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Abstract: This paper studies the asymptotic power of tests of sphericity
against perturbations in a single unknown direction as both the dimen-
sionality of the data and the number of observations go to infinity. We
establish the convergence, under the null hypothesis and the alternative,
of the log ratio of the joint densities of the sample covariance eigenvalues
to a Gaussian process indexed by the norm of the perturbation. When the
perturbation norm is larger than the phase transition threshold studied
in Baik et al. (2005), the limiting process is degenerate and discrimina-
tion between the null and the alternative is asymptotically certain. When
the norm is below the threshold, the process is non-degenerate, so that the
joint eigenvalue densities under the null and alternative hypotheses are mu-
tually contiguous. Using the asymptotic theory of statistical experiments,
we obtain asymptotic power envelopes and derive the asymptotic power for
various sphericity tests in the contiguity region. In particular, we show that
the asymptotic power of the Tracy-Widom-type tests is trivial, whereas that
of the eigenvalue-based likelihood ratio test is strictly larger than the size,
and close to the power envelope.
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1. Introduction

Recently, there has been much interest in testing sphericity in a high-dimensional
setting. Various tests have been proposed and analyzed in Ledoit and Wolf
(2002), Srivastava (2005), Birke and Dette (2005), Schott (2006), Bai et al.
(2009), Fisher et al. (2010), and Chen et al. (2010). In many studies, a dis-
tinct interesting alternative to the null of sphericity is the existence of a low-
dimensional structure or signal in the data. Detecting such a structure has been
the focus of recent studies in various applied fields including population and
medical genetics (Patterson et al., 2006), econometrics (Onatski, 2009, 2010),
wireless communication (Bianchi et al., 2010), chemometrics (Kritchman and
Nadler, 2008), and signal processing (Perry and Wolfe, 2010).
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Most of the existing sphericity tests are based on the eigenvalues of the sample
covariance matrix, which constitute the maximal invariant statistic with respect
to orthogonal transformations of the data. The asymptotic power of such tests
depends on the asymptotic behavior of the sample covariance eigenvalues under
the alternative hypothesis. When the alternative is a rank-k perturbation of the
null, the corresponding population covariance matrix is proportional to a sum
of the identity matrix and a matrix of rank k. Johnstone (2001) calls such a
situation “spiked covariance.”

The asymptotic behavior of the sample covariance eigenvalues in “spiked co-
variance” models of increasing dimension is well studied. Consider the simplest
case, when k = 1. If the largest population covariance eigenvalue is above the
“phase transition” threshold studied in Baik et al. (2005), then the largest sam-
ple covariance eigenvalue remains separated from the rest of the eigenvalues,
which are asymptotically “packed together as in the support of the Marchenko-
Pastur density” (Baik and Silverstein, 2006). Since the largest eigenvalue sepa-
rates from the “bulk,” it is easy to detect a signal.

However, if the largest population covariance eigenvalue is below the thresh-
old, signal detection becomes problematic. Indeed, in such a case, the joint
distribution of any finite number of the normalized largest sample covariance
eigenvalues converges to the multivariate Tracy-Widom law under both the null
of sphericity and the “spiked” alternative (see Johnstone, 2001, Baik et al., 2005,
El Karoui 2007, and Féral and Péché, 2009). Besides, as shown in Silverstein
and Bai (1995), the empirical distribution of the sample covariance eigenvalues
converges to the Marchenko-Pastur distribution under both the null and the
alternative.

This similarity in the asymptotic behavior of covariance eigenvalues under the
null and the alternative prompts Nadakuditi and Edelman (2008) and Nadaku-
diti and Silverstein (2010) to call the transition threshold “the fundamental
asymptotic limit of sample-eigenvalue-based detection.” They claim that no re-
liable signal detection is possible below that limit in the asymptotic sense. This
asymptotic impossibility is also pointed out and discussed in several other re-
cent studies, including Patterson et al. (2006), Hoyle (2008), Nadler (2008),
Kritchman and Nadler (2009) and Perry and Wolfe (2010).

In this paper, we analyze the capacity of statistical tests to detect a one-
dimensional signal with the corresponding population covariance eigenvalue be-
low the “impossibility threshold,” showing that the terminology “impossibility
threshold” is overly pessimistic. We establish that the eigenvalue region below
the threshold actually is the region of mutual contiguity (in the sense of Le Cam,
1960) of the joint distributions of the sample covariance eigenvalues under the
null and under the alternative. We obtain the limit of the log likelihood ratio
process inside this contiguity region and derive the asymptotic power envelope
for sample-eigenvalue-based detection tests.

The power envelope is larger than size for local alternatives and monotonically
tends to one as the signal’s population eigenvalue approaches the threshold
from below. Hence, the detection of a signal with high asymptotic probability is
quite possible even in cases where the largest population covariance eigenvalue
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is smaller than the threshold.
In the region of contiguity, the log likelihood ratio is asymptotically equiv-

alent to a simple statistic related to the Stieltjes transform of the empirical
distribution of the sample covariance eigenvalues. The reason the asymptotic
behavior of this statistic differs under the null and under the alternative despite
the apparent similarity of eigenvalue behaviors mentioned above is that it is not
based merely on a contrast between the largest and the rest of the eigenvalues.
The information about the presence of the signal exploited by this statistic is
hidden in the small deviations of the empirical distribution of the eigenvalues
from the Marchenko-Pastur limit.

Let us examine our setting and our results in more detail. Suppose that data
consist of n independent observations of p-dimensional real-valued vectors Xt

distributed according to the Gaussian law with mean zero and covariance matrix
σ2 (Ip + hvv′), where Ip is the p-dimensional identity matrix, σ and h are scalars,
and v is a p-dimensional vector with Euclidean norm one. We are interested in
the asymptotic power of the tests of the null hypothesis H0 : h = 0 against
the alternative H1 : h > 0 based on the eigenvalues of the sample covariance
matrix of the data when both n and p go to infinity. The vector v is an unknown
nuisance parameter indicating the direction of the perturbation of sphericity.

We consider the cases of known and unknown σ2. For the sake of brevity, in
the rest of this Introduction, we discuss only the case of unknown σ2, which,
in practice, is also more relevant. Let λj be the j-th largest sample covariance
eigenvalue, let µj = λj/ (λ1 + ...+ λp) be its normalized version, and let µ =
(

µ1, ..., µm−1

)

, where m = min (n, p). We begin our analysis with a study of the
asymptotic properties of the likelihood ratio process L (h;µ) defined as the ratio
of the density of µ when h 6= 0 to that when h = 0. We represent L (h;µ) in
the form of an integral over a contour in the complex plane and use the Laplace
approximation method and recent results from the large random matrix theory
to derive an asymptotic expansion of L (h;µ) as n, p → ∞ so that p/n → c ∈
(0,+∞).

We show that for any h̄ such that 0 < h̄ <
√
c, lnL (h;µ) converges in

distribution under the null to a Gaussian process L(h;µ) on h ∈
[

0, h̄
]

with

E [L(h;µ)] =
1

4

[

ln
(

1 − c−1h2
)

+ c−1h2
]

and

Cov (L(h1;µ),L(h2;µ)) = −1

2

[

ln
(

1 − c−1h1h2

)

+ c−1h1h2

]

.

By Le Cam’s first lemma (see van der Vaart 1998, p.88), the joint distributions
of the normalized sample covariance eigenvalues under the null and under the
alternative are mutually contiguous on h ∈

[

0, h̄
]

. We also show that these joint
distributions are not mutually contiguous for any h >

√
c.

