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Abstract

We demonstrate the conditions under which the bivariate probit model can
be considered a special case of the more general multinomial probit (MNP)
model. Since the attendant parameter restrictions produce a singular co-
variance matrix, the subsequent problems of testing on the boundary of the

parameter space are circumvented by the construction of a score test.
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1. Introduction

The bivariate and multinomial probit models can both be thought of as natural
extensions of the simple (binomial) probit model. As Greene (1993) points out, in
formulating the bivariate probit (BVP) model two ‘probit’, or binary, regression
equations are defined with correlated disturbances, yielding a discrete analogue of
the seemingly unrelated regression model in which the dependent variable is a two
dimensional vector of binary outcomes. The multinomial probit (MNP) model,
on the other hand, might appear to be appropriate for a rather different problem
in which the dependent variable of interest is the unique choice made from a set
of distinct alternatives. In this note, we point out that the BVP model might
usefully be interpreted as a special case of a MNP model. This is achieved by
recognising that the two binary equations (or decisions), as specified in the BVP
approach, generates four mutually exclusive outcomes (or alternatives), which can
be modelled in an MNP framework. Formally, it can then be shown that the MNP
model nests the BVP model, via parametric restrictions, and an appreciation of
this may be of use to applied workers in formulating appropriate parametric speci-
fications since, in many published studies involving discrete choice, both the BVP
and multinomial models (such as the MNP and multinomial logit (MNL)) have
been employed without apparent consideration of the statistical and behavioural
relationship that exist between the two different model structures; see, however,
some discussion in Pudney (1989) (pp.122-3). This is of some interest, since a
commonly used behavioural/economic interpretation of the MNP model would
be that the observed ‘joint’” decision is made on the basis of utility maximisation
over the four possibilities that the bivariate problem can generate. Consequently,
the BVP model is itself, consistent with such utility maximising behaviour when
the appropriate parametric restrictions, imposed on the more general MNP spec-
ification, are satisfied. This suggests the availability of a formal test of the BVP

specification which might also be used to assess whether or not this behavioural



interpretation, accommodated by the MNP model, is data consistent.

The outline of the paper is as follows: In section 2, the basic parametric BVP
and MNP models are outlined and contrasted. In section 3, the set of parametric
restrictions are derived, for a MNP model, which yields the BVP as a special case
and an appropriate score test derived. In constructing such a test care must be
taken since the restrictions produce a singular covariance matrix in the implied
MNP specification. The subsequent problems of testing on the boundary of the
parameter space are circumvented by the construction of a score test. Section 4

concludes.

2. Bivariate and Multinomial Models

Cox (1972) describes a number of approaches for analysing multivariate binary
outcomes. As the number of binary random variables (k) under consideration
increases, a simplistic method is to treat each of the variables as independent.
In economics, assuming a parametric mean and additive error, we are then faced
with h independent binary probit (or logit) regressions. With h = 2, dependence
is easily introduced via the BVP model and has been used extensively in a number
of fields, including economics and bioassay. A different approach is to treat the
2" outcomes as being generated from a multinomial distribution, which gives the
multinomial counterparts of the simple probit and logit models.

The bivariate model is popular in biological assay and was first introduced
by Ashford and Sowden (1970) in recognition of the dependence between distinct
physiological systems. The authors, following Mantel (1966), are careful to point
out the distinction between a model which recognises dependence over two dis-
tinct systems which determine 4 mutually exclusive outcomes, and a single system
providing four outcomes with an arbitrary dependence structure. (The multivari-
ate and multinomial models extend this to consider dependence over h systems

and the 2" mutually exclusive outcomes, respectively.) Apart from the comments



by McFadden (1981), it appears that the precise nature of this distinction is not
widely appreciated in economics. Greene (1993) (p.913) notes that the multi-
variate models are distinct from the multinomial choice models in that for the
former, the focus is upon the modelling of two or more decisions, with each deci-
sion involving two alternatives, whereas in the latter case there is a single decision
among two or more alternatives. Notwithstanding this behavioural distinction, in
the next section it is demonstrated how the MNP model nests BVP model.

