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Abstract

This paper introduces a drifting-parameter asymptotic framework to derive

accurate approximations to the �nite sample distribution of the principal com-

ponents (PC) estimator in situations when factors�explanatory power does not

strongly dominate the explanatory power of the cross-sectionally and tempo-

rally correlated idiosyncratic terms. Under our asymptotics, the PC estimator

is inconsistent. We �nd explicit formulae for the amount of the inconsistency,

and propose an estimator of the number of factors for which the PC estimator

works reasonably well. For the special case when the idiosyncratic terms are

cross-sectionally but not temporally correlated (or vice versa), we show that

the coe¢ cients in the OLS regressions of the PC estimates of factors (loadings)

on the true factors (true loadings) are asymptotically normal, and �nd explicit

formulae for the corresponding asymptotic covariance matrix. We explain how

to estimate parameters of the derived asymptotic distributions. Our Monte

Carlo analysis suggests that our asymptotic formulae and estimators work well

even for relatively small n and T: We apply our theoretical results to test a

hypothesis about the factor content of the US stock return data.
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1 Introduction

Approximate factor models have recently attracted an increasing amount of attention

from researchers in macroeconomics and �nance (see Reichlin (2003), Stock and Wat-

son (2006) and Bai and Ng (2008) for a survey of numerous applications). The most

popular technique for estimating factors in such models is the principal components

(PC) analysis. Its consistency and asymptotic normality have been shown by Bai

(2003). Unfortunately, as Monte Carlo experiments show (see, for example, Boivin

and Ng (2006), Uhlig (2008) and Bai and Ng (2008)), the �nite sample performance

of the PC estimator is poor when the explanatory power of factors does not strongly

dominate the explanatory power of the idiosyncratic terms. Such a situation is often

encountered in practice. Its hallmark is the absence of clearly visible separation of the

eigenvalues of the sample covariance matrix of the data into a group of large eigenval-

ues representing factor-related variation and a group of small eigenvalues representing

idiosyncratic variation.

This paper shows how and why the principal component estimates for large factor

models might not be appropriate. We develop asymptotic approximation to the �nite

sample biases of the PC estimator due to the relatively weak explanatory power of

factors. We explicitly link these biases to the covariance structure of the idiosyncratic

terms and show that they can be extremely large. We explain how to detect situations

in which PC estimator breaks down, and how to estimate the parameters of our

asymptotic approximations in cases when the PC estimator is only moderately biased.

Our Monte Carlo experiments con�rm good approximation quality of our asymptotics

in �nite samples with weakly in�uential factors.

Let us describe our main results in more detail. We consider static forms of the
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approximate factor models1 with k factors:

Xit =
kX
j=1

LijFtj + eit with i 2 N and t 2 N; (1)

where Ftj and Lij are the values of the j-th factor at time t and of the loading of

this factor on the i-th cross-sectional unit, respectively, and where eit are possibly

cross-sectionally and temporally correlated idiosyncratic components of Xit. Let X

be an observed n � T matrix with elements Xit, and let F; L and e be unobserved

T � k, n � k and n � T matrices with elements Ftj; Lij and eit; respectively. Then

we can write: X = LF 0 + e:

In this paper, we will treat both L and F as parameters of the distribution of X:

In cases when factors are random, such an approach is equivalent to conditioning on a

particular realization of F: Further, we will assume that the matrix of the idiosyncratic

terms can be represented as e = A"B; where A and B are relatively unrestricted n�n
and T � T matrices and " is an n � T matrix with i.i.d. N(0; �2) entries. Similar

assumptions have been previously made in Onatski (2009), Bai and Ng (2005) and

Harding (2006). The assumption allows the idiosyncratic terms to be non-trivially

correlated both cross-sectionally and over time. We discuss its relation to economic

models in Section 2.

The asymptotic identi�cation of the unobserved components of X is achieved by

the following standard requirements. First, the factors and loadings are normalized

so that F 0F=T = Ik and L0L is a diagonal matrix with non-increasing elements along

the diagonal. Such a normalization separately identi�es F and L from the product

LF 0 up to the simultaneous multiplication of the corresponding columns of F and L

by �1: Second, the idiosyncratic terms are only weakly correlated so that:

lim sup
n;T!1

max evalE

�
1

T
ee0
�
<1; (2)

where max eval (M) denotes the maximal eigenvalue of matrixM . Finally, the factors

are pervasive in the sense that their cumulative loadings on n cross-sectional units

1The most general approximate factor models have factor loadings represented by possibly in�nite
lag polynomials (see Forni et al., 2000). When the order of such lag polynomials is bounded, the
model can be rewritten in the static form, where the factor loadings are constants and factors are
augmented by a set of their own lags. For a discussion of the terminology used in the factor model
literature see, for example, Stock and Watson (2006).
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rise proportionally to n :
1

n
L0L! S > 0: (3)

The PC estimator of F; F̂ ; is de�ned as
p
T times the matrix of the k princi-

pal eigenvectors of a sample-covariance-type matrix X 0X=T; and the PC estimator

of L; L̂; is de�ned as XF̂=T: We would like to study the properties of the PC esti-

mators in the situation when the factors��nite sample explanatory power, as mea-

sured by the diagonal elements of L0L; is weak, that is, only moderately larger than

max evalE
�
1
T
ee0
�
:

Note that if we �x model (1) and let n and T go to in�nity, assumptions (2) and

(3) would imply that, asymptotically, any of the diagonal elements of L0L is in�nitely

larger thanmax evalE
�
1
T
ee0
�
: Hence, such an asymptotics would not provide a useful

approximation to the �nite samples with relatively weak factors. We will therefore

consider a di¤erent asymptotics, where models (1) are drifting as n and T tend

to in�nity so that the �nite sample explanatory power of factors remains bounded.

Formally, we will consider a sequence of models (1) indexed by the cross-sectional

dimension n; so that

L(n)0L(n) �D ! 0 (4)

as n and T (n) go to in�nity proportionately, where D is a �xed diagonal matrix:

The above asymptotic device is similar to the well-known Pitman drift (see, for

example, Davidson and MacKinnon (2004,.p.434)), which is usually used in the as-

ymptotic power comparisons of consistent tests.2 In this paper, however, a parameter

drift is introduced to obtain an accurate asymptotic approximation to the �nite sam-

ple distribution of a particular estimator. Such a strategy is not new. Bekker (1994)

and Staiger and Stock (1997) use the drifting parameter device to obtain an accu-

rate asymptotic approximation to the �nite sample distribution of 2SLS and LIML

estimators when there is a substantial amount of over-identi�cation and when the

instruments are weak, respectively.3

2As pointed out by McManus (1991), although the introduction of the local alternatives analysis
is often attributed to Pitman, it seems to �rst appear in Neyman (1937). Considering shrinking
neighborhoods in statistical experiments is the basis of the classical local asymptotic approach to
statistical experiments associated with the name of Le Cam, among many others. This paper does
not take the approach of the �asymptotic theory of statistical experiments�. For such an approach
in a context linked to factor models see Onatski et al. (2011).

3Another important goal of their analysis is to compare the performance of 2SLS and LIML. In
our paper, however, obtaining an accurate asymptotic approximation to a particular estimator is
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Bekker (1994, p.661) provides an illuminating discussion of the strategy of using

drifting parameters to obtain an accurate asymptotic approximation to the exact dis-

tribution of a speci�c estimator. He stresses the point that the parameter sequence

should be �designed to �t the �nite sample distribution better and should not be

considered as an assumption about the behavior of observations in case of further

sampling�. For the choice of the parameter sequence, he suggests the following prin-

ciple: the parameter sequence should be designed �so that it generates acceptable

approximations of known distributional properties of related statistics�.

In this paper, as statistics related to the PC estimator, we consider the eigenvalues

of the sample covariance matrix of the data. In applications, the eigenvalues typically

do not separate into visually distinct groups of large and small eigenvalues. Such a

behavior is consistent with the drifting-parameter asymptotics described above, but

it does not accord with the standard �xed-parameter asymptotics, under which the

distance between the two groups of eigenvalues must diverge to in�nity.

The main focus of our analysis will be on the behavior of �̂ � (F 0F )�1 F 0F̂ = F 0F̂
T
;

the matrix of the coe¢ cients of the OLS regressions of the PC estimates of factors on

the true factors, under the weakly in�uential factor asymptotic regime (4). As pointed

out by Bai (2003, p.151), the i-th diagonal element of �̂ can be considered as a measure

of consistency of the PC estimator of the i-th factor. Under the standard asymptotics

(3), �̂ converges in probability to Ik; so that F̂ is consistent for F:4 Furthermore, under

assumptions of Bai (2003), �̂ � Ik = op
�
T�1=2

�
; which is a su¢ cient condition for

the negligibility of the estimation error due to the replacement of the true factors by

their PC estimates in factor-augmented regressions (see Bai, 2003, p.146).

In Theorem 1, we prove that plim �̂ under the weakly in�uential factor asymptotics

is not Ik; but equals a diagonal matrix whose diagonal elements are strictly less than

one.5 Hence, the PC estimator is inconsistent under our asymptotics. We describe

the diagonal elements of plim �̂ as speci�c functions of matrix D from (4), which

measures the �nite sample strength of factors; of �2; which scales the variance of

the idiosyncratic terms; and of the limits of the empirical eigenvalue distributions of

the matrices A and B; which encode the degree of the cross-sectional and temporal

the only goal.
4Here we assume that the sign indeterminacy of F̂ is resolved by adding the normalization

requirement that the diagonal elements of F̂ 0F are non-negative.
5All theorems in the paper, and Theorem 1 in particular, describe the asymptotics of L̂0L̂ and

�̂ = (L0L)
�1=2

L0L̂
�
L̂0L̂

��1=2
in addition to that of �̂:

5



correlation of the idiosyncratic terms. We show that when the strength Dii of the i-th

factor Fi is below a certain threshold, plim �̂ii = 0 so that F̂i is not just inconsistent,

but orthogonal to Fi:

In Theorem 2, we study the asymptotic distribution of �̂ around its probability

limit. We show that, in the special case when the idiosyncratic terms are only cross-

sectionally correlated, �̂ is asymptotically normal and we �nd explicit formulae for

the elements of the corresponding asymptotic covariance matrix.

