Appendix to the paper "Determining the Number of Factors from Empirical Distribution of Eigenvalues"

Alexei Onatski

Economics Department, Columbia University

December 31, 2008

Abstract

This technical appendix contains a proof of Lemma 3 of the paper.

To prove Lemma 3, we will need the following Lemmas A1-A4.

Lemma A1. Let F be the cdf of a non-negative random variable with a finite upper boundary of support u(F) and a finite positive expectation E_F . Let m(z) be the Stieltjes transform of F. Then, for any $z \in C^+$ such that |z| > u(F) we have: $|zm(z) + 1| \le \frac{u(F)}{|z| - u(F)}$; and for any $z \in C^+$ such that z = x + iy, where |x| > u(F) + 3y we have: $|zm(z) + 1| \ge \frac{E_F}{4(|z| + u(F))}$.

Proof: For |z| > u(F), we have: $|zm(z) + 1| = \left| \int \left(\frac{z}{\lambda - z} + 1 \right) dF(\lambda) \right| = \left| \int \frac{\lambda}{\lambda - z} dF(\lambda) \right| \le \int \left| \frac{\lambda}{\lambda - z} \right| dF(\lambda) \le \int \frac{\lambda}{|z| - \lambda} dF(\lambda) \le \frac{u(F)}{|z| - u(F)}$, which proves one of the lemma's inequalities. Further, write:

$$zm(z) + 1 = \int \frac{\lambda}{\lambda - z} dF(\lambda) = \int \frac{\lambda (\lambda - x)}{|\lambda - z|^2} dF(\lambda) + i \int \frac{\lambda y}{|\lambda - z|^2} dF(\lambda). \tag{1}$$

Since for any real a and b, $|a+ib|^2=a^2+b^2\geq \frac{1}{2}\left(a+b\right)^2$, we have: $|zm(z)+1|\geq$

 $\frac{1}{\sqrt{2}} \left| \int \frac{\lambda(\lambda - x + y)}{|\lambda - z|^2} dF(\lambda) \right|. \text{ If } x < 0, \text{ then, since for any real and positive } a \text{ and } b, \frac{a + b}{a^2 + b^2} \ge (a^2 + b^2)^{-1/2}, \text{ we have } \frac{\lambda(\lambda - x + y)}{|\lambda - z|^2} \ge \frac{\lambda}{|\lambda - z|}, \text{ and therefore: } |zm(z) + 1| \ge \frac{1}{\sqrt{2}} \int \frac{\lambda}{|\lambda - z|} dF(\lambda) \ge \frac{1}{\sqrt{2}} \int \frac{\lambda}{|z| + \lambda} dF(\lambda) \ge \frac{1}{\sqrt{2}} \int \frac{\lambda}{|z| + u(F)} dF(\lambda) = \frac{E_F}{\sqrt{2}(|z| + u(F))}. \text{ If } x > 0, \text{ then by assumption of the lemma, } x > u(F) + 3y, \text{ which implies that } \frac{1}{2}(x - \lambda - y) > y \text{ and hence, } x - \lambda > y + \frac{1}{2}(x - \lambda + y) \ge y + \frac{1}{2}|\lambda - z| \text{ so that } x - \lambda + y \ge |\lambda - z|. \text{ Therefore: } |zm(z) + 1| \ge \frac{1}{\sqrt{2}} \int \frac{\lambda(x - \lambda - y)}{|\lambda - z|^2} dF(\lambda) \ge \frac{1}{2\sqrt{2}} \int \frac{\lambda}{|\lambda - z|} dF(\lambda) \ge \frac{E_F}{2\sqrt{2}(|z| + u(F))}. \text{ } x$

Lemma A2. Suppose that $u(z), v(z) \in C^+$ are analytic functions satisfying Zhang's system:

$$\begin{cases} zm(z) + 1 = u(z) m_A(u(z)) + 1 \\ zm(z) + 1 = c^{-1} [v(z) m_B(v(z)) + 1] \\ zm(z) + 1 = -c^{-1} \frac{z}{u(z)v(z)} \end{cases}$$
 (2)

