A ppendix to the paper "Determining the Number of Factors from Empirical Distribution of Eigenvalues"

Alexei Onatski
Economics Department, Columbia University

December 31, 2008

A bstract

This technical appendix contains a proof of Lemma 3 of the paper.

To prove Lemma 3, we will need the following Lemmas A 1-A 4.
Lemma A 1. Let F be the cdf of a non-negative random variable with a finite upper boundary of support $u(F)$ and a finite positive expectation E_{F}. Let $m(z)$ be the Stieltjes transform of F. Then, for any $z \in \mathrm{C}^{+}$such that $|z|>u(F)$ we have: $|z m(z)+1| \leq$ $\frac{u(F)}{|z|-u(F)}$; and for any $z \in \mathrm{C}^{+}$such that $z=x+i y$, where $|x|>u(F)+3 y$ we have: $|z m(z)+1| \geq \frac{E_{F}}{4(|z|+u(F))}$.

Proof: For $|z|>u(F)$, we have: $|z m(z)+1|=\left|\int\left(\frac{z}{\lambda-z}+1\right) d F(\lambda)\right|=\left|\int \frac{\lambda}{\lambda-z} d F(\lambda)\right| \leq$ $\int\left|\frac{\lambda}{\lambda-z}\right| d F(\lambda) \leq \int \frac{\lambda}{|z|-\lambda} d F(\lambda) \leq \frac{u(F)}{|z|-u(F)}$, which proves one of the lemma's inequalities. Further, write:

$$
\begin{equation*}
z m(z)+1=\int \frac{\lambda}{\lambda-z} d F(\lambda)=\int \frac{\lambda(\lambda-x)}{|\lambda-z|^{2}} d F(\lambda)+i \int \frac{\lambda y}{|\lambda-z|^{2}} d F(\lambda) . \tag{1}
\end{equation*}
$$

Since for any real a and $b,|a+i b|^{2}=a^{2}+b^{2} \geq \frac{1}{2}(a+b)^{2}$, we have: $|z m(z)+1| \geq$
$\frac{1}{\sqrt{2}}\left|\int \frac{\lambda(\lambda-x+y)}{|\lambda-z|^{2}} d F(\lambda)\right|$. If $x<0$, then, since for any real and positive a and $b, \frac{a+b}{a^{2}+b^{2}} \geq$ $\left(a^{2}+b^{2}\right)^{-1 / 2}$, we have $\frac{\lambda(\lambda-x+y)}{|\lambda-z|^{2}} \geq \frac{\lambda}{|\lambda-z|}$, and therefore: $|z m(z)+1| \geq \frac{1}{\sqrt{2}} \int \frac{\lambda}{|\lambda-z|} d F(\lambda) \geq$ $\frac{1}{\sqrt{2}} \int \frac{\lambda}{|z|+\lambda} d F(\lambda) \geq \frac{1}{\sqrt{2}} \int \frac{\lambda}{|z|+u(F)} d F(\lambda)=\frac{E_{F}}{\sqrt{2}|z|+u(F))}$. If $x>0$, then by assumption of the lemma, $x>u(F)+3 y$, which implies that $\frac{1}{2}(x-\lambda-y)>y$ and hence, $x-\lambda>$ $y+\frac{1}{2}(x-\lambda+y) \geq y+\frac{1}{2}|\lambda-z|$ so that $x-\lambda+y \geq|\lambda-z|$. Therefore: $|z m(z)+1| \geq$ $\frac{1}{\sqrt{2}} \int \frac{\lambda(x-\lambda-y)}{|\lambda-z|^{2}} d F(\lambda) \geq \frac{1}{2 \sqrt{2}} \int \frac{\lambda}{|\lambda-z|} d F(\lambda) \geq \frac{E_{F}}{2 \sqrt{2}(|z|+u(F))}$.

Lemma A 2. Suppose that $u(z), v(z) \in \mathrm{C}^{+}$are analytic functions satisfying Zhang's system:

$$
\left\{\begin{array}{l}
z m(z)+1=u(z) m_{A}(u(z))+1 \tag{2}\\
z m(z)+1=c^{-1}\left[v(z) m_{B}(v(z))+1\right] \\
z m(z)+1=-c^{-1} \frac{z}{u(z) v(z)}
\end{array}\right.
$$

Let $U=\{z=x+i y: x>\underline{x}$ and $0<y<\bar{y}\}$. Then, for any $\underline{x}>u\left(\mathcal{F}^{c, A, B}\right)$, there exists $\bar{y}>0$ such that for any z from $U: \operatorname{Re} u(z)>u\left(\mathcal{F}^{A}\right)$ and $\operatorname{Re} v(z)>u\left(\mathcal{F}^{B}\right)$.

