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1. General

The problem of estimation and inference within the confines of a non-experimental
modelling framework has generated a wealth of statistical techniques, much of
which is predicated upon the fundamental dichotomy between that which is ob-
served by decision makers (i.e. consumers, firms) and that which is observed by
the analyst. Thus, even if we take the highly unlikely case of a model in which the
functional form is known with certainty up to a finite dimensional vector of pa-
rameters, we must utilise statistical methods to recover these unknowns together
with an indication of their sampling variability.

As soon as we depart from full knowledge of both the process generating the
data and a fully observed sample of observations, we are faced with the difficult
task of estimating unknown parameters based upon an incomplete sample of data.
We examine this problem by providing a general framework for analysing miss-
ing data together with a taxonomy of missing value processes. In this respect
it is instructive to distinguish between intentional missing data such as individ-
uals that are not part of a survey and unintentional missing data generated by
an intermediate filter between the population and the sample. Examples of the
latter include nonrandom non-response and censoring. To the extent that the in-
termediate filter is nonrandom, it is necessary to model both the data generating
process (dgp) and the missing-data generating process (mdgp).! In this respect it
is important to differentiate between simple imputation of missing values and the
model-based procedures which combine modelling of the phenomenon of interest
with a technique for filling-in missing values.

In the case of non iid data the existence of autoregressive processes suggests
that techniques used to infer missing values should incorporate these properties.
In this context we will examine the Kalman filter which represents a model-based
framework for imputing missing values. Missing data in household or business sur-
veys data may be manifest in the form of incomplete questionnaires. For example,
in a survey of firms some respondents may decline to report their profits. Depen-
dent upon the pattern of nonresponse across questions, the subset of individuals
providing complete information may be relatively small, and may constitute a
non-representative sample.

The importance of missing data for statistical inference is in general self ev-
ident. For example, even in the case of data which is missing at random where
model parameters are, in general unbiased and consistent, there will be an effi-
ciency loss thereby compromising the validity of model estimates through wider
confidence bands. As a result we need to distinguish between imputation tech-

"Within a likelihood setting formulation that includes both a model of the dgp and mdgp is
referred to as a complete data likelihood.



niques which facilitate parameter estimation and methods to assess the variability
of these estimates alongside the impact upon confidence intervals for parameter
estimates based upon a combination of observed and imputed data. The question
why is data missing for a particular cross-section or time series is not explicitly
covered in this report. However, the extent to which data is missing according to
a non-random mechanism obviously requires an understanding of this process if
reliable imputation is to occur.

Although the principal focus of this paper is to survey methods for imputing
missing data, we also examine an alternative approach based upon weighting the
observed data. The weighting of observed data by the probability of response
has generated a wealth of techniques in applied econometrics under the rubric
of sample selection and self-selection adjustments. Here the primary objective is
to introduce an adjustment such that inferences from a non-randomly generated
observed sample to the population are still valid. We compare the use of these
two approaches in section 5.

In section 2 we introduce a general framework for analysing missing data and
in particular the notion of an observational rule. We also distinguish between
ignorable and non-ignorable missing data mechanisms. In section 3 we compare
classical Bayesian approaches to the missing data problem. Section 4 introduces
a number of example and 5 presents a taxonomy of methods for imputing missing
values in the context of non model-based procedures. Section 6 examines two
model-based imputation procedures. In 6.1 we introduce the EM algorithm which
combines parameter estimation (within the confines of maximum likelihood) with
a technique for filling-in missing values. In 6.2 we examine another model-based
procedure, the Kalman Filter, which is particularly suitable for missing data in
time series. In section 7 we consider the usefulness of entropy and cross-entropy
techniques for imputing missing values based upon a limited set of assumptions. In
section 8 we move away from standard imputation and provide a brief overview
of methods which emphasise the impact of imputation upon the variability of
parameter estimates where a subset of data points have been imputed. In section
9 we focus upon a number of issues related to implementation, including the
availability of computer software. Finally in section 10 we examine a specific
missing data problem and compare a number of possible solutions.

2. Observed Data and Missing Data Mechanisms

2.1. Missing Data and Sample Selection

Given that the overriding principle of statistical analysis is the use of sample in-
formation to make inferences to a larger population, then the existence of missing



data is the foundation stone of estimation and inference in classical statistics. For
example, the assumption of an i.i.d. sample allows us to make inference from the
sample (of size n) to the population. In this context each observation has a uni-
form weight equal to 1/n. The extent to which elements of n have a non-uniform
probability of being selected, takes us immediately into the world of sample se-
lection and attendant methodologies. A key decision at this juncture is whether
or not the process which determines sample selection is known.