Let $U = \{z = x + iy : x > \underline{x} \text{ and } 0 < y < \overline{y}\}$. Then, for any $\underline{x} > u\left(\mathcal{F}^{c,A,B}\right)$, there exists $\overline{y} > 0$ such that for any z from $U : \operatorname{Re} u\left(z\right) > u\left(\mathcal{F}^A\right)$ and $\operatorname{Re} v\left(z\right) > u\left(\mathcal{F}^B\right)$.

Proof: The idea of the proof is as follows. First, using Lemma A1 we prove that for any $\underline{x}>u(F)$ and $\bar{y}>0$, there exists $z_1\in U$ such that $\operatorname{Re} u(z_1)>u(\mathcal{F}^A)$ and $\operatorname{Re} v(z_1)>u(\mathcal{F}^B)$. Then, we assume that Lemma A2 does not hold so that for some $\underline{x}>u(F)$ and any $\bar{y}>0$ there exists $z_2\in U$ such that $\operatorname{Re} u(z_2)\leq u(\mathcal{F}^A)$ or/and $\operatorname{Re} v(z_2)\leq u(\mathcal{F}^B)$. Connecting z_1 and z_2 by a continuous path $z(t)\in U$, we establish the existence of $z_3\in U$ such that $\operatorname{Re} u(z_3)=u(\mathcal{F}^A)$ or/and $\operatorname{Re} v(z_3)=u(\mathcal{F}^B)$. Then, we show that for small enough \bar{y} , $\operatorname{Im}(z_3m(z_3)+1)$ must be smaller than $\operatorname{Im}(u(z_3)m_A(u(z_3))+1)$ or than $c^{-1}\operatorname{Im}(v(z_3)m_B(v(z_3))+1)$, which contradicts the assumption that u(z),v(z) satisfy Zhang's system.

First, we prove the existence of z_1 . The last equation of Zhang's system and the first inequality of Lemma A1 imply that $\left|\frac{z}{uv}\right| \to 0$ as $|z| \to \infty$. Hence, as $|z| \to \infty$, $\max\{|u|,|v|\} \to \infty$. Suppose without loss of generality that $|u| \to \infty$. Let us show that also $|v| \to \infty$. Indeed, from the first equation of Zhang's system |zm(z)+1|=

 $|um_A(u) + 1|$. Therefore, for $z \in U$ with large enough |z|:

$$\frac{E_{\mathcal{F}^{c,A,B}}}{4\left(|z|+u(\mathcal{F}^{c,A,B})\right)} \le |zm\left(z\right)+1| = |um_A\left(u\right)+1| \le \frac{u(\mathcal{F}^A)}{|u|-u\left(\mathcal{F}^A\right)}.$$
 (3)

where the latter inequality is obtained from Lemma A1 applied to $um_A(u)+1$. This implies that $\liminf_{|z|\to\infty}\left|\frac{z}{u}\right|>0$, for $z\in U$. However, since $\left|\frac{z}{uv}\right|=c\left|zm\left(z\right)+1\right|\leq \frac{cu\left(\mathcal{F}^{c,A,B}\right)}{(|z|-u(\mathcal{F}^{c,A,B}))}\to 0$, we must have $|v|\to\infty$. Hence, as $|z|\to\infty$ so that z remains in U, both $|u|\to\infty$ and $|v|\to\infty$. Let us prove that $\operatorname{Re} u\to\infty$ and $\operatorname{Re} v\to\infty$.

