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Abstract

We study the subjective value judgements implicit in regression-based measures of intergener-

ational mobility (IGM). These measures can be represented as weighted sums of mobility or

elasticities over heterogeneous families and subgroups. We first clarify the implicit decision-

theoretic foundation of the two dominant regression-based mobility measures (level and rank

regressions). Our analysis clarifies the still under-developed, and different, notions of “mobility”

that are inherent in statistical measurements. We suggest alternatives that are equally accessible

and computable. Our approach to constructing IGMs is motivated by well founded principles in

the literature on inequality, poverty, and cross section mobility. It highlights the near inevitable

role of aversion to inequality and poverty in perception of mobility as enhanced wellbeing. Our

approach is computationally convenient and can be readily extended to incorporate additional

covariates for counterfactual analysis. Using the PSID data, we assess the implications for policy

analysis and measurement. We estimate several measures of IGM that demonstrate a nuanced

view of mobility, as well as our perspective on geographic differences in mobility and the dy-

namics of it. These perspectives appear to have been obscured by a veil of overall averages and

regression coefficients.
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1 Introduction

There has been a growing public concern over rising inequality and the potentially

unequal and limited economic opportunity for children from less advantaged families,

and their prospects to move up the economic ladder. Estimation and measurement of

intergenerational mobility (IGM) is essential for characterizing the level of equality of

opportunity. The current debate and interchanges are dominantly informed by partial

correlation measures derived from generally linear regression models for income levels

and/or ranks of offsprings incomes and their parents. High “correlation” or “dependence”

between incomes of generations indicates “immobility”. Surveying the field, Mazumder

(2018a) notes the estimates range from less than .3 in early studies, to around .5 or higher

in a number of papers using the Panel Study of Income Dynamics (PSID), to .34 in the

recent, influential study of Chetty et al. (2014) using administrative data. “Where exactly

the United States and other countries lie on this spectrum has been a central question in

the intergenerational income mobility literature.” (Mazumder, 2018a)

There are many econometric challenges surrounding the estimation of mobility, for ex-

ample, nonlinearity/heterogeneity issues and the life-cycle bias inherent in point-in-time

incomes. Here, we focus on an important yet neglected problem of subjective aggrega-

tion that is implicit in these regression approaches, and more generally, in any summary

measure of a deeply heterogeneous phenomenon as intergenerational mobility.

Due to differences in factors such as incentives to invest in human capital across

family incomes, neighborhood or peer effects, education, and a myriad of other factors,

the relationship between parent and child incomes is likely heterogenous and nonlinear.

As a result, the “correlation” between these incomes would vary with parental income

and other factors. Such nonlinearity exists and can differ across groups, as is evidenced

in recent empirical studies (e.g., Landersø and Heckman (2017), An et al. (2020)). To be

specific, economic theories predict a rather complex relationship connecting child income

to parental income (in the absence of other covariates) given by

Y = g(X) + ε

where Y and X are the logarithm of child income and parental income, respectively, g(·)
is an unknown function. The derivative, g′(x) is the slope which measures persistence,

interpreted as the inverse of mobility at X = x, and ε is an error term. In the presence

of nonlinearity, income mobility varies with parental income across the population.

1



An important insight from the literature (e.g., Yitzhaki (1996); Løken et al. (2012))

is that the coefficient from a linear projection/regression (Y = Xβ + u) of an underlying

nonlinear function in (1) can be shown to be of the following form

β =

∫
w(x)g′(x)dx

where w(x) is a weighting scheme depending on the parental income, X = x. In other

words, the commonly used linear regression estimate of the slope is only a summary

measure or weighted sum of heterogeneous effects across the population subgroups.

Building on this important insight, our first step is to reveal the otherwise implicit,

subjective weighting of subgroup mobilities in the current regression measures of IGM. In

the context of IGM, β is the intergenerational mobility elasticity (IGE), and it represents

a summary measure or a weighted sum of heterogenous correlations between parental

and child incomes that vary across families. The weights depend on the parental incomes.

Different, low, middle or high income groups and observations, for instance, receive weights

to obtain “Least Squares” or satisfy statistical orthogonality assumptions. These implicit

weights are no less subjective than for any other desired criterion. All observation weights

correspond to implicit welfare evaluations of the corresponding individuals or groups.

Linear projection weights compete with alternative weights that are consistent with, for

example, Lorenz functions and Gini measures. We further extend this insight to the rank-

rank regression, another popular regression-based measure of IGE. We show that in fact

the rank-rank coefficient can also be represented as a weighted average of the heterogenous

IGEs; and that the implicit weights in this context are not even necessarily proper weights.

For the first time, we present a systematic analysis of the relation between the rank-rank

and level regressions and their weighting schemes. This is useful and necessary for an

understanding of the fundamentally different notions of mobility/inequality inherent in

these two approaches. 1

The impact and implications of this first-step in our analysis are profound. Depending

on the choice of a summary measure (estimation), one can have drastically different as-

sessments of mobility with different policy implications. Comparative analysis of mobility

such as between-groups is subjectively fragile, and can be particularly misleading and

1 Both approaches are seen to belong to scale invariant notions of status. Doubling of incomes or ranks,
clearly a massive degree of “mobility”, leaves correlation measures unchanged! The “growth” component
of mobility is neglected by IGE regressions, only limited aspects of “exchange mobility” are assessed. See
Maasoumi and Mahmoudi (2011?) for a decomposition of these components of any change in inequality
and poverty measures.

2



uninformative about the features of the mobility with which we are generally concerned,

for example, for children from the disadvantaged families.2 Our insights also present

a great challenge for mobility-related research. Consider the example of the influential

Great Gatsby Curve. The literature typically links regression-based mobility measures to

the Gini Coefficients, a popular inequality measure. The latter is based on a weighted

average of heterogenous incomes with the weighting scheme motivated by the Gini wel-

fare function. The corresponding weighting scheme in the regression/estimation exercise

is not compatible, and as shown here, is in contrast to the Gini welfare function. This in-

compatibility, and the implicitness of regression weights questions the meaning and value

implications of using these different weight schemes in the same assessment.

One alternative approach is to avoid aggregation and employ estimation by nonpara-

metric methods, when it is practicable, or use of nonlinear models. Such solution, however,

deserves closeutiny. It is implicit in these alternatives that the pattern, although non-

linear, is readily discernible, summarized and compared between groups, particularly for

more detailed but easily classified groups such as the lower, middle, and upper tails of

the distribution. A nonparametric model can be viewed as having infinitely many pa-

rameters, however, and in practice only a few estimates can actually be presented. This

does not resolve the challenge of summarization. Moreover, the traditional nonparametric

kernel estimation is computationally intensive and infeasible with large datasets (such as

administrative records), and perform poorly and thus unreliably in smaller samples (such

as Panel Studies of Income Dynamics, PSID) due to the slow rate of convergence; it is

even slower and more severe in our context since we are interested in the derivatives of

these nonparametric functions, g′(x).3 4

2 A comparison of multiple correlation estimates of mobility between groups, over time, and across space
is also required for a better and deeper understanding of mobility, as well as monitoring progress in
mobility and assessment of the policies. Indeed, existing empirical studies present such comparisons,
from which many influential findings emerge in the literature. For example, by conducting cross-country
comparisons, the literature has found that the welfare-state economies such as Denmark and Noway
have higher levels of mobility than more market-oriented economies such as the United States (e.g.,
Landersø and Heckman (2017), Solon (2002)). Cross-country differences in IGMs are also further found
to be positively correlated with the differences in inequality, a relationship called “The Great Gatsby
Curve” (Krueger (2012)). Chetty and his coauthors document stark differences in IGMs across regions
(Chetty et al. (2014)) and between whites and blacks (Chetty et al. (2020)). These influential results
have prompted further analysis to investigate the sources of mobility to explain such differences.

3 See Li and Racine (2007) for the relationship between the rate of convergence and the order of smoothness.
4 The challenge of summarizing pertains to both nonparametric kernel estimation and assessment of tran-

sition matrices which represent a wider view of the conditional distribution that underlies the IGE re-
gressions. These alternatives have been criticized for their “overtly disaggregate nature” ( Bhattacharya
and Mazumder (2011) and Hertz (2005) points out that with transition matrices, “there is no best way
to summarize their content”, prompting development of an easier-to-interpret summary measure of mo-
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Aggregation is inevitable, especially for between-group comparisons (as for the Great

Gatsby curve) and policy metrics. One may consider average derivatives of the nonpara-

metric functions, effectively imposing equal weights across groups. As Sen (1992) notes,

however, while such weighting scheme is often considered as a form of egalitarianism, “the

effect of ignoring the interpersonal variations can, in fact, be deeply inegalitarian”, and

“equal consideration for all may demand very unequal treatment” in favor of a particular

group.

In this paper, we examine an alternative approach within the popular context of

parametric regressions. But we propose computationally convenient ways of incorporating

subgroup weighting schemes with explicit, desirable properties consistent with well known

social welfare or evaluation functions.

Two estimation approaches are considered here: the first is based on the prefer-

ence functions underlying the extended Gini family of social welfare functions (similar

to Yitzhaki (1996)), while the second is inspired by the Lorenz family of social welfare

functions. Both estimators exhibit the property that the income value at which the weight

to local IGE is maximized decreases with the degree of inequality aversion. In other words,

the higher the inequality aversion is, the more weight is assigned to the lower tail of the

income distribution. It also circumvents the need to estimating fully nonparametric mod-

els and can be readily implemented in practice with standard statistical softwares such

as Stata. The flexibility and computational convenience of our approach thus allows

practitioners more likely to focus on the conceptual issues at hand. The tools to flexibly

incorporate covariates and perform counterfactual analysis is relatively underdeveloped in

the literature of IGM. We also further extend our framework to incorporate covariates in

our analysis, which will prove useful for practitioners to perform counterfactual analysis

to understand the sources of mobility, as well as the differences across groups.

We illustrate our proposal using the PSID data and reach several main conclusions.

These results underscore the subjectivity in a summary measure and highlight their limi-

tations by the classic Arrowian impossibility results. First, our results imply a significant

heterogeneity and nonlinearity in the income transmission process. The estimates vary

considerably with different methods and inequality-aversion parameters, and hence with

their underlying weighting mechanisms. The weighting schemes matter for forming our

impression of the mobility in a society. Both of our level and rank-rank regression results

bility. These criticisms are valid if over stated. For instance, there do exist several summary measures of
transition matrices, albeit also non consensus ones. These include Bartholomeu and Shorrocks, amongst
others.
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are generally consistent with prior overall findings in the literature; the level-regression

estimates suggest a substantially less mobility than the rank-rank regression estimates].

