that s1s2 = 1, which implies that one of them is inside the contour and the

other is outside. Therefore, we have

z = − 1

mD(z)
± 1

s1 − s2

= − 1

mD(z)
± 1√

c2m2
D(z) + 4cmD(z)

(65)

where the choice of + or − sign depends on which of s1,2 is inside the contour.

Squaring and rearranging, we obtain

c (zmD(z) + 1)2 (cmD(z) + 4)−mD(z) = 0. (66)
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Further, since minj=1,...,T/2 r
−1
j ≥ 1/4, we have

λmin (D) = λmin (ε∆1ε
′) ≥ λmin (εε′)

4

a.s.→ (1−
√
c)

2

4
.

Therefore, mD(z) is analytic at z = 0, m̂D (0)
a.s.→ mD (0) , and mD(0) satisfies

equation (66) with z = 0. That is,

m̂D (0)
a.s.→ mD(0) =

4c

1− c2
.

But ŝ = p
T
m̂D (0) . Hence, we have (64).

Now, let us turn to the proof of the lemma. Elementary algebra yields the

following representation

δj = δ1j +
1

z
δ2j,

where

δ1j = (rj + ŝ) (zv̂ − 1) ,

and

δ2j = (zŵ) (1 + v̂ − zv̂)− ŝ (zv̂) + rj (zû)− 1− z
z

(zû)2

Note that for z ∈ C+, v̂ ∈ C+. Hence, for z ∈ C+ such that Rz = 0, we have

R (zv̂) < 0 and

|zv̂ − 1| > 1. (67)

This inequality and (64) imply that, for any z ∈ C+ such that Rz = 0,

|δ1j| >
2c2

1− c2

for suffi ciently large p, T as p, T →c ∞, almost surely.
Further, Lemma 5 implies that |zû| , |zv̂| , and |zŵ| remain bounded for suf-

ficiently large p, T as p, T →c ∞, almost surely. Moreover, the presence of the
imaginary part of z in the denominator of the bound on

∥∥M−1
j

∥∥ in Lemma 5 imply
that, for z ∈ C+ such that Rz = 0, the value of the bound on |zû| , |zv̂| , and |zŵ|
does not depend on z. In particular, for any such z, |δ2j| is bounded for suffi ciently
large p, T as p, T →c ∞, almost surely, uniformly in j, with the value of the bound
independent from z with Iz > ζ. Hence, by choosing ζ suffi ciently large, we can
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ensure that, for any z with Rz = 0 and Iz > ζ,∣∣∣∣1z δ2j

∣∣∣∣ < 1

2
|δ1j| ,

and therefore

|δj| >
c2

1− c2
,

which establishes the lemma.

3.6 Proof of Lemma OW16

The identity û = ũ is established by the following sequence of equalities

T û = trD−1C ′M−1 = trD−1C ′
(
CD−1C ′ − zA

)−1

= tr
(
C − zA (C ′)

−1
D
)−1

= tr
(
C ′ − zD (C)−1A

)−1

= trA−1C
(
C ′A−1C − zD

)−1
= trA−1CM̃−1 = T ũ.

The relationship zṽ + ŝ = ŵ is obtained as follows

T (zṽ + ŝ) = trD−1
(
zIp
(
C ′A−1CD−1 − zIp

)−1
+ Ip

)
= trD−1

(
−Ip + C ′A−1CD−1

(
C ′A−1CD−1 − zIp

)−1
+ Ip

)
= trD−1

(
Ip −DC−1A (C ′)

−1
z
)−1

= trD−1C ′
(
CD−1C ′ − Az

)−1
CD−1 = Tŵ.

The identity zv̂ + s̃ = w̃ is obtained similarly to zṽ + ŝ = ŵ by interchanging the

roles of D,C and A,C ′.