First, notice that for $z \in U$:

$$\operatorname{Im}\left(zm(z)+1\right)<\bar{y}\int\frac{\lambda}{\left|\lambda-z\right|^{2}}d\mathcal{F}^{c,A,B}(\lambda)\leq\frac{\bar{y}E_{\mathcal{F}^{c,A,B}}}{\left(x-u\left(\mathcal{F}^{c,A,B}\right)\right)^{2}}.\tag{4}$$

Further, $\operatorname{Im}\left(-\frac{z}{uv}\right) = \frac{x\operatorname{Im}(uv) - y\operatorname{Re}(uv)}{|uv|^2}$. Therefore, since Zhang's third equation is $zm(z) + 1 = -c^{-1}\frac{z}{uv}$, we have: $\frac{x\operatorname{Im}(uv) - y\operatorname{Re}(uv)}{|uv|^2} \leq c\frac{\bar{y}E_{\mathcal{F}^c,A,B}}{(x-u(\mathcal{F}^{c,A,B}))^2}$. Hence, for $z \in U$, where $\bar{y} \leq \frac{x-u(\mathcal{F}^{c,A,B})}{3}$, we have:

$$\frac{\operatorname{Im}(uv)}{|uv|} \leq \frac{|uv|}{x} \frac{c\bar{y}E_{\mathcal{F}^{c,A,B}}}{(x-u(\mathcal{F}^{c,A,B}))^2} + \frac{y\operatorname{Re}(uv)}{x|uv|} \leq \frac{\bar{y}}{u(\mathcal{F}^{c,A,B})} \left(\left| \frac{cuv}{z^2} \right| \frac{E_{\mathcal{F}^{c,A,B}}(x^2+\bar{y}^2)}{(x-u(\mathcal{F}^{c,A,B}))^2} + 1 \right).$$

Now, the third equation of (2) and the second inequality of Lemma A1 imply that $\left|\frac{cuv}{z^2}\right| = \left|\frac{1}{z(zm(z)+1)}\right| \leq \frac{4\left(|z|+u(\mathcal{F}^{c,A,B})\right)}{|z|E_{\mathcal{F}^{c,A,B}}} \leq \frac{8}{E_{\mathcal{F}^{c,A,B}}}$. Therefore, $\frac{\text{Im}(uv)}{|uv|} \leq \frac{\bar{y}}{u(\mathcal{F}^{c,A,B})} \left(\frac{\underline{x}^2+\bar{y}^2}{8(\underline{x}-u(\mathcal{F}^{c,A,B}))^2}+1\right)$. Noting that $\frac{\text{Im}\,u}{|u|} \leq \frac{\text{Im}(uv)}{|uv|}$, we have:

$$\frac{\operatorname{Im} u}{|u|} \le \frac{\bar{y}}{u(\mathcal{F}^{c,A,B})} \left(\frac{(\underline{x}^2 + \bar{y}^2)}{8(\underline{x} - u(\mathcal{F}^{c,A,B}))^2} + 1 \right)$$
(5)

for $z \in U$, where $\bar{y} \leq \frac{\underline{x} - u\left(\mathcal{F}^{c,A,B}\right)}{3}$. The same inequality also holds for $\frac{\operatorname{Im} v}{|v|}$.

Inequality (5) and the fact that $|u| \to \infty$ imply that $|\operatorname{Re} u| \to \infty$ as $|z| \to \infty$ while z remains in U. Similarly, $|\operatorname{Re} v| \to \infty$. But $\operatorname{Re} u$ and $\operatorname{Re} v$ must be positive for $z \in U$ when

|z| is large enough. Indeed, (1) implies that $\operatorname{Re}(zm(z)+1)<0$. Hence, from the first equation of Zhang, $\operatorname{Re}(um_A(u)+1)<0$. But from (1) applied to $um_A(u)+1$ and the fact that $|\operatorname{Re} u|\to\infty$, $\operatorname{Re}(um_A(u)+1)$ must be of the same sign as $-\operatorname{Re} u$ for |z| large enough. Hence, $\operatorname{Re} u\to+\infty$ as $|z|\to\infty$ while z remains in U. Similarly, $\operatorname{Re} v\to+\infty$ as $|z|\to\infty$ while z remains in z0. This proves the existence of z1 z1 z2 z3 with properties outlined above.