The results based on both the Gini and Lorenz evaluation functions suggest that with

larger level of aversion to inequality, and focusing more on the individuals from disad-

vantaged families, smaller IGE coefficients are obtained, implying a more mobile society.

The Lorenz results suggest that when placing more weights on the richer families, we also

obtain smaller IGE coefficients. These results together indicate that children from both

disadvantaged and richer families may have a higher level of mobility than those from the

“middle class”.

Second, the traditional perspectives on geographic disparities in mobility are also

challenged when considering different underlying weighting schemes. Both the level and

rank-rank regressions suggest a significant disparity in IGMs between the South and the

West. However, the former implies a smaller geographic difference than the latter. Varying

the inequality aversion parameters revises not only the magnitudes of the geographic

disparities in IGMs, but also the patterns. For example, when using the Gini mobility

measures and placing more weights on the children from the disadvantaged families, we

actually find that the West becomes less and less mobile, relative to the rest of the

country, including the South. By contrast, when using the Lorenz measures and placing

more weights on the richer families, we observe a larger coefficient for the South. These

results may suggest that there may exist “affluence trap” in the South, but for the rest

of the country, mobility is higher in both tails than in the middle.

Finally, we also examine the dynamics of the IGMs across cohorts. Both the level

and rank-rank regressions suggest that mobility declines for the cohort born before 1954

and the cohort born after 1968. But the dynamics are different. More importantly, when

placing more weights on the individuals from the more disadvantaged families, we actually

observe that it is actually more mobile for the later cohort born after 1968 than the early

cohort born before 1954.

Relationship to the Literature Our paper contributes broadly to two separate litera-

tures other than mobility. First, similar to Maasoumi and Wang (2019), our paper is part

of an attempt to connect and integrate the inequality literature more formally with the

literature on IGM. On the other hand, our focus differs drastically from the inequality

literature in that the latter focuses on univariate distributions, while we deal with the

joint distribution of two incomes/outcomes.

Second, our econometric method is related to a growing interest in the treatment ef-
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fect literature to understand the underlying meaning of various conventional estimators

such as instrumental variable estimators (Mogstad and Wiswall (2016)), two-way fixed ef-

fects (De Chaisemartin and d’Haultfoeuille (2020)) and difference-in-difference estimators

(De Chaisemartin and dHaultfoeuille (2018)) in the presence of heterogeneous treatment

effects. Unlike the treatment effects literature, in which the focus is often on a summary

measure of treatment effects for a clearly defined subgroup, our paper is based on a sum-

mary measure for the entire population with economically or policy motivated weighting

schemes.

The rest of the paper is organized as follows. Section 2 provides a numerical example

to motivate our analysis. Section 3 exposes the conceptual issues for the traditional regres-

sion approaches by analyzing their weighting schemes. Section 4 presents our estimators.

We illustrate our proposals using the PSID data in Section 5. Section 6 concludes. Proofs

are collected in the Appendix.

2 A Motivating Example

We begin with a simplistic example to highlight the importance of weighting schemes

in constructing a summary measure of mobility and motivate our proposed mobility mea-

sures. We have two goals: first, we are interested in measuring the extent of mobility

in a society or group, say, group A. Second, we are interested in comparing the mobility

between this society and another society, say, group B.

In this simplistic world with heterogeneity, there are only two levels of incomes: low-

income, l and high-income, h. Suppose the income function for each group is given by

YA = gA(X) + εA and YB = gB(X) + εB,

where X ∈ {l, h} with 0 < l < h <∞. The corresponding mobility at X = x is given by

g′A(l) = 0.6, g′A(h) = 0.3, g′B(l) = 0.9, g′B(h) = 0.2.5 In other words, income in the group

A is less persistent and more mobile in the lower tail, while income in the group B is less

persistent and more mobile in the upper tail. A weighted average measure of mobility for

group k is as follow

mk = wlg
′
k(l) + whg

′
k(h)

5 A little bit abuse of notation here about the derivative, but it simply represents the mobility at this
particular income level.

6



where wl + wh = 1 and 0 < wl, wh < 1. There could be two different weighting schemes

(corresponding to two different estimation methods), wjl , w
j
h, j = 1, 2.

Case 1: Lets see how our impression of the mobility for a particular group/society

depends on the weighting schemes. Suppose the first weighting scheme (for a particular

estimation method) is w1
l = .95 and w1

h = .05. Then, mA = .585. However, if we reverse

the weighting scheme instead by placing more weights on the richest families with w2
l = .05

and w2
h = .95, then mA = .315. These two numbers resemble the current debate on the

magnitudes of the IGM for the U.S.. The discrepancy is large since the mobility implied

by the first weighting scheme is drastically different from that suggested by the second

weighting scheme.

Case 2: Now consider how varying weighting schemes may impact the conclusions regard-

ing the between-group comparison of mobility. Under the first weighting scheme when we

place more weights on the children from the disadvantaged families with w1
l = .95 and

w1
h = .05, it follows mA = .585 < .865 = mB. The implied mobility of group A is actually

smaller than that of group B. By contrast, under the second weighting scheme, w2
l = .05

and w2 = .95, we actually observe the opposite result mA = .315 > .235 = mB. In other

words, group A is less more mobile than group B.

The above examples may be extreme. In practice, the weighting schemes should

depend on the underlying income of each group as well as the social weight attached to

that group. Nevertheless, these examples highlight the importance of weighting schemes,

and subjectivity in constructing a scalar measure for a society and further between-group

comparisons. The key questions are whether there could be any consensus robust to

the changes in the weighting schemes, and whether these weighting schemes are indeed

sensible and reflect policy goals or our concerns, for example, about individuals from

disadvantaged families with lower level of socio-economic statuses.

3 Weighted Average Representations of Traditional

Regression-based Mobility Measures

In this section, we characterize the properties of the existing summary measures of

mobility based on linear level regressions and rank-rank regressions. Both of these sum-

mary measures can be expressed as a weighted average of heterogeneous mobility across
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the distribution of parents income. These weights are implicit and indeed subjective. The

results for level regressions follow closely Yitzhaki (1996), while the results for rank-rank

regressions are new to the literature.

Suppose that the true income-transmission process is given by

Y = g(X) + ε, (1)

where the error term ε satisfies E(ε|X) = 0. The implied rank-rank relationship is given

by

V = E(V |U) + η = gr(U) + η, (2)

where U = FX(X) (rank of a child’s income), V = FY (Y ) (rank of a parent’s income),

and the error term η satisfies E(η|U) = 0 by the definition gr(u) = E(FY (Y )|FX(x) = u).

The following Lemma (e.g., shown in Proposition 2 by Yitzhaki (1996)) clarifies the

weighted average representation of the linear regression coefficient.6

Lemma 1. [Weighted Average Representation of Linear Regression] Let E∗(Y |X) =

α + βX denote the best linear predictor of Y given X. Then

β = [V ar(X)]−1Cov(Y,X) =

∫
SX
w(x)g′(x)dx,

w(x) = FX(x) (µX − E{X|X ≤ x})σ−2
X ,

where µX = E(X), σ2
X = V ar(X), w(x) ≥ 0,

∫
SX
w(x)dx = 1, and SX is the support of

X.

Moreover, Yitzhaki (1996) proves that under normal and uniform distributions, the

weight function w(·) in Lemma 1 is maximized at the median of X.7 This implies that

the linear regression approach assigns smaller weights to the marginal effects in the lower

and higher tails of the income distribution than the middle part of the income distribu-

tion. This property is certainly not desirable when assessing mobility with an aversion to

inequality, and when the focus is on lower incomes.

Next, we consider the rank-rank regression. Since both U and V are distributed from

the standard uniform in general, we use Lemma 1 to obtain the following result for the

rank-rank regression in (2).

6 Note that Yitzhaki (1996)’s results can be extended to the case of a multiple regression.
7 For the normal distribution, w(x) is equal to its density function. For the uniform distribution with the

support [x, x], w(x) = 6(x− x)(x− x)(x− x)−3.
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Lemma 2. Let E∗(V |U) = αr + βrU denote the best linear predictor of V given U . Then

βr = [V ar(U)]−1Cov(U, V ) =

∫ 1

0

w(u)g′r(u)du, (3)

w(u) = 6u− 6u2, (4)

where w(u) ≥ 0 for 0 ≤ u ≤ 1, and
∫ 1

0
w(u)du = 1.

Lemma 2 implies that the weight attains the maximum at the median x = F−1
X (1/2). The

closer to the median the x, the greater the weight.

Lemma 2 clarifies the weighted average representation of the derivatives of the rank-

rank model, g′r(u), but not the weighted average representation of the actual correlation or

persistence between incomes of different generations, g′(x). Hence, the weighting schemes

are not directly comparable between linear level regression and rank-rank regression. By

substituting U = FX(X) into (3) and (4) in Lemma 2, we obtain

βr =

∫
SX
w(FX(x))g′r(FX(x))fX(x)dx =

∫
SX

6(FX(x)− F 2
X(x))g′r(FX(x))fX(x)

g′(x)

g′(x)
dx,

which, as summarized in the following Proposition, clarifies the weighted average repre-

sentation of the derivative of the true income-transmission process g(x) in (1).

Proposition 1. [Weighted Average Representation of Rank-Rank Regression]

Under conditions in Lemma 2, the summary measure βr in (3) becomes

βr =

∫
SX
wr(x)g′(x)dx, (5)

where

wr(x) = 6(FX(x)− F 2
X(x))g′r(FX(x))fX(x)(g′(x))−1. (6)

Proposition 1 exposes an undesirable property of the weighting scheme under the rank-

rank regression. In general, the weighting scheme does not integrate to one (
∫
wr(x)dx 6=

1) since typically g′r(F (x)) 6= g′(x) for any x. Analytical solutions derived for normal,

lognormal, and uniform distributions in Corollary 1 illustrate and confirm this point.

Consequently, the rank-rank measures do not meaningfully reflect concerns about mobility

in income levels and intensity of movements in incomes. They can be even larger than

the maximum of the heterogenous (levels) mobility or smaller than any of subgroup level

mobilities.8

8 One exception is for the uniform distributions. As stated in case (iii) of Corollary 1, under additional
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Corollary 1. Weighting Schemes of Rank-Rank Regression for Three Para-

metric Distributions: We provide the weighting schemes under three specific cases.

(i) Normal Distribution. Suppose that the conditional distribution of ε given X = x is

normal with zero mean and variance σ2
ε , and that Y is normally distributed with mean

µy = E(g(X)) and variance σ2
y = σ2

ε + V ar(g(X)). Then,

wr(x) = c(x)(FX(x)− F 2
X(x)), (7)

where

c(x) =
6√

2π(σ2
ε + σ2

y)
× exp

{
−

(σ2
ε + σ2

y)(σ
2
εµ

2
y + g2(x)σ2

y)− (µyσ
2
ε + g(x)σ2

y)
2

2σ2
yσ

2
ε (σ

2
ε + σ2

y)

}
. (8)

(ii) Lognormal Distribution. Under the same conditions as those under the normal dis-

tribution except that the conditional distribution of Y given X = x is lognormal and that

Y is lognormally distributed, wr(x) is identical to that in (7).

