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Abstract

This Appendix contains proofs of all the propositions of the paper �Asymptotics

of the principal components estimator of large factor models with weakly in�uential

factors�.

1 Notation and a useful convention

In the proofs below, we frequently use the following notation.

�i (M) is the i-th largest by absolute value eigenvalue of matrix M .

kMk is a norm of M; equal to
p
�1 (M 0M):

ei is a vector with all components zero except the i-th component, which equals 1. The

dimensionality of ei may vary.

A0 is an n� n diagonal matrix with the i-th diagonal element
p
ai:

B0 is a T � T diagonal matrix with the i-th diagonal element
p
bi:

A is an (n� k)� (n� k) diagonal matrix with the i-th diagonal element pak+i:

B is an (T � k)� (T � k) diagonal matrix with the i-th diagonal element
p
bk+i:
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Let A = UAA0VA and B = UBB0VB be singular value decompositions of A and B: We
will assume that the eigenvalues and eigenvectors in these decompositions are ordered so

that the matrix of the �rst k columns of UA equals L (L0L)
�1=2 and the matrix of the �rst k

rows of VB equals F 0=
p
T : That such an ordering is possible follows from the Assumptions

2 ii) and iii). Note that under such an ordering, a1 = ::: = ak = 1 and b1 = ::: = bk = 1 so

that the matrices in the intersection of the �rst k rows and columns of A0 and B0 are the
identity matrices.

Without loss of generality, we will assume that

X =
kX
i=1

LiF
0
i +A0"B0 with (1)

Li = ei

q
L0iLi for i = 1; :::; k and (2)

Fi = ei
p
T for i = 1; :::; k: (3)

For the purpose of the proof of Theorems 1, 2 and 3, there is no loss of generality in such

an assumption. Indeed, note that the objects of study of these theorems: �̂; �̂ and L̂0L̂ are

invariant with respect to the following transformation: X  UXV; L UL; F  V 0F and

e UeV; where U and V are any orthogonal matrices. Choosing U = U 0A and V = V
0
B; we

will satisfy conventions (2) and (3). To see that convention (1) is also satis�ed, note that

the distribution of VA"UB is the same as that of " because "it are i.i.d. N
�
0; �2

�
:

2 Proof of Theorem 1

In the proof of Theorem 1, we will assume that Var "it � �2 = 1: Such an assumption is

without loss of generality. In the general case, variables such as X; e; L and D in the proof

below, should be replaced by X=�; e=�; L=� and D=�2; which, although does not change

the proof substantially, complicates notation by making it necessary to keep variable � in

the equations. Further, we will assume, also without loss of generality, that the eigenvalues

ai; i = 1; :::; n of AA0 and the eigenvalues bi; i = 1; :::; T of B0B are non-zero. If some of

them are exactly zero, we will change them so they become positive but decrease to zero as

n!1 so fast that the asymptotics of the principal components estimator does not change.

2.1 Truncation and re-normalization

Let �"it = (Var ~"it)
�1=2 (~"it � E~"it) with ~"it = "itIj"itj�lnn be a truncated, centralized and

re-normalized version of "it and let �X = LF 0 + A0�"B0: For �i � �i (XX
0=T ) and ��i �

�i
�
�X �X 0=T

�
; we have: maxi�n j�i � ��ij

a:s:
= o(1): To prove this fact, we will need the follow-

ing result, which was established in Theorem 3.1 of Yin, Bai and Krishnaiah (1988):
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Lemma 1. (Yin, Bai and Krishnaiah, 1988) Let � be an n�T matrix with i.i.d. entries
�it with E�it = 0 and E�

4
it <1: Then, T�1=2 k�k

a:s:! (1 +
p
c)
�
E�2it

�1=2 as n and T go to
in�nity so that n=T ! c:

By Corollary 7.3.8 of Horn and Johnson (1985), we have:

max
i�n

��p�i �p��i�� � A0 ("� �")B0=pT � kA0k kB0k k"� �"k =pT :
By Assumption 3ii), kA0k = O (1) and kB0k = O (1) : Further, note that matrix " � �" has
i.i.d. entries with �nite fourth moment, zero mean and variance 2� 2E~"2it=

p
Var~"it; which

is no larger than 2E
�
"2itIj"itj>lnn

�
; and hence, converges to zero as n ! 1: Therefore, by

Lemma 1, k"� �"k =
p
T

a:s:
= o(1) and we have: maxi�n

��p�i �p��i�� a:s:= o(1): On the other

hand, j�i � ��ij =
��p�i �p��i�� ��p�i +p��i�� � ��p�i �p��i�� ��p�1 +p��1�� : We have: p�1 =X=pT � LF 0=pT+kA0k"=pT kB0k : By Assumptions 1ii) and 1iii), LF 0=pT =

O (1) ; and by Lemma 1,
"=pT a:s:= O (1) : Hence,

p
�1

a:s:
= O (1) : Similarly,

p
��1

a:s:
= O (1) ;

and therefore, maxi�n j�i � ��ij
a:s:
= o(1).

Such a uniform eigenvalue approximation result implies that, for the purpose of proving

part iii) of Theorem 1, we can assume without loss of generality that

max
i�n;t�T

j"itj � lnn: (4)

Assumption (4) is also without loss of generality for the purpose of proving the convergence

of the elements of the �rst q columns of �̂ and �̂ stated in parts i) and ii) of Theorem 1. It

is because the projections on the principal q eigenspaces of XX 0=T (similarly, of X 0X=T )

and those on the principal q eigenspaces of �X �X 0=T (similarly, of �X 0 �X=T ) converge to each

other in probability in operator norm.

Indeed, let T and T (1) be linear operators acting in Rn; which are represented with
respect to the standard basis by matrices XX 0=T and

�
�X �X 0 �XX 0� =T; respectively, and

let T ({) = T +{T (1): Denote the resolvent of T ({) ; (T ({)� �)�1 ; as R (�;{) and the
resolvent of T , (T � �)�1 ; as R (�) : Let � be a positively oriented circle in the complex
plane with the center at �i and radius r =

1
2 min (hi; �), where h1 = j�1 � �2j and hi =

min
����i�1 � �i�� ; ���i � �i+1��	 for i > 1: De�ne Pi ({) = � 1

2�
p
�1
R
�R (�;{) d�: Then (see

Kato, 1980, p.67-68 and p.88), for all j{j < r�1
T (1)�1 ; Pi ({) is the eigenprojection of

T ({) corresponding to its unique eigenvalue inside circle �; and Pi ({) can be represented
in the form of the convergent (in operator norm) series:

Pi ({) = Pi(0) +
1

2�
p
�1

1X
t=1

(�1)t+1 {t
Z
�
R (�)

�
T (1)R (�)

�t
d�:
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Note that Pi(0) and Pi (1) are the projections on the spaces spanned by the i-th principal

eigenvector of XX 0=T and of �X �X 0=T; respectively.

As will be seen from the proof of part iii) of Theorem 1, there exists a positive number

� such that Pr (max1�i�q hi < �) ! 0 as n ! 1. Therefore, Pr (r = �=2) ! 1 as n ! 1.
Further, since

T (1) =  �X �X0

T � XX0

T

 � j�1 � ��1j a:s:= o(1); we have: Pr
�
r�1

T (1)�1 > 1�!
1 as n ! 1 so that the series for Pi({) displayed above converge for { = 1 with proba-

bility arbitrarily close to 1 for large enough n: Moreover, with probability arbitrarily close

to 1 for large enough n; we have: kPi (1)� Pi(0)k �
P1
t=1

 1
2�

R
�R (�)

�
T (1)R (�)

�t
d�
 �P1

t=1 r
�t T (1)t = kT (1)k

r�kT (1)k = op(1); which proves that the projections on the principal

q eigenspaces of XX 0=T and those on the principal q eigenspaces of �X �X 0=T converge in

probability in operator norm.

In what follows, we will, therefore, assume that (4) holds. We will explicitly relax this

assumption only when proving the convergence of the elements of the last k� q columns of
�̂ and �̂:

2.2 Key lemma

Note that, under our convention (1,2,3), the j-th columns of �̂ and �̂ equal the �rst k

components of the unit-length j-th principal eigenvectors of 1TXX
0 and 1

TX
0X; respectively.

Further, L̂0L̂ equals a diagonal matrix with the �rst k eigenvalues of 1TXX
0 on the diagonal.

Lemma 2 below relates the eigenvalues and eigenvectors of the high-dimensional matrix
1
TXX

0 to the unit eigenvalues and the corresponding eigenvectors of the low-dimensional

matrix-valued function M (1) (x) ; de�ned as follows.

Let us partition matrix " as ["1; "2] ; where "1 are the �rst k columns of ": We de�ne:

M (1) (x) � 	0 (xIn � �)�1	;

M (2) (x) � 	0 (xIn � �)�2	; and

M (3) (x) � [Ik; 0] (xIn � �)�1	;

where 	0 =
h
(L0L)1=2 ; 0

i
+ 1p

T
"01A0 and � = 1

TA0"2B
2"02A0: If xIn�� is not invertible,

we set M (j)(x) = 0k�k for j = 1; 2; 3:

Lemma 2. Let � 6= �i (�) ; i = 1; :::; n so that �In � � is invertible: Then:

i) � is an eigenvalue of 1
TXX

0 of multiplicity larger than or equal to s if and only if there

exists a positive integer m � k + 1� s such that x = � satis�es equations

�m

�
M (1) (x)

�
= 1; :::; �m+s�1

�
M (1) (x)

�
= 1; (5)
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ii) If v is an eigenvector of M (1) (�) corresponding to eigenvalue 1; then

y =
�
v0M (2) (�) v

��1=2
(�In � �)�1	v (6)

is a unit-length eigenvector of 1
TXX

0 corresponding to eigenvalue �:

iii) If 1 is a simple eigenvalue of M (1) (�) ; then � is a simple eigenvalue of 1
TXX

0:

Furthermore, if � is the j-th largest eigenvalue of 1
TXX

0 and v is a corresponding

eigenvector of M (1) (�) ; then the j-th column of matrix �̂ from part ii) of Theorem

1 equals
�
v0M (2) (�) v

��1=2
M (3) (�) v:

iv) Consider matrix 1
TXX

0 +{eie0i; where { is an arbitrary positive number. We have: �
is an eigenvalue of 1

TXX
0+{eie0i of multiplicity larger than or equal to s if and only

if there exists a positive integer m � k + 1� s such that x = � satis�es equations

�m

�
M
(1)
{i (x)

�
= 1; :::; �m+s�1

�
M
(1)
{i (x)

�
= 1;

where M (1)
{i (x) � 	0{i (xIn � �)

�1	{i and 	{i � [	;
p
{ei] :

Proof of Lemma 2: Let � be an eigenvalue of 1TXX
0 of multiplicity larger than or equal

to s and let y1; :::; ys be orthonormal eigenvectors corresponding to �: Since 1
TXX

0 =

� + 		0, we have: (� + 		0) yj = �yj for j = 1; :::; s: Note that vectors 	0y1; :::;	0ys are

linearly independent. Otherwise, if
Ps
j=1 �j	

0yj = 0 for some �j that are not all equal to

zero, we would have: �
Ps
j=1 �jyj = (� +		0)

Ps
j=1 �jyj = �

Ps
j=1 �jyj ; which violates

our assumption that � 6= �i (�) ; i = 1; :::; n: Equation (� + 		0) yj = �yj implies that

	0 (�In � �)�1		0yj = 	0yj : Hence, the space spanned by 	0yj ; j = 1; :::; s is an invariant
subspace of Mn (�) with the corresponding eigenvalue equal to 1. This proves the �only if�

part of i).

Suppose now that (5) holds with x = �. Let v1; :::; vs be orthonormal eigenvectors of

M (1) (�) corresponding to eigenvalue 1. De�ne y1; :::; ys by (6) with v replaced by v1; :::; vs;

respectively. Vectors y1; :::; ys are unit-length vectors by de�nition of M (2) (�) : Further-

more, they are linearly independent because, otherwise, if
Ps
j=1 �jyj = 0 for some �j that

are not all equal to zero, we would have, for j =
�
v0jM

(2) (�) vj

��1=2
�j :

Ps
j=1 jvj =Ps

j=1 jM
(1) (�) vj = 	

0Ps
j=1 �jyj = 0; which violates our assumption that v1; :::; vs are or-

thonormal. Equation (6) implies that	0yj =
�
v0M (2) (�) v

��1=2
M (1) (�) vj =

�
v0M (2) (�) v

��1=2
vj

and therefore, yj = (�In � �)�1		0yj for all j = 1; :::; s: The latter equality implies that
(� + 		0) yj = �yj ; which means that yj ; j = 1; :::; s are linearly independent eigenvectors

of 1TXX
0; each of which corresponds to eigenvalue �: This proves ii) and the �if�part of i).
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Part iii) of the lemma follows from parts i) and ii). Indeed, part i) implies that if

1 is a simple eigenvalue of M (1) (�) ; then � is a simple eigenvalue of 1
TXX

0: Further,

by de�nition, the j-th column of �̂ equals the �rst k components of the unit-length j-th

principal eigenvector of 1TXX
0: This fact, part ii) of the lemma and the de�nition ofM (3) (�)

imply that the j-th column of �̂ equals
�
v0M (2) (�) v

��1=2
M (3) (�) v:

Proof of part iv) of the lemma is almost identical to the proof of part i). We only need

to replace 	 by 	{i and M (2) (x) by M (2) (�) � 	0{i (xIn � �)
�2	{i in that proof.�

Below, we prove several technical lemmas to �nd the probability limits of M (1)(x);

M (2)(x), M (3)(x) and M (1)
{i (x): We will then use these limits and Lemma 2 to derive the

probability limits of the eigenvalues of 1TXX
0 and of matrix �̂. Derivations of the probability

limit of �̂ is very similar to the derivations of the probability limit of �̂; and we will omit

them to save space.

2.3 Technical lemmata

Lemma 3. (Bai and Silverstein, 1988) Let f�i; i = 1; :::; 2ng be i.i.d. random variables with
mean zero and variance 1: De�ne � = (�1; :::; �n), � =

�
�n+1; :::; �2n

�
and let Z be an n�n

random matrix independent from � and �: Then, for any p > 0; we have:

E
����0Z� � trZ��p jZ� � C1pn

p=2 kZkp
�h
E j�1j4

ip=2
+ E j�1j2p

�
; (7)

E
����0Z���p jZ� � C2pn

p=2 kZkp
�h
E j�1j4

ip=2
+ E j�1j2p

�
; (8)

where C1p and C2p are constants that depend only on p:

Proof of Lemma 3: Inequality (7) is a slightly simpli�ed version of the statement of

Lemma 2.7 in Bai and Silverstein (1998). Inequality (8) follows from (7). Indeed, consider

a vector ' =
�
�0; � 0

�0 and consider matrix ~Z =

 
0 Z

Z 0 0

!
: We have: E

����0Z���p jZ� =
E
����12'0 ~Z'���p jZ� � 2�pC1p (2n)p=2  ~Zp�hE j�1j4ip=2 + E j�1j2p� ; where the latter inequal-

ity follows from (7) because tr ~Z = 0: It remains to note that
 ~Z = kZk and set

C2p = 2
�p=2C1p:�

Lemma 4. Let � and � be two independent identically distributed random n � k
matrices with i.i.d. entries, which have �nite fourth moment, �4 < 1. Further, let Z be

a random n� n matrix independent from � and � and such that n kZk2 p! 0 as n ! 1:
Then, as n!1: �0Z�� (trZ) Ik p! 0 and

�0Z� p! 0:
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Proof of Lemma 4: To save space, we omit the proof of k�0Z�k p! 0: It is similar to the

proof of k�0Z�� (trZ) Ikk
p! 0: Let �1 and �2 be arbitrary positive numbers. For the i-th

diagonal element of �0Z�; we have: Pr (j(�0Z�)ii � trZj > �1jZ) � �
�2
1 E

�
j(�0Z�)ii � trZj

2 jZ
�
�

��21 2C12n kZk
2 �4; where the �rst inequality is Chebyshev�s inequality and the second

inequality follows from Lemma 3. Next, since n kZk2 p! 0; there exists N such that

for all n > N; Pr(��21 2C12n kZk
2 �4 < �2=2) > 1 � �2=2: Therefore, for all n > N;