In both cross-section and time-series models a predominant construct is the
notion of a data generating process which describes how the variable(s) of interest
are a function of a set of covariates and a stochastic error term. However, it is
frequently the case that we may identify an intervening process that can mask
the true process. For example, in microeconometrics a whole class of models
(i.e. binary response, censored regression and duration models) can be specified
based upon the notion of an observational rule (see Weeks (1998)). In time-series
models, observations may be missing due to aggregation to a lower frequency. In
both instances the critical issue is the extent to which observations are missing
randomly or whether the missing value process is in some way related to the
variable of interest.

The predominant characteristic of these models is that observational rules are,
in general, based upon non-random processes which are intrinsically related to the
phenomenon of interest. As such, in the parlance of the statistics literature, the
resulting observed data does not represent an ignorable random sample of the
underlying data.

Below we examine alternative definitions of missing data processes before con-
sidering a number of examples by examining the relationship between the observed
data, Y, and the underlying (latent) data, Y*. The use of the observational rule fa-
cilitates the representation of the data generating process as either an ‘incomplete
data’ or ‘partial observability’ process. In addition we can distinguish between
random and non-random missing data mechanisms.

2.2. Missing at Random: A Closer Look

Following seminal work by Rubin (1976), the dominant theme in the statistical
literature on missing data has been a focus on imputation techniques which rely
on the assumption that the missing data are ‘missing at random’ or mar. As
noted above, this emphasis is distinct from the econometrics literature, where
progress has been made in correcting for various forms of self-selection, where the
relationship between Y and Y* is governed by a systematic observational rule. In
this section we focus upon ignorable missing data mechanisms and take a closer
look at mar.



We motivate the ensuing discussion by considering a data matrix M = {m,;}
t=1,..n, 7 = 1,...,k, where ¢ indexes individual data points and j covariates.
In the analysis that follows, missing data will refer to a situation where data is
missing for one or more rows and columns of M. Obviously the applicability of
any particular form of imputation will depend, inter alia, upon the dimensionality
of M, and whether inference is unconditional or conditional. Related, the most
appropriate form of imputation will differ depending upon whether univariate or
multivariate analysis is to be performed.

We make a distinction between the columns of M based upon the endoge-
nous/exogenous (or predetermined) dichotomy, and in doing so we let Y denote
the first column of M, and M_; represent the (n X k-1) matrix of exogenous vari-
ables. In addition we partition the n observations into two mutually exclusive sets:
M, denotes fully observed data and M,,_, denotes missing observations. Further
let Q = 1(M is observed) be an (n x k) vector with typical element ¢;; = 1 if
M is observed and zero otherwise. We examine the extent to which data is both
missing at random and observed at random by examining the joint distribution
of M and (). For example, we may obviously write the joint distribution of Y and
Q as

FOM,Q [0,8) = F(M | 6)F(QIM, B), (2.1)

where 6 and [ are vectors of parameters, and f(Q | M, 3) is the distribution of
the missing data mechanism. The key issue here is obviously when estimation
and inference can be based upon M, thus ignoring the missing data mechanism.
If this can be done then instead of (2.1) we can write

f(Me,Q10,8) = f(Mc ] 0)f(Q | M, 3).
It therefore follows that if we can simplify f(Q | M, 3) such that

F@Q | My, My, 8) = f(Q | M, B), (2.2)

then data is missing at random or mar. Note that if in addition to mar the
parameters determining the pattern of missing data () are distinct from 6, then
the missing-data mechanism is ignorable. Putting (2.2) into words we now define
mar.

Definition 2.1. mar

The missing data are missing at random (mar) if the conditional probability
of the observed pattern of missing data, given the missing data and the value of
the observed data (namely f(Q | My, M,,_4,[3)), is the same for all possible values
of the missing data such that f(Q | My, M,, ¢, 3) = f(Q | My, 3). In more general
terms, the probability of missing data depends upon the observed but not the
unobserved data.



As Little and Rubin (1987) note, if the pattern of missing data is mar then,
for example, the likelihood that a particular element of Y is missing does not
depend upon the value of Y. Perhaps a more intuitive perspective is to recast the
problem in terms of the ability to predict (). In this respect, for a missing value
process that is mar, there is no predictive power in Y.

We note that in Definition (2.1) we focus on the conditional distribution of
() in and do not differentiate between Y and the effect of covariates in M_;.
However, since the workhorse of applied economic analysis, the linear regression
model, involves estimating the conditional distribution of Y given M_1, then we
might wish to consider an alternate representation of a missing-data mechanism.

Definition 2.2. oar

The observed data are observed at random (oar) if for each value of the missing
data the conditional probability of the observed pattern of missing data, given the
missing data and observed data, is the same for all possible values of the observed
data.

