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Abstract

This paper develops a theory of the likelihood ratio test on the shape of the
steady-state distribution of a finite Markov chain. A variety of assumptions about
the shape of the steady-state distribution can be represented by a system of linear
inequality restrictions on the steady-state probabilities. I show that, for given
pseudo-true transition probabilities, asymptotic distribution of the test of linear
inequality restrictions on the steady-state probabilities is equal to a mixture of
the chi-squared distributions with different degrees of freedom. I use this result
together with the finite Markov chain structure of the data generating process
to find the exact asymptotic distribution of the global test of the monotonicity
of the steady-state distribution. In doing this, I assume that the only non-zero
transition probabilities are those on the three main diagonals of the transition
matrix.



1. Introduction

Modeling social and economic processes as finite Markov chains is a widespread
practice in empirical studies. Such models have been extensively used to explain
patterns of social and occupational mobility, voting behavior, income distribu-
tion dynamics, distribution of firm sizes, success or failure of different marketing
strategies, patterns of countries’ convergence, and evolution of cities. For a review
of related literature one can see Bartholomew (1973) and Shorrocks (1978).

Those studies that used Markov chains as their working model often estimated
the corresponding steady-state distribution to predict the equilibrium state or to
summarize tendencies in the past development of the underlying process. For a
recent example, Quah (1993) divides countries into several groups according to
their income relative to the world’s average income, estimates the probabilities
of transitions between the groups, and finds the corresponding steady-state dis-
tribution. The estimated steady-state distribution has two peaks with many rich
countries, many poor countries, and relatively few middle income countries in be-
tween. This result has been interpreted as evidence supporting a hypothesis of
world’s polarization into two clubs, a club of rich and a club of poor.

Surprisingly, despite the importance of conclusions based on the estimated
shape of the steady-state distribution, assessing statistical significance of the es-
timates received little attention. Usually, the form of the distribution is judged
by visual inspection of the corresponding histogram. Unfortunately, as is well
known, the steady-state probabilities are very sensitive to the underlying transi-
tion probabilities. Therefore, the estimated shape of the distribution might be a
very fragile function of the data.

This paper develops a theory of the likelihood ratio test on the shape of the
steady-state distribution of a finite Markov chain. A variety of assumptions about
the shape of the steady-state distribution such as n-modality, degree of polar-
ization, monotonicity, or degeneracy can be represented by a system of linear
inequality restrictions on the steady-state probabilities. I show that, for given
pseudo-true transition probabilities, asymptotic distribution of the test of linear
inequality restrictions on the steady-state probabilities is equal to a mixture of
the chi-squared distributions. I use this result together with the finite Markov
chain structure of the data generating process to find the exact asymptotic distri-
bution of the global test of the monotonicity® of the steady-state distribution. In

LA distribution is said to be monotone if the corresponding histogram has monotonically
increasing or decreasing bars.



doing this, I assume that the only non-zero transition probabilities are those on
the three main diagonals of the transition matrix.

Large literature on testing inequality restrictions is related to this work. As-
ymptotic distribution of the likelihood ratio test of linear inequality restrictions
on the mean of a multivariate normal vector was studied in Kudo (1963), Perl-
man (1969), and Shapiro (1985). They show that the asymptotic distribution
has a form of a mixture of the chi-squared distributions with different degrees
of freedom. Wolak (1989,1991) analyzes tests of linear and non-linear inequality
constraints in non-linear econometric models. Though very general, his results are
not directly applicable to the problem at hand because he requires i.i.d. property
for the data.’

An important early study that can be used to link Wolak’s analysis to the
multivariable normal literature is Chernoff (1954). He studies asymptotic proper-
ties of the likelihood ratio test when the true parameter value is on the boundary
of both null and alternative hypotheses. Chernoff shows that asymptotically the
problem reduces to a special case of testing linear inequality restrictions on the
mean of a normal random variable with the covariance matrix equal to the inverse
of the information matrix for the initial problem. This paper extends Chernoff’s
result to a finite Markov chain data generating process and uses this extension
to find the asymptotic distribution of the likelihood ratio for given pseudo-true
transition probabilities.

