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Abstract

This paper considers the problem of detecting a few signals in high-

dimensional complex-valued Gaussian data satisfying Johnstone’s (2001)

spiked covariance model. We focus on the difficult case where signals are

weak in the sense that the sizes of the corresponding covariance spikes are

below the phase transition threshold studied in Baik et al (2005). We derive

a simple analytical expression for the maximal possible asymptotic proba-

bility of correct detection holding the asymptotic probability of false detec-

tion fixed. To accomplish this derivation, we establish what we believe to

be a new formula for the Harish-Chandra/Itzykson-Zuber (HCIZ) integral
∫

U(p) e
tr(AUBŪ ′) (dU), where A has a deficient rank r < p. The formula links

the HCIZ integral over U (p) to an HCIZ integral over a potentially much

smaller unitary group U (r). We show that the formula generalizes to the

integrals over orthogonal and symplectic groups. In the most general form,

it expresses the hypergeometric function 0F
(α)
0 of two p×p matrix arguments

as a repeated contour integral of the hypergeometric function 0F
(α)
0 of two

r × r matrix arguments.
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1 Introduction

Much contemporary research in statistics concerns with situations where the di-

mensionality of data is large and comparable to the number of observations (see

special issues of the Philosophical Transactions of the Royal Society (2009) 367

and Annals of Statistics (2008) 36). Often, the goal is to estimate or detect a

few signals contaminated by high-dimensional noise. One general conclusion that

seems to emerge from this research is that, in the absence of a priori sparsity

assumptions about signals, there is a lower limit for the signal-to-noise ratio below

which statistical inference about the signals completely fails (Johnstone and Titter-

ington, 2009, Nadakuditi and Edelman, 2008, Nadakuditi and Silverstein, 2010).

This limit equals the phase transition threshold studied in Baik et al (2005). In a

recent paper, Onatski et al (2012) show that not all is lost below the threshold.

They consider the case of a single non-sparse signal in high-dimensional noisy data

and establish sharp non-trivial limits for the asymptotic power, as both the data

dimensionality and the number of observations go to infinity, of statistical tests for

signal detection when the signal may be arbitrarily weak.

This paper extends Onatski et al (2012) to the case of multiple non-sparse arbi-

trarily weak signals when the data are complex-valued. Complex-valued data are

of interest in signal processing (Schreier and Scharf, 2010), wireless communication

(Telatar, 1999, Tulino and Verdu, 2004), and the spectral analysis of economic and

financial time series (Onatski, 2009). Considering the case of multiple signals is

important for applied work because the constraint that there is no more than one
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signal can rarely be justified in practice. We derive a simple analytical expression

for the maximal possible asymptotic probability of correct detection, based on the

sample covariance eigenvalues of the data, holding the asymptotic probability of

false detection fixed.

We find that the asymptotic probability of detection may be close to one even

in cases where the strength of all signals is substantially below the phase transition

threshold. This finding is, perhaps, surprising in light of the fact (Péché, 2003)

that in such cases, sometimes referred to as the sub-critical regime, the asymptotic

behavior of any finite number of the largest sample covariance eigenvalues is not

different from their behavior when the data are pure noise. We show that in these

difficult cases, the detection power lies not in the different behavior of a few of the

largest eigenvalues, but in the small deviations of the empirical distribution of all

the eigenvalues from the Marchenko-Pastur limit (Marchenko and Pastur, 1967).

Let us discuss our findings in more detail. We assume that data consist of n in-

dependent observations of p-dimensional complex-valued Gaussian vectors Xt with

mean zero and covariance matrix σ2
(

Ip + V HV̄ ′
)

, where Ip is the p-dimensional

identity matrix, σ is a real scalar, H is an r× r real diagonal matrix with elements

hj ≥ 0 along the diagonal, and V is a (p× r)-dimensional complex parameter

normalized so that V̄ ′V = Ir. Such a spiked covariance model was proposed by

Johnstone (2001) as a simple model of a situation, often observed in applications,

where a few eigenvalues of the sample covariance matrix, corresponding to signals,

are relatively large, whereas the rest of the eigenvalues are relatively small and

tightly clustered. In our notation, the size of the spikes is regulated by the values

of hj , and the signal space is spanned by the columns of matrix V .

Let λ1 ≥ λ2 ≥ ... ≥ λp be the ordered eigenvalues of XX ′/n, where X =

[X1, ..., Xn], and let λ = (λ1, ..., λm) , where m = min {n, p}. We are interested

in the asymptotic power of tests for signal detection based on the information
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contained in λ when p, n → ∞ so that p/n → c with 0 < c < ∞. Our null

hypothesis is H0 : h1 = ... = hr = 0 (no signals), and our alternative is H1 : hi > 0

for some i = 1, ..., r. The matrix V is left as an unspecified nuisance parameter. In

this framework, signal detection tests can also be interpreted as tests of sphericity.

We consider both cases of specified and unspecified σ2. For the purpose of

brevity, in the introduction, we will discuss only the case of specified σ2 = 1. First,

we study the likelihood ratio L (h;λ) , defined as the ratio of the densities of λ cor-

responding to unrestricted h and restricted h = 0, the densities being evaluated at

the observed value of λ. We show that L (h;λ) can be represented in the form of the

determinant of an r×r matrix with entries equal to contour integrals of elementary

functions. We use Laplace approximations to these contour integrals to show that

for any h̄ such that 0 < h̄ <
√
c, with

√
c being the value of the phase transition

threshold, the sequence of log-likelihood processes {lnL (h;λ) ; h ∈ [0, h̄]r} con-

verges weakly to a Gaussian process1
{

Lλ(h); h ∈
[

0, h̄
]r}

under the null hypothesis

as n, p → ∞. The limiting process has mean E [Lλ(h)] =
1
2

∑r
i,j=1 ln (1− hihj/c)

and autocovariance function Cov
(

Lλ (h) ,Lλ

(

h̃
))

= −
∑r

i,j=1 ln
(

1− hih̃j/c
)

.

The established weak convergence of statistical experiments implies, via Le Cam’s

first lemma (see van der Vaart 1998, p.88), that the joint distributions of the sam-

ple covariance eigenvalues under the null and under alternatives associated with

h ∈ [0,
√
c)

r
are mutually contiguous.

An asymptotic power envelope for eigenvalue-based tests of H0 against H1 can

be constructed using the Neyman-Pearson lemma and Le Cam’s third lemma. We

show that, for tests of size α, the maximum achievable asymptotic power against

a point alternative h = (h1, ..., hr) equals 1 − Φ
[

Φ−1 (1− α)−
√
W
]

, where Φ is

the standard normal distribution function and W = −
∑r

i,j=1 ln (1− hihj/c). A

1Here the index λ in the notation Lλ(h) is used to distinguish the limiting log-likelihood
process in the case of specified σ2 = 1, from that in the case of unspecified σ2, which we denote
by Lµ(h).
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preliminary analysis indicates that the asymptotic power of the likelihood ratio

test based on the information contained in λ is close to the asymptotic power

envelope. In contrast, we find that the asymptotic powers of various previously

proposed tests are well below the envelope.

The central technical result of this paper is the contour integral representa-

tion of the likelihood ratio. To derive such a representation, we establish what we

believe to be a novel formula for the hypergeometric functions of two matrix argu-

ments 0F
(α)
0 (A,B) , where a p× p matrix A has rank r < p, so that, without loss

of generality, only its upper-left r × r block A is non-zero. Such functions appear

as a key term in the explicit expressions for the joint density of the eigenvalues of

Wishart matrices with spiked covariance parameter. In Lemma 1, we show that

0F
(α)
0 (A,B) =

1

r! (2πi)r

∮

K

...

∮

K
0F

(α)
0 (A,Z) ω(α) (A,B,Z)

r
∏

j=1

dzj , (1)

where Z = diag (z1, ..., zr) is an auxiliary matrix, and ω(α) (·) is a simple function

of A,B, and Z. This formula expresses the hypergeometric function of high-

dimensional arguments as a repeated contour integral of a hypergeometric function

of low-dimensional arguments, which is convenient for analysis.

For the special case r = 1, (1) reduces to the formula that has been recently

derived in Mo (2011) and, independently, in Wang (2012) and Onatski et al (2012)

(see also Forrester, 2011 for a short derivation). Our method of proof is different

from the methods used by these authors. It is based on the orthogonality of Jack

polynomials with respect to the torus scalar product (Macdonald (1995), Chapter

VI, §10).