If Definition 2.2 holds, then we can further simplify (2.1) by writing

HQ | My, My, B) = f(Q ] B), (2.3)

such that the missing-data mechanism is completely independent of M. Note that
based upon (2.3) (3 represents the unconditional frequency of missing values, such
that Q ~ Bin(5,n).

To elaborate upon the distinction between mar and oar we consider a single
covariate X which is recorded for all observations, whereas Y contains missing
values. Both X and Y are confined to the (positive) half real line. Following
Little and Rubin (1987) we differentiate between three missing value processes,
where the probability of response is determined by:

i) YV and X
ii) X and not Y;

iii) is independent of X and Y.

These three cases are presented in table 1, where oo and ¢ are threshold con-
stants that restrict the sample space of, respectively, X and Y*. In the case of i)
we have neither a random sample from the conditional or the unconditional dis-
tribution of Y, since the observed data is only recorded when Y* > § and X > o?.
In the case of iii) Y = Y* for all possible values of both Y* and X and as such



Table 1: Missing Data Mechanisms
Two Continuous Variables: X and Y.
Y subject to Non-response

mar oar
i) | Y=1(Y*">6NX>a)Y* X X
i) | Y=1(Y">0NX>a)Y* v X
i) | Y =1(Y*">0NnX > 0)Y* v v

there is no intervening process that restricts the observability of Y*. Therefore we
can say that the data is missing at
random (mar) and observed at random (oar).? Note that in this instance f(Q|Y, X) =
f(Q|5), since the pattern of missing data (represented by ) cannot be predicted
with any sample information. For ii) the missing data are missing at random
(mar) since the probability of observing (or not observing) Y does not depend on
the value of Y. However, since Y only equals Y* if X > « the observed data are
not observed at random. In this instance, the observed values of Y constitute a
random subsample from the unconditional distribution of Y, but do not represent
a non-random sample conditional on the values of X. We may therefore write
FQIY, X, 8) = F(QIX, B).

Another way to think about a mar process in terms of the relationship between
Y and Y™, is to consider another level of random sampling. For example, if n is a
random sample from N but we observe a sample n’ C n, then a random missing
value process effectively acts like a single non-parametric bootstrap. As a result,
it is instructive to write the observational rule as

Y = AY™,

where A is an (n x n) selection matrix. Obviously if A is an identity matrix there
is no missing data. Letting @) = diag(A) represent the diagonal elements of A,
we might think of ¢; as the outcome of independent Bernoulli trials such that for
¢; = 1 (0) the ith observation for Y* is observed (missing). For X¢; = n' < n we
have missing data. As a result, we have a mcar process if for the ith element in
the sub-sample n’ we have

E(Y)) = E(Y/|g: = 1) = E(Y/").

The importance of the type of missing data mechanism will depend upon the
modelling framework. For example, in a regression framework the focus is, in gen-

2This type of missing-data mechanism is generally referred to as nonignorable.
3This type of missing data process is often referred to as mcar, or missing completely at
random.



eral, upon the conditional distribution of Y given X, and as a result consistency
of the estimated regression function (and associated parameters) requires that the
data are mar. Obviously if the focus is upon the marginal distribution of Y then
biases will appear unless the data are mcar.

3. Bayesian versus Frequentist Approaches to Missing Data

Imputation procedures are designed, in general, to provide a complete dataset so
that statistical inference on one or more unknown parameters () can take place
with the most information possible. However, the appropriate form of imputation
will depend upon the underlying approaches to inferences. For example, within
a classical frequentist paradigm ... Missing data are easily integrated within a
Bayesian setting. In this context the imputation of missing data adds an addi-
tional component of uncertainty in the construction of the posterior distribution
of 0, denoted g(0|yess). In the presence of missing data g(0|y.ss) is constructed by
averaging over the posterior distribution of the missing data given the observed,
such that we may write g(0|yops) as

g(6|yobs) - /h(6|yobs’ymis)f(ymis|yobs)dymis’ (31)

where h(.) denotes the conditional density of # given the complete data, and f(.) is
the predictive density of the unobserved data conditional on what is observed. The
idea of sampling from f(.) to generate multiple values of y,,;s was first introduced
by Rubin (1987) and is now generally referred to as multiple imputations. (3.1)
is often referred to as the augmentation identity (see Wei and Tanner (1990)).1
The problem of estimating ¢g(f|y.ps) has been partially solved by the use of
simulation. By taking multiple imputations from f(ymis|yobs) and computing

M

§0lyos) = = D " (Bl (3:2)

m=1

where M indexes the imputations. Rubin and Schenker (1986) emphasise that a
Bayesian perspective provides the most natural theoretical framework with which
to consider multiple imputation....