Unfortunately, the asymptotic distribution is not invariant to the choice of the
pseudo-true transition probabilities. This is the same problem that makes Wolak
(1989, 1991) conclude that tests of inequality restrictions in non-linear models
are intrinsically local. I show that in one case, interesting for empirical research,
the problem can be overcomed, that is, the critical values of the global test can
be found. In particular, I analyze the monotonicity hypothesis about the steady-
state distribution and assume that the only non-zero transition probabilities are
those on the three main diagonals of the transition matrix.

The triple-diagonal assumption is not new in the literature. Shorrocks (1976)
makes this assumption when studying income mobility, Champernowne (1953)
uses similar assumption trying to explain Pareto-type income distributions, Adel-

2Wolak (1989) explicitly assumes i.i.d, data, whereas Wolak (1991) inherits this assumption
from the 1989 paper by relying on its results. Andrews (1998, 1999) studies tests of a point
null hypothesis in a very general framework, allowing in particular for a Markov chain data
generating process. This paper, however, considers testing composite nulls versus composite
alternatives.



man (1958) estimates a triple-diagonal transition probability matrix for evolution
of concentration of firms in steel industry, Quah (1993) estimates a triple-diagonal
transition matrix explaining countries’ income distribution dynamics. The as-
sumption implies a simple relationship between the steady-state and the transition
probabilities.

The monotonicity hypothesis has considerable empirical interest. For example,
for Quah’s (1993) countries’ income distribution analysis, the hypothesis corre-
sponds to world becoming either all-rich or all-poor. An application of the results
of this paper to analysis of countries’ income distribution dynamics is currently
in progress. Some preliminary findings are described in Kremer, Onatski, and
Stock (2000). Interestingly, the authors cannot reject a hypothesis that world is
becoming all-rich using the global monotonicity test described in this paper.

The rest of the paper is organized as follows. Section 2 describes the Markov
chain framework and formulates general hypotheses about the shape of the steady-
state distribution. Extension of Chernoff’s results to the Markov chain data gen-
erating process is the subject of section 3. Section 4 contains results about the
asymptotic distribution of the global likelihood ratio test of the shape restrictions.
Section 5 concludes.

2. Shape restrictions on the steady-state distribution

The framework of my analysis is as follows. I consider N agents (these might
be countries, individuals, firms, etc.) categorized between K groups for the time
period from ¢ = 0 to t = T. The evolution of each agent’s position among the
groups is governed by a first order Markov process. That is, an agent’s membership
in a particular group depends only on its classification in the previous period.

Denote the probability of transiting from group ¢ to group j in one period as
pi; and the whole matrix® of the transition probabilities as P. We assume that
the matrix P is ergodic so that there exists a unique steady-state distribution
of the agents among the groups. Denote the steady-state probability of being in
group ¢ as m; and the vector of these probabilities as 7. Then 7 must satisfy three
conditions:

7#P=x,nJ=1, and 7 > 0, (2.1)

where J is a K x 1 vector of ones. The first condition is the definition of the

3In the following P also denotes a vector of K x (K — 1) independent parameters of the
transition matrix. Whether the vector or the matrix is used should be clear from the context.



steady state. If a distribution of the agents among the groups is in the steady
state currently then after one period it is still in the steady state. The second and
the third conditions insure that 7 is a probability distribution.

The object of my study is the shape of the steady-state distribution, 7. More
precisely, I consider the following hypothesis about 7 :

H:Ar >0, (2.2)

where A is a C'x K matrix and C' is the number of constraints. These simple linear
inequality constraints have enough flexibility to represent a variety of assumptions
about the shape of the steady-state distribution. Below I formulate several special
cases of the above hypothesis that have clear interpretation in terms of the shape
restrictions.

