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ABSTRACT. We propose a tractable continuous-time model of hyperbolic
discounting that can be used to study the behavior of liquidity-constrained
consumers. We show that our dynamically inconsistent model shares the same
value function as a related dynamically consistent optimization problem with a
wealth contingent utility function. Using this partial equivalence, we can show
both existence and uniqueness of a hyperbolic equilibrium. We also show that
the equilibrium consumption function is continuous and monotonic in wealth.
None of these properties apply generally to analogous discrete-time models
of hyperbolic discounting. All of the pathological properties of discrete-time

hyperbolic models are eliminated by our continuous-time model.
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1. INTRODUCTION

Robert, Strotz (1956) first suggested that discount rates are higher in the short run
than in the long run. Almost every experimental study on time preference has
supported his conjecture (Ainslie 1992). To capture this empirical regularity, Laib-
son (1997a) adopted a discrete-time discount function, {1, 36, 362, 36%,....}, which
Phelps and Pollak (1968) had previously used to model intergenerational time pref-
erences. With § < 1, this ‘hyperbolic’ discount function captures the gap between
a high short-run discount rate, —In(36), and a low long-run rate, —In(é). In the
last several years, this discrete-time discount function has been used to model a wide
range of behavior: e.g., saving, contracts, job search.!

The hyperbolic discount function implies that current preferences are inconsistent,
with those held in the future. Beginning with the work of Strotz, such dynamic incon-
sistency has been analyzed by treating the individual as a sequence of independent
selves whose choices are modelled as an intrapersonal game.

This game-theoretic framework has proved extremely fruitful. A recurrent prob-
lem has, however, plagued most of these hyperbolic applications: strategic interaction
among intrapersonal selves often generates counterfactual policy functions. Hyper-
bolic consumption functions need not be globally monotonic in wealth, and may even
drop discontinuously at a countable number of points.

Such non-monotonicities arise because early selves are faced with two competing
strategies with very different implications for current consumption. In the first strat-
egy, the early self consumes a lot, thereby depriving later selves of resources that
those later selves would wastefully splurge. Alternatively, the early self consumes
relatively little, thereby providing later selves with enough resources so that those
later selves will be able to both consume and save for the future. As wealth rises, the

early self switches from the first strategy to the second, generating a negative slope

!For examples, see O’Donoghue and Rabin (1999b), Angeletos, Laibson, Repetto, Tobacman and
Weinberg (2000), and Della Vigna and Paserman (2000).
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in some interval of the consumption function. Often such declines are discontinu-
ous. Numerous authors, including Laibson (1997b), Morris and Postlewaite (1997),
O’Donoghue and Rabin (1999a), Harris and Laibson (2000), and Krusell and Smith
(2000) have identified hyperbolic examples in which the consumption function has
negatively sloped intervals. We call these examples ‘hyperbolic pathologies’. Figure
1 plots examples of such pathological consumption functions.

Two classes of solutions have been proposed to address such pathologies. First,
Harris and Laibson (2000) point out that such pathologies occur only when the model
is calibrated in a limited region of the parameter space. When the hyperbolic model is
calibrated with reasonable levels of noise (i.e., income volatility) and reasonable values
of other preference and technology parameters, the pathologies typically vanish. But
Harris and Laibson (2000) acknowledge that there do exist defensible calibrations for
which the pathologies are still present (notably when the coefficient of relative risk
aversion lies well below unity).

Second, O’Donoghue and Rabin (1999a) point out that the pathologies arise only
when consumers are modelled as rational agents. If consumers do not recognize that
their own preferences are dynamically inconsistent, they will not have any incentive
to act strategically vis-a-vis their own future selves. Hence, naive consumers who do
not anticipate their own dynamic inconsistency will not exhibit pathologies. However,
this solution requires that consumers be completely naive about their own future
preferences. Any partial knowledge of future dynamic inconsistency reinstates the
pathologies.

In the current paper we identify a solution to the pathology problem that is more
robust than either of those discussed above. First, we propose a continuous-time
model of time discounting that captures the qualitative properties of the hyperbolic
model. This model distinguishes between the ‘present’ and the ‘future’. The present
is valued discretely more than the future, mirroring the one-time drop in valuation

implied by the discrete-time quasi-hyperbolic discount function (Laibson 1997) and
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its continuous-time generalizations (Barro 1999, Luttmer and Mariotti 2000). In
addition, we assume that the transition from the present to the future is determined
by a constant hazard rate. This simplifying assumption enables us to reduce our
problem to a system of two differential equations that characterize present and future
value functions.

We find that this simplified continuous-time model is still not tractable when we
allow for a class of general utility functions and liquidity constraints. However, our
model has a limit case that is analytically tractable and psychologically relevant. This
is the case in which the present is vanishingly short. By focusing on this psychologi-
cally important limit case, we take the phrase “instantaneous gratification” literally.
We analyze a model in which individuals prefer gratification in the present instant
discretely more than consumption in the momentarily delayed future. This model
is a useful benchmark that characterizes the neighborhood of models in which the
present is short, but not precisely instantaneous.

We show that the instantaneous-gratification model, which is dynamically incon-
sistent, shares the same value function as a related dynamically consistent optimiza-
tion problem with a wealth-contingent utility function. Using this partial equiva-
lence, we can show both existence and uniqueness of the hyperbolic equilibrium. We
also show that the equilibrium consumption function is continuous and monotonic in
wealth. The monotonicity property relies on the condition that the long-run discount
rate is weakly greater than the interest rate. All of the pathological properties of
discrete-time hyperbolic models are eliminated by our continuous-time model.

Two other sets of authors have analyzed hyperbolic preferences in continuous
time. Barro (1999) analyzes the choices of hyperbolic agents with constant relative
risk aversion preferences, deterministic income paths, and access to perfect markets.
He focuses on the general equilibrium implications of hyperbolic discounting and the
ways in which hyperbolic economies may be observationally equivalent to exponential

economies. Luttmer and Mariotti (2000) begin with the Barro problem and introduce
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stochastic asset returns. Luttmer-Mariotti extend Barro’s observational-equivalence
result, but also identify endowment processes for which the hyperbolic model has new
asset-pricing implications (e.g., an elevated equity premium). Luttmer and Mariotti
work with general discount functions and consider numerous special cases. They have
independently identified some special properties of the particular case in which the
present is vanishingly short. However, these findings do not overlap with ours.