Although very restrictive, the assumption of no temporal correlation in the idio-

syncratic terms is acceptable in some applications. For example, Chamberlain and

Rothschild (1983), who introduce the approximate factor model to the literature,

model the idiosyncratic components of the excess stock returns as cross-sectionally

but not temporally correlated random variables. Since the excess stock returns are

poorly predictable, such an assumption can be viewed as a good �rst-order approx-

imation. In Section 5, we use results of Theorem 2 to test a hypothesis that the

celebrated Fama-French factors (see Fama and French, 1993) span the factor space

of the US excess stock return data.

Our last theorem, Theorem 3, describes consistent estimators of the parameters

of the asymptotic distributions derived in Theorem 2. As we explain in Section 4,

under our weakly in�uential factor asymptotics, the true number of factors k is, in

general, unidenti�ed. What can be identi�ed is the number of factors q that are not

orthogonal to their PC estimates asymptotically. Therefore, Theorem 3 describes

parameters of the asymptotic distributions of only those �̂ij for which i and j are no

larger than q:

We show that the estimator q̂ of the number of factors proposed in Onatski (2009)

is consistent for q under our asymptotics. Finding q̂ for a particular dataset gives us

a simple procedure for selecting the number of factors for which the PC estimator

does not break down. In Section 5, we �nd that for the widely used Stock-Watson

macroeconomic data, described in Watson (2003), q̂ = 2. We link this �nding to the

fact that, although Stock and Watson (2005) estimate no less than seven factors in

their data, using more than two of the estimated factors in the forecasting exercises

reported in Stock and Watson (2002) does not signi�cantly improve the quality of the

forecasts.

Let us now describe some related literature. An alternative approach to modeling

weakly in�uential factors has been recently proposed in DeMol et al. (2008). The au-
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thors of that paper replace (2) by a weaker assumption: lim sup
n;T!1

max evalE
�

1
n1��T ee

0� <
1; where 0 < � � 1: Dividing the data by n(1��)=2 and rede�ning L and e as n(��1)=2L
and n(��1)=2e; respectively, we see that such a modeling strategy is equivalent to main-

taining (2) but assuming that n��L0L ! S > 0 with 0 < � � 1: When 0 < � < 1;

the PC estimator remains consistent but its rate of convergence decreases relative to

the strong factor case: � = 1.

Our approach di¤ers from that of DeMol et al. (2008) in several respects. On the

one hand, as explained above, we view our asymptotics as a Pitman drift device rather

than as a description of the process of further sampling. Therefore, our assumptions

about the asymptotic parameter drift is more di¢ cult to justify than the asymptotic

assumptions of DeMol et al. (2008). On the other hand, we analyze the case when

L0L! S > 0; which formally corresponds to the case � = 0 not considered by DeMol

et al. (2008). Such an extension leads to the inconsistency of the PC estimator and

allows us to obtain sharper asymptotic description of the �nite sample biases of the

PC estimator documented in Boivin and Ng (2006), Uhlig (2008) and Bai and Ng

(2008).

In the statistical literature, the weakly in�uential factors asymptotics of the PC

estimators have been recently studied by Johnstone and Lu (2007) and by Paul (2007).

For a 1-factor model with i.i.d. Gaussian factor and i.i.d Gaussian idiosyncratic terms,

Johnstone and Lu (2007) show that the one-dimensional analog of our �̂ remains

separated from one as n and T go to in�nity proportionately. Paul (2007) quanti�es

the amount of the inconsistency pointed out by Johnstone and Lu (2007) for the

case of i.i.d. Gaussian data such that all but k distinct eigenvalues of the population

covariance matrix are the same. For the same model, Paul (2007) �nds the asymptotic

distribution of the eigenvectors corresponding to the k largest eigenvalues.

In contrast to Johnstone and Lu (2007) and Paul (2007), our asymptotic analysis

does not require the idiosyncratic terms be independent. Allowing the idiosyncratic

terms to be correlated is crucial for macroeconomic and �nancial applications. Fur-

ther, our proofs use a substantially di¤erent machinery than the proofs of Paul (2007),

which spares us from the necessity of making Paul�s (2007) assumption that factors

are i.i.d. Gaussian. Finally, Paul (2007) does not show how to estimate the parame-

ters of the asymptotic distributions that he obtains. In contrast, this paper describes

such estimators.

The rest of the paper is organized as follows. In Section 2 we state our assumptions
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and obtain our theoretical asymptotic results: In Section 3 we discuss the identi�cation

under our weakly in�uential factors asymptotics, and obtain consistent estimators of

the parameters of the asymptotic distributions derived in Section 2. Section 4 contains

a Monte Carlo analysis. Section 5 describes empirical applications of our theoretical

results. Section 6 concludes. All proofs are relegated to the Technical Appendix

available from the author�s web site at http://www.columbia.edu/~ao2027.

2 Asymptotic distributions

In this section, we derive the asymptotic distributions of the coe¢ cients from the

OLS regressions of the PC estimates of factors on the true factors and of the PC

estimates of the normalized factor loadings on the true normalized factor loadings. We

assume that the estimates are based on �nite samples of increasing dimensions from

a sequence of approximate factor models (1). Finite samples of the cross-sectional

size n and temporal size T (n) are summarized in n � T (n) matrices X(n); which can

be represented as:

X(n) = L(n)F (n)0 + e(n); (5)

where parameters of the representation satisfy Assumptions 1, 2, and 3 described

below. As explained in the Introduction, we treat both L(n) and F (n) as parameters

of the distribution of X(n). In what follows, we will omit the superscript (n) from

all notations to make them easier to read. The reader should, however, keep in mind

that parameters of �nite sample distributions may change as the sample size grows.

Assumption 1: There exist positive constant c and a k � k diagonal matrix

D � diag (d1; :::; dk) ; d1 > ::: > dk > 0, such that, as n!1:

i) n=T ! c;

ii) 1
T
F 0F = Ik and L0L is diagonal with L01L1 � ::: � L0kLk;

iii) L0L! D.

In many applications of factor models, the cross-sectional size of the data is com-

parable to their temporal size. Part i) of the assumption requires n and T be com-

parable even asymptotically. Part ii) of the assumption is standard. It describes
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the normalization of factors and loadings. Part iii) of the assumption describes the

weakly in�uential factors asymptotics, discussed in the Introduction.

Once again, we would like to stress that the reader should not confuse the standard

asymptotics, in which growing n and T correspond to the �natural�process of further

series becoming observed, and the �auxiliary�, non nested sequence used in this paper.

In particular, under the weakly in�uential factor asymptotics, the entries Lij of Lmay

change as n!1; and may converge to zero to satisfy (4).

Our next assumption imposes a structure on the matrix e of the idiosyncratic

terms: We require that

e = A"B; (6)

where the n � T matrix " has i.i.d. elements, and matrices A and B introduce the

cross-sectional and temporal correlation in e: Such a modeling of the idiosyncratic

correlation structure is convenient but restrictive. Indeed, the covariance matrix of

the nT � 1 vector of the stacked columns of e must have form B0B 
 AA0: How well

such a Kronecker product can approximate more interesting covariance structures

depends on the details of these structures. For a general discussion of the quality of

approximations with Kronecker products see Van Loan and Pitsianis (1993).

In economic applications, the covariance matrix of the vector of the stacked

columns of e exactly equals the Kronecker product of two matrices only in special

cases. For example, in the spirit of Forni and Lippi (1999, 2001), consider an n-

industry constant-returns economy, where the productionsXit in industries i = 1; :::; n

at time t are given by the equations:0BBBB@
1 w12 : : : w1n

w21 1 : : : w2n
...

...
. . .

...

wn1 wn2 : : : 1

1CCCCA
0BBBB@

X1t

X2t

...

Xnt

1CCCCA =

0BBBB@
c1

c2
...

cn

1CCCCAFt +

0BBBB@
b1(L)"1t

b2(L)"2t
...

bn(L)"nt

1CCCCA ;

where Ft is a demand common shock, bi(L)"it are auto-correlated idiosyncratic pro-

ductivity shocks, and "it are i.i.d. innovations to these shocks. For such a model, wji
is the quantity of the i-th product necessary as a means of production to produce one

unit of the j-th output. Inverting the input-output matrix W , we obtain:

Xt = �Ft +W�1"tb(L);
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where b(L) � diag (b1(L); b2(L); :::; bn(L)). In the special case when all the productiv-
ity shocks have the same dynamics described by the �lter bi(L) = b0+b1L+b2L

2+ :::,

we can write: e = A"B; where A = W�1 and B is such that Bij = 0 for for i > j and

Bij = bj�i for for i � j:6

Under standard asymptotics (3), changing A and B; while holding the size of

max eval
�
1
T
ee0
�
�xed, does not have a �rst order e¤ect on the quality of the PC

estimators F̂ and L̂. This is not so under Assumption 1 iii). A change of the coor-

dinates of the columns of F in the basis formed by the eigenvectors of B0B would

have a �rst-order e¤ect on the quality of F̂ . The larger the projection of F on the

eigenspaces of B0B corresponding to larger eigenvalues and the smaller its projection

on the eigenspaces corresponding to smaller eigenvalues, the better the performance

of F̂ . Similarly, changing the position of the columns of L relative to the eigenvectors

of A0A has a �rst order e¤ect on the quality of L̂.