One interesting hypothesis restricts 7; to be monotonically non-decreasing
function of ¢ or, more generally:

H1 P Tk 26[€7T]€, k’zl,...,K—l, (23)

where 6, are some positive numbers greater than or equal to 1. Clearly, the steady-
state distribution satisfying these restrictions has a single peak at the extreme
group, K. The importance of the peak is regulated by 6;: the greater ¢, the more
pronounced the peak. If, say: all §; are equal to 2 then the steady-state size of
the largest group is at least 2! times larger than that of the smallest group. To
formulate a hypothesis that m; are monotonically non-increasing in ¢ one needs to
change the inequality sign in H; and take ¢, to be positive numbers less than or
equal to 1.

Another hypothesis of the form (2.2) having clear "shape interpretation” is
that of n-peakedness of m. I call a distribution n-peaked if the corresponding
histogram has n peaks. More formally, let 71, 72, ..., j» be an increasing sequence
of integers with j; = 0 and j, = K 4 1 and such that 7, as a function of
k € [js, Jiy1], is non-decreasing if i is odd and strictly decreasing if i is even.!
Then the distribution 7 is n-peaked with n = (r + 1)/2. Note that r is an odd
number, so n is an integer. The peaks of the distribution are situated at groups
J2, Jay -5 Jr—1. A slightly more general hypothesis than that of n-peakedness allows
one to regulate importance of the peaks in the same manner as H; allows one to
regulate importance of the peak at group K. This hypothesis can be fomulated

41 define 71y and Tr+1 to be equal to 0.



as follows:

HQ DT 2 6k7Tk, for k € [ji,ji_t,_l), 1-odd and

Ty > Opmyi, for k € [, jir1), i-even,

where 6, are some positive numbers greater than or equal to 1.

Still another potentially interesting hypothesis about the shape of the steady-
state distribution is one about degree of polarization of 7. Intuitively, a dis-
tribution is the most polarized when it is concentrated in the two most distant
groups. A distribution is the least polarized when it is concentrated in a single
group. According to this intuition the following hypothesis could be interpreted
as a restriction on the degree of polarization of 7:°

Hy: min m; —6 max m; >0,
i1e{1,K} je{2,.. . K—-1}
where 6 is greater than or equal to 1. Hypothesis H3 can be represented as a
system of 2(K — 2) inequalities and therefore has form (2.2).

One of the traditional choices of the test of linear inequality restrictions is
the likelihood ratio test. I follow this tradition and concentrate on testing the
shape restrictions with a likelihood ratio test of size 0.05. To define the likelihood
ratio statistic I introduce some additional notations. Denote the total number of
observed transitions from group ¢ to group j as N, and the number of agents
initially in group ¢ as ;. Define f; as the probability of being initially in group
1, and f as the vector of the initial probabilities, f;. I assume that f does not
depend on the transition probabilities, P. Given this, the likelihood function of

the data X is
K

Lx|p,f) =T[~ I] »i*

r=1 ij—1
and the maximum likelihood estimates of p;; and f, are p;; = N;;/ Z;il N;; and
fr=N,/ Zle Ny, respectively.

5 A measure of polarization that satisfies this intuition and several other axioms is the coef-
ficient of polarization, s, proposed by Esteban and Ray (1994):

K
w(m) =R Y witem;li—il,
i,j=1

where « is greater than zero and R is a constant chosen so that s is between zero and one.
However, the hypothesis s(m) > 54 cannot be represented in the form (2.2).
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Let us denote the set of transition probabilities, P, satisfying hypothesis (2.2)
as II and the set of discrete probability distributions having no more than K
masses as S. Note that conditions (2.1) imply the following convenient formula
for 7:

r=[(P-D)(P=I)+JJ] " (2.4)

where [ is a K x K identity matrix and J is a K x 1 vector of ones. Thus, the set I1
consists of those P that satisfy conditions (2.4) and (2.2). Given these notations,
the likelihood ratio statistic is defined as

(LX)
MX) =2 sup log (L(Xyﬁ, f)) '

The likelihood ratio test rejects H in favor of its complementary alternative if A
is greater than a critical value ¢, defined so that the following equality holds:

sup  Pr(A(X) > ¢) =0.05,

Pyell, foes

where P, is the pseudo-true matrix of the transition probabilities and f; is the
vector of the pseudo-true initial probabilities.