Since L(h;µ) is not of the locally asymptotically normal type, the asymptotic
optimality analysis of tests of H0 : h = 0 against H1 : h > 0 is difficult.
However, an asymptotic power envelope is easy to construct using the Neyman-
Pearson lemma and Le Cam’s third lemma. We show that, for tests of asymptotic
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size α, the maximum achievable power against a specific alternative h = h1

equals 1 − Φ
[

Φ−1 (1 − α) −
√

− 1
2 (ln (1 − c−1h2

1) + c−1h2
1)

]

, where Φ (x) is the

standard normal distribution function.
Using our result on the limiting distribution of lnL (h;µ) and Le Cam’s third

lemma, we compute the asymptotic power of several previously proposed tests
of sphericity and of the likelihood ratio (LR) test based on µ. We find that the
power of the LR test comes close to the asymptotic power envelope. The LR test
outperforms the test proposed by John (1971) and studied in Ledoit and Wolf
(2002) and Srivastava (2005), and the test proposed by Bai et al. (2009). The
asymptotic power of the tests based on the largest sample covariance eigenvalue,
such as the tests proposed by Bejan (2005), Patterson et al. (2006), Krichman
and Nadler (2009), Onatski (2009), Bianchi et al. (2010) and Nadakuditi and
Silverstein (2010), equals the tests’ size for alternatives in the contiguity region.

The rest of the paper is organized as follows. Section 2 provides a represen-
tation of the likelihood ratio in terms of a contour integral. Section 3 applies
Laplace’s method to obtain an asymptotic approximation to the contour inte-
gral. Section 4 uses that approximation to establish the convergence of the log
likelihood ratio process to a Gaussian process. Section 5 provides an analysis
of the asymptotic power of various sphericity tests, and derives the asymptotic
power envelope. Section 6 concludes. Proofs are given in the Appendix; the more
technical ones are relegated to the Supplementary Appendix.

2. Likelihood ratios as contour integrals

Let X be a p× n matrix with iid real Gaussian N
(

0, σ2 (Ip + hvv′)
)

columns.
Let λ1 ≥ λ2 ≥ ... ≥ λp be the ordered eigenvalues of 1

nXX
′ and let λ =

(λ1, ..., λm), where m = min {n, p}. Finally, let µ =
(

µ1, ..., µm−1

)

, where µj =
λj/ (λ1 + ...+ λp).

As explained in the Introduction, our goal is to study the asymptotic power
of the eigenvalue-based tests of H0 : h = 0 against H1 : h > 0. If σ2 is known,
the model is invariant with respect to orthogonal transformations and the max-
imal invariant statistic is λ. Therefore, we consider tests based on λ. If σ2 is
unknown (which, strictly speaking, is what is meant by “sphericity”), the model
is invariant with respect to orthogonal transformations and multiplications by
non-zero scalars, and the maximal invariant is µ. Hence, we consider tests based
on µ. Note that the distribution of µ does not depend on σ2, whereas if σ2 is
known, we can always normalize λ dividing it by σ2. Therefore, in what follows,
we will assume that σ2 = 1 without loss of generality.

Let us denote the joint density of λ1, ..., λm as p (λ;h) and that of µ1, ..., µm−1

as p (µ;h). The following proposition gives explicit formulae for p (λ;h) and
p (µ;h).

Proposition 1. Let S (r) be the (r− 1)-dimensional unit sphere, and let (dxr)
be the invariant measure on S (r) normalized so that the total measure is one.
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Further, let Λ = diag (λ1, ..., λp) and M = diag
(

µ1, ..., µp

)

. Then,

p (λ;h) =
γ (n, p, λ)

(1 + h)n/2

∫

S(p)

e
n
2

h
1+h x′

pΛxp (dxp) , and (2.1)

p (µ;h) =
δ (n, p, µ)

(1 + h)
n/2

∞
∫

0

y
np−2

2 e−
n
2 y

∫

S(p)

e
n
2

yh
1+h x′

pMxp (dxp) dy, (2.2)

where γ (n, p, λ) and δ (n, p, µ) depend only on n and p, and on λ and µ respec-
tively.

In a recent study of quadratic forms in vectors uniformly distributed on high-
dimensional spheres, Hillier (2001, p.4) shows that the mean of such a quadratic
form equals a confluent hypergeometric function 1F1 of matrix argument. For
example, for the integral in (2.1),

∫

S(p)

e
n
2

h
1+h x′

pΛxp (dxp) = 1F1

(

1

2
,
p

2
;
n

2

h

1 + h
Λ

)

,

and a similar representation holds for the integral in (2.2). Butler and Wood
(2002) develop Laplace approximations to functions 1F1. However, their analysis
is subasymptotic and cannot be directly used to study the asymptotic behavior
of 1F1

(

1
2 , β;A

)

when the parameter β, the dimensionality of A and the norm

of A go to infinity simultaneously, as is the case for 1F1

(

1
2 ,

p
2 ; n

2
h

1+hΛ
)

when

n and p go to infinity so that p/n → c ∈ (0,+∞). Therefore, below, we use
alternative representations of the spherical integrals in Proposition 1. These
representations have the form of a contour integral of a single complex variable
and our asymptotic analysis will be based on the Laplace approximation to such
an integral.

Lemma 2. Let D = diag (d1, ..., dr), where dj are arbitrary complex numbers.
Further, let K be a contour in the complex plane starting at −∞, encircling
counter-clockwise the points 0, d1, ..., dr, and going back to −∞. Such a contour
is shown in Figure 1. We have

∫

S(r)

ex′
rDxr (dxr) =

Γ (r/2)

2πi

∮

K

es
r

∏

j=1

(s− dj)
− 1

2 ds. (2.3)

Proof. The integral on the left-hand side of (2.3) is the expected value of

exp
(

y2
1d1+...+y2

rdr

y2
1+...+y2

r

)

, where y1, ..., yr are independent standard normal random

variables. The variables uj ≡ y2
j

y2
1+...+y2

r
, j = 1, ..., r have Dirichlet distribution

D(k1, ..., kr) with parameters k1 = ... = kr = 1
2 . Denoting the expectation

operator with respect to such a distribution as ED, we have
∫

S(r)

ex′
rDxr (dxr) = ED exp (u1d1 + ...+ urdr) . (2.4)
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Fig 1. Contour of integration K in (2.3).

Now, expanding the exponent in the latter expression into power series and
taking expectations term by term yields

ED exp (u1d1 + ...+ urdr) =

∞
∑

k=0

ED (u1d1 + ...+ urdr)
k

k!
. (2.5)

The Dirichlet average of (u1d1 + ...+ urdr)
k

is well studied. By Theorem 3.1 of
Dickey (1983),

ED

[

(u1d1 + ...+ urdr)
k
]

=
∑

m1,...,mr≥0
m1+...+mr=k

k!

m1!...mr!

(1/2)m1
... (1/2)mr

(r/2)k

dm1
1 ...dmr

r ,

(2.6)
where (k)s = k (k + 1) ...(k + s − 1) is Pochhammer’s notation for the shifted
factorial.

Combining (2.6) with (2.5) and (2.4), we get

∫

S(r)

ex′
rDxr (dxr) =

∑

m1,...,mr≥0

(1/2)m1
... (1/2)mr

(r/2)m1+...+mr

dm1
1 ...dmr

r

m1!...mr!

= rΦ (1/2, ..., 1/2; r/2; d1, ..., dr) , (2.7)

where the last equality is the definition of the confluent form of the Lauri-
cella FD function, denoted as rΦ(·). The functions rΦ (·) were introduced by
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Erdelyi (1937) and are discussed by Srivastava and Karlsson (1985). In proba-
bility and statistics, they were recently used to study the mean of a Dirichlet
process (see Lijoi and Pegazzini (2004) and references therein).

Erdelyi (1937, formula (8,6)) establishes the following contour integral rep-
resentation of rΦ (·):

rΦ (k1, ..., kr; t; d1, ..., dr) =
Γ (t)

2πi

∮

K

ess−t+k1+...+kr

r
∏

j=1

(s− dj)
−kj ds. (2.8)

Lemma 2 follows from equalities (2.7) and (2.8).