Assuming that Lemma A2 does not hold, the existence of z_3 follows from the fact that u(z) and v(z) are analytic, and hence continuous, functions of z. Suppose without loss of generality that $\operatorname{Re} u(z_3) = u(\mathcal{F}^A)$. Let us finish the proof of the lemma by comparing $\operatorname{Im}(z_3m(z_3)+1)$ with $\operatorname{Im}(u(z_3)m_A(u(z_3))+1)$ when \bar{y} is small. By assumption that $\lim\inf_{\delta\to 0}\frac{1}{\delta}\int_{|\lambda-u(\mathcal{F}^A)|\leq \delta}\lambda d\mathcal{F}^A(\lambda)=k^A>0$, for u(z) such that $\operatorname{Re} u=u(\mathcal{F}^A)$ and $\operatorname{Im} u$ is small enough, we have:

$$\operatorname{Im}(um_{A}(u) + 1) = \int \frac{\lambda \operatorname{Im} u}{(\lambda - u(\mathcal{F}^{A}))^{2} + (\operatorname{Im} u)^{2}} d\mathcal{F}^{A}(\lambda)$$

$$\geq \frac{1}{2 \operatorname{Im} u} \int_{|\lambda - u(\mathcal{F}^{A})| \leq \operatorname{Im} u} \lambda d\mathcal{F}^{A}(\lambda) \geq \frac{k^{A}}{2} > 0.$$
(6)

From (6) and (5), we can choose \bar{y} small enough so that $\text{Im}(u(z_3) m_A(u(z_3)) + 1) \ge \frac{k^A}{2}$. On the other hand, from the first equation of Zhang, $u(z_3) m_A(u(z_3)) + 1 = z_3 m(z_3) + 1$ and hence $\text{Im}(z_3 m(z_3) + 1) \ge \frac{k^A}{2}$. But from (4) we know that for small enough \bar{y} , $\text{Im}(z_3 m(z_3) + 1)$ must be smaller than $\frac{k^A}{2}$. We have got a contradiction, which implies that the statement of Lemma A2 holds. \mathbb{Z}

Lemma A3. For any real $x>u\left(\mathcal{F}^{c,A,B}\right)$, there exist real limits $u(x)\equiv\lim_{z\in\mathbb{C}^+,z\to x}u(z)$ and $v\left(x\right)\equiv\lim_{z\in\mathbb{C}^+,z\to x}v(z)$. Functions u(x) and v(x) satisfy the limit version of Zhang's

system:

$$\begin{cases} xm(x) + 1 = um_A(u) + 1 \\ xm(x) + 1 = c^{-1}(vm_B(v) + 1) , \\ xm(x) + 1 = -c^{-1}\frac{x}{uv} \end{cases}$$
 (7)

are analytic and such that $\lim_{x\to\infty} u(x) = \lim_{x\to\infty} v(x) = \infty$.

Proof: Let $G=\left\{z\in \mathsf{C}^+: u(\mathcal{F}^{c,A,B})<\underline{x}\leq \operatorname{Re} z\leq \bar{x}<\infty, 0<\operatorname{Im} z<\bar{y}<\infty\right\}$. Then $\sup_{z\in G}\max\left(|u(z)|,|v(z)|\right)<\infty$. Had this been not true, there would have existed a sequence $\{z_n\}\in G$ such that $|u(z_n)|\to\infty$ or $|v(z_n)|\to\infty$. Without loss of generality, let $|u(z_n)|\to\infty$. Lemma A1 then would imply that $|u(z_n)|_{M_A}\left(u(z_n)\right)+1|\to 0$, and hence, from Zhang's first equation, $|z_nm(z_n)+1|\to 0$. But, as follows from (1), $|\operatorname{Re}\left(z_nm(z_n)+1\right)|\geq \frac{E_F(\underline{x}-u(F))}{\bar{x}^2+\bar{y}^2}>0$, which gives a contradiction.