Computation of X is a relatively easy constrained maximization task. It could
be done using standard maximization programs such as fmincon routine in Mat-
lab. A much harder task is finding the correct finite sample critical value, c. 1
briefly discuss difficulties of finite sample computations at the end of the paper.
In what follows I concentrate on finding asymptotic approximation to the exact
finite sample critical value, c.

3. Asymptotic reduction of the shape restrictions to a sim-
pler hypothesis

Wilks’ (1938) classical result on the asymptotic distribution of the likelihood ratio
(LR) does not hold in the framework described in the previous section because
the transition probabilities, P, are allowed to lie on the boundary of the null set
I1. The asymptotic theory of the likelihood ratio test when parameters might
lie on the boundary of both the null and the alternative sets was originated in
the work by Chernoff (1954). He proved that under suitable regularity conditions

6See, for example, Guilbaud (1976).



the general testing problem could be reduced to a test of a related hypothesis
about mean of multivariable normal distribution when a single observation from
the distribution is available. This reduction facilitates dramatically analysis of
the likelihood ratio test.

Below I will extend Chernoft’s (1954) results to the Markov processes to show
that the asymptotic distribution of the likelihood ratio statistic corresponding to
hypothesis (2.2) is the same as that corresponding to a simple hypothesis about
the mean of a normal distribution. I now introduce some helpful definitions and
new notations.

Definition 3.1. A set C is positively homogeneous if p € C implies ap € C for
a> 0.

Definition 3.2. A set ¥ is approximated by a positively homogeneous set Cy at
point 0 if

inf |z —y|=o(ly|) for y € ¥ and inf |z — y| = o(|z|) for x € Cy.
zcCy yev

Denote the constrained maximum likelihood estimate of transition probabil-
ities satisfying H as Py. We can reparametrize the problem so that the true
parameter [ is zero. Indeed, whatever % is, one can define new parameters
P = P — P, such that Py = 0. Denote Cp; and C}; the positively homogeneous
sets approximating IT and II¢ respectively.” The following proposition is true.

Proposition 3.3. If Py is consistent, then, the asymptotic distribution of A
when N — oo (T' — o0) is the same as it would be for the likelihood ratio
test of P € Cyp against P € Cf; based on one observation from a population with
distribution N(P,J~'), where J='/N ( respectively J=1'/T) is the asymptotic
variance-covariance matrix of the unrestricted maximum likelihood estimates.

Proof: In the case when N — oo we can consider our data as N i.i.d. ob-
servations of a sequence of states of length 7. The distribution of each particular
observation is multinomial with probability of a sequence {z1,zs, ..., 27} equal
t0 fryDeyxoDaoas--Por_rap- 1t 1S then straightforward to check Chernoff’s (1954)
Condition R that imply the above theorem.

In the case when T' — oo we can consider our data as T observations of a
single Markov chain with vector states {x;} = {x1,z2,...,2x} and probability

"Here and elsewhere in the paper the superscript ¢ denotes the complementary set.
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of transition between states {z;} and {y;} equal t0 Dy, y,Dagys---Panyy- It 1S €asy
to generalize Chernoff’s (1954) result to Markov chain processes by substituting
Billingsley’s (1961) Conditions 1.1 and 1.2 instead of Condition R and otherwise
leaving Chernoff’s proof unchanged. Checking Conditions 1.1 and 1.2 for the
Markov process at hand is straightforward.O

To use Proposition 3.3 we need to prove that Py is consistent. The consis-
tency follows from the fact that the likelihood function is concave and has enough
curvature. More formally, the following proposition holds.

Proposition 3.4. Let P, belong to a closed set ¥ and let Py denote a constrained
maximum likelihood estimate of P when it is allowed to vary in V. Then Py is
consistent.