Using Lemma 2 and Proposition 1, we derive contour integral representations
for the likelihood ratios L (h;λ) ≡ p (λ;h) /p (λ; 0) and L (h;µ) ≡ p (µ;h) /p (µ; 0).
The quantity L (h;λ) is the likelihood ratio based on λ as opposed to the entire
data X . Similarly, L (h;µ) is the likelihood ratio based on µ.

Lemma 3. Let K be a contour in the complex plane that starts at −∞, then en-
circles counter-clockwise the sample covariance eigenvalues λ1, ..., λp, and goes
back to −∞. In addition, we require that for any z ∈ K, Re z < 1+h

h S, where
S = λ1 + ...+ λp. Then,

L (h;λ) = k1

(

2

n

)
p−2
2 1

2πi

∮

K

e
n
2

h
1+h z

p
∏

j=1

(z − λj)
− 1

2 dz, and (2.9)

L (h;µ) = k2
S

p−2
2

2πi

∮

K

e−
np−p+2

2 ln(1− h
1+h

z
S )

p
∏

j=1

(z − λj)
− 1

2 dz, (2.10)

where k1 = h−
p−2
2 (1 + h)

p−n−2
2 Γ (p/2) and k2 = k1

Γ((np−p+2)/2)
Γ(np/2) .

Close inspection of the proof of Lemma 3 reveals that the right-hand side of
(2.10) depends on λ only through µ. Although it is possible to express L (h;µ)
as an explicit function of µ, the implicit form given in (2.10) is convenient
because it allows us to use similar methods for the asymptotic analysis of the
two likelihood ratios.

In the next two sections, we perform an asymptotic analysis of L (h;λ) and
L (h;µ) that relies on the Laplace approximation of the contour integrals in
Lemma 3 after the contours are suitably deformed without changing the value
of the integrals.

3. Laplace approximation

In this section, we derive the Laplace approximation to the contour integrals in
Lemma 3. Laplace’s method for contour integrals is discussed, for example, in
Chapter 4 of Olver (1997). The method describes an asymptotic approximation
to a contour integral

∮

K
e−nf(z)g(z)dz as n → ∞, where f(z) and g(z) are

analytic functions of z. The approximation is usually based on the part of the
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contour integral coming from a neighborhood of a point z0 ∈ K, where z0 is
such that d

dz f(z0) = 0 and Re f(z0) = minz∈K Re f(z). For such a point to
exist, one might need to deform the contour so that, by Cauchy’s theorem, the
value of the integral does not change. Typically, the deformation is chosen so
that Re (−f(z)) declines in the fastest way possible as z goes away from z0
along the contour. For this reason, the method is called the method of steepest
descent.

The contour integrals in (2.9) and (2.10) can be represented in the Laplace
form with a deterministic function f(z) and a random function g(z) that con-
verges to a log-normal random process on the contour as p, n → ∞ so that
cp ≡ p

n → c ∈ (0,+∞). To see this, note that the logarithm of the multiple
product in (2.9) and (2.10) equals − 1

2

∑p
j=1 ln (z − λj). For each z, this expres-

sion is a special form of the linear spectral statistic
∑p

j=1 ϕ(λj) studied by Bai
and Silverstein (2004). According to the Central Limit Theorem (Theorem 1.1)
established in that paper, the random variable

∆p (z) ≡
p

∑

j=1

ln (z − λj) − p

∫

ln (z − λ) dFp (λ) (3.1)

converges in distribution to a normal random variable when p, n → ∞. Here
Fp (λ) is the cumulative distribution function of the Marchenko-Pastur distri-
bution with density

ψp (x) =
1

2πcpx

√

(bp − x) (x− ap), (3.2)

where ap ≡
(

1 −√
cp

)2
and bp ≡

(

1 +
√
cp

)2
, and a mass of max

(

0, 1 − c−1
p

)

at
zero.

Such a convergence suggests the following choices of f(z) and g(z) in the
Laplace forms of the integrals in (2.9) and (2.10):

f(z) = −1

2

(

h

1 + h
z − cp

∫

ln (z − λ) dFp (λ)

)

, (3.3)

and

g(z)=

{

exp
{

− 1
2∆p (z)

}

for (2.9)

exp
{

−np−p+2
2 ln

(

1 − h
1+h

z
S

)

− n
2

h
1+hz − 1

2∆p (z)
}

for (2.10)
.

(3.4)
As mentioned above, a particularly useful deformation of K passes through

the point z = z0(h) where d
dz f (z) = 0. Taking the derivative of the right-hand

side of (3.3), we see that z0(h) must satisfy

h

1 + h
+ cpmp(z0(h)) = 0, (3.5)

wheremp (z) ≡
∫

1
λ−z dFp (λ) is the Stieltjes transform of the Marchenko-Pastur

distribution with parameter cp. The properties of mp(z) are well studied. In par-
ticular, the analytic expression for mp (z) is known (see, for example, equation
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(2.3) in Bai (1993)). For z 6= 0, which lies outside the support of Fp (λ), we have

mp (z) =
−z − cp + 1 +

√

(z − cp − 1)
2 − 4cp

2cpz
, (3.6)

where the branch of the square root is chosen so that the real and the imaginary

parts of
√

(z − cp − 1)
2 − 4cp have the same signs as the real and the imaginary

parts of z − cp − 1 respectively.
Substituting (3.6) into (3.5) and solving for z0(h) when h ∈

(

0,
√
cp

)

, we get

z0(h) =
(1 + h) (cp + h)

h
. (3.7)

When h ≥ √
cp, there are no solutions to (3.5) that lie outside the support of

Fp (λ). Indeed, when h =
√
cp, the right-hand side of (3.7) equals

(

1 +
√
cp

)2
,

which lies exactly on the boundary of the support of Fp (λ). When h >
√
cp,

(3.7) provides a solution to (3.5) only when the branch of the square root in
(3.6) is chosen differently. As can be verified using (3.3) and (3.6), in such a
case, d

dz f(z) is strictly negative at z = z0 (h) given by (3.7).
As cp → c, any fixed h that is smaller than

√
c eventually satisfies inequality

h <
√
cp, so that d

dz f(z) = 0 at z = z0(h). Therefore, for h <
√
c, we will

deform the contour K into a contour K that passes through z0(h). We define K
as K = K+∪K−, where K− is the complex conjugate of K+ and K+ = K1∪K2

with:

K1 = {z0(h) + it : 0 ≤ t ≤ 3z0(h)} and (3.8)

K2 = {x+ 3iz0(h) : −∞ < x ≤ z0(h)} . (3.9)

Figure 2 illustrates the choice of K.
A proof of the following technical lemma is relegated to the Supplementary

Appendix.

Lemma 4. Suppose that our null hypothesis is true, and let h̄ be any fixed
number such that 0 < h̄ <

√
c. Deforming contour K into K leaves the value

of the integrals (2.9) and (2.10) in Lemma 3 unchanged for all h ∈
(

0, h̄
]

with
probability approaching one as p, n→ ∞ so that cp → c ∈ (0,+∞).

We now derive uniform (over h ∈
(

0, h̄
]

) Laplace approximations to the
integrals (2.9) and (2.10) in Lemma 3. First, we introduce additional notation.
When f (z) and g(z) are analytic at z0 ≡ z0 (h), let fs and gs with s = 0, 1, ...
be the coefficients in the power series representations:

f (z) =

∞
∑

s=0

fs (z − z0)
s
, g(z) =

∞
∑

s=0

gs (z − z0)
s
. (3.10)

When f (z) and g(z) are not analytic at z0, let the coefficients fs and gs be
arbitrary numbers for all s.
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0

3iz
0
(h)

z
0
(h)

K
1

K
2

−3iz
0
(h)

Fig 2. Deformation K of contour K..

The following lemma is a generalization of the well-known Watson lemma
for contour integrals (see Olver (1997, p.118)). Theorem 7.1 in Olver (1997,
p.127) derives a similar generalization for the case when f (z) and g (z) are
fixed deterministic analytic functions. In contrast to Olver’s theorem, our lemma
allows g(z) to be a random function, and f(z) to depend on parameter h, and
obtains a uniform approximation over h ∈

(

0, h̄
]

. The proof is relegated to the
Supplementary Appendix.