To keep our analysis as simple as possible, we will assume that the columns of F

are eigenvectors of B0B: To avoid putting the PC estimator at an arbitrary advantage

or disadvantage by such an assumption, we will require that the eigenvalues corre-

sponding to the columns of F equal the average of the eigenvalues of B0B: Similarly,

we will assume that the columns of L are eigenvectors of AA0 with the corresponding

eigenvalues equal to the average of the eigenvalues of A0A: We will check the robust-

ness of our conclusions to such a simplifying assumption in the Monte Carlo section

below. Finally, we will normalize A and B so that tr (AA0) = n and tr (B0B) = T:

Such a normalization can always be achieved by scaling the variance of the entries of

":

Assumption 2: The matrices "; A and B in the decomposition (6) are as follows.

i) " is an n� T matrix with i.i.d. N(0; �2) entries,

ii) A is such that tr (AA0) = n and (AA0)L = L;

iii) B is such that tr (B0B) = T and (B0B)F = F:

Let us denote the eigenvalues of AA0 and of B0B as a1; a2; :::; an and b1; b2; :::; bT :

Further, let GA(x) = 1
n

Pn
i=1 1 fai � xg and GB(x) = 1

T

PT
i=1 1 fbi � xg be the em-

pirical distribution functions of the eigenvalues of AA0 and of B0B.7

6Here we assume that the innovations "it for t = 0;�1;�2; ::: equal zero.
7Here 1 f�g denotes the indicator function of the set in the brackets.
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Assumption 3: There exist probability distributions GA and GB with bounded
supports [xA; �xA] and [xB; �xB] ; cumulative distribution functions (cdf) GA(x) and
GB(x); and densities d

dx
GA(x) and d

dx
GB(x) at every interior point of support x 2

(xA; �xA) and x 2 (xB; �xB) ; respectively, such that, as n!1 :

i) GA(x)! GA(x) and GB(x)! GB(x) for all x 2 R;

ii) maxi�n ai ! �xA and maxi�T bi ! �xB;

iii) infx2(xA;�xA)
d
dx
GA(x) > 0 and infx2(xB ;�xB)

d
dx
GB(x) > 0:

Parts i) and ii) of the assumption would be satis�ed if fai; i = 1; :::; ng and
fbi; i = 1; :::; Tg are random samples from GA and GB: Part iii) of the assumption
is made to make sure that the eigenvalues of ee0=T cluster together in the sense that,

as n ! 1; the distance between any two consequent eigenvalues of ee0=T converges

to zero in probability. In particular, any �nite number of the largest eigenvalues of

ee0=T will cluster together as n ! 1: As we explain in the Identi�cation and Esti-

mation section of this paper, such a condition is crucial for the identi�cation under

our weakly in�uential factor asymptotic regime.

Zhang (2006) shows that, under Assumptions 1 i), 2 i) and 3 i), the empirical dis-

tribution of the eigenvalues of 1
�2T

ee0 converges to a cdf G(x); which can be uniquely
determined from GA(x) and GB(x):Onatski (2009) shows that, if, in addition, Assump-
tions 3 ii) and iii) are satis�ed,8 any of the �nite number of the largest eigenvalues of
1
�2T

ee0 converges to the upper boundary of the support of G, �x � min fx : G(x) = 1g :
Zhang�s (2006) and Onatski�s (2009) results play central role in our technical analysis

below. Therefore, we will discuss them here in some detail.

A closed form expression for G(x) exists only in very special cases. For example,
when bothA andB are identity matrices,9 G(x) is the so-called Marchenko-Pastur dis-
tribution, whose density is a known algebraic function of x (see Marchenko and Pastur,

1967). For general A andB; G(x) is described in terms of its Stieltjes transform, which
is de�ned as m(z) �

Z
(�� z)�1 dG(�); where z 2 C+ � fz 2 C : Im z > 0g : The

Stieltjes transform is also well-de�ned for real z outside the support of the distribution

8Both Zhang (2006) and Onatski (2009) use weaker assumptions than Assumptions 2 i) and 3 i),
ii) and iii). Here we sacri�ce some generality to make our assumptions easier to interpret.

9In such a case, xA = �xA = 1 and xB = �xB = 1: Note that the case of the empty interior of
[xA; �xA] and/or [xB ; �xB ] is not excluded by Assumption 3.
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G. The Frobenius-Perron inversion formula G f[a; b]g = 1
�
lim�!0+

R b
a
Imm (� + i�) d�;

where a and b are points of continuity of G(x); insures that we can reconstruct G(x)
from m(z):

Let us denote the Stieltjes transforms of GA(x) and GB(x) as mA(z) and mB(z);

respectively. Zhang (2006) proves that, for each z 2 C+; m(z); together with two
other analytic on C+ functions u(z) and v(z) constitute a solution to the system:8><>:

zm(z) + 1 = u (z)mA (u(z)) + 1

zm (z) + 1 = c�1 [v (z)mB (v (z)) + 1]

zm (z) + 1 = �c�1 z
u(z)v(z)

; (7)

which is unique in the set f(m(z); u(z); v(z)) : Imm(z) > 0; Im (u(z)) > 0; Im (v(z)) > 0g :
For our analysis of the principal components estimator, the asymptotic behavior

of the largest eigenvalues of 1
�2T

ee0 is of particular interest. Onatski (2009) shows

that, under Assumptions 1 i), 2 i) and 3, they converge to �x; the upper boundary

of the support of G. He explains how to �nd �x directly from system (7). Details of

Theorem 1 below are related to this procedure, and therefore, we describe it below.

After substituting the third equation of (7) into the �rst two equations, rearrang-

ing, and replacing the complex variables z; u(z) and v(z) by real variables x; u and

v, we have: (
v = xc�1u�1 (�umA(u)� 1)�1

u = xv�1 (�vmB(v)� 1)�1
: (8)

Note that mA(u) andmB(v) are well-de�ned if u > �xA and v > �xB: Therefore, we will

consider system (8) only in the domain U = f(u; v) : u > �xA and v > �xBg : Onatski
(2009) shows that, under Assumptions 1 i), 2 i) and 3, for any x < �x; system (8) has

no solutions in U . For x = �x; there exists exactly one such solution, which we will

denote as �u; �v: For x > �x; there exist two such solutions u1x; v1x and u2x; v2x; where

u2x > u1x; v2x > v1x; and u2x and v2x equal the analytic continuations of u(z) and

v(z) from (7) on the subset of real line z 2 (�x;+1) ; evaluated at z = x.

Since, as has been shown in Lemma A4 of Onatski (2009), u�1 (�umA(u)� 1)�1

and v�1 (�vmB(v)� 1)�1 are strictly concave functions of u and v; it is easy to solve
(8) numerically for any real x; given distributions GA and GB: The value of �x can be
numerically found as the smallest x such that the solution to (8) exists.

Our �rst theorem uses the above machinery to establish the probability limits
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of the coe¢ cients from the OLS regressions of F̂ on F and of L̂ = L̂
�
L̂0L̂
��1=2

on

L = L (L0L)�1=2 : To formulate the theorem, we will need the following new de�nitions.

Let q 2 f0; 1; :::; kg be such that

di
�2

> �x
�
1� �u�1

� �
1� �v�1

�
when 1 � i � q and (9)

di
�2

� �x
�
1� �u�1

� �
1� �v�1

�
when q < i � k: (10)

For any 1 � i � q; let us de�ne xi; ui and vi as, respectively, such x; u2x and v2x
that di

�2
= x

�
1� u�12x

� �
1� v�12x

�
: Since the right hand side of the latter equality is a

strictly increasing function of x; the values xi; ui and vi are well-de�ned and can be

found numerically, given GA and GB:10 Finally, let us de�ne

 i = c (m (xi) + xim
0(xi)) ;

�i = ui +
1 + uimA(ui)

mA(ui) + uim0
A(ui)

ui � vi
ui � 1

and

!i = vi +
1 + vimB(vi)

mB(vi) + vim0
B(vi)

vi � ui
vi � 1

:

Theorem 1: Let Assumptions 1-3 hold and let �̂ = (F 0F )�1 F 0F̂ and �̂ =

(L0L)�1 L0L̂. Then, as n (and by Assumption 1 i) also T ) goes to in�nity, �̂; �̂

and L̂0L̂ converge in probability to diagonal matrices such that:

i) plim �̂ii = (1 +  i�i)
�1=2 when i � q; and plim �̂ii = 0 when i > q;

ii) plim �̂ii = (1 +  i!i)
�1=2 when i � q; and plim �̂ii = 0 when i > q; and

iii) plim
�
L̂0L̂
�
ii
= �2xi when i � q; and plim

�
L̂0L̂
�
ii
= �2�x when i > q:

Recall that, by de�nition of the PC estimator, the columns of T�1=2F̂ are unit-

length eigenvectors of X 0X and the columns of L̂ are unit-length eigenvectors of XX 0:

Since unit-length eigenvectors are only de�ned up to a multiplication by �1, the signs
of the entries of matrices �̂ and �̂ are not well-de�ned without further normalization

constraints. In Theorem 1, we assume that the direction of the columns of F̂ and L̂
is chosen so that �̂ii and �̂ii are non-negative for all i = 1; :::; k:

10A matlab code with a numerical procedure �nding �x; �u; �v; xi; ui and vi for any cdf�s GA (x) and
GB(x) is available from the author upon request.
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Theorem 1 shows that, for i � q; the probability limits of �̂ii and �̂ii are strictly

less than 1, which implies the inconsistency of the PC estimators of the i-th factor

and of the corresponding factor loadings. For i > q; not only the PC estimators are

inconsistent, but they are asymptotically orthogonal to the true factor and loadings.

By de�nition of q; such a situation occurs only when the explanatory power of the

i-th factor is so weak that di is smaller than the threshold �2�x (1� �u�1) (1� �v�1) :
When the explanatory power of the factor increases so that di is above the threshold,

the PC estimates start to be non-trivially correlated to the true factor and loadings.

When di diverges to +1,  i�i and  i!i converge to zero, and the inconsistency of
the PC estimates vanishes.

Let us illustrate the results of Theorem 1 using a simple example. Suppose data

are generated by the following 1-factor model:

Xit =
p
dTL1iF1t + eit; where (11)

eit = �1ei�1;t + (1� �21)
1=2
�it and

�it = �2�it�1 + (1� �22)
1=2
�it; �it � iid N(0; 1)

:

Here
p
dL1i are the loadings,

p
TF1t are the values of the factor at time t, and the

idiosyncratic terms eit follow auto-regressions both temporally and cross-sectionally.

Note that vec (e) is an nT � 1 Gaussian vector with covariance matrix T2
T1; where
T1 and T2 are Toeplitz matrices with i; j-th entries equal to �

ji�jj
1 and �ji�jj2 . Therefore,

e can be represented in the form A"B, where A = T
1=2
1 ; B = T

1=2
2 ; and " is an n� T

matrix with i.i.d. N(0; 1) entries.