Proof: Let {(X, P) denote + of the logarithm of the likelihood function L(X|P, f).
Consider the Taylor expansion of I(X, p) at the unrestricted maximum likelihood
estimate of P, P:

| . ,0%(X, P)
X, P) =X, P)+ 5(P = P =5~

where P is some suitable vector of transition probabilities. Substitute Py and Py
instead of P, and subtract one resulting equality from the other. We get:

(P_p)a

2 D 2 D
10, Pa) 10X, ) = 5(Pu— Py D () L p oy ZE Py
The left hand side of the equality is non-negative, the second term in the right
hand side tends to zero in probability. Therefore, because the second derivative
of (X, P) is negative-definite and uniformly bounded from zero, Py tends to P
in probability. But P is consistent, therefore Py is consistent.[]

To summarize, Proposition 3.3 reduces the problem of testing the shape hy-
pothesis (2.2) to that of testing a simpler hypothesis about the mean of a mul-
tivariate normal distribution. In the next section we use this result to develop
asymptotic theory of the likelihood ratio test of the shape restrictions.

4. Asymptotic distribution of the likelihood ratio test

To use Proposition 3.3 we need to answer two questions. First, how to describe
the set C? Second, how to test a hypothesis that the mean of a multivariate
normal distribution lies in C};? I consider these two questions in turn.

10



The answer on the first question is as follows. If F lies inside II, then Cf is
the whole space, R*(~1 and asymptotically we cannot reject hypothesis (2.2).
Similarly, if Py lies outside II, then CY; is empty and we reject (2.2). The only case
left is the one in which Fj lies on the boundary of II. In this case, the first order
approximation to II at Fp is the set of all those transition probabilities satisfying

AR (R)(P — By) > 0 (4.)
The above set is a polyhedral cone and it is obviously a positively homogeneous set
(we consider the case when Py = 0). It is possible to find a closed form expression
for matrix R = A-%n(P). Indeed, denote the fundamental matrix of the Markov
chain, (I — P+ Jn')~!, as Z. Then, the following lemma is true.

Lemma 4.1. The derivative of k-th component of the steady-state vector, m,
with respect to p;; is equal to

dm k
dp; j

= (ij — Zig) T

Proof: see Appendix.O

We now turn to the second question. In the following we assume that F lies
on the boundary of II. The LR statistic for the test of R(P — I%) > 0 when P
is multivariate normal distributed is usually referred to as chi-bar-squared, 2,
statistic. The properties of this statistic and the related ones were studied exten-
sively. Kudo (1963) shows that if R is an identity matrix then ¥? is distributed
as a mixture of chi-squared distributions

q
Pr(x* > 2°) = > wiPr(x} > 2°), (4.2)
=0
where ¢ is the number of constraints and the weights, w;, are nonnegative and sum
to one. The restriction on R to be an identity matrix is without loss of generality.
Indeed, any non-identity matrix R can be absorbed into the variance-covariance
matrix of P and vice versa.
Thus, the 95% quantile, ¢(FPy), of the LR statistic given the pseudo-true tran-
sition probabilities, I, can be found as a solution to the equation

q
Zwi Pr(x? > ¢(P)) = 0.05.
=0
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The critical value of the LR test, ¢, is equal to ¢(P*), where P* is the worst
possible transition probabilities from the null set. That is
c = sup ¢(Ry). (4.3)
Poell
The problem of finding c is a difficult one. The difficulty stems from the fact
that both the variance-covariance matrix of P and the matrix of constraints, R,
nontrivially depend on the choice of F,. This dependence implies that there is
no simple way to find the worst possible Py where supremum in (4.3) is attained.
For example, similar to Wolak’s (1991) results, it is not generally true that all
inequality constraints are binding at the worst possible F,. Therefore, in general
the critical value could only be found by numerical maximization of the 95%
quantiles over the whole set of possible pseudo-true transition probabilities.
However, in one special case we are able to find the critical value analytically.
The hypothesis we would like to test is the monotonicity hypothesis (2.3). Let
transition probability matrix have the triple-diagonal structure. Precisely, assume
that p;; # 0 if and only if |i — j| < 1. The last assumption implies a particularly
simple relationship between transition probabilities and the steady-state proba-
bilities: . D
T K — 1. (4.4)
i1 Dii+1
To see this, note that after one transition, the probability of being in the first
group equals the probability of initially being in the first group and remaining
there, plus the probability of initially being in group 2 and transiting to group 1.
Thus, in steady state, 71 = m1(1 — p12) + 7op9r. Simplifying yields = %, and
the remaining equalities in (4.4) follow by induction.
The following proposition is true.

