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Abstract

This note contains proofs of lemmas 2 and 3 in Onatski (2013),

Asymptotic Analysis of the Squared Estimation Error in Misspecified

Factor Models, where we refer to for definitions and notation. The

note also shows that assumption A3 (iii) in Onatski (2013) holds for

very wide classes of stationary processes {e·t, t ∈ Z}.

1 Proof of Lemma 2.

Consider a decomposition

X ′X/ (nT ) = M +M (1)/
√
T +M (2)/T, (A1)

where

M = FDnF
′/T, M (1) = (FΛ′e+ e′ΛF ′) /(n

√
T ), and M (2) = e′e/n.
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We use Kato’s (1980) theory to characterize the eigenvalues and eigenprojec-

tions of X ′X/ (nT ) as perturbations of those of M . Similar techniques were

recently used in the analysis of the quasi maximum likelihood estimator in

panel data models with interactive fixed effects by Moon andWeidner (2010).

Let R (z) = (M − zIT )−1 , z ∈ C. Then, according to Kato (1980, p.78-79),
for 1 ≤ j ≤ r,

µj(X
′X)/ (nT ) = µj (M) +

∑∞

s=1
µ

(s)
j T−s/2 = djn +

∑∞

s=1
µ

(s)
j T−s/2, (A2)

where

µ
(s)
j =

∑
ν1+...+νp=s

(−1)p

2πpi
tr

∫
Γ

M (ν1)R (z) ...M (νp)R (z) dz

with νk, k = 1, ..., p, taking on only values one or two; i ∈ C being the

imaginary unit; and Γ being the circle in C with center at djn and radius

rj = min
i=0,1
{dj+i−1,n − dj+i,n} /2. Here, we define d0,n as +∞ and dr+1,n as 0.

As explained by Kato (1980, p.88), the series in (A2) are absolutely con-

verging as long as supz∈Γ

∑2
i=1 T

−i/2
∥∥M (i)R (z)

∥∥ < 1. By definition of Γ

and R (z) , supz∈Γ ‖R (z)‖ = r−1
j . Therefore, a suffi cient condition for the

convergence is max
i=1,2

{∥∥M (i)
∥∥} < Trj/2. We have

∥∥∥FΛ′e/(n
√
T )
∥∥∥ ≤ ‖Λ‖ ‖F‖ ‖e‖ /(n

√
T )

= ‖Λ′Λ/n‖1/2 ‖F ′F/T‖1/2 ‖e′e/n‖1/2
= d

1/2
1n ‖e′e/n‖

1/2
.

Therefore, by A3 (iii),
∥∥M (1)

∥∥ = OP (1) and
∥∥M (2)

∥∥ = OP (1). In particular,

for any ε > 0 and any sequence {nT , T = 1, 2, ..} such that nT , T →c ∞,
there exists T̄ > 0 such that Pr

(
maxi=1,2

{∥∥M (i)
∥∥} < T̄rj/2

)
> 1− ε for all

T > T̄ . That is, with probability larger than 1− ε, the convergence in (A2)
takes place for all T > T̄ . Furthermore, by Kato’s (1980, p.89) formula (3.6),
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with the same probability, for all T > T̄ ,

∣∣∣µj (X ′X/ (nT ))− djn − µ(1)
j /T 1/2 − µ(2)

j /T
∣∣∣ ≤ rjT

−3/2

T̄−1
(
T̄−1/2 − T−1/2

) ,
which implies that

µj (X ′X/ (nT )) = djn + µ
(1)
j /T 1/2 + µ

(2)
j /T + oP (1/T ) . (A3)

Let Pj = F·j
(
F ′·jF·j

)−1
F ′·j = F·jF

′
·j/T be the eigenprojection correspond-

ing to the j-th eigenvalue of M, µj (M) = djn, and let P0 be the projection

on the subspace of RT orthogonal to all columns of F. Kato (1980, p.79) gives
the following explicit formulae for µ(1)

j and µ(2)
j :

µ
(1)
j = tr

[
M (1)Pj

]
and µ(2)

j = tr
[
M (2)Pj −M (1)SjM

(1)Pj
]
, (A4)

where

Sj =
∑r

k 6=j,k=1
Pk/ (dkn − djn)− P0/djn. (A5)

Using (A4) and the definition of M (1), we have

µ
(1)
j = 2 tr

[
FΛ′eF·jF

′
·j
]
/
(
nT 3/2

)
= 2Λ′·jeF·j/

(
nT 1/2

)
= 2
√
djne

(j,j)/
√
n.