Barro and Luttmer-Mariotti both focus on linear policy rules, which support a
unique equilibrium in their respective models. The existence of this linear equilib-
rium results from special preference assumptions (constant relative risk aversion),
market assumptions (complete markets, including sales of future labor income), and
a restriction to linear policy rules. We generalize these restrictive assumptions. We
work with a broad class of preferences. We introduce the realistic constraint that
consumers may not borrow against future labor income. We do not require linear
policy rules. Indeed, our problem does not admit a linear equilibrium. We pursue
these generalizations for greater realism. We contend with the resulting pathologies
that arise in our general setting but do not arise under the Barro/Luttmer-Mariotti
assumptions in either discrete or continuous time.

Our results also differ from Barro and Luttmer-Mariotti in that we are able to
prove uniqueness in the class of Markov equilibria. This is a desirable and unex-
pected result, since the hyperbolic model is a dynamic game, which can generate
indeterminacy. For example, Krusell and Smith (2000) have shown that hyperbolic
Markov equilibria are not unique in a deterministic discrete-time setting. In the cur-
rent paper, we provide two uniqueness results. First, we prove uniqueness in a class
of continuous-time models with stochastic asset returns. Second, we propose a refine-
ment that uses the unique equilibrium in the stochastic setting to select a sensible
unique equilibrium in the deterministic setting. This refinement takes the natural
approach of selecting the limiting equilibrium obtained as the noise vanishes.

The rest of the paper formalizes our claims. In Section 2 we describe our gen-
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eral continuous-time model. In Section 3 we describe an important limit case of our
model. We call this limit case the instantaneous-gratification model. In Section 4
we show that the instantaneous-gratification model has the same value function as
a particular dynamically consistent optimization problem. We call this latter prob-
lem the ‘equivalent problem’, but note that it is not observationally equivalent to
the hyperbolic problem. The instantaneous-gratification model shares the same long-
run discount rate as the equivalent problem, but the two problems have different
instantaneous utility functions and different equilibrium policy functions. In Sec-
tion 5, we use our partial equivalence result to derive several important properties
of the instantaneous-gratification problem, including equilibrium existence, equilib-
rium uniqueness, consumption-function continuity, and consumption-function mono-
tonicity. In Section 6 we consider the deterministic version of the instantaneous-
gratification problem, and derive some additional properties. In Section 7 we re-
formulate and generalize the results of Section 3 showing that the instantaneous-
gratification model is the limit of the general model of Section 2. In Section 8 we

conclude.

2. THE MODEL WITH FINITE A
2.1. Dynamics. At the outset of period t € [0,+00), the consumer has wealth
z € [0,400). She then receives labor income y € [0, +00). If z > 0, she may choose
any consumption level ¢ € (0, +00). If z = 0, she may choose any consumption level
¢ € (0,y]. Whatever she does not consume is invested in an asset, the returns on which
are distributed normally with mean udt and variance odt, where u € (—oo, +00) and

o € (0,400). The change in her wealth in period ¢ is therefore
dr = (px +y — c¢) dt + oxdz,

where 2z is a standard Wiener process. In particular, the consumer may never borrow.
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2.2. Preferences. The consumer is modelled as a ‘sequence’ of autonomous selves.
These selves are indexed by the period in which they control the consumption choice.

In the standard discrete-time formulation of quasi-hyperbolic preferences the present
consists of the single period ¢. The future consists of periods t+1, t+2, .... A period
n steps into the future is discounted with the factor 6" and an additional discount
factor 3 is applied to all periods except the present (Laibson 1997). This model can
be generalized in two ways. First, the present can last for any number of periods
T; € {1,2,...}. Secondly, T; can be random. The preferences in equation (1) below
are a natural continuous-time analogue of this more general formulation.

In the present continuous-time setting, we assume that the preferences of self ¢

are given by

o { /t T 0 (e () ds 4 a /t T 0 (e (s)) ds | (1)

+Ti

where v € (0,+00), a € (0,1], U : (0,+00) — R and T; is distributed exponentially
with parameter A € [0, +00). In other words, self ¢ uses a stochastic discount function
that decays exponentially at rate v up to time 7}, drops discontinuously at T; to a

fraction « of its level just prior to T}, and decays exponentially at rate v thereafter.

e if s < T,

Discount function = D(t,s) =
ae 6D if s> T,

This continuous-time formalization is close to the deterministic functions used in
Barro (1999) and Luttmer and Mariotti (2000). However, we assume 7} is stochastic.
The stochastic transition with constant hazard rate enables us to reduce our problem
to a system of two differential equations that characterize present and future value
functions.

Figure 2 plots a single realization of this discount function, with 7; = 3.4. Figure



Instantaneous Gratification 8

3 plots the expected value of the discount function for a range of A values: \ €

{0,0.1,1, 10, c0}. Analytically, the expected value is given by,
EtD(t, S) — e*/\(sft)efv(sft) + (1 . 67/\(570)04677(871:).

When \ = 0 our discount function is equivalent to a standard exponential discount

function. As A — oo our discount function converges to a jump function:

) 1 if s=t
lim D(t,s) =
A—0o ae 7D if s >t

Letting A go to infinity captures the special case in which the present is vanishingly

short. We will return to this case below.

2.3. Equilibrium. We confine attention to the set of perfect equilibria in sta-
tionary Markov strategies. Moreover we focus on equilibria that are bounded below

in the sense that the continuation-value function is at least @

2.4. Discussion of the Model. Our continuous-time buffer-stock model has an
immediate advantage over its discrete-time analogue: any equilibrium consumption
function C' is continuous everywhere on [0, 400). However, the principal pathology
of the discrete-time buffer-stock model remains: while C' is perfectly well behaved for
small values of x, the average propensity to consume fluctuates for large values of x.
These fluctuations may be large enough to produce intervals in which C” < 0.

This pathology can be particularly well illustrated in the limiting case of the model
in which ¢ = 0. In this case, the Bellman system is essentially two-dimensional. It
is therefore possible to draw a phase portrait for it. This portrait shows that, as
x — 400, the system spirals around a steady state. This steady state is simply
the solution of the homogeneous model obtained by putting y = 0. In particular,

the average propensity to consume oscillates around its steady-state value. This
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automatically means that C' cannot be concave; and, in extreme cases, it means that
C may not even be increasing.