Proposition 4.2. Assume that the triple diagonal condition (4.4) holds. As-
sume also that T goes to infinity. Then the likelihood ratio statistics, A, for
testing monotonicity hypotheis H, against the complementary alternative is as-
ymptotically stochastically dominated by %* random variable with distribution

K-1

_ 1 K1
Pr(x* > ¢) = o ) ( ' ) Pr(x; > ¢?)

1
=0

where x? is a chi-squared variable with i degrees of freedom, x2 = 0, and K R 1

is the binomial coefficient. Moreover, there exists a sequence of pseudo-true P,
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{Pon}, all satisfying Hy such that the LR test statistic converges in distribution
to x2.8

To prove the proposition we first need to establish the following lemma.

Lemma 4.3. Assume that we have one observation, x, from N(P,I), a multi-
variate normal distribution with mean P and identity variance-covariance matrix.
Assume further that the true value of P is 0 and let \; and Ay be LR statistics
for the test that the mean, P, lies in the sets Cy, Cy respectively. If C; C Cy then
A1 > Ao, If in addition Cy uniformly converges to C; in any bounded subset of
the whole space then Ay — A\ in distribution.

Proof:

The likelihood ratio statistics A; (A2) is equal to half the standard Euclidean
distance from z to Cy (Cs). The distance from = to C} is no less than that from
x to Cy. Therefore A\; > Aq.

There exist a ball, B, of large enough radius such that Pr(\; < ) is in an
arbitrarily small neighborhood of Pr(\; < I,z € B) for any . This and the
fact that C5 converges to C uniformly in B implies the second statement of the
lemma.O

Now we turn to the proof of Proposition 4.2:

Let p be the vector of transition probabilities

b= (p127p21,p23,p327 ---upK—l,K7pK,K—1)/~
The triple diagonal condition implies that vector p satisfies H, if and only if
Rp > 0, where

1 -6, 0 0 .. 0 0
1 —6y ...
n_ 0 0 9 0 0
O 0 0 0 .. 1 —bérx_
The unrestricted maximum likelihood estimates of p;; have asymptotic vari-
ances p;;(1—p;;)/T Nm; and covariances —8;gp;;pgn/T N;. Let J 1 be the asymp-
totic variance-covariance matrix of the unrestricted maximum likelihood estimate

8The same proposition is true for the monotone non-increasing version of Hj.
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of VTp. A linear transformation p = J/?(p — p°) changes the null set of H; into
a positively homogeneous set

Q={p: RI7*p > —Rp"}

and the true transition probabilities, p°, into p = 0.

Denote S = {s1, s2, ..., 54} the set of indexes of those constraints that bind at
p°. Let Rg be the matrix that consists of s;’th rows of R. Then the positively
homogeneous set, Cq, approximating €2 is

CQ = {ﬁ : st_l/Qﬁ > O}

According to Proposition 3.3, the asymptotic distribution of the test H; given
that p° is the vector of the true transition probabilities is the same as the asymp-
totic distribution of the test of the hypothesis that RgJ~/?p > 0 based on one
observation from normal distribution N(p,I) when the true p is zero. The dis-
tribution N (0, I) is invariant with respect to any orthogonal transformation, O.
Therefore, the asymptotic distribution of the test H; is the same as the asymptotic
distribution of the test of hypothesis that RgJ~20p > 0.

We now show that there exists an orthogonal transformation O, such that the
set {p : RgJY20p > 0} includes the “positive orthant”, RX ™!, that consists of
all vectors p with positive first K — 1 entries.