Proof: The idea of the proof is as follows. First, using Lemma A1 we prove that for any $\underline{x}>u(F)$ and $\bar{y}>0$, there exists $z_{1} \in U$ such that $\operatorname{Re} u\left(z_{1}\right)>u\left(\mathcal{F}^{A}\right)$ and $\operatorname{Re} v\left(z_{1}\right)>u\left(\mathcal{F}^{B}\right)$. Then, we assume that Lemma A 2 does not hold so that for some $\underline{x}>$ $u(F)$ and any $\bar{y}>0$ there exists $z_{2} \in U$ such that $\operatorname{Re} u\left(z_{2}\right) \leq u\left(\mathcal{F}^{A}\right)$ or/and $\operatorname{Re} v\left(z_{2}\right) \leq$ $u\left(\mathcal{F}^{B}\right)$. Connecting z_{1} and z_{2} by a continuous path $z(t) \in U$, we establish the existence of $z_{3} \in U$ such that $\operatorname{Re} u\left(z_{3}\right)=u\left(\mathcal{F}^{A}\right)$ or/ and $\operatorname{Re} v\left(z_{3}\right)=u\left(\mathcal{F}^{B}\right)$. Then, we show that for small enough $\bar{y}, \operatorname{Im}\left(z_{3} m\left(z_{3}\right)+1\right)$ must be smaller than $\operatorname{Im}\left(u\left(z_{3}\right) m_{A}\left(u\left(z_{3}\right)\right)+1\right)$ or than $c^{-1} \operatorname{Im}\left(v\left(z_{3}\right) m_{B}\left(v\left(z_{3}\right)\right)+1\right)$, which contradicts the assumption that $u(z), v(z)$ satisfy Zhang's system.

First, we prove the existence of z_{1}. The last equation of Zhang's system and the first inequality of Lemma A1 imply that $\left|\frac{z}{u v}\right| \rightarrow 0$ as $|z| \rightarrow \infty$. Hence, as $|z| \rightarrow \infty$, $\max \{|u|,|v|\} \rightarrow \infty$. Suppose without loss of generality that $|u| \rightarrow \infty$. Let us show that also $|v| \rightarrow \infty$. Indeed, from the first equation of Zhang's system $|z m(z)+1|=$
$\left|u m_{A}(u)+1\right|$. Therefore, for $z \in U$ with large enough $|z|$:

$$
\begin{equation*}
\frac{E_{\mathcal{F}^{c}, A, B}}{4\left(|z|+u\left(\mathcal{F}^{c, A, B}\right)\right)} \leq|z m(z)+1|=\left|u m_{A}(u)+1\right| \leq \frac{u\left(\mathcal{F}^{A}\right)}{|u|-u\left(\mathcal{F}^{A}\right)} \tag{3}
\end{equation*}
$$

where the latter inequality is obtained from Lemma A 1 applied to $u m_{A}(u)+1$. This implies that $\liminf _{|z| \rightarrow \infty}\left|\frac{z}{u}\right|>0$, for $z \in U$. However, since $\left|\frac{z}{u v}\right|=c|z m(z)+1| \leq \frac{c u\left(\mathcal{F}^{c, A, B}\right)}{\left(|z|-u\left(\mathcal{F}^{c, A, B}\right)\right)} \rightarrow$ 0 , we must have $|v| \rightarrow \infty$. Hence, as $|z| \rightarrow \infty$ so that z remains in U, both $|u| \rightarrow \infty$ and $|v| \rightarrow \infty$. Let us prove that $\operatorname{Re} u \rightarrow \infty$ and $\operatorname{Re} v \rightarrow \infty$.