Lemma 5. Under the conditions of Lemma 4, for any h ∈
(

0, h
]

and any
positive integer m, as n, p→ ∞ so that cp → c ∈ (0,+∞), we have

∮

K

e−nf(z)g(z)dz = 2e−nf0

[

m−1
∑

s=0

Γ

(

s+
1

2

)

a2s

ns+1/2
+

Op (1)

hnm+1/2

]

, (3.11)

where Op (1) is uniform in h ∈
(

0, h
]

. The coefficients as in (3.11) can be
expressed through fs and gs defined above. In particular, we have:

a0 =
g0

2f
1/2
2

and a2 =

{

4g2 −
6f3g1
f2

+

(

15f2
3

2f2
2

− 6f4
f2

)

g0

}

1

8f
3/2
2

. (3.12)

As explained above, z0(h) is not a critical point of f(z) when h >
√
cp. This

leads to a situation where the Laplace method for the integral
∮

K
e−nf(z)g(z)dz delivers a rather crude approximation. Fortunately, our asymp-

totic analysis tolerates crude approximations when h >
√
cp. The following

lemma, which is proven in the Supplementary Appendix, is sufficient for our
purposes.
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Lemma 6. Let h = h̃ >
√
c, and let K(h̃) denote the corresponding contour,

as defined in (3.8) and (3.9). Under the null hypothesis, deforming the contour
K into K(h̃) leaves the value of the integrals in Lemma 3 unchanged for all h ∈
[

h̃,∞
)

with probability approaching one as p, n→ ∞ so that cp → c ∈ (0,+∞).

Further, for any h ∈
[

h̃,∞
)

,

∮

K(h̃)

e−nf(z)g(z)dz = e−nf(z0(h̃))Op (1) , (3.13)

where Op (1) is uniform over h ∈
[

h̃,∞
)

.

Neither Lemma 5 nor Lemma 6 addresses interesting cases with h in a neigh-
borhood of

√
c. In such cases, z0(h) would be close to the upper boundary of

the support of the Marchenko-Pastur distribution. This may lead to the non-
analyticity of f(z) and g(z) on K and a more complicated asymptotic behavior
of g(z). We leave the analysis of cases where h may approach

√
c for future

research.

4. Asymptotic behavior of the likelihood ratios

In this section, we discuss the asymptotic behavior of the likelihood ratios
L (h;λ) and L (h;µ). First, let us focus on the case where h ≤ h̄. In the Ap-
pendix, we use Lemmas 4 and 5 to derive the following Theorem.

Theorem 7. Suppose that the null hypothesis is true (h = 0). Let h̄ be any fixed
number such that 0 < h̄ <

√
c and let C

[

0, h
]

be the space of real-valued contin-

uous functions on
[

0, h
]

equipped with the supremum norm. Then as n, p→ ∞
so that p/n = cp → c ∈ (0,+∞), we have

L (h;λ) = e
− 1

2

[

∆p(z0(h))−ln
(

1−h2

cp

)]

+Op

(

n−1
)

and (4.1)

L (h;µ) = e
− 1

2

[

∆p(z0(h))−ln
(

1−h2

cp

)

− h2

2cp
+ h

cp
(S−p)

]

+Op

(

n−1
)

. (4.2)

Furthermore, lnL (h;λ) and lnL (h;µ), viewed as random elements of C
[

0, h
]

,
weakly converge to L (h;λ) and L (h;µ) with Gaussian finite-dimensional distri-
butions such that, for any h1, ..., hr ∈

[

0, h
]

,

E (L (hj ;λ)) =
1

4
ln

(

1 − c−1h2
j

)

, (4.3)

Cov (L (hj ;λ) ,L (hk;λ)) = −1

2
ln

(

1 − c−1hjhk

)

, (4.4)

E (L (hj ;µ)) =
1

4

[

ln
(

1 − c−1h2
j

)

+ c−1h2
j

]

, and (4.5)

Cov (L (hj ;µ) ,L (hk;µ)) = −1

2

[

ln
(

1 − c−1hjhk

)

+ c−1hjhk

]

. (4.6)
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The log likelihood ratio processes studied in Theorem 7 are not of the stan-
dard locally asymptotically normal form. This is because they can not be rep-
resented as ϕ1(h)W + ϕ2(h), where ϕ1(h) and ϕ2(h) are some deterministic
functions of h, and W is a standard normal random variable. Indeed, had
the representation ϕ1(h)W + ϕ2(h) been possible, the covariance of the lim-
iting log likelihood process at h1 and h2 would have been ϕ1(h1)ϕ1(h2). Hence,

for L (h;λ) for instance, we would have had ϕ1(h) =
√

− 1
2 ln (1 − c−1h2) and

ϕ1(h1)ϕ1(h2) = − 1
2 ln

(

1 − c−1h1h2

)

, which cannot be true for all 0 < h1 <
√
c

and 0 < h2 <
√
c.

The quantity ∆p (z0(h)) plays an important role in the limits of experiments.
The likelihood ratio processes are well approximated by simple functions of
∆p (z0(h)) and S, which are easy to compute from the data and can be viewed
as special cases of the linear spectral statistics studied by Bai and Silverstein
(2004). Their Theorem 1.1 establishes the joint convergence of such statistics
to Gaussian random variables. Interestingly, ∆p (z) is proportional to an an-

tiderivative of the Stieltjes transform 1
p

p
∑

j=1

(λj − z)
−1

of the empirical distribu-

tion of λ1, ...λp, which plays a prominent role in the large random matrix theory
(see, for example, Bai, 1999).

Recalling the definition (3.1) of ∆p (z0(h)), we see that asymptotically, all
statistical information about parameter h is contained in the deviations of the

sample covariance eigenvalues λ1, ..., λp from limn,p→∞ z0(h) = (1+h)(h+c)
h . Al-

though the latter limit does not have an obvious interpretation when h <
√
c, it

is the probability limit of λ1 under alternatives with h >
√
c (see, for example,

Baik and Silverstein, 2006).
Let us now consider cases where h > .

√
c. We prove the following Theorem in

the Appendix.

Theorem 8. Suppose that the null hypothesis is true (h = 0), and let H be any
fixed number such that

√
c < H < +∞. Then as n, p → ∞ so that p/n = cp →

c ∈ (0,+∞), the following holds. For any h ∈ [H,+∞), the likelihood ratios
L (h;λ) and L (h;µ) converge to zero; more precisely, there exists δ > 0 that
depends only on H such that

L (h;λ) = Op

(

e−nδ
)

and L (h;µ) = Op

(

e−nδ
)

. (4.7)

Note that Theorem 7 and Le Cam’s first lemma (see van der Vaart (1998),
p.88) imply that the joint distributions of λ1, ..., λm (as well as those of µ1, ..., µm−1)
under the null and under the alternative are mutually contiguous for any h ∈
[0,

√
c). In contrast, Theorem 8 shows that mutual contiguity is lost for h >

√
c.

For such h, consistent tests (as n, p → ∞ so that p/n→ c) exist at any proba-
bility level α > 0.

In a similar setting, Nadakuditi and Edleman (2008) call the number of “sig-
nal eigenvalues” of the population covariance matrix that exceed 1 +

√
c the

“effective number of identifiable signals” (see also Nadakuditi and Silverstein
(2010)). Theorems 7 and 8 shed light on the formal statistical content of this



A. Onatski, M.J. Moreira, and M. Hallin/Asymptotic Power of Sphericity Tests 13

concept. The “identifiable signals” are detected with probability approaching
one in large samples (irrespective of the probability level α > 0 at which identi-
fication tests are performed). Other signals still can be detected, but the proba-
bility of detecting them will never approach one (whatever the probability level
α < 1).