Although our analysis of signal detection in complex data requires only the

formula for 0F
(1)
0 (A,B) , we establish (1) for all α = 2/β, where β is a positive
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integer.2 The importance of finding “serviceable approximations” to 0F
(2)
0 (A,B)

has been recently emphasized by Johnstone (2007, p.322). Since in applications

that rely on the spiked covariance matrix framework r is typically much smaller

than p, analyzing 0F
(2)
0 (A,Z) is much easier than analyzing 0F

(2)
0 (A,B), and the

established contour integral representation of the latter may be of the welcomed

service to practitioners.

For α = 2, 1 and 1/2, function 0F
(α)
0 (A,B) has an integral representation

∫

G(α)(p)
etr(AGBG−1) (dG) , where G(α) (p) is the orthogonal group O(p) for α = 2,

the unitary group U(p) for α = 1, and the compact symplectic group Sp (p) for α =

1/2, and where (dG) is the normalized Haar measure over G(α) (p). Such integrals

have various important applications in mathematics and physics, where they are

referred to as Harish-Chandra/Itzykson-Zuber (HCIZ) integrals (Zinn-Justin and

Zuber, 2003). The HCIZ integrals with rank-deficient A have been used in the

analysis of spin glasses (Marinari et al, 1994), wireless communication systems

(Muller et al, 2008), statistical tests for signal detection (Bianchi et al, 2010, and

Onatski et al, 2012), distribution of the largest sample covariance eigenvalue (Mo,

2011, and Wang, 2012), and spiked Wishart β-ensembles (Forrester, 2011). Their

asymptotic behavior as p → ∞ has been studied in Guionnet and Mäıda (2005)

and Collins and Śniady (2007). We hope that the reduction of HCIZ integrals over

large group G(α) (p) to those over smaller group G(α) (r) that follows from (1) will

be useful in a wide spectrum of applications.

The rest of this paper is organized as follows. In Section 2, we derive explicit

formulae for the likelihood ratios. Section 3 establishes relationship (1). Section 4

uses (1) to derive contour integral representations for the likelihood ratios. Section

5 applies Laplace approximations to the contour integrals in the derived represen-

2For cases where β is odd, we require that p− r + 1 be even. For even β, such a requirement
is not needed.
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tation to obtain the asymptotics of the likelihood ratio process. This asymptotics

is then used along with the Neyman-Pearson lemma and Le Cam’s third lemma to

establish a simple analytical formula for the maximal possible asymptotic probabil-

ity of correct signal detection holding the asymptotic probability of false detection

fixed. Section 6 concludes. All proofs are relegated to the Appendix.

2 Likelihood ratios

As mentioned above, we assume that data consist of n independent observations

of p-dimensional complex-valued Gaussian vectors Xt ∼ NC (0,Σ). This means

that Xt = Yt + iZt, where i denotes the imaginary unit, and the joint density of

(Yt, Zt) at (y, z) equals
1

(2π)p det Σ
exp

{

− tr
[

Σ−1 (y + iz) (y − iz)′
]}

(see, for exam-

ple, Goodman, 1963). Further, we assume that the covariance matrix Σ equals

σ2
(

Ip + V HV̄ ′
)

, where H = diag (h1, ..., hr) quantifies the sizes of the covariance

spikes. Our goal is to study the asymptotic power of tests of H0 : h1 = ... = hr = 0

against H1 : hi > 0 for some i = 1, ..., r.

If σ2 is specified, the model is invariant with respect to unitary transformations

and the maximal invariant statistic is λ, the vector of the firstm = min {n, p} eigen-

values of XX ′/n, where X = [X1, ..., Xn]. Therefore, we consider tests based on

λ. If σ2 is unspecified, the model is invariant with respect to the unitary transfor-

mations and multiplications by non-zero scalars, and the maximal invariant is the

vector of normalized eigenvalues µ =
(

µ1, ..., µm−1

)

, where µj = λj/ (λ1 + ...+ λp).

Hence, we consider tests based on µ. Note that the distribution of µ does not de-

pend on σ2, whereas if σ2 is specified, we can always normalize λ dividing it by σ2.

Therefore, in what follows, we will assume without loss of generality that σ2 = 1.

Let h = (h1, ..., hr), and let us denote the joint density of λ1, ..., λm as pλ (x; h) ,

x = (x1, ..., xm) ∈ (R+)m and that of µ1, ..., µm−1 as pµ (y; h) , y = (y1, ..., ym−1) ∈
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(R+)m−1. We have

pλ (x; h) = γ̃

∏m
i=1 x

|p−n|
i

∏m
i<j (xi − xj)

2

∏r
i=1 (1 + hi)

n

∫

U(p)

e−n tr(ΠGXG−1) (dG) , (2)

where γ̃ depends only on n and p; Π = diag
(

(1 + h1)
−1 , ..., (1 + hr)

−1 , 1, ..., 1
)

;

X = diag (x1, ..., xm, 0, ..., 0) is a (p× p) diagonal matrix, so that there are no zeros

along the diagonal if m = p; U (p) is the set of all p×p unitary matrices; and (dG)

is the invariant measure on the unitary group U (p) normalized to make the total

measure unity. Formula (2) is a special case of the densities given in James (1964,

p.489) for n ≥ p and in Ratnarajah and Vaillancourt (2005) for n < p.

Let s = x1+ ...+xm and let yj = xj/s. Note that the Jacobian of the coordinate

change from (x1, ..., xm) to (y1, ..., ym−1, s) equals s
m−1. Changing variables in (2)

and integrating s out, we obtain

pµ (y; h) = γ̃

∏m
i=1 y

|p−n|
i

∏m
i<j (yi − yj)

2

∏r
i=1 (1 + hi)

n

∫ ∞

0

snp−1

∫

U(p)

e−ns tr(ΠGYG−1) (dG) ds, (3)

where Y = diag (y1, ..., ym−1, 0, ..., 0) is a (p× p) diagonal matrix.

Consider the likelihood ratios: L (h;λ) = pλ (λ; h) /pλ (λ; 0) and L (h;µ) =

pµ (µ; h) /pµ (µ; 0). Formulae (2) and (3) imply the following Proposition.

Proposition 1 Let U (p) be the set of all p× p unitary matrices. Denote by (dG)

the invariant measure on the unitary group U (p) normalized to make the total

measure unity. Further, let Λ = diag (λ1, ..., λp) and M = diag
(

µ1, ..., µp

)

. Then

L (h;λ) =

r
∏

i=1

(1 + hi)
−n

∫

U(p)

e−n tr((Π−I)GΛG−1) (dG) and (4)

L (h;µ) =

∏r
i=1 (1 + hi)

−n nnp

Γ (np)

∫ ∞

0

snp−1e−ns

∫

U(p)

e−ns tr((Π−I)GMG−1) (dG) ds.(5)
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Our analysis of the asymptotic power of tests for signal detection is based on a

study of the asymptotic properties of the likelihood ratio processes {L (h;λ) ; h∈(R+)
r}

and {L (h;µ) ; h∈(R+)
r}. First, we will focus on the key terms in the expres-

sions (4) and (5), which are the integrals over the unitary group. These in-

tegrals are special cases of the complex hypergeometric function 0F
(1)
0 (A,B) =

∫

U(p)
etr(AGBG−1)(dG) , where A and, possibly, B are rank-deficient. In the next

section, we derive a formula for 0F
(α)
0 (A,B) with rank-deficient A and B that

links this function to a hypergeometric functions of full-rank matrix arguments

of lower dimensions. We do not restrict attention to the case α = 1 because, as

discussed in the introduction, other cases constitute independent interest.

3 Contour integral representation for 0F
(α)
0 (A,B)

Let us first provide a necessary background on hypergeometric functions. Let A

and B be Hermitian p × p matrices over real, complex, or quaternion division

algebra. The eigenvalues of such matrices are real and we will denote them as

a = (a1, ..., ap) and b = (b1, ..., bp). The hypergeometric function 0F
(α)
0 (A,B) is

defined as (see, for example, Koev and Edelman, 2006)

0F
(α)
0 (A,B) =

∞
∑

k=0

∑

κ⊢k

1

k!

C
(α)
κ (A)C

(α)
κ (B)

C
(α)
κ (Ip)

, (6)

where C
(α)
κ (A) = C

(α)
κ (a) , C

(α)
κ (B) = C

(α)
κ (b) and C

(α)
κ (Ip) = C

(α)
κ (1, ..., 1) are

normalized Jack polynomials (Macdonald, 1995, chapter VI, §10), and the inner

sum runs over all partitions κ of k, that is over all non-increasing sequences of non-

negative integers κ = (κ1, κ2, ...) such that κ1 + κ2 + ... = k. The normalization of
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C
(α)
κ (x1, ..., xp) is chosen so that

(x1 + ... + xp)
k =

∑

κ⊢k

C(α)
κ (x1, ..., xp) . (7)

Note that 0F
(α)
0 (A,B) depends on A and B only through a and b. Therefore,

in what follows, without loss of generality, we will consider only diagonal matrices

A=diag (a1, ..., ap) and B=diag (b1, ..., bp) .We will allow aj and bj to be complex,

thus extending definition (6) to complex diagonal matrices A and B.