First, notice that for $z \in U$:

$$
\begin{equation*}
\operatorname{Im}(z m(z)+1)<\bar{y} \int \frac{\lambda}{|\lambda-z|^{2}} d \mathcal{F}^{c, A, B}(\lambda) \leq \frac{\bar{y} E_{\mathcal{F}^{c, A, B}}}{\left(x-u\left(\mathcal{F}^{c, A, B}\right)\right)^{2}} \tag{4}
\end{equation*}
$$

Further, $\operatorname{Im}\left(-\frac{z}{u v}\right)=\frac{x \operatorname{Im}(u v)-y \operatorname{Re}(u v)}{|u v|^{2}}$. Therefore, since Zhang's third equation is $z m(z)+$ $1=-c^{-1} \frac{z}{u v}$, we have: $\frac{x \operatorname{Im}(u v)-y \operatorname{Re}(u v)}{|u v|^{2}} \leq c \frac{\bar{y} E_{\mathcal{F} c, A, B}}{(x-u(\mathcal{F} c, A, B))^{2}}$. Hence, for $z \in U$, where $\bar{y} \leq$ $\frac{x-u\left(\mathcal{F}^{c, A, B}\right)}{3}$, we have:

$$
\frac{\operatorname{Im}(u v)}{|u v|} \leq \frac{|u v|}{x} \frac{c \bar{y} E_{\mathcal{F}^{c, A, B}}}{\left(x-u\left(\mathcal{F}^{c, A, B}\right)\right)^{2}}+\frac{y \operatorname{Re}(u v)}{x|u v|} \leq \frac{\bar{y}}{u\left(\mathcal{F}^{c, A, B}\right)}\left(\left|\frac{c u v}{z^{2}}\right| \frac{E_{\mathcal{F}^{c}, A, B}\left(x^{2}+\bar{y}^{2}\right)}{\left(x-u\left(\mathcal{F}^{c, A, B}\right)\right)^{2}}+1\right) .
$$

Now, the third equation of (2) and the second inequality of Lemma A 1 imply that $\left|\frac{c u v}{z^{2}}\right|=$ $\left|\frac{1}{z(z m(z)+1)}\right| \leq \frac{4\left(|z|+u\left(\mathcal{F}^{c, A, B}\right)\right)}{|z| E_{\mathcal{F} c, A, B}} \leq \frac{8}{E_{\mathcal{F} c, A, B}}$. Therefore, $\frac{\operatorname{Im}(u v)}{|u v|} \leq \frac{\bar{y}}{u\left(\mathcal{F}^{c}, A, B\right)}\left(\frac{\underline{x}^{2}+\bar{y}^{2}}{8(\underline{x}-u(\mathcal{F} c, A, B))^{2}}+1\right)$. Noting that $\frac{\operatorname{Im} u}{|u|} \leq \frac{\operatorname{Im}(u v)}{|u v|}$, we have:

$$
\begin{equation*}
\frac{\operatorname{Im} u}{|u|} \leq \frac{\bar{y}}{u\left(\mathcal{F}^{c, A, B}\right)}\left(\frac{\left(\underline{x}^{2}+\bar{y}^{2}\right)}{8\left(\underline{x}-u\left(\mathcal{F}^{c, A, B}\right)\right)^{2}}+1\right) \tag{5}
\end{equation*}
$$

for $z \in U$, where $\bar{y} \leq \frac{x-u\left(\mathcal{F}^{c}, A, B\right)}{3}$. The same inequality also holds for $\frac{\operatorname{Im} v}{|v|}$.
Inequality (5) and the fact that $|u| \rightarrow \infty$ imply that $|\operatorname{Re} u| \rightarrow \infty$ as $|z| \rightarrow \infty$ while z remains in U. Similarly, $|\operatorname{Re} v| \rightarrow \infty$. But $\operatorname{Re} u$ and $\operatorname{Re} v$ must be positive for $z \in U$ when
$|z|$ is large enough. Indeed, (1) implies that $\operatorname{Re}(z m(z)+1)<0$. Hence, from the first equation of Zhang, $\operatorname{Re}\left(u m_{A}(u)+1\right)<0$. But from (1) applied to $u m_{A}(u)+1$ and the fact that $|\operatorname{Re} u| \rightarrow \infty, \operatorname{Re}\left(u m_{A}(u)+1\right)$ must be of the same sign as $-\operatorname{Re} u$ for $|z|$ large enough. Hence, $\operatorname{Re} u \rightarrow+\infty$ as $|z| \rightarrow \infty$ while z remains in U. Similarly, $\operatorname{Re} v \rightarrow+\infty$ as $|z| \rightarrow \infty$ while z remains in U. This proves the existence of $z_{1} \in U$ with properties outlined above.