(A6)

Further, straightforward algebra that employs (A5), shows that

tr
[
M (1)SjM

(1)Pj
]

=
r∑

k 6=j,k=1

(√
djne

(j,k) +
√
dkne

(k,j)
)2

n (dkn − djn)
− Λ′·jeP0e

′Λ·j/
(
djnn

2
)

=
r∑

k 6=j,k=1

(√
djne

(j,k) +
√
dkne

(k,j)
)2

n (dkn − djn)
− Λ′·jee

′Λ·j/
(
djnn

2
)

+

r∑
k=1

(
e(j,k)

)2
/n.
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By A3 (ii), e(j,k) = OP(1) and e(k,j) = OP(1). Therefore, recalling that n and

T are of the same order when n, T →c ∞, we get

tr
[
M (1)SjM

(1)Pj
]

= −Λ′·jee
′Λ·j/

(
djnn

2
)

+OP (1/T ) .

Since tr
[
M (2)Pj

]
= F ′·je

′eF·j/nT, we obtain

µ
(2)
j = F ′·je

′eF·j/nT + Λ′·jee
′Λ·j/

(
djnn

2
)

+OP (1/T ) . (A7)

Equalities (A3), (A6), and (A7) imply the lemma.

2 Proof of Lemma 3

Consider decomposition (A1). According to Kato (1980, p.68),

P̂j = Pj +
∞∑
s=1

P
(s)
j /T s/2, (A8)

where

P
(s)
j = −

∑
ν1+...+νp=s

(−1)p

2πi

∫
Γ

R (z)M (ν1)R (z)M (ν2)...M (νp)R (z) dz

(A9)

with νk, k = 1, ..., p, R(z), and Γ defined as in the proof of Lemma 2. As

in that proof, for any ε > 0 and any sequence {nT , T = 1, 2, ..} such that
nT , T →c ∞, let T̄ be such that Pr

(
maxi=1,2

{∥∥M (i)
∥∥} < T̄rj/2

)
> 1− ε for

all T > T̄ . Then, since supz∈Γ |R (z)| = 1/rj, with probability larger than

1− ε,∥∥∥P (s)
j

∥∥∥ ≤∑
ν1+...+νp=s

1

2π

∫
Γ

(1/rj)
p+1 (T̄ rj/2)p |dz| = ∑

ν1+...+νp=s

(
T̄ /2

)p
.

Since νi may only be equal to one or two, there are no more than 2s summands

in the latter sum. Therefore, with probability larger than 1 − ε,
∥∥∥P (s)

j

∥∥∥ ≤
4



(
2T̄
)s
for all s = 1, 2, ... and all T > T̄ . Hence, by (A8), with probability

larger than 1− ε, for all T >
(
2T̄
)2
,∥∥∥P̂j − Pj − P (1)

j /
√
T − P (2)

j /T
∥∥∥ ≤ (2T̄ /

√
T
)3

/
(

1− 2T̄ /
√
T
)
,

which implies that

P̂j = Pj + P
(1)
j /
√
T + P

(2)
j /T + oP (1/T ) , (A10)

where ToP (1/T ) converges to zero in probability in spectral norm.

Kato (1980, p.77) gives the following explicit formulae for P (1)
j and P (2)

j :

P
(1)
j = −PjM (1)Sj − SjM (1)Pj, and (A11)

P
(2)
j = −PjM (2)Sj − SjM (2)Pj + PjM

(1)SjM
(1)Sj (A12)

+SjM
(1)PjM

(1)Sj + SjM
(1)SjM

(1)Pj − PjM (1)PjM
(1)S2

j

−PjM (1)S2
jM

(1)Pj − S2
jM

(1)PjM
(1)Pj.

Using (A10)-(1) and the fact that PjSj = 0, we obtain, for j ≤ r,

tr
[
PjP̂j

]
= 1− tr

[
PjM

(1)S2
jM

(1)Pj
]
/T + oP (1/T ) .

From the latter formula and definition (A5) of Sj, we have

tr
[
PjP̂j

]
= 1−

r∑
k 6=j,k=1

(√
dkne

(k,j) +
√
djne

(j,k)
)2

(dkn − djn)2 nT

−Λ′·jeP0e
′Λ·j/(d

2
jnn

2T ) + oP (1/T ) .