Since $\sup_{z\in G}\max\left(|u(z)|,|v\left(z\right)|\right)<\infty$, inequality (5) and a similar inequality for $\frac{\operatorname{Im} v}{|v|}$ imply that for any sequence $\{z_n\}\in G$ such that $z_n\to x\in R$ the concentration points of $\{u\left(z_n\right)\}$ and $\{v\left\{z_n\right\}\}$ must be real. Suppose that there exist subsequences of $z_n,\{z_i\}$ and $\{z_j\}$, such that $u\left(z_i\right)\to u_1\in R$ and $u\left(z_j\right)\to u_2\in R$ and $u_1\neq u_2$. By Lemma A2, $u_1\geq u\left(\mathcal{F}^A\right)$ and $u_2\geq u\left(\mathcal{F}^A\right)$. If $u_1=u\left(\mathcal{F}^A\right)$, then using inequalities similar to (6), we find that $\operatorname{Im}(u\left(z_i\right)m_A\left(u\left(z_i\right))+1\right)\geq \frac{k^A}{2}$ for large enough i, which cannot be the case because $\operatorname{Im}(u\left(z_i\right)m_A\left(u\left(z_i\right))+1\right)=\operatorname{Im}\left(z_im\left(z_i\right)+1\right)\to 0$ as $i\to\infty$. Hence, $u_1>u\left(\mathcal{F}^A\right)$. Similarly, $u_2>u\left(\mathcal{F}^A\right)$.

Since m(x) exists and is continuous for $x>u\left(\mathcal{F}^{c,A,B}\right)$, we have: $\lim_{z_n\to x}(z_nm(z_n)+1)=xm(x)+1$. Since $m_A(u)$ exists and is continuous for $u>u\left(\mathcal{F}^A\right)$, we have: $\lim_{z_i\to x}(u\left(z_i\right)m_A\left(u\left(z_i\right))+1)=u_1m_A(u_1)+1$ and $\lim_{z_j\to x}(u\left(z_j\right)m_A\left(u\left(z_j\right))+1)=u_2m_A(u_2)+1$. The first equation of Zhang's system implies that we must have:

$$xm(x) + 1 = u_1m_A(u_1) + 1 = u_2m_A(u_2) + 1.$$

But this is not possible with $u_1 \neq u_2$ such that $u_1 > u\left(\mathcal{F}^A\right)$ and $u_2 > u\left(\mathcal{F}^A\right)$ because function $um_A\left(u\right) + 1$ is strictly increasing for $u > u\left(\mathcal{F}^A\right)$. Hence, there exists only one concentration point of $\{u\left(z_n\right)\}$, that is there exists a real limit $u(x) \equiv \lim_{z \in \mathbb{C}^+, z \to x} u(z)$. Similarly, there exists a real limit $v(x) \equiv \lim_{z \in \mathbb{C}^+, z \to x} v(z)$.

That u(x) and v(x) satisfy the limit version of Zhang's system follows from the existence and continuity of $m_A(u)$ for $|u| > u\left(\mathcal{F}^A\right)$ and from the existence and continuity of $m_B(v)$ for $|v| > u\left(\mathcal{F}^B\right)$. The analyticity of u(x) follows from the analyticity of $F(x,u) \equiv xm(x) + 1 - (um_A(u) + 1)$ for $x > u\left(\mathcal{F}^{c,A,B}\right)$ and $u > u\left(\mathcal{F}^A\right)$ and from the implicit function theorem. Similarly, the analyticity of v(x) follows from the analyticity of $F(x,v) \equiv xm(x) + 1 - c^{-1}\left(vm_B(v) + 1\right)$ for $x > u\left(\mathcal{F}^{c,A,B}\right)$ and $y > u\left(\mathcal{F}^B\right)$ and from the implicit function theorem. Finally, (7) implies that as $x \to \infty$, $y = u(x) + 1 \to 0$ and $y = u(x) + 1 \to 0$, which can be the case only when $\lim_{x \to \infty} u(x) = \lim_{x \to \infty} v(x) = \infty$.