To begin with, however, let us re-examine the basic statistical relationship
between bivariate and multinomial choice models. Let (y*, z*)' be a vector of scalar
random variables, each with support on the real line, and define y = 1(y* > 0)
and z = 1(z* > 0), in which 1(.) is the indicator function; i.e., y = 1 if y* > 0,
and is zero otherwise. Based upon these relationships we may enumerate four
mutually exclusive outcomes for the pair (y, z). Let the outcome be denoted by
the discrete random variable s, taking on values j = 1,...,4, to which a value

measure (or utility level), denoted v*, is assigned. This is illustrated in Table 1:

Table 1:
y 2z s v
1 1 1 of
1 0 2 v
0 1 3 v
0 0 4 v}

Although the above table represents a highly abstract system, there exist many
examples from inter alia bioassay and economics where the relationship between
two (or more) Bernoulli random variables and the associated states is important.

Ezxample 1

In economics y might represent the discrete decision (D;) whether or not to
work. This decision might be based upon the respective utilities of being in or out

of the labour force, denoted y; and g, with the implication that y* = (v — ) -
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Further, z might denote the decision (D;) whether or not to take up formal (i.e.,
paid) child-care (again based upon a comparison of underlying utilities, denoted
2§ and z§ with 2* = 2§ — 2§). The two decisions may be correlated and, in this
instance, the discrete random variable s enumerates the four possible combinations
of: work, not work (VV, V_V), child-care, not child-care (C’, C’) outcomes. This is
illustrated in Figure 1(a). Here the probability that an individual both works
and utilises paid child-care is given by the probability Pr(y* > 0N z* > 0). In
Figure 1(b) we consider a somewhat different structural framework, for the same
problem, in which a single decision (D) yields one of 4 possible outcomes, but
based upon a ranking of the utilities (or, the implied value measure). In this
multinomial model, and with reference to Table 1, the probability of working and
using paid child-care is given by the probability Pr( ﬁ vf — v} > 0).
Ezample 2 =

In bioassay y might indicate the discrete response of a subject after taking a
particular drug. However, since it is known that subjects may exhibit both a main
effect and a number of other possibly related side effects, it might be necessary
to monitor a secondary response, z. The observed response is then the joint
realisation of the two underlying physiological systems. For example, Fay (1957)
documents research into the respiratory systems of coalminers. Two symptoms
were examined: breathlessness and wheeze. For each symptom we may consider
a continuum of exposure (say y* and z*), where beyond certain thresholds, the
subject is said to be suffering from the condition. Since each response function
has two levels (afflicted, not afflicted), the two binary variables (say y and z)

define four possible states.



Figure 1 (a)
Bivariate Model
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Ezample 3

As another example, McCullagh and Nelder (1989) report a study of mortality
due to radiation. Exposed and non-exposed individuals were classified at the
end of the study as dead or alive, with mortality further classified according to
deaths due to cancer or other causes. Cancer deaths were further differentiated
according to leukemia deaths and deaths from other cancers. The four mutually
exclusive response categories are therefore: alive, death from causes other than
cancer, deaths from cancers other than leukemia and deaths from leukemia. Again
the critical issue is how do we model the observed data. In this case it seems
appropriate to model the data in terms of a number of distinct dichotomies, and
therefore proceed by making a separate study of total mortality, cancer mortality
and leukemia mortality, rather than entertain a BVP structure.

However, there may arise other situations in which the appropriate model is
less clear. In such cases, a fundamental issue is under what circumstances we might
use the information contained in the random variables y and z (perhaps allowing
for correlation), and when we should use the random variable s. In addition it
would be instructive to know under what conditions the two are equivalent and

this question is addressed in the next section.

2.1. Bivariate Probit

The BVP model is derived from the latent variables y* and z* introduced above.
Specifically, we assume that y* and z* are distributed bivariate normal with a

simple parametric structure given by

v = Xa+tu (2.1)
2 = XB+w

where o and 3 are unknown parameter vectors, x is a (k x 1) vector of regressors

and the joint distribution of u and w is bivariate normal with correlation p:
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As discussed previously, (2.1) generates the four possible outcomes of the pair
(y,2); see Table 1. The corresponding four probabilities will be denoted 7;, j =
1,...,4 and are relatively straightforward to derive. For example, s = 1 if and
only if y =1 and z = 1. Thus
m = Pr(s=1)=Pr(y">0Nz">0)
= Pr(u>—xa N v>-xpP).

The other three probabilities are obtained in an obvious manner. Formally, if
®, (a,b; p) denotes the bivariate normal distribution function of (u,w) evaluated
at the point (a,b) and ®(c¢) the standard normal distribution function evaluated
at the point ¢, then it is easy to see that

T = ®y (X', X'Bip)

Ty = 0y (X', —x'B; —p) = (X'a¢) —

Ty = Oy (—X'a,X'B; —p) = ®(x'B) — m

4= Do (—X'a, —X'B;p) =1 — 1 — Wy — 3.