Pr (j(�0Z�)ii � trZj > �1) = E [Pr (j(�0Z�)ii � trZj > �1jZ)] � �2=2 (1� �2=2) + �2=2 <
�2, which proves that j(�0Z�)ii � trZj

p! 0: The convergence
���(�0Z�)ij��� p! 0 for i 6= j can

be proven similarly. Since k is �xed as n!1; the entry-wise convergence of �0Z��(trZ) Ik
to zero implies that k�0Z�� (trZ) Ikk

p! 0: �

Let us partition "01 into ["
0
11; "

0
21] ; where "11 is k � k; and "02 into ["012; "022] ; where "12 is

k � (T � k): In the lemmas below, we will need the following new notation. Denote matrix
xIn�k� 1

TA"22B
2"022A as Y ; the i-th column of "22 as "22;i; matrix "22 with the i-th column

removed as "22;�i; matrix B with i-th row and i-th column removed as B�i; and, �nally,
matrix xIn�k� 1

TA"22;�iB
2
�i"

0
22;�iA as Yi: In order to simplify notation, we do not explicitly

indicate the dependence of Y and Yi on x:

Lemma 5. Suppose that Assumptions 1-3 hold. Let �1 be any number such that �1 > �x;
where �x is as in Theorem 1. Then, for any x > �1; Y is a positive de�nite matrix withY �1 � (�1 � �x)�1 for large n with probability 1: Further, whenever Y is a positive

de�nite matrix, Yi is also a positive de�nite matrix with
Y �1i

 � Y �1 and the following
interlacing inequalities hold:

�1
�
Y �1

�
� �1

�
Y �1i

�
� �2

�
Y �1

�
� ::: � �n

�
Y �1

�
� �n

�
Y �1i

�
(9)

and similarly,

�1
�
AY �1A

�
� �1

�
AY �1i A

�
� �2

�
AY �1A

�
� ::: � �n

�
AY �1A

�
� �n

�
AY �1i A

�
(10)

Proof of Lemma 5: That Y is positive de�nite for x > �1 and large n with probability

1 follows from Lemma 3 in Onatski (2009), which implies that under Assumptions 1-3,

the largest eigenvalue of 1
TA"22B

2"022A almost surely converges to the upper boundary of

support of G as n goes to in�nity: As follows from the proof of Lemma 3 in Onatski (2009),

the upper boundary of support of G equals �x; which is smaller than x by assumption, hence
the positive de�niteness of Y (x) = xIn�k � 1

TA"22B
2"022A. The convergence of the largest

eigenvalue of 1TA"22B
2"022A to �x also implies that, for any x > �1;

Y �1 � (�1 � �x)�1 for
large n with probability 1:
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Matrix Yi is positive de�nite whenever Y is because Yi � Y = 1
T bi+kA"22;i"

0
22;iA is a

positive semide�nite matrix. The latter fact also implies that
Y �1i

 � Y �1 and that (see
Corollary 4.3.3 in Horn and Johnson, 1985) �j (Yi) � �j (Y ) for any j = 1; :::; n: Further,

since Yi�Y is a rank-one matrix, we have by interlacing theorem (Theorem 4.3.4 in Horn and
Johnson, 1985): �j+1 (Yi) � �j (Y ) for j = 1; :::; n�1: Combining the latter two inequalities,
and using the fact that �j

�
M�1� = ��1n�j+1 (M) for any positive de�nite Hermitian matrix,

we obtain: �j
�
Y �1i

�
� �j

�
Y �1

�
for any j = 1; :::; n and �j

�
Y �1i

�
� �j+1

�
Y �1

�
for

j = 1; :::; n � 1; which implies the �rst set of the interlacing inequalities in the statement
of Lemma 5. The second set of the interlacing inequalities can be established similarly

by noting that A�1YiA�1 �A�1YA�1 = 1
T bi+k"22;i"

0
22;i is a rank-one positive semide�nite

matrix. �

Lemma 6. Suppose that Assumptions 1-3 hold. Let �1 be any number such that �1 > �x;
where �x is as in Theorem 1. Then, for any x > �1 and any pair of integers (r; s) from the

set f(1; 1) ; (1; 2) ; (2; 1)g ; we have:

max
1�i�T�k

���� 1T "022;i �AY �ri A
�s
"22;i �

1

T
tr
�
AY �rA

�s���� p! 0,

where, if either Yi or Y is not invertible, we set the maximized absolute di¤erence to an

arbitrary non-zero number, say 1.

Proof of Lemma 6: Let us de�ne �Yi � Yi when Yi is invertible and �Yi � �In�k when Yi
is not invertible. Similarly, de�ne �Y � Y when Y is invertible and �Y � �In�k when Y is

not invertible. It is enough to prove the lemma for Yi replaced by �Yi and Y replaced by �Y :

Indeed, let events �; 
 and 
i be de�ned as:

� =
�
Yi 6= �Yi for some i � T � k; or Y 6= �Y

	
;


 =
n
Y is positive de�nite and

Y �1 � (�1 � �x)�1o ;

i =

n
Yi is positive de�nite and

Y �1i

 � (�1 � �x)�1o :
Then, � \
 = ? because 
 implies that Y = �Y , and, as follows from Lemma 5, 
 � 
i so
that Yi = �Yi too. Further, by Lemma 5, Pr (
)! 1 as n!1; and therefore, Pr (�)! 0:

Let us decompose the di¤erence 1
T "

0
22;i

�
A �Y �ri A

�s
"22;i � 1

T tr
�
A �Y �rA

�s into a sum
Urs (i) + Vrs (i) ; where Urs (i) = 1

T "
0
22;i

�
A �Y �ri A

�s
"22;i � 1

T tr
�
A �Y �ri A

�s
and Vrs (i) =

1
T tr

�
A �Y �ri A

�s� 1
T tr

�
A �Y �rA

�s. To prove our lemma, it is enough to show thatmax1�i�T�k jUrs (i)j p!
0 and max1�i�T�k jVrs (i)j

p! 0: Below, we will establish the latter two convergences.

Let �1 and �2 be arbitrary positive numbers. Note that Pr (
) > 1 � �2=2 for large
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enough n: Therefore, and since 
 � 
i; we have:

Pr

�
max

1�i�T�k
jUrs (i)j > �1

�
� Pr

�
max

1�i�T�k
jUrs (i)j > �1 and 


�
+ �2=2 � (11)

T�kX
i=1

Pr (jUrs (i)j > �1 and 
i) + �2=2 �
T�kX
i=1

E
�
Pr
�
jUrs (i)j > �1 and 
ij �Yi

��
+ �2=2

If either �Yi is not positive de�nite or
 �Y �1i

 > (�1 � �x)�1 ; then Pr �jUrs (i)j > �1 and 
ij �Yi� =
0: In contrast, if �Yi is positive de�nite and

 �Y �1i

 � (�1 � �x)�1 ; then Pr �jUrs (i)j > �1 and 
ij �Yi� =
Pr
�
jUrs (i)j > �1j �Yi

�
: But, by Markov�s inequality:

Pr
�
jUrs (i)j > �1j �Yi

�
� ��p1 E

�
jUrs (i)jp j �Yi

�
�

� ��p1 C1p
(n� k)p=2

T p
kAk2sp

 �Y �1i

rsp�hE j"jtj4ip=2 + (lnn)2p� ;
where the second line follows from Lemma 3 and from assumption (4). If

 �Y �1i

 �
(�1 � �x)�1 ; we can make the latter expression smaller than �2=(2T ) by choosing p > 2 and
large enough n: Therefore, E

�
Pr
�
jUrs (i)j > �1 and 
ij �Yi

��
� �2=(2T ) for all i = 1; :::; T�k

and large enough n: Using (11), we obtain: Pr (max1�i�T�k jUrs (i)j > �1) < �2 for large

enough n: Since �1 and �2 were arbitrary positive numbers, we have: max1�i�T�k jUrs (i)j
p!

0:

Next, when 
 takes place so that �Yi and �Y are positive de�nite, we have:

Vrs (i) �
1

T

n�kX
j=1

�
�j
��
A �Y �ri A

�s�� �j ��A �Y �rA�s�� =
1

T

n�kX
j=1

�
�sj
�
A �Y �ri A

�
� �sj

�
A �Y �rA

��
= � 1

T
�s1
�
A �Y �rA

�
+

1

T

n�k�1X
j=1

�
�sj
�
A �Y �ri A

�
� �sj+1

�
A �Y �rA

��
+
1

T
�sn�k

�
A �Y �ri A

�
:

Therefore, setting r = 1 and using the interlacing inequalities (10), we conclude that

0 � V1s (i) � �
1

T
�s1
�
A �Y �1A

�
� � 1

T
kAk2s (�1 � �x)�s (12)

whenever 
 holds. Since Pr (
) ! 1 as n ! 1; the latter inequalities imply that
max1�i�T�k jV1s (i)j

p! 0 for s = 1 and s = 2.

It remains to prove the convergence to zero of max1�i�T�k jV21 (i)j : Note that if 
 holds,
�Y �2� �Y �2i is a positive semide�nite matrix so that, in particular, all its diagonal elements are
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not negative. Therefore, if 
 holds, we have: 0 � V21 (i) � � (maxj=1;:::;n�k aj+k) 1T tr
�
�Y �2� �Y �2i

�
:

Butmaxj=1;:::;n�k aj+k = kAk2 and 1
T tr

�
�Y �2� �Y �2i

�
� 1

T �
2
1

�
�Y �1

�
= 1

T

 �Y �12 � 1
T (�1 � �x)

�2

when 
 holds; where the �rst of the latter two inequalities can be obtained from the inter-

lacing inequalities (9) similarly to as (12) was obtained from (10). Thus, when 
 holds, we

have: 0 � V21 (i) � � 1
T kAk

2 (�1 � �x)�2 ; and therefore max1�i�T�k jV21 (i)j
p! 0:�

Lemma 7. Let �1 be any number such that �1 > �x; where �x is as in Theorem 1 and

let x be any number larger than �1. Then, for any complex z such that Im z > 0; the

equation w(z) =
R �dGA(�)
x�
�
z+
R �dGB(�)
1��cw(z)

�
�
has a unique solution w(z) such that Imw(z) > 0:

Function w(z) is analytic for Im z > 0 and can be analytically continued to a small open

neighborhood of z = 0: If Assumptions 1-3 hold, then:

1

T
trAY �1A a:s:! cw(0) and

1

T
tr
�
AY �1A

�2 a:s:! cw0(0);

where, if Y is not invertible, we set the left hand of the above convergence statements to an

arbitrary number, which equals neither cw(0) nor cw0(0): The above convergence statements

remain valid if we replace n� k;A and "22 in the de�nition Y � xIn�k � 1
TA"22B

2"022A by

n;A0 and "2; respectively.
Proof of Lemma 7: Let mn (z) and ~mn(z) be the Stieltjes transforms of the empirical

eigenvalue distributions of xA�2 � 1
T "22B

2"022 and x
T
n�kA

�2 � 1
n�k"22B

2"022; respectively:

Note that mn (z) =
T
n�k ~mn

�
T
n�kz

�
: Silverstein and Bai (1995) show that, for any z

with Im z > 0; as n ! 1; ~mn(z) almost surely converges to ~m(z); which is an ana-

lytic function in the Im z > 0 domain and which is the unique solution to equation1

~m(z) = ~mA

�
z + c�1

R �dGB(�)
1�� ~m(z)

�
that satis�es Im ~m (z) > 0: Here, ~mA (z) is the Stieltjes

transform of a (possibly defective) non-random distribution function which is the vague

limit2 of the empirical spectral distribution of x T
n�kA

�2 as n!1:
Note that the cdf of the latter vague limit at � equals the limit of the proportion

of those eigenvalues of x T
n�kA

�2; which are no larger than �: By Assumptions 1i) and

3i), such a limit equals 1 � lim�"xc�1��1 GA (�) : Hence, ~mA (z) =
R �dGA(�)
xc�1�z� and ~m(z) =R �dGA(�)

xc�1�
�
z+c�1

R �dGB(�)
1�� ~m(z)

�
�
: Recalling thatmn (z) =

T
n�k ~mn

�
T
n�kz

�
; we conclude that for any

z with Im z > 0; mn (z) converges to w(z) = c�1 ~m
�
c�1z

�
; which is an analytic function in

the Im z > 0 domain and which is the unique solution to equation w(z) =
R �dGA(�)
x�
�
z+
R �dGB(�)
1��cw(z)

�
�

that satis�es Imw (z) > 0:

1Note the di¤erence in notation: their c is our c�1, their n is our T and their TN is our �B2 so that their
dH (�) is our �dGB (��) :

2The vague convergence is a generalization of the weak convergence to sub-probability measures. For a
de�nition of the vague convergence see, for example, Athreya and Lahiri (2006), chapter 9.2.

10



Now, let U0 be an open disk in the complex plane with center at zero and radius 12
�1��x
�xA
:

Note that the smallest eigenvalue of xA�2 � 1
T "22B

2"022 is no smaller than
�1��x
�xA

for large n

with probability 1. Therefore, mn (z) are analytic in U0 and bounded there by
�
1
2
�1��x
�xA

��1
for large n with probability 1. Moreover, as has been just shown, mn(z) almost surely

converges to w(z) for any Im z > 0: Therefore, by Vitali-Porter theorem (see p.44 of Schi¤,

1993), mn(z) converge (almost surely) to w(z) uniformly on compact subsets of U0 and

w(z) is analytic in U0: Note that since mn(z) =
1

n�k tr
�
xA�2 � 1

T "22B
2"022 � zIn�k

��1
;

matrix xA�2� 1
T "22B

2"022 (and therefore also Y ) is invertible and
1
T trAY

�1A =n�k
T mn(0)

whenever mn(z) is analytic in U0: Therefore, we have: 1
T trAY

�1A a:s:! cw(0):

Next, note that, whenevermn(z) are analytic in U0; 1T tr
�
AY �1A

�2
= n�k

T m0
n(0): Since,

with probability 1 for large n; mn(z) are analytic functions on U0 which converge uniformly

on compact subsets of U0 to w(z); by classical Weirstrass theorem, the derivatives of mn(z)

also converge to the corresponding derivatives of w(z), and this convergence is uniform on

the compact subsets of U0: We therefore have: 1
T tr

�
AY �1A

�2 a:s! cw0 (0) :

To adapt the above proof to the situation when n � k;A and "22 in the de�nition

Y � xIn�k � 1
TA"22B

2"022A are replaced by n;A0 and "2, we only need to replace n� k;A
and "22 in the above arguments by n;A0 and "2; respectively.�

Lemma 8. Suppose that Assumptions 1-3 hold. Let �1 be any number such that �1 > �x;
where �x is as in Theorem 1. Further, for any x > �1; let (u2;x; v2;x) be the bigger of the

two solutions to system 8<: v = x
�
c
R

au
u�adGA(a)

��1
u = x

�R
bv
v�bdGB(b)

��1 : (13)

Then for function w(z) de�ned in Lemma 7 ; we have:

cw(0) = v�12;x and cw
0(0) =

ru;xu2;x
(1� ru;xrv;x)xv2;x

;

where

ru;x =

Z �
�

u2;x � �

�2
dGA(�)=

Z
�

u2;x � �
dGA(�) and

rv;x =

Z �
�

v2;x � �

�2
dGB(�)=

Z
�

v2;x � �
dGB(�):

Proof of Lemma 8: Consider two functions of three complex variables: f1(z; u; v) =

x + cuv (1 + umA(u)) and f2 (z; u; v) = x � uz + uv (1 + vmB(v)) ; where mA (u) and

mB (v) are the Stieltjes transforms of GA and GB; respectively. Further, consider a system

11



(
f1(z; u; v) = 0

f2 (z; u; v) = 0
: Note that f1 and f2 are holomorphic functions of z; u and v near the

point (z; u; v) = (0; u2;x; v2;x) : This follows from the fact that mA(u) and mB (v) are holo-

morphic at u2;x and v2;x; respectively, which, in turn, follows from the fact that u2;x > �xA

and v2;x > �xB:

According to the holomorphic implicit function theorem (see Krantz (1992), p.54), there

exists a unique holomorphic solution fu(z); v (z)g to the above system in a neighborhood

of z = 0 such that u(0) = u2;x and v (0) = v2;x as long as det f 01;2 6= 0 at (z; u; v) =

(0; u2;x; v2;x) ; where f 01;2 =

 
@f1
@u

@f1
@v

@f2
@u

@f2
@v

!
:

By assumption, the curves in the (u; v)-plane, u = g1(v) and u = g2(v); de�ned by the

equations of (13): v = x
�
c
R �g1(v)
g1(v)��dGA(�)

��1
and g2(v) = x

�R
�v
v�� dGB(�)

��1
; respec-

tively, intersect at (u; v) = (u2;x; v2;x) so that d
dvg2(v) <

d
dvg1(v) at (u; v) = (u2;x; v2;x) : The

latter inequality is equivalent to the inequality

d

du

"
x

�
c

Z
�u

u� �dGA(�)
��1# d

dv

"
x

�Z
�v

v � � dGB(�)
��1#

< 1: (14)

at (u; v) = (u2;x; v2;x) : Note that by de�nition of Stieltjes transform, c
R

�u
u��dGA(�) =

�cu (1 + umA(u)) and
R

�v
v�� dGB(�) = �v (1 + vmB(v)) so that, by de�nition of functions

f1 and f2; we have:

c
R

�u
u��dGA(�) = �

@f1
@v ;

R
�v
v�� dGB(�) = �

@f2
@u and

d
duc
R

�u
u��dGA(�) = �

1
v
@f1
@u ;

d
dv

R
�v
v�� dGB(�) = �

1
u
@f2
@v

(15)

at (z; u; v) = (0; u2;x; v2;x). Using (15) in (14); we obtain:

x2
�
�@f1
@v

��2�
�@f2
@u

��2�
�1
v

@f1
@u

��
�1
u

@f2
@v

�
< 1 (16)

at (z; u; v) = (0; u2;x; v2;x). But at (u; v) = (u2;x; v2;x) ; the curves u = g1(v) and u = g2(v)

intersect. Therefore, v2;xu2;x = x2
�
c
R �u2;x
u2;x��dGA(�)

��1 �R �v2;x
v2;x�� dGB(�)

��1
; and hence,�

�@f1
@v

��
�@f2
@u

�
= x2= (v2;xu2;x) ; which, together with (16), implies that det f 01;2 < 0 at

(z; u; v) = (0; u2;x; v2;x) :

Now, the vector of derivatives
�
du
dz ;

dv
dz

�0
evaluated at z = 0 equals vector�

�
f 01;2
��1 �@f1

@z ;
@f2
@z

�0
evaluated at (z; u; v) = (0; u2;x; v2;x) : But

�
@f1
@z ;

@f2
@z

�
= (0;�u2;x). Thus,�

du

dz
;
dv

dz

�
= �u2;x det

�
f 01;2
��1�@f1

@v
;�@f1

@u

�
: (17)
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Equations (15) together with the fact that u2;x > �xA and v2;x > �xB imply that
@f1
@v < 0;

@f1
@u > 0 at (z; u; v) = (0; u2;x; v2;x) : Therefore, and since, as has been shown, the determi-

nant in (17) is negative,
du

dz
< 0 and

dv

dz
< 0 (18)

at z = 0:

The last of the two inequalities in (18) and the fact that Im (v (0)) = 0 imply that

Im v�1(z) > 0 for z; which are near 0 and such that Im z > 0: Note that, by de�nition,

v�1(z) = c
R �dGA(�)
x�
�
z+
R �dGB(�)
1��v�1(z)

�
�
: On the other hand, according to Lemma 7, for z such that

Im z > 0; the unique v�1(z) satisfying the latter equation such that Im v�1(z) > 0 must

equal cw(z): Hence, cw(z) = v�1(z); and cw(0) = v�12;x:

Next, for the derivative of v�1(z) at z = 0; we have: d
dzv

�1(0) = �v�22;x ddzv(0): Using
(17) and (15), we get:

�
du
dz ;

dv
dz

�
= �u2;x det

�
f 01;2
��1 �@f1

@v ;�
@f1
@u

�
: Therefore,

d

dz
v�1(0) = �v�22;xu2;x det

�
f 01;2
��1 @f1

@u

����
u=u2;x

= �v�12;xu2;x det
�
f 01;2
��1

c

Z
�2

(u2;x � �)2
dGA(�);

where the latter equality follows from (15). Using the de�nition of the determinant det
�
f 01;2
��1

and, once again, equations (15); we obtain:

det
�
f 01;2
�
= cu2;xv2;x

Z
�2

(u2;x � �)2
dGA(�)

Z
�2

(v2;x � �)2
dGB(�)�

cu2;xv2;x

Z
�

u2;x � �
dGA(�)

Z
�

v2;x � �
dGB(�)

so that, �nally,

cw0(0) =
d

dz
v�1(0) = �

v�22;x
R �2dGA(�)
(u2;x��)2R �2dGA(�)

(u2;x��)2
R �2dGB(�)
(v2;x��)2

�
R �dGA(�)

u2;x��
R �dGB(�)

v2;x��

=
ru;xu2;x

(1� ru;xrv;x)xv2;x
;

where the latter equality follows from the de�nition of ru;x and rv;x and from the fact that

(u2;x; v2;x) ; being a solution to system (13), satisfy u2;x = x
�R �v2;xdGB(�)

v2;x��

��1
:�

Lemma 9. Under assumptions of Lemma 8:

i) M (1)(x)
p! x�1

�
1� u�12;x

��1
D + v�12;xIk;

ii) M (2)(x)
p! Dx�2

�
1� u�12;x

��2 �
1 +

rv;x(1+ru;x)
(1�ru;xrv;x)u2;x

�
+

1+ru;x
(1�ru;xrv;x)xv2;x Ik;

iii) M (3)(x)
p! x�1

�
1� u�12;x

��1
D1=2:
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iv) M (1)
{i (x)

p! x�1
�
1� u�12;x

��1 D
p
{dieip

{die0i {

!
+ v�12;x

 
Ik 0

0 0

!
:.

Proof of Lemma 9 i): Let us consider the following partitioned matrix:

xIn � � �
 
xIk � 1

T "12B
2"012 � 1

T "12B
2"022A

� 1
TA"22B

2"012 Y

!
; (19)

where Y � xIn�k � 1
TA"22B

2"022A: Lemma 5 proves that, for any x > �1 > �x; matrix Y is

positive de�nite (and hence invertible) for large n with probability 1. Replacing n � k;A
and "22 in that proof by n;A0 and "2; respectively, we establish the invertibility of matrix
xIn � � � xIn � 1

TA0"2B
2"02A0 for large n with probability 1. Below, we will work with

Y and xIn � � as if they were invertible matrices for large n; keeping in mind that this is
indeed so, almost surely.

The following formula for the inverse of a partitioned matrix A is well known. If A22 is

not singular, then:"
A11 A12

A21 A22

#�1
=

"
��1 ���1A12A�122

�A�122 A21��1 A�122 +A
�1
22 A21�

�1A12A
�1
22

#
; (20)

where � = A11 �A12A�122 A21 is invertible as long as A is invertible: Applying formula (20)
to (19), we �nd that, for any x > �1 > �x; M (1)(x) can be decomposed for large n with

probability 1 as:

M (1)(x) =
1

T
(� + "11)

0K�1
1 (� + "11)�

1

T
"011K

�1
1 "11 +K2 +

1p
T

�
�0K3 +K

0
3�
�
;

where

� =
�
L0L

�1=2p
T

K1 = xIk �
1

T
"12B2"012 �

1

T 2
"12B2"022AY �1A"22B2"012;

K2 =
1

T
"01

�
xA�20 � 1

T
"2B2"02

��1
"1;

K3 = K�1
1

1

T 3=2
"12B2"022AY �1A"21:

First, we �nd the probability limit of K1: By Lemma 4:xIk � 1

T
"12B2"012 � (x� 1)Ik

 p! 0: (21)
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Let us denote matrix 1
T B

2"022AY �1A"22B2 as Z:Note that n kZk
2 � n

T 2
kAk4

Y �12 k"22k4 kBk8
so that by Lemmas 1 and 5, n kZk2 a:s:! 0: Therefore, by Lemma 4: 1T "12Z"012 � (trZ) Ik

 p! 0: (22)

We will now focus on �nding the probability limit of trZ: Note that for a general rank-

one perturbation M � vv0 of matrix M , we have: v0 (M � vv0)�1 v = v0M�1v
1�v0M�1v : Using this

formula and the de�nition of Z; we obtain:

trZ =
1

T 2

T�kX
i=1

b2k+i"
0
22;iA

�
Yi �

1

T
bk+iA"22;i"022;iA

��1
A"22;i

=
1

T

T�kX
i=1

bk+i
bk+i

1
T "

0
22;iAY �1i A"22;i

1� bk+i 1T "022;iAY
�1
i A"22;i

:

But by Lemma 6, max1�i�T�k
��� 1T "022;iAY �1i A"22;i � 1

T trAY
�1A

��� p! 0; whereas by Lem-

mas 7 and 8, 1
T trAY

�1A p! v�12;x: Therefore, max1�i�T�k
��� 1T "022;iAY �1i A"22;i � v�12;x

��� p! 0:

Further, since v2;x > �xB = limn!1maxi=1;:::;T bi; the quantity 1� bk+i 1T "
0
22;iAY �1i A"22;i is

separated from zero with probability arbitrarily close to 1 for large enough n: Therefore, we

have:

max
1�i�T�k

����� b2k+i
1
T "

0
22;iAY �1i A"22;i

1� bk+i 1T "022;iAY
�1
i A"22;i

�
b2k+iv

�1
2;x

1� bk+iv�12;x

����� p! 0

so that

����trZ � 1
T

PT�k
i=1

b2k+iv
�1
2;x

1�bk+iv�12;x

���� p! 0. Finally, note that, since b1 = ::: = bk = 1 :

����� 1T
T�kX
i=1

b2k+iv
�1
2;x

1� bk+iv�12;x
� 1

T

TX
i=1

b2i v
�1
2;x

1� biv�12;x

����� = k

T

v�12;x

1� v�12;x
p! 0 (23)

and that, by Assumption 3i),

1

T

TX
i=1

b2i v
�1
2;x

1� biv�12;x
=

Z
�2

v2;x � �
dGB (�)!

Z
�2

v2;x � �
dGB (�) : (24)

Putting the latter three convergence statements together, we obtain:����trZ � Z �2

v2;x � �
dGB (�)

���� p! 0: (25)

Combining (21), (22) and (25), we get:
K1 � (x� 1� R �2

v2;x�� dGB (�))Ik
 p! 0: But
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R
�2

v2;x�� dGB (�) = �1+
R �v2;x
v2;x�� dGB (�) = �1+xu

�1
2;x; where the last equality holds because

(u2;x; v2;x) is a solution to (13). Therefore, �nally,K1 � x(1� u�12;x)Ik p! 0: (26)

Note that since u2;x > �xA; u2;x is larger than 1. Hence, x
�
1� u�12;x

�
Ik is a positive de�nite

matrix.

Now, let us �nd the probability limit of K2: Note that
 1T �xA�20 � 1

T "2B
2"02
��1 �

1
T kA0k

2 (�1 � �x)�1 for large n with probability 1. Therefore, by Lemma 4:K2 � 1
T tr

�
xA�20 � 1

T "2B
2"02
��1

Ik

 p! 0: On the other hand, by Lemmas 7 and 8,
1
T tr

�
xA�20 � 1

T "2B
2"02
��1 p! v�12;x: Therefore,K2 � v�12;xIk p! 0: (27)

Finally, let us �nd the probability limit of K3: Denote the (T � k) � (n� k) matrix
1

T 3=2
B2"022AY �1A as G and let �G be obtained from G by adding max fT � n; 0g zero

columns and max fn� T; 0g zero rows: Similarly, let �"12 be obtained from "12 by adding

max fn� T; 0g columns with i.i.d. entries distributed as "it; and let �"21 be obtained from
"21 by adding max fT � n; 0g rows with i.i.d. entries distributed as "it: Assume that the ele-
ments added are independent from "12; "21 and from G: Then, we have: "12G"21 = �"12 �G�"21;

where �G is a square matrix with
 �G � 1

T 3=2
kBk2 k"22k kAk2 (�1 � �x)�1 for large n with

probability 1. Using Lemma 1 and Assumption 1i), we further get: n
 �G2 a:s:! 0 so that,

by Lemma 4: k"12G"21k =
�"12 �G�"21 p! 0: Combining this �nding with the fact that

K3 = K
�1
1 "12G"21 and with (26), we obtain:

kK3k
p! 0: (28)

The convergence facts (26), (27) and (28) established above together with the fact that,

by Assumption 1iii), 1T�
0�

p! D, imply that M (1)(x)
p! x�1

�
1� u�12;x

��1
D + v�12;xIk.�

Proof of Lemma 9 ii): For M (2)(x); using the square of the inverse of a partitioned ma-

trix formula (20), we have:

M (2) (x) =
1

T
(� + "11)

0 �K�2
1 +K�1

1 K4K
�1
1

�
(� + "11) +

K5 �
1

T
"011
�
K�2
1 +K�1

1 K4K
�1
1

�
"11 +

1p
T

�
�0K6 +K

0
6�
�
;
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where

K4 =
1

T 2
"12B2"022AY �2A"22B2"012;

K5 =
1

T
"01A0

�
xIn �

1

T
A0"2B2"02A0

��2
A0"1 and

K6 = K�1
1 K3 (Ik +K4) +K

�1
1

1

T 3=2
"12B2"022AY �2A"21:

Our analysis ofK4 term is similar to that ofK1 term. Let us de�ne ~Z � 1
T 2
B2"022AY �2A"22B2:

Note that n
 ~Z2 � n

T 2
kAk4

Y �14 k"22k4 kBk8 so that by Lemmas 1 and 5, n  ~Z2 a:s:! 0:

Therefore, by Lemma 4: K4 � �tr ~Z� Ik p! 0: (29)

For a general rank-one perturbation M � vv0 of matrix M , we have:

v0
�
M � vv0

��2
v =

v0M�2v

(1� v0M�1v)2
: (30)

Using this formula together with the de�nition of tr ~Z; we obtain:

tr ~Z =
1

T 2

XT�k

i=1
b2k+i"

0
22;iA

�
Yi �

1

T
bk+iA"22;i"022;iA

��2
A"22;i (31)

=
1

T

XT�k

i=1
bk+i

1
T bk+i"

0
22;iAY �2i A"22;i�

1� 1
T bk+i"

0
22;iAY

�1
i A"22;i

�2 :
But by Lemma 6, max1�i�T�k

��� 1T "022;iAY �1i A"22;i � 1
T trAY

�1A
��� p! 0 and

max1�i�T�k

��� 1T "022;iAY �2i A"22;i � 1
T trAY

�2A
��� p! 0: Further, by Lemmas 7 and 8, 1T trAY

�1A p!
v�12;x; whereas for trAY �2A; we have:

1

T
trAY �2A =

1

T
trY �1A2Y �1

=
1

T
x�1 trY �1A2Y �1

�
xIn�k �

1

T
A"22B2"022A+

1

T
A"22B2"022A

�
=

1

T
x�1 trY �1A2+ 1

T
x�1 trY �1A2Y �1A"22B2"022A

=
1

T
x�1 trAY �1A+ 1

T 2
x�1 trB"022

�
AY �1A

�2
"22B. (32)

For the �rst term in the latter sum, we have, by Lemmas 7 and 8:

1

T
x�1 trAY �1A p! x�1v�12;x: (33)
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For the second term, using (30), we obtain:

1

T 2
x�1 trB"022

�
AY �1A

�2
"22B =

1

T 2
x�1 trB"022

�
xA�2 � 1

T
"22B2"022

��2
"22B

=
1

T 2
x�1

XT�k

i=1
bk+i"

0
22;i

�
xA�2 � 1

T
"22;�iB2�i"022;�i �

1

T
bk+i"22;i"

0
22;i

��2
"22;i

=
1

T
x�1

XT�k

i=1

1
T bk+i"

0
22;i

h
xA�2 � 1

T "22;�iB
2
�i"

0
22;�i

i�2
"22;i�

1� 1
T bk+i"

0
22;i

h
xA�2 � 1

T "22;�iB2�i"022;�i
i�1

"22;i

�2
=

1

T
x�1

XT�k

i=1

1
T bk+i"

0
22;i

�
AY �1i A

�2
"22;i�

1� 1
T bk+i"

0
22;iAY

�1
i A"22;i

�2 :
But by Lemma 6, max1�i�T�k

��� 1T "022;i �AY �1i A
�2
"22;i � 1

T tr
�
AY �1A

�2��� p! 0 and

max1�i�T�k

��� 1T "022;iAY �1i A"22;i � 1
T trAY

�1A
��� p! 0: By Lemmas 7 and 8, 1T tr

�
AY �1A

�2 p!