As is required by Assumption 2, we will assume that L1 andF1 are the eigenvectors
of T1 = AA0 and T2 = B0B corresponding to the unit eigenvalue. Clearly, this is a

restrictive assumption since the eigenvectors of the Toeplitz matrices have very special

form. In the Monte Carlo section of the paper, we check the robustness of our results

to the situations when the loadings and the factors are not related to the eigenspaces

of the matrices AA0 and B0B:

As is well-known (see, for example, Grenander and Szego, 1958), the empirical

distribution of the eigenvalues of symmetric Toeplitz matrices converges as the di-

mensionality of the matrix tends to in�nity. For the special case of T1; the inverse of

the limiting cdf at p 2 (0; 1) equals 1��21
1+2�1 cos(p�)+�

2
1
so that the upper boundary of the

support of the limiting distribution is �nite and equals 1+�1
1��1

; and the density of the
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limiting distribution in the interior of its support is no smaller than (1��1)3
2��1(1+�1)

> 0.

Furthermore, the largest eigenvalue of T1 converges to
1+�1
1��1

as the size of T1 grows:

For T2; the above facts hold with �2 replacing �1: Hence, Assumption 3 holds for the

data generating process described in (11).

Let us set n=T = 2. Further, let �1 = 0:5 and �2 = 0:9 so that there is a mild

degree of the cross-sectional correlation and a high degree of the temporal correlation

in the idiosyncratic terms. Setting �2 so high will make our numerical example below

sharper. A high degree of the auto-correlation of the residuals is sometimes observed

in applications of the factor analysis. For example, this is the case for the data in

Boivin et al. (2008) who use European quarterly macroeconomic time series to analyze

the e¤ect of Euro on monetary transmission mechanism. Even after extracting seven

factors from that data, the residuals remain highly auto-correlated.

For the above setting of the parameters of (11), we have computed the probability

limits of �̂ and L̂0L̂ described in Theorem 1.11 Figure 1 shows these probability

limits as functions of L0L; which equals d in our example: From the left panel of the

�gure, we see that the PC estimator remains asymptotically orthogonal to the true

factor until d becomes as large as 42. To interpret this �nding note that d equals

nR2= (1�R2) ; where R2 is the population R2 of the factor, de�ned as L0L
trE(XX0=T ) :

Such an equality follows from the facts that L0L = d and trE (XX 0=T ) = L0L + n;

by Assumption 2: Hence, d = 42 corresponds to the factor�s population R2 equal to
42
42+n

; which is, approximately, 0.30 for n = 100:

Furthermore, the right panel of Figure 1 reveals that the sample R2 from �tting

a single factor to the data may be very large even in cases when the factor is, in fact,

very weak. Indeed, the sample R2 can be approximated by the ratio L̂0L̂
L̂0L̂+n

: Hence, in

our example, even if there are no factors in the data at all so that d = 0, the sample

R2 from �tting one �factor�to the data would be around 0.32 for n = 100:

For smaller values of �1 and �2; the probability limits plim �̂ and plim L̂
0L̂ start

increasing for smaller values of d: Hence, the problems of the PC estimator will be

less extreme. In the special case when �1 = �2 = 0 so that there is no correlation in

the idiosyncratic terms, plim �̂ remains zero only up to the threshold d = 1:41: For

d < 1:41; plim L̂0L̂ is only 5.83.

We now turn to our next result, which describes the asymptotic distribution of

11We do not illustrate our results on �̂ because they can be obtained from those on �̂ by inter-
changing the cross-sectional and temporal parameters of the model.
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Figure 1: The probability limits of �̂ and L̂0L̂ as functions of d.

35 40 45 50
0

0.2

0.4

0.6

0.8

1

d

pl
im

β^

35 40 45 50
47

48

49

50

51

52

53

54

55

d
pl

im
L^′

L^

�̂; �̂ and L̂0L̂ around their probability limits. Let us make the following additional

assumption.

Assumption 4: As n ! 1; n=T � c = o
�
n�1=2

�
; L0L � D = o

�
n�1=2

�
;

supx2R jGA(x)� GA(x)j = o
�
n�1=2

�
and supx2R jGB(x)� GB(x)j = o

�
n�1=2

�
:

By requiring that the convergence of n=T; L0L; GA(x) and GB(x) to the limits

introduced in Assumptions 1 and 3 is fast, Assumption 4 eliminates any possible

e¤ects of this convergence on our asymptotic results. As we mentioned above, we

view our asymptotics as a device for obtaining accurate approximations to �nite

sample distributions rather than as a description of the process of further sampling.

From this perspective, consequential assumptions about the rates of convergence of

n=T; L0L; GA(x) and GB(x) would be desirable only to the extent that they generate

some known distributional properties of statistics related to the PC estimator. We

do not see how this is possible, and therefore, make the simplest possible assumption

that the rates of the convergence of n=T; L0L; GA(x) and GB(x) are fast enough not

to interfere with our asymptotic analysis.

To formulate Theorem 2, we need to introduce new notation. First, denote the

matrices of the �rst q columns of �̂; �̂ and L̂ as �̂1:q, �̂1:q and L̂1:q; respectively,

where q is as de�ned in (9) and (10). Further, let mi (r) =
R
(xi � �)�r dG(�),

and mij(1; 1) =
R
(xi � �)�1 (xj � �)�1 dG(�), where xi with i = 1; :::; q are as in

Theorem 1 and G is the limiting distribution of the eigenvalues of XX 0= (�2T ). Let
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~G be the limiting distribution of the eigenvalues of X 0X= (�2T ) (it di¤ers from G only
by the probability it assigns to zero). Finally, let ~mi (r) =

R
(xi � �)�r d ~G(�), and

~mij(1; 1) =
R
(xi � �)�1 (xj � �)�1 d ~G(�).

Theorem 2: Let Assumptions 1, 2, 3 and 4 hold. Then, as n!1:

i) If A is unconstrained other than by Assumptions 1-4, but B = IT :

diag
p
T
�
L̂01:qL̂1:q � plim L̂01:qL̂1:q

�
d! N (0;
) and

vec
p
T
�
�̂1:q � plim �̂1:q

�
d! N (0;��) ;

where 
 is diagonal with 
jj = 2 (dj + �2)
2 ~m2

j (1)

~mj(2)
� 2d2j

�
~m2
j (1)

~mj(2)

�2
; plim L̂01:qL̂1:q

is diagonal with plim L̂0jL̂j = �2xj; where x = xj is the largest solution of

the equation
�
dj
�2
+ 1
� R

(x� �)�1 d ~G (�) = 1; plim �̂1:q has all elements zero

except plim �̂jj =

r
dj

dj+�2
~m2
j (1)

~mj(2)
; where j = 1; :::; q; �nally, �� is such that the

asymptotic covariance between
p
T
�
�̂ij � plim �̂ij

�
and

p
T
�
�̂st � plim �̂st

�
equals:

� d2j+di�
2

(di�dj)2
� d3j

(di�dj)2(dj+�2)
~m2
j (1)

~mj(2)
when i = s 6= j = t;

� (didj)
3=2

(di�dj)2
p
(di+�2)(dj+�2)

~mj(1) ~mi(1)p
~mj(2) ~mi(2)

�
p
didj(di+�2)(dj+�2)

(di�dj)2
~mij(1;1)p
~mj(2) ~mi(2)

when i =

t 6= j = s;

� �2

di+�2
+ di

2(di+�2)

~m2
i (1) ~mi(4)

~m3
i (2)

� 2di
(di+�2)

3

~m2
i (1)

~mi(2)

�
di

~mi(1) ~mi(3)

~m2
i (2)

� di
2
+ �2

�2
when i =

j = s = t;

� and zero otherwise.

ii) If B is unconstrained other than by Assumptions 1-4, but A = In :

diag
p
n
�
L̂01:qL̂1:q � plim L̂01:qL̂1:q

�
d! N (0;
) and

vec
p
n (�̂1:q � plim �̂1:q)

d! N (0;��) ;

where 
 is diagonal with 
jj = 2 (dj + �2c)
2 m2

j (1)

mj(2)
� 2d2j

�
m2
j (1)

mj(2)

�2
; plim L̂01:qL̂1:q

is diagonal with plim L̂0jL̂j = �2xj; where x = xj is the largest solution of

the equation
�
di
�2
+ c
� R
(x� �)�1 dG (�) = 1; plim �̂1:q has all elements zero
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except plim �̂jj =
q

di
di+c�2

m2
i (1)

mi(2)
; where j = 1; :::; q; �nally, �� is such that

the asymptotic covariance between
p
n (�̂ij � plim �̂ij) and

p
n (�̂st � plim �̂st)

equals:

� d2j+c�
2di

(di�dj)2
� d3j

(di�dj)2(dj+c�2)
m2
j (1)

mj(2)
when i = s 6= j = t;

� (didj)
3=2

(di�dj)2
p
(di+c�2)(dj+c�2)

mj(1)mi(1)p
mj(2)mi(2)

�
p
didj(di+c�2)(dj+c�2)

(di�dj)2
mij(1;1)p
mj(2)mi(2)

when

i = t 6= j = s;

� c�2

di+c�2
+ di

2(di+c�2)

m2
i (1)mi(4)

m3
i (2)

� 2di
(di+c�2)

3

m2
i (1)

mi(2)

�
di
mi(1)mi(3)

m2
i (2)

� di
2
+ c�2

�2
when

i = j = s = t;

� and zero otherwise.

The assumption B = IT ; made in part i) of Theorem 2, corresponds to the case

when the idiosyncratic terms are not temporally correlated but may be correlated

cross-sectionally. Although we were able to establish the asymptotic distributions of

�̂1:q and of L̂
0
1:qL̂1:q, we do not know how to obtain the asymptotic distribution of �̂1:q

in such a case. Similarly, for the opposite case when A = In; considered in part ii),

we were able to establish only the asymptotic distributions of �̂1:q and L̂01:qL̂1:q; but

not that of �̂1:q: In the very special case, when both A and B are identity matrices,

so that neither cross-sectional nor temporal correlation is present in the idiosyncratic

terms, the asymptotic distributions of �̂1:q and �̂1:q are described simultaneously by

formulae in parts i) and ii),12 and the asymptotic distribution for L̂01:qL̂1:q provided

by part i) equals that provided by part ii) after scaling by lim
p
T=n = c�1=2.