Lemma A4. For $x > u(\mathcal{F}^{c,A,B})$, the following system

$$\begin{cases} v = x \left(c \int \frac{\lambda u}{u - \lambda} d\mathcal{F}_A(\lambda) \right)^{-1} \\ u = x \left(\int \frac{\lambda v}{v - \lambda} d\mathcal{F}_B(\lambda) \right)^{-1} \end{cases}$$
 (8)

has exactly two solutions (u_1, v_1) and (u_2, v_2) such that $u_i > u\left(\mathcal{F}^A\right)$ and $v_i > u\left(\mathcal{F}^B\right)$ for i = 1, 2. For $x = u\left(\mathcal{F}^{c,A,B}\right)$ and for $x < u(\mathcal{F}^{c,A,B})$, the system has only one such solution and no such solutions, respectively

Proof: For any $x>u\left(\mathcal{F}^{c,A,B}\right)$, one solution to (8) satisfying $u(x)>u\left(\mathcal{F}^{A}\right)$ and $v\left(x\right)>u\left(\mathcal{F}^{B}\right)$ is given by u(x) and v(x) defined in Lemma A3. That such u(x) and v(x) indeed provide a solution to (8) follows from the fact that (8) can be obtained from (7) by substituting the third equation into the first two. Let us now show that for $x>u(\mathcal{F}^{c,A,B})$, there exists another solution to (8).

First, note that $x\left(c\int \frac{\lambda u}{u-\lambda} dF_A(\lambda)\right)^{-1}$ as a function of $u>u\left(\mathcal{F}^A\right)$ is concave, tends to zero as $u\downarrow u\left(\mathcal{F}_A\right)$ and to $x\left(cE_A\right)^{-1}$ as $u\to\infty$. The concavity follows from the expression

 $\frac{d^2}{du^2}x\left(c\int\frac{\lambda u}{u-\lambda}d\mathcal{F}_A(\lambda)\right)^{-1}=2xc^{-1}\left(\int\frac{\lambda u}{u-\lambda}d\mathcal{F}_A(\lambda)\right)^{-3}\cdot\left(\left(\int\frac{\lambda^2}{(u-\lambda)^2}d\mathcal{F}_A(\lambda)\right)^2-\left(\int\frac{\lambda^2}{(u-\lambda)^3}d\mathcal{F}_A(\lambda)\right)\left(E_A+\int\frac{\lambda^2}{u-\lambda}d\mathcal{F}_A(\lambda)\right)\right) \text{ and the Cauchy inequality }\int\frac{\lambda}{(u-\lambda)^{3/2}}\frac{\lambda}{(u-\lambda)^{1/2}}d\mathcal{F}_A(\lambda)\leq \left(\int\frac{\lambda^2}{(u-\lambda)^3}d\mathcal{F}_A(\lambda)\right)^{1/2}\left(\int\frac{\lambda^2}{u-\lambda}d\mathcal{F}_A(\lambda)\right)^{1/2}.$ The tendency to zero follows from the fact that $c\int\frac{\lambda u}{u-\lambda}d\mathcal{F}_A(\lambda)\to\infty \text{ as }u\downarrow u\left(\mathcal{F}_A\right), \text{ which is easy to show using the monotone convergence}$ theorem and assumption $\liminf_{\delta\to0}\frac{1}{\delta}\int_{|\lambda-u(\mathcal{F}^A)|\leq\delta}\lambda d\mathcal{F}^A(\lambda)=k^A>0.$ Finally, the convergence to $x\left(cE_A\right)^{-1}$ as $u\to\infty$ is obvious. Similarly, $x\left(\int\frac{\lambda v}{v-\lambda}d\mathcal{F}_B(\lambda)\right)^{-1}$ as a function of $v>u\left(\mathcal{F}^B\right)$ is concave, tends to zero as $v\downarrow u\left(\mathcal{F}_B\right)$ and to $x\left(cE_B\right)^{-1}$ as $v\to\infty$.