5. Asymptotic power analysis

Theorem 7 can be used to study “local” powers of the tests for detecting signals
in noise. The non-standard form of the limit of log likelihood ratio processes in
our setting makes it hard to develop tests with optimal local power properties.
However, using the Neyman-Pearson lemma and Le Cam’s third lemma, we
can analytically derive the local asymptotic power envelope and compare local
asymptotic powers of specific tests to this envelope.

It is convenient to reparametrize our problem to θ =
√

− ln (1 − h2/c).
As h varies in the region of contiguity [0,

√
c), θ spans the entire half-line

[0,∞). Note that the asymptotic mean and autocovariance functions of the
log likelihood ratios derived in the previous section depend on h only through

h/
√
c =

√

1 − e−θ2
. Therefore, under the new parametrization, they depend

only on θ. Loosely speaking, θ and
√

p/n ∼ √
c play the classical roles of a

“local parameter” and a contiguity rate, respectively.
Let β (θ1;λ) and β (θ1;µ) be the asymptotic powers of the asymptotically

most powerful λ- and µ-based tests of size α of the null θ = 0 against the
alternative θ = θ1. The following proposition is proven in the Appendix.

Proposition 9. Let Φ denote the standard normal distribution function. Then,

β (θ1;λ) = 1 − Φ

[

Φ−1 (1 − α) − θ1√
2

]

(5.1)

and

β (θ1;µ) = 1 − Φ

[

Φ−1 (1 − α) −
√

1

2

(

θ21 − 1 + e−θ2
1

)

]

. (5.2)

Plots of the asymptotic power envelopes β (θ1;λ) and β (θ1;µ) against θ1

for asymptotic size α = 0.05 are shown in Figure 3. The power loss of the µ-
based tests relative to the λ-based tests is due to the non-specification of σ2. In
contrast to λ-based tests, µ-based tests may achieve the corresponding power
envelope even when σ2 is unknown.

It is interesting to compare the power envelopes to the asymptotic powers
of the likelihood ratio (LR) and weighted average power (WAP) tests. The λ-
based LR and WAP tests of θ = 0 against the alternative θ ∈ (0,M ], where
M <∞, would reject the null if and only if, respectively, 2 supθ∈(0,M ] lnL (θ;λ)

and ln
∫ M

0 L (θ;λ)W (dθ) are sufficiently large. The power of a WAP test would,
of course, depend on the choice of the weighting measure W (dθ). The µ-based
LR and WAP tests are defined similarly.
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Fig 3. The maximal asymptotic powers of the λ- and µ-based tests of θ = 0 against θ = θ1.

The asymptotic power functions of the LR and WAP tests can be derived
using Theorem 7 and Le Cam’s third lemma. For the sake of brevity, we give a
detailed derivation for only the λ-based LR test.

According to Theorem 7, the asymptotic distribution of the λ-based LR test
statistic under the null equals the distribution of two times the supremum on θ ∈
[0,M ] of the Gaussian process Xθ with E (Xθ) = −θ2/4 and Cov (Xθ1

, Xθ2
) =

− 1
2 ln

(

1 −
√

(

1 − e−θ2
1

) (

1 − e−θ2
2

)

)

. According to Le Cam’s third lemma, un-

der a specific alternative θ = θ1 ≤ M , the asymptotic distribution of the LR
statistic equals the distribution of two times the supremum on θ ∈ [0,M ] of the
Gaussian process X̃θ with the same covariance function as that of Xθ, but with

a different mean: E
(

X̃θ

)

= E (Xθ) − 1
2 ln

(

1 −
√

(

1 − e−θ2
1

) (

1 − e−θ2
)

)

.

In principle, the cumulative distribution function of such suprema can be rep-
resented in the form of converging Rice series (see Azais and Wschebor (2002)).
This representation may be the key to finding an analytic expression for the
distribution of the likelihood ratio test. In this paper, we are simply interested
in exploring the graph of the power of the test. Therefore, we use Monte Carlo
simulations to approximate the asymptotic power.

We simulated 500,000 observations of Xθ on a grid of 1,000 equally spaced
points in [0,M = 6]. We have chosen M = 6 because this value is large enough
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for the power envelopes to be larger than 99% at θ = M = 6. For each obser-
vation, we saved its supremum on the grid, and used the empirical distribution
of two times the suprema as the approximate asymptotic distributions of the
likelihood ratio statistic under the null. For each θ1 on the grid, we repeated the
simulation for processes X̃θ to obtain the approximate asymptotic distributions
of the likelihood ratio statistic under the alternative θ = θ1. We used these
numerical simulations to approximate the asymptotic power of the LR test.

Figure 4 shows the resulting asymptotic power of the LR test (solid line) along
with the asymptotic power envelope (dotted line). It also shows the asymptotic
power of the WAP test with W (dθ) equal to the uniform measure on [0, 6]
(dashed line). Figure 4 corresponds to the case of λ-based tests. The power
comparisons of the µ-based LR and WAP tests produce qualitatively similar
results, which we do not report here.
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Fig 4. The asymptotic power envelope β (θ1; λ) (dotted line), the asymptotic power of the λ-
based LR test (solid line), and the asymptotic power of the WAP test with uniform weighting
measure on θ ∈ [0, 6] (dashed line).

The asymptotic powers of the LR and WAP tests both come close to the
power envelope. The LR and WAP power functions are so close that they are
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difficult to distinguish clearly. The asymptotic power of the WAP test appears
to be larger than that of the LR test for all θ1 in the [0, 6] range, except for
relatively large θ1. Hence, the LR test still may be admissible. More accurate
numerical analysis is needed to shed further light on this issue.

In the remaining part of this section, we consider some of the tests that
have been proposed previously in the literature, and, in Proposition 10, derive
their asymptotic power functions. We focus on four examples. Three of them
are inspired by the “classical” fixed-p theory, while the fourth is more directly
based on results from the large random matrix theory.

The problem of testing the hypothesis of sphericity (in the real data case)
has a long history, and has generated a considerable body of literature, which
we only very briefly summarize here. The classical fixed-p Gaussian analysis of
the various problems considered here goes back to Mauchly (1940), who first
derived the Gaussian likelihood ratio test for sphericity. The (Gaussian) locally
most powerful invariant (under shift, scale, and orthogonal transformations)
test was obtained by John (1971, 1972) and by Sugiura (1972), with adjusted
versions resisting elliptical violations of the Gaussian assumptions proposed in
Hallin and Paindaveine (2006), where a Le Cam approach is adopted under a
general elliptical setting. Ledoit and Wolf (2002) propose two extensions (for
the unknown and known scale problems, respectively) of John’s test, while Bai
et al. (2009) adapt Mauchly’s (1940) likelihood ratio test.

Example 1. John’s (1971) test of sphericity. John (1971) proposes testing
the sphericity hypothesis θ = 0 against general alternatives using the test statistic

U = 1
p tr

[

(

Σ̂

(1/p) tr(Σ̂)
− Ip

)2
]

, where Σ̂ is the sample covariance matrix of the

data. He shows that, when n > p, such a test is locally most powerful invariant.
Studying John’s test when p/n→ c ∈ (0,∞), Ledoit and Wolf (2002) prove that,

under the null, nU−p d→ N (1, 4). Hence, the test with asymptotic size α rejects
the null hypothesis of sphericity if 1

2 (nU − p− 1) > Φ−1(1 − α).

Example 2. The Ledoit and Wolf (2002) test of Σ = I. Ledoit and

Wolf (2002) propose using W = 1
p tr

[

(

Σ̂ − I
)2

]

− p
n

[

1
p trΣ̂

]2

+ p
n as a test

statistic for testing the hypothesis that the population covariance matrix is a unit

matrix. Under the null, nW −p d→ N (1, 4). As in the previous example, the null
hypothesis is rejected at asymptotic size α if 1

2 (nW − p− 1) > Φ−1(1 − α).