As was mentioned in the introduction, for α = 2, 1 and 1/2, hypergeometric

functions 0F
(α)
0 (A,B) admit the integral representation

0F
(α)
0 (A,B) =

∫

G(α)(p)

etr(AGBG−1) (dG) , (8)

where G(α) (p) is the orthogonal group O (p) for α = 2, the unitary group U (p) for

α = 1, and the compact symplectic group Sp (p) for α = 1/2. For real diagonal A

andB, such a representation follows from the fact that
∫

G(α)(p)
C

(α)
κ (AGBG−1) (dG) =

C
(α)
κ (A)C

(α)
κ (B)

C
(α)
κ (Ip)

(see Proposition 5.5 of Gross and Richards, 1987), and the fact that

∑∞
k=0

∑

κ⊢k
1
k!
C

(α)
κ (AGBG−1) = etr(AGBG−1), which follows from (7). For complex

diagonal A and B, the representation holds by the analytic continuation because

both parts of equality (8) are complex analytic functions of the diagonal elements

of A and B.

The main result of this section is as follows.

Lemma 1 Let A = diag (a1, ..., ap) and B = diag (b1, ..., bp), where aj and bj are

real or complex numbers. Assume that aj 6= 0 for 1 ≤ j ≤ r and aj = 0 for

r < j ≤ p, and denote the upper left block of A, diag (a1, ..., ar) , as A. Further,

let Z =diag (z1, ..., zr) , where zj are complex variables, and let K be a contour in

the complex plane that encircles b1, ..., bp counter-clockwise. Finally, let α = 2/β,
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where β is a positive integer. Then, assuming that p− r + 1 is an even integer in

cases where β is odd, and without this additional assumption in cases where β is

even, we have

0F
(α)
0 (A,B) =

1

r! (2πi)r

∮

K

...

∮

K
0F

(α)
0 (A,Z) ω(α) (A,B,Z)

r
∏

j=1

dzj , (1)

where

ω(α) (A,B,Z) = (−1)r(r−1)/(2α)
r
∏

j=1

[

Γ ((p+1−j)/α) Γ (1/α)

Γ ((r+1−j)/α)

]

×

r
∏

j>i

(zj−zi)2/α
r
∏

j=1

[

a
1−(p−r+1)/α
j

p
∏

s=1

(zj−bs)−1/α

]

The proposition reduces 0F
(α)
0 (A,B) , a hypergeometric function with poten-

tially high-dimensional matrix arguments, to a repeated contour integral of 0F
(α)
0 (A,Z) ,

a hypergeometric function with matrix arguments of possibly much lower dimen-

sions. In the special case where r = 1, 0F
(α)
0 (A,Z) = ea1z1 and (1) becomes

0F
(α)
0 (A,B) = Γ (p/α) a

1−p/α
1

1

2πi

∮

K

ea1z1
p
∏

s=1

(z1−bs)−
1
α dz1. (9)

For α = 2, this formula has been established by Mo (2011), who used it to an-

alyze the asymptotic behavior of the largest eigenvalue of a rank-one perturbation

of a real Wishart matrix. He gives two proofs of the formula. One of the proofs

uses Jack polynomial expansions and requires that p be an even integer (consistent

with our requirement that p − r + 1 is even). The other proof, which Mo (2011)

calls geometric, allows for odd p.

Similar to the first proof of Mo, our proof of Lemma 1 uses Jack polynomial

expansions. In contrast to that proof, we do not rely on the simplification of the

Jack polynomials for top-order partitions, but use Jack polynomials’ orthogonality
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with respect to the torus scalar product (Macdonald, chapter VI, §10). It is likely

that our requirement that p − r + 1 is even in cases where β = 2/α is odd can

be lifted without affecting relationship (1). This would require a different proof of

the proposition, which is left for future research.

For α = 2 and α = 2/β with even β, formula (9) has been independently estab-

lished by Wang (2012). He uses the formula to study the asymptotic distribution

of the largest eigenvalue of the real, complex and quaternionic Wishart matrices

perturbed by matrices of rank one. Wang’s proof is similar to the first proof of Mo

(2011) (see Forrester, 2011, for an alternative proof). For α = 2, formula (9) has

also been independently established by Onatski et al (2012). Their proof is based

on the properties of the so-called Lauricella function.

In contrast to (9), the general relationship (1) contains special functions on

both left- and right-hand sides. However, for α = 1, it is possible to further

simplify the right-hand side of (1) using Harish-Chandra/Itzykson-Zuber formula

(see Harish-Chandra, 1957, and Itzykson and Zuber, 1980)

0F
(1)
0 (A,Z) =

∏r−1
j=1 j!

Vr (A)Vr (Z)
det

1≤i,j≤r
(eaizj ) , (10)

where Vr (A) =
∏r

j>i (aj−ai) and Vr (Z) =
∏r

j>i (zj−zi) are the Vandermonde

determinants associated with the diagonal elements a1, ..., ar of A and the diagonal

elements z1, ..., zr of Z, respectively. Using (10) in (1), noting that one of the terms

in the definition of ω(1) (A,B,Z) equals Vr (Z)2 , and applying Andreief’s identity

(Andreief, 1883)

det
1≤i,j≤r

(
∫

fi (x) gj(x)dµ (x)

)

=
1

r!

∫

...

∫

det
1≤i,j≤r

(fi (xj)) det
1≤i,j≤r

(gi (xj))
∏

j

dµ (xj) ,

we obtain the following Corollary.
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Corollary 1 Under assumptions of Lemma 1,

0F
(1)
0 (A,B) =

(−1)r(r−1)/2

Vr (A)

r
∏

j=1

(p−j)!
ap−r
j

det
1≤i,j≤r

(

1

2πi

∮

K

eaizzj−1dz
∏p

s=1 (z−bs)

)

. (11)

An alternative way of deriving (11) is to apply l’Hôpital’s rule to the Harish-

Chandra/Itzykson-Zuber determinantal formula

0F
(1)
0 (A,B) =

∏p−1
j=1 j!

Vp (A)Vp (B)
det

1≤i,j≤p

(

eaibj
)

, (12)

the right-hand side of which is degenerate because A is rank-deficient. We include

a proof of (11) that uses this approach in the Supplementary Appendix. The proof

is elementary in the sense that it does not rely on properties of Jack polynomials.

4 Likelihood ratios as contour integrals

Combining Proposition 1 and Corollary 1 leads to useful contour integral repre-

sentations of the likelihood ratios L (h;λ) and L (h;µ). We now introduce new

notation to express such representations in a convenient form. For any z ∈ K, let

us define a random variable

∆p (z) =

p
∑

j=1

ln (z − λj)− p

∫

ln (z − λ) dFp (λ) , (13)

where Fp (λ) is the cumulative distribution function of the Marchenko-Pastur dis-

tribution with a point mass of max
(

0, 1− c−1
p

)

at zero, where cp = p/n, and

density

ψp (x) =
1

2πcpx

√

(

b̄p − x
)

(x− āp), (14)
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where āp =
(

1−√
cp
)2

and b̄p =
(

1 +
√
cp
)2
. Further, let

fi(z) = −
(

hi
1 + hi

z − cp

∫

ln (z − λ) dFp (λ)

)

and (15)

gj(z) = zj−1 exp {−∆p (z)} . (16)

Finally, for any permutation ρ of the sequence (1, 2, ..., r) and any vector z =

(z1, ..., zr), let

qρ (z) =

(

1−
r
∑

j=1

hρ(j)
1 + hρ(j)

zj
S

)−p(n−r)−r(r+1)/2

exp

{

−
r
∑

j=1

nhρ(j)zj
1 + hρ(j)

}

, (17)

where S = λ1 + ... + λp.

Proposition 2 Let the contour K that encircles λ1, ..., λp counter-clockwise be

chosen so that for any z ∈ K, Re z <
(

∑r
j=1

hj

1+hj

)−1

S. Then

L (h;λ) = k1 det
1≤i,j≤r

(

1

2πi

∮

K

e−nfi(z)gj (z) dz

)

and (18)

L (h;µ) = k2
∑

ρ

sgn ρ

(2πi)r

∮

K

...

∮

K

qρ (z)
r
∏

j=1

{

e−nfρ(j)(zj)gj (zj)
}

dzr...dz1, (19)

where i denotes the imaginary unit, the summation in (19) is over all permutations

ρ of the sequence (1, 2, ..., r),

k1 = (−1)r(r−1)/2 n−pr+r(r+1)/2
r
∏

i>j

(hi − hj)
−1

r
∏

t=1

[

hr−p
t (1 + ht)

p−n−1 (p− t)!
]

, and

k2 = k1 (nS)
pr−r(r+1)/2 Γ (p (n− r) + r(r + 1)/2) [Γ (np)]−1 .

