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Abstract

This Appendix contains proofs of all the propositions of the paper “Asymptotics
of the principal components estimator of large factor models with weakly influential

factors”.

1 Notation and a useful convention
In the proofs below, we frequently use the following notation.

Ai (M) is the i-th largest by absolute value eigenvalue of matrix M.

| M|l is a norm of M, equal to /A1 (M'M).

e; is a vector with all components zero except the i-th component, which equals 1. The

dimensionality of e; may vary.
Ap is an n x n diagonal matrix with the i-th diagonal element ,/a;.
By is a T x T diagonal matrix with the i-th diagonal element /b;.
Ais an (n — k) x (n — k) diagonal matrix with the i-th diagonal element ,/az ;.

Bis an (T — k) x (T — k) diagonal matrix with the i-th diagonal element /b ;.
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Let A =UasAgV4 and B = UpByVp be singular value decompositions of A and B. We
will assume that the eigenvalues and eigenvectors in these decompositions are ordered so
that the matrix of the first k columns of Uy equals L (L’ L)fl/ % and the matrix of the first k
rows of Vg equals F’/+/T. That such an ordering is possible follows from the Assumptions
2 ii) and iii). Note that under such an ordering, a; = ... =ap =1 and by = ... = by = 1 so
that the matrices in the intersection of the first k& rows and columns of Ay and By are the
identity matrices.

Without loss of generality, we will assume that

k
X = ) LiF| + ApeBy with (1)
=1
Ll’ = €; L;LZ forizl,...,k: and (2)
F; = eVTfori=1,..,k. (3)

For the purpose of the proof of Theorems 1, 2 and 3, there is no loss of generality in such
an assumption. Indeed, note that the objects of study of these theorems: [3 , & and L'L are
invariant with respect to the following transformation: X ~» UXV, L ~» UL, F ~ V'F and
e ~» UeV, where U and V are any orthogonal matrices. Choosing U = U’y and V =V}, we
will satisfy conventions (2) and (3). To see that convention (1) is also satisfied, note that

the distribution of V4eUp is the same as that of € because ¢;; are i.i.d. N (0, 02) .

2 Proof of Theorem 1

In the proof of Theorem 1, we will assume that Vare; = 02 = 1. Such an assumption is
without loss of generality. In the general case, variables such as X, e, L and D in the proof
below, should be replaced by X/, e/o, L/o and D/o?, which, although does not change
the proof substantially, complicates notation by making it necessary to keep variable ¢ in
the equations. Further, we will assume, also without loss of generality, that the eigenvalues
a;, 1 = 1,...,n of AA" and the eigenvalues b;,7 = 1,...,T of B’B are non-zero. If some of
them are exactly zero, we will change them so they become positive but decrease to zero as

n — oo so fast that the asymptotics of the principal components estimator does not change.

2.1 Truncation and re-normalization

Let g4 = (Var Eit)fl/Z (8t — E€it) with &t = €itl|c,|<imn De a truncated, centralized and
re-normalized version of ;; and let X = LF’ + AogBy. For pu;, = \; (XX'/T) and ji; =
a.

Ai (XX'/T) , we have: max;<,, |i; — fi;] = o(1). To prove this fact, we will need the follow-
ing result, which was established in Theorem 3.1 of Yin, Bai and Krishnaiah (1988):



Lemma 1. (Yin, Bai and Krishnaiah, 1988) Let n be an nxT matrz’z with i.i.d. entries
i with Eny = 0 and Enk < oco. Then, T2 ||| “3 (1 4 /¢) (Emt) as n and T go to
infinity so that n/T — c.

By Corollary 7.3.8 of Horn and Johnson (1985), we have:
max |/ — V7| < [ Ao (e = 2) Bo/ V| < 1 Aoll 1 Boll e — 2] /YT

By Assumption 3ii), [|Ap|| = O (1) and ||By|| = O (1). Further, note that matrix ¢ — £ has
i.i.d. entries with finite fourth moment, zero mean and variance 2 — 2E22, /v/Var £;;, which
is no larger than 2F (5%1 eie|>In n) , and hence, converges to zero as n — oo. Therefore, by
Lemma 1, ||e — || /VT “ o(1) and we have: max;<, ’\//71 \//71‘ “2 6(1). On the other

hand, |p; — ;| = |/l = v/Ia| |/ + V/ia| < \m—m!}ﬁ+ﬁ\.we have: \/fi] =
HX/\/T’ < HL 5/\/TH ||Bo|| - By Assumptions 1ii) and 1iii), HLF’/\EH =

O (1), and by Lemma 1, Hg/ﬁH “2 0 (1). Hence, /i 2 O (1) . Similarly, /i, 2 O (1),

and therefore, max;<, |y; — it;| = o(1).

Such a uniform eigenvalue approximation result implies that, for the purpose of proving

part iii) of Theorem 1, we can assume without loss of generality that

gy oul S @
Assumption (4) is also without loss of generality for the purpose of proving the convergence
of the elements of the first ¢ columns of B and & stated in parts i) and ii) of Theorem 1. It
is because the projections on the principal ¢ eigenspaces of X X'/T (similarly, of X'X/T)
and those on the principal ¢ eigenspaces of X X'/T (similarly, of X’ X /T) converge to each
other in probability in operator norm.

Indeed, let 7 and 70 be linear operators acting in R™, which are represented with
respect to the standard basis by matrices XX'/T and (XX’ — XX') /T, respectively, and
let T () = T+»TW. Denote the resolvent of T (5), (T () —¢) ™', as R((,») and the
resolvent of 7, (7 — C)fl , as R({). Let " be a positively oriented circle in the complex
%min (hi, p), where hy = |u; — pg| and h; =
min{}uifl —ui‘ , ‘,ul- _:U’i+1’} for i > 1. Define P; (») = —ﬁ Jr R (¢, 5)d¢. Then (see
Kato, 1980, p.67-68 and p.88), for all |s| < r—! HT(l)H_l , Pj (») is the eigenprojection of

T (») corresponding to its unique eigenvalue inside circle I', and P; (»r) can be represented

plane with the center at p,; and radius r =

in the form of the convergent (in operator norm) series:

o0
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Note that P;(0) and P; (1) are the projections on the spaces spanned by the i-th principal
eigenvector of X X’/T and of X X'/T, respectively.

As will be seen from the proof of part iii) of Theorem 1, there exists a positive number
p such that Pr (max;<ij<q hi < p) — 0 as n — oo. Therefore, Pr(r = p/2) — 1 as n — oc.
Further, since H’T(l)H = H% — XTXI‘ <|uy — iy = o(1), we have: Pr (r‘l HT(I)H_l > 1) —

1 as n — oo so that the series for P;(s) displayed above converge for > = 1 with proba-

bility arbitrarily close to 1 for large enough n. Moreover, with probability arbitrarily close
to 1 for large enough n, we have: ||P; (1) — P;(0)]| < >, ‘ = [rR(Q) (T(l)R(C))tdCH <

T71)
Sopo Tt HT(l)Ht = ’””HT(JJH = 0p(1), which proves that the projections on the principal

q eigenspaces of X X’/T and those on the principal ¢ eigenspaces of X X'/T converge in
probability in operator norm.
In what follows, we will, therefore, assume that (4) holds. We will explicitly relax this

assumption only when proving the convergence of the elements of the last k — ¢ columns of
B and 6.

2.2 Key lemma

Note that, under our convention (1,2,3), the j-th columns of & and 3 equal the first k
components of the unit-length j-th principal eigenvectors of %X X' and %X ' X, respectively.
Further, L' L equals a diagonal matrix with the first k eigenvalues of X X' on the diagonal.
Lemma 2 below relates the eigenvalues and eigenvectors of the high-dimensional matrix
%X X' to the unit eigenvalues and the corresponding eigenvectors of the low-dimensional
matrix-valued function M™) (), defined as follows.

Let us partition matrix € as [e1, 2], where €1 are the first k£ columns of ¢. We define:

MWD (z) = ¥ (xl, — AU,
M® (z) = W (xI,—A)"2V, and
M® (2) = [It,0] (zI, —A)~ T,

where ¥/ = [ (L’L)l/2 , 0|+ ﬁs’le and A = %A0€282512A0. If x1,, — A is not invertible,
we set M) (x) = gy for j =1,2,3.

Lemma 2. Let p# N (A),i=1,....n so that pl, — A is invertible. Then:

i) p is an eigenvalue of %XX’ of multiplicity larger than or equal to s if and only if there

exists a positive integer m < k + 1 — s such that x = u satisfies equations

Am (M<1> (x)) =1, At (M<1> (ac)) ~1, (5)



ii) If v is an eigenvector of MM (1) corresponding to eigenvalue 1, then
~1/2
y = (v’M(2) (1) v) (ul, — A) ™t W (6)

s a unit-length eigenvector of %XX’ corresponding to eigenvalue (.

iii) If 1 is a simple eigenvalue of MW (), then p is a simple eigenvalue of %XX’.
Furthermore, if @ is the j-th largest eigenvalue of %XX' and v is a corresponding
eigenvector of MW (1), then the j-th column of matriz & from part i) of Theorem
1 equals (vVM® () v)_1/2 M®) (1) v.

iv) Consider matriz %XX’ + sejel,, where s is an arbitrary positive number. We have:
is an eigenvalue of %XX’ + xee;el of multiplicity larger than or equal to s if and only

if there exists a positive integer m < k+ 1 — s such that x = p satisfies equations
L 1
)\m (M;(/z) (CL’)) = ]-7 (XY} >\m+571 (M}(ﬂ) (:E)) = 1’

where MSZ) (z) =V (xl, — A) ' U, and U,,; = [T, \/5ze;] .

Proof of Lemma 2: Let p be an eigenvalue of %X X' of multiplicity larger than or equal
to s and let yi,...,ys be orthonormal eigenvectors corresponding to u. Since %X X' =
A+ UV we have: (A+ VW) y; = py; for j = 1,...,s. Note that vectors W'y, ..., ¥’y are
linearly independent. Otherwise, if ijl 15} j\I/’ yj = 0 for some j3; that are not all equal to
zero, we would have: A3 75, By, = (A+ QW) Y5 Biy; = pu) 5_, B;y;, which violates
our assumption that p # X; (A), ¢ = 1,...,n. Equation (A + ¥V¥')y; = py; implies that
U (ul, — A" UW¥'y; = ¥'y;. Hence, the space spanned by ¥'y;, j = 1,..., s is an invariant
subspace of M, (1) with the corresponding eigenvalue equal to 1. This proves the “only if”
part of i).

Suppose now that (5) holds with z = p. Let vy, ...,v5 be orthonormal eigenvectors of
M® (1) corresponding to eigenvalue 1. Define y, ..., ys by (6) with v replaced by vy, ..., vs,
respectively. Vectors yi, ..., ys are unit-length vectors by definition of M2 () . Further-

more, they are linearly independent because, otherwise, if 25:1 B;y; = 0 for some j3; that

~1/2
are not all equal to zero, we would have, for v, = (v}M(Q) (1) vj) Bj Z;:1 V05 =

Z‘;:l 'ij(l) ()vj = E;zl B,y; = 0, which violates our assumption that v1, ..., vs are or-
thonormal. Equation (6) implies that U'y; = (v/M?) (u) v)_1/2 MY (p)v; = (VM (u)v)
and therefore, y; = (pdy, — A)f1 UW'y; for all j = 1,...,s. The latter equality implies that
(A + ¥U') y; = py;j, which means that y;, j = 1,..., s are linearly independent eigenvectors

s

of %X X', each of which corresponds to eigenvalue u. This proves ii) and the “if” part of i).

—-1/2
Uj



Part iii) of the lemma follows from parts i) and ii). Indeed, part i) implies that if
1 is a simple eigenvalue of M) (1), then p is a simple eigenvalue of %XX' . Further,
by definition, the j-th column of & equals the first k components of the unit-length j-th
principal eigenvector of %X X'. This fact, part ii) of the lemma and the definition of M ®) (1)
imply that the j-th column of & equals (U’M(Q) (1) v)71/2 MG (1) v.

Proof of part iv) of the lemma is almost identical to the proof of part i). We only need
to replace ¥ by ¥,,; and M® (z) by M® (u) = ¥, (xI,, — A) "> ¥,,; in that proof.0]

Below, we prove several technical lemmas to find the probability limits of M (1)(:(;),
M@ (z), M®)(z) and M}(}Z) (x). We will then use these limits and Lemma 2 to derive the
probability limits of the eigenvalues of %X X' and of matrix &. Derivations of the probability
limit of B is very similar to the derivations of the probability limit of &, and we will omit

them to save space.

2.3 Technical lemmata

Lemma 3. (Bai and Silverstein, 1988) Let {&;,i = 1,...,2n} be i.i.d. random variables with
mean zero and variance 1. Define £ = (§4,...,§,), ¢ = (fn_H, ...,fgn) and let Z be an n xXn

random matriz independent from & and (. Then, for any p > 0, we have:
p/2
E(l¢z6 - wz|'|2) < awWWMW(pmm} +Emﬁﬂ, (7)

B (|¢'z¢)"12)

IA

/2
cwr iz ([Bel]” +E6®), @

where C1p, and Coy, are constants that depend only on p.

Proof of Lemma 3: Inequality (7) is a slightly simplified version of the statement of

Lemma 2.7 in Bai and Silverstein (1998). Inequality (8) follows from (7). Indeed, consider
0 7

2 . We have: E (|¢'Z¢|"|Z) =

a vector ¢ = (f',C')/ and consider matrix Z =

- - /2
E <’%¢'Z¢‘p |Z) <27PCY, (Qn)p/2 HZHp <{E |§1‘4]p +E ’£1|2p) , where the latter inequal-

ity follows from (7) because tr Z = 0. It remains to note that HZH = ||Z]| and set
Cyy = 277/2Cy,.0

Lemma 4. Let ¥ and II be two independent identically distributed random n X k
matrices with i.i.d. entries, which have finite fourth moment, p, < oo. Further, let Z be
a random n X n matriz independent from ¥ and II and such that n||Z||* 2 0 as n — co.
Then, as n — oo:

|25 — (tr Z) I | 20 and |~ Z1|| 0.