(iii) Uniform Distribution. Suppose that Y is uniformly distributed on [y, y]. Then,

wr(x) = 6(FX(x)− F 2
X(x))(y − y)−1. (9)

If X is also uniformly distributed on [x, x] with x−x = y−y and g(x) = α+xβ,9 the implied

rank regression is also linear with g′r(u) = βr and βr = β. Moreover,
∫ x
x
wr(x)dx = 1.

These results are novel in their own right, and for the first time, we are able to

connect the rank regression findings to the underlying income transmission process for

level incomes. In further work, these relations can also be illuminating in terms of the

value of “descriptive statistics” for underlying objects in models, such as more complex

measures of vertical and/or horizontal mobility.

restrictions for the case of uniform distributions, the implied rank-rank regression is also linear with the
same measure of mobility as that in the level regression. Moreover, the underlying weighting scheme for
this particular case is proper.

9 Note that it allows for the lower and upper bounds of X and Y to be different. That is, both the lower
and upper bounds for children income can be greater or smaller than that for parents income.
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4 Mobility Measures Based on Social Preferences

Subjectivity in the implicit weighting schemes behind the traditional regression-based

IGE measures leads us to consider an alternative approach motivated by well founded

principles in the literature on inequality, poverty, and cross-sectional mobility. Our goal

is to highlight the otherwise implicit role of inequality aversion in all statistical measures,

and to embed such consideration in measuring IGEs. Two social welfare preferences are

used here: the first is based on the Gini evaluation functions (as in Yitzhaki (1996)), and

the second one the Lorenz evaluation functions. Both functions are widely used in the

analyses of social welfare and inequality and characterized by one parameter representing

the degree of inequality aversion (see Aaberge et al. (2021)). We show how these two

measures vary with degrees of inequality aversion and showcases the flexibility of our

approach to incorporate a wide range of possible weighting schemes consistent with the

underlying evaluation functions.

4.1 Mobility Measures based on Gini Evaluation Functions

The Gini evaluation function is given by

P I
κ (u) = 1− (1− u)κ for u ∈ [0, 1], (10)

where κ > 1 is the inequality-aversion parameter; u = FX(x) is the income position

or rank. The higher κ, the more inequality-averse a society. On the one extreme case

κ = 1, society is indifferent to inequality; on the other extreme case κ → ∞, society

cares most about the welfare of the poor. The derivative of the preference function,

dP I
κ (u)/du = κ(1 − u)κ−1, reflects the weight placed on a particular income position u

in the definition of welfare functions (e.g., Weymark (1981), Yaari (1987, 1988), Aaberge

(2000)).

Gini-based Mobility Measure, sI(κ). The first class of mobility measure based on

Gini evaluation functions (10) is defined as

sI(κ) =
Cov(Y, [1− FX(X)]κ−1)

Cov(X, [1− FX(X)]κ−1)
, (11)

where the denominator is the extended Gini variability index, and the numerator is the

extended Gini covariance. Note that the constant of the derivative of the preference func-
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tion (κ) is dropped in the measure since it appears in both denominator and numerator.

Below we present a systematic analysis of the weighting scheme behind our measure.

Underlying Weights of sI(κ): wI
κ(u). Yitzhaki (1996) establishes that sI(κ) can be

expressed as a weighted average of the marginal effect g′(x) given by

sI(κ) =

∫
SX
wIκ(x)g′(x)dx, (12)

where the underlying weight scheme satisfies wIκ(x) > 0,
∫
SX
wIκ(x)dx = 1, and

wIκ(x) =
[1− FX(x)]− [1− FX(x)]κ∫

SX
{[1− FX(t)]− [1− FX(t)]κ}dt

. (13)

Moreover, wIκ(·) can be rewritten as a function of u = FX(x),

wIκ(u) = cI(κ) [(1− u)− (1− u)κ] , (14)

where cI(κ) =
(∫ 1

0
{(1− u)− (1− u)κ} dF−1

X (u)
)−1

> 0 is a positive constant, depending

on FX(·) and κ. As shown below, the expression of wIκ(·) in terms of u is convenient for

analyzing its properties.

Properties of wI
κ(u). The first- and second-order derivatives of wIκ(u) are given, respec-

tively, by

dwIκ(u)

du
= cI(κ)

[
κ(1− u)κ−1 − 1

]
and

d2wIκ(u)

du2
= cI(κ)κ(1− κ)(1− u)κ−2 < 0. (15)

The first-order condition implies that the maximizer (the turning point) of wIκ(u) is given

by uI(κ) = 1 − κ
1

1−κ . The second-order condition implies that wIκ(u) is strictly concave

in u. As the upper left panel of Figure 1 illustrates, the weight increases for lower values

of u, reaches a maximum, and then declines. The key properties of the weighting scheme

are summarized in Proposition 2.

Proposition 2. We obtain the following properties:

(i) uI(κ) is strictly decreasing in κ for κ > 1.

(ii) lim
κ→∞

uI(κ)→ 0.

(iii) For a sufficiently large κ, wIκ(u) ≈ cI(κ)(1− u) for u ∈ [uI(κ), 1].

Property (i) states that the location of maximum weight (turning point) decreases in the
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inequality aversion parameter. This property is consistent with the typical policies goals

or preferences that are averse to inequality. As a society or policymaker becomes more

inequality averse, the individuals from the more disadvantaged families should receive

the maximum weight. The pattern is illustrated in the upper right panel of Figure 1.

Property (ii) states that when the inequality aversion tends to infinity, the largest weight

is indeed placed on the poorest individuals. More importantly, the relative weight for

the poor is larger than that for the rich when we increase the inequality aversion. This

later feature is evident in the upper left panel of Figure 1 and formally stated in property

(iii). For a sufficiently large inequality aversion parameter κ, the weighting scheme can

be approximated by a downward slopping line for almost all the values of u. This result

can be of practical importance as well, since this type of weighting schemes is usually

consistent with what many empirical researchers have in mind. Moreover, it suggests

that the researchers simply need to assign the inequality aversion parameter a relatively

large value to obtain such weighting scheme.

4.2 Mobility Measures based on Lorenz Evaluation Functions

Our second class of mobility measures is based on the Lorenz family of evaluation func-

tions, defined as

P II
ν (u) = (νu− uν)(ν − 1)−1 for u ∈ [0, 1], ν > 0, and ν 6= 1 (16)

where ν is the preference parameter capturing the extent of inequality aversion (see, e.g.,

Aaberge (2000)). Note that the inequality aversion increases with parameter κ for the

Gini measures, while it decreases with parameter ν for the Lorenz measures.

Lorenz-based Mobility Measure, sII(ν). Similar to the first class of mobility mea-

sures, based on the first derivative of the Lorenz evaluation function dP II
ν (u)/du =

ν(1− uν−1)(ν − 1)−1, the second class of mobility measures is defined as

sII(ν) =
Cov(Y, 1− FX(X)ν−1)

Cov(X, 1− FX(X)ν−1)
, (17)

where the constant of the derivative of the preference function (ν(ν − 1)−1) is dropped in

the measure since it appears in both denominator and numerator.

Underlying Weights of sII(ν) : wII
ν (u). Using the arguments similar to (12), the second

measure sII(ν) can also be expressed as a weighted average of the marginal effect g′(x).

13



Figure 1: Shapes of weight functions and turning points for different inequality-aversions
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Lemma 3. The measure of mobility in (17) can be expressed as

sII(ν) =

∫
SX
wIIν (x)g′(x)dx, (18)

where wIIν (x) > 0,
∫
SX
wIIν (x)dx = 1, and

wIIν (x) =
FX(x)− FX(x)ν∫

SX
[FX(t)− FX(t)ν ]dt

. (19)

Moreover, wIIν (·) can also be rewritten as a function of u = FX(x),

wIIν (u) = cII(ν)(u− uν), (20)

where cII(ν) =
(∫ 1

0
(u− uν)dF−1

X (u)
)−1

is a constant, which is positive for ν > 1 and

negative for 0 < ν < 1.

Properties of wII
ν (u). The first- and second-order derivatives of wIIν (u) are given, re-

spectively, by

dwIIν (u)

du
= cII(ν)

(
1− νuν−1

)
and

d2wIIν (u)

du2
= ν(1− ν)cII(ν)uν−2 < 0. (21)

The first-order condition implies that the maximizer (the turning point) of wIIν (u) is given

by uII(ν) = ν
1

1−ν . The second-order condition implies that wIIν (u) is strictly concave in u.

As the bottom left and right panels of Figure 1 illustrate, the weight increases for lower

values of u, reaches a maximum, and then declines. The key properties of the weighting

scheme are summarized in Proposition 3.

Proposition 3. We obtain the following properties:

(i) uII(ν) is strictly increasing in ν for ν > 0.

(ii) lim
v→0

uII(ν)→ 0 and lim
ν→∞

uII(ν)→ 1.

(iii.a) For a sufficiently small ν < 1, wIIν (u) ≈ cII(ν)(u− 1) for u ∈ [uII(ν), 1].

(iii.b) For a sufficiently large ν > 1, wIIν (u) ≈ cII(ν)u for u ∈ [0, uII(ν)].

It is useful to compare Proposition 3 vs. Proposition 2 to understand the similari-

ties and differences between the Gini- and Lorenz-based estimators and how they could

complement each other in practice.

Meanings of Inequality Aversion Parameters The major difference between sI(k)
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(the Gini family of mobility measures) and sII(ν) (the Lorenz family of mobility measures)

is the weighting function. wIκ(·) varies with κ > 1 for the former, whereas wIIν (·) varies

with ν > 0 for the latter. These two parameters have the opposite meaning. Moreover,

the parameter space for the inequality-aversion parameter (κ vs ν) is different for the two

classes of evaluation functions, as the space for ν, the parameter for the Lorenz family,

covers (0, 1) ∪ (1,∞). As a result, the behavior of the weighting schemes for the Lorenz

measures also differ in the two sub-regions of the space.

Similarities – Economic Implications Three properties in Proposition 3 have eco-

nomic meanings qualitatively similar to their counterparts in Proposition 2. First, Propo-

sition 3 (i) is similar to its counterpart in Proposition 2. As illustrated by the two left

panels and the upper right panel in Figure 1, when the inequality aversion is higher (ν is

smaller), the turning point of the income (that is, the income location of the maximum

weight) decreases. Note that the opposite patterns of the curves in the upper right panel

is due to the opposite meanings of the two parameters κ and ν.