v�12;xx
�1u2;xru;x (1� ru;xrv;x)�1 and 1

T trAY
�1A p! v�12;x: Therefore, and since 1� bk+iv

�1
2;x is

separated from zero for large n; we have:

max
1�i�T�k

�������
1
T bk+i"

0
22;i

�
AY �1i A

�2
"22;i�

1� 1
T bk+i"

0
22;iAY

�1
i A"22;i

� � bk+iv
�1
2;xx

�1u2;xru;x�
1� bk+iv�12;x

�2
(1� ru;xrv;x)

�������
p! 0;

and using equations analogous to (23) and (24), we obtain:�������
1

T 2
x�1 trB"022

�
AY �1A

�2
"22B�

v�12;xx
�2u2;xru;x

1� ru;xrv;x

Z
�dGB(�)�
1� �v�12;x

�2
�������
p! 0:

Combining the latter result with (32) and (33), we obtain:�������
1

T
trAY �2A�x�1v�12;x �

v�12;xx
�2u2;xru;x

1� ru;xrv;x

Z
�dGB(�)�
1� �v�12;x

�2
�������
p! 0:
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The latter expression can be simpli�ed. We have:

x�1v�12;x +
v�12;xx

�2u2;xru;x

1� ru;xrv;x

Z
�dGB(�)�
1� �v�12;x

�2
= x�1v�12;x (1� ru;xrv;x)

�1
 
1� ru;xrv;x + ru;xu2;xx�1

Z
�v22;xdGB(�)
(v2;x � �)2

!
(34)

On the other hand,

u2;xx
�1 =

�Z
�v2;x
v2;x � �

dGB(�)
��1

(35)

because (u2;x; v2;x) solve system (13): Therefore,

u2;xx
�1
Z
�v22;xdGB(�)
(v2;x � �)2

=

Z
�v2;xdGB(�)
(v2;x � �)2

�Z
�dGB(�)
v2;x � �

��1
=

 Z
�2dGB(�)
(v2;x � �)2

+

Z
�dGB(�)
v2;x � �

!�Z
�dGB(�)
v2;x � �

��1
= 1 + rv;x

Substituting this result in (34), we obtain:

x�1v�12;x +
v�12;xx

�2u2;xru;x

1� ru;xrv;x

Z
�dGB(�)�
1� �v�12;x

�2 = 1 + ru;x
xv2;x (1� ru;xrv;x)

and therefore, ���� 1T trAY �2A� 1 + ru;x
xv2;x (1� ru;xrv;x)

���� p! 0:

Returning to (31), using equations analogous to (23) and (24), we obtain:�������tr ~Z �
1 + ru;x

xv2;x (1� ru;xrv;x)

Z
�2dGB(�)�
1� �v�12;x

�2
�������
p! 0:

Note that
R �2dGB(�)
(1��v�12;x)

2 = v2;xrv;x
R �v2;xdGB(�)

v2;x�� =
xv2;xrv;x
u2;x

; where the last equality follows

from (35). Therefore, �nally, ����tr ~Z � rv;x (1 + ru;x)

u2;x (1� ru;xrv;x)

���� p! 0:
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Combining this fact with (29), we obtain:K4 � rv;x (1 + ru;x)

u2;x (1� ru;xrv;x)
Ik

 p! 0: (36)

For K5; we have, by Lemma 4:K5 � Ik 1T trA0
�
xIn �

1

T
A0"2B2"02A0

��2
A0

 p! 0:

Replacing n�k;A and "22 in the above analysis of 1T trAY
�2A by n;A0 and "2; respectively,

we �nd that 1
T trA0

�
xIn � 1

TA0"2B
2"02A0

��2A0 converges in probability to 1+ru;x
xv2;x(1�ru;xrv;x)

so that K5 � 1 + ru;x
xv2;x (1� ru;xrv;x)

Ik

 p! 0: (37)

Finally, let us �nd the probability limit ofK6 � K�1
1 K3 (Ik +K4)+K

�1
1

1
T 3=2

"12B2"022AY �2A"21:
Since kK3k

p! 0; the �rst term in the latter sum converges in probability to zero. As to

the second term, repeating the analysis that led us to (28), substituting Y �1 by Y �2 and

(�1 � �x)�1 by (�1 � �x)�2 ; we conclude that it also converges in probability to zero. Hence,

kK6k
p! 0 (38)

Finally, combining (26), (36), (37) and (38), we get:

M (2) (x)
p! D

x2
�
1� u�12;x

�2 �1 + rv;x (1 + ru;x)

u2;x (1� ru;xrv;x)

�
+

1 + ru;x
xv2;x (1� ru;xrv;x)

Ik:

�

Proof of Lemma 9 iii): For M (3)(x); we have:

M (3)(x) =
1p
T
K�1
1 (� + "11) +K3:

Therefore, using (26) and (28), we get M (3)(x)
p! x�1

�
1� u�12;x

��1
D1=2:�

Proof of Lemma 9 iv): Note that

M
(1)
{i (x) =

"
M (1) (x) �

�0 {e0iK
�1
1 ei

#
;

where �0 =
p{

T e
0
iK

�1
1 (� + "11) +

p
{e0iK3: Such a representation for M

(1)
{i (x) and the
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probability limits for K1 and K2 obtained in the proof of Lemma 9 i) imply part iv) of

Lemma 9.�
In the next two sections, we will prove parts ii) and iii) of Theorem 1. Part i) follows

from part ii) by, essentially, �ipping the cross-sectional and temporal parameters of the

model. Hence, we omit the proof of part i) to save space.

2.4 Proof of Theorem 1 iii)

Let q be the integer de�ned in Theorem 1, that is q is the maximum non-negative in-

teger such that di > �x
�
1� �u�1

� �
1� �v�1

�
: Since x

�
1� u�12;x

��
1� v�12;x

�
is a continu-

ous strictly increasing function of x � �x; there exists a small enough �1 > �x such that

di > �1

�
1� u�12;�1

��
1� v�12;�1

�
for all i � q and the inequality changes its sign for i > q:

This fact is equivalent to the existence of a small enough �1 > �w such that

��11

�
1� u�12;�1

��1
di + v

�1
2;�1

> 1 for all i � q (39)

��11

�
1� u�12;�1

��1
di + v

�1
2;�1

< 1 for all q < i � k: (40)

Note that x�1
�
1� u�12;x

��1
di + v

�1
2;x is the probability limit of the i-th largest eigenvalue

of M (1)(x) as n ! 1: Functions gi(x) � x�1
�
1� u�12;x

��1
di + v

�1
2;x; i = 1; :::; k are strictly

decreasing in x � �1 and they tend to zero as x!1: Taking into account these properties
of the functions and inequalities (39-40), we conclude that equations gi(x) = 1 have unique

solutions x = xi for i � q and x > �1; and no solutions for i > q and x > �1: Note that

x1 > x2 > ::: > xq > �1:

Let � be a small positive number such that � < xq��1; let �1 = mini=1;:::;q;j=1;:::;k jgj (xi � �)j
and �2 = min fjgq (�1)j ; jgq+1 (�1)jg : Further, let ��i denote the events that
maxj=1;:::;k

���j �M (1) (xi � �)
�
� gj (xi � �)

�� < �1 and let � be the event that
maxj=1;:::;k

���j �M (1) (�1)
�
� gj (�1)

�� < �2: By Lemma 9, the probability of each of these

events can be made arbitrarily close to zero by choosing n large enough. Therefore, for any

�3 > 0; for large enough n; Pr (
) > 1� �3; where 
 = \qi=1�
�
i \�: Hence, with probability

arbitrarily close to 1, for large enough n; we have:

�j
�
M (1) (�1)

�
> 1 if and only if j � q and

�j
�
M (1) (�1)

�
< 1 if and only if j > q;

(41)

and, for all i = 1; :::; q:

�j
�
M (1) (xi � �)

�
> 1 if and only if j � i and

�j
�
M (1) (xi + �)

�
< 1 if and only if j > i

: (42)
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Now, if �1 (�) < �1 and 	 is full rank, then the eigenvalues �j
�
M1 (x)

�
; j = 1; :::; k

are strictly decreasing functions of x on x � �1: It is because for any y1 and y2 such that
y2 > y1 � �1; matrix M1 (y1) �M1 (y2) = 	

0
�
(y1In � �)�1 � (y2In � �)�1

�
	 is positive

de�nite (this follows from the fact that the eigenvalues of (y1In � �)�1�(y2In � �)�1 equal
y2�y1

(y1��j(�))(y2��j(�)) ; j = 1; :::; n; and therefore, are positive): Note that, as was mentioned

above, �1 (�)
a:s:! �x and, as is easily veri�ed, 	0	

p! D + Ik so that with probability arbi-

trarily close to 1, �1 (�) < �1 and 	 is full rank for large enough n: The strict monotonicity

of �j
�
M1 (x)

�
; j = 1; :::; k and inequalities (41) and (42) imply that, with probability ar-

bitrarily close to 1, for large enough n; there exists exactly q values of x � �1 such that

M (1)(x) has a (simple) eigenvalue, which equals 1. These q values of x � �1 are in the

�-neighborhoods of x1; :::; xq: Since � was an arbitrary positive number, we conclude, using

Lemma 2, that x1; :::; xq must be the probability limits of the �rst q eigenvalues of 1TXX
0;

which establishes the �rst probability limit of part iii) of Theorem 1.

Furthermore, as follows from above and from Lemma 2, for any �1 > �x; there will

be only q eigenvalues of 1
TXX

0 larger than �1 for large enough n: On the other hand,
1
TXX

0 = 		0 + � so that the k-th eigenvalue of 1
TXX

0 cannot be smaller than the k-th

eigenvalue of �; which converges to �x: Hence, the q + 1-th,...,k-th eigenvalues of 1
TXX

0

converge to �x; which establishes the second probability limit of part iii) of Theorem 1.

2.5 Proof of Theorem 1 ii)

Now, let us turn to part ii) of Theorem 1. Let �j be the j-th largest eigenvalue of
1
TXX

0

with j � q: Then, since, as has been just shown, �j
p! xj and since the probability

limit of M (1)(x); x�1
�
1� u�12;x

��1
D + v�12;xIk; is a continuous function of x � �1; we have:

M (1)(�j)
p! x�1j

�
1� u�12;xj

��1
D + v�12;xjIk. Further, since the latter probability limit is a

diagonal matrix with strictly decreasing entries on the diagonal, the j-th principal eigen-

projection of M (1)(�j) converges in probability to the projection on the subspace spanned

by the vector ej . In other words, we can choose the eigenvectors vj corresponding to the

unit eigenvalue of M (1)(�j) so that they converge in probability to ej as n!1:
Further, let us denote ruxj as ruj and rvxj as rvj : By Lemma 9, and since u2;xj = uj

and v2;xj = vj , we have: the j; j-th element of M (2)(�j) converges in probability to

djx
�2
j

�
1� u�1j

��2 �
1 +

rvj(1+ruj)
(1�rujrvj)uj

�
+

1+ruj
(1�rujrvj)xjvj

and the j-th column of M (3)
�
�j
�
con-

verges in probability to ejx�1j
�
1� u�1j

��1
d
1=2
j . Therefore, by Lemma 2 iii, the j-th column

of �̂; where j � q; is proportional to ej ; which establishes the fact that plim �̂ij = 0 for
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j � q and i 6= j: For the coe¢ cient of the proportionality �̂jj ; we have:

�̂�2jj =

�
djx

�2
j

�
1� u�1j

��2�
1 +

rvj (1 + ruj)

(1� rujrvj)uj

�
+

1 + ruj
(1� rujrvj)xjvj

�
��

x�2j

�
1� u�1j

��2
dj

��1

= 1 +
rvj (1 + ruj)

(1� rujrvj)uj
+
(1 + ruj)xj

�
1� u�1j

�2
d�1j

(1� rujrvj) vj

= 1 +
rvj (1 + ruj)

(1� rujrvj)uj
+

(1 + ruj) (uj � 1)
(1� rujrvj)

�
vj � 1

�
uj
;

where the last equality follows from the fact that dj = xj
�
1� u�1j

��
1� v�1j

�
: Continuing

algebraic manipulations a little further, we get:

�̂�2jj = 1 +
(1 + ruj) (1 + rvj)

(1� rujrvj)ujvj

 
vjrvj
1 + rvj

+
vj (uj � 1)

(1 + rvj)
�
vj � 1

�!

= 1 +
(1 + ruj) (1 + rvj)

(1� rujrvj)ujvj

�
vj �

vj
1 + rvj

vj � uj
vj � 1

�
:

To establish the �rst probability limit of part ii) of Theorem 1, it remains to show that

c
�
m (xj) + xjm

0 (xj)
�
=

(1 + ruj) (1 + rvj)

(1� rujrvj)ujvj
and (43)

1 + vjmB (vj)

mB (vj) + vjm0
B (vj)

= � vj
1 + rvj

: (44)

The latter equality follows directly from the de�nition of rvj : To establish (43), note that

(44) implies that

1 + rvj = �vj
d

dv
log (�1� vjmB (vj)) : (45)

Similarly, we can show that

1 + ruj = �uj
d

du
log (�1� ujmA (uj)) : (46)

Now, recall that, according to Zhang (2006), m (z) ; u (z) and v (z) solve the system8><>:
�zm(z)� 1 = �u (z)mA (u(z))� 1
�zm (z)� 1 = c�1 [�v (z)mB (v (z))� 1]
�zm (z)� 1 = c�1 z

u(z)v(z)

:
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Taking logarithms of both sides of the three equations of the above system, di¤erentiating

with respect to z, and noting that d
dz log (�zm(z)� 1) =

m(z)+zm0(z)
1+zm(z) = � (m(z) + zm0(z)) cu(z)v(z)z ;

we get: 8><>:
� (m(z) + zm0(z)) cu(z)v(z)z = d

dzu(z)
d
du log (�u (z)mA (u(z))� 1)

� (m(z) + zm0(z)) cu(z)v(z)z = d
dzv(z)

d
dv log (�v (z)mB (v(z))� 1)

� (m(z) + zm0(z)) cu(z)v(z)z = 1
z �

1
u(z)

d
dzu(z)�

1
v(z)

d
dzv(z)

:

Solving for d
dzu(z) and

d
dzv(z) from the �rst two equations and dividing both sides of the

third equation by � (m(z) + zm0(z)) cu(z)v(z)z , we get:

1 = �
�
cu(z)v(z)

�
m(z) + zm0(z)

���1 � �u(z) d
du
log (�u (z)mA (u(z))� 1)

��1
(47)

�
�
v(z)

d

dv
log (�v (z)mB (v(z))� 1)

��1
:

As was mentioned above, m (z) ; u(z) and v(z) can be analytically continued from the

complex area Im z > 0 to the real segment z 2 (�x;1) so that u(xj) = uj and v(xj) = vj :
Substituting z = xj in (47); and using (45) and (46), we obtain:

1 = �
�
cujvj

�
m(xj) + xjm

0(xj)
���1

+
1

1 + ruj
+

1

1 + rvj
;

which implies (43).