Example 3. The “corrected” LRT of Bai et al. (2009). When n > p,
Bai et al. (2009) propose a corrected version of the likelihood ratio statistic

CLR = tr Σ̂− ln det Σ̂−p−p
(

1 −
(

1 − n
p

)

ln
(

1 − p
n

)

)

based on the entire data,

as opposed to λ or µ only, to test the equality of the population covariance matrix

to the identity matrix against general alternatives. Under the null, CLR
d→

N
(

− 1
2 ln (1 − c) ,−2 ln (1 − c) − 2c

)

. The null hypothesis is rejected whenever

CLR+ 1
2 ln (1 − c) >

√

−2 ln (1 − c) − 2c Φ−1(1 − α).
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More directly inspired by the asymptotic theory of random matrices, several
authors have recently proposed and studied various tests based on λ1 or µ1:
see Bejan (2005), Patterson et al. (2006), Krichman and Nadler (2009), Onatski
(2009), Bianchi et al. (2010) and Nadakuditi and Silverstein (2010). We refer to
these tests, which reject H0 for large values of λ1 or µ1, as Tracy-Widom-type
tests.

Example 4. Tracy-Widom-type tests. Asymptotic critical values of such
tests are obtained using the fact, established by Johnstone (2001), that under
the null,

n
2
3 c

1
6

(

1 +
√
c
)− 4

3

(

λ1 −
(

1 +
√
c
)2

)

d→ TW, (5.3)

where TW denotes the Tracy-Widom law of the first kind. The null hypothesis
is rejected when λ1 or µ1 exceeds the adequate Tracy-Widom quantile.

Consider the tests described in Examples 1, 2, 3, and 4, and denote by βJ (θ1),
βLW (θ1), βCLR (θ1), and βTW (θ1) their respective asymptotic powers at asymp-
totic level α. The following proposition is established in the Appendix.

Proposition 10. Denote 1 − e−θ2
1 as ψ (θ1). The asymptotic power functions

of the tests described in Examples 1-4 satisfy, for any θ1 > 0,

βTW (θ1) = α, (5.4)

βJ (θ1) = βLW (θ1) = 1 − Φ

(

Φ−1 (1 − α) − 1

2
ψ (θ1)

)

, and (5.5)

βCLR (θ1) = 1 − Φ



Φ−1 (1 − α) −

√

cψ (θ1) − ln
(

1 +
√

cψ (θ1)
)

√

−2 ln (1 − c) − 2c



 . (5.6)

With the important exception of Srivastava (2005), (5.4)-(5.6) are the first
results on the asymptotic power of those tests against contiguous alternatives.
Srivastava (2005) analyzes the asymptotic power of tests similar to those in
Examples 1 and 2. His Theorems 3.1 and 4.1 can be used to establish (5.5).

From Proposition 10, we see that the local asymptotic power of the Tracy-
Widom-type tests is trivial. As shown by Baik et al. (2005) in the complex
data case and by Féral and Péché (2009) in the real data case, the convergence
(5.3) holds not only under the null, but also under any alternative of the form
h = h0 <

√
c. Under the “local” parametrization adopted in this section, such

alternatives have the form θ = θ1 > 0. It can be shown that the Tracy-Widom-
type tests are consistent against non-contiguous alternatives h = h1 >

√
c.

However, such a consistency is likely to be also a property of the LR tests based
on µ or on λ. If this holds true, the LR tests asymptotically dominate the Tracy-
Widom-type tests. A more detailed analysis of the optimality properties of LR
tests is the subject of ongoing research.

The asymptotic power functions of the tests from Examples 1, 2, and 3 are
non-trivial. Figure 5 compares these power functions to corresponding power
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envelopes. Since John’s test is invariant with respect to orthogonal transfor-
mations and scalings, βJ (θ1) is compared to the power envelope β (θ1;µ). The
asymptotic power functions βLW (θ1) and βCLR (θ1) are compared to the power
envelope β (θ1;λ) because the Ledoit-Wolf test of Σ = I and the “corrected”
likelihood ratio test are invariant only with respect to orthogonal transforma-
tions.
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Fig 5. Asymptotic power of the tests described in Examples 1, 2, and 3.

Interestingly, whereas βJ (θ1) and βLW (θ1) depend only on α and θ1, βCLR (θ1)
depends also on c. As c converges to one, βCLR (θ1) converges to α, which corre-
sponds to the case of trivial power. As c converges to zero, βCLR (θ1) converges
to βJ (θ1). In Figure 5, we provide the plot of βCLR (θ1) that corresponds to
c = 0.5.

The left panel of Figure 5 shows that the power function of John’s test is very
close to the power envelope β (θ1;µ) in the vicinity of θ1 = 0. Such behavior
is consistent with the fact that John’s test is locally most powerful invariant.
However, for large θ1, the asymptotic power functions of all the tests from Ex-
amples 1, 2, and 3 are lower than the corresponding asymptotic power envelopes.
We should stress here that these tests have power against general alternatives
as opposed to the “spiked” alternatives that maintain the assumption that the
population covariance matrix of data has the form σ2 (Ip + hvv′).

6. Conclusion

In this paper, we study the asymptotic power of tests for the existence of rank-
one perturbations of sphericity as both the dimensionality of the data and the
number of observations go to infinity. Focusing on tests that are invariant with
respect to orthogonal transformations and rescaling, we establish the conver-
gence of the log ratio of the joint densities of the sample covariance eigenvalues
under the alternative and null hypotheses to a Gaussian process indexed by the
norm of the perturbation.
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When the perturbation norm is larger than the phase transition threshold
studied in Baik et al. (2005), the limiting log-likeliood process is degenerate
and the joint eigenvalue distributions under the null and alternative hypotheses
are asymptotically mutually singular, so that the discrimination between the
null and the alternative is asymptotically certain. When the norm is below the
threshold, the limiting log-likelihood process is non-degenerate and the joint
eigenvalue distributions under the null and alternative hypotheses are mutually
contiguous. Using the asymptotic theory of statistical experiments, we obtain
power envelopes and derive the asymptotic size and power for various eigenvalue-
based tests in the region of contiguity. Our analysis straightforwardly extends
to the case of complex-valued Gaussian data.

Several questions are left for future research. First, we only considered rank-
one perturbations of the spherical covariance matrices. It would be interesting to
extend the analysis to finite-rank perturbations. Such an extension will require
a more complicated technical analysis. Second, it would be interesting to extend
our analysis to the asymptotic regime p, n → ∞ with p/n → ∞ or p/n → 0.
In the context of sphericity tests, such an asymptotic regime has been recently
studied in Birke and Dette (2005). Third, the contour integral representation
of the likelihood ratio derived in Section 2 may provide an efficient method for
the numerical evaluation of likelihood ratios in finite samples. An alternative
computation strategy is to consider the confluent hypergeometric function rep-
resentation of spherical integrals, then approximate the value of the confluent
hypergeometric function using a top-order zonal polynomial expansion as de-
scribed in Hillier et al. (2009). We plan to investigate the relative advantages
and disadvantages of such approaches in a separate project. Fourth, our Lemma
5 can be used to derive higher-order asymptotic approximations to the likeli-
hood ratios, which may improve finite-sample performances. Finally, it would
be of considerable interest to relax the Gaussian assumptions, e.g. into elliptical
ones, preferably with unspecified radial densities, on the model (in a fixed-p
context) of Hallin and Paindaveine (2006).

Appendix A

A.1. Proof of Proposition 1

For the joint density p (λ;h) of λ1, ..., λm, we have

p (λ;h) = γ̃

∏m
i=1 λ

|p−n|−1
2

i

∏m
i<j (λi − λj)

(1 + h)
n/2

∫

O(p)

e−
n
2 tr(ΠQ′ΛQ) (dQ) , (A.1)

where γ̃ depends only on n and p; Π = diag
(

(1 + h)−1 , 1, ..., 1
)

; O(p) is the

set of all p × p orthogonal matrices; and (dQ) is the invariant measure on the
orthogonal group O(p) normalized to make the total measure unity. When n ≥ p,
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(A.1) is a special case of the density given in James (1964, p.483). When n < p,
(A.1) follows from Theorems 2 and 6 in Uhlig (1994).