Fortunately, we need not be interested in the general case of this model. The
urge for “instantaneous gratification” suggests that the present — i.e., the interval
from ¢ to t + T, during which consumption is particularly highly valued — is very
short. These observations lead us to consider the limiting case of the model in which
A — +00, and hence the present becomes vanishingly short. We refer to this limiting

case as the instantaneous-gratification model.

3. THE INSTANTANEOUS-GRATIFICATION MODEL
3.1. Working Hypotheses. Let W : [0,+00) — R be the current-value func-
tion, let V' : [0,400) — R be the continuation-value function and let C' : [0, +00) —
[0, 4+00) be the consumption function. Then we make the following working hypothe-

ses:

H1 W and V are continuous on [0, +00);
H2 W and V are twice continuously differentiable in (0, +00);
H3 W’ (0+), W” (0+4), V' (0+) and V" (0+) all exist;

H4 there exist continuous W,V : [0,4+00) — R such that W — W and V — V

uniformly on compact subsets of [0, +00) as A — +o0;
H5 W and V are twice continuously differentiable in (0, 4+00);
H6 W (0+), W' (0+), V' (0+) and V" (04) all exist;

H7 W — W', w" — W", V' =V and V" > V" uniformly on compact subsets of
(0, +00) as A — +o0;

HS8 there exists K € [0, +00) such that, for all X € [0, +o0), C (z) < K (1 + z).
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Moreover we put W’ (0) = W’ (0+), W”(0) = W” (0+), V' (0) = V' (0+), V" (0) =
/!

V7 (0+), W (0) = W (0+), W (0) = W' (04), V' (0) = V' (0+) and V" (0) =
V" (0+).

Remark 1. Note that while W and V are assumed to converge uniformly on compact
subsets of [0,4+o00), W', W V' and V" are only assumed to converge uniformly on
compact subsets of (0, +00). This distinction is crucial: it turns out that, while C' is

continuous on the whole of [0, +oc), its limit C may have an upward jump at 0.

3.2. The Bellman System of the Model with Finite A\. For all ¢ € (0, +00),

put
f(¢) = argmax U (¢) — c¢ and fy (¢) = argmax U (¢) — co.
c€(0,4-00) c€(0,y]
Then:
%a%ﬂwu (2 4y — C) W' — AW — A (W — aV) + U (C) =0, @)
%(r?x?v" F(prty—C)V =4V +U(C) =0 (3)
and
C=fw) (4)
when x > 0; and
(y—CYW' =AW =X (W —aV)+ U (C) = 0, (5)
(y—CYV' =4V +U (C)=0 (6)
and
C = fo (W) (7)

when x = 0. We refer to this system as the Bellman system with finite \.
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3.3. Continuity of the Consumption Function. It follows at once from the

continuity of W’ that C' is continuous in (0, +o00). For all ¢ € (0,400), put

h(¢) = max U (c)— c¢ and hy(¢) = max U (c) — c¢.

c€(0,+00) c€(0,y]
Then equation (2) can be written

1
iaszW” +(px+y) W — AW = X(W —aV) + h (W) =0, (8)

and equation (5) can be written

yW' — AW = X (W — aV) + ho (W) = 0. 9)
Letting x — 0+ in equation (8), we obtain

yW' — AW = AX(W —aV)+h (W) =0 (10)

when z = 0. Now h (W') > ho (W’) for all W', with strict inequality if W' < U’ (y).
Comparing equation (9) with equation (10), we therefore have W' > U’ (y). Hence

C' is continuous at 0 as well.

3.4. Derivation of the Bellman System of the Instantaneous-Gratification
Model. Put Z = W —aV. Multiplying equations (3) and (6) by « and subtracting
them from equations (2) and (5), we obtain

%aszZ"—l—(,ux—l—y—C’)Z’—(7+A)Z+(1—0¢)U(C):0

when > 0. In other words, Z is the e.p.d.v. of the flow of utility (1 — ) U (C) up
to time T;. Hence Z — 0 as A — 400, and W = V.
Next, put C' = f (aV’) for all > 0. Then, passing to the limit in equation (3),
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we obtain

SV 4 (ur+y ~C) V' =4V +U (T) =0 (11)

when z > 0.

Next, let 20 be the time-path for assets starting at 0. Then we have:
dz® (t) = (pa® (t) +y — C (2° (1)) dt + o2” (t) dz (1) ,

with initial condition

and
V() =E { [emvie @) dt] .

Let 7° be any limit point of z°. Then there are two cases to consider.
Suppose first that V' (0) < % In this case C (0+) > y, and 7 must remain
trapped at 0 forever. We can therefore find  : [0, +00) — P ([0, K]) such that

dfo(t):y—/cdm(cu):o

for all ¢t > 0 and

V(0)=E th (/U(c)dﬂ(cu)) dt].

UTy) <T(0)<E Ve—th (/cd/f(c|t)> dt} _E {/e‘”tU(y)dt} :@.

Hence: V (0) = @; and « (- | t) assigns probability 1 to y for almost all ¢ > 0. In

particular, C (0) is well defined and equal to y.
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Suppose second that Vv (0) > % In this case C (0+) < y, and once 7° enters
the open interval (0,+00), it must remain there forever. We can therefore find a

stopping time 7 and a & : [0,7) — P ([0, K]) such that

dfo(t){nydH(Ct)O for all t € [0, 7) }

(12 (t) +y — C (2° (1)) dt + 0T° (t) dz (t) for all t € (7,400)

and

V() =E U;wt (/U(c) dr (c | t)) dt+/T+oo U (T (@ (1)) dt} |

V(0)<E UO e (/ ed (c | t)) dt + /;OO e (T (2 (1)) dt}

_F [ /0 MY () dt 4 eV (0)] _F [(1 _e) T8 | oy (0)1

gl
AN [e™] (V (0) — M)

)

and

Now, letting  — 0+ in equation (11), we obtain
(y— C(04)) V' (0) =~V (0) + U (T (0+)) = 0

and

V(0) = % (57 )+ U (TO+) ~T OV (0)

-2 (7 0+ UG -7 0) = T (13)
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Hence, combining equations (12) and (13), we obtain
E [6777—} > 1.