Assuming that Lemma A2 does not hold, the existence of z_{3} follows from the fact that $u(z)$ and $v(z)$ are analytic, and hence continuous, functions of z. Suppose without loss of generality that $\operatorname{Re} u\left(z_{3}\right)=u\left(\mathcal{F}^{A}\right)$. Let us finish the proof of the lemma by comparing $\operatorname{Im}\left(z_{3} m\left(z_{3}\right)+1\right)$ with $\operatorname{Im}\left(u\left(z_{3}\right) m_{A}\left(u\left(z_{3}\right)\right)+1\right)$ when \bar{y} is small. By assumption that $\liminf _{\delta \rightarrow 0} \frac{1}{\delta} \int_{\left|\lambda-u\left(\mathcal{F}^{A}\right)\right| \leq \delta} \lambda d \mathcal{F}^{A}(\lambda)=k^{A}>0$, for $u(z)$ such that $\operatorname{Re} u=u\left(\mathcal{F}^{A}\right)$ and $\operatorname{Im} u$ is small enough, we have:

$$
\begin{align*}
\operatorname{Im}\left(u m_{A}(u)+1\right) & =\int \frac{\lambda \operatorname{Im} u}{\left(\lambda-u\left(\mathcal{F}^{A}\right)\right)^{2}+(\operatorname{Im} u)^{2}} d \mathcal{F}^{A}(\lambda) \\
& \geq \frac{1}{2 \operatorname{Im} u} \int_{\left|\lambda-u\left(\mathcal{F}^{A}\right)\right| \leq \operatorname{Im} u} \lambda d \mathcal{F}^{A}(\lambda) \geq \frac{k^{A}}{2}>0 . \tag{6}
\end{align*}
$$

From (6) and (5), we can choose \bar{y} small enough so that $\operatorname{Im}\left(u\left(z_{3}\right) m_{A}\left(u\left(z_{3}\right)\right)+1\right) \geq \frac{k^{A}}{2}$. On the other hand, from the first equation of Zhang, $u\left(z_{3}\right) m_{A}\left(u\left(z_{3}\right)\right)+1=z_{3} m\left(z_{3}\right)+$ 1 and hence $\operatorname{Im}\left(z_{3} m\left(z_{3}\right)+1\right) \geq \frac{k^{A}}{2}$. But from (4) we know that for small enough \bar{y}, Im $\left(z_{3} m\left(z_{3}\right)+1\right)$ must be smaller than $\frac{k^{A}}{2}$. We have got a contradiction, which implies that the statement of Lemma A 2 holds. x

Lemma A 3. For any real $x>u\left(\mathcal{F}^{c, A, B}\right)$, there exist real limits $u(x) \equiv \lim _{z \in \mathrm{C}^{+}, z \rightarrow x} u(z)$ and $v(x) \equiv \lim _{z \in \mathrm{C}^{+}, z \rightarrow x} v(z)$. Functions $u(x)$ and $v(x)$ satisfy the limit version of Zhang's
system:

$$
\left\{\begin{array}{l}
x m(x)+1=u m_{A}(u)+1 \tag{7}\\
x m(x)+1=c^{-1}\left(v m_{B}(v)+1\right) \\
x m(x)+1=-c^{-1} \frac{x}{u v}
\end{array}\right.
$$

are analytic and such that $\lim _{x \rightarrow \infty} u(x)=\lim _{x \rightarrow \infty} v(x)=\infty$.
Proof: Let $G=\left\{z \in \mathrm{C}^{+}: u\left(\mathcal{F}^{c, A, B}\right)<\underline{x} \leq \operatorname{Re} z \leq \bar{x}<\infty, 0<\operatorname{Im} z<\bar{y}<\infty\right\}$. Then $\sup _{z \in G} \max (|u(z)|,|v(z)|)<\infty$. Had this been not true, there would have existed a sequence $\left\{z_{n}\right\} \in G$ such that $\left|u\left(z_{n}\right)\right| \rightarrow \infty$ or $\left|v\left(z_{n}\right)\right| \rightarrow \infty$. Without loss of generality, let $\left|u\left(z_{n}\right)\right| \rightarrow \infty$. Lemma A1 then would imply that $\left|u\left(z_{n}\right) m_{A}\left(u\left(z_{n}\right)\right)+1\right| \rightarrow 0$, and hence, from Zhang's first equation, $\left|z_{n} m\left(z_{n}\right)+1\right| \rightarrow 0$. But, as follows from (1), $\left|\operatorname{Re}\left(z_{n} m\left(z_{n}\right)+1\right)\right| \geq \frac{E_{F}(\underline{x}-u(F))}{\bar{x}^{2}+\bar{y}^{2}}>0$, which gives a contradiction.