Let Ψ = diag
(

h
1+h , 0, ..., 0

)

be a p × p matrix. Since Π = Ip − Ψ, we have

tr (ΠQ′ΛQ) = tr Λ − tr (ΨQ′ΛQ), and we can rewrite (A.1) as

p (λ;h) = γ̃

∏m
i=1 λ

|p−n|−1
2

i

∏m
i<j (λi − λj) e

−n
2 tr Λ

(1 + h)
n/2

∫

O(p)

e
n
2 tr(ΨQ′ΛQ) (dQ) .

(A.2)
Note that tr (ΨQ′ΛQ) = tr (QΨQ′Λ) = h

1+hx
′
pΛxp, where xp is the first column

ofQ. When Q is uniformly distributed over O(p), its first column xp is uniformly
distributed over S (p). Therefore, we have

p (λ;h) = γ̃

∏m
i=1 λ

|p−n|−1
2

i

∏m
i<j (λi − λj) e

−n
2 tr Λ

(1 + h)
n/2

∫

S(p)

e
n
2

h
1+h x′

pΛxp (dxp) , (A.3)

which establishes (2.1). Now, let y = λ1 + ...+ λp so that µj = λj/y. Note that
trΛ = y, trM ≡ µ1+...+µp = 1, and that the Jacobian of the coordinate change
from λ1, ..., λm to µ1, ..., µm−1, y equals ym−1. Changing variables in (A.3), and
integrating y out, we obtain (2.2).

A.2. Proof of Lemma 3

Using (2.3) in the ratio of the right-hand side of (2.1) with h > 0 to that with
h = 0, and changing the variable of integration from s to z = 1+h

h
2
ns, we get

(2.9). Further, from (2.2), we have

p (µ; 0) = δ (n, p, µ)

∫ ∞

0

y
np
2 −1e−

n
2 ydy = δ (n, p, µ)

(

2

n

)
np
2

Γ
(np

2

)

. (A.4)

For h > 0, using (2.3) in (2.2), we get

p (µ;h) =
δ (n, p, µ)

(1 + h)n/2

Γ (p/2)

2πi

∫ ∞

0

∮

K̃

y
np−2

2 es−n
2 y

p
∏

j=1

(

s− n

2

yh

1 + h
µj

)− 1
2

dsdy,

where K̃ is a contour starting at −∞, encircling counter-clockwise the points 0,
ny
2

h
1+hµ1, ...,

ny
2

h
1+hµm, and going back to −∞. Since h

1+hµj < 1 by construc-

tion, we may and will choose K̃ so that for any s ∈ K̃, Re s < ny
2 . Changing

variables of integration from y and s to w = ny
2 and z = s 1+h

hw S, where S is any
positive constant, and dividing by the right-hand side of (A.4), we obtain

L (h;µ) =
S

p−2
2 (1 + h)

p−n−2
2 Γ

(

p
2

)

h
p−2
2 Γ

(

np
2

)

2πi

∞
∫

0

∮

K

w
np
2 −

p
2 e

wh
1+h

z
S −w

p
∏

j=1

(

z − Sµj

)− 1
2 dzdw,
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where K is a contour starting at −∞, encircling counter-clockwise the points
0, Sµ1, ..., Sµm, and going back to −∞. In addition, for any z ∈ K, Re z < 1+h

h S.
Such a choice of K guarantees that the integrand in the above double integral
is absolutely integrable on [0,∞) ×K, so that Fubini’s theorem can be used to
justify the interchange of the order of the integrals. Changing the order of the
integrals and setting S = λ1 + ...+ λp, we obtain (2.10).

A.3. Proof of Theorem 7

First, let us formulate the following technical Lemma. Its proof is in the Sup-
plementary Appendix.

Lemma 11. (i) If h <
√
cp, f0 = −1

2

(

cp + (1 − cp) ln (1 + h) − cp ln
cp
h

)

.

(ii) If h >
√
cp, f0 = −1

2

(

h+ cp + (1 − cp) ln (cp + h) − cp
h

− lnh
)

.

Below, we prove Theorem 7 for L (h;µ). The proof for L (h;λ) is similar but
simpler, and we omit it to save space. As follows from Lemmas 4 and 5, the

integral in (2.10) can be represented as 2e−nf0

[

Γ
(

1
2

)

a0

n1/2 +
Op(1)

hn3/2

]

uniformly

in h ∈
(

0, h̄
]

. Therefore, and since Γ
(

1
2

)

=
√
π, we can write

L (h;µ) =
k2S

p−2
2

√
nπi

e−nf0

[

a0 + h−1Op

(

1

n

)]

, (A.5)

where k2 = h−
p−2
2 (1 + h)

p−n−2
2 (n−1)p

2 Γ
(

(n−1)p
2

)

Γ
(

p
2

)

Γ−1
(

np
2

)

. Using Stir-

ling’s approximation Γ (r) = e−rrr
(

2π
r

)1/2 (

1 +O
(

r−1
))

with r = p
2 , np

2 and (n−1)p
2 ,

and the fact that ln (n− 1) = lnn− n−1 − 1
2n

−2 +O
(

n−3
)

, we find, after alge-
braic simplifications, that

k2√
nπ

= h−
p−2
2 (1 + h)

p−n−2
2 e−

p−2
2 ln n− p

2 +
cp
4 + 1

2 ln cp
(

1 +O
(

n−1
))

. (A.6)

Using (A.6) and Lemma 11 (i), we obtain

k2S
p−2
2

√
nπi

e−nf0h−1Op

(

1

n

)

=
1

1 + h

(

S

p

)

p−2
2

e
cp
4 − 1

2 ln cpOp

(

1

n

)

,

which, together with the fact that S − p = Op (1), implies that

k2S
p−2
2

√
nπi

e−nf0h−1Op

(

1

n

)

= Op

(

1

n

)

(A.7)

uniformly over h ∈
(

0, h̄
]

.
Now, as can be verified using (3.3) and (3.6), if h <

√
cp, then

f2 = − h2

4 (1 + h)
2
(cp − h2)

. (A.8)
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Therefore, using (3.12), we obtain

a0 = i
(1 + h)

(

cp − h2
)1/2

h
g0. (A.9)

Using (3.4), (A.6), (A.9), and Lemma 11 (i) in (A.5), after algebraic simplifica-
tions and rearrangements of terms, we get

ln

[

k2S
p−2
2 e−nf0a0√
nπi

]

=
1

2
ln

(

1 − h2

cp

)

+
cp
4

+
p− 2

2
ln

(

S

p

)

−n
2

hz0 (h)

1 + h
− np− p+ 2

2
ln

(

1 − h

1 + h

z0 (h)

S

)

− 1

2
∆p (z0 (h)) .(A.10)

Finally, using the fact that S − p = Op (1), we derive

ln (S/p) = (S − p)/p+Op

(

p−2
)

and

ln

(

1 − h

1 + h

z0 (h)

S

)

= − h

1 + h

z0 (h)

p
− 1

2

(

h

1 + h

)2
(z0 (h))2

p2
+

h

1 + h

z0 (h)

p2
(S − p) +Op

(

p−3
)

.

The latter two equalities, (A.10) and the fact that h
1+hz0 (h) = h+ cp entail

k2S
p−2
2 e−nf0a0√
nπi

= e
− 1

2

{

∆p(z0(h))−ln
(

1−h2

cp

)

+ h
cp

(S−p)− h2

2cp
+Op(p−1)

}

, (A.11)

which, together with (A.7), imply formula (4.2).
Now, let us prove the convergence of lnL (h;µ) to L (h;µ). By (4.2), the joint

convergence of lnL (hj ;µ) with j = 1, ..., r to a Gaussian vector is equivalent
to the convergence of (S − p,∆p (z0(h1)) , ...,∆p (z0(hr))) to a Gaussian vector.
A proof of the following technical lemma, based on Theorem 1.1 of Bai and
Silverstein (2004), is given in the Supplementary Appendix.