In other words, 7 = 0 with probability 1. In particular, we effectively have C (0) =
C (0+).

3.5. The Bellman System of the Instantaneous-Gratification Model. To

summarize, when A\ — +00, the Bellman system with finite A converges to the system:

SV 4 (4 y ~C)V =4V +U (T) =0 (14)
and
C=f (aV') (15)
when x > 0; and
(y—C)V' =4V +U(C)=0 (16)
and
c=f (av’) (17)

when z = 0. We refer to this new system as the Bellman system of the instantaneous-

gratification model.

Remark 2. Our derivation of the boundary condition for the Bellman system of the
instantaneous-gratification model highlights the importance of the requirement that

V> YW
- 7

4. AN EQUIVALENCE RESULT

In the present section we show that, under appropriate assumptions, the value func-
tion V of the hyperbolic consumer in the instantaneous-gratification model is also the

value function of an exponential consumer with appropriately chosen utility function.
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This result can be motivated by comparing the Bellman system with A = 0 with
the Bellman system of the instantaneous-gratification model. Recall first that, for all

¢ € (0,+00), we have

h(¢) = max U (c)—c¢ and hy(¢) = max U (¢) — co.

c€(0,+00) c€(0,y]
Hence, putting A = 0 in the Bellman system with finite A, we obtain:

1
SO W+ (x4 y) W =AW+ h (W) =0 (18)

when x > 0; and

yW' — AW + ho (W) =0 (19)

when = = 0. Secondly, for all ¢ € (0, +00), put
h(¢) =U(f (a9)) — f(ad) ¢ and ho (¢) = U (fo (ag)) — fo (ad) ¢.
Then the Bellman system of the instantaneous-gratification model can be written:
1 9 o= — = =
Tl +(ux+y)V—7V+h(V):0 (20)

when x > 0; and
yV' — AV + hy (V,) =0 (21)
when z = 0.
Now, provided that 1 is decreasing and convex, we can find a utility function U

such that

h(¢) = Jnax U (c) — co.

Similarly, provided that /hjo is decreasing and convex, we can find a utility function
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[70 such that

ho (¢) = max Us (¢c) — co.

c€(0,y]

However, unlike h and hy, h and ﬁo are not generated by the same utility function. On
the contrary, Up dominates U. In particular, we have Uo (y) > U (y). Hence, in order
to obtain the desired equivalence, the utility function of the exponential consumer
must be made to depend on her wealth as her consumption. Specifically, she must

use the utility function U when z > 0 and the utility function (70 when z = 0.

4.1. Assumptions. In order to establish our equivalence result, we shall need the

following basic assumptions:
A1 U has domain (0,+400) and range (—oo,+00);
A2 U is twice continuously differentiable on (0, +00);

A3 U’ (¢) > 0 for all ¢ € (0,400);

A4 there exist 0 < p, <py < +oo such that p, < _(C]({(';gc) < py for all ¢ € (0, +00);

A5 ~ > max { (1 — BU) (u — %,{_)Uo*z) ,(L=7y) (n— 3Py0?) }

Assumptions A1-A4 can be summarized by saying that the consumer has bounded
relative risk aversion, or BRRA for short. Assumption A5 is the natural integrability
condition for an exponential consumer with BRRA preferences: it ensures that the
expected payoff of such a consumer is well defined.

We shall also need the following further assumptions, which are specific to the

hyperbolic context:

B1 there exist —oo < g, < 0y < 400 such that 0, < % < Oy for all

¢ € (0,400);

B2 04+BU—1>0;
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B3 2—a)—(1—a)fy > 0.

Assumption Bl requires that the ratio of the coefficient of relative prudence %
to the coefficient of relative risk aversion 7CU[,J(’;§C) is bounded away from 0 and 4o0;

Assumption B2 ensures that h and ﬁo are decreasing; and Assumption B3 ensures

that A and EO are convex.

Remark 3. Assumptions A1-A5 and BI1-B3 can be dramatically simplified if U has
a constant coefficient of relative risk aversion py: Assumptions A1-A5 reduce to the
requirement that v > (1 — py) (n — $puo?); and Assumptions B1-B3 reduce to the

requirement that a4+ py — 1 > 0.
4.2. Analysis of h. Recall that h (¢) = U (f (ag)) — f () ¢ for all ¢ € (0, +00).
Theorem 4. Suppose that Assumptions A1-A5 and B1-B3 hold. Then:

1. W (¢) <0 for all ¢ € (0, +00);

2. W' (¢) > 0 for all ¢ € (0,+00);

3. there exist 0 < p. <p; < +0c such that p. < *%fl(';()@ < p; for all ¢ € (0,+400).

Proof. Note first that
h(¢) = U (f(ad)) — f () ¢ = U (f (a)) — af (ad) 6 — (1 — a) f (ad) ¢

=h(ag) = (1 -a) f(ag)¢.

Hence

B (¢) = al’ (ag) — (1 — a) f (ag) — (1 —a)af’ (ad) ¢
= —af(ag) — (1 —a) f(ag) — (1 — a)af (ad) ¢ = —f (ag) — (1 — a) ' (ag) ad
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9ad) L Uf(a0)

( ) flag) (”(1 ) T lad) 07 (7 (a¢))>
l-a \__—flod) .

~f (0“’”( (f(a¢))> 5 (7 (ag)) (@ TPo(Fad) = 1)

Part 1 of the Theorem therefore follows from Assumption B2.

Secondly, as shown above, we have

W () = —f(ag) — (1 —a) f (ag) ad.

Hence

B (¢) = —af (a) — (1 —a) f (ad) a — (1 — a) af" (ag) ad

——af (o) (14 (- o) (14 555000))

(1 (1 T eo)))

~ U (f (ad)) U (f (ag))*
- T ad) 1+ (1 —a)(1—0bv(f(ag))))
- TG (=)= (1 —a)by(f(ag))).