Assumption A3 (ii) implies that the second summand on the right hand side
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of the above equation is oP (1/T ) , and hence,

tr
[
PjP̂j

]
= 1− Λ′·jeP0e

′Λ·j/(d
2
jnn

2T ) + oP (1/T ) .

Since P0 = IT −
∑r

k=1
Pk, we have

tr
[
PjP̂j

]
= 1− Λ′·jee

′Λ·j/(d
2
jnn

2T ) +

r∑
k=1

Λ′·jePke
′Λ·j/(d

2
jnTn

2) + oP (1/T ) .

Noting that Λ′·jePke
′Λ·j = djnn

(
e(j,k)

)2
and using A3 (ii) one more time, we

get

tr
[
PjP̂j

]
= 1− Λ′·jee

′Λ·j/(d
2
jnn

2T ) + oP (1/T ) . (A13)

For k 6= j, using (A10)-(1) and (A5), we have

tr
[
PkP̂j

]
=

1

nT

(√
djne

(j,k) +
√
dkne

(k,j)
)2

/ (dkn − djn)2 + oP (1/T ) .

By A3 (ii), the first term in the above sum is oP (T−1) , and thus, for k 6= j,

tr
[
PkP̂j

]
= oP

(
T−1

)
. (A14)

Lemma 3 (ii) follows from the symmetry of our model with respect to

interchanging temporal and cross-sectional dimensions. The symmetry holds

up to different normalizations of Λ′Λ and F ′F, which explains the “extra djn”

in the denominator of the formula for tr
[
PkP̂j

]
relative to that for tr

[
QkQ̂j

]
.

3 Primitive conditions for A3 (iii)

Proposition 1 Let εt = (ε1t, ..., εnt)
′ , where εit with i ∈ N and t ∈ Z are

independent zero mean random variables with uniformly bounded fourth mo-
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ments. Assumption A3 (iii) is satisfied for e = [e1, ..., eT ] with

et =
∑∞

j=0
Ψnjεt−j,

where Ψnj are n×n matrices such that
∑∞

j=0 j ‖Ψnj‖2 < M, and
∑∞

j=0 ‖Ψnj‖ <
M for an M <∞ that does not depend on n.

Proof: Our proof is similar to Moon and Weidner’s (2010a) proof of their

example (ii). We have

(µ1 (ee′/T ))
1/2

= ‖e‖ /
√
T ≤

∑T

j=0
‖Ψnj‖ ‖ε−j‖ /

√
T + ‖rn,T‖ ,

where ε−j = [ε1−j, ..., εT−j] and rn,T =
∑∞

j=T+1 Ψnjε−j/
√
T . Obviously, for

any j = 0, ..., T, ‖ε−j‖ ≤ ‖ε‖ , where ε = [ε1−T , ..., εT ] . As explained by

Moon and Weidner (2010a), ‖ε‖ /
√
T = OP (1). Therefore,

(µ1 (ee′/T ))
1/2 ≤ OP (1)

∑T

j=0
‖Ψnj‖+ ‖rn,T‖ = OP (1) + ‖rn,T‖ . (A15)

Next, since the fourth moments of εit are uniformly bounded, and Eε2
it ≤

(Eε4
it)

1/2
, the second moments of εit are uniformly bounded too. Let us

denote the uniform bound on the second moments of εit as B. We have

E ‖rn,T‖2 ≤
n∑
i=1

T∑
t=1

E
(
(rn,T )2

it

)
=

1

T

n∑
i=1

T∑
t=1

E

( ∞∑
j=T+1

n∑
s=1

(Ψnj)is εs,t−j

)2

≤ B
∞∑

j=T+1

‖Ψnj‖2
F ≤

B

T

∞∑
j=T+1

j ‖Ψnj‖2
F ,

where ‖M‖F denotes the Frobenius norm of matrix M . Since ‖Ψnj‖2
F ≤

n ‖Ψnj‖2 (see Horn and Johnson (1985), p. 314), we have

E ‖rn,T‖2 ≤ Bn

T

∞∑
j=T+1

j ‖Ψnj‖2 = o (1) .
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Hence, ‖rn,T‖2 = oP (1) , and ‖rn,T‖ = oP (1) too. Combining this with

(A15), we obtain µ1 (ee′/T ) = OP (1).
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