Now, let us prove that plim �̂ij = 0 for j > q: We no longer assume that (4) is satis�ed

(this assumption was innocuous for the proof of the �rst convergence statement as have been

explained above). Let y1; y2; :::; yk be the unit-length eigenvectors of 1TXX
0 corresponding

to the k of the largest eigenvalues. Note that �̂2ij = y
2
ij ; where yij is the i-th component of yj :

De�ne Qj =
Pq
r=1 y

0
r

�
1
TXX

0 + {eie0i
�
yr + y

0
j

�
1
TXX

0 + {eie0i
�
yj ; where { is an arbitrary

positive number. Since y1; :::; yk are orthonormal,

Qj �
Xq+1

r=1
�r

�
1

T
XX 0 + {eie0i

�
: (48)

Consider �rst the case when j > q and i � q: If {1 is so small that, for any 0 < { < {1;

the smallest eigenvalue of �x�1
�
1� �u�1

��1 di
p
{dip

{di {

!
�
 
�v�1 0

0 0

!
is less than 1,

then eigenvalues �r
�
1
TXX

0 + {eie0i
�
converge to xr for r � q and r 6= i; and to �x for q <

r � k: For the i-th eigenvalue of 1TXX
0+{eie0i, by the formula for the approximation of an

eigenvalue of a perturbed matrix (formula 3.6 on p.89 of Kato, 1995), we have: for any � > 0;

there exists C > 0; N > 0 and {0 > 0 such that
���i � 1TXX 0 + {eie0i

�
� �i

�
1
TXX

0�� {y2ii�� <
24



C{2; for all n > N and { < {0 with probability no smaller than 1� �.
Such a behavior of the eigenvalues �r

�
1
TXX

0 + {eie0i
�
, together with (48), imply that:

Qj �
Xq

r=1
xr + {y2ii + �x+ � + C{2 (49)

with probability no smaller than 1� � for large enough n: On the other hand, by de�nition
of Qj :

Qj �
Xq

r=1
xr + {y2ii + �x+ {y2ij � � (50)

with probability no smaller than 1 � � for large enough n: Combining (49) and (50), we
have: {y2ij � 2� + C{2 with probability no smaller than 1 � 2� for large enough n: Let
us take � = {2: Then, we have: y2ij � (2 + C){ with probability no smaller than 1 � 2{2

for large enough n: Since { is an arbitrary positive number, smaller than min ({0;{1) ; we
have: y2ij

p! 0; and therefore, �̂ij
p! 0:

Now, let us consider the case when j > q and i > q: If {2 is so small that, for any

0 < { < {2; the largest eigenvalue of �x�1
�
1� �u�1

��1 di
p
{dip

{di {

!
�
 
�v�1 0

0 0

!
is less than 1, then eigenvalues �r

�
1
TXX

0 + {eie0i
�
converge to xr for r � q and to �x for

q < r � k: Therefore, we can replace inequalities (49) and (50) by Qj �
Pq
r=1 xr + �x + �

and Qj �
Pq
r=1 xr + �x + {y2ij � �; respectively. So, with � = {2; we have: y2ij � 2{ with

probability no smaller than 1 � 2{2 for large enough n: Since { is an arbitrary positive

number, smaller than {2; we again have: y2ij
p! 0; and therefore, �̂ij

p! 0: This completes

the proof.�

3 Proof of Theorem 2

We will prove part ii) of the theorem. A proof of part i) is similar to the proof of part ii) and

we omit it to save space. As before, we will consider only the case when Var "it � �2 = 1:
The general-case formulae reported in Theorem 2 can be obtained from the formulae derived

below by replacing L̂ by L̂=� and D by D=�2:We will use notation introduced in the proof

of Theorem 1. In addition, for any matrixM; we will denote its j-th row asMj� and its j-th

column as M�j : Further, we will use Mr:s to denote the matrix that consists of the columns

r; r + 1; :::; s of matrix M; and we will use Mi:j;r:s to denote the matrix that consists of the

intersection of the rows i; i+ 1; :::; j and columns r; r + 1; :::; s of matrix M:

3.1 A key lemma

Let � = O0~�O be a spectral decomposition of � � 1
TA0"2B

2"02A0 = 1
T "2B

2"02; where the

latter equality follows from the assumption of Theorem 2 ii) that A = In: Note that, since
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the entries of "2 are i.i.d. Gaussian, the spectral decomposition can be chosen so that O

has the Haar invariant distribution (see Anderson (1984, p.536)).3 De�ne ~X = OX and
~	 = O	 = O1:k (L

0L)1=2 +O"1=
p
T : Then, matrix ~X ~X 0=T has a convenient representation

~X ~X 0=T = ~	~	0 + ~� and the same eigenvalues as matrix XX 0=T:

Let yij denote the i-th component of an eigenvector of ~X ~X 0=T; corresponding to eigen-

value �j (XX 0=T ), and let ~�i denote the i-th largest diagonal element of ~�: Let us de�ne

M (1)
n (x) �

nX
i=1

~	0i�
~	i�

x� ~�i
;

M (2)
n (x) �

nX
i=1

~	0i�
~	i��

x� ~�i
�2 ; and

M (3)
n (x) �

nX
i=1

O0i;1:k
~	i�

x� ~�i

The following Lemma is a straightforward consequence of Lemma 2:

Lemma 10: Let � 6= ~�i; i = 1; :::; n so that �In � ~� is invertible: Then:

i) � is an eigenvalue of 1
T
~X ~X 0 of multiplicity larger than or equal to s if and only if there

exists a positive integer m � k + 1� s such that x = � satis�es equations

�m

�
M (1)
n (x)

�
= 1; :::; �m+s�1

�
M (1)
n (x)

�
= 1; (51)

ii) If v is an eigenvector of M (1)
n (�) corresponding to eigenvalue 1; then

y =
�
v0M (2)

n (�) v
��1=2 �

�In � ~�
��1

~	v (52)

is a unit-length eigenvector of 1
T
~X ~X 0 corresponding to eigenvalue �:

iii) If 1 is a simple eigenvalue of M (1)
n (�) ; then � is a simple eigenvalue of 1

T
~X ~X 0:

Furthermore, if � is the j-th largest eigenvalue of 1
T
~X ~X 0 and v is a corresponding

eigenvector of M (1)
n (�) ; then the j-th column of matrix �̂ from part ii) of Theorem

2 equals
�
v0M

(2)
n (�) v

��1=2
M
(3)
n (�) v:

The key fact for the analysis below was established by Silverstein (1995), who gen-

eralized previous results of Yin (1986) and Marchenko and Pastur (1967). Silverstein

3The decomposition is not unique because each of the columns of O can be multiplied by �1 and the last
max (0; n� T + k) columns can be arbitrarily rotated.
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showed that the empirical distribution of the elements along the diagonal of ~� de�ned

as G~� (x) �
1
n

Pn
i=1 1

n
~�i � x

o
almost surely converges to a non-random cumulative dis-

tribution function G; which is fully characterized by the limiting spectral distribution GB
of matrix B0B: Silverstein�s result was later generalized by Zhang (2006) to the case when

A 6= In: It is this generalization that was used in the proof of Theorem 1.

To see the signi�cance of Silverstein�s result for our analysis, assume for a moment that

k = 1 and note that M (1)
n (x) is a weighted linear combination of terms ~	2i with weights�

x� ~�i
��1

: Now, by de�nition, ~	i = Oi;1 (L0L)
1=2+Oi�"1=

p
T : The second element in this

sum is independent of the �rst and, by Assumption 2 i), is N (0; 1=T ) : The �rst term is

asymptotically N (0; d1=n) : Indeed, since O has the Haar invariant distribution, the joint

distribution of the entries of its �rst column is the same as that of the entries of �= k�k ;
where � � N (0; In) and k�k =

p
�0�: Hence, M (1)

n (x) asymptotically behaves as a weighted

sum of �2(1) independent random variables with weights 1n (d1 + c)
�
x� ~�i

��1
: Intuitively,

such a sum should converge to (d1 + c)
R
(x� �)�1 dG (�) ; which we con�rm below. The

properties of M (1)
n (x) centered by its probability limit and scaled by

p
n can be analyzed

using similar ideas.

3.2 Technical lemmata

Lemma 11: (McLeish (1974)) Let fXn;i;Fn;i; i = 1; 2; :::; ng be a martingale di¤erence
array on the probability triple (
;F ; P ) : If the following conditions are satis�ed: a) Linde-
berg�s condition: for all " > 0;

X
i

R
jXn;ij>"X

2
n;idP ! 0; n ! 1; b)

Xn

i=1
X2
n;i

p! 1; thenXn

i=1
Xn;i

d! N(0; 1):

Proof of Lemma 11: This is a consequence of Theorem (2.3) of McLeish (1974). Two

conditions of the theorem, i) maxi�n jXn;ij is uniformly bounded in L2 norm, and ii)
maxi�n jXn;ij

p! 0; are replaced here by the Lindeberg condition. As explained in McLeish

(1974), since for any ";maxi�nX2
n;i � "2+

X
i
X2
n;iI (jXn;ij > ") and since P fmaxi�n jXn;ij > "g =

P
nX

i
X2
n;iI (jXn;ij > ") > "2

o
; both conditions i) and ii) follow from the Lindeberg condition.�

Lemma 12: (Hall and Heyde) Let fXn;i;Fni; 1 � i � ng be a martingale di¤erence
array and de�ne V 2n;j =

Xj

i=1
E
�
X2
n;ijFn;i�1

�
and U2n;j =

Xj

i=1
X2
n;i for 1 � j �

n: Suppose that the conditional variances V 2n;n are tight, that is supn P
�
V 2n;n > "

�
! 0

as " ! 1; and that the conditional Lindeberg condition holds, that is for all " > 0;X
i
E
h
X2
n;iI (jXn;ij > ") jFn;i�1

i
p! 0: Then maxj

���U2n;j � V 2n;j��� p! 0:

Proof of Lemma 12: This is a shortened version of Theorem 2.23 in Hall and Heyde

(1980).�

Let gj(�); j = 1; :::; J; be analytic functions of real variable � on an open interval
�
�l; �u
�
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containing the support of the distribution G and such that �l < 0: Note that the boundedness
of the support of GB implies the boundedness of the support of G (see Silverstein and

Choi (1995) for an analysis of the support of G). Further, let &(n) be an array of n � m
matrices with i.i.d. standard normal entries independent of ~�1; :::; ~�n: In what follows we

will omit the superscript n in &(n) to simplify notations. Finally, denote the set of triples

f(j; s; t) : 1 � j � J; 1 � s � t � mg as �1: Then, we have the following

Lemma 13: Let Assumptions 1, 2, 3 and 4 hold, and let A = In. Then, the joint

distribution of random variables
n

1p
n

Xn

i=1
gj(~�i) (& is& it � �st) ; (j; s; t) 2 �1

o
weakly con-

verges to a multivariate normal distribution as n!1: The covariance between components
(j; s; t) and (j1; s1; t1) of the limiting distribution is equal to 0 when (s; t) 6= (s1; t1) ; and to
(1 + �st)

R
gj(�)gj1(�)dG(�) when (s; t) = (s1; t1) :

Proof of Lemma 13: Let real numbers l1 and u1 be such that l1 < 0 and [l1; u1] is included

in
�
�l; �u
�
; but itself includes the support of the G law. De�ne functions hj(�); j = 1; :::; J; so

that hj(�) = gj(�) for � 2 [l1; u1]; and hj(�) = 0 otherwise. Note that jhj(�)j < R for any
j = 1; :::; J and any �, where R is a constant larger thanmaxj=1;:::;J sup�2[l1;u1] jgj (�)j : Note
also that since, by Lemma 3 of Onatski (2009), almost surely for all large n; all ~�i; i � n

belong to [l1; u1]; Pr
n
9j � J; i � n such that hj(~�i) 6= gj(~�i)

o
! 0 as n!1.

Consider random variables Xn;i = 1p
n

X
(j;s;t)2�1

jsthj(
~�i) (& is& it � �st) ; where jst

are some constants. Let Fn;i be sigma-algebra generated by ~�1; :::; ~�n and &js; 1 � j �
i; 1 � s � m: Clearly, fXn;i;Fn;i; i = 1; 2; :::; ng form a martingale di¤erence array. Let

K be the number of di¤erent triples (j; s; t) 2 �1: Consider an arbitrary order in �1:

In Hölder�s inequality
XK

r=1
yrzr �

�XK

r=1
(yr)

p

�1=p�XK

r=1
(zr)

q

�1=q
; which holds for

yr > 0; zr > 0; p > 1; q > 1; and (1=p) + (1=q) = 1; take yr =
��� 1pnjsthj(~�i) (& is& it � �st)��� ;

where (j; s; t) is the r-th triple in �1, zr = 1; and p = 2 + � for some � > 0: Then, the

inequality implies that jXn;ij2+� � K1+�R2+�
X

(j;s;t)2�1

���jst &is&it��stp
n

���2+� : Recalling that
& is are i.i.d. N(0; 1), we have:

X
i
E jXn;ij2+� tends to zero as n ! 1, which means that

the Lyapunov condition holds for Xn;i: As is well known, Lyapunov�s condition implies

Lindeberg�s condition. Hence, condition a) of McLeish�s proposition is satis�ed for Xn;i.

Now, let us consider
Xn

i=1
X2
n;i: Since convergence in mean implies convergence in prob-

ability, the conditional Lindeberg condition is satis�ed for Xn;i because the unconditional

Lindeberg condition is satis�ed as checked above. Further, in notations of Hall and Heyde�s

proposition, we have

V 2n;n =
1
n

Xn

i=1
E(
X

(j;s;t)2�1;
(j1;s1;t1)2�1

jstj1s1t1hj(
~�i)hj1(

~�i) (& is& it � �st) (& is1& it1 � �s1t1) jFn;i�1):

It is straightforward to check that the latter expression is equal to
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X
1�j�J
1�j1�J

h�X
1�s�t�m

jstj1st (1 + �st)
�
1
n

Xn

i=1
hj(~�i)hj1(

~�i)
i
:

Consider now ~V 2n;n =
X

1�j�J
1�j1�J

h�X
1�s�t�m

jstj1st (1 + �st)
�
1
n

Xn

i=1
gj(~�i)gj1(

~�i)
i
.

Since P
�
~V 2n;n 6= V 2n;n

�
! 0 as n ! 1; ~V 2n;n and V 2n;n must converge in probability to the

same limit, or must both diverge. But, by Theorem 1.1 of Silverstein (1995), the empirical

distribution of ~�1; :::; ~�n almost surely weakly converges to G: In addition, by Lemma 3 of
Onatski (2009), almost surely for all large n; all ~�i; i � n belong to [l1; u1]: Therefore, since
by assumption, gj (�) with j = 1; :::; J are continuous on [l1; u1], 1n

Xn

i=1
gj(~�i)gj1(

~�i) �R
gj(�)gj1(�)dG(�) converges in probability to zero, and we have:

~V 2n;n
p! � �

X
1�j�J
1�j1�J

240@ X
1�s�t�m

jstj1st (1 + �st)

1AZ gj(�)gj1(�)dG(�)

35 : (53)

Hence, V 2n;n also converges in probability to �. In particular, V
2
n;n is tight and Hall and

Heyde�s proposition applies. From Hall and Heyde�s proposition, we know that
Xn

i=1
X2
n;i

must converge to the same limit as V 2n;n: Therefore, using McLeish�s result, we get
Xn

i=1
Xn;i

d!
N(0;�):

Let us now de�ne Yn;i =
X

(j;s;t)2�1
jstgj(

~�i)
&is&it��stp

n
: Since Pr

�Xn

i=1
Yn;i 6=

Xn

i=1
Xn;i

�
!