Part 2 of the Theorem therefore follows from Assumption B3.
Thirdly, using the final expressions obtained above for '’ (¢) and n (¢), we have

—6h" (¢) _ (2—a)—(1—a) by (f (a9))
() (a+pu(flag)) =1)

Hence N
2-0)-(1-a)fy _ —6W"(9) _ (2=a)—(1-a)0,
(a+py—1) O W(9) (oa—i—BU—l)
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We may therefore put

2-—a)—(1—w)f
(a+py—1)

2-a)-(1-a)8,

U _
and p; =
(oa—i—BU—l)

P; =

This establishes part 3 of the Theorem. B
We may therefore apply Fenchel’s Theorem to conclude that, if we define the
function U : (0, +00) — R by the formula

U@ = min h(¢)+7cs,

P€(0,400)
then
h(¢)= max U(C)— ¢c.
ce(0,4-00)
Moreover:

Theorem 5. Suppose that Assumptions A1-A5 and B1-B3 hold. Then:
1. U (@) >0 for all € € (0, +00);

2. U" (@) <0 for all € € (0,400):

3. there exist 0 < p, < py < 400 such that p; < *g’?("g()a < pg for all ¢ € (0,400).
Proof. Put
7(0) = argmingeg o0 () + 59
Then
U'(e)=9(0),
0" @) =7 @) =~
h" (g (c))
and ~ ~
0@ _ H @)
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In particular, we may put

_ 1
BU:_—ande:—

Ph i

This completes the proof of the Theorem. B

4.3. Analysis of hy. Recall that ho(¢) = U (fs(ag)) — fo(ag) o for all ¢ €
(0, 400).

Theorem 6. Suppose that Assumptions A1-A5 and B1-B3 hold. Then

~ Uly)—dy if0<¢< M
h(g) iYW << too

Moreover /hj() (@—) < E() (M—F) In particular, ﬁo is strictly decreasing and

o

convex.

Proof. The first statement is immediate from the definition of EO. It implies

that

2 (VW N _m (U W) _ _—fUW) : B
i (S28) = (S2) = setr @y oo U0 60 -

L, <a+py(y)—1> Z_y:g()(U'(y)_),.

pu (Y) .
We may therefore apply Fenchel’s Theorem to conclude that, if we define the

function U : (0,y] — R by the formula

Us (c) = sonin ho (@) +¢o,

then

ho (¢) = max U (¢) — ¢¢.

ce(0,y]

Moreover:
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Theorem 7. Suppose that Assumptions A1-A5 and B1-B3 hold. Then

o U (@) if0<¢<y
Uo(€) =19 ~ N . , R )
Uy)+ (c—yy) U (vy) ifpy<c<y

where
_a+py(y) —1
Y = )
Pu (y)
Moreover Uy (y) = U (y).
Proof. We have
0 () Uly)— ¢y if0<¢< W
0 = -~ !
h(9) if ZW < ¢ < too

and

=—y if0<¢< UT(”

Wy (9)] €[y, —vy] if o = LW

=1 () if £ < ¢ < 400

Hence
Milge(o o0y b () + 00 if 0 < T < ¢y
min  ho (¢) +26 = { ho (U—@)) FlW gy <e<y
¢»€(0,+00) « «
—00 if y <e< +oo
Moreover
in h(d)+cp=0(C

sonin (¢) +co (©

and

P (U_(y)> U g (U’ (y)) LU

« (6 « (6]
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«

:JKU@»+¢ﬁ%Q+@—wf“” U () + (@ — ) U ().

~ (U (y U'(y U'(y U'(y
ho<L>+yL=U(y)—y ( )+y ( )ZU(y)-l
« « « Q@
4.4. The Equivalent Consumption Problem. The analysis of Sections 4.2 and
4.3 shows that V is the value function for the consumption problem of a consumer
whose wealth evolves according to the same dynamics as in the original problem, but

whose preferences are given by

+o0 N N
E, [/ oY (5= ) (X{g(s):o}Uo (€(5)) + x>0 U (¢ (s))) ds] :
t

In other words, the equivalent consumer uses a standard discount function that decays
exponentially at rate v, but uses a non-standard utility function that depends on her

wealth.

Remark 8. We denote consumption and wealth in the equivalent problem by ¢ and
Z in order to emphasize the fact that the equivalent consumer makes different con-

sumption choices from the original hyperbolic consumer.

Figure 4 plots an example of [70 and U for the special case in which U has a
constant coefficient, of relative risk aversion p;;. For this special case we have closed-

form solutions,
Q) YU (c)
C) = ——

0( =9,
6 U (@) if 0 < &<y

C) = ~ I
’ U (y) + (@ vy) o~ ifgy <<y

and
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5. SOME FEATURES OF THE INSTANTANEOUS-GRATIFICATION MODEL
In the present section, we exploit the equivalence result of Section 4 to investigate the
instantaneous-gratification model. We establish the existence and uniqueness of equi-
librium, the continuity of the consumption function in the interior of the wealth space,
a sufficient condition for the monotonicity of the consumption function, a generalized
Euler equation governing the evolution of the marginal utility of consumption and a
corresponding equation governing the evolution of consumption itself. Assumptions

A1-A5 and B1-B3 will be in force throughout the section.
5.1. Existence and Uniqueness of Equilibrium.

Theorem 9. The Bellman system of the instantaneous-gratification model has a

unique solution (V, 6) .

Proof. The equivalence result of Section 4 shows that (V,U) solves the Bell-
man system of the instantaneous-gratification model iff V solves the Bellman equation
of the equivalent problem, C = f (aV’) when > 0 and C = fo (aV’) when x = 0.
Moreover standard considerations show that the Bellman equation of the equivalent

problem possesses a unique solution. H
5.2. Continuity of the Consumption Function.

Theorem 10. We have:

1. C is continuous when = > 0;

2. there exists iy € (—00,+00) such that C (0) < C (0+) for all j < peye and

C (0) = C (0+) for all pt > peric-

Proof.  Note first that C is continuous in the interior because C' = f (V’)

there. Secondly, C' (0) = fo (ozvl (O)) =yAf (avl (O)) <f (0471 (O)) = C(0+).
Hence C (0) < C (0+), with equality iff V' (0) > £ Thirdly, let V be the value

«
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function of the restricted version of the equivalent consumption problem in which
the consumer has utility function U instead of (70 when her wealth is 0. It can be
shown that V' (0) > % iff V (0) > @ Moreover: V (0) is strictly increasing in y;
V (0) = @ < @ for all p sufficiently small; and V (0) — 400 as i — +0co. B

5.3. Monotonicity of the Consumption Function.
Theorem 11. Suppose that v > p. Then C' >0 when z > 0.

Proof.  Note first that C = f (V’) in the interior. Hence C' is continuously
differentiable there, and C = f (V,) V'. Hence C > 0iff V' < 0. Secondly,

differentiating equation (20) with respect to z, we obtain

1 —_— R R R R ~ —_— R
502$2V”’ + (/M n y) V// _ ')’V/ n 0'2$V” n ,U,V/ L (V/) V// _0

V"= 2 ((7—/1)71 — ((u+02) zty+n (V/))V”) .