Proposition 3 (ii) again states that at the the limit, the maximum weight (turning

point) is placed on the individuals from the poorest families. In addition, Proposition 3

(iii.a) is similar to Proposition 2 (iii): for a sufficiently large inequality aversion (ν → 0),

the weights decrease monotonically with income levels. In general, individuals from poorer

families receive more weight weight than those from richer families.

Differences Despite many qualitative similarities of the weighting schemes between the

two estimators, the weights may be quite quantitatively different, which can be critical

for relevant policy evaluations. Proposition 3 (iii.b) is unique. For a sufficiently small

inequality aversion (ν →∞), the weights can increase monotonically with income levels,

which may correspond to some form of “efficiency” consideration in measuring mobility.

This result suggests the flexibility of our measures in accommodating a wide range of

possible weighting schemes that emphasize different policy goals and targets. .

As indicated in the upper left and bottom left panels of Figure 1, at the extreme

inequality aversion (κ → ∞ and ν → 0), the weighting schemes are both nearly linear

and place the maximum weight on the children from the poorest families. However, the

weights differ in the magnitudes and in the exact positions where the maximum weight

is placed. For example, the weights behind the Lorenz family seem more homogenous.

As we will see from the empirical examples below, these seemingly subtle differences

can substantially alter our impressions of mobility and the conclusions for between-group

comparisons in the presence of nonlinearity.
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Finally, although the weighting schemes exhibit similar shapes when policy makers

are more averse to inequality (a larger κ for the Gini measure and a smaller ν for the

Lorenz measure), they behave very differently under less inequality-aversions. The lower

right panel of Figure 1 implies, the weighting scheme under Lorenz measures is still

approximately linear and places the maximum weight on the children from the richest

families. In contrast, the upper left panel indicates, the weighting scheme under Gini

measures seems concave and places the maximum weight on the children from the middle

families. Combining the results of the Gini measures (when κ is large) and those of the

Lorenz (when ν > 1 is small), one may gain insights into the possible nature of the

nonlinearity of mobility under different underlying evaluation functions. Later in our

empirical analysis, we will see an example like this.

4.3 Estimation

We provide the estimation of our proposed summary measures of mobility. Suppose

that the data consist of an independent sample {Yi, Xi}ni=1 of size n. Given that these

two summary measures of mobility have similar expressions, without loss of generality, we

focus on the estimation of the summary measure of mobility under the Gini evaluation

functions.

Since (11) takes the form of a Wald-IV estimator, we can conveniently estimate sI(κ)

using the two steps. Let Qi = [1 − FX(Xi)]
κ−1. First, we obtain the estimate of Qi

by Q̂i = [1 − F̂X(Xi)]
κ−1, where F̂X(Xi) = 1

n

∑n
j=1 I(Xj ≤ Xi), and I(·) is an indicator

function equal to one if the argument is met and zero otherwise. Next, we run an IV

regression of Yi on Xi, with Q̂i being the IV for Xi. The IV estimator of the coefficient

on Xi is the estimator ŝI(κ) of sI(κ).

4.4 Estimation in the presence of covariates

How to flexibly account for covariates and perform counterfactual analysis in the con-

text of IGM is not trivial and relatively underdeveloped. Here, we extend our framework

to systematically incorporate covariates in estimation, which could prove useful for coun-

terfactual analysis to understand the sources of mobility, as well as the between-group

differences.

Let Z = (Z1, · · · , Zd)′ be a d-dimensional vector of continuous variables.10 The true

10For discrete covariates such as gender and race, the estimation is identical to that for the (unconditional)
measures for each sub-group. This is often the case for the intergenerational mobility literature (e.g.,
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income-transmission process in (1) becomes

Y = g(X,Z) + ε, (22)

where the error term ε satisfies E(ε|X,Z) = 0. In the spirit of (11), we define the summary

measure of mobility under the Gini evaluation functions, conditional on Z = z, as

sI(κ, z) =
Cov(Y, [1− FX|Z(X|Z)]κ−1|Z = z)

Cov(X, [1− FX|Z(X|Z)]κ−1|Z = z)
. (23)

Following Yitzhaki (1996), we obtain the counterpart of (12) in the presence of covariates

as

sI(κ, z) =

∫
SX|Z=z

wIκ(x, z)g
′(x, z)dx, (24)

where wIκ(x, z) > 0,
∫
SX|Z=z

wIκ(x, z)dx = 1, SX|Z=z is the conditional support of X given

Z = z, and

wIκ(x, z) =
[1− FX|Z(x|z)]− [1− FX|Z(x|z)]k∫

SX|Z=z
{[1− FX|Z(t|z)]− [1− FX|Z(t|z)]κ}dt

. (25)

Estimation Method #1: Fully Nonparametric Model: we propose the estimation

of the heterogeneous mobility measures sI(κ, z) and then obtain the average mobility

measure across heterogenous covariates. Let Kh(·) be a d-dimensional kernel and h =

(h1, · · · , hd) be a sequence of bandwidths which depend on the sample size n.11 Let

QZ
i = [1− FX|Z(Xi|Zi)]κ−1 and Q̂Z

i = [1− F̂X|Z(Xi|Zi)]κ−1, where

F̂X|Z(Xi|Zi) =
n−1

∑n
j=1 I(Xj ≤ Xi)Kh(Zj − Zi)
n−1

∑n
j=1Kh(Zj − Zi)

(26)

is the standard kernel estimator. A natural plug-in estimator of Cov(Y,QZ |Z = z) is

given by

Ĉov(Y,QZ |Z = z) =
n−1

∑n
i=1Kh(Zi − z)(Yi − Ê(Yi|Zi))(QZ

i − Ê(QZ
i ))

n−1
∑n

i=1 Kh(Zi − z)
, (27)

see the analysis of black-white differences in intergenerational mobility by Bhattacharya and Mazumder
(2011)).

11For the Gaussinal kernel, for example, Kh(z) = (h1 × · · · × hd)−1
(√

2π
)−d

exp(−
∑d
l=1

(zl/hl)
2

2 ).
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where

Ê(Yi|Zi) =
( 1

n

n∑
j=1

YjKh(Zj − Zi)
)(
f̂Z(Zi)

)−1

, (28)

Ê(QZ
i ) =

( 1

n

n∑
j=1

QZ
j Kh(Zj − Zi)

)(
f̂Z(Zi)

)−1

, (29)

f̂Z(Zi) =
1

n

n∑
j=1

Kh(Zj − Zi). (30)

The estimator of Cov(X,QZ |Z = z) is defined by replacing Yi with Xi in (27). Based on

the estimates {Q̂Z
i }ni=1, the estimator of sI(κ, z) is given by

ŝI(κ, z) =
Ĉov(Y, Q̂Z |Z = z)

Ĉov(X, Q̂Z |Z = z)
=

∑n
i=1Kh(Zi − z)(Yi − Ê(Yi|Zi))(Q̂Z

i − Ê(Q̂Z
i ))∑n

i=1Kh(Zi − z)(Xi − Ê(Xi|Zi))(Q̂Z
i − Ê(Q̂Z

i ))
. (31)

The asymptotic normality of the kernel estimator ŝI(κ, z) can be established by following

the related literature (e.g., see Li and Racine (2007) and Yin et al. (2010)).

Estimation Method #2: A Semiparametric Approach: In practice, we can

adopt a more computationally convenient and efficient way: an alternative semi-parametric

estimation of the summary measure. First, to guarantee that the estimate of QZ
i lies

between zero and one, we run the logistic regression of Q̂i on Zi to obtain the estimate

Q̃Z
i = Λ(Z ′iδ̂), where δ̂ is the estimator of δ in the logistic specification E(Q̂i|Zi) = Λ(Z ′iδ),

Λ(·) is the cumulative distribution of a logistic variable, and δ is the vector of coefficients.

Second, we run the OLS regressions of Yi, Xi, YiQ̃
Z
i , and XiQ̃

Z
i on Zi to obtain the

estimates Ẽ(Yi|Zi), Ẽ(Xi|Zi), Ẽ(YiQ̃
Z
i |Zi) and Ẽ(XiQ̃

Z
i |Zi), respectively.12 Then, the es-

timator of sI(κ, z) is given by

s̃I(κ, z) =
C̃ov(Y, Q̃Z |Z = z)

C̃ov(X, Q̃Z |Z = z)
=

Ẽ(YiQ̃
Z
i |Zi)− Ẽ(Yi|Zi)Ẽ(Q̃Z

i )

Ẽ(XiQ̃Z
i |Zi)− Ẽ(Xi|Zi)Ẽ(Q̃Z

i )
. (32)

With the conditional estimates, one may obtain the average summary measure of

12We can also run these regressions on a polynomial function of Zi that would well approximate the
estimated objects (e.g., see the polynomial series estimations in distributional analysis by Firpo et al.
(2009)).
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mobility in the presence of covariates as follows

sI =

∫
SZ
sI(κ, z)dFZ(z), (33)

where SZ is the support of Z with the distribution function FZ(·). Using the empirical

distribution function F̂Z(z) = 1
n

∑n
i=1 I(Zi ≤ z), the average mobility measure sI can be

estimated by

ŝI =

∫
SZ
sI(κ, z)dF̂Z(z) = n−1

n∑
i=1

sI(κ, Zi). (34)

4.5 Use of Conditional Mobility sI(κ, z) in Further Analyses

Once we obtain sI(κ, z), we are able to further consider the source(s) of the between-

group differences in our mobility measures and perform counterfactual analysis, if desired.

Suppose that we are interested in measuring mobility for groups A and B

sIg(κ) =

∫
SZg

sIg(κ, z)fg(z)dz, g = {A,B},

where SZg is the support of Z for group g = {A,B}.
One may consider a hypothetical counterfactual state where group A is endowed with

the same distribution of observable characteristics among group B, but the income gen-

erating process is fixed. The counterfactual mobility measure is defined as

sIc(κ) =

∫
S
ZB

sIA(κ, z)fB(z)dz.

The difference between these two groups can then be decomposed into two components,

process differences (due to the differences in the income-transmission process) and com-

position differences, as follows

sIA(κ)− sIB(κ) = [sIA(κ)− sIc(κ)]︸ ︷︷ ︸
Composition Differences

+ [sIc(κ)− sIB(κ)]︸ ︷︷ ︸
Process Differences

.

The counterfactual mobility measure sIc(κ) can be estimated as

ŝIc(κ) = n−1
B

nB∑
i=1

ŝIA(κ, ZB
i ),
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where ŝIA(κ, ·) is the estimator of sIA(κ, ·) using the sample of size nA for group A, and

{ZB
i }

nB
i=1 is the sample of size nB for group B.