Note that part ii) of Theorem 2 can be obtained from part i) by interchanging the

cross-sectional and temporal parameters of the model. For formulae describing ��;

this amounts to replacing di and ~mr in the corresponding formulae for �� by di=c

and mr:

Assuming that either A or B is an identity matrix is restrictive. However, as

we have explained in the Introduction, such an assumption is acceptable in some

applications. In Section 5, we make the assumption that B = IT and use results of

part i) of Theorem 2 to test a hypothesis that the celebrated Fama-French factors (see

Fama and French, 1993) span the factor space of the US excess stock return data.

12In such a special case, the formulas of Theorem 2 simplify. A previous version of the paper,
which is available from the author�s webpage, reports such a simpli�ed formulas.
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Generalizing Theorem 2 to the case when both A and B are not identity requires

conceptual changes in our proofs. Therefore, we leave this important topic for future

research.

Results of Theorem 2 can be used to obtain the asymptotic distributions of the

principal components estimator of factors at particular time periods and of factor

loadings corresponding to speci�c cross-sectional units. We will do such an extension

elsewhere, and will keep our focus on the behavior of �̂ and �̂ in what follows:

3 Identi�cation and estimation

The asymptotic distributions obtained in the previous section quantify the potential

problems with the PC estimator when factors are weakly in�uential. However, if the

distributions are to be used for inference, their parameters have to be estimated. This

section explains how to obtain such an estimates when the true number of factors is

bounded above by a known �xed number kmax:

The crucial parameter in Theorems 1 and 2 is q; which is the number of factors

that are not orthogonal to their PC estimators asymptotically. Under our weakly

in�uential factor asymptotics, q can be identi�ed as the number of eigenvalues out

of the kmax largest eigenvalues �1 � �2 � ::: � �kmax of XX
0=T that remain isolated

asymptotically as n and T go to in�nity. Indeed, under Assumptions 1, 2 and 3, the

eigenvalues �1; �2; :::; �q converge to distinct limits �2x1; :::; �2xq; respectively, whereas

the eigenvalues �q+1; :::; �kmax all converge to the same limit �
2�x:

The above identi�cation scheme implies that q can be consistently estimated by

Onatski�s (2009) estimator of the number of factors:

q̂ (�) = max f0 � i � kmax : �i � �i+1 � �g ;

where � is a calibrated scaling parameter, and �0 is de�ned as +1: The estimator

q̂ (�) is consistent for q as long as �2 (xq � �x) > �: Note that, under Assumptions 1,2

and 3, the calibration algorithm13 that Onatski (2009) recommends using in practice

results in � that converges to zero as n and T go to in�nity. Hence, if such a calibration

13The algorithm is based on an insight from the large random matrix theory, and is as follows.
First, set j = kmax + 1: Then, iterate the following steps until convergence: 1) set � = 2 j
̂j ;
where 
̂ is the OLS estimate of the slope in the regression of �j ; �j+1; :::; �j+4 on the constant and
(j � 1)2=3 ; :::; (j + 3)2=3 ; 2) set j = q̂ (�) + 1:
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is used, the inequality �2 (xq � �x) > � is satis�ed asymptotically:

It is instructive to compare the above identi�cation of q with the identi�cation

of the number of factors k under standard asymptotics (3). In the standard case,

the identi�cation of k is based on the fact that the eigenvalues �1; :::; �k diverge to

in�nity while �k+1 remains bounded. Under our alternative asymptotics, none of the

eigenvalues diverge to in�nity. However, the �rst q eigenvalues remain isolated and

separated from the other eigenvalues, which cluster together. The proposed estimator

of q counts the number of the isolated eigenvalues which are at least at distance �

from the cluster.

The true number of factors k is not identi�ed under our asymptotics in the sense

that there is no procedure allowing us to consistently estimate k from the sequence

of the �nite samples X(n) satisfying Assumptions 1,2,3 and 4. In a separate research

project (see Onatski et al., 2011) we show that in the case when k > q; although there

exist statistical tests that have non-trivial power of rejecting the nulls that the true

number of factors is no larger than q, the power of such tests does never approach

one. Had a consistent procedure for determining k existed, a test that would reject

the above nulls whenever the estimate of the true number of factors is larger than q

would have an asymptotic power of 1, contradicting our results.

From practical perspective, identifying q may be more important than identifying

k: Indeed, in the case when k > q; the eigenvalues �q+1; :::; �k do not separate from the

cluster because the corresponding factors do not have su¢ cient explanatory power.

Moreover, as Theorem 1 shows, such a weak factors will be orthogonal to their PC

estimators asymptotically. Hence, as long as the principal components estimator is

used, q may be treated as an �e¤ective�number of factors in the data:

In principle, the standard identi�cation scheme based on �exploding eigenvalues�

can coexist with the identi�cation based on the �asymptotically isolated eigenval-

ues�.14 In particular, it is possible to consider a generalization of (1):

Xit =

k1X
j=1

LijFtj +

k2X
j=1

~Lij ~Ftj + eit; (12)

where k1+k2 = q; the �rst k1 of the largest eigenvalues of XX 0=T explode as n!1;

and the next k2 of the largest eigenvalues remain isolated from the cluster of smaller

14I am grateful to an anonymous referee for pointing out this possibility.
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eigenvalues. In such a model, Ftj and ~Ftj would be interpreted as strongly and weakly

in�uential factors, respectively. Further, the convergence ~L0 ~L ! ~D; where ~L is the

matrix of the loadings of the weakly in�uential factors, would be interpreted directly

as de�ning a non-standard concept of �weakly in�uential factors� rather than as

describing a non-standard Pitman-drift-like asymptotic device. The identi�cation of

the �weakly in�uential factors�themselves as opposed to merely the identi�cation of

their number k2 would require an extra assumption such as our Assumption 2. Finding

a form of such an identi�cation assumption that would be convenient without being

overly restrictive and reinterpreting the results of this paper in the context of model

(12) are interesting exercises left for future research.

Once a consistent estimator q̂ of q is obtained, it is relatively easy to estimate the

parameters of the distributions obtained in the previous section. Theorem 3 below

describes consistent estimates of the probability limits and of the asymptotic variances

from Theorem 2. We will use the following new notation and de�nitions. Let �i be

the i-th largest eigenvalue of XX 0=T: In cases when T > n; let us de�ne �i = 0 for

n < i � T: Further, let ĉ = n=T; �̂2 =
PT

j=q̂+1 �j= (n� q̂) ;and, for any non-negative

integer r and any non-negative integer i � q; let b~mi (r) =
�̂2r

T�q̂
PT

j=q̂+1 (�i � �j)
�r ;b~mis (1; 1) =

�̂4

T�q̂
PT

j=q̂+1 (�i � �j)
�1 (�s � �j)

�1 ; m̂i (r) =
�̂2r

n�q̂
Pn

j=q̂+1 (�i � �j)
�r and

m̂is (1; 1) =
�̂4

n�q̂
Pn

j=q̂+1 (�i � �j)
�1 (�s � �j)

�1.

Theorem 3. Suppose that Assumptions 1, 2, 3 and 4 hold, and let q̂ be a consis-
tent estimator of q: Then, for any i � q; j � q; s � q and t � q:

i) If B = IT ; we have: dj is consistently estimated by d̂j = �̂2
�
1=b~mj (1)� 1

�
;

plim �̂jj is consistently estimated by

r
d̂j

d̂j+�̂
2

b~m2
j (1)b~mj(2)

; and consistent estimators of


jj and of the asymptotic covariances between
p
T
�
�̂ij � plim �̂ij

�
and

p
T
�
�̂st � plim �̂st

�
are obtained by replacing parameters �2; di and ~mi (r) in

the formulae of Theorem 2 by �̂2; b~di and b~mi (r).

ii) If A = In; we have: di is consistently estimated by d̂i = �̂2 (1=m̂i (1)� ĉ) ; plim �̂ii

is consistently estimated by
q

d̂i
d̂i+ĉ�̂

2

m̂2
i (1)

m̂i(2)
; and consistent estimators of 
ii and

of the asymptotic covariances between
p
n (�̂ij � plim �̂ij) and

p
n (�̂st � plim �̂st)

are obtained by replacing parameters c; �2; di and mi (r) in the formulae of The-

orem 2 by their estimates ĉ; �̂2; d̂i and m̂i (r).
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The full proof of Theorem 3 as well as of all other results of this paper is given

in the Technical Appendix. The key consistency result, which, together with the

continuous mapping theorem, implies the validity of Theorem 3, is the consistency

of b~mi (r) and m̂i(r) for ~mi (r) and mi(r); respectively. Such a consistency follows

from Theorem 1 iii) and from the weak convergence of the empirical distribution of

�q̂+1=�
2; :::; �n=�

2 to G, which, in turn, easily follows from the results of Zhang (2006)
that were discussed above.

The quantity b~m2

i (1)=b~mi(2); which appears in our estimate of plim �̂ii; has an in-

teresting interpretation15 of a particular measure of dispersion of the �idiosyncratic�

eigenvalues �q̂+1; �q̂; :::; �T of X 0X=T: Jensen�s inequality implies that b~m2

i (1)=b~mi(2)

is smaller than 1 as long as not all of �q̂+1; �q̂; :::; �T are equal to each other. Note

that the smaller the b~m2

i (1)=b~mi(2); the larger the estimated asymptotic bias of the

PC estimator of the i-th factor. The link between b~m2

i (1)=b~mi(2) and the empirical

distribution of �q̂+1; �q̂; :::; �T can potentially be further exploited to obtain a simple

procedure for assessing the quality of the PC estimates based on the visual inspection

of the scree plot introduced by Cattell (1966). We leave such a development for future

research.

4 A Monte Carlo study

In this section, we use Monte Carlo (MC) experiments to study the �nite sample

approximation quality of the asymptotic results derived in Theorems 1, 2 and 3. In

all our experiments, the idiosyncratic terms follow auto-regressions both temporally

and cross-sectionally as described in (11). Hence, e = A"B; where AA0 and B0B

equal the Toeplitz matrices with i; j-th elements �ji�jj1 and �ji�jj2 ; respectively, and

�2 � Var ("ij) = 1:
We consider models with three factors, and always normalize factors F and load-

ings L so that 1
T
F 0F = I3 and L0L equals a diagonal matrix with diagonal elements

d1 = 30; d2 = 20 and d3 varying on a grid in the interval [0; 15] : Such a normalization

implies that, for the cross-section size n; the proportion of the variance of the data

explained by the �rst, second and third factors equals 30
30+20+d3+n

; 20
30+20+d3+n

and
d3

30+20+d3+n
; respectively.