In the next section, we perform the asymptotic analysis of L (h;λ) and L (h;µ)

that relies on the Laplace approximations of the contour integrals in (18) and (19)

after the contours are suitably deformed without changing the value of the inte-

grals.
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0

K
i2

K
i1

3iz
i0

−3iz
i0

z
i0

Figure 1: Contour Ki (see (20)-(21)).

5 Asymptotic analysis

Consider contours Ki with i = 1, ..., r which are obtained by deforming the contour

K defined in Proposition 2 so that Ki passes through

zi0 =
(1 + hi) (cp + hi)

hi
.

Precisely, we define Ki as Ki = Ki+ ∪ Ki−, where Ki− is the complex conjugate of

Ki+ and Ki+ = Ki1 ∪ Ki2 with

Ki1 = {zi0 + it : 0 ≤ t ≤ 3zi0} and (20)

Ki2 = {x+ 3izi0 : −∞ < x ≤ zi0} . (21)

Figure 1 illustrates the choice of Ki.

It is possible to verify that, when 0 < hi <
√
cp, the derivative of fi (z) equals

zero at zi0. Therefore, choosing contours of integration so they pass through zi0

15



allows us to use the method of steepest descent in the asymptotic analysis of the

corresponding integrals in (18) and (19). The next lemma shows that the change of

contours in (18) and (19) does not lead to a change in the value of the corresponding

integrals.

Lemma 2 Suppose that the null hypothesis is true, and let h̄ be an arbitrary num-

ber such that 0 < h̄ <
√
c. Suppose further that hi ≤ h̄ for all i = 1, ..., r. Then,

as n, p→ ∞ so that cp → c ∈ (0,+∞) ,

(
∮

K

−
∮

Ki

)

e−nfi(z)gj (z) dz = 0 and

(

∮

K

...

∮

K

−
∮

Kρ(1)

...

∮

Kρ(r)

)

qρ (z)

r
∏

j=1

{

e−nfρ(j)(zj)gj (zj)
}

dzr...dz1 = 0.

Our next lemma establishes Laplace approximations to the contour integrals in

(18) and (19) after the change of the contours. The lemma uses some new notation

that we introduce now. When fi (z) is analytic at zi0, let fis with s = 0, 1, ... be

the coefficients in the power series representation

fi (z) =
∞
∑

s=0

fis (z − zi0)
s . (22)

When fi (z) is not analytic at zi0, let the coefficients fis be arbitrary numbers for

all s ∈ N.

Lemma 3 Under the conditions of Lemma 2,

∮

Ki

e−nfi(z)gj(z)dz = e−nfi0

[

gj (zi0)π
1/2

f
1/2
i2 n1/2

+
Op (1)

hjin
3/2

]

and (23)
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∮

Kρ(1)

...

∮

Kρ(r)

qρ (z)
r
∏

j=1

{

e−nfρ(j)(zj)gj (zj)
}

dzr...dz1

= qρ (z0)

r
∏

j=1

e−nfρ(j)0
gj
(

zρ(j)0
)

π1/2

f
1/2
ρ(j)2n

1/2
+
Op (1)

n

r
∏

j=1

e−nfρ(j)0

hjρ(j)n
1/2
, (24)

where Op (1) is uniform in h1, ..., hr ∈
[

0, h
]

, and z0 =
(

zρ(1)0, ..., zρ(r)0
)

. The

branch of the square root in formulae (23) and (24) is chosen so that (−1)1/2 = −i.

Using Lemma 3, we establish the following theorem.

Theorem 1 Suppose that the null hypothesis is true (h = 0). Let h̄ be any fixed

number such that 0 < h̄ <
√
c and let C

[

0, h
]r

be the space of real-valued contin-

uous functions on
[

0, h
]r

equipped with the supremum norm. Then, as n, p → ∞

so that p/n = cp → c ∈ (0,+∞) , we have

L(h;λ)= exp

{

−
r
∑

i=1

∆p(zi0)+
1

2

r
∑

i,j=1

ln

(

1−hihj
cp

)

}

+Op

(

1

n

)

and (25)

L(h;µ)= exp

{

−
r
∑

i=1

∆p(zi0)+
1

2

r
∑

i,j=1

(

ln

(

1−hihj
cp

)

+
hihj
cp

)

−S−p
cp

r
∑

j=1

hj

}

+Op

(

1

n

)

,(26)

where the Op (n
−1) terms are uniform in h ∈

(

0, h̄
]r
. Furthermore, lnL (h;λ)

and lnL (h;µ) , viewed as random elements of C
[

0, h
]r
, converge weakly to Lλ (h)

and Lµ (h) with Gaussian finite-dimensional distributions such that, for any h, h̃ ∈
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[

0, h
]r
,

E (Lλ (h)) =
1

2

r
∑

i,j=1

ln

(

1− hihj
c

)

, (27)

Cov
(

Lλ (h) ,Lλ

(

h̃
))

= −
r
∑

i,j=1

ln

(

1− hih̃j
c

)

, (28)

E (Lµ (h)) =
1

2

r
∑

i,j=1

(

ln

(

1− hihj
c

)

+
hihj
c

)

, and (29)

Cov
(

Lµ (h) ,Lµ

(

h̃
))

= −
r
∑

i,j=1

(

ln

(

1− hih̃j
c

)

+
hih̃j
c

)

. (30)

Theorem 1 and Le Cam’s first lemma (van der Vaart (1998), p.88) imply that

the joint distributions of λ1, ..., λm (as well as those of µ1, ..., µm−1) under the null

and under the alternative are mutually contiguous for any h ∈ [0,
√
c)

r
. Along with

Le Cam’s third lemma (van der Vaart (1998), p.90), this can be used to study the

“local” powers of tests detecting signals in noise.

Let βλ (h) and βµ (h) be the asymptotic powers of the asymptotically most

powerful λ- and µ-based tests of size α of the null h = 0 against a point alternative

h = (h1, ..., hr) with hj <
√
c, j = 1, ..., r. We have

Theorem 2 Let Φ denote the standard normal distribution function. Then,

βλ (h) = 1− Φ



Φ−1 (1− α)−

√

√

√

√−
r
∑

i,j=1

ln

(

1− hihj
c

)



 and (31)

βµ (h) = 1− Φ



Φ−1 (1− α)−

√

√

√

√−
r
∑

i,j=1

(

ln

(

1− hihj
c

)

+
hihj
c

)



 . (32)

The theorem implies in particular that detection of signals corresponding to

covariance spikes of sizes well below the phase transition threshold is possible with

high probability. Consider for example the case where the number of observations

equals the dimensionality of data so that c = 1, the number of signals under the
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alternative equals five, and the signals have equal but rather weak strengths h1 =

... = h5 = 0.5. Then the best possible λ-based procedure for detecting such signals

with the asymptotic probability of false detection fixed at 0.05 has asymptotic

probability of correct detection 1− Φ
[

Φ−1 (0.95)−
√

−25 ln (1− 0.25)
]

≈ 0.85.

Unfortunately, constructing testing procedures with uniformly optimal power

is hard because the log-likelihood process established in Theorem 1 is not of the

Gaussian shift type, so that the statistical experiments we study are not locally

asymptotically normal (LAN) ones. For the case of real-valued data and r = 1,

Onatski et al (2012) use numerical simulations to show that the asymptotic powers

of the likelihood ratio (LR) tests based on λ and on µ are close to the respective

asymptotic power envelopes βλ (h) and βµ (h). The λ- and µ-based LR tests of

h = 0 against the alternative h ∈
(

0, h̄
)r

reject the null if and only if , respectively,

2 suph∈(0,h̄) lnL (h;λ) and 2 suph∈(0,h̄) lnL (h;µ) are sufficiently large. As r grows,

it becomes increasingly difficult to find the asymptotic critical values for the LR

tests by simulation. This requires simulating an r-dimensional Gaussian random

field with the covariance function and the mean function described in Theorem 1,

which, for relatively large r, is computationally expensive.

For r = 2, Figure 2 shows the contour plots of the power envelope βλ (h) (left

panel) and of the asymptotic power of the likelihood ratio test based on λ. We chose

parameter h̄ so that it is very close to the threshold
√
c, precisely h̄ =

√

c(1− e−36).

We see that the contours of βλ (h) and of the asymptotic power of the λ-based LR

test corresponding to the same value of these functions are relatively close to each

other, which suggests that the LR test has good asymptotic power properties.