5 Empirical Illustration

5.1 Data

Our application is based on data from the Panel Study of Income Dynamics (PSID),

which includes information at the household and individual levels for a nationally rep-

resentative sample of the population of the United States. The data collection began in

1968 and has since continued to update information on the individuals of the original

sample and their descendants. The long panel structure allows us to match children to

their parents for intergenerational analysis, as well as to obtain their incomes at a wide

range of stages over the life-cycle for both generations. See Mazumder (2016, 2018b) for

excellent accounts of the unique advantages of the PSID data for analysis of intergenera-

tional mobility, and over administrative tax data. Because of these advantages, the PSID

data are widely used in the literature on estimation of intergenerational mobility. Use of

alternative datasets does not impact the illustrative purpose of our analysis, or the central

message of the paper.

To facilitate comparison to the literature, especially those studies using the PSID, we

follow closely the standard practices in the literature to construct our sample and rele-

vant variables, and therefore provide only limited details here. Following the literature

(e.g., Solon (1992); Durlauf et al. (2017)), we include only the Survey Research Center

component of the PSID, but exclude the Survey of Economic Opportunity (SEO) com-

ponent to prevent over-representing the poverty sample. Recent literature has also noted

some serious irregularities in the sampling of SEO respondents that can “preclude easy

generalization to any well-defined population” (Bloome (2015); An et al. (2020)).

In our analysis, we use (the logarithm of) permanent incomes for both children and

parents. Following the literature (e.g., Durlauf et al., 2017), we define the permanent

income as the average of annual family incomes, which include the taxable income of all

earners in the family, from all sources, and transfer payments. We exclude zero and neg-

ative incomes. These income variables are converted to 2015 dollars using the Consumer

Price Index.13 We also follow Mazumder (2018b) to take advantage of the very long panel

structure of the PSID and center the average around age 40 (between 30 and 50). The

13Source: https://fred.stlouisfed.org/series/CPALTT01USA661S
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choice of age 40 follows the rule of thumb in the literature that largely overcomes the life

cycle bias (Haider and Solon (2006); Mazumder (2018b)). The life-cycle bias is due to the

heterogenous life cycle earnings profiles, where individuals with high lifetime income often

have relatively low income when younger, and use of the incomes when they are young

can then bias the estimates downward (Jenkins, 1987). We also restrict the sample to

those individuals with at least three observations of annual incomes (e.g., Durlauf et al.,

2017).

These standard practices also mitigate some of the known issues such as the issue

of zero incomes that typically arise when using the administrative data due to non-

employment. First, the family total income in the PSID includes sources of income such

as transfers that are not available in the administrative tax record, and it is still reported

“even when it may be too low to be filed for tax purposes” (An et al., 2020). Second,

the PSID has a better coverage of life-cycles than the administrative records. Therefore,

very few instances of zero incomes exist in the PSID, and the instances of multiple years

of zero incomes are even rarer. Discussing these issues with the PSID for estimation

of intergenerational mobility, Mazumder (2016) concludes that “the concerns about the

sensitivity of results around how to handle years of zero income is effectively a non-issue

when using family income.” See An et al. (2020) for more details on this issue as well.

5.2 Results

5.2.1 Baseline Results

To facilitate the comparison to the literature, we first estimate the IGMs using the

traditional regression-based approaches. Panel A of Table 2) reports the results. The

level linear regression using the full sample yields an estimate of about 0.54 (Column

(1)), consistent with the previous literature using PSID with an average of multiple years

of annual incomes. The rank-rank regression, on the other hand, yields an estimate of

about .39, similar to .341 reported in Chetty et al. (2014) using the federal income tax

records. The estimated correlation using the rank-rank regression is substantially smaller

than when using the level regression, suggesting a higher level of mobility in the U.S..

From our theoretical analysis above, the substantial difference between the two approaches

is indicative of the nonlinearity of the income transmission process, and stems from the

differences in their respective weighting functions. The weighting schemes for both level

and rank-rank regressions are generally unknown, except for a few specific parametric

distributions. Moreover, the weights are not necessarily proper weights for the rank-rank
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regressions.14

We now turn to our proposed estimators. In Panel B of Table 2, we first present the re-

sults based on the Gini evaluation function for inequality aversion κ = 1.1, 2, 10, 50, 100, 500.

The summary measures of mobility vary drastically with respect to the inequality aversion

parameter, and so does our impression of the mobility level in the U.S. For example, the

correlation coefficient is between .5905 (κ = 2) and .2828 (κ = 500), with the difference

being more than 100 percent ( (.5905−.2828)
.2828

× 100 ≈ 109). As a larger κ is associated with

larger weights on poorer households, evidently, our results suggest a substantially more

mobile society when focusing more on the individuals from the disadvantaged families.

The pattern of the changes with respect to κ is, however, not monotonic. We observe

that at the relatively low level of inequality aversion, an increase in inequality aversion

(from κ = 1.1 to 2) leads to a larger coefficient and hence a higher level of immobility. On

the other hand, for κ > 2, when the inequality aversion parameter increases and we place

more weights on the individuals from the disadvantaged families, we actually observe that

the correlation coefficients between child and parental incomes decrease substantially in

magnitudes, suggesting a more mobile society.

The level-regression coefficient is .5371, falling between the coefficient using κ = 10

(.5641) and that using κ = 50 (.4870). While we do not have any idea about the weighting

schemes behind the rank-rank regression, its coefficient is closer to the mobility measure

suggested by our method between using κ = 100 and κ = 500 (when placing more weights

on the lower tail than the upper tail of the parental income distribution).

Panels C.1. and C.2. of Table 2 presents the second set of the results based on the

Lorenz family of evaluation functions. Recall that the inequality aversion parameter, ν,

has the opposite meaning of κ for the Gini-based measures. For ν ∈ (0, 1) in Panel C.1., we

again find that as the inequality aversion increases (ν decreases), the coefficients decrease

in magnitudes. This pattern is similar to the results using the Gini-based measures.

However, the variation in the estimates is substantially smaller. The coefficients vary

from .5696 to .5804. This is not surprising because Figure 1 suggests that even though

the shapes of the underlying weighting functions between the Gini and Lorenz family of

measures may appear to be similar, they are not the same and the actual weights also differ

drastically. For example, in the case of high inequality aversion (when ν = .01, κ = 500),

they both place the maximum weight on the children from the lowest-income families,

14 It is possible that the two variables may follow a normal distribution. To examine this possibility, Table
1 also reports the Jarque-Bera test of normality, and we reject the null hypothesis of normality for both
child and parental income distributions at the one percent level.

23



and the weighting function seems almost linear, but the variations in the actual weights

are smaller for the Lorenz family than for the Gini family. This result again highlights

the importance of clarifying the policy objectives or evaluation functions (and hence the

weights) in measuring and summarizing IGMs.

For ν > 1 in Panel C.2. of Table 2, we find that as ν increases and the inequality aver-

sion decreases, the magnitudes of the coefficients decrease. As we place more weights on

the children from higher-income individuals, our measures suggest a more mobile society.

This result is particularly interesting, especially when we view it with the result based on

the Gini estimator. As Figure 1 implies, as κ > 1 increases from a very small value, the

Gini-based measure starts from placing the maximum weight on the middle-income fami-

lies, and gradually place more weights on the lower -income families. In contrast, as ν > 1

increases, the maximum weight associated with the Lorenz-based measure also starts the

middle-income families, but gradually place more weights on the higher -income families.

Hence, the estimates of these two measures complement each other by highlighting the

features from different parts of the distribution. Together, our results may suggest that

mobility is higher at both ends than at the middle.

In sum, we reach two conclusions. First, our results provide strong evidence that

the income transmission process is highly nonlinear, and suggest that both children from

disadvantaged and richer families may have a higher level of mobility than those from

the “middle class”. The latter is only suggestive since we pick only a few inequality

aversion parameters (hence highlighting only a few selected parts of the distribution as

well) and the nonlinear pattern may not be as smooth and straightforward as the ones

suggested here. Second and more importantly, due to the strong presence of nonlinearity,

the subjective weighting schemes matter, in fact, a lot when forming a general impression

of the mobility in a society. Bearing these results in mind, we now further examine how

the potential nonlinearity and varying weighting schemes may impact our understanding

of geographic differences in IGMs and that of the evolution of IGMs.

5.2.2 Geographic Disparities in Mobility

We first examine geographic differences in mobility. Following the literature, we com-

pare four regions where an individual grew up: the Northeast, the North Central, the

South, and the West. The regression-based results are displayed in Table 3. We again

find that the rank-rank regression results yield substantially smaller coefficients on the

parental log income for all geographic areas, suggesting a more mobile society than the
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level regressions. The discrepancies between the two approaches also vary drastically

across regions. For example, the difference in the implied mobility can be as large as 55

percent for the West (55 ≈ (.4482− .2898)/.2898× 100).

Both the level and rank-rank regression results indicate significant geographic dispari-

ties in IGMs. A common pattern in geographic heterogeneity emerges for both approaches:

the South is less mobile than the West, in line with Chetty et al. (2014).15 Furthermore,

the South is the least mobile region, while the West is the most mobile region. However,

the general pattern for the entire country can differ drastically across the methods and

their corresponding weighting schemes. For example, the rank-rank regression implies a

substantially higher disparity in mobility between the South and the West. Relatively

speaking, the rank-rank regression suggests that the South is at least 52 percent less

mobile than the West (52.86 ≈ (0.4430 − .2898)/.2898 × 100), compared to 30 percent

suggested by the level regression (30.63 ≈ (0.5855 − 0.4482)/0.4482). The pattern for

the other two regions is not definitive. While the level regression suggests that the North

Central is less mobile than the Northeast, the rank-rank regression suggests the opposite.

We now turn to our proposed estimators. The results based on the Gini evaluation

functions are presented in Table 4. We start with k = 1.1 (the maximum weight is placed

roughly at the middle part of the parental income distribution). The result also suggests

that the South is the least mobile region, while the West is the most mobile region, but the

difference between the South and the rest of the country is also not so big as the traditional

approaches suggest. The immobility level in the South is about 29 percent higher than the

West (≈ (0.5956−0.4611)/.4611); the difference is slightly smaller than what is suggested

by the level regression (.3063 ≈ (.5855 − .4482)/.4482) but substantially smaller than

what is suggested by the rank-rank regression (.5286 ≈ (.4430− .2898)/.2898).

Varying the inequality aversion parameters impacts both the size and patterns of IGM

across regions. First, the variation of the estimates with respect to the inequality aversion

parameters differs across regions. For example, for the Northeast, when we place more

weights on the children from the disadvantaged families, the size of the mobility decreases

by 80 percent when comparing the largest value (.1115, κ = 500) and the smallest value

(.5481, κ = 2). By contrast, the coefficient is only 16 percent smaller for the North

Central when comparing the smallest coefficient (.4941 when κ = 500) with the largest

(.5906 when κ = 2). The stark contrast implies that the income transmission process and

the extent of nonlinearity differ significantly across groups.