0 as n!1; we have
Xn

i=1
Yn;i

d! N(0;�): Finally, Lemma 13 follows from the latter con-

vergence, the Cramer-Wold result (see White (1999), p.114), and de�nition of � (53).�

Now let us formally establish the asymptotic behavior ofM (1)
n (x); M

(2)
n (x) andM (3)

n (x):

By Lemma3 of Onatski (2009), for any �xed k; ~�1; :::; ~�k almost surely converge to �x; the

upper boundary of support of G: This result implies that, with high probability, M (1)
n (x)

belongs to the space C [�1; �2]
k2 of continuous k�k-matrix-valued functions on x 2 [�1; �2] ;

where �2 > �1 > �x: Since the weak convergence in C [�1; �2] is well-studied, it will be

convenient to modifyM (1)
n (x) on a small probability set so that the modi�cation is a random

element of C [�1; �2]
k2 equipped with the max sup norm. To construct such a modi�cation,

de�ne h(x; ~�i) = max
�
x� ~�i; �1��x2

�
and let

M̂ (1)
n (x) �

nX
i=1

~	0i�
~	i�

h
�
x; ~�i

� ;
M̂ (2)
n (x) =

nX
i=1

~	0i�
~	i�

h2(x; ~�i)
and

M̂ (3)
n (x) =

nX
i=1

O0i;1:k
~	i�

h(x; ~�i)
:
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We will study the asymptotic properties of M̂ (j)
n (x) keeping in mind that they are equivalent

to the asymptotic properties of M (j)
n (x) because Pr

�
M
(j)
n (x) = M̂

(j)
n (x) ;8x 2 [�1; �2]

�
=

Pr
�
~�1 <

�1+�x
2

�
! 1 as n!1:

De�ne

M
(1)
0 (x) = (D + cIk)

Z
dG(�)
x� � ;

M
(2)
0 (x) = (D + cIk)

Z
dG(�)
(x� �)2

and

M
(3)
0 (x) = D1=2

Z
dG(�)
x� � :

We have the following

Lemma 14: Let Assumptions 1,2,3 and 4 hold, and let A = In. Then, for the random
elements of Ck

2
[�1; �2] de�ned as N

(p)
n (x) =

p
n
�
M̂
(p)
n (x)�M (p)

0 (x)
�
; p = 1; 2; 3; we have:

n
N (p)
n (x); p = 1; 2; 3

o
d!
n
N (p)(x); p = 1; 2; 3

o
; (54)

where, for any fy1; :::; yJg 2 [�1; �2]; the joint distribution of entries of�
N (p)(yj); p = 1; 2; 3; j = 1; :::; J

	
is a 3Jk2-dimensional normal distribution with covari-

ance between entry in row s and column t of N (p)(yj) and entry in row s1 and column t1
of N (r)(yj1) equal to 


(p;r) (� ; �1) ; where � = (s; t; j) and �1 = (s1; t1; j1) ; and 
(p;r) (� ; �1)

is de�ned as follows:

For � = (s; t; j), �1 = (s1; t1; j1) ; and integers p1 and p2 such that 1 � p1 � p2 � 2;


(p1;p2) (� ; �1) = 

(p1;3) (� ; �1) = 


(3;3) (� ; �1) = 0

if (s1; t1) 6= (s; t) and (s1; t1) 6= (t; s) ;


(p1;p2) (� ; �1) = � (1 + �st) dsdt
Z

dG(�)
(yj � �)p1

Z
dG(�)

(yj1 � �)
p2

+
h
(1 + �st)

�
c2 + dsdt

�
+ c

�
ds + dt + 2�st

p
dsdt

�i Z dG(�)
(yj � �)p1 (yj1 � �)

p2 ;


(p1;3) (� ; �1) = � (1 + �st)
p
dsdt

Z
dG(�)

(yj � �)p1
Z

dG(�)
yj1 � �

+
h
(1 + �st)

p
dsdt + c

�p
ds + �st

p
dt

�i Z dG(�)
(yj � �)p1 (yj1 � �)

;


(3;3) (� ; �1) = � (1 + �st) dt
Z
dG(�)
yj � �

Z
dG(�)
yj1 � �

+ ((1 + �st) dt + c)

Z
dG(�)

(yj � �) (yj1 � �)
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if (s1; t1) = (s; t) ; and


(p1;p2) (� ; �1) = 
(p1;p2) ((t; s; j) ; (s1; t1; j1))


(p1;3) (� ; �1) = 
(p1;3) ((t; s; j) ; (s1; t1; j1))


(3;3) (� ; �1) = � (1 + �st)
p
dsdt

Z
dG(�)
yj � �

Z
dG(�)
yj1 � �

+
�
(1 + �st)

p
dsdt + �stc

�Z dG(�)
(yj � �) (yj1 � �)

if (s1; t1) = (t; s) :

Proof of Lemma 14): To save space, we will only study the convergence of N (1)
n (x): The

joint convergence of
n
N
(p)
n (x); p = 1; 2; 3

o
can be demonstrated using similar ideas. We will

prove the convergence of N (1)
n (x) by �rst checking the convergence of the �nite dimensional

distributions
n
N
(1)
n;st(yj); (s; t; j) 2 �

o
d!
n
N
(1)
st (yj); (s; t; j) 2 �

o
, where � denotes the set

of all integer triples (s; t; j) satisfying 1 � s; t � k and 1 � j � J , and, second, by

demonstrating the tightness of all entries of N (1)
n (x).

Note that the distribution of N (1)
n (x) will not change if we substitute O1:k and O"1 in the

de�nition of ~	 by �(�0�)�1=2 and �; where � and � are two independent n�k matrix with i.i.d.
standard normal entries independent from � and ~�1; :::; ~�n: Indeed, the substitution of O"1
by � is justi�ed by the Assumption 2 i). As to the other substitution, note that the columns

of �(�0�)�1=2 are orthogonal and of unit length. Further, the joint distribution of elements

of �(�0�)�1=2 is invariant with respect to multiplication from the left by any orthogonal

matrix. Hence, this distribution coincides with the joint distribution of the elements of the

�rst k columns of random orthogonal matrix having Haar invariant distribution. But the

latter is the joint distribution of elements of O1:k: In the rest of the proof, we, therefore,

will make the substitutions and rede�ne N (1)
n (x) accordingly.

It is straightforward to check that N (1)
n (x) =

X8

v=1
S(v)(x); where

S(1)(x) = (L0L)1=2
�
�0�
n

��1=2 �
1p
n

Xn

i=1

�0i��i��Ik
h(x;~�i)

��
�0�
n

��1=2
(L0L)1=2 ;

S(2)(x) = (L0L)1=2
p
n
�
Ik �

�
�0�
n

���
�0�
n

��1
(L0L)1=2

Xn

i=1

1
nh(x;~�i)

;

S(3)(x) =
p
n (L0L�D)

Xn

i=1

1
nh(x;~�i)

;

S(4)(x) =
p

n
T (L

0L)1=2
�
�0�
n

��1=2 �
1p
n

Xn

i=1

�0i��i�
h(x;~�i)

�
;

S(5)(x) =
p

n
T

�
1p
n

Xn

i=1

�0i��i�
h(x;~�i)

��
�0�
n

��1=2
(L0L)1=2 ;

S(6)(x) =
�
n
T

�
1p
n

Xn

i=1

�0i��i��Ik
h(x;~�i)

;

S(7)(x) =
p
n
�
n
T � c

�
Ik
Xn

i=1

1
nh(x;~�i)

;

S(8)(x) = � (D + cIk)
p
n
�R dG(�)

x�� �
Xn

i=1

1
nh(x;~�i)

�
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By Theorem 1 of Bai and Silverstein (2004),
p
n
�R dG(n)(�)

x�� �
Xn

i=1

1
n

1
x�~�i

�
p! 0 for any

x 2 [�1; �2] ; where G(n)(�) is de�ned as follows. Let B(n;m) = Im
B(n) and let "(n;m) be an
nm�T (n)mmatrix with i.i.d. N(0; 1) elements. Then, G(n)(�) is the weak limit of the empir-
ical eigenvalue distribution of 1

T (n)m
"(n;m)B(n;m)B(n;m)0"(n;m)0 as m goes to in�nity. Lemma

17 below shows that our Assumptions 1, 2, 3 and 4 imply that
p
n
�R dG(n)(�)

x�� �
R dG(�)

x��

�
!

0; and hence
p
n
�R dG(�)

x�� �
Xn

i=1

1
nh(x;~�i)

�
p! 0: The latter convergence result together

with the facts that �0�=n
p! Ik; L

0L�D = o
�
n�1=2

�
; and n=T � c = o

�
n�1=2

�
imply thatnX8

v=1
S
(v)
st (yj); (s; t; j) 2 �

o
and

nX8

v=1
~S
(v)
st (yj); (s; t; j) 2 �

o
weakly converge to the

same limit or do not converge together, where
~S(1)(x) = D1=2

�
1p
n

Xn

i=1

�0i��i��Ik
h(x;~�i)

�
D1=2;

~S(2)(x) = D1=2
p
n
�
Ik �

�
�0�
n

��
D1=2

R dG(�)
x�� ;

~S(3)(x) = 0;

~S(4)(x) =
p
cD1=2

�
1p
n

Xn

i=1

�0i��i�
h(x;~�i)

�
;

~S(5)(x) =
p
c
�
1p
n

Xn

i=1

�0i��i�
h(x;~�i)

�
D1=2;

~S(6)(x) = c 1p
n

Xn

i=1

�0i��i��Ik
h(x;~�i)

;

~S(7)(x) = ~S(8)(x) = 0:

By de�nition, we have:

8X
v=1

~S
(v)
st (yj) =

p
dsdt

1p
n

nX
i=1

�is�it � �st
h(yj ; ~�i)

�
p
dsdt

Z
dG(�)
yj � �

nX
i=1

�is�it � �stp
n

+

p
cds

1p
n

nX
i=1

�is�it

h(yj ; ~�i)
+
p
cdt

1p
n

nX
i=1

�it�is

h(yj ; ~�i)
+ c

1p
n

nX
i=1

�is�it � �st
h(yj ; ~�i)

:

Since [�; �] is an n�2k matrix with i.i.d. standard normal entries, Lemma 13 and the above
decomposition imply that

nX8

v=1
~S
(v)
st (yj); (s; t; j) 2 �

o
weakly converge to fZstj ; (s; t; j) 2 �g

having joint normal distribution such that cov (Zstj ; Zs1t1j1) = 0 if (s; t) 6= (s1; t1) and

(s; t) 6= (t1; s1) and cov (Zstj ; Zs1t1j1) is equal to

cov (Zstj ; Zs1t1j1) =
h
(1 + �st)

�
c2 + dsdt

�
+ c

�
ds + dt + 2�st

p
dsdt

�i
� (55)

�
Z

dG(�)
(yj � �) (yj1 � �)

� (1 + �st) dsdt
Z
dG(�)
yj � �

Z
dG(�)
yj1 � �

otherwise, which establishes the limit of the joint distribution of
n
N
(1)
st (yj); (s; t; j) 2 �

o
:

Now we have to prove the tightness of all entries of N (1)
n (x) =

X8

v=1
S(v)(x): Since

product and sum are continuous mappings from C [�1; �2]
2 to C [�1; �2] ; it is enough to
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prove the tightness of every entry of each matrix entering de�nition of S(v)(x); v = 1; :::; 8:

The facts that �0�=n
p! Ik; L

0L�D = o
�
n�1=2

�
; and n=T � c = o

�
n�1=2

�
imply the tight-

ness of every entry of each of the matrices (L0L)1=2 ;
p
n (L0L�D) ;

�
�0�
n

��1=2
;
�
�0�
n

��1
;p

n
T I;

p
n
�
n
T � c

�
I; and

p
n
�
Ik �

�
�0�
n

��
considered as (constant) elements of C [�1; �2] :

Therefore, we only need to prove the tightness of

1p
n

nX
i=1

�is�it � �st
h(x; ~�i)

;
1p
n

nX
i=1

�is�it

h(x; ~�i)
;
1p
n

nX
i=1

�is�it � �st
h(x; ~�i)

; (56)

of
Xn

i=1

1
nh(x;~�i)

and of
p
n
�R dG(�)

x�� �
Xn

i=1

1
nh(x;~�i)

�
:

Since � and � are, by de�nition, two independent n � k matrices with i.i.d. standard
normal entries, to prove the tightness of the sequences of sums in (56), it is enough to

prove the tightness of the �rst sum for all 1 � s � t � k: We will use Theorem 12.3 of

Billingsley (1968), p. 95. Condition i) of the theorem is equivalent in our context to the

assumption of the tightness of the sum at x = �1: Lemma 5 implies that this assumption

is satis�ed. We will verify condition ii) of Theorem 12.3 by proving the moment con-

dition (12.51) of Billingsley (1968). We have
E

�Xn

i=1
(h(y1;~�i)�1�h(y2;~�i)�1)(�is�it��st)

�2
n(y1�y2)2

�

E

�Xn

i=1

�
h(y1; ~�i)h(y2; ~�i)

��1
(�is�it � �st)

�2
=n � 16

n(�1��x)4
E
�Xn

i=1
(�is�it � �st)

�2
=

16
(�1��x)4

(1 + �st), where the �rst inequality follows from the fact that
��� 1
h(y1;~�i)

� 1
h(y2;~�i)

��� �
jy2�y1j

h(y1;~�i)h(y2;~�i)
: Hence, sup

n;y1;y22[�1;�2]

E

�Xn

i=1
(h(y1;~�i)�1�h(y2;~�i)�1)(�is�it��st)

�2
n(y1�y2)2

is �nite and the

moment condition (12.51) of Billingsley (1968) is satis�ed. In a more complete proof (in

which the tightness of the elements of N (2)
n (x) is demonstrated), we also need to check

Billingsley�s moment condition when h (�; �) is replaced by h2 (�; �) : We can use the above
reasoning and inequality

��� 1
h2(y1;~�i)

� 1
h2(y2;~�i)

��� � jy2�y1j(h(y1;~�i)+h(y2;~�i))
h2(y1;~�i)h2(y2;~�i)

� 32�2jy2�y1j
(�1��x)4

to per-

form such a check.

Similarly, conditions of Theorem 12.3 of Billingsley (1968) are satis�ed for
Xn

i=1

1
nh(x;~�i)

.

Condition i) is satis�ed because, as has been shown above,
p
n
�R dG(�)

x�� �
Xn

i=1

1
nh(x;~�i)

�
p!

0 for any x 2 [�1; �2] : Condition ii) is satis�ed because E
�Xn

i=1

1
nh(y1;~�i)h(y2;~�i)

�2
� 16

(�1��x)4

for any y1; y2 2 [�1; �2] :
To prove the tightness of

p
n
�R dG(�)

x�� �
Xn

i=1

1
nh(x;~�i)

�
, we adopt the argument on

page 563 of Bai and Silverstein (2004). In notations of Bai and Silverstein (2004), M̂n(�)!
� 1
2�i

R
1
x�zM̂n(z)dz is a continuous mapping of C

�
C; R2

�
into C[�1; �2]: Since, M̂n(�) is

tight, � 1
2�i

R
1
x�zM̂n(z)dz; and subsequently n

�R dG(n)(�)
x�� �

Xn

i=1

1
n

1
x�~�i

�
; form a tight
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sequence. But by Lemma 17, supx2[�1;�2]
p
n
�R dG(n)(�)

x�� �
R dG(�)

x��

�
p! 0: Therefore,

p
n
�R dG(�)

x�� �
Xn

i=1

1
n

1
x�~�i

�
is tight too. Finally, the latter tightness and the fact that

Pr
nXn

i=1

1p
n

�
1

x�~�i
� 1

h(x;~�i)

�
6= 0
o
! 0 imply that sequence

p
n
�R dG(�)

x�� �
Xn

i=1

1
nh(x;~�i)

�
must be tight.�

Lemma 15: Let A ({) = A + {A(1); where A(1) is a symmetric k � k matrix and
A = diag (a1; a2; :::; ak) ; a1 > a2 > ::: > ak > 0: Further, let r0 = 1

2 minj=1;:::;k jaj � aj+1j ;
where we de�ne ak+1 as zero: Then, for any real { such that j{j < r0=

A(1) ; the following
two statements hold:

i) Exactly one eigenvalue of A({) belongs to the segment (aj � r0; aj + r0) : Denoting this
eigenvalue as aj ({) ; we have:4

��� 1{ (aj ({)� aj)�A(1)jj ��� � j{jA(1) �r0 � j{jA(1)��1 :
ii) Let Pj ({) be the orthogonal projection on the invariant subspace of A ({) corresponding
to eigenvalue aj ({) and let
Sj = diag

�
(a1 � aj)�1 ; :::; (aj�1 � aj)�1 ; 0; (aj+1 � aj)�1 ; :::; (ak � aj)�1

�
: Then ej ({) �

Pj ({) ej= kPj ({) ejk is an eigenvector of A ({) corresponding to eigenvalue aj ({) ; and 1
{ (ej ({)� ej) + SjA

(1)ej
 � 2 j{jA(1)2 �r0 � j{jA(1)��2 :

Proof of Lemma 15: Let R (z;{) = (A ({)� zIk)�1 be the resolvent of A ({) de�ned for
all complex z not equal to any of the eigenvalues of A ({) : We will denote R (z; 0) as R(z):
Let � be a positively oriented circle in the complex plane with center at aj and radius r0: The

second Neumann series for the resolvent R (z;{) = R (z)+
X1

n=1
(�{)nR (z)

�
A(1)R (z)

�n
(see Kato (1980), p.67, for a de�nition of the second Neumann series) is uniformly convergent

on � for { < minz2�
�A(1) kR (z)k��1 = r0=A(1) ; where the last equality follows from

the fact that kR (z)k = r�10 for any z 2 �: Therefore, formula (1.19) of Kato (1980) implies
that, for j{j < r0=

A(1) ; there is exactly one eigenvalue, aj ({) ; inside the circle �:
Formulae (3.6)5 and (2.32) of Kato (1980) imply the inequality stated in part i of Lemma

3.