Proof of Lemma 4: To save space, we omit the proof of [|¥/ZII|| % 0. It is similar to the
proof of |%/'Z% — (tr Z) Ii|| % 0. Let &; and dy be arbitrary positive numbers. For the i-th
diagonal element of X' ZX., we have: Pr (|[(X/25),, — tr Z| > 61|Z) < 672E <|(E’Z2)ii —tr Z)? |Z) <

5;22C12n||Z ||2,u4, where the first inequality is Chebyshev’s inequality and the second
inequality follows from Lemma 3. Next, since n|/Z||> 2 0, there exists N such that
for all n > N, Pr(0722C1n || Z]|* py < 62/2) > 1 — 62/2. Therefore, for all n > N,
Pr(|(X¥'Z%),;, —tr Z| > 61) = E[Pr ((¥'Z%),, —tr Z| > 61|Z)] < 62/2(1 — 82/2) + 02/2 <
d2, which proves that |(X'ZX),, — tr Z| %, 0. The convergence ‘(Z’ZZ)ij‘ 2,0 for i # j can
be proven similarly. Since k is fixed as n — 00, the entry-wise convergence of X' ZX—(tr Z) I,
to zero implies that |2/Z% — (tr Z2) I;| 2 0. O

Let us partition €] into [€];,e5,], where 11 is k X k, and €} into [¢],, g5,], where €19 is
k x (T — k). In the lemmas below, we will need the following new notation. Denote matrix
L, — %Asggl’)’Qs’mA as Y'; the i-th column of €99 as €22;; matrix €92 with the i-th column
removed as €22 _;; matrix B with ¢-th row and i-th column removed as B_;; and, finally,
matrix xl,_j — %A822,7i83i6/2277i./4 as Y;. In order to simplify notation, we do not explicitly

indicate the dependence of Y and Y; on x.

Lemma 5. Suppose that Assumptions 1-8 hold. Let 01 be any number such that 61 > %,
where Z is as in Theorem 1. Then, for any x > 01, Y is a positive definite matrixz with
HY_1|| < (61 73?)71 for large m with probability 1. Further, whenever Y is a positive
definite matriz, Y; is also a positive definite matrix with HYz_lH < HYﬁlH and the following

interlacing inequalities hold:

M) =M () 2 (V)

v
V
>

3
T

v
>

S
3

©

and stmilarly,

A (AY TTA) > A (AYTTA) > A (AY TA) > > N, (AYTTA) > 0, (AY;TRA) (10)

Proof of Lemma 5: That Y is positive definite for x > 61 and large n with probability
1 follows from Lemma 3 in Onatski (2009), which implies that under Assumptions 1-3,
the largest eigenvalue of %A€22825122A almost surely converges to the upper boundary of
support of G as n goes to infinity. As follows from the proof of Lemma 3 in Onatski (2009),
the upper boundary of support of G equals Z, which is smaller than x by assumption, hence
the positive definiteness of Y (z) = zl,,_j — %A522825’22A. The convergence of the largest
eigenvalue of %A€2262€l22./4 to T also implies that, for any = > 61, HYﬁlH < (61— a‘c)_l for
large n with probability 1.



Matrix Y; is positive definite whenever Y is because Y; — Y = %kaAagg,ie'Q%A is a
positive semidefinite matrix. The latter fact also implies that HYi_l H < HYfl H and that (see
Corollary 4.3.3 in Horn and Johnson, 1985) A; (Y;) > A; (Y) for any j = 1,...,n. Further,
since Y;—Y is a rank-one matrix, we have by interlacing theorem (Theorem 4.3.4 in Horn and
Johnson, 1985): Aj11 (Y;) < A; (Y) for j =1,...,n—1. Combining the latter two inequalities,
and using the fact that \; (M_l) = A;&Hl
we obtain: A; (Yi_l) <A (Y‘l) for any 7 = 1,...,n and A; (Yi_l) > A1 (Y‘l) for

j =1,...,n — 1, which implies the first set of the interlacing inequalities in the statement

(M) for any positive definite Hermitian matrix,

of Lemma 5. The second set of the interlacing inequalities can be established similarly
by noting that A~'Y; 471 — A1V AL = %bi+k€22,i5/22,i is a rank-one positive semidefinite

matrix. [

Lemma 6. Suppose that Assumptions 1-8 hold. Let 01 be any number such that 61 > Z,
where T is as in Theorem 1. Then, for any x > 01 and any pair of integers (r,s) from the
set {(1,1),(1,2),(2,1)}, we have:

]- / — S 1 — S p
1S131§a’j2(_k T€22’i ['A}/Z TA] 52277; — T tr [AY TA] — 0,
where, if either Y; or Y is not invertible, we set the mazimized absolute difference to an
arbitrary non-zero number, say 1.
Proof of Lemma 6: Let us define Y; = Y; when Y; is invertible and Y; = —I,,_;, when Y;

is not invertible. Similarly, define Y =Y when Y is invertible and Y = —1I,,_;, when Y is

not invertible. It is enough to prove the lemma for Y; replaced by Y; and Y replaced by Y.
Indeed, let events =, ) and €); be defined as:

[1]

= {YV;#Yiforsomei<T —Fk, or Y £#Y},
Y <o -a7},

Q
Q, = {Yg is positive definite and HY;IH < (61— 3?")_1} )

= {Y is positive definite and

Then, 2N ) = @ because € implies that Y = Y, and, as follows from Lemma 5, 2 C Q; so
that Y; = Y; too. Further, by Lemma 5, Pr(2) — 1 as n — oo, and therefore, Pr (Z) — 0.
Let us decompose the difference %5’22& [AY; 7 A]" €90 — L tr [AY " A]” into a sum
Urs (i) + Vis (i), where Ups (i) = geby,; [AY; T A] 025 — 7 tr [AY; "A]” and Vi, (i) =
% tr [AY; " A s—% tr [AY " A ®. To prove our lemma, it is enough to show that maxj<;<7_ |Uys (7)] 2
0 and maxj<j<r—_ |Vrs (4)] 2, 0. Below, we will establish the latter two convergences.
Let 61 and &2 be arbitrary positive numbers. Note that Pr(Q) > 1 — §2/2 for large



enough n. Therefore, and since 2 C €2;, we have:

Pr ( max |Uys (7)] > 51> < Pr < max |Uys (7)] > 01 and Q> +92/2 < (11)
1<i<T—k 1<i<T—k
T—-k
ZPr |Ups ()] > 61 and ;) +62/2 < > E [Pr (|Ups (4)] > 61 and Q4]Y;)] + 62/2
=1

If either Y; is not positive definite or HYZ_IH > (6, —z)"", then Pr (|Ups (3)] > 61 and Q;]Y;) =
0. In contrast, if Y; is positive definite and H)_/Z._l | < (6 - Z)!, then Pr (|Ups (4)] > 61 and Q;]Y;) =
Pr (|Uys (i) > 61]Y;) . But, by Markov’s inequality:

Pr (|Uys (i)| > 611Y;) < 6,PE (|Urs ()P Y;) <

_ E)P/? s 2
mik) ||./4||28p H}/’Lflu P <|:E |5jt|4:|p/ + (lnn)2p> ’

< 00w,

where the second line follows from Lemma 3 and from assumption (4). If Hffl_lH <
(01 — ), we can make the latter expression smaller than d5/(27T") by choosing p > 2 and
large enough n. Therefore, F [Pr (\Uqu (7)] > 61 and QZ\YZ)] <09/(2T) foralli =1,...,T—k
and large enough n. Using (11), we obtain: Pr(maxj<j<r—_k |Urs (4)] > d1) < 62 for large
enough n. Since §; and d were arbitrary positive numbers, we have: maxj<;<7— |Uys (7)] LN
0.

Next, when €2 takes place so that ¥; and Y are positive definite, we have:

1 n—k

Ves (i) = Z [\ ([AY 7 A]%) = A ([AY 7 A]°)] =

n—k
lz (Y, A) = X5 (AV T A)] =~ (AV 7 4) +

'ﬂ

1n k—1

LS N (AT 7A) = X (AT )] s (AT 7).

Tnk
1

Therefore, setting 7 = 1 and using the interlacing inequalities (10), we conclude that
. 1 s —1 1 2s —\—S
0> Vis (Z) > _T)\l (.AY .A) > _f H.AH (91 — .’L') (12)

whenever Q holds. Since Pr(2) — 1 as n — oo, the latter inequalities imply that
maxi<j<7—k | Vis (9)] L0 fors=1and s=2.
It remains to prove the convergence to zero of maxj<;<7_ |V21 (7)| . Note that if Q holds,

37_2—171-_2 is a positive semidefinite matrix so that, in particular, all its diagonal elements are



not negative. Therefore, if {2 holds, we have: 0 > Va1 (1) > — (maxj—1,__ n—k aj+k) ES tr (37_2— _Z-_2) .
But maxj—1,_n—k aj1k = ||A|* and f tr (Y 72=Y,7%) < A7 (Y1) = £ HY P <4 (O —2)7
when €2 holds, where the first of the latter two inequalities can be obtained from the inter-
lacing inequalities (9) similarly to as (12) was obtained from (10). Thus, when 2 holds, we

have: 0 > Vo (i) > — 7 |A|I* (81 — )2, and therefore max;<;<p_, |Var ()| 2 0.0

Lemma 7. Let 01 be any number such that 61 > Z, where T is as in Theorem 1 and

let x be any number larger than 01. Then, for any complex z such that Imz > 0, the
AdGa(N)
o (Z+f TdG (1)

1—7cw(z)

Function w(z) is analytic for Imz > 0 and can be analytically continued to a small open
neighborhood of z = 0. If Assumptions 1-3 hold, then:

equation w(z) = [ ))\ has a unique solution w(z) such that Imw(z) > 0.

%tr AY 1A %S cw(0) and %tr [AY_lA]2 2 ew'(0),

where, if Y is not invertible, we set the left hand of the above convergence statements to an
arbitrary number, which equals neither cw(0) nor cw'(0). The above convergence statements
remain valid if we replace n—k, A and £a9 in the definition Y = xl, ) — %A522826’22A by

n, Ao and eo, respectively.

Proof of Lemma 7: Let m,, (2) and m,(z) be the Stieltjes transforms of the empirical
eigenvalue distributions of 472 — LepsB2eh, and z-L3 A2 — ey B%e),, respectively.
Note that my (z) = Lo, (%z) Silverstein and Bai (1995) show that, for any =z
with Imz > 0, as n — o0, my(z) almost surely converges to m(z), which is an ana-
Iytic function in the Imz > 0 domain and which is the unique solution to equation!
m(z) = ma <z +c S ngB(T)) that satisfies Imm (2) > 0. Here, m4 (2) is the Stieltjes

1—1m(z)
transform of a (possibly defective) non-random distribution function which is the vague

limit? of the empirical spectral distribution of :L'%.A*2 as n — oo.
Note that the cdf of the latter vague limit at A equals the limit of the proportion

of those eigenvalues of m%A*Z, which are no larger than \. By Assumptions 1i) and

3i), such a limit equals 1 —1lim_ ., .—1y-1Ga (7). Hence, ma (2) = ;;1_917{(2 and m(z) =
i - ( :dgf‘})‘z G ))\ Recalling that m,, (z) = = Py 2 L1 (%z) , we conclude that for any
xrcT— | z+Cc T =7y

1—7m(z)

z with ITm 2 > 0, my, () converges to w(z) = ¢ 1m (cflz) , which is an analytic function in
AdGa(N)

( "l‘f ngB(TZ) ))\

1—7cw(

the Im z > 0 domain and which is the unique solution to equation w(z) = f

that satisfies Imw (z) > 0.

!Note the difference in notation: their ¢ is our ¢, their n is our 7' and their T is our —B? so that their
dH (1) is our —dGp (—7).

2The vague convergence is a generalization of the weak convergence to sub-probability measures. For a
definition of the vague convergence see, for example, Athreya and Lahiri (2006), chapter 9.2.
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Now, let Uy be an open disk in the complex plane with center at zero and radius %055.

Note that the smallest eigenvalue of z.472 — %522826’22 is no smaller than % for large n
with probability 1. Therefore, m,, (z) are analytic in Uy and bounded there by (1 2! Ax)
for large n with probability 1. Moreover, as has been just shown, my,(z) almost surely
converges to w(z) for any Im z > 0. Therefore, by Vitali-Porter theorem (see p.44 of Schiff,
1993), my,(z) converge (almost surely) to w(z) uniformly on compact subsets of Uy and
w(z) is analytic in Up. Note that since my(2) = Lo tr (2472 — LegBeh, — zIn k)fl,
matrix A2 — 2e90B%h, (and therefore also Y) is 1nvert1ble and 7 tr AY 1A = mn(O)
whenever my,(z) is analytic in Up. Therefore, we have: T Ltr AY 1.,4 Y% cw(0).

Next, note that, whenever m,,(z) are analytic in Up, 7 tr (AY*I.A) = "2Em/! (0). Since,
with probability 1 for large n, m,(z) are analytic functions on Uy which converge uniformly
on compact subsets of Uy to w(z), by classical Weirstrass theorem, the derivatives of m,,(2)
also converge to the corresponding derivatives of w(z), and this convergence is uniform on
the compact subsets of Uy. We therefore have: %tr (.AY*I.A)

To adapt the above proof to the situation when n — k, A and e99 in the definition

222 cw "(0).

Y =ual,_ — %A€22826I22A are replaced by n, Ay and 9, we only need to replace n — k, A

and €99 in the above arguments by n, Ag and &4, respectively.[]

Lemma 8. Suppose that Assumptions 1-8 hold. Let 01 be any number such that 01 > T,
where T is as in Theorem 1. Further, for any x > 01, let (u24,v2,) be the bigger of the

two solutions to system

—1
v=1x (cf uTadgA(a)> (13)
A E=1710)
Then for function w(z) defined in Lemma 7, we have:

Tu,xU2,2
1 )
( - Tu,mrv,x) TU2 1

cw(0) = v;}: and cw'(0) =

where

Tug = /(uQ:\_)\> dGa(A // dQA( ) and
Toag = /(7)2;_7_) dgp(t // ng (7).