Since $\sup _{z \in G} \max (|u(z)|,|v(z)|)<\infty$, inequality (5) and a similar inequality for $\frac{\operatorname{Im} v}{|v|}$ imply that for any sequence $\left\{z_{n}\right\} \in G$ such that $z_{n} \rightarrow x \in R$ the concentration points of $\left\{u\left(z_{n}\right)\right\}$ and $\left\{v\left\{z_{n}\right\}\right\}$ must be real. Suppose that there exist subsequences of $z_{n},\left\{z_{i}\right\}$ and $\left\{z_{j}\right\}$, such that $u\left(z_{i}\right) \rightarrow u_{1} \in R$ and $u\left(z_{j}\right) \rightarrow u_{2} \in R$ and $u_{1} \neq u_{2}$. By Lemma A 2 , $u_{1} \geq u\left(\mathcal{F}^{A}\right)$ and $u_{2} \geq u\left(\mathcal{F}^{A}\right)$. If $u_{1}=u\left(\mathcal{F}^{A}\right)$, then using inequalities similar to (6), we find that $\operatorname{Im}\left(u\left(z_{i}\right) m_{A}\left(u\left(z_{i}\right)\right)+1\right) \geq \frac{k^{A}}{2}$ for large enough i, which cannot be the case because $\operatorname{Im}\left(u\left(z_{i}\right) m_{A}\left(u\left(z_{i}\right)\right)+1\right)=\operatorname{Im}\left(z_{i} m\left(z_{i}\right)+1\right) \rightarrow 0$ as $i \rightarrow \infty$. Hence, $u_{1}>u\left(\mathcal{F}^{A}\right)$. Similarly, $u_{2}>u\left(\mathcal{F}^{A}\right)$.

Since $m(x)$ exists and is continuous for $x>u\left(\mathcal{F}^{c, A, B}\right)$, we have: $\lim _{z_{n} \rightarrow x}\left(z_{n} m\left(z_{n}\right)+1\right)=x m(x)+1$. Since $m_{A}(u)$ exists and is continuous for $u>u\left(\mathcal{F}^{A}\right)$, wehave: $\lim _{z_{i} \rightarrow x}\left(u\left(z_{i}\right) m_{A}\left(u\left(z_{i}\right)\right)+1\right)=u_{1} m_{A}\left(u_{1}\right)+1$ and $\lim _{z_{j} \rightarrow x}\left(u\left(z_{j}\right) m_{A}\left(u\left(z_{j}\right)\right)+1\right)=$ $u_{2} m_{A}\left(u_{2}\right)+1$. The first equation of Zhang's system implies that we must have:

$$
x m(x)+1=u_{1} m_{A}\left(u_{1}\right)+1=u_{2} m_{A}\left(u_{2}\right)+1
$$

But this is not possible with $u_{1} \neq u_{2}$ such that $u_{1}>u\left(\mathcal{F}^{A}\right)$ and $u_{2}>u\left(\mathcal{F}^{A}\right)$ because function $u m_{A}(u)+1$ is strictly increasing for $u>u\left(\mathcal{F}^{A}\right)$. Hence, there exists only one concentration point of $\left\{u\left(z_{n}\right)\right\}$, that is there exists a real limit $u(x) \equiv \lim _{z \in \mathrm{C}^{+}, z \rightarrow x} u(z)$. Similarly, there exists a real limit $v(x) \equiv \lim _{z \in \mathrm{C}^{+}, z \rightarrow x} v(z)$.