We now turn to the proof of part ii. According to Kato (1980), p.67, projection Pj ({)
can be represented as Pj ({) = � 1

2�i

R
�R (z;{) dz: Substituting the second Neumann series

for the resolvent in this formula, we obtain

Pj ({) = Pj �
1

2�i

1X
n=1

(�{)n
Z
�
R (z)

�
A(1)R(z)

�n
dz (57)

where Pj � Pj (0) and the series absolutely converges for j{j < r0
kA(1)k : Kato (1980), page

76, shows that 1
2�i

R
�R (z)A

(1)R (z) dz = �PjA(1)Sj�SjA(1)Pj : This equality and (57) im-
4For any matrix (or vector) B; kBk = (max eig (B�B))1=2 ; where � denotes the operation of transposition

and complex conjugation.
5Note the di¤erence in notations. Kato�s r0 is ours r0=

A(1) :
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ply that Pj ({) = Pj �{
�
PjA

(1)Sj � SjA(1)Pj
�
� 1
2�i

X1

n=2
(�{)n

R
�R (z)

�
A(1)R(z)

�n
dz:

Therefore, we have:

 1{ (Pj ({)� Pj) + PjA(1)Sj + SjA(1)Pj
 � j{j

A(1)2
r0
�
r0 � j{j

A(1)� (58)

for any j{j < r0=
A(1) :

Since A is diagonal with decreasing elements along the diagonal, ej is an eigenvector

of A corresponding to the eigenvalue aj : By de�nition of Pj ({) ; ej ({) � Pj({)ej
kPj({)ejk must

be an eigenvector of A ({) corresponding to the eigenvalue aj ({). Consider an identity
1
{ (ej ({)� ej)+SjA

(1)ej =
�
1
{ (Pj ({) ej � ej) + SjA

(1)ej
�
+ 1
{ ej ({) (1� kPj ({) ejk) : Us-

ing (58) and the fact that Sjej = 0, for the �rst term on right hand side of the identity we

have:  1{ (Pj ({) ej � ej) + SjA(1)ej
 � j{j

A(1)2
r0
�
r0 � j{j

A(1)� : (59)

Using the fact that Pj ({) is a projection operator so that kPj ({) ejk � 1 and Pj ({)2 =
Pj ({), for the second term on right hand side of the identity we have: 1{ ej ({) (1� kPj ({) ejk)

 � 1

j{j

�
1� kPj ({) ejk2

�
= j{j

 1{ (Pj ({) ej � ej)
2 : (60)

But, form (59),
 1
{ (Pj ({) ej � ej)

2 � 2SjA(1)ej2+ 2j{j2kA(1)k4
r20(r0�j{jkA(1)k)2

� kA(1)k2
2r20

+
2j{j2kA(1)k4

r20(r0�j{jkA(1)k)2
.

Combining the above identity, (59), (60), and the latter inequality, we obtain: 1
{ (ej ({)� ej) + SjA

(1)ej
 � j{jkA(1)k2

�
3r20�4r0j{jkA(1)k+5j{j2kA(1)k2

�
2r20(r0�j{jkA(1)k)2

� 2j{jkA(1)k2

(r0�j{jkA(1)k)2
; where

the last inequality follows from the fact that r0 > j{j
A(1) : This proves statement ii) of

the lemma.�

Lemma 16: Let fn(x) and f0(x) be random elements of C [�1; �2] such that fn(x)
d!

f0(x) as n ! 1: And let xn be random variables with values form [�1; �2] and such that

xn
p! x0; where x0 2 [�1; �2] Then fn(xn)� fn(x0)

p! 0:

Proof of Lemma 16: Since fn(x)
d! f0(x); ffn(x)g is tight and, hence, for any " >

0; we can choose a compact K such that Pr (fn(x) 2 K) > 1 � "
2 for all n: By the

Arzelà-Ascoli theorem (see, for example, Billingsley (1999), p.81), for any positive "1;

we have K � ff : jf (�1)j � rg for large enough r and K � ff : wf (�("1)) � "1g for
small enough �("1); where wf (�) is the modulus of continuity of function f; de�ned as

wf (�) = supjs�tj�� jf(s)� f(t)j ; 0 < � � �2 � �1: Let us choose N("; "1) so that for any
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n > N("; "1); Pr (jxn � x0j > �("1)) < "
2 : Then, for n > N("; "1); we have:

Pr (jfn(xn)� fn(x0)j > "1) = Pr (jfn(xn)� fn(x0)j > "1 and jxn � x0j � �("1))

+Pr (jfn(xn)� fn(x0)j > "1 and jxn � x0j > � ("1))

� Pr (fn(x) =2 K) + Pr (jxn � x0j > � ("1)) < ";

which proves the lemma.�

Lemma 17: Let (a; b) be such that a < 0 and b > �x: Suppose that g(x; �) is a continuous
function on (x; �) 2 [�1; �2] � (a; b) and that it is monotone increasing and has bounded
derivative with respect to � on � 2 (a; b) for any x 2 [�1; �2]. Then, under Assumptions 1,
2, 3 and 4, as n!1

sup
x2[�1;�2]

p
n

����Z g (x; �) dG (�)�
Z
g (x; �) dG(n) (�)

����! 0;

where G(n) is as de�ned in the proof of Lemma 14.
Proof of Lemma 17: As has been shown in the proof of Lemma 3 of Onatski (2009), the

upper boundary of the support of G(n) converges to �x as n!1: Therefore, (a; b) contains
the supports of G(n) for all large enough n: Hence, the function

�n (x) �
p
n

����Z g (x; �) dG (�)�
Z
g (x; �) dG(n) (�)

����
is continuous on x 2 [�1; �2] ; and it is enough to show the convergence of �n (x) to zero
pointwise for any x 2 [�1; �2] :

Let �1;j and �2;j be the j-th largest eigenvalues of B(nm)B(nm)0 and Im 
 B(n)B(n)0,
respectively. Here B(s) denotes the s-th element in the sequence of matrices B (which

introduces the temporal correlation to the idiosyncratic terms e = A"B), satisfying our

Assumptions 2, 3 and 4. Further, let "�j = ("1;j ; :::; "nm;j)
0 where f"i;j ; i 2 N and j 2 Ng are

i.i.d. N(0; 1) random variables: By Theorem 1.1 of Silverstein (1995), G (�) and G(n) (�)
are the weak limits of the empirical distributions of the eigenvalues �1j and �2j of R1 �
1

T (nm)

PT (nm)

j=1 �1;j"�j"0�j and R2 � 1
T (n)m

PT (n)m
j=1 �2;j"�j"0�j ; respectively, as m ! 1; almost

surely. Therefore, for any n; with probability 1, j�n (x)��n;m (x)j ! 0 as m!1; where

�n;m (x) �
p
n

������ 1nm
nmX
j=1

g
�
x; �1;j

�
� 1

nm

nmX
j=1

g
�
x; �2;j

������� :
Hence, to establish the convergence �n(x) ! 0; it is enough to show that with positive

probability, �n;m (x)! 0 as n!1 uniformly in m � 1:
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We will prove the latter convergence in the case when T (n)m � T (nm): The extension to
the case when T (n)m is larger than T (nm) is straightforward. Let us de�ne a set Jn;m as the

set of positive integers j; such that j � T (n)m; and f�1;j ; �2;jg 2 [xB; �xB] : Consider matrices
~R1 � 1

T (nm)

PT (nm)

j=1 ~�1;j"�j"0�j and ~R2 � 1
T (n)m

PT (n)m
j=1 ~�2;j"�j"0�j ; where ~�1;j = ~�2;j = 0 if

j =2 Jn;m and ~�1;j = �1;j and ~�2;j = �2;j otherwise. The ranks of R1 � ~R1 and of R2 � ~R2

are no larger than o
�
n1=2

�
m; where o

�
n1=2

�
is uniform in m � 1: It is because the number

of integers j � T (nm) such that j =2 Jn;m is o
�
n1=2

�
m:

Indeed, for any positive integer s; let us denote the empirical distribution of the eigen-

values of B(s)B(s)0 as G(s)B (x) ; and let

ls = sup
x

���G(s)B (x)� GB (x)
��� :

Then, the number of integers j � T (nm) such that �1;j =2 [xB; �xB] cannot be larger than
2lnmT

(nm): Similarly, the number of integers j � T (n)m such that �2;j =2 [xB; �xB] cannot
be larger than 2lnT (n)m: Hence, the number of j � T (nm) such that j =2 Jn;m cannot

exceed 2lnmT (nm)+2lnT (n)m+T (nm)�T (n)m; which is o
�
n1=2

�
m; as stated above, because

s=T (s) � c = o
�
s�1=2

�
and ls = o

�
s�1=2

�
as s!1:

The fact that the ranks of R1� ~R1 and of R2� ~R2 are no larger than o
�
n1=2

�
m together

with Weyl�s theorem (see Horn and Johnson, 1985, p.184) imply that the j-th largest

eigenvalues of ~R1 and ~R2 are no smaller than the j + o
�
n1=2

�
m-th largest eigenvalues of

R1 and R2; respectively: Further, by construction, R1 � ~R1 and R2 � ~R2 are positive semi-

de�nite matrices, and therefore, the j-th largest eigenvalues of ~R1 and ~R2 are no larger

than the corresponding eigenvalues of R1 and R2: These eigenvalue bounds together with

the fact that g (x; �) is monotone increasing imply that

p
n

������ 1nm
nmX
j=1

g
�
x; �1;j

�
� 1

nm

nmX
j=1

g
�
x; ~�1;j

������� � 1

n1=2m

o(n1=2)mX
j=1

g
�
x; �1;j

�
and

p
n

������
Z

1

nm

nmX
j=1

g
�
x; �2;j

�
� 1

nm

nmX
j=1

g
�
x; ~�2;j

������� � 1

n1=2m

o(n1=2)mX
j=1

g
�
x; �2;j

�
;

where ~�1;j and ~�2;j are the j-th largest eigenvalues of ~R1 and ~R2: Since g (x; �) is bounded;

the right hand sides of the above two inequalities are o(1) with probability 1 as n ! 1;
uniformly in m � 1. Therefore, to establish the lemma, we only need to show that, with
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positive probability,

p
n

������ 1nm
nmX
j=1

g
�
x; ~�1;j

�
� 1

nm

nmX
j=1

g
�
x; ~�2;j

�������! 0

as n!1 uniformly in m. Since, by assumption, g (x; �) has bounded derivative, the latter

convergence would follow from the fact that, with probability 1, maxj=1;:::;nm
��~�1;j � ~�2;j�� =

o
�
n�1=2

�
as n!1; uniformly in m � 1:

Now,maxj=1;:::;nm
��~�1;j � ~�2;j�� � 1

T (n)m

PT (n)m
j=1 "�j"0�j

maxj=1;:::;T (n)m ����T (n)mT (nm)
~�1;j � ~�2;j

���� :
By Lemma 1, the term 1

T (n)m

PT (n)m
j=1 "�j"0�j

 almost surely converges to (1 +pc)2 as
n ! 1: Hence, it is enough to prove that maxj=1;:::;T (n)m

����T (n)m
T (nm)

~�1;j � ~�2;j
���� = o �n�1=2�

as n!1; uniformly in m � 1: Further, since n=T (n) = c+o
�
n�1=2

�
; we have: T

(n)m
T (nm)

= 1+

o
�
n�1=2

�
; and hence, the lemma will be proven if we show thatmaxj=1;:::;T (n)m (j~�1;j � ~�2;j j)

is o
�
n�1=2

�
as n ! 1; uniformly in m � 1: Finally, for j which does not belong to Jn;m;

j~�1;j � ~�2;j j = 0: Hence, we only need to show that maxj2Jn;m (j�1;j � �2;j j) is o
�
n�1=2

�
as

n!1; uniformly in m � 1:
Let us assume that �1;j � �2;j : The analysis in the case when �2;j � �1;j is similar. For

j 2 Jn;m; several cases are possible. First, both �1;j and �2;j may be equal to xB; or both
�1;j and �2;j may be equal to �xB (the case when xB = �xB is not excluded). Such j would

not contribute to maxj2Jn;m (j�1;j � �2;j j) ; so we will not consider it. Next, in principle,
it may be that �1;j = �xB and �2;j = xB; while xB 6= �xB. Such a case is not possible

asymptotically. Three other cases are as follows.

Case A: �1;j 2 (xB; �xB) and �2;j 2 (xB; �xB) :
Case B: �1;j = �xB and �2;j 2 (xB; �xB) ;
Case C: �2;j = xB and �1;j 2 (xB; �xB) ;
Suppose that Case A holds. Let infx2(xB ;�xB)

�
dGB(x)
dx

�
= �; which, by Assumption 3,

must be larger than zero. We have:

j�1;j � �2;j j � ��1 jGB (�1;j)� GB (�2;j)j

� ��1
���GB (�1;j)�G(nm)B (�1;j)

���+ ��1 ���G(nm)B (�1;j)�G(n)B (�2;j)
���

+��1
���G(n)B (�2;j)� GB (�2;j)

���
� ��1 (lnm + ln) + �

�1
���G(nm)B (�1;j)�G(n)B (�2;j)

��� : (61)

Note that if Case A holds, the multiplicity of eigenvalues �1;j and �2;j must be at most

o
�
n1=2

�
m: Otherwise supx2(xB ;�xB)

���G(nm)B (x)� GB(x)
��� 6= o �n�1=2� and

supx2(xB ;�xB)

���G(n)B (x)� GB(x)
��� 6= o

�
n�1=2

�
; which would violate Assumption 4. There-
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fore, we must have:
���G(nm)B (�1;j)� 1 + j�1

T (nm)

��� = o
�
n1=2

�
and

���G(n)B (�1;j)� 1 + j�1
T (n)m

��� =
o
�
n1=2

�
: Hence, inequality (61) implies that the maximum of j�1;j � �2;j j over all j satisfy-

ing Case A is o
�
n1=2

�
.

Suppose now that Case B holds. Then, since supx
���G(nm)B (x)� GB(x)

��� = o �n�1=2�m�1=2

and since, by de�nition, G(nm)B (�1;j) � 1� j�1
T (nm)

; we must have:

j � T (nm)
�
1� lim

x"�xB
GB (x)

�
+ o

�
n1=2

�
: (62)

On the other hand, since �2;j < �xB and supx
���G(n)B (x)� GB(x)

��� = o
�
n�1=2

�
; it must be

that:

j � T (n)m
�
1� lim

x"�xB
GB (x)

�
+ o

�
n1=2

�
m: (63)

Combining (62) and (63), and using the fact that T (n)m� T (nm) = o
�
n1=2

�
m; we obtain:

j = T (n)m

�
1� lim

x"�xB
GB (x)

�
+ o

�
n1=2

�
m: (64)

Now, since �2;j 2 (xB; �xB) ; the multiplicity of the eigenvalue �2;j must be at most

o
�
n1=2

�
m as in Case A, and therefore, (64) and the de�nition of G(n)B (�2;j) imply:

G
(n)
B (�2;j) = lim

x"�xB
GB (x) + o

�
n�1=2

�
: (65)

Finally, we have:

j�1;j � �2;j j � ��1
���� limx"�xB GB (x)� GB (�2;j)

����
� ��1

���� limx"�xB GB (x)�G(n)B (�2;j)

����+ ��1 ���G(n)B (�2;j)� GB (�2;j)
���

= ��1o
�
n�1=2

�
+ ��1ln = o

�
n�1=2

�
:

Case C is analyzed similarly to Case B.�

3.3 Proof of Theorem 2 ii)

Let us �rst prove the �rst convergence statement of Theorem 2 ii). By de�nition, L̂01:qL̂1:q
is a diagonal matrix with the diagonal elements equal to the �rst q eigenvalues of XX 0=T:

By Lemma 10, the j-th largest of these eigenvalues must solve �j
�
M
(1)
n (x)

�
= 1: Recall

that, by Theorem 1, for any j � q; plim L̂0jL̂j must be equal to xj > �x: Let us �x �1 and �2
so that �2 > x1 and �x < �1 < xq: Since, by Lemma 14, M

(1)
n (x) ; considered as a random
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element of Ck
2
[�1; �2] ; weakly converges to M

(1)
0 (x) ; the solution to �j

�
M
(1)
n (x)

�
= 1

must converge in probability to the solution of �j
�
M
(1)
0 (x)

�
= 1 by continuous mapping

theorem. We conclude that, for any j � q; xj must be a solution to �j
�
M
(1)
0 (x)

�
= 1 on

[�1; �2] : But �j
�
M
(1)
0 (x)

�
= (dj + c)

Z
dG(�)
x�� by de�nition:Hence, xj must be a solution

to (dj + c)
Z

dG(�)
x�� = 1 on [�1; �2] : For x > �x; function

Z
dG(�)
x�� is a decreasing function of

x; so that xj is the only solution of (dj + c)
Z

dG(�)
x�� = 1 on x > �x; and hence, the largest

solution to (dj + c)
Z

dG(�)
x�� = 1 on x 2 R; as stated in Theorem 2 ii).