Proof of Lemma 8: Consider two functions of three complex variables: fi(z,u,v) =

x4+ cuv (1 +umy(u)) and fo(z,u,v) = z — uz + wv (1 +vmp(v)), where my (u) and

mp (v) are the Stieltjes transforms of G4 and Gp, respectively. Further, consider a system

11



. Note that f; and fo are holomorphic functions of z,u and v near the

{ fi(z,u,v) =
fo (z,u,v) =

point (z,u,v) = (0,u2 4, v2 ). This follows from the fact that m4(u) and mp (v) are holo-
morphic at uz , and vs ., respectively, which, in turn, follows from the fact that us , > Z4
and vo; > Tp.

According to the holomorphic implicit function theorem (see Krantz (1992), p.54), there
exists a unique holomorphic solution {u(z),v (z)} to the above system in a neighborhood
of 2 = 0 such that w(0) = uz, and v(0) = v, as long as det f{, # 0 at (z,u,v) =

of1 of
(07 U2,z ’U27=’E) , where f{,Q = g}; 88}}2
Ou v

By assumption, the curves in the (u,v)-plane, u = ¢1(v) and u = g2(v), defined by the

-1 -1
equations of (13): v ==z (cf g’l\?ll))(ﬁ)/\dgA()\)) and go(v) = x <f UT_”TdQB(T)) , respec-
tively, intersect at (u,v) = (u24,v24) so that d%gg(v) < d%gl(v) at (u,v) = (u2,4,v2,2) . The

latter inequality is equivalent to the inequality

% [x (C/uAu dGa(x ))1] % [x (/ vi” (r))ll <1 (14)

at (u,v) = (uggz,v2z). Note that by definition of Stieltjes transform, cf 2dGa(N) =
—cu (14+uma(u)) and [ TdGp(T) = —v (1 +vmp(v)) so that, by definition of functions

f1 and fo, we have:

e @004 = %i J 2-ddi(r) = — G2 and as)
du f dgA = %%’ div vTdeg ( ):_%%

at (z,u,v) = (0,ug,4,v2,). Using (15) in (14), we obtain:

N\ 2 9f\ P( 10h 19fs
25 (5) () (a5 < (16)

at (z,u,v) = (0,u24,v2,). But at (u,v) = (u24,v24), the curves u = g1(v) and u = ga(v)

u -1 TV &
intersect. Therefore, vo zug, = (cf u’;’jf/\dgA()\D (f vz,z2LngB(T)> , and hence,
(—%> (—%) = 22/ (v24up,), which, together with (16), implies that det f, < 0 at

ov
(z,u,v) = (0,u2,2,v24) -
Now, the vector of derivatives (3—;‘, %)/ evaluated at z = 0 equals vector — (f{z) - (%];1 ) %J;Q)

evaluated at (z,u,v) = (0, u2 4, v2,) . But (%, %) = (0, —ug ). Thus,

du d )7 (-
<d:7d1;> = —ug . det (f1,2) 1(8{3’_3}2)' "

12



Equations (15) together with the fact that us, > Z4 and vo, > Zp imply that % < 0,
% > 0 at (z,u,v) = (0,ug4,v2,z) . Therefore, and since, as has been shown, the determi-

nant in (17) is negative,
du dv

at z =0.
The last of the two inequalities in (18) and the fact that Im (v (0)) = 0 imply that
Imv~1(z) > 0 for z, which are near 0 and such that Im z > 0. Note that, by definition,

12):Cf AdG4(N)

TdGpg(T)
( +f 1—7v—1(z)

Imz > 0, the unique v—!(z) satisfying the latter equation such that Imv~!(z) > 0 must

))\. On the other hand, according to Lemma 7, for z such that

equal cw(z). Hence, cw(z) = v~1(2), and cw(0) = vz_}g
Next, for the derivative of v™1(z) at 2 = 0, we have: Lv71(0) = —02551 (0). Using

(17) and (15), we get:(%, %) = —ug det (f{’Q)_l (%{)1’ 6f1) Therefore,

_ - A2
= —'112;’11,27z det (f{’Q) ! C/ mdgA(A)7

da
dz

-1 0f1

v71(0) = —v 2ug . det (f] ) v

U=U2 &

where the latter equality follows from (15). Using the definition of the determinant det ( f{’2) !

and, once again, equations (15), we obtain:

7_2

2
A 09401 / ) -

(’UQ’;E - A V2,0 — 7')

A T
Cu2,xv2,m/wdgz4()\)/v27x _ngB(T)

det (f{g) = cu27zvg7x/

so that, finally,

A2dG 4 (N)
d 22 (ug . —N)2 Tu,zU
/ —1 (U2 z—A) u,x U2,z
cw (0) = —v"7(0) = : = e
(0) dz (0) f A%dGa(N) f 72dGp (T — AdGa(N)  TdGB(T) (1= ryars) Tv25
u2 7)\ (vz 7T) u2,m_/\ V2,2 —T

where the latter equality follows from the definition of 7, , and 7, and from the fact that
Tv2,,dGB(T) ) -1 0

(u2,2,v2,4) , being a solution to system (13), satisfy ug, = = (f P

Lemma 9. Under assumptions of Lemma 8:

-1
i) MO (z) % g1 (1 - ui;) D +v; My,

.o — _ v, T 1+ U, T 1+ u,xr
i) M@ () B D2 (1 _ u27310) (1 b el ) TR ., —

i) M®(2) %o (1—u21> D'/2,
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iv) MW (z) B ot (1 - u71>71 b wdiei + vy} Ik 0 .
P 2,z \/lee; % 2,x 0 0

Proof of Lemma 9 i): Let us consider the following partitioned matrix:

1 2 1 2
ol — A= $Ikl— 7612123 /6/12 _T812B 5/22./4 7 (19)
_T.AEQQB 812 Y

where Y = zl,_) — %A522828’22A. Lemma 5 proves that, for any x > 01 > T, matrix Y is
positive definite (and hence invertible) for large n with probability 1. Replacing n — k, A
and £99 in that proof by n, Ay and €2, respectively, we establish the invertibility of matrix
zl, — A = zI, — %AOEQBZSIQAO for large n with probability 1. Below, we will work with
Y and x1, — A as if they were invertible matrices for large n, keeping in mind that this is
indeed so, almost surely.

The following formula for the inverse of a partitioned matrix A is well known. If Ags is

not singular, then:

1
A An

Ag1 Ao

Tt ~Y AR AL
— At A YT AL+ A AT A AL |

(20)

where T = A1 — A12A521A21 is invertible as long as A is invertible. Applying formula (20)
to (19), we find that, for any = > 6; > &, MM (z) can be decomposed for large n with
probability 1 as:

1 1 1
MWV (z) = = (A+ en) K (A4 en) — ey Kiten + Ko+ —= (A'K3 + K3A)

T T VT
where
A = (UL)'PVT
1 1
Kl = LL‘Ik — T512825,12 — ﬁ€12826,22./4y_1¢4€22826/12,
_ 1 / -2 1 2 _/ -
Ky = Tel T AT — ngB €9 €1,
1 _
K3 = Kl 1@512625/22AY 1./452]_.
First, we find the probability limit of K;. By Lemma 4:
1
x%—fqﬁ%h—@—DQ 0. (21)
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Let us denote matrix 78%5, AY 1 Aego 3% as Z. Note that n || Z||* < T ||A||4HY 1” e 1181

so that by Lemmas 1 and 5, n||Z||* %3 0. Therefore, by Lemma 4:

1
HTguZe’u —(tr 2)I;|| 2 o0. (22)
We will now focus on finding the probability limit of tr Z. Note that for a general rank-
one perturbation M — vv’ of matrix M, we have: v/ (M —vv/) ‘v = % Using this

formula and the definition of Z, we obtain:

1 —1
tr7 = TQZkangZ < Tbk+iA€22,i5§2,iv4> Ao

1
Zb bk+z’T€22,z'AYi Aeagi

= T k+i 1 —1 :

T 1= berigehy jAY; Aea,

But by Lemma 6, maxj<;<7_k )is’m iAY_l.Asggi — ltlr .AYfl.A’ ER 0, whereas by Lem-

mas 7 and 8, # tr AY ~ AL Vo > +. Therefore, maxy<j<r_, [£ehy GAYT YA — va 0.

Further, since vp ; > Tp = lim,,_,oc max;—1 7 b;, the quantity 1 — kangQ?iAYi Aagg’i is

separated from zero with probability arbitrarily close to 1 for large enough n. Therefore, we

have: 2
bk—i—z T522 AY, ' Aea i bk+zv2 T p
max o 0
1<i<T—k|]1 — bk-H T€22 ZAY AEQQ K 1 - bk+iv2,a:
b2 . .
so that [tr Z — & ST F M %, 0. Finally, note that, since by = ... = b, =1 :
1— bk+7”U271
T—k T 2,,—1 -1
1 bk+zv2 T 1 bz U2,a: k U?,I p
T2 T byl T T bugd| TTougl @)
= 1= brrivg i1 L~ 0ivg, ~ V22

and that, by Assumption 3i),

1 T b2?}21,

T g / ———dGp (7 —>/ ———dGp (7). (24)

Putting the latter three convergence statements together, we obtain:

2
T

Combining (21), (22) and (25), we get: HKl —(r—1-

IkH 2, 0. But

15



il ™ dGp (1) = —1+ [ I22dGg (1) = —1 +mu2_j:, where the last equality holds because

V2,6 —T V2,6 —T

(u2,2,v24) is a solution to (13). Therefore, finally,

HK1 (1 - u;;)fk" 2. (26)

Note that since ug ; > T4, ug, is larger than 1. Hence, <1 — Uz_}v) I}, is a positive definite
matrix.

Now, let us find the probability limit of Ks. Note that H% (acAa2 — %52826'2)71” <
| Ao||? (91 — z)~* for large n with probability 1. Therefore, by Lemma 4:
H‘Kg — %tr (x.AaQ - %62828'2)_1 IkH 2,0. On the other hand, by Lemmas 7 and 8,

1

_ -1 _
Ltr (2 Ay? — 2e2B2h) 2, w5 L. Therefore,

T
HKQ - v;;IkH L) (27)

Finally, let us find the probability limit of K3. Denote the (T'— k) x (n — k) matrix
ﬁBQEIQQAY_lA as G and let G be obtained from G by adding max {T — n,0} zero
columns and max {n — 7,0} zero rows. Similarly, let ;2 be obtained from €15 by adding
max {n — 7,0} columns with i.i.d. entries distributed as €;, and let £9; be obtained from
91 by adding max {T' — n, 0} rows with i.i.d. entries distributed as &;;. Assume that the ele-
ments added are independent from 19, €21 and from G. Then, we have: £19Gea = £12GEa1,
where G is a square matrix with ||G|| < ﬁ IB|1? [le22 |l IANI? (61 — Z)~* for large n with
probability 1. Using Lemma 1 and Assumption 1i), we further get: n HC_? H2 230 so that,
by Lemma 4: |e12Geoy| = HEQG’Eng 2, 0. Combining this finding with the fact that

K3 = KflelgGsm and with (26), we obtain:
1K5]| = 0. (28)

The convergence facts (26), (27) and (28) established above together with the fact that,
-1
by Assumption 1iii), %A’A L. D, imply that M(l)(x) L1 (1 — “2_;) D+ vii[kﬂ

Proof of Lemma 9 ii): For M) (z), using the square of the inverse of a partitioned ma-

trix formula (20), we have:

1
M@ (z) = A+ en) (K2 + K7 'KaKTY) (A +en) +

1 1
Ky — —\ (K72 + KTYKy K1 — (A'Kg + KiA
5 T€11( 1 + 1 4140 )611+\/T( 6+ 6 ),
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where

1
K4 = T2€12B 522AY 2./45228 5127

1 -2
Ky = Talle <xIn - TA0€2B25’2A0) Aoe1 and

K¢ = K{'Kz(Ip+ Ky) + Kt —-e10B%h0 AY 2 Aeyy.