022

In particular, if V' = 0, then

/! 2 —
V= (y=wV =0.

o232

Hence, if there exists z; € (0,400) such that V' (1) > 0, then V' > 0 on (zy, +00).
Thirdly, if there exists z; € (0, +00) such that V" (1) > 0 on (zy, +00), then V grows
at least linearly; and this contradicts the assumption that py > Py > 0. Overall,
then, we must have V' < 0 on (0, 4+0c). B

5.4. The Generalized Euler Equation. Since U’ (6) may have a discontinuity
at 0, we cannot use It6’s Lemma to study its dynamics. We can, however, use Ito’s

Lemma to study the dynamics of M = V'. These dynamics are very closely related

to those of U’ (5) Indeed:
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1. if C (0+) = C (0), then the dynamics of M are identical to those of U" (C);

2. if C(0+) > C(0) and z (0) € (0,+0c0), then the dynamics of M are identical
to those of U’ (5) on the interval (0, 7), where 7 is the first time that x hits 0;

and

3. if C (04) > C (0) and z (0) = 0, then the dynamics of M are identical to those
of U’ (6), in the sense that both are trivial.

The two dynamics only differ if C' (0+) > C (0) and z (0) € (0,+00), in which case
U (5) jumps up at 7.

Theorem 12. We have:

Q)

dM
M

X

- (7—u+(1—a)6/—|—02pU(5) )dt—apU(ﬁ)%dz (22)

ql

if either x > 0 or z = 0 and C (0+) = C (0); and

Z -0
M

ifx =0 and C (0+) > C (0).

This theorem describes the the exact evolution of ‘marginal utility’ (specifically
M = VI). The equation includes a stochastic term, (i.e., the final term, which in-
cludes dz), and deterministic terms (i.e., the terms which include dt). The stochastic
term captures the negative effect that positive wealth shocks have on marginal utility.

The first deterministic term, ydt, implies that marginal utility rises more quickly
the higher the long-run discount rate (y). The —pudt term implies that marginal
utility rises more slowly the higher the rate of return (u). The o2py (6) %ﬁdt term
captures two separate effects. First, asset income uncertainty (o?) affects the savings

decision. Second, since marginal utility is non-linear in consumption, asset income
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uncertainty affects the average value of future marginal utility. The net impact of
these two effects is always positive.

The (1 — «) C'dt term captures the effect of hyperbolic discounting. Naturally,
when « = 1 this effect vanishes and the model coincides with the standard exponential
discounting case. Since C rises as o falls, the hyperbolic effect (1 — «) C rises as
falls. Marginal utility rises more quickly the lower the level of «.

Proof. We begin by applying Itd’s Lemma to M to obtain
1 —
dM = (50%2]\4" + (pz+y—C) M') dt + oxM'dz. (23)

Next, we put C= f (aM). Then, differentiating equation (14) with respect to x, we

have

1 ~ - o\~
S0 M + (,ux by C) M' =AM + o®eM' + uM — C'M + U’ (0) C' =0

when z > (. Moreover this equality extends by continuity to the case x = 0. Hence
1 — 1 ~ ~
§(;%QM” + (pz+y—C)M' = 502:52M” + (/w +y— C) M + (C — C) M

=M — g*oM' — M +C'M ~ U (C) €'+ (C=T) M
— M — o%eM' — M+ C'M — aMC' + (C = T) M’
= (’Y—M+(1—a)5')M— (02x— (5—6))M’

and

/ / /

dM ~ . M ~ A\ M M
——(’y—,u+(1—a)C’—axﬁ+(C—C)M>dt+adez.
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Next,

U (¢)c o () o &
Mo w(e)  w(e) ¢ (©)

Hence

W (0@ (@ - (D) (@) G ) a

~\ zC’

—opu (C’) 7(11 (24)
In particular, we have the first statement of the Theorem. As for the second state-
ment, note that if z = 0 and C (0+) > C (0) then C (0) = y and therefore it follows
directly from equation (23) that dM = 0. In particular, we have

~/ _

~ = ~\ C
(C—C’)pU (C)Ezv—u—l—(l—a)C’.
L.e. the correction term in equation (24) exactly cancels the other terms. ®

5.5. The Dynamics of Consumption. Since C' may have a discontinuity at
0, we cannot use It6’s Lemma to study its dynamics. We can, however, use Ito’s
Lemma to study the dynamics of C' = f (aM). Just as the dynamics of M were
closely related to those of U’ (6), so the dynamics of C are very closely related to
those of C. Indeed:

1. if C (0+) = C(0), then the dynamics of C are identical to those of C;

2. if C (04) > C (0) and z (0) € (0, +00), then the dynamics of C are identical to
those of C on the interval (0,7), where 7 is the first time that z hits 0; and

3. if C (0+) > C (0) and z (0) € 0, then the dynamics of C are identical to those

of C, in the sense that both are trivial.
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The two dynamics only differ if C' (0+) > C (0) and z (0) € (0, +00), in which case
C jumps down at 7.

For all ¢ € (0,400), put my (¢) = —%, which is Kimball’s (1990) prudence
coefficient. Then:

Theorem 13. We have:

_ N\ 2 ~
£ _ |1 T (1~_ @) C + 02]:9 — %O‘QTFU (5) xg' dt + 0']:9 dz (25)
C pu (0) C C C

if either x > 0 or x = 0 and C (0+) = C (0); and

ifx =0 and C (0+) > C (0).