Let us denote the solution of �j
�
M̂
(1)
n (x)

�
= 1 on x 2 [�1; �2] as xnj :6 Since the

probability that M̂ (1)
n (x) 6= M

(1)
n (x) for some x 2 [�1; �2] converges to zero as n ! 1;

and since M (1)
n (x) converges to M (1)

0 (x) as n ! 1; such a solution exists for j � q and

converges in probability to xj as n!1: Moreover, with probability arbitrarily close to 1,
xnj is identically equal to L̂0jL̂j (by Lemma 10) for large enough n: Therefore, by Lemmas

10 and 14, the asymptotic distribution of L̂0jL̂j around its probability limit must be the

same as that of xnj around xj :

Lemma 14 and part i of Lemma 15 imply that, for any j � q;

�j(M̂
(1)
n (x)) = �j

�
M
(1)
0 (x)

�
+

1p
n
N
(1)
n;jj(x) + op

�
1p
n

�
; (66)

where op
�
1p
n

�
is understood as a random element of C [�1; �2] ; which, when multiplied byp

n; tends in probability to zero as n!1.
Now, let us de�ne function �j (y) for y > 0 so that it is equal to �x if y > limx#�x �j(M

(1)
0 (x))

and to the inverse function to function �j(M
(1)
0 (x)) otherwise. Since d

dx�j(M
(1)
0 (x)) =

� (dj + c)
R dG(�)
(x��)2 ; Silverstein and Choi�s (1995) result that the density of G has form

f(�) = const � (�x� �)1=2 (1 + o(1)) for �! �x implies that limx#�x d
dx�j(M0(x)) = +1; and,

hence, �j (y) is continuously di¤erentiable for y > 0: Applying �j to both sides of (66)

and using the �rst order Taylor expansion of the right hand side, we have for x 2 [�1; �2]:
�j

�
�j(M̂

(1)
n (x))

�
= x+� 0j (�n(x))

1p
n
N
(1)
n;jj(x)+op

�
1p
n

�
; where �n(x) is a random element

of C [�1; �2] such that �n(x)
p! �j(M

(1)
0 (x)) as n!1: Substituting x by xnj in the above

expansion of �j
�
�j(M̂

(1)
n (x))

�
and using the facts that �j(M̂

(1)
n (xnj)) = 1; that �j (1) = xj ;

and that xnj = L̂0jL̂j with probability arbitrarily close to 1 for large enough n; we obtain:p
n
�
L̂0jL̂j � xj

�
= �� 0j (�n(xnj))N

(1)
n;jj(xnj) + op (1) :

6When there is no solution to �j
�
M̂

(1)
n (x)

�
= 1 on x 2 [�1; �2] ; we can de�ne xnj 2 [�1; �2] arbitrarily.
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Further, since xnj
p! xj and �j(M

(1)
0 (xj)) = 1; we have: � 0j (�n(xnj))

p! � 0j (1) : Finally,

N
(1)
n;jj(xnj) � N

(1)
n;jj(xj)

p! 0; which follows from Lemma 14 and Lemma 16. Therefore,
p
n
�
L̂0jL̂j � xj

�
has the following form

p
n
�
L̂0jL̂j � xj

�
= �� 0j (1)N

(1)
n;jj(xj) + op (1) : (67)

Finally, by de�nition, � 0j (1) =
�
�0j

�
M
(1)
0 (xj)

���1
=
�
� (dj + c)

R dG(�)
(xj��)2

��1
: The asymp-

totic normality of L̂0jL̂j and the form of its asymptotic variance 
jj stated in Theorem 2 ii)

now follow from (67) and Lemma 14.

Let us turn to the proof of the second convergence statement of Theorem 2 ii). By

Lemma 10 and by the de�nitions of M̂ (1)
n (x) ; M̂

(2)
n (x) and M̂ (3)

n (x), for any j � q; the j-th
column of �̂ equals

�̂�j =
�
w0njM̂

(2)
n (xnj)wnj

��1=2
M̂ (3)
n (xnj)wnj ; (68)

where wnj is a unit-length eigenvector of M̂
(1)
n (xnj) ; with high probability for large enough

n: By part ii of Lemma 15, wnj
p! ej : Further, Lemma 14, Lemma 16 and the fact

that xnj
p! xj imply that M̂

(3)
n (xnj)

p! M
(3)
0 (xj) � D1=2

Z
dG(�)
xj�� and M̂ (2)

n (xnj)
p!

(D + cIk)

Z
dG(�)
(xj��)2

: Therefore, by (68), we get: �̂�j
p! d

1=2
j

Z
dG(�)
xj��

�
(dj + c)

Z
dG(�)
(xj��)2

��1=2
ej ;

which establishes the form of plim �̂jj stated in Theorem 2 ii).

Now, we will study the asymptotic behavior of �̂1:q around its probability limit. Let us

denote (dj + c)
Z

dG(�)
(xj��)2

as �j : Representation (68) and the facts that w
0
njM̂

(2)
n (xnj)wnj

p!

�j and wnj
p! ej imply that, for any j � q;

p
n (�̂�j � plim �̂�j) =

P4
s=1A

(s)
j + op(1); where

A
(1)
j = �

�1=2
j N

(3)
n (xnj) ej ;

A
(2)
j = �

�1=2
j

p
n
�
D1=2

R dG(�)
xnj�� �D

1=2
R dG(�)
xj��

�
ej ;

A
(3)
j = �

�1=2
j D1=2

R dG(�)
xj��

p
n (wnj � ej) ;

A
(4)
j = D1=2

R dG(�)
xj�� ej

p
n

��
w0njM̂

(2)
n (xnj)wnj

��1=2
� ��1=2j

�
:

Using the Taylor expansion of function x�1=2 around x = �j ; we get:

p
n

��
w0njM̂

(2)
n (xnj)wnj

��1=2
� ��1=2j

�
= �1

2
�
�3=2
j

p
n
�
w0njM̂

(2)
n (xnj)wnj � �j

�
+o
�p
n
�
w0njM̂

(2)
n (xnj)wnj � �j

��
:
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Therefore,

A
(4)
j = �1

2
�
�3=2
j D1=2

Z
dG(�)
xj � �

ej
p
n
�
w0njM̂

(2)
n (xnj)wnj � �j

�
+ op(1)

= �1
2
�
�3=2
j d

1=2
j

Z
dG(�)
xj � �

ej

h
(wnj + ej)

0 M̂ (2)
n (xnj)

p
n (wnj � ej)

+N
(2)
n;jj (xnj)� 2 (dj + c)

Z
dG(�)
(xj � �)3

p
n (xnj � xj)

#
+ op (1) ;

where, to obtain the second equality, we used the Taylor expansion of N (2)
n (xnj) around xj :

Similarly, using the Taylor expansion of function
R dG(�)

x�� around x = xj ; we obtain:

A
(2)
j = ���1=2j d

1=2
j

Z
dG(�)
(xj � �)2

p
n (xnj � xj) ej + op (1)

The formulae obtained for A(4)j and A(2)j and the facts that (dj + c)
R dG(�)
xj�� = 1; that

M̂
(2)
n (xnj)

p! (D + cIk)
R dG(�)
(xj��)2

; and that wnj
p! ej ; imply that we have the following

representation
p
n (�̂�j � plim �̂�j) =

P4
s=1 Â

(s)
j + op(1); where

Â
(1)
j = �

�1=2
j N

(3)
n (xnj) ej ;

Â
(2)
j = �1

2�
�3=2
j d

1=2
j

R dG(�)
xj�� ejN

(2)
n;jj(xnj);

Â
(3)
j =

�
�
�3=2
j d

1=2
j

R dG(�)
(xj��)3

� ��1=2j d
1=2
j

R dG(�)
(xj��)2

�
ej
p
n (xnj � xj) ;

Â
(4)
j =

�
�
�1=2
j D1=2

R dG(�)
xj�� � �

�3=2
j d

1=2
j

R dG(�)
(xj��)2

eje
0
j

�p
n (wnj � ej) :

Statement ii) of Lemma 15 and Lemma 14 imply that

p
n (wnj � ej) = � ~S

�Z
dG(�)
xj � �

��1
N (1)
n (xnj) ej + op(1); (69)

where ~S = diag

0@(d1 � dj)�1 ; :::; 0|{z}
j-th position

; :::; (dk � dj)�1
1A : Further, by the de�nition of

xnj and by (67), p
n (xnj � xj) = ��1j N

(1)
n;jj(xj) + op (1) : (70)

Now, formulas (69) and (70), the de�nitions of Â(s)j ; the fact that xnj
p! xj and Lemma

16 imply that we have the following �nal representation
p
n (�̂�j � plim �̂�j) =

P3
s=1

~A
(s)
j +

op(1); where
~A
(1)
j = �

�1=2
j N

(3)
n (xj) ej ;

Â
(2)
j = �1

2�
�3=2
j d

1=2
j

R dG(�)
xj�� ejN

(2)
n;jj(xj);

Â
(3)
j =

�
�
�5=2
j d

1=2
j

R dG(�)
(xj��)3

� ��3=2j d
1=2
j

R dG(�)
(xj��)2

�
ejN

(1)
n;jj(xj)� �

�1=2
j D1=2 ~SN

(1)
n (xj)ej :
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Using Lemma 14, we conclude that the joint asymptotic distribution of the elements

of
p
n (�̂1:q � plim �̂1:q) is Gaussian. The explicit expressions for the elements of the as-

ymptotic covariance matrix follow7 from the above de�nitions of ~A(s)j ; s = 1; :::; 3, from the

expressions for the covariance of N (1)
n (xj) ; N

(2)
n (xj) ; and N

(3)
n (xj) ; j = 1; :::; q summarized

in the de�nition of 
(�;�) given in Lemma 14; and from the fact that (dj + c)
R dG(�)
xj�� = 1 for

any j = 1; :::; q:�

4 Proof of Theorem 3

In the proof of Theorem 3, we will not make the assumption, made above, that �2 = 1: Also,

we will denote �j (XX 0=T ) as �j : First, let us show that ĉ; �̂2; m̂i (r) ; m̂is (1; 1) ; b~mi (r)

and b~mis (1; 1) are consistent estimators of c; �2; mi (r) ; mis (1; 1) ; ~mi (r) and ~mis (1; 1) ;

respectively: For the reader�s convenience, we repeat here the de�nitions of ĉ; �̂2; m̂i (r) ;

m̂is (1; 1) ; b~mi (r) and b~mis (1; 1) : For any i; s � q and any non-negative integer r;

ĉ = n=T;

�̂2 =
TX

j=q̂+1

�j= (n� q̂) ;

b~mi (r) =
�̂2r

T � q̂

TX
j=q̂+1

(�i � �j)�r ;

b~mis (1; 1) =
�̂4

T � q̂

TX
j=q̂+1

(�i � �j)�1 (�s � �j)�1

m̂i (r) =
�̂2r

n� q̂

nX
j=q̂+1

(�i � �j)�r and

m̂is (1; 1) =
�̂4

n� q̂

nX
j=q̂+1

(�i � �j)�1 (�s � �j)�1 :

The consistency of ĉ follows from Assumption 1 i). For �̂2; note that it converges

to the same limit as 1
n

Pn
j=1 �j because q̂

p! q and �q � ::: � �1 =
�
L̂0L̂

�
11
; which is

bounded in probability by Theorem 1 iii). Further, 1n
Pn
j=1 �j � 1

nT trXX
0 converges to

the same limit as 1
nT trA"BB

0"0A0: Indeed, XX 0�A"BB0"0A0 equals LF 0FL0+LF 0B0"0A0+
A"BFL0; which is a matrix of rank 3k at most. Hence, by Theorem 4.3.6 in Horn and

Johnson (1985), 1
nT jtrXX

0 � trA"BB0"0A0j is no larger than 3k
n (�1 + kA"BB

0"0A0=Tk) �
3k
n

�
�1 +

1
T kAk

2 kBk2 k"k2
�
: But the expression in the brackets is bounded in probability

7To obtain and to check the explicit expressions we used the symbolic manipulation software of the
Scienti�c Workplace, version 5.
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by Theorem 1 iii), Assumption 2 and Lemma 1, whereas 3k
n ! 0. It remains to note

that 1
nT trA"BB

0"0A0
d
= 1

nT

Pn
i=1

PT
t=1 "

2
itaibt

p! �2 by Assumption 2 and the law of large

numbers.

To establish such the consistency of m̂i (r) and b~mi (r) ; we need to show that, for any

integer r;

1

T � q̂

TX
j=q̂+1

1

(�i � �j)r
p! ��2r

Z
dG (�)
(xi � �)r

; when B = IT ; and (71)

1

n� q̂

nX
j=q̂+1

1

(�i � �j)r
p! ��2r

Z
d ~G (�)
(xi � �)r

when A = In: (72)

Then, the consistency of m̂i (r) and b~mi (r) would follow from the consistency of �̂2 and from

the continuous mapping theorem. Showing the convergences (71) and (72) is also su¢ cient

for establishing the consistency of d̂i: Indeed, by Theorem 2, di = �2
�R
(xi � �)�1 d ~G (�)

��1
�

�2 if B = IT and di = �2
�R
(xi � �)�1 dG (�)

��1
� c�2 if A = In: Hence, if the validity of

(71) and (72) is established, the consistency of d̂i would follow from (71) and (72), from the

consistency of �̂2 and ĉ; and from the continuous mapping theorem.

Let us denote the empirical distribution of �q̂+1=�2; :::; �n=�2 as
b~G (�) and the empirical

distribution of �q̂+1=�2; :::; �T =�2 as bG (�) : In this notation, we have:
1

T � q̂

TX
j=q̂+1

1

(�i � �j)r
= ��2r

Z
dbG (�)

(�i=�2 � �)r
and

1

n� q̂

nX
j=q̂+1

1

(�i � �j)r
= ��2r

Z
db~G (�)

(�i=�2 � �)r
:

We need to show that
R dbG(�)
(�i=�2��)r converges in probability to

R dG(�)
(xi��)r and that

R db~G(�)
(�i=�2��)r

converges in probability to
R d ~G(�)
(xi��)r : The latter convergence can be established similarly to

the former one. Hence, we will focus on proving that
R dbG(�)
(�i=�2��)r

p!
R dG(�)
(xi��)r :

For any i � q; let us de�ne ��i = xi+�x
2 : Note that ��i is outside of the support of G; and

it is outside of the support of bG with probability arbitrarily close to 1 for large enough n:
Therefore, it is enough to prove that

R
hn(�)dbG(�) converges in probability to R h(�)dG(�);

where

h(�) =

8><>:
(xi � �)�r for 0 � � � ��i�
xi � ��i

��r for � > ��i
0 for � < 0

and hn(�) =

8><>:
�
�i=�

2 � �
��r for 0 � � � ��i�

�i=�
2 � ��i

��r for � > ��
0 for � < 0

:
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Note that, with high probability, for large enough n; both h(�) and hn(�) are continuous

bounded functions on R. It is because, by Theorem 1 iii) �i=�2
p! xi:

Finally, the absolute value of the di¤erence between
R
hn(�)dbG(�) and R h(�)dG(�) is no

larger thanA1+A2; whereA1 =
R
jhn(�)� h(�)j dbG(�) andA2 = ���R h(�)dbG(�)� R h(�)dG(�)��� :

The term A1 converges to zero in probability because �i=�2
p! xi and because �q̂+1=�2;

which is the upper boundary of the support of bG(�); converges in probability to �x < ��i < xi:
The term A2 converges almost surely to zero because, according to Zhang (2006), bG(�)
weakly converges to G(�) almost surely; and because h(�) is a continuous bounded function
on R. Hence, A1 + A2 converges in probability to zero, which establishes the consistency
of m̂i (r) : The consistency of b~mi (r) ; b~mi;s (1; 1) and m̂i;s (1; 1) can be shown using similar

arguments.

Theorem 3 now follows from the consistency of ĉ; �̂2; m̂i (r) ; b~mi (r) ; b~mi;s (1; 1) and

m̂i;s (1; 1) by continuous mapping theorem.�
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