1
T3/2
Our analysis of K term is similar to that of K term. Let us define Z = T12 B2eh, AY ~ 2./452282.

Note that n HZH 72 IlAlI* Y~ IH lea||* |1 B||® so that by Lemmas 1 and 5, n HZH
Therefore, by Lemma 4:
HK4— (mZ) IkH LN (29)

For a general rank-one perturbation M — vv’ of matrix M, we have:

v (M —vv') = L%Z (30)
(1 —v'M~1tv)

Using this formula together with the definition of tr Z, we obtain:

- T—k 1 . -2
trZ = T2 Z bk+1822 i Tbk+i-/4€22,i522,@v4 Aeazi (31)

1 T—k Tbk—&-igzz’iAY[ZA&m,i
= T Zizl bk"'i 1 _1 2°
(1 = 7bk+iea2; AY; A€22,z‘)

But by Lemma 6, maxj<;<7— ‘15’227iAY[1A€22,i — %tr .AY_l.A‘ 2,0 and
max1<z<T k ) b GAYT 2 Aggg s — j tr AY_2A‘ 2L, 0. Further, by Lemmas 7 and 8, % trAY 145

(0 x, whereas for tr AY “2A, we have:

1 1
ftmy—u = TtrY_1A2Y_1
1 1 1
= Txfl try 1A%y ! <$In—k — TA€22828/22A + T.A522528/22A>
1 1
= TafltrY’1A2+Tx’1trY’lAQY’lAsggBQét'ng
1

_ _ 1 1 412
= o Lir AY 1A+ﬁm Ltr Belhy [AY 1 A] exnBB. (32)
For the first term in the latter sum, we have, by Lemmas 7 and 8:

Zaltr AY 1A D ey L (33)

»
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For the second term, using (30), we obtain:

1 1 -2
— L tr Bely, [AY*IA]2 £998B :ﬁx*I tr Bel, [9@42 — T522825/22:| e9oB

-2
1 T—k 1 1
_ 7715: o -2 _ - R2 = . o .
= T2J; i1 bk+1€22’z A T5227—1872622,7z Tbk+7,522,252271 €22,

—2
1 / -2 1 2 o

1 1 T—k
T =1 1 ' 2 1 2 -t ?
1-— Tbk+i822,i [%’A_ - 7522,—1'6_1'522’_1} €22
1 / -1 412

5
(1= Hbprichy  AY; M Ao )

1 Tk
-7t 12@':1

But by Lemma 6, maxj<;<7— ‘%5’2% [AY[l.A]Q €92, — % tr [AY_lA]Z‘ 2,0 and
Max|<j<T—_k )%5’227i¢4yflu4522,i — %tr .AY_l.A‘ 2. By Lemmas 7 and 8, %tr [.AY_lA]Q LA

1 _ _ _ P _ . 1.
v27;x luzyxruvx (1 —7yzrvz) L and %tr AY—tA S vml:. Therefore, and since 1 — bkﬂ-vz; is

separated from zero for large n, we have:

1 ' -1 412 -1,.-1
Tbk+i€9 ; [AYi A] £22,i bltiVg & U2, uz p
max — — 0,

. _ 2
Itk (1 B %bk+i€/22,i"4y'i 1A8227i) (1 - bk—i—z”ii) (1 - Tu,xrv,:c)

and using equations analogous to (23) and (24), we obtain:

1

Vg T PU 2Tz / 7dGp(7)

1 —ruaros -1 2
e 1- 7'112’93)

1
— 2 tr Behy [AY L A]? £208— 2,

T2

Combining the latter result with (32) and (33), we obtain:

1

1, -2

1 _9 1 1 Uog® TU2xTux ngB(T) D

ftrAY A—x" vy, — T Y — 0.
w,xTv,x <1 _ 7'1)2_79:)
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The latter expression can be simplified. We have:

1

-1,.-2
1 -1 7)2796517 UQ,JJTU,J/ ngB(T)

T Uyt
2,z 2
1-— Tu,xTv,x 1_ T?}_1>
2,x

2
L B 3 TV5 ,dGR(T)
= oyt (1 ruerin) {1 st Tustzer / ] (34)
(V2.0 —7)

On the other hand,
-1
TU2 2
wppa ! = < / 2’ng(T)> (35)

V20— T

because (ugz, v2 ) solve system (13). Therefore,
y xl/TQ}igcng(T) _/TU27xng(T) </ ngB(T)>1
2 (vaz — ) B (vgr — 7)> V2 — T
2 -1
_ / T ng(T)2 +/ng3(7') (/ ngB(T)) e,
(V2 e — 7) V20— T V2,0 — T

Substituting this result in (34), we obtain:

ol 4 ”2_,;9072@,#""” / TdGp(r) L4 7Tue
2,z 1—ryaros (1 _ 7v5;>2 225 (1 — Tyaroe)
and therefore,
1 1+r
’ tr AY 2 A— L = 0.
T TU2 x (1 - Tu,ccr’u,l‘)

Returning to (31), using equations analogous to (23) and (24), we obtain:

~ 14+rys 2dGp(T) p
trZ — — 5| — 0.
TU2,z (1 Tu,xrv,:c) (1 N 7'112_1)
T
2
Note that [ % = VouTus [ T”i;;'ig_i(ﬂ = MZ’;Z“’I, where the last equality follows
2,x

from (35). Therefore, finally,

tI‘Z _ Tv,x (1 + ru,m)
U2,z (1 - Tu,mrv,x)

2 0.
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Combining this fact with (29), we obtain:

Tv.x (1 + Ty w) ‘ P
Ky — : : Ii|| = 0. 36
H * U2,z (1 - Tu,arrv,z) ¥ ( )
For K35, we have, by Lemma 4:
1 1 2 _/ - p
K5 — ka tr Ag | z1,, — T.Aosglg 52./40 Agll — 0.

Replacing n—k, A and 99 in the above analysis of % tr AY ~2A by n, Ay and &9, respectively,

we find that % tr Ag (x[n - %./4052825’2.,40)72 Ay converges in probability to m
so that

-t
> TV 2 (1 - ru,mrv,:p)
Finally, let us find the probability limit of K¢ = K;lKg (I + K4)+Kf1ﬁelgB%'ﬂAYﬁAegl.

Since || K3| % 0, the first term in the latter sum converges in probability to zero. As to

Il 2 o. (37)

the second term, repeating the analysis that led us to (28), substituting Y ~! by Y =2 and

(01 — )" by (01 — %)%, we conclude that it also converges in probability to zero. Hence,
156l = 0 (38)

Finally, combining (26), (36), (37) and (38), we get:

D Toa (14 ruz) 1+r
M(2) 7 & (1 + v,T u,T ) + u,T I..
( ) )2 U2 (1 - Tu,xr'u,x) TV 2 (1 - ru,m"”v,x) F

Proof of Lemma 9 iii): For M®)(z), we have:

1
M(3)(.’I}) = ﬁKl_l (A +511) +K3

T

-1
Therefore, using (26) and (28), we get M®) (z) L 2! (1 — u2_1> DY/20

Proof of Lemma 9 iv): Note that

M(l)(:z:) _ [ MO (z) £ ] |

! 1 17—1
& ne; K| "e;

where ¢ = |/ZelK; " (A+¢e11) + /€;K3. Such a representation for ML?(:L’) and the
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probability limits for K; and K3 obtained in the proof of Lemma 9 i) imply part iv) of
Lemma 9.0J

In the next two sections, we will prove parts ii) and iii) of Theorem 1. Part i) follows
from part ii) by, essentially, flipping the cross-sectional and temporal parameters of the

model. Hence, we omit the proof of part i) to save space.

2.4 Proof of Theorem 1 iii)

Let ¢ be the integer defined in Theorem 1, that is ¢ is the maximum non-negative in-
teger such that d; > = (1 — ﬂ_l) (1 — 1‘)_1) . Since (1 — u;i) (1 — vgi) is a continu-
ous strictly increasing function of x > Z, there exists a small enough 67 > Z such that
d; > 60, (1 — uié) (1 — U£;1) for all © < ¢ and the inequality changes its sign for i > gq.

This fact is equivalent to the existence of a small enough 6; > w such that

—1
07 (1-uzp,) ditezp > loralli<g (39)

~1
9;1(1—uiél> di+vi;1 < lforall ¢g<i<k. (40)

-1
Note that z—! <1 — Uy, 1) di + vy ; is the probability limit of the i-th largest eigenvalue

x
of MW (z) as n — oo. Functions g;(z) = z~! (1 - u;i) B d; + v;’i, i =1,..., k are strictly
decreasing in x > 01 and they tend to zero as x — oco. Taking into account these properties
of the functions and inequalities (39-40), we conclude that equations g;(x) = 1 have unique
solutions ¢ = z; for i < ¢ and x > 61, and no solutions for ¢ > ¢ and x > #1. Note that
T1 > T2 > ... > ¢ > 01

Let 6 be a small positive number such that § < z,—601,let §1 = min;—1,__g.j=1.. % |gj (z; £0)]
and dy = min {|g, (61)|, |g4+1 (61)]} . Further, let ® denote the events that
max;—1,. k ‘)\j (M(l) (x; £ 6)) —gj (@ £ 5)‘ < 01 and let ® be the event that
max;—i,. k ‘)\j (M(l) (91)) —gj (91)| < 2. By Lemma 9, the probability of each of these
events can be made arbitrarily close to zero by choosing n large enough. Therefore, for any
d3 > 0, for large enough n, Pr(2) > 1 — 03, where 2 = ﬁgzltbgt N ®. Hence, with probability

arbitrarily close to 1, for large enough n, we have:

Aj (M® (61)) > 1if and only if j < g and (11)
Aj (M(l) (61)) < 1if and only if j > ¢,
and, for alli =1, ..., ¢:
Aj (MO (z; —6)) > 1if and only if j <4 and (12)

Aj (MW (z; +6)) < 1if and only if j > i
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Now, if A1 (A) < 6; and ¥ is full rank, then the eigenvalues A; (M1 (a:)) ,i=1,..k
are strictly decreasing functions of x on = > 6;. It is because for any y; and yo such that
Yo > y1 > 01, matrix M (y1) — M (y2) = ¥/ ((ylln — A — (yol, — A)71> U is positive
definite (this follows from the fact that the eigenvalues of (y11, — A) ™" — (y21, — A) "' equal

(yl—Aj(/y\ZB;(Z;—Aj(A))’ j = 1,...,n, and therefore, are positive). Note that, as was mentioned

above, A1 (A) “% Z and, as is easily verified, ¥/ L, D + I, so that with probability arbi-
trarily close to 1, A\; (A) < 07 and ¥ is full rank for large enough n. The strict monotonicity
of A; (M1 (:z:)) , 7 =1,...,k and inequalities (41) and (42) imply that, with probability ar-
bitrarily close to 1, for large enough n, there exists exactly ¢ values of x > 67 such that
MW (z) has a (simple) eigenvalue, which equals 1. These g values of z > ; are in the
d-neighborhoods of 1, ..., z4. Since § was an arbitrary positive number, we conclude, using
Lemma 2, that z1, ..., 7, must be the probability limits of the first ¢ eigenvalues of %X X/,
which establishes the first probability limit of part iii) of Theorem 1.

Furthermore, as follows from above and from Lemma 2, for any 67 > Z, there will
be only ¢ eigenvalues of %X X' larger than 67 for large enough n. On the other hand,
%XX’ = WU’ + A so that the k-th eigenvalue of %XX' cannot be smaller than the k-th
eigenvalue of A, which converges to Z. Hence, the ¢ + 1-th,...,k-th eigenvalues of %X X'

converge to z, which establishes the second probability limit of part iii) of Theorem 1.

2.5 Proof of Theorem 1 ii)

Now, let us turn to part ii) of Theorem 1. Let y; be the j-th largest eigenvalue of %XX’

with j < ¢. Then, since, as has been just shown, u; EN x; and since the probability

-1
limit of M(l)(:p), z~! (1 — uQ_}E> D+ vii]k, is a continuous function of = > 61, we have:

M(l)(ﬂj) LA l’;l (1 — uiij)’l D+ viij 1. Further, since the latter probability limit is a
diagonal matrix with strictly decreasing entries on the diagonal, the j-th principal eigen-
projection of M (1)(,uj) converges in probability to the projection on the subspace spanned
by the vector e;. In other words, we can choose the eigenvectors v; corresponding to the
unit eigenvalue of M (1)(,uj) so that they converge in probability to e; as n — oo.

Further, let us denote ry;; as ryj and 7y, as 7,;. By Lemma 9, and since ug,; = u;

and v, = vj, we have: the j,j-th element of M(Q)(Mj) converges in probability to

djm;2 (1 — ufl)i2 (1 + (T”j(Hr“j) ) +1 Lasi and the j-th column of /(%) (,uj) con-

7 1—ry rej)u; 1—rujn,j)a:]-vj

j
of &, where j < g, is proportional to e;j, which establishes the fact that plimé&;; = 0 for

-1
verges in probability to ejﬂsjfl (1 — uf1> djl-/ 2, Therefore, by Lemma 2 iii, the j-th column
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j < qand i # j. For the coefficient of the proportionality &;;, we have:
—92 . 1 . 1 .
I (S (T o (RRATIER FRN LS B
(1 - 74uj7’vj) Uj (1 - ruijj) xjvj

(:cj? (1 - u;l) - dj) -

2
1 1
Toj (14 7uj) + At ru)z; <1 Y ) 4
(1 = rugros) ug (1 = ryjrus) v,
Ty (1 + 7ug) n (14 7uy) (uy —1

)
(1 — Tuijj) Uj (1 — Tuj""vj) (’U]. — 1) ’LLj’

= 1+

1+

where the last equality follows from the fact that d; = z; (1 — uj_l) (1 — vj_l) . Continuing

algebraic manipulations a little further, we get:

—2
2 = 14+
” (1 = rujro;) ujv;

Q>

141y (1 + ij) (U]. — 1)

(1 +ryj) (1 +70)) <U4 vy —Uj> '
(L= rujroj)uj; \7 Lm0 —1

(1 +7ys) (1 +705) ( ViTej Y (uj — 1) )

1+

To establish the first probability limit of part ii) of Theorem 1, it remains to show that

(1+7sy) (14 7o)

¢ (m(zj) + z;m (z)) = (0= ragros) w70, and (43)
+v;mp (Tjg) - Y% (44)
mp (v;) + vimi (v)) L+ 7y

The latter equality follows directly from the definition of r,;. To establish (43), note that
(44) implies that

d
1417y = —vj% log (—1 —vymp (vy)) . (45)

Similarly, we can show that
d
141y = —Ujalog(—l —ujma (uj)). (46)

Now, recall that, according to Zhang (2006), m (z), u (z) and v (z) solve the system

—zm(z) — 1= —u(z)my (u(z)) — 1
—zm(2) —1=c v (2)mp (v (z)) — 1]
—zm(z) —1=c! ere
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Taking logarithms of both sides of the three equations of the above system, differentiating
with respect to 2z, and noting that £ log (—zm(z) — 1) = % = — (m(z) + zm/(z)) M,
we get:

_ (m(z) + Zm,(z)) cu(z)v(z) _ dii )
— (m(2) + 2/ () 2B — dyy () D og (— (2) mp (v(2)) — 1)
1 1 1

— (m(2) + 2m/(2))

Solving for d%u(z) and d%v(z) from the first two equations and dividing both sides of the

third equation by — (m(2) + z2m/(z)) C“(Z)U(Z) , we get:

-1

1 = —[eu(z)v(z) (m(z) + zm'(z))]_l - [u(z)ju log (—u (z) ma (u(z)) — 1) (47)
d -1
- [ oo ma ) - 1)

As was mentioned above, m (z), u(z) and v(z) can be analytically continued from the
complex area Im z > 0 to the real segment z € (Z,00) so that u(z;) = u; and v(z;) = v;.
Substituting z = z; in (47), and using (45) and (46), we obtain:

1 n 1
1+’I”uj 1—i—’l”vj7

1 = — [cujv; (m(z;) + acjm'(gnj))]71 +

which implies (43).