The above properties of $x\left(c\int\frac{\lambda u}{u-\lambda}d\mathcal{F}_A(\lambda)\right)^{-1}$ and $x\left(\int\frac{\lambda v}{v-\lambda}d\mathcal{F}_B(\lambda)\right)^{-1}$ imply that the curves in the $\{u>u\left(\mathcal{F}_A\right),v>v\left(\mathcal{F}_B\right)\}$ subset of the (u,v)-plane defined by (8) are either intersecting at two points, touching at a single point, or having no common points. Since there exists a solution to (8) for any $x>u\left(\mathcal{F}^{c,A,B}\right)$ and since $x\left(c\int\frac{\lambda u}{u-\lambda}d\mathcal{F}_A(\lambda)\right)^{-1}$ and $x\left(\int\frac{\lambda v}{v-\lambda}d\mathcal{F}_B(\lambda)\right)^{-1}$ are monotone increasing in x, the curves must intersect at two points for any $x>u\left(\mathcal{F}^{c,A,B}\right)$. Let us show that the curves are touching at a single point when $x=u\left(\mathcal{F}^{c,A,B}\right)$.

Suppose the curves intersect at two points (u_1,v_1) and (u_2,v_2) when $x=u\left(\mathcal{F}^{c,A,B}\right)$. Let $u_2>u_1$ and $v_2>v_1$. Define $f_1(x,u,v)=x+cuv\left(um_A\left(u\right)+1\right)$ and $f_2\left(x,u,v\right)=x+uv\left(vm_B\left(v\right)+1\right)$. Note that system (8) is equivalent to $f_i\left(x,u,v\right)=0$ for i=1,2. It is straightforward to check that the assumption of the proper intersection of the curves (not just a tangency at one point) is equivalent to $\det\begin{pmatrix} \frac{\partial f_1}{\partial u} & \frac{\partial f_1}{\partial v} \\ \frac{\partial f_2}{\partial u} & \frac{f_2}{\partial v} \end{pmatrix} \neq 0$ at any of the two intersection points. Then the implicit function theorem (see Krantz (1992), Theorem 1.4.11) implies that there exist holomorphic functions $u\left(z\right),v\left(z\right)$ defined in an open neighborhood of $z=u\left(\mathcal{F}^{c,A,B}\right)$ in C, which satisfy $f_i\left(z,u,v\right)=0$ for i=1,2. To each of the two intersection points, there will correspond its own set of holomorphic functions $u\left(z\right),v\left(z\right)$. We will consider the functions $u\left(z\right)$ and $v\left(z\right)$ corresponding to $u\left(z,v_2\right)$. For such a choice, it is straightforward to check that $\frac{d}{d(\operatorname{Re}z)}\operatorname{Re}u\left(z\right)>0$ and $\frac{d}{d(\operatorname{Re}z)}\operatorname{Re}v\left(z\right)>0$

at
$$z = u\left(\mathcal{F}^{c,A,B}\right)$$
.