Indeed, consider matrix Rg.J /2. Denote its i’th raw as z;. Straightforward
but somewhat lengthy algebraic manipulations show that the correlation between
x; and x;.1, is zero if s;,1 — s; > 1 and it is positive and equal to

Pii—1Pii+1
(2= +6i—1)pii1) (2— (14 1/6:)piiv1)

if Si41 — S = 1.
Let y; denote the orthogonal system of vectors obtained from z;, ¢+ = 1,....7,

by Gram-Schmidt orthogonalization procedure. That is
i1
(z3y;)
(y5v;)

Y = Ty — -

=1

Taking into account that (z;,z;) = 0 if |¢ — j| > 1, one can rewrite the above
expression as
T
Yi = Ti — M%—L
(Yi-1Yi-1)

14



The last formula implies that the matrix Rg¢J~'/? can be represented in the

form ZO™!, where Z is a ¢ x 2(K — 1) matrix such that z;; > 0 for any j < ¢
and z;; = 0 if j > ¢, and O! is an orthogonal matrix with ¢ first rows equal
to y;/|y;|. This implies that any vector p with first X — 1 non-negative elements
satisfies inequality Rg.J~'/20p > 0. Note that O is an orthogonal transformation.
Thus, the asymptotic distribution of the likelihood ratio statistic for the test of
RgJ'?p > 0 is equal to that of the LR statistic for the test of RgJ~/20p > 0.
According to Lemma 4.3 the LR statistic for the initial test is dominated by the
LR statistic for the test of p1 > 0, ..., pr_1 > 0.

As was discussed above, the distribution of the likelihood ratio statistic for
the test of p; > 0, ..., px 1 > 0 is a mixture of the chi-squared distributions (4.2).
However, finding the weights, w;, of the mixture can be a non-trivial problem. In
general, let KC be a polyhedral cone with the vertex at zero. Suppose that we have
one observation, z, from a n-variate normal distribution N (a, ). Suppose further
that we would like to test a hypothesis that a lies in K and let the pseudo-true a
be zero. Denote by K° the polar cone , that is

K'={qeR": ¢p<0forallpcK}.

Each face’, ¢, of the cone K is accompained by the polar face ¢* of the polar
cone K°. Let Ps, Py be symmetric idempotent matrices giving the orthogonal
projections onto the linear spaces generated by ¢ and ¢* respectively. Denote Il
and I the sets {v: Pyv € ¢} and {v: Pyv € ¢*} respectively. Shapiro (1985,
p.140) shows that

w; = ZPr(z € II,) Pr(z € 1)

where the sum is over all faces ¢ with dimension n — i.

For the present purpose the polyhedral cone K corresponds to the set of con-
straints p; > 0, ..., px 1 > 0. Thus, K is simply the positive orthant of the K — 1-
dimensional Euclidean space. Therefore,

Pl‘(ﬁ c H¢) Pl‘(ﬁ c H¢*) = oK1 .

Furthermore, there exist i-dimensional faces of the positive orthant.

i
K—-1
Hence, the distribution of the worst possible chi-bar-squared statistic in our case

YA face of a polyhedral cone is an intersection of a boundary hyperplane with the cone. For
further terminology related to polyhedral cones see Stoer and Witzgall (1970).
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is

1 =/ K-1
Pr(x? > ) = o > ( N ) Pr(x? > ) (4.5)
i=0

Now, if p° — 0, that is, if the pseudo-true transition matrix tends to the
identity matrix, then the correlation between x; becomes weaker and weaker, so
there exist an orthogonal transformation O such that the set { p: RgJV20p > 0}
converges to R~ uniformly in any bounded neighborhood of zero. According to
Lemma 4.3 there exists a sequence of p° such that the asymptotic distribution of
the test H; converges to the distribution (4.5).0