(2.3)

The key point to emphasise in the above is that the probabilities for the four
states have been calculated using the two random variables y* and z*. As such,
the required probabilities involve only the evaluation of the bivariate distribution,
®, (a,b; p), and two univariate distributions, ®(a) and ®(b).

Finally, introduce the mutually exclusive indicators ¢; =1 (s =j),j =1,...,4;
i.e., c; = 1if and only if s = 5. Then contributions to a log-likelihood function of

an arbitrary individual take the form 3>5_; ¢; In(;).

2.2. Multinomial Probit

As shown above, although the BVP model can provide estimates of the proba-

bilities for four mutually exclusive states, this is done using combinations of the
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two underlying latent random variables. Therefore, the model implies a particular
statistical structure. In a MNP model of four states (or alternatives), denoted by
the random variable s, the value (or utility) of each state is represented explicitly
by the random variable v*, which can take on values v}, j = 1,...,4, (see Table 1)
and, in applications common in economics and biology, it is understood that the
outcome with the highest ‘value’ attached is observed. As a result, the calculation
of probabilities for each of the outcome is somewhat different, than in the BVP
model. Here, the probability that s = j (or, equivalently, ¢; =1, j = 1,...,4)

may be written

4
p; = Pr(c; =1) =Pr([|v] — v >0) (2.4)
I#£j
and, in general, requires the evaluation of a trivariate integral. Contributions to
the log-likelihood are thus Z?Zl ¢;In(p,), and the form of the p; are given below
together with some comments on identification issues.

In the MNP model, the natural specification would be

v =Xy 4+¢e5 j=1,...,4, (2.5)

in which the «; are vectors of unknown parameters and € = (€1,€2,€3,€4) is
distributed multivariate normal with zero mean vector and covariance matrix
Y ={o;};ie, e ~ MVN(0,X). In order to obtain the probabilities defined in
(2.4), introduce vj; = v; — v} so that vj; = v}; — v];, say. Some straightforward

calculation then yields:

pr= Pr(vy, >0nNvf; >0Nvf, >0),
p2= Pr(vi; <0N(vi3—viy) > 00N (v]; — viy) >0), (2.6)
ps = Pr(vi3 <0N (vi3 —vfy) <0N (v}, —vis) > 0),

(

pa= Pr(viy <0N(vj —vfy) <0N (v}, —vi5) <0),



so that all the required probabilities can be defined in terms of the three random
variables, v7;, 7 = 2,...,4, and differences thereof.!
Furthermore, by defining §; = v, — v, and n; = &1 — ¢, the preceding proba-

bilities in (2.6) become

.

r(ny, >—xd02Nny >—x'd3Nn, >—x'd4),
(ny < =X'02N (N3 — 1) > =X (05 — §2) N (ny — my) > =X (81 — 82)),

p3= Pr(ng <—x'63N(n3 —ny) < —x'(85 — §2) N (ny — n3) > —x' (04 — 83)) ,
(4

pa= Pr(ng <—x'64N0(ny—my) < —x (64— 82) N (ny—1m3) <—x (64— 03)),
(2.7)

which will be determined by the joint distribution of n = (n,,n5,7,)", being
MV N(0,9). Note that exactly the same probabilities obtain by substituting
77} = wn; and 6} = wd; throughout, j = 2,...4. It is therefore clear that not

p1=
p2= Pr

only are the individual v, in (2.5) not identifiable but that it is only possible
to identify 4, and € up to a factor of proportionality. To overcome this a nor-
malisation is required on one of the elements of €; e.g., var (ny) = 1, would be
sufficient to identify d; and the remaining 5 distinct parameters in 2. These ar-
guments can be generalised to a MNP model, defined by (2.5), in which there
are J possible outcomes/choices, so that only J(J — 1)/2 — 1 covariance parame-
ters in = var(n), (J —1 x J — 1) are identified together with the d;, (k x 1),
j=2,...,J; see, for example, the discussion in Pudney (1989).

In the next section, conditions are derived under which p; =m;, 7 =1,...,4,

implying that the BVP model is a special case of the MNP model.

3. A Restricted Multinomial Probit

It was shown above that the MNP model requires a restriction on one of the

elements of €2, in order for parameters to be identified. The BVP model obtains

! This demonstrates that the dimensionality of the multinomial problem is reduced in that

the requisite probability calculations involve the estimation of 3-fold multivariate integrals.
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from the MNP model, with J = 4, by imposing further restrictions on €2, and the
0, as detailed below.