That $u(x)$ and $v(x)$ satisfy the limit version of Zhang's system follows from the existence and continuity of $m_{A}(u)$ for $|u|>u\left(\mathcal{F}^{A}\right)$ and from the existence and continuity of $m_{B}(v)$ for $|v|>u\left(\mathcal{F}^{B}\right)$. The analyticity of $u(x)$ follows from the analyticity of $F(x, u) \equiv x m(x)+1-\left(u m_{A}(u)+1\right)$ for $x>u\left(\mathcal{F}^{c, A, B}\right)$ and $u>u\left(\mathcal{F}^{A}\right)$ and from the implicit function theorem. Similarly, the analyticity of $v(x)$ follows from the analyticity of $F_{1}(x, v) \equiv x m(x)+1-c^{-1}\left(v m_{B}(v)+1\right)$ for $x>u\left(\mathcal{F}^{c, A, B}\right)$ and $v>u\left(\mathcal{F}^{B}\right)$ and from the implicit function theorem. Finally, (7) implies that as $x \rightarrow \infty, u m_{A}(u)+1 \rightarrow 0$ and $v m_{B}(v)+1 \rightarrow 0$, which can be the case only when $\lim _{x \rightarrow \infty} u(x)=\lim _{x \rightarrow \infty} v(x)=\infty$. \mathbf{x}

Lemma A 4. For $x>u\left(\mathcal{F}^{c, A, B}\right)$, the following system

$$
\left\{\begin{array}{l}
v=x\left(c \int \frac{\lambda u}{u-\lambda} d \mathcal{F}_{A}(\lambda)\right)^{-1} \tag{8}\\
u=x\left(\int \frac{\lambda v}{v-\lambda} d \mathcal{F}_{B}(\lambda)\right)^{-1}
\end{array}\right.
$$

has exactly two solutions (u_{1}, v_{1}) and (u_{2}, v_{2}) such that $u_{i}>u\left(\mathcal{F}^{A}\right)$ and $v_{i}>u\left(\mathcal{F}^{B}\right)$ for $i=1,2$. For $x=u\left(\mathcal{F}^{c, A, B}\right)$ and for $x<u\left(\mathcal{F}^{c, A, B}\right)$, the system has only one such solution and no such solutions, respectively

Proof: For any $x>u\left(\mathcal{F}^{c, A, B}\right)$, one solution to (8) satisfying $u(x)>u\left(\mathcal{F}^{A}\right)$ and $v(x)>u\left(\mathcal{F}^{B}\right)$ is given by $u(x)$ and $v(x)$ defined in Lemma A 3. That such $u(x)$ and $v(x)$ indeed provide a solution to (8) follows from the fact that (8) can be obtained from (7) by substituting the third equation into the first two. Let us now show that for $x>u\left(\mathcal{F}^{c, A, B}\right)$, there exists another solution to (8).

First, note that $x\left(c \int \frac{\lambda u}{u-\lambda} d F_{A}(\lambda)\right)^{-1}$ as a function of $u>u\left(\mathcal{F}^{A}\right)$ is concave, tends to zero as $u \downarrow u\left(\mathcal{F}_{A}\right)$ and to $x\left(c E_{A}\right)^{-1}$ as $u \rightarrow \infty$. The concavity follows from the expression
$\frac{d^{2}}{d u^{2}} x\left(c \int \frac{\lambda u}{u-\lambda} d \mathcal{F}_{A}(\lambda)\right)^{-1}=2 x c^{-1}\left(\int \frac{\lambda u}{u-\lambda} d \mathcal{F}_{A}(\lambda)\right)^{-3} \cdot\left(\left(\int \frac{\lambda^{2}}{(u-\lambda)^{2}} d \mathcal{F}_{A}(\lambda)\right)^{2}-\right.$ $\left.\left(\int \frac{\lambda^{2}}{(u-\lambda)^{3}} d \mathcal{F}_{A}(\lambda)\right)\left(E_{A}+\int \frac{\lambda^{2}}{u-\lambda} d \mathcal{F}_{A}(\lambda)\right)\right)$ and theCauchy inequality $\int \frac{\lambda}{(u-\lambda)^{3 / 2}} \frac{\lambda}{(u-\lambda)^{1 / 2}} d \mathcal{F}_{A}(\lambda) \leq$ $\left(\int \frac{\lambda^{2}}{(u-\lambda)^{3}} d \mathcal{F}_{A}(\lambda)\right)^{1 / 2}\left(\int \frac{\lambda^{2}}{u-\lambda} d \mathcal{F}_{A}(\lambda)\right)^{1 / 2}$. The tendency to zero follows from the fact that $c \int \frac{\lambda u}{u-\lambda} d \mathcal{F}_{A}(\lambda) \rightarrow \infty$ as $u \downarrow u\left(\mathcal{F}_{A}\right)$, which is easy to show using the monotone convergence theorem and assumption $\liminf _{\delta \rightarrow 0} \frac{1}{\delta} \int_{\left|\lambda-u\left(\mathcal{F}^{A}\right)\right| \leq \delta} \lambda d \mathcal{F}^{A}(\lambda)=k^{A}>0$. Finally, the convergence to $x\left(c E_{A}\right)^{-1}$ as $u \rightarrow \infty$ is obvious. Similarly, $x\left(\int \frac{\lambda v}{v-\lambda} d \mathcal{F}_{B}(\lambda)\right)^{-1}$ as a function of $v>u\left(\mathcal{F}^{B}\right)$ is concave, tends to zero as $v \downarrow u\left(\mathcal{F}_{B}\right)$ and to $x\left(c E_{B}\right)^{-1}$ as $v \rightarrow \infty$.