More detailed analysis of the asymptotic and finite sample power of the LR test

is, however, beyond the scope of this paper, and is left for future research.

In contrast to the LR test, the popular signal detection procedures based on

the information in a few of the largest eigenvalues of XX ′/n (see, for example,
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Figure 2: The asymptotic power envelope βλ (h) and the asymptotic power of the
LR test based on λ; r = 2, asymptotic size is 0.05.

Krichman and Nadler (2009), Nadakuditi and Silverstein (2010), Onatski (2009),

Patterson et al (2006), Perry and Wolf (2010), and Tracy and Widom (2009)),

have trivial asymptotic power (that is, the asymptotic power, which equals the

asymptotic size) in the region h ∈ [0,
√
c)

r
. It is because the asymptotic behavior

of any finite number of the largest sample covariance eigenvalues when h ∈ [0,
√
c)

r

is not different from their behavior when the data are pure noise (Péché, 2003).

As was mentioned above, signal detection tests can be interpreted as tests of

sphericity. Vice versa, previously proposed sphericity tests, can, in principle, be

used for signal detection. In the Supplementary Appendix, we use Theorem 1

along with Le Cam’s third lemma to derive asymptotic powers of several such

tests against “spiked covariance” alternatives. The derived asymptotic powers

turn out to be much lower than the asymptotic power envelopes βλ (h) and βµ (h).

However, we feel that this comparison is somewhat unfair to the sphericity tests

because they are typically designed against general alternatives, as opposed to “the

spiked covariance” alternatives. Therefore, and to save space, we do not report

these results here.
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6 Conclusion

This paper studies the asymptotic power of the signal detection tests in complex-

valued Gaussian data as both the number of observations and data dimensionality

go to infinity. Contrary to the conventional wisdom that detection of signals be-

comes nearly impossible when their strength, measured by the size of the covariance

spikes, is below the phase transition threshold, we find that detection of such sig-

nals may be possible with high probability. The detection power lies not in the

different behavior of a few of the largest sample covariance eigenvalues under the

null and the alternative, which is exploited by the popular signal detection tests,

but in small deviations of the empirical distribution of all the eigenvalues from the

Marchenko-Pastur limit.

To derive our results, we consider the ratio of the densities of the sample co-

variance eigenvalues under the null and under the alternative hypothesis. We

establish a contour integral representation of this likelihood ratio, and use the

Laplace approximation to derive its asymptotic limit. Our analysis of the limiting

log-likelihood ratio process shows that the sub-critical region, where the sizes of the

covariance spikes are below the phase transition threshold, is the region of mutual

contiguity of the joint densities of the sample covariance eigenvalues under the null

and the alternative. We use the derived limiting log-likelihood process along with

Le Cam’s third lemma and the Neyman-Pearson lemma to obtain the asymptotic

power envelope for the signal detection tests. Preliminary analysis indicates that

the asymptotic power of the likelihood ratio test based on the sample covariance

eigenvalues is close to the asymptotic power envelope.

Our technical analysis is based on what we believe to be a novel representation

of the Harish-Chandra/Itzykson-Zuber integral with one of the p×p matrices being

of reduced rank r in the form of an r × r matrix of contour integrals. We obtain
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such a representation as a corollary to a much more general result established in

Lemma 1. This result expresses the hypergeometric function 0F
(α)
0 of two p × p

matrix arguments, one of which has rank r, as a repeated contour integral of the

hypergeometric function 0F
(α)
0 of two r × r matrix arguments. As discussed in the

introduction, the established dimension reduction for the hypergeometric function

may be important in various applied and theoretical fields of study. In particular,

for α = 2, it can, potentially, be used to extend the analysis of this paper to the

case of real-valued data. Such an extension is currently under investigation.

7 Appendix

Proof of Lemma 1.

Let f(Z) and g(Z) be functions defined on the r-dimensional torus {|zj | = 1, for

j = 1, ..., r} . Consider the scalar product, sometimes called the torus scalar prod-

uct,

〈f, g〉α =
1

r! (2πi)r

∮

...

∮

f (Z) g (Z)
∏

i 6=j

(

1− ziz
−1
j

)1/α
r
∏

j=1

dzj
zj
, (33)

where the contours of integration are the unit circles in the complex plane. Our

proof relies on the orthogonality property of Jack polynomials:
〈

C
(α)
κ , C

(α)
τ

〉

α
= 0

for κ 6= τ (Macdonald, chapter VI, §10).

Let us, first, introduce a few definitions (following Macdonald, 1995, chapter I,

§1, and Dumitriu et al, 2007): The non-zero κj in the partition κ = [κ1, κ2, ...] are

called the parts of κ. The number of parts is the length of κ, denoted as l (κ) . The

sum of the parts is the weight of κ, denoted as |κ|. We will identify partition κ with

its Ferrers diagram, defined as an arrangement of |κ| boxes in l (κ) left-justified

rows, the number of boxes in row i being the same as κi (see Figure 3). For each

square s in the Ferrers diagram, let l′ (s) , l(s), a(s), and a′(s) be respectively the

numbers of squares in the diagram to the north, south, east, and west of the square

22



S

κ=[4,3,3,1,1],
l(κ)=5,
|κ|=12,
a(s)=2,
l(s)=3,
a’(s)=0,
l’(s)=1.

Figure 3: The Ferrers diagram of partition [4, 3, 3, 1, 1].

s. Further, let h∗ (s) = l (s) + α (1 + a(s)) and h∗ (s) = l (s) + 1 + αa(s). Finally,

let c (κ, α) =
∏

s∈κ h∗ (s), c
′ (κ, α) =

∏

s∈κ h
∗ (s), and w (κ, α) = c (κ, α) c′ (κ, α).

We will need the following lemmata.

Lemma A1. For the torus scalar product of C
(α)
κ with itself, we have

〈

C(α)
κ , C(α)

κ

〉

α
=

(

α|κ| |κ|!
)2

w (κ, α)

r
∏

j=1

(

Γ
(

r−j+1
α

)

Γ
(

1
α

)

Γ
(

1+ r−j
α

)

)

∏

s∈κ

r+a′ (s)α−l′ (s)
r+(a′ (s)+1)α−l′ (s)−1

.

(34)

Proof: Macdonald (1995, Chapter VI, §10) establishes the orthogonality of “P”

normalizations of Jack polynomials, P
(α)
κ , with respect to the torus scalar product.

His formula (10.37) gives an explicit expression (up to a constant that can be

evaluated using (10.38)) for
〈

P
(α)
κ , Q

(α)
κ

〉

α
, where Q

(α)
κ = c(κ,α)

c′(κ,α)
P

(α)
κ (see (10.16)).

On the other hand,

P (α)
κ =

c′ (κ, α)

α|κ| |κ|!C
(α)
κ (35)

(see, for example, Table 6 of Dumitriu et al, 2007). Substituting this expression in

Macdonald’s formulae, we get (34).�
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Lemma A2. Let Z = diag (z1, ..., zr) , where z1, ..., zr are complex variables,

and let b1, ..., bp be complex constants. Then

r
∏

j=1

p
∏

s=1

(1−bszj)−1/α =

∞
∑

k=0

∑

κ⊢k

w (κ, α)

(α|κ| |κ|!)2
C(α)

κ (B)C(α)
κ (Z) . (36)

The series on the right-hand side of this equality converges uniformly over Ωρ =

{Z : maxj≤r |zj | ≤ ρ−1} , for any ρ > maxs≤p |bs|.

Proof: Macdonald (1995, Chapter VI, §10) shows that
r
∏

j=1

p
∏

s=1

(1−bszj)−1/α =

∑∞
k=0

∑

κ⊢k P
(α)
κ (B)Q

(α)
κ (Z) , where Q

(α)
κ = c(κ,α)

c′(κ,α)
P

(α)
κ . This result together with

(35) imply (36). The uniform convergence in (36) follows from the fact that func-

tion
∏r

j=1

∏p
s=1 (1−bszj)

−1/α is analytic in an open region that includes Ωρ.�

We are now ready to prove Lemma 1. Consider the right-hand side of (1), which

we will denote as RHS. We will assume that maxs≤p |bs| < 1 and that the contour

K is the unit circle in the complex plane. That these assumptions are without loss

of generality follows from the fact that the value of RHS does not change under the

transformation Z → ϕZ, B → ϕB, and A→ ϕ−1A, where ϕ is any positive num-

ber, and under a deformation of K into the unit circle (because such a deformation

leaves the contour in the region of the analyticity of the integrand). With these as-

sumptions, and noting that the component
∏r

j>i (zj−zi)
2/α of ω(α) (A,B,Z) equals

(−1)r(r−1)/(2α)∏r
j=1 z

(r−1)/α
j

∏r
j 6=i

(

1−ziz−1
j

)1/α
, we can rewrite RHS for α = 2/β,

where β is any positive integer, in the form of the torus scalar product

RHS = γ(α)

〈

0F
(α)
0 (A,Z) ,

r
∏

j=1

(zj/aj)
(p−r+1)/α−1

r
∏

j=1

p
∏

s=1

(1−bszj)−1/α

〉

α

,

where

γ(α) =

r
∏

j=1

[

Γ ((p+1−j)/α) Γ (1/α)

Γ ((r+1−j)/α)

]

. (37)
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Substituting 0F
(α)
0 (A,Z) and

r
∏

j=1

∏p
s=1 (1−bszj)

−1/α in the above formula by

their expansions (6) and (36) in the series of Jack polynomials, and interchang-

ing the order of integration and summation, which is possible because the series

converge uniformly over the unit torus, we obtain

RHS = γ(α)
∞
∑

k=0

∑

κ⊢k

∞
∑

t=0

∑

τ⊢t

w (τ , α)

k! (αtt!)2
C

(α)
κ (A)C

(α)
τ (B)

C
(α)
κ (Ir)

×
〈

C(α)
κ (Z) ,

r
∏

j=1

(zj/aj)
(p−r+1)/α−1C(α)

τ (Z)

〉

α

.