Equation (25), which describes the evolution of consumption, compares closely to
equation (22), which describes the evolution of marginal utility. To underscore the
similarities, begin with equation (22), replace C' with C , and then divide by py. The

only contrasts between this resulting equation and equation (25), are a series of sign

- N\ 2
reversals and the appearance of the new deterministic term %0'271'(] (C’) (‘Bg) dt.

The sign reversals reflect the inverse relationship between consumption and marginal
utility. The new deterministic term reflects the effects of prudence (Kimball, 1990),
while the term az%dt reflects the impact of risk aversion. The sign of the pru-
dence effect depends on the sign of U"”'; when U"” < 0 the prudence term raises the
growth rate of consumption. By contrast, the sign of the risk aversion effect is always

negative.

Proof. We have

! 1 " 2 2
TG (f (oaM)oadM—f—Ef (aM)a (dM))
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(applying It6’s Lemma to C' = f (aM))

1, M 1, o o [(dAM?
—5<f (aM)aMM +2f (aM) oM (M))
(collecting terms)

(@ an_1(@)r(©)
Cour(e) M2 e (@)

dM\’
M
(because U’ is the inverse of f)

1 am 1w (9)

w0 (0) 7 2, (0

(by definition of py (5) and 7y (5))

(%)

ot (e (0 - (D) () § )

pu (5)

(substituting for % from equation (24))
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(simplifying). W

6. THE DETERMINISTIC CASE

The assumption that ¢ > 0 has so far played a crucial, albeit implicit, role in our
analysis: it is needed for our derivation of the Bellman system with finite A, since
it allows us to make sense of completely general consumptions functions, including
consumption functions that are only measurable; and it is needed for our derivation
of the Bellman system of the instantaneous-gratification model, since it allows us
to justify the working hypotheses H1-H8. This does not, however, prevent us from
studying the limit case of the model obtained when ¢ — 0+4. Indeed, doing so is
particularly easy in the case of the instantaneous-gratification model, since in this
case the hyperbolic problem is equivalent to an appropriately chosen exponential
problem.

In the present section we show that, by viewing the deterministic instantaneous-
gratification model as a limiting case of the stochastic instantaneous-gratification
model in this way, we are able to pinpoint a unique equilibrium value function for
the deterministic instantaneous-gratification model. Furthermore, the Bellman sys-
tem that characterizes this value function turns out to be particularly tractable. In
particular, by restricting attention to the case where U has constant relative risk aver-
sion, we provide an example that shows that the condition v > u used in our proof of
monotonicity of the consumption function is necessary, at least in the deterministic

case. Assumptions A1-A5 and B1-B3 will be in force throughout the section.

6.1. Derivation of the Deterministic Model. The following theorem describes
the sense in which the deterministic instantaneous-gratification model is the limit of
the stochastic instantaneous-gratification model. The proof of the theorem, which is

beyond the scope of the present paper, is omitted.

Theorem 14. We have:
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1. there is a continuous function V : [0,+00) — R such that V — V uniformly

on compact subsets of [0, +00) as 0 — 0+;
2. Vy is the unique viscosity solution of
(2 +y) Vo =1V + 1 (V5) =0 (26)
when xz > 0 and
YV — AV + ho (Vg) —0 (27)
when z = 0. B

In particular, we obtain an equilibrium-refinement result for the deterministic

model.

6.2. The Case of Constant Relative Risk Aversion. In this section we adopt

the following parametric assumptions:

P1 py is constant;

P2 > 0.

Under these assumptions, we can transform the non-autonomous system (26-27) into

an autonomous system.

Lemma 15. Suppose that assumptions P1-P2 hold, and that py # 1. Put

77 [ exp(D)—y
Vo (=222)

l=log(pr+y) and v (l) = 0= )0 (exp (1)

Then V, satisfies equations (26-27) iff v satisfies

(L= pu)o+2) =y +h (u((1=py)v+0/)) =0 (28)
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when [ > log (y) and

mc{ L= po)o+ )} o7 (w2 (@ =)o)} =0 (29

when [ = log (y).

Proof. We proceed in three steps. First, put

VO (ac)
L—pu)U(pz+y)

v (x) = (

Then (26) holds iff

0= (uz +y) (1 — pu) (WU'vo + Uvh) =~ (1 — pyr) Uvg + h (1 = pyy) (uU'vg + U}))

(because Vé = (1 — py) (pU'vy + Uvy), and where we have suppressed the dependence
of U and vy on pzx + y and x respectively)

~

h (1= py) (pU"vg + Uwy))
(L—pu)U

,LLU/’UO

& 0= (px+y) <T+U6> — Yvg +

(dividing through by (1 — py) U)

0= (L~ pu) o + (o -+ ) o) — 70 + 7 ( (1= po) (10" t_f%))
(1= pu)U)roT

(because (px + ) U’ = (1 — pyy) U and h is homogeneous of degree 1 — p%)

0= ((1— pv) pvo + (uz + ) vh) — yvo + h (1 = py) o + (pz +y) vf)  (30)
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(because ((1 — py) U )ﬁ% = U"). Secondly, put

0 (1) = vo (M> |

7

Then (30) holds iff

0= ((1—pv)pv+p') —yv+h((1—py)po + p')

(because vj) () = W) Thirdly, note that

Vo>

< (1= py) po + ') >

U'(y)

L~

The same chain of reasoning therefore shows that (27) holds iff

1 , ~ 1 ,
0=max< —, (1 —py)pv+pv' p —yv+h|{maxq—, (1 — py)pv + po .
e «
Lemma 16. Suppose that assumptions P1-P2 hold, and that py = 1. Put

| =log (uz +vy) and v (l) =V (exp (i) - y) — U(e);p (l))

Then V satisfies equations (26-27) iff v satisfies

M(%—FU/)—’YU—F/B(M(%-FU,)):O (31)

when [ > log (y) and

max{é,u (% + v’)} —yw+h (max{é,,u (% —H/) }) =0 (32)

when | = log (y).
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Proof. We proceed in three steps. First, put

v (z) = Vo (2) — W

Then (26) holds iff
(ux +y)vg — Vo +h (VS) =0

U’ U ~ (pU’
O:(ux—}—y)('u —1—1)6)—7(——}—1)0)—}—]1(” —1—1)6)
Y Y Y

(because 76 = %U/ + v{, and where we have suppressed the dependence of U and vy

on px + y and x respectively)