3.1. Parametric restrictions

The way in which the MNP model formally nests the BVP model is described by

the following proposition:

0 1
Proposition 3.1. Let (i) )~ BVYN ; P ; (i4) My = Nytm3;
UE! 0 p 1

(Z’LZ) 52:a, 63:,8, 54:a+ﬂ Thenwj :pj,j:]_,...,4.

The result is readily established and we demonstrate it only for p;. Upon

substitution of (i) — (7i7), in the expression for p;, we can write

p1 = Pr(n,>—Xann, >-x'BN(n,+n)>—x(a+p0)),
= Prip > Xann > xB).

= &y (X', X' 3;p) = m.

It is clear that the conditions identified in the above proposition lead to a con-
strained MNP model; i.e., the MNP model is algebraically equivalent to the BVP
model if (2.5) is subject to parametric restrictions, which are now investigated.

Firstly, note that condition (77) in the above proposition implies that

M9 0 1 P 1+p
s |~MVN|{|lo|]|p 1 1+p (3.1)
N4 0 1+p 14p 2(1+p)

in which the covariance matrix is singular. The question we wish to address now
is, given (3.1), what can we say about the distribution of the vector €? Since there
are only 5 identifiable covariance parameters, in this case, we therefore begin by
imposing a number of rather innocuous restrictions upon the first three variances

- namely, var(g;) =1, 1 =1,...,3. It then follows that
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1 = war(n,) =var(e; — e2)

= 2 (]_ — 0'12) .
Similarly,
1 = war(ny) =var(e; — e3)
= 2 (1 - 0'13) y

giving 015 = 013 = % Continuing in this fashion the restricted covariance matrix

of the vector € emerges as

i . ) -
1 5 2 0
1 1 1
Su= |2 A (32)
3 P Lg+»
0 $+p 5+p 14+2p
noting that p = E(nyn;) = E((e1 — €2)(e1 — €3)) = 093. It then immediately

follows that the BVP model (2.1) is obtained from the MNP model (2.5) under

the following set of parameter restrictions:
1. var(e) = Xpg;
2. 04 = 02 + 03, with 6, = a and d3 = 3 free.

Given that in the unrestricted form of the MNP model there would only be
5+ 3k free parameters, this corresponds to (5 + 3k) — (1 + 2k) = 4+ k parametric
restrictions. In Section 3.3 we discuss a procedure for testing such restrictions.
Before doing so, however, it is shown how the constrained MNP model (or BVP
model) described above is, in fact, consistent with a rather restrictive form of

utility maximisation behaviour.
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3.2. A Behavioural Interpretation

Consider again Table 1 and assume that, in the context of choices (y, z), the joint
decision, s, is indeed made on the basis of utility maximisation, but by considering
the utility obtained from y and z individually rather than jointly (as would be
the case in the MNP model). Specifically, write

*

yy = X/ay + uy, y - 0, 1,
22 = xXB,+v, z2=01, (3.3)

z

where y; is the utility derived from the decision y = 0 and yj is that derived
from y = 1, with a similar interpretation for 2} and 2. Under the assumption of
utility maximising behaviour on individual decisions, y = 0 (respectively, y = 1)
is observed if and only if y§ — v > 0 (respectively, y; — y§ > 0), and similarly
for z. This characterisation gives the BVP model of (2.1) in which: y* = y{ — 5,
=2 -, =01 —o, B =6, — By, u =1u —uy and v = v; — vy, with
distributional assumption (2.2) in order to ensure identification.

Now assume that the utilities, denoted v}, j = 1,...,4, and derived from the

joint outcome (y, 2) , are formed additively as y; + z;. Thus,

v = Yy + 2,
vy = Yi+ 2,
vy = Yo+ 21,
vy = Yo+ -

This is a strong assumption; it says that the utilities, v}, are additively separable
and, given (3.3) also implies that (2.5) correctly expresses the utility derived from
the joint decision. Note that, given (3.3), additive separability is not only suffi-

cient, but it is also necessary for this representation of U;T.Q Although restrictive,

20f course, any linear combination of y, and 2 will generate linear v}, but arbitrary scale and

13



let us pursue this for the moment and write these utilities as v; = x'v, +¢;, with
d; =7, — 7, and n; = €1 — €, as in Section 2.2. Then, from (3.3), assumption
of (2.2) and the implied restriction of additive separability, it immediately follows
that the conditions of Proposition 3.1 are satisfied.