3.7 Derivation of Equation (OW55)

Equations (40), (41), and (47) imply that

D−1C ′M−1 =
(
D−1
j −D−1

j ε(j) (rjI2 + sj)
−1 ε′(j)D

−1
j

) (
C ′j + ε(j)∆2jε

′
(j)

)
×
(
M−1

j −M−1
j αjΩjα

′
jM

−1
j

)
,
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where αj = [ε(j), CjD
−1
j ε(j)] and

Ωj =

(
1

1−zI2 + vj
1

1−zrj∆
′
2j + u′j

1
1−zrj∆2j + uj

z
1−zrjI2 − sj + wj

)−1

.

Opening up brackets, we obtain

D−1C ′M−1 = D−1
j C ′jM

−1
j −D−1

j ε(j) (rjI2 + sj)
−1 ε′(j)D

−1
j C ′jM

−1
j

+D−1
j ε(j)∆2jε

′
(j)M

−1
j −D−1

j C ′jM
−1
j αjΩjα

′
jM

−1
j

−D−1
j ε(j) (rjI2 + sj)

−1 ε′(j)D
−1
j ε(j)∆2jε

′
(j)M

−1
j

+D−1
j ε(j) (rjI2 + sj)

−1 ε′(j)D
−1
j C ′jM

−1
j αjΩjα

′
jM

−1
j

−D−1
j ε(j)∆2jε

′
(j)M

−1
j αjΩjα

′
jM

−1
j

+D−1
j ε(j) (rjI2 + sj)

−1 ε′(j)D
−1
j ε(j)∆2jε

′
(j)M

−1
j αjΩjα

′
jM

−1
j .

Multiplying from the left by ε′(j) and from the right by ε(j), and using the definitions

of uj, vj, sj, and wj, we obtain

ε′(j)D
−1C ′M−1ε(j) = uj − sj (rjI2 + sj)

−1 uj + sj∆2jvj

− [uj, wj] Ωj

[
vj, u

′
j

]′ − sj (rjI2 + sj)
−1 sj∆2jvj

+sj (rjI2 + sj)
−1 [uj, wj] Ωj

[
vj, u

′
j

]′
−sj∆2j

[
vj, u

′
j

]
Ωj

[
vj, u

′
j

]′
+sj (rjI2 + sj)

−1 sj∆2j

[
vj, u

′
j

]
Ωj

[
vj, u

′
j

]′
.

Rearranging terms and simplifying gives us

ε′(j)D
−1C ′M−1ε(j) = rj (rjI2 + sj)

−1 sj∆2j

(
vj −

[
vj, u

′
j

]
Ωj

[
vj, u

′
j

]′)
(68)

+rj (rjI2 + sj)
−1
(
uj − [uj, wj] Ωj

[
vj, u

′
j

]′)
.

3.8 Proof of Proposition OW17

Multiplying both sides of (68) by ∆′2j, we obtain

∆′2jε
′
(j)D

−1C ′M−1ε(j) = ∆′2jrj (rjI2 + sj)
−1 sj∆2j

(
vj −

[
vj, u

′
j

]
Ωj

[
vj, u

′
j

]′)
+∆′2jrj (rjI2 + sj)

−1
(
uj − [uj, wj] Ωj

[
vj, u

′
j

]′)
. (69)
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Note that, for j = 1, ..., T/2− 1,

∆2,j+1 =

(
−1

2
− sin jθ

2−2 cos jθ
sin jθ

2−2 cos jθ
−1

2

)
=

(
−1

2
− cos jθ/2

2 sin jθ/2
cos jθ/2

2 sin jθ/2
−1

2

)

so that

r
1/2
j+1∆2,j+1 =

(
− sin jθ/2 − cos jθ/2

cos jθ/2 − sin jθ/2

)
,

and thus,
∥∥∥r1/2

j+1∆2,j+1

∥∥∥ is bounded uniformly in j = 1, ..., T/2− 1. For r1/2
1 ∆1, we

have

r
1/2
1 ∆1 = −I2.

Hence,
∥∥∥r1/2

j ∆2,j

∥∥∥ is bounded uniformly in j = 1, ..., T/2.