Now, let us prove that plim é&;; = 0 for j > q. We no longer assume that (4) is satisfied
(this assumption was innocuous for the proof of the first convergence statement as have been
explained above). Let y1, 2, ..., yx be the unit-length eigenvectors of %X X'’ corresponding

to the k of the largest eigenvalues. Note that &2 where y;; is the i-th component of y;.

ij _yzg’
Define Q; = > /_ 1?/r( XX+ xee )yr +y] ( X X'+ xee )yj, where s is an arbitrary

positive number. Since yq, ..., yx are orthonormal,

Q]<Z"+ < XX + xese ) (48)

Consider first the case when j > g and i < q. If 5 is so small that, for any 0 < 2 < 3¢,

the smallest eigenvalue of 7! (1 — ﬂ_l)_l ( di di ) — < 770 > is less than 1,
xd; x 0O O

then eigenvalues A, (%XX' + %eie;) converge to x, for r < g and r # 4, and to T for ¢ <

r < k. For the i-th eigenvalue of %X X'+ »e;el, by the formula for the approximation of an

eigenvalue of a perturbed matrix (formula 3.6 on p.89 of Kato, 1995), we have: for any 6 > 0,

there exists C' > 0, N > 0 and s > 0 such that ’)\i (%XX’ + %eie;) -\ (%XX’) - %yi} <
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Cs2, for all n > N and » < 3 with probability no smaller than 1 — 4.
Such a behavior of the eigenvalues A, (%X X'+ %eieg), together with (48), imply that:

Q, < ZL Ty + 3y + T+ 6 + Cs (49)

with probability no smaller than 1 — § for large enough n. On the other hand, by definition
of Qj :
Q=Y wet T4yl =0 (50)

with probability no smaller than 1 — § for large enough n. Combining (49) and (50), we
have: %yizj < 26 + O with probability no smaller than 1 — 2§ for large enough n. Let
us take & = 2. Then, we have: yfj < (2 + C) » with probability no smaller than 1 — 2
for large enough n. Since s is an arbitrary positive number, smaller than min (¢, 511) , we
have: yzz] EN 0, and therefore, d&;; 2 0.

Now, let us consider the case when j > ¢ and ¢ > ¢. If s is so small that, for any

, . -1 ( d; >d; ) ( 51 0 >
0 < 3 < s, the largest eigenvalue of & (1 — U ) —
d; n 0 0

is less than 1, then eigenvalues \, (%X X' + sce;e}) converge to z, for 7 < ¢ and to Z for
q < r < k. Therefore, we can replace inequalities (49) and (50) by Q; < > 7z, + T+ ¢
and Q; > > 1z, + T+ %yfj — 4, respectively. So, with § = »?2, we have: yfj < 25 with
probability no smaller than 1 — 2s¢% for large enough n. Since s is an arbitrary positive
number, smaller than s, we again have: yfj 2,0, and therefore, Qi 2, 0. This completes
the proof.[]

3 Proof of Theorem 2

We will prove part ii) of the theorem. A proof of part i) is similar to the proof of part ii) and
we omit it to save space. As before, we will consider only the case when Vare; = o2 = 1.
The general-case formulae reported in Theorem 2 can be obtained from the formulae derived
below by replacing L by L /o and D by D/o?. We will use notation introduced in the proof
of Theorem 1. In addition, for any matrix M, we will denote its j-th row as M. and its j-th
column as M.;. Further, we will use M,.; to denote the matrix that consists of the columns
r,r+1,...,s of matrix M, and we will use M;.;,.s to denote the matrix that consists of the

intersection of the rows 4,7+ 1, ..., j and columns 7,7 + 1, ..., s of matrix M.

3.1 A key lemma

Let A = O’AO be a spectral decomposition of A = %A0€282€/2A0 = %52[)’26’2, where the

latter equality follows from the assumption of Theorem 2 ii) that A = I,,. Note that, since
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the entries of €9 are i.i.d. Gaussian, the spectral decomposition can be chosen so that O
has the Haar invariant distribution (see Anderson (1984, p.536)).* Define X = OX and
U =0V = Oy, (L’L)l/2 4 Og1 /V/T. Then, matrix X X’/T has a convenient representation
XX'/T = ¥¥ + A and the same eigenvalues as matrix X X'/T.

Let y;; denote the i-th component of an eigenvector of XX’ /T, corresponding to eigen-
value \j (XX'/T), and let ); denote the i-th largest diagonal element of A. Let us define

MY (2)

1

]
&

>3

=
&
&
Il
M-

The following Lemma is a straightforward consequence of Lemma 2:
Lemma 10: Let 1 # N, i = 1,...,n so that pl, — A is invertible. Then.:

i) p is an eigenvalue of %X’X’ of multiplicity larger than or equal to s if and only if there

exists a positive integer m < k+ 1 — s such that © = p satisfies equations

Am (M,Sl) (a:)) =1, Amtsot (M,SU (:1:)) =1, (51)
ii) If v is an eigenvector of MY (u) corresponding to eigenvalue 1, then

(@) ~1/2 RN
Y= (v M () v) (,uln - A) 5 (52)
s a unit-length eigenvector of %)N(X’ corresponding to eigenvalue (.

iii) If 1 is a simple eigenvalue of MT(LI) (1), then p is a simple eigenvalue of %XX"
Furthermore, if p is the j-th largest eigenvalue of %XX" and v is a corresponding

eigenvector of Mfll) (1), then the j-th column of matriz & from part i) of Theorem
—1/2
2 equals (U/Mr(f) (1) v) M () v.

The key fact for the analysis below was established by Silverstein (1995), who gen-
eralized previous results of Yin (1986) and Marchenko and Pastur (1967). Silverstein

3The decomposition is not unique because each of the columns of O can be multiplied by —1 and the last
max (0,n — T + k) columns can be arbitrarily rotated.
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showed that the empirical distribution of the elements along the diagonal of A defined
as Gj () = %2?21 1 {5\2 < x} almost surely converges to a non-random cumulative dis-
tribution function G, which is fully characterized by the limiting spectral distribution Gpg
of matrix B’B. Silverstein’s result was later generalized by Zhang (2006) to the case when
A # I,. It is this generalization that was used in the proof of Theorem 1.

To see the significance of Silverstein’s result for our analysis, assume for a moment that
k =1 and note that M,(Ll)(a:) is a weighted linear combination of terms \ilf with weights
($ - 5\1) - . Now, by definition, U, = Oin (L’L)l/2 + 01.61/\/?. The second element in this
sum is independent of the first and, by Assumption 2 i), is N (0,1/7). The first term is
asymptotically N (0,d;/n). Indeed, since O has the Haar invariant distribution, the joint
distribution of the entries of its first column is the same as that of the entries of £/ ||£]],
where € ~ N (0,1,) and ||¢]| = \/€'€. Hence, Mt ( ) asymptotically behaves as a weighted

sum of x2(1) independent random variables with weights % (d1 +¢) (x — 5\1) . Intuitively,
such a sum should converge to (dy +¢) [ (z — A)71dG (X\), which we confirm below. The
properties of M,gl)(x) centered by its probability limit and scaled by y/n can be analyzed

using similar ideas.

3.2 Technical lemmata

Lemma 11: (McLeish (1974)) Let {X,;, Fni;i=1,2,...,n} be a martingale difference
array on the probability triple (Q, F, P). If the following conditions are satisfied: a) Linde-
’ RS . " P
berg’s condition: for all € > O,Zi f|XW_‘>E Xfl,idP — 0,n — o0; b) Zi:l Xgﬂ. = 1, then
Z Xoi % N(0,1).
Proof of Lemma 11: This is a consequence of Theorem (2.3) of McLeish (1974). Two

conditions of the theorem, i) max;<, |X, ;| is uniformly bounded in L, norm, and ii)

maxij<n | Xn,il %, 0, are replaced here by the Lindeberg condition. As explained in McLeish
(1974), since for any e, max;<, X2, < 62+ZA X2 .I(]Xni| > ¢€) and since P {max;<y, | X, ;| > e} =
’ 7 ’ =

{Z I(|Xnil >e€)>e¢ } , both conditions i) and ii) follow from the Lindeberg condition.[]

Lemma 12: (Hall and Heyde) Let { Xy, Fni;1 <i<n} be a martmgale difference
array and define Vnz,j = ZZ:1 ( n,i|fn,l*1> and Ui sz n,i for 1 < j <
n. Suppose that the conditional variances VnQ’n are tight, that is sup,, P (an > 5) — 0
as € — oo, and that the conditional Lindeberg condition holds, that is for all ¢ > 0,
ZiE [X2 (| Xnil > €) | Fni- 1} — 0. Then max; - Vn%j 0.

Proof of Lemma 12: This is a shortened version of Theorem 2.23 in Hall and Heyde
(1980).0

Let g;(A), j = 1,...,J, be analytic functions of real variable A on an open interval (l_ ) ﬂ)
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containing the support of the distribution G and such that [ < 0. Note that the boundedness
of the support of Gp implies the boundedness of the support of G (see Silverstein and
Choi (1995) for an analysis of the support of G). Further, let ¢(™) be an array of n x m
matrices with i.i.d. standard normal entries independent of 5\1, . An. In what follows we
will omit the superscript n in <™ to simplify notations. Finally, denote the set of triples

{(4,8,t): 1 <5< J,1<s<t<m} as 0. Then, we have the following

Lemma 13: Let Assumptions 1, 2, 8 and 4 hold, and let A = I,,. Then, the joint
distribution of random variables {ﬁ ijl gj(j\i) (SisSit — 0st) ; (4, 8,t) € @1} weakly con-
verges to a multivariate normal distribution as n — co. The covariance between components
(4, s,t) and (j1, s1,t1) of the limiting distribution is equal to 0 when (s,t) # (s1,t1), and to
(1+0st) [ gj(N)gj, (N)AG(N) when (s,t) = (s1,t1).

Proof of Lemma 13: Let real numbers /; and u; be such that Iy < 0 and [l1,u;] is included

in (l_, 12) , but itself includes the support of the G law. Define functions h;()),j =1,...,J, so
that h;(A) = g;(A) for A € [l1,u1], and hj(A\) = 0 otherwise. Note that |h;(\)| < R for any
j=1,..,J and any A, where R is a constant larger than max;—1 __ jSupPxep, u,] 9j ()| . Note
also that since, by Lemma 3 of Onatski (2009), almost surely for all large n, all A\;;i < n
belong to [l1,u1], Pr {ﬂj < J,7 < n such that hj(j\i) # gj(xz)} — 0 asn — oo.

Consider random variables X, ; = ﬁz(]”&t)eel *yjsthj(jxi) (SisSit — Ost) , where v,y
are some constants. Let F,; be sigma-algebra generated by A, -y A and Gjs;1 < j <
i,1 < s < m. Clearly, {X,;, Fni;i=1,2,...,n} form a martingale difference array. Let
K be the number of different triples (j,s,t) € ©;. Consider an arbitrary order in ©;.

K K 1/p K 1/q
In Holder’s inequality Z _ Yz < <Z . (yr)P ) <Z " (zr)q> , which holds for

Yr > 07 Zr > 07p > 17q > 11 and (1/p) + (1/Q) = 11 take Yr = )ﬁ’}/jsth](j\l) (gisgit - 5St)‘ )
where (j,s,t) is the r-th triple in ©1, 2, = 1, and p = 2 + § for some 6 > 0. Then, the

2+6
inequality implies that | X, ,*™ < K19 g2+ Z(~ Hee ’yjst% . Recalling that
WELH 1

Gis are i.i.d. N(0,1), we have: Z E ]Xm|2+(S tends to zero as n — oo, which means that
(2

the Lyapunov condition holds for X, ;. As is well known, Lyapunov’s condition implies

Lindeberg’s condition. Hence, condition a) of McLeish’s proposition is satisfied for X, ;.
n
Now, let us consider Zi:l X 72” Since convergence in mean implies convergence in prob-
ability, the conditional Lindeberg condition is satisfied for X, ; because the unconditional
Lindeberg condition is satisfied as checked above. Further, in notations of Hall and Heyde’s

proposition, we have

n ~ ~

Vin = %Zi_l EQ Gsneon, VistVjsun M) (N) (sissic — Ost) (Sisy Sity — Fsyty) [ Fruie1)-
B (1,51,t1)€O1

It is straightforward to check that the latter expression is equal to
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> gy [(Crercyan Vit i A +0:0)) 330 Gy (o)

1<iis<d

Consider now ‘N/n%n = Z 1<j<J [(Z1gsgtgm VjstVipst (1 + 5st)) % ijl gj(}"i)gjl (S‘i) :

1<i<J
Since P <‘7712n # Vn2n> — 0 as n — oo, ‘N/;?n and Vn%n must converge in probability to the
same limit, or must both diverge. But, by Theorem 1.1 of Silverstein (1995), the empirical
distribution of Ay, ..., A, almost surely weakly converges to G. In addition, by Lemma 3 of
Onatski (2009), almost surely for all large n, all \;,i < n belong to [l1,u1]. Therefore, since
by assumption, g; (A) with j = 1,...,J are continuous on [l1, u1], %ZLI gi(A)gj (Ni) —
[ 9j(N)g;, (A\)dG(X) converges in probability to zero, and we have:

72 hy= Y S e (L4 00) / G(Ng NG | . (53)

1<j<J 1<s<t<m
1<ni<J

Hence, Vn%n also converges in probability to ¥. In particular, Vn27n is tight and Hall and
Heyde’s proposition applies. From Hall and Heyde’s proposition, we know that Zn 1X 2
1=

must converge to the same limit as V2, . Therefore, using McLeish’s result, we get Zn ) Xn,i LA
) =

N(0, ).

pp— SisSit—0s " . n
Let us now define Y, ; = Z(j,s,t)e@ Vjstdi (M) \tﬁ t. Since Pr (Zizl Yo # Zi:l

0 as n — oo, we have Zé_l Yo 4N (0,%). Finally, Lemma 13 follows from the latter con-
vergence, the Cramer-Wold result (see White (1999), p.114), and definition of ¥ (53).00

Now let us formally establish the asymptotic behavior of MT(LI)(ZE), M, (2)( ) and M, (3)( ).
By Lemma3 of Onatski (2009), for any fixed k, A, ooy A almost surely converge to Z, the
upper boundary of support of G. This result implies that, with high probability, MY(LI) ()
belongs to the space C [0, 02]k2 of continuous k x k-matrix-valued functions on z € [0, 03],
where 03 > 07 > Z. Since the weak convergence in C [0, 053] is well-studied, it will be
convenient to modify ngl) (x) on a small probability set so that the modification is a random
element of C' [0, 92]k2 equipped with the max sup norm. To construct such a modification,

define h(z, \;) = max (ac — N\, 91*5) and let

2
. S AT
MM (2) = N
1=1 h <w7 Az)
n T
2) () ;Il’ ~— and
— h (z, M)
. LN
M7(L3) ("L') _ Z,].Zk’~ )
,Z; h(z, A;)

Xn,i) -



We will study the asymptotic properties of Mr(f ) (x) keeping in mind that they are equivalent
to the asymptotic properties of MY (x) because Pr (M,(l]) (x) = MY (x),Vx € [0, 02]) =
Pr(5\1<912j> — 1 asn — co.

