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Abstract

This note contains proofs of lemmas 2 and 3 in Onatski (2013),
Asymptotic Analysis of the Squared Estimation Error in Misspecified
Factor Models, where we refer to for definitions and notation. The
note also shows that assumption A3 (iii) in Onatski (2013) holds for

very wide classes of stationary processes {e.;,t € Z}.

1 Proof of Lemma 2.

Consider a decomposition
X'X/(nT) =M+ MY /T + MP/T, (A1)
where

M = FD,F')T, MY = (FNe+¢AF') /(nVT), and M® = ¢'e/n.
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We use Kato’s (1980) theory to characterize the eigenvalues and eigenprojec-
tions of X' X/ (nT) as perturbations of those of M. Similar techniques were
recently used in the analysis of the quasi maximum likelihood estimator in
panel data models with interactive fixed effects by Moon and Weidner (2010).
Let R(z) = (M — zI7)"", z € C. Then, according to Kato (1980, p.78-79),
for1 <j<r,

(XX (0T) = py (M) + Y T2 = djy 3~ plIT2, (A2)
where
) = Z (1) tr/M<”1>R(z) MR (2)dz
J Vit...+vp=s 27Tp1 T

with vy, K = 1,...,p, taking on only values one or two; i € C being the
imaginary unit; and I' being the circle in C with center at d;, and radius
r; = ZIE(I]I% {djti—1n — dj4in} /2. Here, we define dy,, as +oo and d, 11, as 0.

As explained by Kato (1980, p.88), the series in (A2) are absolutely con-
verging as long as sup,.p Z?Zl T2 ||M(Z)R(2)H < 1. By definition of T’
and R (z), sup,cp |R(2)|| = r;'. Therefore, a sufficient condition for the
convergence is max { HM(Z)H} < Tr;/2. We have

|Pve/mvD)|| < IAIIFI el /(v'T)
= NN/ FE/T e /nl|' = df |lele /]

Therefore, by A3 (iii), ||[M™"]| = Op (1) and ||M®| = Op (1). In particular,
for any ¢ > 0 and any sequence {nT, =1,2,..} such that ny, T —. oo,
there exists T > 0 such that Pr (max,-:m {”M(") H} < Trj/Z) > 1 — ¢ for all
T > T. That is, with probability larger than 1 — ¢, the convergence in (A2)
takes place for all T > T. Furthermore, by Kato’s (1980, p.89) formula (3.6),



with the same probability, for all T' > T,

TJT_?’/Q
T-1 T 1/2 _ T*l/Q)’

py (X'X/ (nT)) = dj — P/ T2 = 47| <

which implies that
1y (X'X/ (nT)) = dy + p$ T2+ uP /T + 0p (1/T) . (A3)

Let P; = F; (F,'jF.j)fl P, = F;F;/T be the eigenprojection correspond-
ing to the j-th eigenvalue of M, p; (M) = d;,, and let P, be the projection

on the subspace of R” orthogonal to all columns of F. Kato (1980, p.79) gives
)

the following explicit formulae for x;” and ,ugz) :
pt = tr [MOP)] and 4l = tr [M@ P, — MW S;MOP] (A4)
where
S; = kazl P/ (dyn — djn) — Po/d;n. (A5)

Using (A4) and the definition of M) we have

,ug-l) =2tr [FNeF,F]/ (nT3/?) = 20 e/ (nTY?) = 2/d;,e" J\/n
(A6)
Further, straightforward algebra that employs (A5), shows that

" ( djne(jvk)—i— dlme(’“’j))

tr [MODS pOp] = Nens n
r [ ] j] k;ﬁj,zk:zl n (dkn - d]n) 6 o€ ]/ ( LU )
~ (V/djne"P + d,m@(kaj)) /
A n
k:yﬁjzk1 n (dpn — djn) ee' Mg/ (djun?)

+Z ]k)



By A3 (ii), eU*) = Op(1) and e = Op(1). Therefore, recalling that n and

T are of the same order when n,T —. 0o, we get
tr [MWS;MVP] = —ALee'A;/ (djun®) + Op (1/T) .
Since tr [M® P;] = Fl;e'eF;/nT, we obtain
uf) = Flie'eF;/nT + Nee'A;/ (djun®) + Op (1/7T). (AT)

Equalities (A3), (A6), and (A7) imply the lemma.

2 Proof of Lemma 3

Consider decomposition (A1). According to Kato (1980, p.68),
Py=Pi+ ) B7/T, (A8)
s=1

where

AR - / R (2) MUDR (2) MU MU R (2) dz
(A9)
with v, k = 1,...,p, R(z), and T" defined as in the proof of Lemma 2. As
in that proof, for any ¢ > 0 and any sequence {nr,7 = 1,2,..} such that
np, T —. 00, let T be such that Pr (maxz-:m {HM(’)H} < Trj/2) >1—¢ for
all T > T. Then, since sup,.|R(z)| = 1/r;, with probability larger than

1—¢,

Since v; may only be equal to one or two, there are no more than 2° summands
P9 <

7 =

> Lyt (Fry2)" e = Y

vit.tvp=s 21 Jp

PY

J

(T/2)".

vit..F+vp=s

in the latter sum. Therefore, with probability larger than 1 — ¢,
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(QT)S for all s = 1,2,... and all T > T. Hence, by (AS8), with probability
larger than 1 — ¢, for all T' > (2T)2 ,

‘ ] B

which implies that

ONT — PO < (2 VT /(1 - 20 /W),

Py =P+ PV /T + PP T + 00 (1/T), (A10)

where T'op (1/T') converges to zero in probability in spectral norm.