An application of the above result to Quah’s (1993) analysis of countries’
income distribution is performed in Kremer, Onatski, and Stock (2000). The
authors divide countries into five groups: those with less than 1/4 of the world
average per capita income; those between 1/4 and 1/2 of world average income
in that year; those between 1/2 world average income and world average income;
those between 1 and 2 times world average income, and those with income greater
than twice the world average. A country’s membership in a particular group is
assumed to depend only on its classification the previous year. Kremer, Onatski
and Stock perform the global test of monotonicity of the long-run distribution
of countries’ income. They consider a simplified version of hypothesis H; with
all ¢; equal to the same number, §. A single peak at the rich end of the income
range cannot he rejected for ¢ as large as 1.21. This result can be interpreted as
saying that the data are consistent with a hypothesis that the world is eventually
becoming all-rich. This is in contrast to the popular twin peaks hypothesis saying
that in the long run the world will polarize into two clubs, a club of the poor and
a club of the rich.

In this paper I concentrated on the asymptotic distribution of the likelihood
ratio test. Such an approximation might work poorly in finite sample. This is
because the steady-state probabilities are highly non-linear functions of the tran-
sition probabilities, which are the natural parameters of the likelihood function.
The triple-diagonal assumption on the transition probability matrix alleviates
this problem considerably. For example, given this assumption, both monotonic-
ity and n-modality hypotheses correspond to linear inequality restrictions on the
transition probabilities. In general, however, it is desirable to perform exact finite
sample tests of the shape restrictions on the steady-state distribution.

A straightforward but computationally demanding way to find exact finite
sample critical value, ¢, of the shape restrictions test is as follows. Denote the
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95% quantile of the distribution of X for arbitrarily pseudo-true P € IT and f € S
as ¢(P, f). We can find ¢(P, f) for each P and f by simulating large number of
the corresponding Markov chains, computing A\ for each simulation, and approx-
imating the 95% quantile by the quantile of the empirical distribution of \. It
is then possible in principle to find the global maximum of ¢(P, f) over the set
IT x S numerically. Unfortunately, not only the quantile function, ¢(P, f), can
have many local maxima, but also this function is very costly to estimate with
high precision at any given point. Indeed, if the cumulative distribution function
of A happens to he almost flat at ¢(P, f), virtually infinite number of simulations is
needed to estimate (P, f) precisely enough. One way to deal with this difficulty is
to allow the quantile function to be estimated with errors depending on the state
P, f. However, maximization of functions measured with the state dependent and
possibly non-zero mean noise is not well studied. This is an interesting topic for
future research.

5. Conclusion

This paper develops a framework for formal statistical analysis of the shape of the
steady-state distribution of a finite Markov chain. It is shown that many reason-
able shape hypotheses can be formulated in the form of simple linear inequality
constraints on the steady-state probabilities. A likelihood ratio criterion is used
to test the shape restrictions.

It is shown that the asymptotic distribution of the likelihood ratio statistic is
the same as it would be for the test of a simple one-sided hypothesis about the
mean of a particular multivariate normal distribution. This result is obtained by
extending Chernoff’s (1954) analysis to the case of a dependent data generating
process.

Despite the fact that the distribution of the likelihood ratio statistic for the
test of the one-sided hypothesis is well studied, it is difficult to find the critical
value of the global likelihood ratio test. This is because the asymptotic distribu-
tion nontrivially depends on the assumed pseudo-true transition probabilities. I
was able, however, to analytically find the exact asymptotic distribution of the
global likelihood ratio test of the monotonicity restrictions on the steady-state
probabilities. To obtain the asymptotic distribution I assume that the matrix of
transition probabilities is triple-diagonal.
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6. Appendix

Proof of Lemma 4.1:
Let

P = P —I— dpwele; — dp”eze;

then one can check that

Using Bartlett’s identity:

_ A~ tab A1
Ata)yt=at1 2 22
(A +ab) 11 VA 1a
we get
- / €Z€;dew
= J+ — -
m T ( + 1-— ejzeidpij
or

dr — Z’(ej — el)e;dpm
1-— (61‘ — ej)’Zeidpij
dividing both sides by dp;; and taking the limit when dp;; — 0 we get

dm

lim i = Z'(ej — €;)ejdpi;m
or, finally
dﬂ'k
dpij = (ij - Zik)ﬂ—i
O
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