In our �rst experiment, we set �1 = �2 = 0:5 so that there is a moderate amount of

15The quantity m̂2
i (1) =m̂i (2) has a similar interpretation.
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the cross-sectional and temporal correlation in the idiosyncratic terms. Similar to the

setting of our example (11), we make the factors and loadings equal to eigenvectors of

B0B and of AA0 corresponding to the three eigenvalues that are the closest to unity.

We relax this setting in our further MC experiments.

The left panel of Figure 2 compares MC means, based on 5,000 MC replications, of

the diagonal elements �̂ii of the 3�3 matrix �̂ = (F 0F )
�1 F 0F̂ with the corresponding

probability limits derived in Theorem 1.16 The MC means and the probability limits

are plotted against d3; which is a measure of the explanatory power of the third factor.

The dashed lines correspond to the probability limits, the solid lines correspond to the

MC means, and the two dotted lines correspond to the 5-th and the 95-th quantiles of

the MC distribution of �̂33: The upper, middle and lower panels correspond to sample

sizes (n; T ) = (50; 25) ; (100; 50) and (200; 100) ; respectively.

As d3 decreases from 15 to zero, plim �̂33 decreases from a value close to one to

zero. Such a decrease is very abrupt around d3 = 7:5: In contrast, plim �̂ii with

i = 1; 2 remain constant at values close to one. It is because the �rst and the second

factors remain strongly in�uential, d1 and d2 being �xed at a relatively high level.

The MC means of �̂ii approach the corresponding probability limits as n and T

increase. The MCmeans of �̂ii with i = 1; 2 are very well approximated by plim �̂ii for

all values of d3 on our grid. The MC mean of �̂33 is well approximated by plim �̂33 for

d3 > 7:5: The quality of the approximation is especially good for (n; T ) = (200; 100) :

However, as d3 decreases from values above 7:5 to values below 7:5; the MC mean of

�̂33 declines much less abruptly than plim �̂33:

The right panel of Figure 2 shows the probability limits and the MC means of

L̂0iL̂i with i = 1; 2; 3 as functions of d3: The quality of the asymptotic approximations

is good for all values of d3: It is especially good for d3 > 7:5:

We repeated the experiment for di¤erent values of �1 and �2: Qualitatively, the

results remain the same. However, the MC means are increasingly better approxi-

mated by the probability limits from Theorem 1 as �1 and �2 decline. Vice versa, as

�1 and �2 rise, the quality of the approximation deteriorates. Further, we again set

�1 = �2 = 0:5, but consider a relatively fat-tailed and a skewed distribution for "it:

Precisely, we consider Student�s t distribution with �ve degrees of freedom, normal-

ized to have unit variance, and the centered chi-squared distribution with one degree

16Although not shown on the graphs, the MC means of all the non-diagonal elements �̂ij ; i 6= j of
matrix �̂ are very close to zero, which is the theoretical probability limit.
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Figure 2: The correlation coe¢ cients �̂ii between true and estimated factors (left
panel) and the estimated explanatory power of factors L̂0iL̂i (right panel) as functions
of d3 � L03L3. Theoretical values: dashed line, sample means: solid line.
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of freedom, normalized to have unit variance. For such a non-normal distributions,

the results are very similar to those shown in Figure 2, and we do not report them to

save space.

Our second MC experiment assesses the impact of violations of parts ii) and iii) of

Assumption 2 on the quality of the asymptotic approximations derived in Theorem

1. Recall that assumptions 2 ii) and 2 iii) require that the columns of L and F

are eigenvectors of AA0 and B0B corresponding to unit eigenvalues, which is very

restrictive. We now make L and F unrelated to the eigenvectors of AA0 and B0B

by generating L and F as n � 3 and T � 3 matrices with i.i.d. standard Gaussian
entries.17 Figure 3 summarizes MC results for such a new setting.

Comparing Figures 2 and 3, we see that the violation of parts ii) and iii) of

Assumption 2 leads to a deterioration in the quality of the asymptotic approximations.

The deterioration is more noticeable for �̂ii than for L̂
0
iL̂i: As n and T rise, the solid

and dashed lines on the left panel of Figure 3 become closer, but such a convergence

appears to be slower than the one that can be seen on Figure 2.

Intuitively, when factors�projection on the eigenspaces of B0B corresponding to

relatively large eigenvalues increase, the factors and the principal eigenvectors of the

covariance matrix of the idiosyncratic terms become more collinear. As a result,

the principal component estimators of the factors become less �contaminated� by

the noisy directions corresponding to the idiosyncratic in�uences. Vice versa, when

factors� become more collinear with those eigenvectors of B0B that correspond to

relatively small eigenvalues, the �contamination� e¤ect becomes more pronounced.

These e¤ects translate into relatively higher or relatively lower values of �̂ii; which

contributes to the di¤erences between Figures 2 and 3.

The above intuition can be checked as follows. Note that a simple indicator that

contains information about the relationship between F3 and the eigenstructure of B0B

is 1
T
F 03B

0BF3. Had assumptions 2 ii) and 2 iii) been respected, 1T F
0
3B

0BF3 would have

been equal to one. When 1
T
F 03B

0BF3 is larger or smaller than one, the projection of F3
on the eigenvectors of B0B corresponding to relatively large eigenvalues increases or

decreases, respectively. Therefore, if our intuition is correct, the value of 1
T
F 03B

0BF3

should be positively correlated with that of �̂33. To check this, we run a regression of

17We then normalize the matrices of factors and loadings by rede�ning them as F
�
1
T F

0F
��1=2

and L (L0L)�1=2D1=2; where D = diag (d1; d2; d3). Hence, the normalized factors satisfy 1
T F

0F = I3;
and the normalized loadings satisfy L0iLj = 0 for i 6= j and L0iLi = di:
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Figure 3: The correlation coe¢ cients �̂ii between true and estimated factors (left
panel) and the estimated explanatory power of factors L̂0iL̂i (right panel) as functions
of d3. Assumptions 2 ii) and 2 iii) are violated.
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5,000 MC replications of �̂33 on constant and the corresponding values of
1
T
F 03B

0BF3:

The estimated slope coe¢ cient and the corresponding 95% con�dence band are shown

on the left panel of Figure 4 as functions of d3: Con�rming our intuition, the slope

of the estimated regression is signi�cant and positive for the majority of values of d3
in the studied range. The value of the slope is relatively larger for those d3 which

correspond to relatively high variation in the dependent variable �̂33:
18

The right panel of Figure 4 contains more detailed information about the e¤ect

of 1
T
F 03B

0BF3 on �̂33 when d3 = 5: The �gure reports estimates of the densities

of the conditional distribution of �̂33 given relatively small and relatively large val-

ues of 1
T
F 03B

0BF3. Precisely, we sort the MC replications according to the value of
1
T
F 03B

0BF3 starting from the lowest value and ending with the highest value. Then

we use MATLAB�s �ksdensity�code to get the kernel density estimates for �̂33 using

only the �rst third (dashed line) and only the last third (solid line) of the so sorted

MC sample. In accordance with our intuition, the estimated conditional distribution

of �̂33 given relatively small values of
1
T
F 03B

0BF3 puts more mass on relatively smaller

values of �̂33:

Note that when F3 is generated randomly, as in the above experiment, and nor-

malized so that 1
T
F 03F3 = 1; the value of

1
T
F 03B

0BF3 is approximately symmetrically

distributed around one. Therefore, the unconditional distribution of �̂33 is a �well-

balanced�mixture of the conditional distributions corresponding to relatively small

and relatively large values of 1
T
F 03B

0BF3. As a result, the locations of the uncondi-

tional distribution of �̂33 on Figures 2 and 3 are only moderately di¤erent.

We can generate larger di¤erences by using factors that are systematically related

to the eigenstructure of B0B: For example, if we generate F3 as T observations of an

auto-regression with positive auto-regressive coe¢ cient �F , then, for our choice of B;

the values of 1
T
F 03B

0BF3 would tend to be larger than one, and we would expect �̂33
shifting towards larger values. Similarly, for negative values of �F we would expect a

shift towards smaller values.

Figure 5 reports the results of such an MC experiment. The left panel of the �gure

18Large or small d3 correspond to, respectively, strongly or very weakly in�uential factors, for
which �̂33 is close to 1 or to 0 for all MC replications.
In addition to the above described regression, we have also run a regression of �̂33 on the constant,

1
T F

0
iB

0BFi; i = 1; 2; 3 and 1
di
L0iAA

0Li; i = 1; 2; 3: All the slope coe¢ cients in such a regression except
the coe¢ cients on 1

T F
0
3B

0BF3 and 1
di
L03AA

0L3 were insigni�cant. The coe¢ cient on 1
di
L03AA

0L3 was
signi�cantly negative, but small in absolute value, for relatively large values of d3:
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Figure 4: The coe¢ cient in the OLS regression of the MC replications of �̂33 on
1
T
F 03B

0BF3 (left panel); and the estimated densities of the conditional distribution of
�̂33 given relatively small and relatively large values of

1
T
F 03B

0BF3 for �xed d3 = 5.
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corresponds to �F = 0:5 and the right panel corresponds to �F = �0:5: As expected,
the graphs of the MC mean and percentiles of �̂33 on the left picture are substantially

higher than those on the right picture. Further, for 7:5 < d3 < 10; the MC mean of

�̂33 is above plim �̂33 on the left picture, but below it on the right picture. Hence, the

direction of the small sample bias of the plim �̂33 may change depending on particular

details of the violation of assumptions 2 ii) and 2 iii). In future research, it would

be interesting to replace Assumption 2 by a less restrictive assumption that would

incorporate some a priori information about possible links between F and B:

In the remaining MC experiments, we will study the �nite sample approximation

quality of the formulae derived in Theorems 2 and 3. First, we compare the asymptotic

distributions for �̂ and L̂0L̂ obtained in Theorem 2 with the corresponding �nite

sample distributions. The general MC setting remains as above. However, we now set

�1 = 0:5 and �2 = 0 so that there is only cross-sectional correlation in the idiosyncratic

terms, which accords with the assumption of part i) of Theorem 2. We generate

loadings L and factors F as n� 3 and T � 3 matrices with i.i.d. standard Gaussian
entries so that Assumption 2ii) is violated.19 We will keep this setting for the rest of

19Note that when �2 = 0; Assumption 2iii) holds for any choice of F: Indeed, in such a case;
B0B = IT so that any vector is an eigenvector of B0B corresponding to the unit eigenvalue: In fact,
since the distribution of " is invariant with respect to multiplication of " from the right by any
orthogonal matrix, the results of our Monte Carlo experiment would not depend on the choice of F:

28



Figure 5: The correlation coe¢ cients �̂ii between true and estimated factors. Left
panel: � = 0:5. Right panel: � = �0:5.
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the Monte Carlo experiments in this section.