But
∏r

j=1 (zj)
(p−r+1)/α−1C

(α)
τ (Z) = C

(α)
τ̃ (Z) , where τ̃ denotes partition

[τ 1 +
p−r+1−α

α
, ..., τ r +

p−r+1−α
α

]. Note that τ̃ is well defined for α = 2/β, where β

is an even integer. If β is an odd integer, we need to assume that p−r+1 is

even. Therefore, using the orthogonality of the Jack polynomials with respect to

the torus scalar product, we have

RHS = γ(α)
r
∏

j=1

a
−(p−r+1)/α+1
j

∞
∑

t=0

∑

τ⊢t

w (τ , α)

|τ̃ |! (αtt!)2
C

(α)
τ̃ (A)C

(α)
τ (B)

C
(α)
τ̃ (Ir)

〈

C
(α)
τ̃ (Z) ,C

(α)
τ̃ (Z)

〉

α
.

Using Lemma A1, (37), and equality
r
∏

j=1

a
−(p−r+1)/α+1
j C

(α)
τ̃ (A) = C

(α)
τ (A) = C

(α)
τ (A) ,

we get after some cancellations

RHS =
∞
∑

t=0

∑

τ⊢t

γ̃(α)
1

t!

C
(α)
τ (A)C

(α)
τ (B)

C
(α)
τ (Ip)

, (38)

where

γ̃(α) =
α2|τ̃ | |τ̃ |!
w (τ̃ , α)

w (τ , α)

α2tt!

C
(α)
τ (Ip)

C
(α)
τ̃ (Ir)

r
∏

j=1

Γ ((p+1−j)/α)
Γ (1+(r−j)/α)

∏

s∈τ̃

r+a′ (s)α−l′ (s)
r+(a′ (s)+1)α−l′ (s)−1

.

In the above expression for γ̃(α), substitute C
(α)
τ (Ip) and C

(α)
τ̃ (Ir) by their
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explicit forms, that can be obtained from a general formula

C(α)
κ (Im) =

α|κ| |κ|!
w (κ, α)

∏

s∈κ

(m+ αa′ (s)− l′(s)) . (39)

A variant of this formula, that uses the generalized Pochhammer symbol, can be

found, for example, in Dumitriu et al (2007, Table 5). Then, after cancellations,

we get

γ̃(α) =
α|τ̃ |

αt

r
∏

j=1

Γ ((p+1−j)/α)
Γ (1+(r−j)/α)

∏

s∈τ (p+αa
′ (s)−l′(s))

∏

s∈τ̃ (r+(a′ (s)+1)α−l′ (s)−1)
.

Now consider the last ratio of the products in the above expression. For the

product term in the numerator that corresponds to square s in the position (i, j)

in the diagram of τ , there exists exactly the same term in the denominator, which

corresponds to square s in the position (i, j + (p− r + 1) /α − 1) in the diagram

of τ̃ . Therefore, we can write

γ̃(α) =
α|τ̃ |

αt

r
∏

j=1

Γ ((p+1−j)/α)
Γ (1+(r−j)/α)

1
∏

s∈τ̂ (r+(a′ (s)+1)α−l′ (s)−1)
,

where τ̂ is the partition that consists of r identical parts (p− r + 1) /α− 1.

Finally, note that

∏

s∈τ̂

(r+(a′ (s)+1)α−l′ (s)−1) = α|τ̃ |−t
∏

s∈τ̂

((r−l′(s)− 1) /α+a′ (s)+1)

= α|τ̃ |−t
r
∏

j=1

Γ ((r−j) /α+(p−r+1) /α)

Γ ((r−j) /α+1)
= α|τ̃ |−t

r
∏

j=1

Γ ((p−j+1) /α)

Γ ((r−j) /α+1)
.

Therefore, γ̃(α)=1 and the statement of the lemma follows from (6) and (38).�

Proof of Proposition 2

Proposition 1 and Corollary 1 directly imply (18) and the following formula for
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L (h;µ)

L (h;µ) = k1
nnpSpr−r(1+r)/2

Γ (np)

∫ ∞

0

yp(n−r)+r(r+1)/2−1e−ny detRdy, (40)

where R is an r × r matrix with

Rij =
1

2πi

∮

K

e
y
S

nhi
1+hi

z
zj−1

p
∏

s=1

(z − λs)
−1 dz.

Let us write detR as

detR =
∑

ρ

sgn ρ

r
∏

j=1

1

2πi

∮

K

e
y
S

nhρ(j)
1+hρ(j)

z
zj−1

p
∏

s=1

(z − λs)
−1 dz,

or equivalently as

detR =
∑

ρ

sgn ρ

(2πi)r

∮

K

...

∮

K

r
∏

j=1

{

e
y
S

nhρ(j)
1+hρ(j)

zj
zj−1
j

p
∏

s=1

(zj − λs)
−1

}

dzr...dz1. (41)

Using this representation, we have

∫ ∞

0

yp(n−r)+r(r+1)/2−1e−ny detR(y)dy =
∑

ρ

sgn ρ

(2πi)r
×

∫ ∞

0

∮

K

...

∮

K

yp(n−r)+r(r+1)/2−1 exp

{

−
(

n−
r
∑

j=1

nhρ(j)
1 + hρ(j)

zj
S

)

y

}

×

r
∏

j=1

{

zj−1
j

p
∏

s=1

(zj − λs)
−1

}

dzr...dz1dy.

Since the contour K is chosen so that for any z ∈ K, Re z <
(

∑r
j=1

hj

1+hj

)−1

S, the

integrand in the above multiple integral is absolutely integrable on [0,∞) × K ×

...×K, and Fubini’s theorem justifies the interchange of the order of the integrals,
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so that

∫ ∞

0

yp(n−r)+r(r+1)/2−1e−ny detR(y)dy =
Γ (p (n− r) + r(r + 1)/2)

np(n−r)+r(r+1)/2
×

∑

ρ

sgn ρ

(2πi)r

∮

K

...

∮

K

(

1−
r
∑

j=1

hρ(j)
1 + hρ(j)

zj
S

)−p(n−r)−r(r+1)/2

×

r
∏

j=1

{

zj−1
j

p
∏

s=1

(zj − λs)
−1

}

dzr...dz1.

Combining this with (40), we get (19). �

Proof of Lemma 2

The lemma can be proven using arguments very similar to those in the proof

of Lemmas 4 and 6 in Onatski, Moreira and Hallin (2012) (OMH in what follows),

and we omit the proof to save space.�

Proof of Lemma 3.

To save space, we will only establish (23), relegating a conceptually similar but

more technical proof of (24) to the Supplementary Appendix. Lemma 5 in OMH

implies that

∮

Ki

e−nfi(z)g (z) dz = e−nfi0

[

g (zi0) π
1/2

f
1/2
i2 n1/2

+
Op (1)

hin3/2

]

, (42)

where g (z) = exp
{

−1
2
∆p (z)

}

and Op (1) is uniform in hi ∈
(

0, h̄
]

. A careful

inspection of OMH’s proof of their Lemma 5 reveals that a version of (42) remains

valid for general functions g (z) that are analytic in the open ball B (zi0, ri) with

center at zi0 and radius ri = min
{

zi0 −max
{

b̄p, λ1
}

, 1+hi

hi
S − zi0

}

with probabil-

ity approaching 1 as n, p→ ∞. Precisely, for such general g (z) we have

∮

Ki

e−nfi(z)g (z) dz = e−nfi0
g (zi0) π

1/2

f
1/2
i2 n1/2

+Ψ1 +Ψ2 +Ψ3 (43)
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with

|Ψ1| < C1e
−nfi0h−1

i n−3/2 sup
z∈B̄

|g (z)| , (44)

|Ψ2| < C1e
−nfi0e−nC2h−1

i sup
z∈Ki1∪K̄i1

|g (z)| , and (45)

|Ψ3| < C1

∣

∣

∣

∣

∮

Ki2∪K̄i2

e−nfi(z)g (z) dz

∣

∣

∣

∣

, (46)

where C1 and C2 are some positive constants, and B̄ is a closed ball with center

at zi0 and radius ri/2.