15Specifically, both traditional measures find that the coefficients are smaller in magnitude for the children
from the West than those from the South.
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Second, the patterns of the changes with respect to κ for the Northeast and North

Central are consistent with the full sample (i.e., when we increase the inequality aversion,

the coefficient first increases and then decreases), but they are not for the South and

the West. For the South, the coefficients decrease with respect to the inequality aversion

parameter, while for the West, the coefficients increase, fluctuating around an increasing

trend. In contrast to the rest of the country, the coefficient increases from .4611 to .7825 for

the West. When placing more and more weights on the children from the disadvantaged

families, we actually find that the West becomes less and less mobile.

Our impression of the relative mobility levels is also senstive to the change of the

inequality aversion parameter. It starts to change when κ = 10, and we observe that the

West is actually the least mobile region. As we continue to increase the inequality aversion

parameter, a more stable relative ranking emerges. In fact, when κ = 500 and we place

more weights on the individuals from the most disadvantaged families, the Northeast is

the most mobile region and the West is the least mobile region.

We turn to the results based on the Lorenz family of evaluation functions. The results

are presented in Table 5. For 0 < ν < 1, we find similar patterns to the results based

on the Gini family. We continue to find that when we increase the inequality aversion

parameter, the coefficients decrease for the Northeast, the North Central, and the South,

but it increases for the West. As mentioned above, the weighting schemes for the Lorenz

family, while placing more weights on the lower tail of the distribution, are less steep than

the ones for the Gini family. It is not surprising that the coefficients vary with respect to

the inequality aversion parameter, but less drastically. However, even a minor change in

the coefficients impacts the relative ranking of geographic differences in mobility: when we

place more weights on the children from the disadvantaged families (when ν = .1, .2, .5,),

the West is the most mobile, while the North Central is the least mobile.

For ν > 1, another interesting pattern arises. As we increase ν and place more weights

on the individuals from richer families, the coefficients decrease for the Northeast, the

North Central, and the West, which is similar to the full-sample results. For the South,

we instead observe the opposite. When we increase ν from 1.1 (the maximum weight

roughly at the middle-income families) to 500 (the maximum weight roughly at the richest

families), the coefficient increases from .6013 to .7690, suggesting a much less mobile

region.

The results here highlight the fact that there exists significant heterogeneity in the

income transmission processes both within and across regions, and evidently that, the

weighting schemes play an important role in forming both our impression of the mobility
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for a region as well as the impression of the regional disparities in mobility. Moreover,

viewing the results based on the Gini and the Lorenz families together, there is some

suggestive evidence that the children from richer families may have a higher level of

immobility or “affluence trap” in the South, while children from both disadvantaged and

richer families may have a higher level of mobility than those from the “middle class” for

the rest of the country.

5.2.3 Dynamics of Mobility

To examine how the mobility evolves across cohorts, we consider four cohorts (those

born before 1954, between 1955 and 1961, between 1962 and 1967, after 1968). The

regression-based results are displayed in Table 6. We continue to find that the rank-rank

regression results suggest a more mobile society than the level regression results. All the

coefficients are much smaller when using the rank-rank regressions than when using the

level regressions. The discrepancies in the mobility levels implied between the traditional

approaches can be as large as 60 percent for the cohorts born between 1962 and 1967

(60.3 = (.5226− .326)/.3260× 100).

Both the level and rank-rank regression results imply an increase in the magnitudes of

the correlation coefficients and a decrease in mobility over time when comparing the (first)

cohort born before 1954 and the (last) cohort born after 1968. Specifically, both methods

suggest about 13 percent decrease in mobility (level regression: (.5597−.4949)
.4949

× ≈ 13; rank-

rank regression (.4197−.3718)
.3718

× 100 ≈ 13). However, the dynamics and the magnitudes of

the changes between the first and the last cohorts differ across the methods used. For

example, the level regressions suggest an increasing trend between cohorts; we find that

relative to the cohort born before 1954, the coefficient is larger for the cohort born during

the period 1962-1967. The rank-rank regression suggests the opposite.

We now turn to our proposed estimators. The results based on the Gini evaluation

functions are reported in Table 7. Varying the inequality aversion parameter again can

drastically revise our view of mobility for a particular cohort, as well as that of the

dynamics of the mobility across cohorts. First, the coefficients do not monotonically

vary with the inequality aversion parameter (κ), and the patterns differ drastically across

cohorts. For the cohorts born before 1954, between 1955-1961, and after 1968, we observe

that the coefficients first increase and then decrease when we place more and more weights

on the children from the low-income families. They peak at different inequality aversion

parameters (for the cohort born before 1954, the largest coefficient is .5747 when κ = 50,
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while for the cohort born after 1968, the largest coefficient is .6344 when κ = 2). On

the other hand, for the cohort born between 1962 and 1967, we actually find that the

coefficients first decrease and then increase, reaching the maximum when the maximum

weights are placed on the children from the lowest-income families with κ = 500.

Second, our relative ranking of the mobility levels across cohorts also depend crucially

on the part of the distribution which a particular weighting scheme emphasizes. For

example, when κ = 1.1, we observe the same ranking as the level regression, where it is

more mobile for the cohort born before 1954 than for the cohort born after 1968. Such

impression is reversed when κ = 50 (.5747 (Before 1954) vs .4751 (After 1968)).

Turning to our results based on the Lorenz family in Table 8, we continue to find the

importance of the weighting schemes. We observe a far less variation in the coefficients

when we vary the inequality aversion parameter for the Lorenz-based measures. More

importantly, we also observe a reversed trend, compared to the one implied by Gini-based

measures. For example, among those born between 1962 and 1967, when we increase the

level of inequality aversion (from ν = .8 to ν = .1), we observe monotonically decreasing

coefficients, which suggests a more mobile society. By contrast, for the same cohort, when

we increase the level of inequality aversion (from κ = 1.1 to κ = 500) for the Gini-based

measures, we observe the coefficients fluctuate.

These results imply that we could have a highly nonlinear income transmission process

that fluctuates a lot (and hence the derivative and the implied mobility level) at adjacent

values and can be drastically different.

5.2.4 Before Conclusions

The results here, both theoretical and empirical, may be uncomfortable for some.

The ubiquitous heterogeneity and nonlinearity may imply that any conclusions regarding

the mobility can be subjective and sensitive to the varying parameter. That is true.

However, some of the qualitative conclusions do not have to be. It is important to see

what consensus may arise from this kind of analysis. When no uniform conclusions can

be reached, our paper points out the need to explicate the commitment to certain policy

goals when measuring mobility. For example, many may agree that the measurement

of mobility should reflect our care for the poor, and that monitoring the changes or

policy effectiveness should place more weights on the children from more disadvantaged

families. Only when such qualifying statements are made can our policy discussions be

more meaningful and fruitful.
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6 Conclusions

In this paper, we consider the fundamental decision-theoretic foundation of the in-

tergenerational mobility measures in the presence of nonlinearity and heterogeneity. We

first recast the dominant regression-based measures as a weighted average of intergen-

erational income elasticities at different parts of the parental income distribution. Our

careful analysis of the weighting schemes underlying these traditional measures exposes

the undesirable features of these approaches to measuring intergenerational mobility for

any society or group. The weights for the rank-rank regression are even radical and not

proper weights that could be at odds with most of the policy goals or evaluation functions

that we would typically consider reasonable in practice. These results prompt us to pro-

vide a unified framework to embed policy goals or evaluation functions in our estimation

of IGMs. Two one-parameter families of summary measures of mobility are proposed, and

their properties are thoroughly examined. These two sets of mobility measures are flexi-

ble and can accommodate a wide range of the weighting schemes that we typically desire.

The estimation of these measures is also easy to implement and allows practitioners to

focus on the issues at hand. For the sake of completeness, we also extend our framework

to further permit inclusion of additional covariates, which can be useful for counterfactual

analysis and understanding the sources of the IGMs.

We apply our method to the PSID to estimate the intergenerational mobility in the

U.S.. Our central message is loud and clear: our impression of the mobility in a country

or group depends crucially on which part of the distribution we would like to highlight

in practice. The sensitivity of the mobility measures for a particular group also has a

substantial impact on our between-group comparisons of mobility levels. Our perspectives

on the geographic differences in mobility and the dynamics of mobility can be challenged,

depending on the weighting schemes.

References

Aaberge, R., “Characterizations of Lorenz curves and income distributions,” Social

Choice and Welfare 17 (2000), 639–653.

Aaberge, R., T. Havnes and M. Mogstad, “Ranking Intersecting Distribution Func-

tions,” forthcoming, Journal of Applied Econometrics (2021).

An, Y., L. Wang and R. Xiao, “A Nonparametric Nonclassical Measurement Error

29



Approach to Estimating Intergenerational Mobility Elasticities,” Journal of Business

& Economic Statistics (2020), 1–17.

Bhattacharya, D. and B. Mazumder, “A nonparametric analysis of black–white

differences in intergenerational income mobility in the United States,” Quantitative

Economics 2 (2011), 335–379.

Bloome, D., “Income Inequality and Intergenerational Income Mobility in the United

States,” Social Forces 93 (2015), 1047–1080.

Chetty, R., N. Hendren, M. R. Jones and S. R. Porter, “Race and economic

opportunity in the United States: An intergenerational perspective,” The Quarterly

Journal of Economics 135 (2020), 711–783.

Chetty, R., N. Hendren, P. Kline and E. Saez, “Where is the land of opportu-

nity? The geography of intergenerational mobility in the United States,” The Quarterly

Journal of Economics 129 (2014), 1553–1623.

De Chaisemartin, C. and X. d’Haultfoeuille, “Two-way fixed effects estimators

with heterogeneous treatment effects,” American Economic Review 110 (2020), 2964–

96.

De Chaisemartin, C. and X. dHaultfoeuille, “Fuzzy differences-in-differences,”

The Review of Economic Studies 85 (2018), 999–1028.

Durlauf, S., A. Kourtellos and C.-M. Tan, “Status Trap,” Journal of Business

and Economic Statistics 35 (2017).

Firpo, S., N. M. Fortin and T. Lemieux, “Unconditional quantile regressions,”

Econometrica 77 (2009), 953–973.

Haider, S. and G. Solon, “Life-cycle variation in the association between current and

lifetime earnings,” American Economic Review 96 (2006), 1308–1320.

Hertz, T., Unequal Chances: Family Background and Economic Success, chapter Rags,

Riches and Race: The Intergenerational Economic Mobility of Black and White Families

in the United States (Princeton, NJ.: Princeton University Press, 2005), 338–358.