Define

M@ = (D+eny [L,

M) = e [0,

M@u):wm/f%y

and

We have the following

Lemma 14: Let Assumptions 1,2,3 and 4 hold, and let A = I,,. Then, for the random
elements of C*” [0y, 0] defined as NP (x) =+v/n (M,(Lp)(m) - Mép) (a:)) ,p=1,2,3, we have:

{N}Lp)(m),p - 1,2,3} LN {N(p)(:n),p — 1,2,3}, (54)

where, for any {y1,...,ys} € [01,02], the joint distribution of entries of
{N(p) (yj);ip=1,2,3,j = 1,...,J} is a 3Jk2-dimensional normal distribution with covari-
ance between entry in row s and column t of N® (y;j) and entry in row s1 and column tq
of N(”)(yjl) equal to QW) (7,71) , where T = (s,t,7) and 71 = (s1,t1, 1), and QP (7,71)
1s defined as follows:

For 7 = (s,t,7), 71 = (s1,t1,71), and integers p1 and pa such that 1 < p; < py < 2,

QPP (7, 71) = Q) (r,71) = 0B (7,77) = 0

if (s1,t1) # (s,t) and (s1,t1) # (¢, 9);

(p1:p2) (1 + - _ dg(A) dg(A)
QPP (7. 71) (1+6st)d5dt/ /(

(y; = NP (g — NP2
+ [(1 +05) (2 + dydy) + ¢ (ds +d; + 255,5\/@)} /
andrry) = —(1+8) @dt/ (yjlg—(i))pl / ijlg(_A)/\

[ 8) Vs + ¢ (Vi + 6 dt)}/ dg(\)

(yj — D" (yj, — A’

~ (14 0u) dt/ ?igi/\;\ / ydglg(—k)/\ + (14 dst) di + c>/ (y; — ifézj)l - )

dG(N)
(yj = AP (g — )™

B3 (1,71)
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if (s1,t1) = (s,t); and

Q(P1.p2) (r,71)
Q(p1,3) (7-7 7-1)

QPLP2) (45,5, (s1,t1,71))
QP1,3) ((t,8,7),(s1,t1,71))

Q3:3) (1,71)

— (14 6st) dsdt/ yg
j

dg(A) g\
- A / Yjp — A

+((1+6st)\/ﬂ+5stc)/( féy}l N

if (s1,t1) = (L, ).

Proof of Lemma 14): To save space, we will only study the convergence of Nél)(:z:). The

joint convergence of {Nﬁp ) (x);p=1,2, 3} can be demonstrated using similar ideas. We will

prove the convergence of N,sl) () by first checking the convergence of the finite dimensional
distributions {N,(L’lzt(yj), (s,t,j) € @} <, {Ng(tl)(yj), (s,t,j) € @}, where © denotes the set
of all integer triples (s,t,7) satisfying 1 < s,¢t < k and 1 < j < J, and, second, by
demonstrating the tightness of all entries of N,gl)(a:).

Note that the distribution of Ny(Ll) () will not change if we substitute O1.; and Oeq in the
definition of ¥ by f(ﬁ'&)_lﬂ and n, where £ and n are two independent n x k matrix with i.i.d.
, An. Indeed, the substitution of Oe;
by 7 is justified by the Assumption 2 i). As to the other substitution, note that the columns

standard normal entries independent from 7 and A, -

of £(£'€)~1/2 are orthogonal and of unit length. Further, the joint distribution of elements
of & (5'5)_1/ 2 is invariant with respect to multiplication from the left by any orthogonal
matrix. Hence, this distribution coincides with the joint distribution of the elements of the
first k columns of random orthogonal matrix having Haar invariant distribution. But the
latter is the joint distribution of elements of O1.;. In the rest of the proof, we, therefore,
will make the substitutions and redefine N,(Ll)(x) accordingly.

It is straightforward to check that N(l)(gv) = Zi_l S®)(z), where

$0) = () (577 (50 Sesk) (59) .
SO (2) = (L'D)Y? /n (I - ( )) (55>_1(L’L)1/2Z:;1nh(ﬂl),
S®)(z) = v/n (L'L — D)Zjlnh(x .

SO () = F (D)2 () I/Z(fZ, k)

SO = VT (&3 2 (55) e,

SO (@) = (3) & Zj Ry

S (@) = v (=) I Y| s

S9(w) = — (D + ) v ([ 193] Z; i)
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. . . dg(m (\ n P
By Theorem 1 of Bai and Silverstein (2004), v/n (f T)(\) - Zi:l %x%\@) — 0 for any
z € 01,09, where G ()) is defined as follows. Let B"™) = I,, @ B(™ and let ¢(™™) be an
nmxT™m matrix with i.i.d. N(0,1) elements. Then, G () is the weak limit of the empir-
ical eigenvalue distribution of T(i)me(”m)B(”’m)B(”’m)'s(”’m)’ as m goes to infinity. Lemma

17 below shows that our Assumptions 1, 2, 3 and 4 imply that \/n ( S dg;?)(\’\) -/ dxg_(i)) —
0, and hence \/n ( / dmgf(’}\) - Z:;l — (i X)) 2. 0. The latter convergence result together
with the facts that &'¢/n 2 I, 'L — D = o(n _1/2) and n/T —c=o0 (n_1/2) imply that

8 8
{szl S( )(y]) (s,t,j) € @} and {szl S( )(y]) (s,t,j) € G)} weakly converge to the

same limit or do not converge together where

SO () D1/2<\FZ 1€€, ) D\2,
$@) (@) = D2/ (1~ (£5)) i J 29,

(z) =
()
Sy (7, )
(z) =
N(z) =

mﬁl 1/2
(\Fzz 1h$>\ D/’
.m0~ 1k
IZZ 1 hx)\
5(7)( ) = 5(8)( ) = 0.

By definition, we have:

8

S50 = Vidi—= 25“5; iy [ dg_szwﬁu b
v=1 i=1 s A

é-’LST]lt gltnls 77137711‘,
Z e +\ed— Z e Z A)

i—1 h(y;»

Since [£, 7] is an n x 2k matrix with i.i.d. standard normal entries, Lemma 13 and the above
decomposition imply that {Zizl S( )(y]) (s,t,j) € G)} weakly converge to {Zg«;, (s,t,75) € ©}
having joint normal distribution such that cov (Zsj, Zs,1,5,) = 0 if (s,t) # (s1,t1) and
(s,t) # (t1,s1) and cov (Zstj, Zs,1,5,) is equal to

CcovV (Zstja ZSltljl) = |:<1 —+ 5st) (02 + dsdt) +c (ds =+ dt =+ 2(5515\/ dsdt>} X (55)
g AN [ dG(N)
X/(yj—A)(yjl—A) (H(s“)det/yj—A/yjl—A

otherwise, which establishes the limit of the joint distribution of {N a )(yj) (s,t,j) € 6)} .

8
Now we have to prove the tightness of all entries of Nél)(x) = E . S®)(z). Since
v=

product and sum are continuous mappings from C [91,92]2 to C'[01,02], it is enough to
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prove the tightness of every entry of each matrix entering definition of S()(z), v = 1,..., 8.
The facts that £¢/n 2 I, 'L —D =o (n*1/2) ,and n/T —c=o0 (nfl/z) imply the tight-

ices (L/L)V/2 / ge\T? (ge)7!
ness of every entry of each of the matrices (L'L)*, \/n(L'L — D), <7> , (7) ,
VAL /i (% —c) I, and /n <Ik - <%E)) considered as (constant) elements of C [0, 02].

Therefore, we only need to prove the tightness of

Zgzsg ’ Z glsnzt Z 13771; )\ ’ (56)

=1

of oy ey and of v (5 =37, nh(i,m) '

Since & and 7 are, by definition, two independent n x k matrices with i.i.d. standard
normal entries, to prove the tightness of the sequences of sums in (56), it is enough to
prove the tightness of the first sum for all 1 < s <t < k. We will use Theorem 12.3 of
Billingsley (1968), p. 95. Condition i) of the theorem is equivalent in our context to the
assumption of the tightness of the sum at x = ;. Lemma 5 implies that this assumption

is satisfied. We will verify condition ii) of Theorem 12.3 by proving the moment con-

n 2
E(Z (h(yl,5\1‘)_1_h(y275\i)_1)(£is£it_6St))
dition (12.51) of Billingsley (1968). We have Ll

n(y1—y2)? =
b <Zj <h(y175‘i)h<y2v :\i)) - (§isit — )) /n < n(61— $)4E <Zn (§isbit — 5st))2 =
(01 ) 1 (14 ds¢), where the first inequality follows from the fact that ‘h(yl, — h(y;,f\i) <
_— B30 (hnh b €t 0))

Hence, sup is finite and the

(ylr)‘ )h(y2:)\ ) nsy1,y2€[01,02]
moment condition (12.51) of Billingsley (1968) is satisfied. In a more complete proof (in

n(y1—y2)?

which the tightness of the elements of N, (2)( ) is demonstrated), we also need to check

Billingsley’s moment condition when h (-,-) is replaced by h? (-

b
11 ly2—1|(h(y1. ) +h(y
h2(y1,Ai)  h2(y2,\) h2 (y1,0i )2 (y2,\i

);
-). We can use the above
Y2,
)

) < 3202[y2— y1|
= (61-3)!

reasoning and inequality to per-

form such a check.
Similarly, conditions of Theorem 12.3 of Billingsley (1968) are satisfied for Zn — 1

i=1 nh:ﬂ 7)

Condition i) is satisfied because, as has been shown above, /n (f dxg_(/\) ) nh(x 5 ) 2
Z

oy ey s . n 1

0 for any z € [01, 02] . Condition ii) is satisfied because F (Ziﬂ R )) < (01_

for any y1,y2 € [01,02] .
n

To prove the tightness of f(f - i‘\) Zi:l nh(i,iﬂ)’ we adopt the argun}ent on

page 563 of Bai and Silverstein (2004). In notations of Bai and Silverstein (2004), M, (-) —

— [ L ZM (z )dz is a continuous mapping of C (C, R?) into C[61,6s]. Since, M, (-) is

tight, —5= [ —M,(z)dz, and subsequently n ( [ dg;i))(\/\) _ Z" 11 ) form a tight

Z]_”l‘)\

5:)4
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sequence. But by Lemma 17, sup,¢g, g,] V7 ( 1l dg;i))(\’\) —f dxg_(’)\\)) 2, 0. Therefore,

NZD (f dng())\‘) — Zn . %:C li ) is tight too. Finally, the latter tightness and the fact that
1= —Ng

P (i) #0) Ot (15857 k)

must be tight.[d

Lemma 15: Let A(x) = A+ AW where AY is a symmetric k x k matriz and
A = diag (a1, a2, ...,ax), a; > ag > ... > a > 0. Further, let ro = %minjzlw,k laj —aj],
where we define apy1 as zero. Then, for any real s such that || < ro/ HA(l) H , the following
two statements hold:
i) Ezactly one eigenvalue of A(s) belongs to the segment (a; —ro,a; + o) . Denoting this
< oA [|AD]| (ro = Il )

ii) Let Pj () be the orthogonal projection on the invariant subspace of A () corresponding

eigenvalue as a; (), we have: ‘% (aj () — a;) — Aﬁ')

to eigenvalue a; () and let
S; = diag ((al —a;) (a1 —a) 7,0, (aj1 —ag) 7t (ag — aj)ﬂ) . Then ej (x) =
Pj (x)e;/ || Pj () ej] is an eigenvector of A (sc) corresponding to eigenvalue a;(3<), and
£ (o5 (2) = e) + S5 40 e[| < 2[s¢] | AD|J (ro — |5¢] | AV]])

Proof of Lemma 15: Let R (z, ) = (A (3) — zI;;) " be the resolvent of A (5) defined for
all complex z not equal to any of the eigenvalues of A (). We will denote R (z,0) as R(z).

Let I" be a positively oriented circle in the complex plane with center at a] and radius rg. The
second Neumann series for the resolvent R (z, 5) z)+ Z R (z) (A(l)R (z))n
(see Kato (1980), p.67, for a definition of the second Neumann serles) is unlformly convergent
on I for »r < miner (HA(UH HR(z)H)_l =rg/ HA(D
the fact that | R (2)|| = ry" for any z € T. Therefore, formula (1.19) of Kato (1980) implies
, there is exactly one eigenvalue, a; (s), inside the circle I'.
Formulae (3.6)° and (2.32) of Kato (1980) imply the inequality stated in part i of Lemma
3.