Kato (1980, p.77) gives the following explicit formulae for Pj(l) and Pj@)

PV = —pMDS; — ;MY P, and (A11)

P? = —pM®S; — ;MO P, + PMVS MWD S, (A12)

J

+SM<1>PM S; + ;MW s, MY P, — P MM S
—PMWSEMI Py — S2MW P Py,

Using (A10)-(1) and the fact that P;S; = 0, we obtain, for j <7,
tr {Pjﬁj] —1—tr [BEMOS?MOP] /T + op (1/T) .

From the latter formula and definition (A5) of S;, we have

. r (k9) 1 /. k)2
wlph) = 1- ) (Ve ™ + dine )
ket j k=1 (d}m — d]n) nT
—NePoe’ A/ (d2,n*T) + op (1/T).

Assumption A3 (ii) implies that the second summand on the right hand side



of the above equation is op (1/7"), and hence,
tr [pjﬁj} — 1 — N,ePoe' A ;/(d2n>T) + op (1/T).

Since Py = Iy — Z;_l P, we have

tr [Pjﬁj} = 1= Njed Ay /(2,0°T) + 3 NjePd/ Ay /(d2,Tn?) + op (1/T) .

k=1

Noting that Al,ePre'A; = dj,n (e(j"“))2 and using A3 (ii) one more time, we
get
r [Pjﬁj] — 1 — Nye'Aj /(d2,0°T) + op (1/T) . (A13)

For k # j, using (A10)-(1) and (A5), we have

A 1 . A 2
tr|Poly| = — (V&) + VVdie®) ) (dion = dju)* + 00 (1/T).

By A3 (ii), the first term in the above sum is op (T'), and thus, for k # j,
tr | BBy = op (T7). (A14)

Lemma 3 (ii) follows from the symmetry of our model with respect to
interchanging temporal and cross-sectional dimensions. The symmetry holds
up to different normalizations of A’A and F'F, which explains the “extra d;,,”
in the denominator of the formula for tr [Pkfﬂ relative to that for tr [Qkéj] .

3 Primitive conditions for A3 (iii

Proposition 1 Let ¢, = (e, ...,6n) , where e withi € N and t € Z are

independent zero mean random variables with uniformly bounded fourth mo-



ments. Assumption A8 (iii) is satisfied for e = ey, ..., ep| with

= E 1\
€ — i€t—j
j=0 TP

where W,,; are nxn matrices such that 372 j 19,117 < M, and > o Wl <
M for an M < oo that does not depend on n.

Proof: Our proof is similar to Moon and Weidner’s (2010a) proof of their

example (ii). We have
T
(1 (e¢' TN = el VT < ijo 1l le—sll VT + racel

where e_; = [e1_j,...,er—;] and 7,7 = Z;’;TH \Pnje_j/ﬁ. Obviously, for
any j = 0,...,T, |le_;]| < |le||, where ¢ = [e1_7,...,er|. As explained by
Moon and Weidner (2010a), ||| /v/T = Op (1). Therefore,

(y (e€!/T))* < Op (1) Zszo 1Ol + [7n,2ll = Op (1) + [rnrll - (A15)

Next, since the fourth moments of &; are uniformly bounded, and Ee? <
(Eaft)l/ ? | the second moments of e; are uniformly bounded too. Let us

denote the uniform bound on the second moments of ¢;; as B. We have

Ellrazl® < DY) E((ran)i) = %ZZE ( > (W), 5s,tj>

i=1 t=1 i=1 t=1 j=T+1 s=1
o o0
B
2 . 2
< B )Y, sl < 7 > Gl
j=T+1 J=T+1

where ||M]|, denotes the Frobenius norm of matrix A/. Since ||\Ifnj||2F <
n||¥,;||* (see Horn and Johnson (1985), p. 314), we have

Bn <=~ .
Bl < =5 Y 1%l =o(1).

F=T+1
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Hence, ||rnr||> = op (1), and |r,z|| = op (1) too. Combining this with
(A15), we obtain p, (ee’/T) = Op (1).

References

[1] Horn, R.A., and C.R. Johnson (1985), Matriz Analysis, Cambridge Uni-

versity Press.

[2] Kato, T. (1980) Perturbation Theory for Linear Operators. Second Edi-
tion. Springer-Verlag. Berlin, Heidelberg, New York.

[3] Moon, H.R., and M. Weidner (2010), “Dynamic Linear Panel Regression
Models with Interactive Fixed Effects”, manuscript, UCL.

[4] Moon, H.R., and M. Weidner (2010a), A Supplementary Appendix to
“Dynamic Linear Panel Regression Models with Interactive Fixed Ef-

fects”, manuscript, UCL.

[5] Onatski, A. (2013), “Asymptotic Analysis of the Squared Estimation Er-

ror in Misspecified Factor Models”, manuscript, University of Cambridge.