Lemma 12. Suppose that the null hypothesis holds. Then, as n, p→ ∞ so that
p/n → c, the vector (S − p,∆p (z0(h1)) , ...,∆p (z0(hr))) converges in distribu-
tion to a Gaussian vector (η, ξ1, ..., ξr) with

Eη = 0, Var (η) = 2c, Cov
(

η, ξj

)

= −2hj,

Cov
(

ξj , ξk

)

= −2 ln
(

1 − c−1hjhk

)

, and Eξj =
1

2
ln

(

1 − c−1h2
j

)

.

Lemma 12 and (4.2) imply that

E [L (hj;µ)] = −1

2
Eξj +

1

2
ln

(

1 − c−1h2
j

)

+
1

4
c−1h2

j

=
1

4

[

ln
(

1 − c−1h2
j

)

+ c−1h2
j

]
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and

Cov [L (hj ;µ) ,L (hk;µ)] =
1

4
Cov

(

ξj , ξk

)

+
hk

4c
Cov

(

ξj , η
)

+

hj

4c
Cov (ξk, η) +

hjhk

4c2
Var (η)

= −1

2
ln

(

1 − c−1hjhk

)

− hjhk

2c
,

which establishes (4.5) and (4.6).
To complete the proof of Theorem 7, we need to note that the tightness

of L (h;µ), viewed as a random element of the space C
([

0, h
])

, as n, p→ ∞ so
that p/n→ c, follows from formula (4.2) and the fact that S−p and ∆p (z0 (h)),
areOp(1), uniformly in h ∈

(

0, h̄
]

. This uniformity is a consequence of Lemma A2
proven in the Supplementary Appendix.

A.4. Proof of Theorem 8

As in the proof of Theorem 7, we will focus on the case of the likelihood ratio
based on µ. The proof for L (h;λ) is similar. According to Lemma 6 and formula

(2.10), for any h̃ >
√
c, we have L (h;µ) = k2S

p−2
2 e−nf(z0(h̃))Op (1). Using (A.6)

and the fact that
(

S
p

)p

=
(

1 + S−p
p

)p

=
(

1 +
Op(1)

p

)p

= Op (1), we can write

L (h;µ) = e
n
2

(

cp ln
cp(1+h)

h −ln(1+h)−cp−2f(z0(h̃))
)

Op

(

n1/2
)

. (A.12)

Noting that h̃ >
√
cp for sufficiently large n and p, and using Lemma 11(ii) and

the fact that h̃
1+h̃

z0

(

h̃
)

= h̃+ cp, we get

−2f
(

z0

(

h̃
))

= (1 − cp) ln
(

cp + h̃
)

− cp

h̃
− ln h̃+

h

1 + h
z0

(

h̃
)

.

Substituting the latter expression in (A.12) and simplifying, we obtain

L (h;µ) = e
n
2 R(h,h̃,cp)Op

(

n1/2
)

, (A.13)

where Op (·) is uniform in h ∈
[

h̃,+∞
)

and

R
(

h, h̃, cp

)

≡ (1 − cp) ln
(

cp + h̃
)

− cp

h̃
− ln h̃+

h

1 + h
z0

(

h̃
)

− (1 − cp) ln (1 + h) − cp lnh+ cp ln cp − cp.

As n, p → ∞, R
(

h, h̃, cp

)

→ R
(

h, h̃, c
)

uniformly over
(

h, h̃
)

∈ [
√
c,H ]

2
.

On the other hand, R
(

h, h̃, c
)

is continuous on
(

h, h̃
)

∈ [
√
c,H ]

2
,



A. Onatski, M.J. Moreira, and M. Hallin/Asymptotic Power of Sphericity Tests 24

R (
√
c,
√
c, c) ≡ 0, and

d

dh
R

(

h, h̃, c
)

= (1 + h)
−2





(

1 + h̃
)(

c+ h̃
)

h̃
− (1 + h) (c+ h)

h



 < 0

for all h and h̃ such that
√
c ≤ h̃ < h ≤ H . Therefore, for any H >

√
c, there

exist h̃ and δ such that
√
c < h̃ ≤ H , δ > 0 and R

(

H, h̃, c
)

< −3δ; and

thus, for sufficiently large n and p, R
(

H, h̃, cp

)

< −3δ. Now, d
dhR

(

h, h̃, cp

)

=

(1 + h)
−2

(

z0

(

h̃
)

− z0 (h)
)

< 0 for all h > h̃, as long as h̃ ≥ √
cp. Hence, for

sufficiently large n and p, R
(

h, h̃, cp

)

< −3δ for all h > h̃. Using (A.13), we

get: |L (h;µ)| ≤ e−
3n
2 δOp

(

n1/2
)

= Op

(

e−nδ
)

uniformly over h ∈ [H,∞).

A.5. Proof of Proposition 9

For brevity, we derive only the asymptotic power envelope for the relatively
more difficult case of µ-based tests. According to the Neyman-Pearson lemma,
the most powerful test of the null θ = 0 against a particular alternative θ = θ1

is the test which rejects the null when lnL (θ1;µ) is larger than a critical value
C. It follows from Theorem 7 that, for such a test to have asymptotic size α, C
must be

C =
√

V (θ1)Φ
−1 (1 − α) +m (θ1) , (A.14)

where m (θ1) =
(

−θ21 + 1 − e−θ2
1

)

/4 and V (θ1) =
(

θ21 − 1 + e−θ2
1

)

/2 are ob-

tained from (4.5) and (4.6) by the re-parametrization θ =
√

− ln (1 − h2/c).
Now, according to Le Cam’s third lemma and Theorem 7, under θ = θ1,

lnL (θ1;µ)
d→ N (m (θ1) + V (θ1) , V (θ1)). Therefore, the asymptotic power β (θ1;µ)

of the asymptotically most powerful test of θ = 0 against θ = θ1 is (5.2).

A.6. Proof of Proposition 10

As shown by Baik et al. (2005) in the complex case and by Féral and Péché
(2009) in the real case, the convergence (5.3) takes place not only under the
null, but also under alternatives h = h1 with h1 <

√
c, yielding θ = θ1 < ∞

under the parametrization θ =
√

− ln (1 − h2/c). Hence, (5.4) follows.
Formulae (5.5) and (5.6) can be established using conceptually similar steps.

To save space, below we only establish formula (5.6). The following technical
lemma is proven in the Supplementary Appendix.

Lemma 13. Let CLR be the “corrected” likelihood ratio statistic as defined in
Example 3. Then, under the null, as n, p → ∞ so that p/n → c, the vector
(CLR,∆p (z0(h))) converges in distribution to a Gaussian vector (ζ1, ζ2) with
Cov (ζ1, ζ2) = −2h+ 2 ln (1 + h).
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Lemma 13 and (4.2) imply the convergence in distribution of the vector
(CLR, lnL (h;λ)) to a Gaussian vector

(

ζ1,− 1
2ζ2

)

. From Bai et al. (2009),

we know that, under the null, CLR
d→ N

(

− 1
2 ln (1 − c) ,−2 ln (1 − c) − 2c

)

.
By Le Cam’s third lemma, under the alternative h = h1, CLR converges to
a Gaussian random variable with the same variance but with mean equal to
− 1

2 ln (1 − c)+ Cov
(

ζ1,− 1
2 ζ2

)

= − 1
2 ln (1 − c)+ h− ln (1 + h) evaluated at h =

h1. Therefore, the power of the “corrected” likelihood ratio test of asymptotic

size α equals 1 − Φ

(

Φ−1 (1 − α) − h1−ln(1+h1)√
−2 ln(1−c)−2c

)

. Using the reparametriza-

tion θ1 =
√

− ln (1 − h2
1/c), we get (5.6).

The proofs of Lemmas 4, 5, 6, 11, 12 and 13 are provided in a Supplementary
Appendix.
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