The above properties of $x\left(c \int \frac{\lambda u}{u-\lambda} d \mathcal{F}_{A}(\lambda)\right)^{-1}$ and $x\left(\int \frac{\lambda v}{v-\lambda} d \mathcal{F}_{B}(\lambda)\right)^{-1}$ imply that the curves in the $\left\{u>u\left(\mathcal{F}_{A}\right), v>v\left(\mathcal{F}_{B}\right)\right\}$ subset of the (u, v)-plane defined by (8) are either intersecting at two points, touching at a single point, or having no common points. Since there exists a solution to (8) for any $x>u\left(\mathcal{F}^{c, A, B}\right)$ and since $x\left(c \int \frac{\lambda u}{u-\lambda} d \mathcal{F}_{A}(\lambda)\right)^{-1}$ and $x\left(\int \frac{\lambda v}{v-\lambda} d \mathcal{F}_{B}(\lambda)\right)^{-1}$ are monotone increasing in x, the curves must intersect at two points for any $x>u\left(\mathcal{F}^{c, A, B}\right)$. Let us show that the curves are touching at a single point when $x=u\left(\mathcal{F}^{c, A, B}\right)$.

Suppose the curves intersect at two points $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) when $x=u\left(\mathcal{F}^{c, A, B}\right)$. Let $u_{2}>u_{1}$ and $v_{2}>v_{1}$. Define $f_{1}(x, u, v)=x+c u v\left(u m_{A}(u)+1\right)$ and $f_{2}(x, u, v)=$ $x+u v\left(v m_{B}(v)+1\right)$. Note that system (8) is equivalent to $f_{i}(x, u, v)=0$ for $i=1,2$. It is straightforward to check that the assumption of the proper intersection of the curves (not just a tangency at one point) is equivalent to det $\left(\begin{array}{cc}\frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial v} \\ \frac{\partial f_{2}}{\partial u} & \frac{f_{2}}{\partial v}\end{array}\right) \neq 0$ at any of the two intersection points. Then the implicit function theorem (see K rantz (1992), Theorem 1.4.11) implies that there exist holomorphic functions $u(z), v(z)$ defined in an open neighborhood of $z=u\left(\mathcal{F}^{c, A, B}\right)$ in C, which satisfy $f_{i}(z, u, v)=0$ for $i=1,2$. To each of the two intersection points, there will correspond its own set of holomorphic functions $u(z), v(z)$. We will consider the functions $u(z)$ and $v(z)$ corresponding to (u_{2}, v_{2}). For such a choice, it is straightforward to check that $\frac{d}{d(\operatorname{Re} z)} \operatorname{Re} u(z)>0$ and $\frac{d}{d(\operatorname{Re} z)} \operatorname{Re} v(z)>0$
at $z=u\left(\mathcal{F}^{c, A, B}\right)$.
Furthermore, using identities $f_{i}(z, u(z), v(z))=0$ for $i=1,2$ it is straightforward to check that in a small enough neighborhood of $z=u\left(\mathcal{F}^{c, A, B}\right)$ in C , Im $z>0$ implies that Im $u(z)$ and $\operatorname{Im} v(z)$ are of the same sign and are not equal to zero. Cauchy-Riemann equations for holomorphic functions imply that $\frac{d}{d(\operatorname{Im} z)} \operatorname{Im} u(z)=\frac{d}{d(\operatorname{Re} z)} \operatorname{Re} u(z)>0$ and $\frac{d}{d(\operatorname{Im} z)} \operatorname{Im} v(z)=\frac{d}{d(\operatorname{Re} z)} \operatorname{Re} v(z)>0$ at $z=u\left(\mathcal{F}^{c, A, B}\right)$. Hence, $\operatorname{Im} u(z)$ and $\operatorname{Im} v(z)$ are positive when $\operatorname{Im} z$ is positive and z lies in a small enough complex neighborhood of $u\left(\mathcal{F}^{c, A, B}\right)$. Let us define $m(z)=-\frac{c^{-1}}{u(z) v(z)}-\frac{1}{z}$. Clearly, for z in the small complex neighborhood of $u\left(\mathcal{F}^{c, A, B}\right), \operatorname{Im} m(z)>0$.