The upper panel of Figure 6 reports the means and the 5th and the 95th quantiles

of the asymptotic and MC distributions of �̂33 and L̂03L̂3 as functions of d3: The

parameters of the asymptotic distributions are shown by dashed lines, and those of

the MC distributions are shown by solid lines. The range of d3 is limited to the

region where plim �̂33 > 0 so that the asymptotic distribution of �̂33 is available from

Theorem 2 i).

The lower panel of Figure 6 provides �ner details of the asymptotic approximation

for d3 = 8; which is in the middle of the shown range of d3: Precisely, it superimposes

the asymptotic Gaussian density with the histogram of the corresponding �nite sample

distribution, which is scaled so that the area of all the bars sums up to 1, and therefore,

the direct comparison of the density and the histogram is possible.

Figure 6 shows that the quality of the asymptotic approximation to the �nite

sample distributions of �̂33 and L̂
0
3L̂3 is good for almost all d3 in the shown range.

The approximation is poor only for d3 immediately above the threshold below which

plim �̂33 = 0. In such a region, the variances of the asymptotic distributions of �̂33
and of L̂03L̂3 are, respectively, much larger and much smaller than the variances of the

corresponding MC distributions. As can be seen from the lower panel of Figure 6, the

�nite sample distribution of �̂33 is skewed to the left. The �nite sample distribution

of L̂03L̂3 appears to be much more symmetric around its mean.
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Figure 6: Asymptotic and MC distributions of �̂33 (left panel) and L̂
0
3L̂3 (right panel).

Upper panel: means and 5th and 95th quantiles. Lower panel: distributions in the
middle of the grid for d3.
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Figure 7: The MC frequencies of di¤erent values of q̂; which is the proposed estimator
of the number of factors that are positively correlated with their PC estimates. The
plots of plim �̂ii for i = 1; 2 and 3 are included as dashed lines for convenience.
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We now turn to the analysis of the �nite sample approximation quality of the

asymptotic distribution of �̂ with parameters estimated as in Theorem 3. First, we

would like to know how well the proposed estimator of q works in �nite samples.

Figure 7 shows the MC frequencies of di¤erent values of q̂ as functions of the strength

of the third factor d3: The setting of the MC experiment is the same as that used

to produce Figure 6. We see that when plim �̂33 = 0 so that q = 2; almost all MC

replications result in q̂ = 2: As plim �̂33 increases so that q becomes equal to 3, the

MC frequency of getting q̂ = 3 increases to 1. Such an increase is faster the larger

the sample size. For n = 200 and T = 100; the proportion of the MC replications

in which q̂ = 3 becomes larger than 50% when plim �̂33 becomes larger than 0.81. It

becomes larger than 90% when plim �̂33 becomes larger than 0.88.

In our last MC experiment, we study the �nite sample distribution of the t-

statistic and z-statistic for �̂33; which are de�ned as follows. Under the assumptions of

Theorem 2, the asymptotic distribution of
p
T
�
�̂33 � plim �̂33

�
is normal with mean

zero and variance Avar �̂33: Hence, we de�ne the z-statistic for �̂33 as
�̂33�plim �̂33p
Avar �̂33=T

:We

de�ne the t-statistic for �̂33 as the z-statistic with values of plim �̂33 and Avar �̂33
replaced by their estimates from Theorem 3. As n and T go to in�nity, both z and t

statistics must converge in distribution to the standard normal random variables.

Figure 8 shows the MC distributions of the z and t statistics for �̂33 for the case
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Figure 8: The MC distributions of t = �̂33�dplim�̂33p
[Avar�̂33=T

and z = �̂33�plim �̂33p
Avar �̂33=T

: The case of

d3 = 8; n = 200 and T = 100: The solid line shows the density of N(0; 1):
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of d3 = 8; n = 200 and T = 100: For such a case, 989 out of 1000 MC replications

result in q̂ = 3: For each of these replications, we compute z and t using formulae

for plim �̂33 and Avar �̂33 from Theorem 2 and formulae for dplim�̂33 and [Avar�̂33
from Theorem 3. We discard the 11 MC replications with q̂ < 3 because for them,dplim�̂33 = 0 and [Avar�̂33 is not de�ned.
From Figure 8, we see that our estimation procedure results in the t statistic

whose �nite sample distribution is similar to the �nite sample distribution of the cor-

responding z statistic, which, of course, is infeasible. Both �nite sample distributions

have relatively more mass in the negative area, and both are skewed to the left. The

skewness is more visible for the �nite sample distribution of the t statistic. Overall,

replacing plim �̂33 and Avar �̂33 by the estimates derived in Theorem 3 does not lead

to large changes in the distribution of z statistic.

5 An empirical illustration

In this section, we use our theoretical results to test the adequacy of the celebrated

Fama-French three-factor model of stock returns. In an in�uential paper, Fama and

French (1993) suggest that the non-diversi�able risk in the excess stock returns can

be explained by the so-called �market�, �size�and �book-to-market�factors. They
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propose a simple procedure to estimate these factors. First, they sort stocks ac-

cording to the size and book-to-market ratio of the corresponding �rms. Then, they

form portfolios of stocks with similar size and book-to-market characteristics. Fi-

nally, they compute the �size� and the �book-to-market� factors as the di¤erences

between, respectively, the returns on large and small size portfolios, and the returns

on large and small book-to-market portfolios. The �market� factor is computed as

the capitalization-weighted index of the excess stock returns.

The Fama-French three-factor model has generated much discussion and a sub-

stantial amount of new work in the empirical �nance literature. However, as pointed

out in Connor and Linton (2007, p.695), �there is... no rigorous statistical theory

to justify... [their factor estimation method] with regard even to consistency�. The

results of this paper allow us to test a hypothesis that the Fama-French factors do

span the factor space of the excess stock returns.

The idea of the test is to compute the matrix �̂ of the coe¢ cients in the OLS

regression of the PC estimates of the factors in a large panel of excess stock returns

on the Fama-French factors, and to compare the value of tr �̂
0
�̂ with a theoretical

critical value that can be obtained from Theorems 2 and 3. If the Fama-French

factors are poor proxies for the true factors, then the entries of �̂ are likely to be

relatively small, and the value of tr �̂
0
�̂ should be below the critical value. If tr �̂

0
�̂

is above the critical value, we will not reject the null that the Fama-French factors

span the space of the true factors.

Our stock return data consist of monthly excess returns on 1148 stocks (n = 1148)

traded on the NYSE, AMEX, and NASDAQ during the period from January 1983

to December 2003 (T = 252), obtained from CRSP data base. We included a stock

in the data set if it was traded during the whole sample period. We assume that

the idiosyncratic components of the excess stock returns, although cross-sectionally

correlated, are not correlated over time. Since the predictability of the excess returns

would imply arbitrage opportunities, such an assumption is plausible. We obtain the

data on the three Fama-French factors from Kenneth French�s website.

Our estimate of q; which is the number of factors whose asymptotic correlation

with the corresponding PC estimate is not zero, equals two. This is consistent with

Bai and Ng (2002) who also detect two pervasive factors in stock returns data. Note

that the fact that q̂ = 2; which is less than the number of the Fama-French factors,

does not by itself invalidates the Fama-French three-factor model. It is possible that
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a particular linear combination of the Fama-French factors is simply not in�uential

enough to be detected from our data.

Let us denote a T � 2 matrix whose columns equal the PC estimates of the

two factors detected from our data as F̂1:2: Further, let the T � 3 matrix of the
Fama-French factors be equal to F �H; where H is an unknown non-singular matrix

de�ned so that F satisfy the factor-normalization Assumption 1 ii). Finally, let P1:2 =

FH (H 0F 0FH)�1H 0F 0F̂1:2 be the liner projection of F̂1:2 on F � H: Note that, since
H is non-singular and since 1

T
F 0F = IT , P 01:2P1:2 = F̂ 01:2F (F

0F )�1 F 0F̂1:2 = T �̂
0
1:2�̂1:2;

where �̂1:2 is as de�ned in Theorem 2.

Our calculations give �̂
0
1:2�̂1:2 =

 
0:916 0:024

0:024 0:441

!
: This means that the Fama-

French factors explain 91.6% of the variation in the PC estimate of the �rst fac-

tor and 44.1% of the variation in the PC estimate of the second factor. Is such

an explanatory power consistent with the null hypothesis that the Fama-French

factors span the space of the true factors? To answer this question, let us note

that tr �̂
0
1:2�̂1:2 =

P3
i=1

P2
j=1 �̂

2

ij �
P2

i=1

P2
j=1 �̂

2

ij so that, for any critical value cp;

Pr
�
tr �̂

0
1:2�̂1:2 � cp

�
� Pr

�P2
i=1

P2
j=1 �̂

2

ij � cp

�
: But the asymptotic distribution

of
P2

i=1

P2
j=1 �̂

2

ij can be estimated from our data as described by Theorem 3, and

the corresponding critical values can be simulated. Hence, rejecting the null when

tr �̂
0
1:2�̂1:2 � cp provides us with a feasible conservative test of the null hypothesis.

We have simulated 10,000 draws from the asymptotic distribution of
P2

i=1

P2
j=1 �̂

2

ij

and estimated the 0.5%, 1% and 5% critical values of the conservative test described

above at c0:005 = 1:702; c0:01 = 1:736 and c0:05 = 1:804: The computed value of

tr �̂
0
1:2�̂1:2 is 1:357; which is smaller than any of the above critical values. Hence, we

reject the null that the Fama-French factors span the space of the true stock return

factors.