Now, let g (z) = gj(z) = zj−1 exp {−∆p (z)}. Lemma A2 in OMH implies that

supz∈B̄∪Ki1∪K̄i1
|g (z)| = h1−j

i Op (1) uniformly in hi ∈
(

0, h̄
]

. Therefore, by (44) and

(45),

Ψ1 +Ψ2 = e−nfi0h−j
i n−3/2Op (1) . (47)

Turning to the analysis of Ψ3, note that by definition of fi (z) and g (z) ,

e−nfi(z)g (z) = e
n

hi
1+hi

z
zj−1

p
∏

j=1

(z − λj)
−1 . (48)

For z ∈ Ki2 ∪ K̄i2, we have
∣

∣(z − λj)
−1
∣

∣ < (3zi0)
−1 , and

∣

∣z (z − λj)
−1
∣

∣ < 2, for any

j = 1, ..., p. Therefore, using (48), we get

∣

∣

∣

∣

∮

Ki2∪K̄i2

e−nfi(z)g (z) dz

∣

∣

∣

∣

< 2j−1 (3zi0)
−p+j−1

∮

Ki2∪K̄i2

∣

∣

∣
e
n

hi
1+hi

z
dz
∣

∣

∣

= 2j (3zi0)
−p+j−1

(

n
hi

1 + hi

)−1

e
n

hi
1+hi

zi0

= 2j (3zi0)
j−1

(

n
hi

1 + hi

)−1

e
−n

(

cp ln(3zi0)−
hi

1+hi
zi0

)

= 2j (3zi0)
j−1

(

n
hi

1 + hi

)−1

3−pe−n(cp ln(zi0)−hi−cp).

On the other hand, for any hi ∈
[

0, h̄
]

, hi <
√
cp for sufficiently large n and p, and
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cp ln (zi0)−hi−cp > fi0. Indeed, using the definition of zi0 and the fact, established

in OMH’s Lemma 11, that fi0 = −cp − (1− cp) ln (1 + hi) + cp ln
cp
hi
, we have

cp ln (zi0)− hi − cp − fi0 = ln (1 + hi) + cp ln (cp + hi)− hi − cp ln cp.

The right hand side of this equality equals 0 at hi = 0 and has a non-negative

derivative with respect to hi for all 0 ≤ hi ≤ √
cp. Therefore,

∣

∣

∣

∣

∮

Ki2∪K̄i2

e−nfi(z)g (z) dz

∣

∣

∣

∣

< 2j (3zi0)
j−1

(

n
hi

1 + hi

)−1

3−pe−nfi0 ,

and thus, Ψ3 = e−nfi0h−j
i n−3/2Op (1), uniformly in hi ∈

(

0, h̄
]

. Combining this

with (43) and (47), we obtain (23).�

Proof of Theorem 1

Proposition 2 and Lemma 3 imply that

L (h;λ) =
k1 exp {−n

∑r
i=1 fi0}

(2i)r (πn)r/2
det

(

zj−1
i0 exp {−∆p (zi0)}

f
1/2
i2

+
Op (1)

hjin

)

1≤i,j≤r

As is shown in OMH (see their Lemma 11 and (A8))3, for hi ≤ h̄,

fi0 = −cp − (1− cp) ln (1 + hi) + cp ln
cp
hi
, and (49)

fi2 = − h2i
2 (1 + hi)

2 (cp − h2i )
. (50)

Moreover, by OMH’s Lemma A2, exp {−∆p (zi0)} = Op (1) uniformly in h ∈
(

0, h̄
]r
. Using these facts and the definition of k1 given in Proposition 2, we get

after some algebra

3Note that the expressions given in OMH are half times the expressions given below because
the equivalent of fi in the real-valued data case considered by OMH is fi/2.
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L (h;λ) = nr2/2

r
∏

t=1

[

(p− t)!

(

cp − h2t
2π

)1/2
]

erpp−rp ×

exp

{

−
r
∑

i=1

∆p (zi0)

}

r
∏

i>j

(cp − hihj)
(

1 +Op

(

n−1
))

Applying Stirling’s formula

(p− t)! = e−ppp−t+1

(

2π

p

)1/2
(

1 +O
(

p−1
))

we get

L (h;λ) = exp

{

−
r
∑

i=1

∆p (zi0)

}

r
∏

t=1

(

1− h2t
cp

)1/2 r
∏

i>j

(

1− hihj
cp

)

(

1 +Op

(

n−1
))

,

which implies (25).

Turning to the proof of (26), Proposition 2 and Lemma 3 imply that

L (h;µ) = (−1)r(r−1)/2 n−pr+r(r+1)/2
r
∏

i>j

(hi − hj)
−1 × (51)

r
∏

t=1

[

hr−p
t (1 + ht)

p−n−1 (p− t)!
]

(nS)pr−r(r+1)/2 Γ (p (n− r) + r(r + 1)/2)

Γ (np)
×

∑

ρ

sgn ρ

(2πi)r
qρ (z0)

r
∏

j=1

e−nfρ(j)0
gj
(

zρ(j)0
)

π1/2

f
1/2
ρ(j)2n

1/2

(

1 +Op

(

n−1
))

Using the definition of qρ (z0) and of zi0, we get

qρ (z0) =

(

1−
r
∑

i=1

hi
1 + hi

zi0
S

)−p(n−r)−r(r+1)/2

exp

{

−
r
∑

i=1

nhizi0
1 + hi

}

=

(

1−
r
∑

i=1

hi + cp
S

)−p(n−r)−r(r+1)/2

exp

{

−pr −
r
∑

i=1

nhi

}

. (52)
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Further, using the definition of gj
(

zρ(j)0
)

, the fact that
∑

ρ sgn ρz
j−1
ρ(j)0 equals the

Vandermonde determinant
∏r

i>j (zi0 − zj0) , we get

∑

ρ

sgn ρ
r
∏

j=1

e−nfρ(j)0gj
(

zρ(j)0
)

π1/2

f
1/2
ρ(j)2n

1/2
=

πr/2

nr/2
exp

{

−
r
∑

i=1

(nfi0 +∆p (zi0))

}

×(53)

r
∏

i=1

f
−1/2
i2

r
∏

i>j

(zi0 − zj0) .

Substituting (52) and (53) into (51), and using (49) and (50) together with the

fact that the branch of the square root in f
−1/2
i2 is chosen so that

√
−1 = −i, we

get after some algebra

L (h;µ) =

r
∏

t=1

[

(p− t)!
(

cp − h2t
)1/2
]

Spr−r(r+1)/2 ×

Γ (p (n− r) + r(r + 1)/2)

Γ (np)

(

1−
r
∑

j=1

hj + cp
S

)−p(n−r)−r(r+1)/2

×

exp

{

−
r
∑

j=1

nhj

}

1

(2πn)r/2
c−pr
p

r
∏

i>j

(cp − hihj)
(

1 +Op

(

n−1
))

.

Now, using the fact that S − p = Op (1) , we get ln
(

S
p

)

= S−p
p

+Op (p
−2) and

ln

(

1−
r
∑

j=1

hj + cp
S

)

= −
∑r

j=1 (hj + cp)

p
− 1

2

(

∑r
j=1 (hj + cp)

)2

p2
+

∑r
j=1 (hj + cp)

p2
(S − p) +Op

(

p−3
)

.

Further, the Stirling approximations give

(p− t)! = e−ppp−t+1

(

2π

p

)1/2
(

1 +O
(

p−1
))

and

Γ (p (n− r) + r(r + 1)/2)

Γ (np)
= (pn)−pr+r(r+1)/2 e

1
2
cpr2
(

1 +O
(

n−1
))

.
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So finally, after some cancellations,

L (h;µ) = e
1

2cp
(
∑r

j=1 hj)
2

e
−

∑r
j=1 hj

cp
(S−p)

e
−

r
∑

i=1
∆p(zi0)

r
∏

t=1

(

1− h2t
cp

)1/2 r
∏

i>j

(

1− hihj
cp

)

(

1 +Op

(

n−1
))

,

which implies (26).