Replacing sj, uj, vj, and wj in (69) by ŝI2, ûI2, v̂I2, and ŵI2, respectively, and

noting that

∆′2j∆2j = ∆1j = r−1
j I2,

we obtain

∆′2jε
′
(j)D

−1C ′M−1ε(j)

=
ŝ

rj + ŝ

(
v̂I2 − [v̂I2, ûI2] Ω̂j [v̂I2, ûI2]′

)
+

rj
rj + ŝ

∆′2j

(
ûI2 − [ûI2, ŵI2] Ω̂j [v̂I2, ûI2]′

)
+ o(1), (70)

where,

Ω̂j =
1− z
δj

(
z

1−zrjI2 − ŝI2 + ŵI2 − 1
1−zrj∆

′
2j − ûI2

− 1
1−zrj∆2j − ûI2

1
1−zI2 + v̂I2

)
,

δj = (ŵ − ŝ) (1 + v̂ − zv̂) + rj (û+ zv̂ − 1)− (1− z) û2,

and o(1)
a.s.→ 0, uniformly in j. The latter convergence follows from Lemma OW12

and the fact that the right hand side of (69) a.s. remains continuous function of

sj, uj, vj and wj with bounded derivatives as p, T →c ∞. It can be shown using the
facts that: (i)

∥∥∥r1/2
j ∆2,j

∥∥∥ is bounded uniformly in j = 1, ..., T/2, as show above,

(ii) |rj + ŝ|−1 remains bounded as p, T →c ∞, a.s. and uniformly in j, as follows
from (64), and (iii)

∥∥∥Ω̂j

∥∥∥ remains bounded as p, T →c ∞, a.s. and uniformly in j,
as shown in the proof of Proposition OW13.

Consider the first term on the right hand side of (70). Opening brackets and
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simplifying, we obtain

ŝ

rj + ŝ

(
v̂I2 − [v̂I2, ûI2] Ω̂j [v̂I2, ûI2]′

)
=

ŝ

δj (rj + ŝ)

(
v̂ (ŵ − ŝ) I2 + rj v̂ (û− 1) I2 + rjûv̂∆2j + rj v̂û∆′2j − û2I2

)
.

Using the identity

∆2j + ∆′2j = −I2,

we further simply the above expression to get

ŝ

rj + ŝ

(
v̂I2 − [v̂I2, ûI2] Ω̂j [v̂I2, ûI2]′

)
= − ŝv̂

δj
I2 +

ŝ (v̂ŵ − û2)

δj (rj + ŝ)
I2.

Similarly, for the second term on the right hand side of (70), we obtain

rj
rj + ŝ

∆′2j

(
ûI2 − [ûI2, ŵI2] Ω̂j [v̂I2, ûI2]′

)
= −rjû

δj
∆′2j +

rj (v̂ŵ − û2)

δj (rj + ŝ)
I2.

Summing up the latter two equations, and taking trace, we get

tr
[
∆′2jε

′
(j)D

−1C ′M−1ε(j)

]
=
rjû− 2ŝv̂ + 2v̂ŵ − 2û2

δj
+ o(1).

Using this equation together with equations (OW53) and (OW54), we obtain

1 + zm̂ =
1

p

T/2∑
j=1

rjû− 2ŝv̂ + 2v̂ŵ − 2û2

δj
+ o(1).

Recall that rj+1 = 2− 2 cos jθ = 4 sin2 (jπ/T ) and δ−1
j+1 = ĥ (z, jπ/T ). Therefore,

1 + zm̂ =
1

p

T/2−1∑
j=1

ĥ (z, jπ/T )
(
4 sin2 (jπ/T ) û− 2ŝv̂ + 2v̂ŵ − 2û2

)
+ o(1).

Since, for z with Rz = 0 and Iz > ζ, the derivative

d

dϕ

[
ĥ (z, ϕ)

(
4 sin2 ϕû− 2ŝv̂ + 2v̂ŵ − 2û2

)]
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a.s. remains bounded as p, T →c ∞, we obtain

1 + zm̂ =
1

πc

∫ π/2

0

ĥ (z, ϕ)
(
4 sin2 ϕû− 2ŝv̂ + 2v̂ŵ − 2û2

)
dϕ+ o(1)

=
1

2πc

∫ 2π

0

ĥ (z, ϕ)
(
2 sin2 ϕû− ŝv̂ + v̂ŵ − û2

)
dϕ+ o(1).