Jenkins, S., “Snapshots versus movies:?Lifecycle biases? and the estimation of intergen-

erational earnings inheritance,” European Economic Review 31 (1987), 1149–1158.

30



Krueger, A. B., “The rise and consequences of inequality in the United States,” Speech

at the Center for American Progress 12 (2012).

Landersø, R. and J. J. Heckman, “The Scandinavian fantasy: The sources of inter-

generational mobility in Denmark and the US,” The Scandinavian journal of economics

119 (2017), 178–230.

Li, Q. and J. S. Racine, Nonparametric econometrics: theory and practice (Princeton

University Press, 2007).

Løken, K. V., M. Mogstad and M. Wiswall, “What linear estimators miss: The

effects of family income on child outcomes,” American Economic Journal: Applied

Economics 4 (2012), 1–35.

Maasoumi, E. and L. Wang, “The gender gap between earnings distributions,” Journal

of Political Economy 127 (2019), 2438–2504.

Mazumder, B., “Estimating the intergenerational elasticity and rank association in the

United States: Overcoming the current limitations of tax data,” Research in Labor

Economics 43 (2016), 83–129.

———, “Intergenerational mobility in the United States: What we have learned from

the PSID,” The Annals of the American Academy of Political and Social Science 680

(2018a), 213–234.

———, “Intergenerational mobility in the United States: What we have learned from the

PSID,” The ANNALS of the American Academy of Political and Social Science 680

(2018b), 213–234.

Mogstad, M. and M. Wiswall, “Testing the quantity–quality model of fertility: Esti-

mation using unrestricted family size models,” Quantitative Economics 7 (2016), 157–

192.

Sen, A., Inequality reexamined (Oxford University Press, 1992).

Solon, G., “Intergenerational Income Mobility in the United States,” American Eco-

nomic Review 82 (1992), 393–408.

———, “Cross-country differences in intergenerational earnings mobility,” Journal of Eco-

nomic Perspectives 16 (2002), 59–66.

31



Weymark, J. A., “Generalized Gini inequality indices,” Mathematical Social Sciences

1 (1981), 409–430.

Yaari, M. E., “The dual theory of choice under risk,” Econometrica: Journal of the

Econometric Society (1987), 95–115.

———, “A controversial proposal concerning inequality measurement,” Journal of Eco-

nomic Theory 44 (1988), 381–397.

Yin, J., Z. Geng, R. Li and H. Wang, “Nonparametric covariance model,” Statistica

Sinica 20 (2010), 469.

Yitzhaki, S., “On using linear regressions in welfare economics,” Journal of Business &

Economic Statistics 14 (1996), 478–486.

32



Table 1: Jarque-Bera test of Normality

Panel A: Child Income

Full Sample Northeast North Central South West
(1) (2) (3) (4) (5)

80.54 17.03 30.05 14.16 24.54
(0.000) (0.000) (0.000) (0.001) (0.000)

Before 1954 1954-1961 1961-1967 Post 1967

62.66 14.97 6.51 30.33
(0.000) (0.001) (0.038) (0.000)

Panel B: Father’s Income

Full Sample Northeast North Central South West
(1) (2) (3) (4) (5)

396.09 270.05 235.03 21.03 30.00
(0.000) (0.000) (0.000) (0.000) (0.000)

Before 1954 1954-1961 1961-1967 Post 1967

34.41 39.70 33.22 267.04
(0.000) (0.000) (0.000) (0.000)
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Table 2: Measures of Immobility (Full Sample)

Panel A: Conventional Regression-based results

Level Rank-Rank
Regression Regression

0.5371*** 0.3924***
(0.0292) (0.0204)

Panel B: Gini Family of Measures (κ > 1)

Low → Higher Inequality Aversion

k = 1.1 k = 2 k = 10 k = 50 k = 100 k = 500

0.5814*** 0.5905*** 0.5641*** 0.4870*** 0.4535*** 0.2828**
(0.0311) (0.0317) (0.0380) (0.0547) (0.0668) (0.1121)

Panel C.1. Lorenz Family of Measures (ν ∈ (0, 1))

Low → Higher Inequality Aversion

v = .8 v = .5 v = .2 v = .1

0.5804*** 0.5796*** 0.5736*** 0.5696***
(0.0308) (0.0306) (0.0309) (0.0311)

Panel C.2. Lorenz Family of Measures (ν > 1)

High → Low Inequality Aversion

v = 1.1 v = 2 v = 10 v = 50 v = 100 v = 500

0.5786*** 0.5680*** 0.4965*** 0.3648*** 0.3135*** 0.2700**
(0.0312) (0.0325) (0.0412) (0.0583) (0.0699) (0.1142)

No of obs. 2042
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Table 3: Measures of Immobility: Conventional Regression Approaches (By Region)

By Region
Northeast North South West

Central
(1) (2) (3) (4)

Panel A: Regression Approach
Log of 0.4650*** 0.5193*** 0.5855*** 0.4482***
Father’s Income (0.0634) (0.0497) (0.0544) (0.0827)

Panel B: Rank-Rank Approach

Rank of 0.3693*** 0.3636*** 0.4430*** 0.2898***
Father’s Income (0.0462) (0.0335) (0.0390) (0.0531)

Observations 407 776 532 327
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Table 4: Measures of Immobility: Gini Family (By Region)

Parameter Northeast North South West
Central

(1) (2) (3) (4)

Low κ = 1.1 0.5306*** 0.5782*** 0.5956*** 0.4611***
(0.0p5em—692) (0.0535) (0.0561) (0.0870)

κ = 2 0.5481*** 0.5906*** 0.5758*** 0.4938***y (0.0711) (0.0552) (0.0570) (0.0875)

κ = 10 0.5442*** 0.5750*** 0.5056*** 0.5649***
High (0.0851) (0.0686) (0.0701) (0.1013)

Inequality κ = 50 0.4309*** 0.5171*** 0.4393*** 0.4743***
(0.1127) (0.0993) (0.1075) (0.1516)

Aversion
κ = 100 0.3408*** 0.5643*** 0.3850*** 0.4871**

(0.1272) (0.1212) (0.1396) (0.2005)

κ = 500 0.1115 0.4941** 0.3892* 0.7825*
(0.1936) (0.1992) (0.2358) (0.4121)
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Table 5: Measures of Immobility: Lorenz Family (By Region)

Parameter Northeast North South West
Central

(1) (2) (3) (4)
Panel A: ν ∈ (0, 1)

High ν = .1 0.5264*** 0.5779*** 0.5547*** 0.5019***
(0.0689) (0.0547) (0.0567) (0.0856)y

ν = .2 0.5298*** 0.5790*** 0.5615*** 0.4972***
Low (0.0685) (0.0540) (0.0561) (0.0851)

Inequality ν = .5 0.5329*** 0.5799*** 0.5783*** 0.4820***
Aversion (0.0682) (0.0532) (0.0555) (0.0851)

ν = .8 0.5301*** 0.5780*** 0.5912*** 0.4664***
(0.0686) (0.0532) (0.0558) (0.0862)

Panel B: ν > 1

High ν = 1.1 0.5249*** 0.5745*** 0.6013*** 0.4516***
(0.0692) (0.0535) (0.0564) (0.0877)y

ν = 2 0.5057*** 0.5611*** 0.6211*** 0.4173***
Low (0.0714) (0.0550) (0.0591) (0.0927)

Inequality ν = 10 0.3715*** 0.4980*** 0.6516*** 0.3308***
Aversion (0.0870) (0.0660) (0.0798) (0.1240)

ν = 50 0.2848** 0.3277*** 0.7022*** 0.1386
(0.1212) (0.0878) (0.1319) (0.1930)

ν = 100 0.3097** 0.2307** 0.7192*** 0.0181
(0.1464) (0.1043) (0.1683) (0.2373)

ν = 500 0.3027 0.1910 0.7690*** -0.1225
(0.2270) (0.1630) (0.2644) (0.3894)

Observations 407 776 532 327
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Table 6: Measures of Immobility: Conventional Regression Approaches (By Cohort)

By Birth Cohort
Before 1954- 1961- Post
1954 1961 1967 1967
(1) (2) (3) (4)

Panel A: Regression Approach
Log of 0.4949*** 0.5303*** 0.5226*** 0.5597***
Father’s Income (0.0754) (0.0602) (0.0789) (0.0422)

Panel B: Rank-Rank Approach

Rank of 0.3718*** 0.3965*** 0.3260*** 0.4197***
Father’s Income (0.0507) (0.0448) (0.0496) (0.0300)

Observations 337 422 365 918
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Table 7: Measures of Immobility: Gini Family (By Cohort)

Parameter Northeast North South West
Central

(1) (2) (3) (4)

Low κ = 1.1 0.5054*** 0.5706*** 0.5505*** 0.6183***
(0.0798) (0.0638) (0.0829) (0.0452)

κ = 2 0.5230*** 0.5875*** 0.5150*** 0.6344***y (0.0808) (0.0652) (0.0859) (0.0459)

κ = 10 0.5691*** 0.5916*** 0.3741*** 0.5914***
High (0.0963) (0.0784) (0.1121) (0.0541)

Inequality κ = 50 0.5747*** 0.5171*** 0.2493 0.4751***
(0.1437) (0.1149) (0.1758) (0.0757)

Aversion
κ = 100 0.5436*** 0.4492*** 0.3184 0.4074***

(0.1822) (0.1435) (0.2195) (0.0911)

κ = 500 0.2716 0.3696* 0.9267* 0.2254
(0.2824) (0.2012) (0.4758) (0.1488)

Observations 337 422 365 918

39



Table 8: Measures of Immobility: Lorenz Family (By Cohort)

Parameter Northeast North South West
Central

(1) (2) (3) (4)
Panel A: ν ∈ (0, 1)

High ν = .1 0.5308*** 0.5766*** 0.4795*** 0.6018***
(0.0796) (0.0642) (0.0866) (0.0447)y

ν = .2 0.5274*** 0.5770*** 0.4904*** 0.6077***
Low (0.0789) (0.0637) (0.0853) (0.0445)

Inequality ν = .5 0.5174*** 0.5752*** 0.5194*** 0.6165***
Aversion (0.0785) (0.0631) (0.0831) (0.0444)

ν = .8 0.5081*** 0.5708*** 0.5424*** 0.6172***
(0.0791) (0.0633) (0.0825) (0.0448)

Panel B: ν > 1

High ν = 1.1 0.5001*** 0.5652*** 0.5601*** 0.6138***
(0.0801) (0.0640) (0.0827) (0.0454)y

ν = 2 0.4817*** 0.5466*** 0.5934*** 0.5955***
Low (0.0840) (0.0665) (0.0848) (0.0475)

Inequality ν = 10 0.4106*** 0.4284*** 0.6183*** 0.5084***
Aversion (0.1079) (0.0834) (0.1034) (0.0609)

ν = 50 0.3327** 0.3009** 0.4690*** 0.3769***
(0.1518) (0.1191) (0.1432) (0.0868)

ν = 100 0.2947 0.2672* 0.4616*** 0.2971***
(0.1807) (0.1443) (0.1701) (0.1042)

ν = 500 0.2447 0.2151 0.5004* 0.2488
(0.2546) (0.1979) (0.2757) (0.1749)

Observations 337 422 365 918
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Appendix

A. Proof of Corollary 1

Proof. First, we consider the case of normal distributions. Since the conditional distri-

bution of ε given X = x is normal with zero mean and variance σ2
ε , the conditional

distribution of Y given X = x is normal with mean µy|x = g(x) and variance σ2
y|x = σ2

ε .