From the above discussion the following conclusions may be drawn:

1. if (2.5) is an adequate representation for vy, and the parametric restrictions
of section 3.1 are true, then not only is v} additively separable in the bivari-
ate utilities, but the approach offered by the BVP model s consistent with

utility maximisation over the 4 distinct alternatives;

2. if (2.5) is an adequate representation for vj and the parametric restrictions
are not true, then the BVP model can not be consistent with such utility

maximising behaviour, since v} is not additively separable;

3. if (2.5) is not an adequate representation for v} (e.g., non-linearities exist in
the regression specification), then the BVP model may be consistent with
utility maximisation over the 4 implied alternatives, but v} is not additively

separable in the bivariate utilities.

These conclusions suggest a possible testing strategy in order to shed some
light on whether, in the context of a bivariate decision problem, the BVP model
is consistent with utility maximisation over the implied four alternative states.
Firstly, test the adequacy of modelling v} as in (2.5), in which the regressor vec-
tor is the same as that which appears in the individual probit equations of the
bivariate decision problem; e.g. test for non-linearities in the regression speci-
fication.. If (2.5) appears data consistent, then proceed to test the parametric
restrictions as described in Section 3.3, below. If the restrictions pass this test,

then there is evidence that the BVP model is consistent with utility maximising

location parameters in any such linear combination will not be indentifiable from the bivariate
data.
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behaviour over the four distinct alternatives and that the utility derived from the
joint outcome is additively separable in the individual utilities.. If the test rejects
the restrictions, then there is evidence that the BVP model is not consistent with
such behaviour. Finally, if (2.5) is an incorrect model for v}, then BVP model
may be consistent with utility maximisation over the four distinct alternatives

but v} can not be additively separable in y; and 2.

3.3. A Score Test

Since the parametric restrictions, described in Section 3.1, imply a singular co-
variance matrix in the MNP model, the most natural likelihood ratio procedure
is not strictly available due to the problem of testing on the boundary of the
parameter space. A score test procedure is therefore outlined, whose asymptotic
validity is unaffected by such a problem. First we define an appropriate (m x 1)
vector of unrestricted parameters 8’ = (&', ') for the MNP model, (2.5), which

accommodates the BVP model as a special case:
! ! ! ! !
0" = (6,05,8), o' = (023,014,024,034,01) ,

where ¥ ={0;},j,l =1,...,4, and m = 5+3k. Conditional on x, let the relevant
four probabilities, (2.7), be expressed as functions of 6; i.e., py(6|x). Then based
on N independent realisations of the indicator c;, denoted ¢;;, ¢ = 1,..., N, the
log-likelihood is £(6) =31V, 35, ¢;; In(p;(0]x;)). From this the (m X 1) score

vector and (m x m) Hessian matrix are

oLO) MA dln(p(0)x.
B 5’25(0)_ N 4 821n(pj(0|xi))
HO) = Ze00 = 22 o009

Now let (&', B/, ,5) denote (restricted) maximum likelihood estimates of the
BVP model, (2.1), and define accordingly the restricted MNP maximum likelihood
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estimates as

>
|

(&,8, & +8)
& = (0, 5+p3+51+2p).

An asymptotically valid test of the implied ¢ = 4+k parameter restrictions can
be based on the score test statistic given by S = N~1g(8)’ {V (é) }71 g(0), where
\% (é) is any consistent estimator for the average information matrix, under the
assumption that the restrictions under test are valid; e.g., V (é) = —%H (é) .In
large samples, S is distributed as a chi-square random variable with ¢ (number of
restrictions) degrees of freedom when the parametric restriction imposed on the
MNP model are correct. Significantly large values of S would be provide evidence
against the BVP model and, as a consequence, it would also suggest that the
BVP specification is inconsistent with utility maximisation over the implied four

possible outcomes.

4. Concluding Remarks

In this note we have pointed out the nature of the statistical relationship be-
tween the bivariate probit (BVP) model and multinomial probit (MNP) model.
Specifically, a general MNP specification could be used to model the four mutu-
ally exclusive outcomes, which a bivariate decision process can generate, and a
restricted version of this yields the BVP model. This suggests a way of testing the
BVP model by nesting it within the MNP model and a score test procedure has
been outlined for this purpose. (A score test is used since the implied parametric
restrictions yield a singular covariance matrix in the MNP specification). Such a
test might also be used by the applied worker as a way of assessing whether, in
the bivariate decision problem, individuals maximise utility over the four possible

outcomes that can be generated.
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