There are many possible reasons why the Fama-French factors may be not span-

ning the true factor space. For example, there might exist additional factors such

as Carhart�s (1997) momentum factor. Alternatively, the true factor space may be

three-dimensional, but a more sophisticated procedure than that proposed by Fama

and French should be used to consistently estimate the factor space (see Connor and

Linton (2007) for a recent work exploring such a possibility). The analysis of this

section does not shed light on these issues. Instead, it is meant to illustrate our the-

oretical results and to give the reader an idea of how these results can be used in an
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empirical analysis.

Beside the empirical �nance, our results may potentially be used in the empirical

macroeconomics. For example, obtaining q̂ for di¤erent macroeconomic datasets may

give useful information on how many PC estimates to include into di¤usion index

forecast models or factor-augmented VARs. Interestingly, for the Stock-Watson data,

which is often used in the macroeconomic analysis, q̂ = 2: This �nding may explain

the fact that, although the number of factors estimated from that data is often much

larger than 2, using more than two of the estimated factors for forecasting does not

signi�cantly improve the quality of the forecasts (see �k �xed�panels of Tables 1 and

2 in Stock and Watson, 2002).

For the data used by Boivin et al. (2008) to study the e¤ect of Euro on the

monetary transmission mechanism, we estimate q̂ = 4: Such an estimate provides a

reassuring answer to Uhlig�s (2008) concern that the high explanatory power of the

principal components in Boivin et al. (2008) may be an artifact of the large amount

of the idiosyncratic serial correlation in their data. According to our result, the �rst

four principal components will have genuine explanatory power despite the fact that

the estimated idiosyncratic terms in Boivin et al.�s (2008) are indeed highly serially

correlated.

Since typical macroeconomic data contain idiosyncratic terms that are correlated

both cross-sectionally and over time, the macroeconomic applications that go beyond

estimation of q would call for the extension of Theorems 2 and 3 to the case when

both A and B are non-trivial. Such extensions, although very important, require

substantial changes in the methods used in our proofs. We, therefore, leave them as

exciting topics of future research.

6 Conclusion

In this paper we have introduced a weakly in�uential factor asymptotics framework

which allows us to assess the �nite sample properties of the PC estimator in the

situation when factors�explanatory power does not strongly dominate the explanatory

power of the cross-sectionally and temporally correlated idiosyncratic terms. We have

shown that the principal components estimators of factors and factor loadings are

inconsistent and found explicit formulae for the amount of the inconsistency. For the

special case when there is no temporal correlation in the idiosyncratic terms, we have

35



shown that coe¢ cients in the OLS regressions of the PC estimates of factors on the

true factors are asymptotically normal, and we have found explicit formulae for the

corresponding asymptotic covariance matrix. We have shown how to estimate the

parameters of the derived asymptotic distributions and how to estimate the number

of factors for which the PC estimator does not break down in the sense that the

factors are not orthogonal to their PC estimates asymptotically. Our Monte Carlo

analysis suggests that our asymptotic formulae and estimators work well even for

relatively small n and T: We have applied our theoretical results to the data on the

US excess stock returns, and have rejected a hypothesis that the Fama-French (1993)

factors span the entire factor space of the stock returns.

Many exciting topics are left for future research. Generalizing our asymptotic

distribution results to cases when both cross-sectional and temporal correlation is

present in the idiosyncratic terms is one of them. Another interesting direction of

research is to study the weakly in�uential factor asymptotics of the dynamic principal

components estimator in the generalized dynamic factor model framework developed

by Forni et al. (2000). Perhaps, even more interesting would be developing an

alternative estimation method which would improve on the performance of the PC

estimator in �nite samples with weakly in�uential factors. One alternative to the PC

estimator, which employs maximum likelihood based on Kalman �ltering, has been

recently introduced in Doz et al. (2006). Whether such an alternative is substantially

better than the PC estimator when factors are weakly in�uential remains to be seen.

References

[1] Bai, J. (2003) �Inferential Theory for Factor Models of Large Dimensions�,

Econometrica 71, 135-171.

[2] Bai, J. and Ng, S (2002). �Determining the number of factors in approximate

factor models�, Econometrica, 70, pp 191-221

[3] Bai, J. and S. Ng (2005) �Determining the Number of Factors in Approximate

Factor Models, Errata�, mimeo.

[4] Bai, J. and S. Ng (2008) "Large Dimensional Factor Analysis", Foundations and

Trends in Econometrics: Vol. 3: No 2, pp 89-163.

36



[5] Bekker, P.A. (1994), �Alternative Approximations to the Distribution of Instru-

mental Variables Estimators�, Econometrica, 62, 657-681.

[6] Boivin, J., Giannoni, M.P. and Mojon, B. (2008) �How has the Euro Changed

the monetary Transmission?�, NBER Macroeconomics Annual 23.

[7] Boivin J. and S. Ng (2006) "Are More Data Always Better for Factor Analysis?",

Journal of Econometrics 132, p. 169-194.

[8] Carhart, M.M. (1997). �On the persistence in mutual fund performance�, The

Journal of Finance, 52, pp. 57-82.

[9] Cattell, R. B. (1966) �The Scree Test for the Number of Factors�, Multivariate

Behavioral Research, vol. 1, 245-76.

[10] Chamberlain, G. and Rothschild, M. (1983) �Arbitrage, factor structure, and

mean-variance analysis on large asset markets�, Econometrica, 51, pp.1281-1304.

[11] Connor, G., and O. Linton (2007) �Semiparametric estimation of a characteristic-

based factor model of common stock returns�, Journal of Empirical Finance, 14,

No5, 694-717

[12] Davidson, R. and J. G. MacKinnon (2004) Econometric Theory and Methods,

Oxford University Press, New York, Oxford.

[13] DeMol, C., Giannone, D. and L. Reichlin (2008) �Forecasting using a large num-

ber of predictors: Is Bayesian shrinkage a valid alternative to principal compo-

nents?�, Journal of Econometrics 146, pp. 318-328

[14] Doz, C., Giannone, D. and L. Reichlin (2006) �A quasi maximum likelihood

approach for large approximate dynamic factor models�, manuscript, Universite

Cergy-Pontoise

[15] Fama, Eugene F, French, Kenneth R. (1993). �Common Risk Factors in the

Returns on Stocks and Bonds�, Journal of Financial Economics 33 (1): 3�56.

[16] Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000) �The generalized

dynamic-factor model: identi�cation and estimation�, The Review of Economics

and Statistics 82, pp 540-554.

37



[17] Forni, M. and Lippi, M. (1999) �Aggregation of linear dynamic microeconomic

models�, Journal of Mathematical Economics 31, pp. 131-158

[18] Forni, M. and Lippi, M. (2001) �The generalized dynamic factor model: repre-

sentation theory�, Econometric Theory 17, pp. 1113-1141

[19] Grenander, U. and G. Szegö (1958) Toeplitz Forms and Their Applications.

University of California Press, Berkeley.

[20] Harding, M. (2006) �Structural estimation of high-dimensional factor models�,

unpublished manuscript, Stanford university.

[21] Johnstone, I.M., and A. Y. Lu (2007) �Sparse principal components analysis�,

Journal of the American Statistical Association. To appear.

[22] Marchenko, V.A., and L.A. Pastur (1967) �Distribution of eigenvalues for some

sets of random matrices�, Math. USSR-Sbornik, vol. 1, no. 4, 457-483

[23] McManus, D.A. (1991) �Who Invented Local Power Analysis?�, Econometric

Theory 7, 265-268

[24] Neyman, J. (1937) ��Smooth�Test for Goodness of Fit�, Skandinavisk Aktuar-

ietiskrift 20, 149-199.

[25] Onatski, A. (2009) �Determining the number of factors from the empirical distri-

bution of eigenvalues�, forthcoming in the Review of Economics and Statistics.

[26] Onatski, A., M. Moreira and M. Hallin (2011) �Local asymptotic power of the

eigenvalue-based tests for high-dimensional covariance matrices�, manuscript,

University of Cambridge.

[27] Paul, D. (2007) �Asymptotics of sample eigenstructure for a large dimensional

spiked covariance model�, Statistica Sinica 17, pp. 1617-1642

[28] Reichlin, L. (2003) �Factor models in large cross sections of time series�, in De-

watripont, M., Hansen, P.L. and S. Turnowsky, editors, Advances in Economics

and Econometrics: Theory and Applications, Vol. 11, 8th Wold Congress of the

Econometric Society, Cambridge University Press.

38



[29] Staiger, D., and Stock, J.H. (1997) �Instrumental Variables Regression With

Weak Instruments�, Econometrica, 65, 557-586.

[30] Stock, J. and Watson, M. (2002) �Macroeconomic Forecasting Using Di¤usion

Indexes�, Journal of Business and Economic Statistics, 20, pp. 147-162.

[31] Stock, J. and Watson, M. (2005) �Implications of Dynamic Factor Models for

VAR Analysis�, manuscript, Harvard University.

[32] Stock, J. and M. Watson (2006) Macroeconomic Forecasting Using Many Pre-

dictors, in Graham Elliott, Clive Granger and Allan Timmerman, editors, Hand-

book of Economic Forecasting, North Holland.

[33] Uhlig, H. (2008) �Macroeconomic Dynamics in the Euro Area. Discussion by

Harald Uhlig�, NBER Macroeconomics Annual 23.

[34] Van Loan, C. F. and Pitsianis, N. P. (1993) �Approximation with Kronecker

products�, in M. S. Moonen and G. H. Golub, editors, Linear Algebra for Large

Scale and Real Time Applications, Kluwer Publications, pp. 293�314.

[35] Watson, M.W. (2003) �Macroeconomic Forecasting Using Many Predictors", in

M. Dewatripont, L. Hansen and S. Turnovsky (eds), Advances in Economics and

Econometrics, Theory and Applications, Eight World Congress of the Economet-

ric Society,�Vol. III, page 87-115.

[36] Zhang, L. (2006). Spectral Analysis of Large Dimensional Random Matrices. Ph.

D. Thesis. National University of Singapore.

39