} , where the last equality follows from

We now turn to the proof of part ii. According to Kato (1980), p.67, projection P; ()
can be represented as Pj () = 2m fF (z, ) dz. Substituting the second Neumann series

for the resolvent in this formula, we obtain

Pj(%):Pj—f (=) /R )>ndz (57)

2772

where P; = P; (O) and the series absolutely converges for || < HA(I)H Kato (1980), page

76, shows that 5= [ R R(2)dz = —P;AS; — S; AV P;. This equality and (57) im-

*For any matrix (or vector) B, || B|| = (max eig (B*B))"/?  where  denotes the operation of transposition
and complex conjugation.

5Note the difference in notations. Kato’s ro is ours ro/ HA(I)H .
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ply that P; () = P; — 5 (P;AVS; — S;ANPy) — 5 Z )" Jp B (2) (AVR(2))" dz.

271

Therefore, we have:

|| [|AD|*

—(P; —_PY+PAVS + 5. A0 P <
( J (%) J) J J J J To (7"0 — || HA(l)H)

4

(58)

B

for any |s| < ro/ ||A(1)H .

Since A is diagonal with decreasing elements along the diagonal, e; is an eigenvector
of A corresponding to the eigenvalue a;. By definition of P; (x), e (») = % must
be an eigenvector of A (sr) corresponding to the eigenvalue a; (5). Consider an identity

% (ej (30) — )+ 8;AWe; = ( (B () ¢j — ) + 8jAWe;) + Lej (50) (1 = [Py (30) ¢5]) - Us-

x

ing (58) and the fact that Sje; = 0, for the first term on right hand side of the identity we

have: )
[ [AY]

< .
~ 70 (ro = |4l [[AW])

— (Pj (J{) ej — ej) + SjA(l)ej (59)

Using the fact that Pj () is a projection operator so that ||P; (s)e;|| < 1 and Pj (3)* =
P; (5), for the second term on right hand side of the identity we have:

2
(60)

2=z e < (1= 12 elP) = | £ (B0 e - )

A0 A 2 a0]”

But, form (59), || (P; () ej —¢; H <2||S; A ]H Bl b lAV S 28 T o AV

Combining the above identity, (59), (60), and the latter inequality, we obtain:
e [ A0 |* (805 —aro o | AD [| 5[ AV [*) 2o 4| ?
L (e; (5) — AWe | <
I5tes 00 =e3) + 540 | 230 A0 = o A0
the last inequality follows from the fact that ro > || HA(l) || . This proves statement ii) of

5, Where

the lemma.[]

Lemma 16: Let f,(z) and fo(x) be random elements of C'[01,02] such that fn(z) <,
fo(z) as n — oo. And let x,, be random wvariables with values form [01,03] and such that
T, B xo, where xo € [01,02] Then fn(zn) — fu(xo) 2.

Proof of Lemma 16: Since f,(z) <, fo(x), {fn(z)} is tight and, hence, for any ¢ >
0, we can choose a compact K such that Pr(f,(z) € K) > 1 — § for all n. By the

Arzela-Ascoli theorem (see, for example, Billingsley (1999), p.81), for any positive €1,
we have K C {f:|f(61)] <r} for large enough r and K C {f:wy(d(e1)) <e1} for
small enough 6(eq), where wy (0) is the modulus of continuity of function f, defined as
wy (6) = supjs_y<s [f(s) = f(t)], 0 < § < O — 01. Let us choose N(e,e1) so that for any

35



n > N(eg,e1), Pr(|z, — 20| > d(e1)) < §5. Then, for n > N(e, 1), we have:

Pr([fn(zn) = fa(zo)| > €1) = Pr(|falzn) — falzo)| > &1 and |z, — 20| < 6(e1))
+Pr(|fn(zn) — fu(zo)| > €1 and |z, — 20| > (1))
Pr(fn(z) ¢ K) + Pr(Jz, — zo| > 0 (e1)) < &,

IN

which proves the lemma.[]

Lemma 17: Let (a,b) be such that a < 0 and b > Z. Suppose that g(x,\) is a continuous
function on (x,\) € [01,602] x (a,b) and that it is monotone increasing and has bounded
derivative with respect to A on X € (a,b) for any x € [01,02]. Then, under Assumptions 1,

2, 8 and 4, as n — o0

sup /n

z€[01,02]

/ g (2, dG (A) — / g (2,2 dg"™ (A)| -0,

where G is as defined in the proof of Lemma 14.
Proof of Lemma 17: As has been shown in the proof of Lemma 3 of Onatski (2009), the

upper boundary of the support of G converges to Z as n — co. Therefore, (a,b) contains

the supports of G for all large enough n. Hence, the function

A, () =+/n

/ g (2. N dG (\) - / g (2, ) g™ ()

is continuous on = € [f1,0s], and it is enough to show the convergence of A, (x) to zero
pointwise for any z € [01,602] .

Let v1; and vo; be the j-th largest eigenvalues of B"™ B and I, @ B B™
respectively. Here B(®) denotes the s-th element in the sequence of matrices B (which
introduces the temporal correlation to the idiosyncratic terms e = AeB), satisfying our
Assumptions 2, 3 and 4. Further, let .; = (£1,4, ..., €nm,;) Where {e; ;,i € N and j € N} are
i.id. N(0,1) random variables. By Theorem 1.1 of Silverstein (1995), G (\) and G ())
are the weak limits of the empirical distributions of the eigenvalues ;; and py; of Ry =
Ty Z]Tinlm) vijejel; and Ry = —o— E]T:(nl)m v, je.jels,
surely. Therefore, for any n, with probability 1, |A, (z) — Apm (2)| — 0 as m — oo, where

respectively, as m — oo, almost

nm nm

1 1
Apm () =V/n — Zg (2, ) — Jovey ZQ (2, pa4) | -
p i=1

Hence, to establish the convergence A, (xz) — 0, it is enough to show that with positive

probability, A, , (z) — 0 as n — oo uniformly in m > 1.
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We will prove the latter convergence in the case when T m < T(™) The extension to
the case when T m is larger than 7" is straightforward. Let us define a set Jn,m as the

set of positive integers j, such that j < T(™m, and {vij,v2;} € [zp, Zp]. Consider matrices
= 1 T(nm) _ ’ ~ 1 T ~ ’

J & Jnm and U1 ; = vq; and Uy ; = va; otherwise. The ranks of Ry — Ry and of Ry — Ry

where 1)1’]' = IJQJ =0 if

are no larger than o (n1/2) m, where o (nl/z) is uniform in m > 1. It is because the number
of integers j < T(™™) such that j ¢ Jpm is 0 (n1/2) m.

Indeed, for any positive integer s, let us denote the empirical distribution of the eigen-
values of B®)B() ag Gg) (x), and let

ls = sup ’Gg) (x) — G (:U)‘ .

Then, the number of integers j < T(™™) such that vy ¢ [zg,Zp] cannot be larger than
2T, Similarly, the number of integers j < T(m such that va; ¢ [z, Z5] cannot
be larger than 21,7™m. Hence, the number of j < T such that j ¢ Jn,m cannot
exceed 2, T 421, T+ Tm) _ 7y which is o (nl/Q) m, as stated above, because
s/TG) —c=o (5_1/2) and ls = o (3_1/2) as § — 00.

The fact that the ranks of Ry — Ry and of Ry — Rg are no larger than o (n1/2) m together
with Weyl’s theorem (see Horn and Johnson, 1985, p.184) imply that the j-th largest
eigenvalues of Ry and Ry are no smaller than the j+o (nl/ 2) m-th largest eigenvalues of
R1 and R, respectively. Further, by construction, Ry — Rl and Ry — Rg are positive semi-
definite matrices, and therefore, the j-th largest eigenvalues of Ri1 and R, are no larger
than the corresponding eigenvalues of R; and Ra. These eigenvalue bounds together with

the fact that g (x,\) is monotone increasing imply that

- i o m
Vil —> g (@) = —> g (@ i) a2 9(wmy) and
j=1 j=1 j=1
- - ol m
vn /ng(-’”’#za’) —%Zg(m,ﬂg,j) S 2 > g(zmy),
j=1 j=1 j=1

where i, ; and i, ; are the j-th largest eigenvalues of R1 and Rs. Since g (z,A) is bounded,
the right hand sides of the above two inequalities are o(1) with probability 1 as n — oo,

uniformly in m > 1. Therefore, to establish the lemma, we only need to show that, with

37



positive probability,

1 nm 1 nm
\/ﬁ %Zg ($7ﬁ1,j) - %Zg (xaﬂzj) —0
j=1 J=1

as n — oo uniformly in m. Since, by assumption, g (z, ) has bounded derivative, the latter
convergence would follow from the fact that, with probability 1, max;—1, . nm | [LLj — ,ilzyj} =

0 (n*1/2) as n — oo, uniformly in m > 1.

T(Mm

. ~ ~ 1 1 Ty ~
Now, max;j—1,... nm }NLJ‘ - /1’2,]" < T, HZ]':1 €.j€.5

max;_y ..7mm (‘ Trm) V1,5 — V2,jD .

almost surely converges to (1+ \ﬁ)Q as

1 T(”)m /
By Lemma 1, the term —q5— szzl E.jE

o TMm -~ ~ _ —-1/2
n — oo. Hence, it is enough to prove that max;_; 7w, <‘WV17]‘ — 7/27j’> =0 (n / )

TMm

o (n"Y/2), and hence, the lemma will be proven if we show that max 1rmm (171 = D24])

as n — oo, uniformly in m > 1. Further, since n/T(”) =c+o (n_1/2) , we have:

is o (n_1/2) as n — 00, uniformly in m > 1. Finally, for 7 which does not belong to J, ,
|U1,j — 25| = 0. Hence, we only need to show that maxjey, ,, (|v1,; —va,|) is o (nil/Z) as
n — 0o, uniformly in m > 1.

Let us assume that v1 ; > vg ;. The analysis in the case when vy ; > vq ; is similar. For
J € Jn,m, several cases are possible. First, both vq; and v2; may be equal to x, or both
v1; and v9; may be equal to Zp (the case when g = Zp is not excluded). Such j would
not contribute to maxjej, ., (V1 — v2,]), so we will not consider it. Next, in principle,
it may be that v1; = Tp and vo; = zp, while zz # Zp. Such a case is not possible
asymptotically. Three other cases are as follows.

Case A: v1j € (zp,Zp) and vy j € (zp,ZTR).

Case B: v1; =Zp and vy j € (2p,ZTB);

Case C: vy j =zp and v1j € (zp,ZR);

Suppose that Case A holds. Let infyc(z, z,) (dgﬂ@) = 0§, which, by Assumption 3,

must be larger than zero. We have:

vy —veyl < 81GB (V1) — Gr (v2;)]
< ot ‘QB (v1y) — Gy™ (Vl,j)’ +o71 ‘Gglm) (1) = G (v27)
+07 ‘Gg) (v2,5) =GB (Vz,j)‘
< 5 (1) + 5 GE™ (019) = G (v2)] (61)

Note that if Case A holds, the multiplicity of eigenvalues v1; and vp; must be at most
Tp,%p) ngm) (z) — gB(x)‘ # 0 (n"1/2) and
ng ) (z) = Gp(z)| # o (n_l/ 2) , which would violate Assumption 4. There-

o (n1/2) m. Otherwise sup,¢

SUPge(zp,25)
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T(nm>’ = 0 1/2 and ‘G 1/1]) 1+T(")m‘ =

o (n!/2) . Hence, inequality (61) implies that the maximum of |v1 ; — va ;| over all j satisfy-
ing Case A is o (n1/2).
Suppose now that Case B holds. Then, since supx

fore, we must have: ‘ngm) (r1,)—1+

Gy™ (@) - Gp(@)| = o (n~Y/2) m~1/2

and since, by definition, Ggm) (r1,) <1— we must have:

T(nm)?
j <1t (1 - hm Gp(x )> +o (n1/2> . (62)
z1Zp
On the other hand, since vo; < Zp and sup, Gg) (x) — gB(x)’ =0 (nfl/Z) , it must be
that:
j>T™Wm (1 ~ lim Gp (:g)> Yo (n1/2) m. (63)
zTZp

Combining (62) and (63), and using the fact that T(m — T = ¢ (n1/2) m, we obtain:

j=TMm <1 — hm Gp (x )) +o (n1/2) m. (64)

zTZp

Now, since va; € (zg,Zp), the multiplicity of the eigenvalue vy ; must be at most
0 (n1/2) m as in Case A, and therefore, (64) and the definition of Gg) (va,;) imply:

G (1) = lim G ( )+0<n_1/2). (65)

zTZp

Finally, we have:

lvi; —vay;l < 671 1%1}1 Gp (z) — G (v2,5)
z1Z R
< ot lim G5 () - Gy (va)| + 071 ‘ng) (v2,5) — G (v2,5)
r1ZRB

= 6o (n_1/2> +67 Y, =0 (n_l/Q) )
Case C is analyzed similarly to Case B.[J

3.3 Proof of Theorem 2 ii)

Let us first prove the first convergence statement of Theorem 2 ii). By definition, I:’quzlzq
is a diagonal matrix with the diagonal elements equal to the first ¢ eigenvalues of X X'/T.
By Lemma 10, the j-th largest of these eigenvalues must solve \; (Mél) (x)> = 1. Recall
that, by Theorem 1, for any j < ¢, plim ﬁ;ﬁj must be equal to x; > Z. Let us fix 61 and 03
so that 02 > x; and T < 01 < z4. Since, by Lemma 14, ngl) (), considered as a random
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element of C*” [0y, 65], weakly converges to Mél) (x), the solution to \; (M,(Ll) (w)) =1
must converge in probability to the solution of A; (Mél) (:c)) = 1 by continuous mapping

theorem. We conclude that, for any j < ¢, ; must be a solution to A; (Mél) (:1:)) =1on

[01,02] . But A (Mél) (x)) = (d; + c)/‘ig_(i\‘) by definition.Hence, x; must be a solution

to (d;j +¢) / %()A‘) =1 on [01,03]. For x > z, function / dffi) is a decreasing function of

x, so that z; is the only solution of (d; + c) dgj))‘\) =1 on x > Z, and hence, the largest
solution to (d; + ¢) / dmgf())\‘) =1on z € R, as stated in Theorem 2 ii).