Furthermore, using identities $f_i(z,u(z),v(z))=0$ for i=1,2 it is straightforward to check that in a small enough neighborhood of $z=u\left(\mathcal{F}^{c,A,B}\right)$ in C, $\operatorname{Im} z>0$ implies that $\operatorname{Im} u(z)$ and $\operatorname{Im} v(z)$ are of the same sign and are not equal to zero. Cauchy-Riemann equations for holomorphic functions imply that $\frac{d}{d(\operatorname{Im} z)}\operatorname{Im} u(z)=\frac{d}{d(\operatorname{Re} z)}\operatorname{Re} u(z)>0$ and $\frac{d}{d(\operatorname{Im} z)}\operatorname{Im} v(z)=\frac{d}{d(\operatorname{Re} z)}\operatorname{Re} v(z)>0$ at $z=u\left(\mathcal{F}^{c,A,B}\right)$. Hence, $\operatorname{Im} u(z)$ and $\operatorname{Im} v(z)$ are positive when $\operatorname{Im} z$ is positive and z lies in a small enough complex neighborhood of $u\left(\mathcal{F}^{c,A,B}\right)$. Let us define $m(z)=-\frac{c^{-1}}{u(z)v(z)}-\frac{1}{z}$. Clearly, for z in the small complex neighborhood of $u\left(\mathcal{F}^{c,A,B}\right)$, $\operatorname{Im} m(z)>0$.

Zhang shows that for any $z \in C^+$, there is only one solution to (2) such that m,u and v belong to C^+ . Hence, u(z),v(z), and m(z) defined above constitute the solution to Zhang's system (2) for z in a small neighborhood of $u\left(\mathcal{F}^{c,A,B}\right)$ and such that $\mathrm{Im}\,z>0$. Finally, for any real x which belongs to the neighborhood of $u(\mathcal{F}^{c,A,B})$, we have: $\mathrm{lim}_{z\to x}\,\mathrm{Im}\,m(z)=\mathrm{lim}_{z\to x}\,\mathrm{Im}\left(-\frac{c^{-1}}{u(z)v(z)}-\frac{1}{z}\right)=0$. Thus, using the Frobenius-Perron inversion formula, we get $\int_{u(\mathcal{F}^{c,A,B})-\delta}^{u(\mathcal{F}^{c,A,B})}dF(\lambda)=0$ for small positive δ , which is impossible by definition of $u(\mathcal{F}^{c,A,B})$. Hence, the curves are touching at a single point when $x=u\left(\mathcal{F}^{c,A,B}\right)$. This implies that they do not intersect when $x< u(\mathcal{F}^{c,A,B})$.

Now we are ready to prove Lemma 3.

Proof of Lemma 3: Recall that by assumption, $\mathcal{F}^{AA'}$ almost surely weakly converges to \mathcal{F}_A and $u\left(\mathcal{F}^{AA'}\right) \to u\left(\mathcal{F}_A\right)$. Similarly, $\mathcal{F}^{BB'}$ almost surely weakly converges to \mathcal{F}_B and $u\left(\mathcal{F}^{BB'}\right) \to u\left(\mathcal{F}_B\right)$. These facts imply that if the curves in the $\{u>u\left(\mathcal{F}_A\right), v>v\left(\mathcal{F}_B\right)\}$ subset of the (u,v)-plane defined by (8) intersect at zero, or at two points, then the curves in the $\{u>u\left(\mathcal{F}^{AA'}\right), v>v\left(\mathcal{F}^{BB'}\right)\}$ subset of the (u,v)-plane defined by $\begin{cases} v=x\left(c_n\int\frac{\lambda u}{u-\lambda}d\mathcal{F}^{AA'}(\lambda)\right)^{-1} & \text{also intersect at zero, or at two points for large enough } u=x\left(\int\frac{\lambda v}{v-\lambda}d\mathcal{F}^{BB'}(\lambda)\right)^{-1} & \text{also intersect at zero, or at two points for large enough } n.$ Therefore, by Lemma A4, $u\left(\mathcal{F}^{c_n,A_n,B_n}\right)$ converges to $u\left(\mathcal{F}^{c,A,B}\right)$ and Lemma 3 follows

from Lemma 2. ¤

References

[1] Krantz, S. G. (1992) Function theory of several complex variables. Second Edition.

AMS Chelsea Publishing. Providence, Rhode Island.