To establish the rest of the statements of Theorem 1 we will need the following

lemma.

Lemma A3. Suppose that our null hypothesis holds. Denote
∑p

j=1 λ
2
j as T.

Then, for any fixed r and h̄ <
√
c, and any (h1, ..., hr) ∈

(

0, h̄
]r
, as n, p → ∞ so

that p/n → c, the vector (S − p, T − (1 + cp) p,∆p (z10) , ...,∆p (zr0)) converges in

distribution to a Gaussian vector (η, ζ, ξ1, ..., ξr) with

E (η) = E (ζ) = E (ξi) = 0,

Var (η) = c,Var (ζ) = 2c
(

2 + 5c+ 2c2
)

,Cov (η, ζ) = 2c (1 + c) ,

Cov (η, ξi) = −hi,Cov (ζ, ξi) = −hi (hi + 2 + 2c) , and

Cov (ξi, ξk) = − ln (1− hihk/c)

Proof: The proof of the lemma is similar to that of Lemma 12 in OMH.

The convergence to the Gaussian distribution follows from Theorem 1.1 of Bai and

Silverstein (2004). The formulas for the means, variances and covariances of η and

ξj are obtained using Theorem 1.1 iii) of Bai and Silverstein (2004) similarly to

how the corresponding formulas in Lemma 12 of OMH are obtained using Theorem

1.1 ii). Therefore, below we only derive the formulae for the mean, variance, and

covariances that involve ζ. Variable ζ does not appear in Lemma 12 of OMH

because the lemma does not study the asymptotics of T − (1 + cp) p.

The fact that Eζ = 0 follows directly from Theorem 1.1 iii) of Bai and Silver-
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stein (2004). The same theorem implies that

Cov
(

ξj , ζ
)

= − 1

4π2

∮ ∮

z22 ln (z̄j0 − z1)

(m (z1)−m (z2))
2

dm (z1)

dz1

dm (z2)

dz2
dz1dz2, (54)

where z̄j0 = lim zj0 as n, p→ ∞,

Cov (η, ζ) = − 1

4π2

∮ ∮

z22z1

(m (z1)−m (z2))
2

dm (z1)

dz1

dm (z2)

dz2
dz1dz2, (55)

and

Var (ζ) = − 1

4π2

∮ ∮

z21z
2
2

(m (z1)−m (z2))
2

dm (z1)

dz1

dm (z2)

dz2
dz1dz2, (56)

where

m (z) = − (1− c) z−1 + cm(z)

with m (z) given by (3.6) of OMH, where cp is replaced by c. That is,

m (z) =
−z + c− 1 +

√

(z − c− 1)2 − 4c

2z
, (57)

where the branch of the square root is chosen so that the real and the imaginary

parts of
√

(z − c− 1)2 − 4c have the same signs as the real and the imaginary

parts of z− c− 1, respectively. The contours of integration in (54)-(56) are closed,

oriented counterclockwise, enclose zero and the support of the Marchenko-Pastur

distribution with parameter c, and do not enclose z̄j0.

The above expressions can be simplified. Use formula 1.16 of Bai and Silverstein

(2004), to get

Cov
(

ξj, ζ
)

= − 1

4π2

∮ ∮

ln (z̄j0 − z (m1)) (z(m2))
2

(m1 −m2)
2 dm1dm2, (58)

34



Cov (η, ζ) = − 1

4π2

∮ ∮

z (m1) (z(m2))
2

(m1 −m2)
2 dm1dm2, and (59)

Var (ζ) = − 1

4π2

∮ ∮

(z (m1))
2 (z(m2))

2

(m1 −m2)
2 dm1dm2, (60)

where

z (m) = − 1

m
+

c

1 +m
(61)

and the contours of integration over m1 and m2 in (58-60) are obtained from the

contours of integration over z1 and z2 in (54-56) by transformation m (z) . Recall

that by assumption the contours over z1 and z2 intersect the real line to the left of

zero and in between the upper boundary of the support of the Marchenko-Pastur

distribution, (1 +
√
c)

2
, and z̄j0. Therefore, as can be shown using the definition

(57) of m (z), the m1-contour and m2-contour are clockwise oriented and intersect

the real line in between − (1 +
√
c)

−1
andm (z̄j0) = −hj (hj + c)−1 and to the right

of zero. In particular, both contours enclose 0 and −hj (hj + c)−1, but not −1 and

− (1 + hj)
−1.

Assuming without loss of generality that m1-contour lies inside the m2-contour,

from (A64) in the Supplementary appendix of OMH, we have

∮

ln (z̄j0 − z (m1))

(m1 −m2)
2 dm1 = 2πi

(

− 1

m2
+

1

m2 + hj (hj + c)−1

)

. (62)

Denoting −hj (hj + c)−1 as xj , we get from (62) and (58)

Cov
(

ξj, ζ
)

=
2πi

4π2

∮

(z(m2))
2

(

1

m2

− 1

m2 − xj

)

dm2

=
2πi

4π2

∮
(

− 1

m2
+

c

1 +m2

)2(
1

m2
− 1

m2 − xj

)

dm2

= −hj (hj + 2 + 2c) ,

where the last equality follows from Cauchy’s residue theorem and the fact that
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the contour is oriented clock-wise.

For Cov (η, ζ) , we have

∮

z (m1)

(m1 −m2)
2dm1 =

∮

(

− 1
m1

+ c
1+m1

)

(m1 −m2)
2 dm1 =

2πi

m2
2

so that

Cov (η, ζ) = − 2πi

4π2

∮ ∮

(z(m2))
2

m2
2

dm2

= − 2πi

4π2

∮
(

− 1

m2

+
c

1 +m2

)2
1

m2
2

dm2

= 2c (1 + c)

by Cauchy’s theorem.

For Var (ζ) , we have

∮

z (m1)
2

(m1 −m2)
2dm1 =

∮

(

− 1
m1

+ c
1+m1

)2

(m1 −m2)
2 dm1

=
4πi

m2
2

(

c− 1

m2

)

so that

Var (ζ) = − 4πi

4π2

∮ ∮

(z(m2))
2

m2
2

(

c− 1

m2

)

dm2

= − 4πi

4π2

∮ ∮

(

− 1
m2

+ c
1+m2

)2 (

c− 1
m2

)

m2
2

dm2

= 2c
(

2 + 5c+ 2c2
)

by Cauchy’s theorem.�

Lemma A3 and formulae (25) and (26) imply the convergence of finite dimensional-

distributions of the random fields lnL (h;λ) and lnL (h;µ) to the Gaussian distri-
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butions with means and covariance matrices characterized by (27-30).

To complete the proof of Theorem 1, we need to establish the tightness of

lnL (h;λ) and lnL (h;µ), viewed as random elements of the space C
[

0, h
]r
, as

n, p → ∞ so that p/n → c. Formulae (25-26) and the facts that S − p = Op (1) ,

and that ∆p (zi0) = Op (1) for i = 1, ..., r, where Op (1) are uniform in h ∈
(

0, h̄
]r
, imply that for an arbitrarily small positive ε, there must exist B > 0 such

that Pr
(

suph∈(0,h̄]
r |lnL (h;λ)| > B

)

< ε and Pr
(

suph∈(0,h̄]
r |lnL (h;µ)| > B

)

<

ε for sufficiently large n and p. Since, as implied by Proposition 1, lnL (h;λ)

and lnL (h;µ) are continuous functions on h ∈
[

0, h
]r
, sup

h∈(0,h̄]
r |lnL (h;λ)| =

suph∈[0,h̄]
r |lnL (h;λ)| , and suph∈(0,h̄]

r |lnL (h;µ)| = suph∈[0,h̄]
r |lnL (h;µ)| , so that

the tightness of lnL (h;λ) and lnL (h;µ) follows.�

Proof of theorem 2

To save space, we only derive the asymptotic power envelope for the relatively

more difficult case of real-valued data and µ-based tests. According to the Neyman-

Pearson lemma, the most powerful test of the null h = 0 against a point alternative

h = (h1, ..., hr) is the test which rejects the null when lnL (h;µ) is larger than a

critical value C. It follows from Theorem 1 that, for such a test to have asymptotic

size α, C must be

C =
√

W (h)Φ−1 (1− α) +m (h) , (63)

where

m (h) =
1

2

r
∑

i,j=1

(

ln

(

1− hihj
c

)

+
hihj
c

)

and

W (h) = −
r
∑

i,j=1

(

ln

(

1− hihj
c

)

+
hihj
c

)

.

Now, according to Le Cam’s third lemma and Theorem 1, under h = (h1, ..., hr) ,

lnL (h;µ)
d→ N (m (h) +W (h) ,W (h)) . Therefore, the asymptotic power βµ (h)

37



is (32).�
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