Let us denote the solution of \; (]\%(11) (az)) = 1on z € [01,02] as z,;.5 Since the

probability that MY (x) # M,(ll)(x) for some x € [01,03] converges to zero as n — oo,
and since M (z) converges to Mél) (z) as n — o0, such a solution exists for j < ¢ and
converges in probability to z; as n — oo. Moreover, with probability arbitrarily close to 1,
Znj is identically equal to ﬁ;ﬁ] (by Lemma 10) for large enough n. Therefore, by Lemmas
10 and 14, the asymptotic distribution of L;-Lj around its probability limit must be the
same as that of z,; around z;.

Lemma 14 and part i of Lemma 15 imply that, for any j < g,

AP @) =3 (M@) + N @) +o, (). (66)

where o), (ﬁ) is understood as a random element of C'[f1, 02| , which, when multiplied by
v/, tends in probability to zero as n — oo.

Now, let us define function v; (y) for y > 0 so that it is equal to Z if y > lim, |z )\j(Mél) (x))
and to the inverse function to function )\j(Mél)(:E)) otherwise. Since %)\j(Mél)(m)) =
—(dj+c) [ (ig_(;‘))g, Silverstein and Choi’s (1995) result that the density of G has form
FON) = const - ( — \)? (1 + o(1)) for A — Z implies that lim,z % X;(Mo(x)) = +o00, and,
hence, v; (y) is continuously differentiable for y > 0. Applying v; to both sides of (66)

and using the first order Taylor expansion of the right hand side, we have for z € [0, 05]:
" (Aj<M’r(Ll)(m))) =2+ (Tn(x)) ﬁNélj)j(:c) +o0, (ﬁ) , where 7,,(z) is a random element
of C'[61,02] such that 7,(z) 5 \; (Mél)(x)) as n — 00. Substituting = by x,; in the above
expansion of v; ()\j (]\;[7(11)(.@))) and using the facts that )\j(Mél)(mnj)) =1, that v; (1) = 3,
and that z,; = ﬁ;ﬁ] with probability arbitrarily close to 1 for large enough n, we obtain:

Vi (L5 = 25) = = (ru(ng)) Ny i (eng) 40 (1),

SWhen there is no solution to \; (]\Zlfll) (w)) =1on z € [01,02], we can define z; € [01,02] arbitrarily.
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Further, since x,; % x; and )\j(Mél)(xj)) =1, we have: v/, (7 (2n;)) 2 V5 (1). Finally,

j
Né}j)](xn]) - N(l)(xj) %0, which follows from Lemma 14 and Lemma 16. Therefore,

n:3J
NZD (ﬁ;ﬁj - asj> has the following form

Vi (L5Ls = 5) = =4 ()N (5) + 0, (1), (67)

Finally, by definition, v/, (1) = ()\; (Mél) (13)))71 = (— (dj+c) [ (595132)71 . The asymp-
totic normality of ﬁ;ﬁj and the form of its asymptotic variance {2;; S]tated in Theorem 2 ii)
now follow from (67) and Lemma 14.

Let us turn to the proof of the second convergence statement of Theorem 2 ii). By
Lemma 10 and by the definitions of MY (x) VA (z) and AR (x), for any j < g, the j-th
column of & equals

) . ~1/2 .
.y = <w§u‘M£2) (mnj)wnj) M) (2n5) wnj, (68)

where wy,; is a unit-length eigenvector of Y (@n;) , with high probability for large enough

n. By part ii of Lemma 15, wy; 2 ej. Further, Lemma 14, Lemma 16 and the fact

that x,; 2 x; imply that Még) (:Enj) L M(g?))(ZEj) = Dl/g/if()\)? and ngz) (fﬂnj) =

~1/2
dg(A A 1/2 dG (X dg(A
(D + cIk)/ (mjg_()\))g. Therefore, by (68), we get: &.; dj/ / xfﬁj ((dj + c)/ (mjg_()\))2> ej,
which establishes the form of plim é&;; stated in Theorem 2 ii).

Now, we will study the asymptotic behavior of &, around its probability limit. Let us

denote (d; + ¢) / (;lg_(i)) as p;. Representation (68) and the facts that w;j]\?[f) (Tnj) Wnj 2
J

pj and wp; RN e; imply that, for any j < ¢, v/n(é&.; — plimé.;) = Zi:l A;S) + 0,(1), where
1 ~1/2 /(3

A; ) = Pj / N7(z : (Tnjs) €5,
2 —1/2 dG (X dG (X

A_§ ) = p] / \/ﬁ (D1/2 f J:nj(—) - D1/2 f 1’](_)?) €j,

3 —1/2
A = p 1 2DY2 [ BN i (g — e5),

~ -1/2 _
A = DV [ P Rej/n <(w;1jM7g2) (2;) wmj) —p; 1/2) :

1/2

Using the Taylor expansion of function x™*/* around = = p;, we get:

—~1/2

. _ 1
vn ((wéer(f) (@ns) wnj) —p; 1/2> = 73

—3/2 ~
5P; / vn (w;j]\/[,?) (Tnj) wnj — pj)

o (Vi (1w 312 @) s = ).
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Therefore,

4 1 32 G(\)

A9 = g D1/2/ ‘ ejf( 2 (@ng) wag = py ) + 0p(1)
1 _ dg -

= —5p; S/Qd;/z/ W, [(wnj +¢)) M (w0) v/ (wnj — €5)

2 xj— )\

2 dGg(A
#ND, ) =25 +6) [ Oy )| 0,0,
J
where, to obtain the second equality, we used the Taylor expansion of Ny ) (2r;) around ;.

g\

Similarly, using the Taylor expansion of function f — around z = z;, we obtain:

_ dg(A
A§2) =, 1/2d;/2 / (:p-—()\))Qﬁ(mnj —zj)e;+0,(1)
J

The formulae obtained for A§-4) and A§-2) and the facts that (dj +¢) [ S dg(/\) = 1, that

d_go‘)g, and that wy; 2 ej, imply that we have the following

(x4
representation \/n (é.; — plimé.;) = 23:1 A;S) + 0,(1), where
A1 ~1/2

AW — p] / N( )(mm)ej7

2 (2 —32 12 dg)\ 2

(3 =3/241/2  _dg(x —1/2 1/2 ¢ dG(A

Ag):<pj/ /f( o _pj/dj/f(i(/\))?)ej\/ﬁ@fnj_xj)?

i (4 1/2 3/241/2 _dG(\

A0 = (o7 /Dl/QfT&; o P [ i) Vi (wny — ).
Statement ii) of Lemma 15 and Lemma 14 imply that

g
Vi (wyj — ej) = =9 </ — (_ ;) NV () € + 0p(1), (69)
j
where S = diag | (d1 — dj)_1 ey 0 N alj)_1 . Further, by the definition of

J-th position

Zn; and by (67),
Vit (@nj — 27) = p; 'NS) (2) + 0p (1) . (70)

Now, formulas (69) and (70), the definitions of A(S) the fact that x; 2 z; and Lemma
16 imply that we have the following final representation /n (&.; — plimé.;) = 22:1 A§s) +

op(1), where

Ag‘l) ;1/2]\7( )(333)637

(2 —-3/2 ;1/2 dg(\ 2
Ag‘) lp /d/f ()G'N()(:Ej),

2Fy J zj—A 17 N5

(3 —5212 dGg(\ —3/2 ;1/2 dG (A 1 —1/2 & 1
AP = (o) ] 25 = 0 ] 255 sy ted) = oy P DVRSND e
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Using Lemma 14, we conclude that the joint asymptotic distribution of the elements
of v/n(d1.q — pliméy.,) is Gaussian. The explicit expressions for the elements of the as-
ymptotic covariance matrix follow’ from the above definitions of flg-s), s=1,...,3, from the
expressions for the covariance of NV (x5) ,N,(lz) (x), and N (xj),j =1,...,¢ summarized
in the definition of Q(+) given in Lemma 14, and from the fact that (d; +¢) [ %(j‘/\) =1 for

any j =1,...,q.0

4 Proof of Theorem 3

In the proof of Theorem 3, we will not make the assumption, made above, that o2 = 1. Also,
we will denote \; (XX'/T) as A;. First, let us show that ¢, 62, my (r), s (1,1), mi (r)
and ;s (1,1) are consistent estimators of ¢, 02, m; (1), mas (1,1), 7, (r) and 14 (1,1),
respectively. For the reader’s convenience, we repeat here the definitions of ¢, 62, my; (r),

ms (1,1), mi (r) and Mis (1,1). For any i,s < g and any non-negative integer r,

¢ = nJT,
T
52 = Z)\]/(n_Q)7
Jj=q¢+1
~ PR ~
mi(r) = 5 > i=A)T,
q .~
J=q+1
= it 1 -1
mis (1,1) = T 6 Z (i =) (As = A))
q .=
J=q+1
6_27’ n
N = Ai — ;)" and
i) = T D i)
J=q+1
. AR -1 -1
s (1,1) = —— D= )= )T
155

2 note that it converges

The consistency of ¢ follows from Assumption 1 i). For ¢,
to the same limit as %22:1 Aj because ¢ 2 gand Ay < ... < A\ = (f/’ﬁ)l , which is
1
bounded in probability by Theorem 1 iii). Further, %Z?Zl Aj = % tr XX’ converges to
the same limit as % tr AeBB'e’ A’. Indeed, X X' — Ae BB'e’ A’ equals LF'FL'+ LF'B'e’ A’ +
AeBFL', which is a matrix of rank 3k at most. Hence, by Theorem 4.3.6 in Horn and
Johnson (1985), -1 |tr X X’ — tr AeBB'e’ A'| is no larger than 3% (\; + ||AsBB'e’A'/T||) <
3k ()\1 + % |A]% | B|? H5H2> . But the expression in the brackets is bounded in probability

"To obtain and to check the explicit expressions we used the symbolic manipulation software of the
Scientific Workplace, version 5.
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by Theorem 1 iii), Assumption 2 and Lemma 1, whereas ?;z—k

that % tr Ae BB/ A £ % Yo Zf:l e2.a;b; 2, 52 by Assumption 2 and the law of large

numbers.

— 0. It remains to note

To establish such the consistency of 7; (r) and m; (1), we need to show that, for any

integer 7,
1 & 1 g (\)
b __—2r
————, when B = [ d 1
T—QAZ ()\i—)\j)T_)U /(xi_A)T,wen T, an (71)
J=q+1
1 1 dg (A
_ _ 5 U2T/g()r when A = 1I,. (72)
n—q =t (>\z - )\]) (l‘l - )\)

Then, the consistency of 7i; (r) and i () would follow from the consistency of 52 and from

the continuous mapping theorem. Showing the convergences (71) and (72) is also sufficient

. - -1
for establishing the consistency of d;. Indeed, by Theorem 2, d; = o2 ( J (@i — A)_l dg ()\))

o2 if B = Ip and d; = 0” ( [ (zi—N)"tdg (A))_l —co? if A = I,. Hence, if the validity of
(71) and (72) is established, the consistency of d; would follow from (71) and (72), from the
consistency of 6% and ¢, and from the continuous mapping theorem.}\

Let us denote the empirical distribution of Ag;/ 02, .., \n/0? as G (M) and the empirical

distribution of Ag11/02, ..., A\p/0? as G (A\). In this notation, we have:

T o~
1 1 o / dG (V)
- 7 = —F——— and
T—qj:;+1 (A —Aj) 7 (Aifa? = X)
I S N / dg (\)
n=d o Qi) ifo” =N

We need to show that [ ﬁ converges in probability to [ (jg_(iir and that [ %

converges in probability to [ (d9 =. The latter convergence can be established similarly to

the former one. Hence, we will focus on proving that [ o 7%/\))\) ER J (;lg(i‘\g

For any i < ¢, let us define \; = & +I . Note that )\; is outside of the support of G, and
it is outside of the support of G with probablhty arbitrarily close to 1 for large enough n.
Therefore, it is enough to prove that [ hy,( dg (A) converges in probability to [ h(A)dG(N),

where

(m; —A) " for 0 <A<\ ()\Z‘/UQ—)\)_T for 0 <A<\
h(\) = (:1:@ — 5\7;) T for A >\ and h,(\) = ()\2-/02 — 5\1-) " for A >\
0for \<O 0for A\<O
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Note that, with high probability, for large enough n, both h(A) and h,(\) are continuous
bounded functions on R. It is because, by Theorem 1 iii) \; /o> 2o

Finally, the absolute value of the difference between [ h,,(A)dG()) and [ h(X)dG(\) is no
larger than A1+ Ag, where Ay = [ [hn(X) — h(X)] dG(A) and Ay = ’f RGN — [ h()\)dg()\)‘ .
The term A; converges to zero in probability because \;/c? 2L, 2; and because Aj+1/ o2,
which is the upper boundary of the support of é (M), converges in probability to T < i < ;.
The term As converges almost surely to zero because, according to Zhang (2006), G (A)
weakly converges to G(A) almost surely, and because h(A) is a continuous bounded function
on R. Hence, A; + As converges in probability to zero, which establishes the consistency
of m; (r). The consistency of m; (r), 77?11-75 (1,1) and ;4 (1,1) can be shown using similar
arguments.

Theorem 3 now follows from the consistency of &, &2, m; (r), mi (1) 7%1-,3 (1,1) and

mi,s (1,1) by continuous mapping theorem.[
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