U ~ B+ (nr+y) v
@O:(%%—(px%—y)vg)—'y(;%—m)%—h(’y ( )0>

(e +y)
(because (uz +y) U’ = 1)

@oz(%+(/~Laz+y)v6>—vvo+ﬁ<%+(ﬂx+y)vé> (33)

(because h (¢) = — log (agp) — L and U =log (ux + y)). Secondly, put

)= (22022,

0= (H+uv'> —'yv—l—/ﬁ(ﬁjt/w’)
Y Y

(because vf) (x) = W) Thirdly, note that

Véz U (y) N <%+MU,> >

Then (33) holds iff

1
o) o
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The same chain of reasoning therefore shows that (27) holds iff

1 ~ 1
0 = max {—, By /w’} —yv+h (max {—, By uv’}) .;
a7y a7y
Theorem 17. Suppose that assumptions P1-P2 hold. Then:

1. If 4 < < 400, then C > 0 on (0, +00).

2. If ap < 7y < pu, then there exists x1 € (0,+00) such that:
(a) C' >0 on (0,2);
(b) €' >0 and C" =0 on (x1,+00); and
(c) C(z1+) < C (z1-).

3. If v < ap, then C >0 and C =0 on (0, +00).

Moreover, if ¥ > ap, then C (z) > pz +y for all z € [0,+00). In particular, there is

always a unique solution to the wealth dynamics.

Proof. Put
Ty v #1

Then, in view of Lemmas 15 and 16, there exists a smooth function H : (—oo, +00) —

R such that:
1. v=H(V');
2. H > 0;
3. H(¢) = +0 as ¢ — +o0;

4. min H < a; and
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5. if H'(0) <0 then H (0) < a.

36

Moreover, because v is a viscosity solution of the equation v = H (v'), any switches

that occur between the two values of v’ consistent with any given v must be from the

lower to the higher value of ©'. There are therefore three possibilities:

1. If H' (0) <0, then: v (0) =a; v <0 on (0,+00); and v asymptotes to H (0).

2. If H' (0) > 0 and H (0) < a, then there exists 21 € (0, +00) such that: v (0) = a;

v' < 0on (0,z1); and v = H (0) on [z1,+00). In particular, v' jumps from the

lower to the higher of the two values in H~* (H (0)) at z;.

3. If H(0) > a, then: v = H (0) on [0, +00).

Moreover, it can be shown that

! . T
" (0)__7—u(1—pu)’

and that

max H~' (H (a)) = L—

vy

Finally, it can be shown that C (z) > px 4y iff v/ (I) < Lok Hence C () > pz+y

for all z € [0,+00) iff H (0) < a. In particular, while C fails to be unique at z; in

the second of our three cases, there is nonetheless a unique solution to the dynamics

even in that case. B

7. THE BELLMAN SYSTEM OF THE INSTANTANEOUS-GRATIFICATION MODEL

REVISITED

The derivation of the Bellman system of the instantaneous-gratification model given

in Section 3 is unsatisfactory in that it relies on Hypotheses H1-H8, which involve

entities that are endogenous to the model. It is therefore reassuring to know that these
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hypotheses can be established using Assumptions A1-A5 and B1-B3. In particular,
we have the following theorem. The proof of the theorem, which is beyond the scope

of the present paper, is omitted.
Theorem 18. Suppose that Assumptions A1-A5 and B1-B3 hold. Then:

1. W and V are continuous on [0, +00);

2. there exist continuous functions W,V : [0, 4+0c0) — R such that W — W and

V — V uniformly on compact subsets of [0, +00) as A — +00;
3. W =aV;

4. V is the unique viscosity solution of

1 —// — [ ~ [—y
SOV + (4 y) V —7V+h(V) —0

when x > 0 and
yvl -3V —I—/ﬁo (V,) =0
when x = 0. 1

Remark 19. Theorem 18 covers the case in which U has constant relative risk aver-

sion py > 1 — a.

A satisfactory limit theorem can also be proved under the following assumptions,

which complement Assumptions B2 and B3:
le Oé+ﬁU—1<0,
B3 2—a)—(1—a)f, <0.

Indeed, we have the following theorem. The proof of the theorem, which is beyond

the scope of the present paper, is omitted.
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Theorem 20. Suppose that Assumptions A1-A5, B1, B2 and B3 hold. Then:

1. W and V are continuous on [0, +00);

2 W — C“Uv(y) and V — @ uniformly on compact subsets of [0,+00) as A —

+oco.

These limiting value functions arise because, as A\ — +oo, the option of consuming
here entire wealth becomes attractive to the current self. In effect, her utility function

is not sufficiently concave.

Remark 21. Theorem 20 covers the case in which U has constant relative risk aver-

sion py <1 —a.

Comparing Assumptions B2 and B3 with Assumptions B2' and B3', it is clear
that there is a knife-edge case in between, namely the case in which U has constant
relative risk aversion py = 1 —a. We have not analyzed this case. However, we would
expect it to resemble the case py > 1 — a covered by Theorem 20.

Finally, note that Theorem 18 continues to hold when Assumptions B2 and B3

are replaced by the following, significantly weaker, assumptions:

B2" o+ (lim inf. o ?ZZ)(QC)) —-1>0;

B8 (2-a)— (1 -a) (lmswp,_.... 5552) >0,

Assumptions B2” and B3” ensure that h is decreasing and convex near 0. This is
enough to ensure that consumption remains bounded as A — +o00. These assumptions
are, however, consistent with h being increasing or concave away from 0. In other
words, for some BRRA utility functions, the instantaneous-gratification problem is

not, value-function equivalent to any exponential consumption problem.
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8. CONCLUSIONS
We have described a continuous-time model of hyperbolic discounting. Our model
allows for a general class of preferences, includes liquidity constraints, and places
no restrictions on equilibrium policy functions. The model is also psychologically
relevant. We take the phrase “instantaneous gratification” literally. We analyze
a model in which individuals prefer gratification in the present instant discretely
more than consumption in the momentarily delayed future. In this simple setting,
equilibrium is unique and the consumption function is continuous. When the long-
run discount rate weakly exceeds the interest rate, the consumption function is also
monotonic. All of the pathologies that characterize discrete-time hyperbolic models

vanish.
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