Zhang shows that for any $z \in \mathrm{C}^{+}$, there is only one solution to (2) such that m, u and v belong to C^{+}. Hence, $u(z), v(z)$, and $m(z)$ defined above constitute the solution to Zhang's system (2) for z in a small neighborhood of $u\left(\mathcal{F}^{c, A, B}\right)$ and such that $\operatorname{Im} z>0$. Finally, for any real x which belongs to the neighborhood of $u\left(\mathcal{F}^{c, A, B}\right)$, we have: $\lim _{z \rightarrow x} \operatorname{Im} m(z)=$ $\lim _{z \rightarrow x} \operatorname{Im}\left(-\frac{c^{-1}}{u(z) v(z)}-\frac{1}{z}\right)=0$. Thus, using the Frobenius-P erron inversion formula, we get $\int_{u\left(\mathcal{F}^{c, A, B}\right)-\delta}^{u\left(\mathcal{F}^{c, A, B}\right)} d F(\lambda)=0$ for small positive δ, which is impossible by definition of $u\left(\mathcal{F}^{c, A, B}\right)$. Hence, the curves are touching at a single point when $x=u\left(\mathcal{F}^{c, A, B}\right)$. This implies that they do not intersect when $x<u\left(\mathcal{F}^{c, A, B}\right)$.d

Now we are ready to prove Lemma 3.
Proof of Lemma 3: Recall that by assumption, $\mathcal{F}^{A A^{\prime}}$ almost surely weakly converges to \mathcal{F}_{A} and $u\left(\mathcal{F}^{A A^{\prime}}\right) \rightarrow u\left(\mathcal{F}_{A}\right)$. Similarly, $\mathcal{F}^{B B^{\prime}}$ almost surely weakly converges to \mathcal{F}_{B} and $u\left(\mathcal{F}^{B B^{\prime}}\right) \rightarrow u\left(\mathcal{F}_{B}\right)$. These facts imply that if the curves in the $\left\{u>u\left(\mathcal{F}_{A}\right), v>v\left(\mathcal{F}_{B}\right)\right\}$ subset of the (u, v)-plane defined by (8) intersect at zero, or at two points, then the curves in the $\left\{u>u\left(\mathcal{F}^{A A^{\prime}}\right), v>v\left(\mathcal{F}^{B B^{\prime}}\right)\right\}$ subset of the (u, v)-plane defined by $\left\{\begin{array}{l}v=x\left(c_{n} \int \frac{\lambda u}{u-\lambda} d \mathcal{F}^{A A^{\prime}}(\lambda)\right)^{-1} \\ u=x\left(\int \frac{\lambda v}{v-\lambda} d \mathcal{F}^{B B^{\prime}}(\lambda)\right)^{-1}\end{array}\right.$ also intersect at zero, or at two points for large enough n. Therefore, by Lemma A4, $u\left(\mathcal{F}^{c_{n}, A_{n}, B_{n}}\right)$ converges to $u\left(\mathcal{F}^{c, A, B}\right)$ and Lemma 3 follows
from Lemma 2.a

R eferences

[1] Krantz, S. G. (1992) Function theory of several complex variables. Second Edition. AMS Chelsea Publishing. Providence, R hode Island.