Given that Y is normally distributed, the mean and variance of Y are µy = E(g(X)) and

σ2
y = σ2

ε + V ar(g(X)), respectively. Note that FY (y) = Pr(Y ≤ y) = Pr((Y − µy)/σy ≤
(y − µy)/σy) = Φ((y − µy)/σy). Then, it is easy to show that g′r(u) in (3) becomes

g′r(u) =
d

du
{E(FY (Y )|FX(X) = FX(x) = u)} =

d

du

{∫ ∞
−∞

Φ((y − µy)/σy)f(y|x)dy

}
=

d

du

{∫ ∞
−∞

Φ

(
y − µy
σy

)
1

σε
√

2π
e
− (y−g(x))2

2σ2ε dy

}
=

∫ ∞
−∞

Φ

(
y − µy
σy

)
1

σε
√

2π
e
− (y−g(x))2

2σ2ε
y − g(x)

σ2
ε

g′(x)

fX(x)
dy

= − g′(x)

fX(x)

∫ ∞
−∞

Φ

(
y − µy
σy

)
d

dy

{
1

σε
√

2π
e
− (y−g(x))2

2σ2ε

}
=

g′(x)

fX(x)

1

σy

∫ ∞
−∞

φ

(
y − µy
σy

){
1

σε
√

2π
e
− (y−g(x))2

2σ2ε

}
dy

=
g′(x)

fX(x)

1

σy

∫ ∞
−∞

{
1√
2π
e
− (y−µy)2

2σ2y

}{
1

σε
√

2π
e
− (y−g(x))2

2σ2ε

}
dy

=
g′(x)

fX(x)

1

σy

1

σε
√

2π

∫ ∞
−∞

{
1√
2π
e
− (y−µy)2

2σ2y
− (y−g(x))2

2σ2ε

}
dy

=
g′(x)

fX(x)

1√
2π(σ2

ε + σ2
y)
× exp

{
−

(σ2
ε + σ2

y)(σ
2
εµ

2
y + g2(x)σ2

y)− (µyσ
2
ε + g(x)σ2

y)
2

2σ2
yσ

2
ε (σ

2
ε + σ2

y)

}
= a(x)g′(x)(fX(x))−1, (35)

where

a(x) =
1√

2π(σ2
ε + σ2

y)
× exp

{
−

(σ2
ε + σ2

y)(σ
2
εµ

2
y + g2(x)σ2

y)− (µyσ
2
ε + g(x)σ2

y)
2

2σ2
yσ

2
ε (σ

2
ε + σ2

y)

}
. (36)

Therefore, wr(x) in (6) becomes

wr(x) = 6(FX(x)− F 2
X(x))g′r(FX(x))fX(x)(g′(x))−1 = c(x)(FX(x)− F 2

X(x)), (37)
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where c(x) = 6a(x).

Second, for the case of lognormal distribution, using arguments similar to the case

of normal distributions, it can be shown that wr(x) remains the same as that in (37).

Specifically,

g′r(u) =
d

du
{E(FY (Y )|FX(X) = FX(x) = u)} =

d

du

{∫ ∞
0

Φ

(
log(y)− µy

σy

)
f(y|x)dy

}
=

d

du

{∫ ∞
0

Φ

(
log(y)− µy

σy

)
1

yσε
√

2π
exp

{
−(ln(y)− g(x))2

2σ2
ε

}
dy

}
=

∫ ∞
0

Φ

(
log(y)− µy

σy

)
d

du

{
1

yσε
√

2π
exp

(
−(ln(y)− g(x))2

2σ2
ε

)}
dy

=

∫ ∞
0

Φ

(
log(y)− µy

σy

)
1

yσε
√

2π

{
exp

(
−(ln(y)− g(x))2

2σ2
ε

)
ln(y)− g(x)

σ2
ε

g′(x)

f(x)

}
dy

=

∫ ∞
0

Φ

(
log(y)− µy

σy

){
1

σε
√

2π
exp

(
−(ln(y)− g(x))2

2σ2
ε

)
ln(y)− g(x)

σ2
ε

g′(x)

f(x)

}
dln(y)

=

∫ ∞
−∞

Φ

(
t− µy
σy

){
1

σε
√

2π
exp

(
−(t− g(x))2

2σ2
ε

)
t− g(x)

σ2
ε

g′(x)

f(x)

}
dt

= a(x)g′(x)(fX(x))−1,

where the last equality, which is the same as (35), is obtained by using the same arguments

as those for the case of the normal distribution. Therefore, wr(x) in (6) is identical to

that in (37).

Third, we consider the case of uniform distributions. Note that E(ε|X) = 0 implies

E(ε|FX(X)) = 0. Then,

gr(U) = E[V |U ] = E[FY (g(X) + ε)|FX(X)] =
g(X) + E[ε|FX(X)]− y

y − y
=
g(F−1

X (U))− y
y − y

.

Therefore, wr(x) in (6) becomes

wr(x) = 6(FX(x)− F 2
X(x))(y − y)−1. (38)

In addition, we provide a result connecting summary measures between level and

rank regressions under additional assumptions. Let ∆y = y − y. If X is also uniformly

distributed on [x, x] with ∆x = x− x and g(x) = α + xβ, we obtain

gr(u) =
g(u∆x + x)− y

∆y

=
α + β(u∆x + x)− y

∆y

=
α + βx− y

∆y

+
β∆x

∆y

u = αr + βru,
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where

αr = (α + βx− y)/∆y and βr = β∆x/∆y.

Suppose ∆x = ∆y, we obtain βr = β. Moreover, wr(x) in (38) becomes wr(x) = 6(x −
x)(x− x)∆−3

x , and it can be shown that
∫ x
x
wr(x)dx = 1.

B. Proof of Proposition 2

Proof. (i) uI(κ) is strictly decreasing in κ for κ > 1 because

duI(κ)

dκ
= −κ

1
1−κ (1− κ+ κlog κ)

κ(1− κ)2
< 0 for κ > 1. (39)

(ii) Using L’Hopital’s rule leads to

lim
κ→∞

κ
1

1−κ = lim
κ→∞

exp
(

log
(
κ

1
1−κ

))
= exp

(
lim
κ→∞

log
(
κ

1
1−κ

))
= exp(0) = 1. (40)

Therefore, lim
κ→∞

uI(κ) = lim
κ→∞

(
1− κ

1
1−κ

)
= 0.

(iii) Recall the first derivative in (15) is

dwIκ(u)

du
= cI(κ)κ(1− u)κ−1 − cI(κ), (41)

where

cI(κ) =

(∫ 1

0

{(1− u)− (1− u)κ} dF−1
X (u)

)−1

.

First, the first term in (41) converges to zero as κ → ∞ because κ(1 − u)κ−1 converges

to zero for any u ∈ (0, 1], and cI(κ) converges to a non-zero constant. This implies that

for a sufficiently large value of κ, the approximating first derivative in (41) is a constant.

Second, the rate of convergence for κ(1 − u)κ−1 seems much faster than that for the κ-

related component
∫ 1

0
(1 − u)κdF−1

X (u) in cI(κ). Therefore, for a sufficiently large value

of κ, the approximate slope of wIκ(u) is −cI(κ). As the upper left panel of Figure 1

indicates, when κ is larger, all of the curves become closer to lines, with different slopes

corresponding to different values of κ. Last, combining the approximate slope −cI(κ)

with the additional condition wIκ(1) = 0, we obtain that for a sufficiently large κ, the

approximating expression for wIκ(u) with u ∈ [uI(κ), 1] is cI(κ)(1− u).
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C. Proof of Proposition 3

Proof. (i) uII(ν) is strictly increasing in ν > 0 because it can be shown that

duII(ν)

dν
=
ν

1
1−ν (1− ν + νlog ν)

ν(1− ν)2
> 0. (42)

(ii) It is clear that uII(ν) = ν
1

1−ν → 0 as ν → 0. Using the same proof as in (40), we

obtain uII(ν)→ 1 as ν →∞.

(iii) Recall the first derivative in (21) is

dwIIν (u)

du
= cII(ν)− cII(ν)νuν−1, (43)

where

cII(ν) =

(∫ 1

0

(u− uν)dF−1
X (u)

)−1

.

First, the second term in (43) converges to zero as ν → 0 because νuν−1 converges to zero

for any u ∈ (0, 1], and cII(ν) converges to a non-zero constant. This implies that for a

sufficiently small ν, the approximating first derivative in (43) is a constant. Second, the

rate of convergence for νuν−1 seems much faster than that for the ν-related component∫ 1

0
uνdF−1

X (u) in cII(ν), in the sense that νuν−1 is negligible relative to cII(ν). Therefore,

for a sufficiently small ν, the approximate slope of wIIν (u) is cII(ν). As the lower left

panel of Figure 1 implies, when ν is smaller, all of the curves become closer to lines, with

different slopes corresponding to different values of ν. Last, combining the approximate

slope cII(ν) with the additional condition wIIν (1) = 0, we obtain that for a sufficiently

small ν, the approximating expression for wIIν (u) with u ∈ [uII(ν), 1] is cII(ν)(u− 1).

(iv) First, the second term in (43) converges to zero as ν →∞ because νuν−1 converges

to zero for any u ∈ [0, 1), and cII(ν) converges to a non-zero constant. This implies that

for a sufficiently large ν, the approximating first derivative in (43) is a constant. Second,

similar to the proof of property (iii), when ν is larger, νuν−1 is negligible relative to

cII(ν). Therefore, for a sufficiently large ν, the approximate slope of wIIν (u) is cII(ν). As

the lower right panel of Figure 1 shows, when ν is larger, all of the curves become closer

to lines, with different slopes corresponding to different values of ν. Last, combining

the approximate slope cII(ν) with the additional condition wIIν (0) = 0, we obtain that

for a sufficiently large ν, the approximating expression for wIIν (u) with u ∈ [0, uII(ν)] is

cII(ν)u.
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