Finally, using the identity

zṽ + ŝ = ŵ,

we obtain

1 + zm̂ =
1

2πc

∫ 2π

0

ĥ (z, ϕ)
(
2 sin2 ϕû+ zṽv̂ − û2

)
dϕ+ o(1).

3.9 Proof of Proposition OW18

Consider the identity

1

p

T/2∑
j=1

tr
[
∆2jε

′
(j)M

−1ε(j)

]
=

1

p

T/2∑
j=1

tr
[
∆1jε

′
(j)D

−1C ′M−1ε(j)

]
. (71)

Multiplying both sides of (68) by ∆1j, we obtain

∆1jε
′
(j)D

−1C ′M−1ε(j) = (rjI2 + sj)
−1 sj∆2j

(
vj −

[
vj, u

′
j

]
Ωj

[
vj, u

′
j

]′)
(72)

+ (rjI2 + sj)
−1
(
uj − [uj, wj] Ωj

[
vj, u

′
j

]′)
.

Further, equation (OW43) gives us

∆2jε
′
(j)M

−1ε(j) = ∆2j

(
vj − [vj, u

′
j]Ωj[vj, u

′
j]
′) . (73)

Subtracting (73) from (72), we obtain

∆1jε
′
(j)D

−1C ′M−1ε(j) −∆2jε
′
(j)M

−1ε(j)

=
(
(rjI2 + sj)

−1 sj − I2

)
∆2j

(
vj −

[
vj, u

′
j

]
Ωj

[
vj, u

′
j

]′)
+ (rjI2 + sj)

−1
(
uj − [uj, wj] Ωj

[
vj, u

′
j

]′)
= −rj (rjI2 + sj)

−1 ∆2j

(
vj −

[
vj, u

′
j

]
Ωj

[
vj, u

′
j

]′)
+ (rjI2 + sj)

−1
(
uj − [uj, wj] Ωj

[
vj, u

′
j

]′)
.
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Proceeding as in the above analysis of (69), we obtain

∆1jε
′
(j)D

−1C ′M−1ε(j) −∆2jε
′
(j)M

−1ε(j)

= − rj
δj (rj + ŝ)

∆2j

(
−v̂ŝI2 + rj v̂ (û− 1) I2 + rjûv̂∆2j + rj v̂û∆′2j

)
− û
δj
I2 + o(1).

Taking trace, summing over j, dividing by p, and using (71), we obtain

1

p

T/2∑
j=1

rj v̂ + 2û

δj
= o(1).

Replacing the sum by an integral yields

1

2πc

∫ 2π

0

ĥ (z, ϕ)
(
2v̂ sin2 ϕ+ û

)
dϕ = o(1).

3.10 Derivation of Equation (OW71)

Consider

I =
1

2π

∫ 2π

0

1

x+ 2 sin2 ϕ
dϕ,

where x ∈ C\ [−2, 0] . Changing the variable of integration to z = exp {iϕ} , we
obtain

I =
1

2πi

∮
|z|=1

1

x− (z − z−1)2 /2

dz

z

= − 1

2πi

∮
|z|=1

2z

(z2 − x1) (z2 − x2)
dz,

where

x1,2 = x+ 1±
√
x (x+ 2).

Since x1x2 = 1, whereas |x1| 6= 1 and |x2| 6= 1, there are only two poles of the

integrand that are situated inside the unit circle. They are either x1/2
1 ,−x1/2

1 ,

which we shall call case 1, or x1/2
2 ,−x1/2

2 , which we shall call case 2. By Cauchy’s

residue theorem,

I = ∓ 2

x1 − x2

,
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with “−”corresponding to case 1 and “+”corresponding to case 2. Whatever the
case, we have

I2 =
4

(x1 − x2)2 =
1

x (x+ 2)
.
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