At the core of the Bayesian approach to inference is the posterior distribution
of the unknown quantities such as model parameters or unobserved data. Proba-
bility statements are made conditional on the value of yys. As Gelman et al (1998)
note, this conditioning upon observed data differentiates the Bayesian from the

*Distinction between two estimands: 6 and y,,;s (see Gelman et al (...)



classical approach to inference. The distinction between a Bayesian and classical
likelihood-based approach to missing data is revealed if we compare the data aug-
mentation approach with the EM algorithm. Notice that in (3.1) we take multiple
draws from f(Ymis|Yors). In contrast the use of EM algorithm in incomplete data
problems replaces these multiple draws by the expected value of the missing data,
conditional on the observed data and current values of parameter estimates. As
King, Honaker, Joseph, and Scheve (1998) note, the Bayesian approaches pre-
serves the whole distribution of the two estimands - the imputed values and the
parameters - whereas the EM approach delivers the single, maximum posterior
values.

Efron (1994) consider a number of nonparametric bootstrap approaches to the
problem of missing data which are rooted within frequentist framework ...

4. Some Examples

Example 4.1. Truncated and Censored Observational Rules
The observed data Y is related to the underlying data Y™ by the observational
rule
Y=1Y*"=a+ X B+e>c)Y"

where Y* = o+ X' + ¢ is the population regression function, c is a threshold
constant, and 1(-) is the indicator function. If we only observe Y* if its value
exceeds c, and that this condition also aftects the observability of X, then we have
the truncated regression model.’In this instance the selection rule is endogenous
and in the context of missing data taxonomy, we may think of this process as unit
nonresponse on Y* and X with'Y being neither mar or oar. If the set of covariates
X are observed for the complete sample, then Y fails the mar condition and is
characterised by unit nonresponse. The censored (or Tobit) regression model has
been used to model this type of data.’

Example 4.2. Missing Regularly (Stock and Flow Data)

In time-series analysis a typical missing data problem is as follows. Let two
variables Y, and X, be observed for a particular frequency, say quarterly (q).
However, although data for X is observed at a higher frequency, say monthly
(m), this is not true for Y. The basic approach to imputation in this context
following seminal work by Chow and Lin (1971), is to establish a relationship

We note that this particular representation of truncated data i.e. using a latent variable
formulation, is based upon econometric ‘theory’ and may be distinct from a statistician’s per-
spective.

6There is a plethora of articles that deal with this problem. The classic reference is Heckman
(1979), and an informative overview is provided by Green (1997).
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between Y, and X, and use this to impute Y,, whilst respecting any adding-up
constraints.

The relationship between Y, and Y, (here Y* and Y respectively) may be
represented using a matrix C' where C' is a (n x 3n) matrix that converts high
frequency (monthly) observations into lower frequency (quarterly) observations.
C has a different structure depending upon whether Y is a stock or flow.

In the case of a stock we may write

Y =C,Y*

and for flows
Y =CyY™

where C, and C} are given in Appendix 1.

Example 4.3. Missing Regularly (Aggregate and Disaggregate Data)

Below we consider the problem of missing data which arises when aggregate
data are observed but disaggregate constituents are not observed. Examples occur
in regional economic mode]]ing and input -output analysis. Here we focus on

A

three aggregates Y4 = Z Y;, Z4 = Z Z; and Q4 = Z Q;, where in each case

the aggregates are add1t1ve in R components In add1t1on we impose additional
structure by assuming that Y4, Z4 and Q4 are related by the identity Y4 =
Z4 + Q4. This situation would occur if, for example, Y4 denoted population
and Z4,Q* represent, respectively, total labour force and total unemployment.
Note that in this instance we have 3(R — 1) unknowns and therefore the problem
is ill-determined using classical techniques. However, by rewriting the unknowns
in terms of the proprotions of the observed aggregates, namely w; = Z;/S4,
v; = Q;/Qa and «; = Y;/Y4,we add additional information given that w;, v; and
oy are bounded. We now may represent the relationship between each aggregate
and its constituent, incorporating the identity as
Ya
Ya
Ya
0O 0 O wq wWa w3 vy ) V3 Za y4
a1 g Qg 0 0 0 —vy —v —u3 ] Za = [ Z4 ] (4.1)
Za Qa
Qa

Qa
Qa

noting that the following adding-up and non-negativity constraints apply
CYZ',UZ',’LUZ'ZO \Vllzl,,R

Q1 Qo Q3 —wp; —wy —Wws3 0 0 0

11



In section 10 we examine the usefulness of entropy-based techniques for finding
estimates of the unknown parameters (w;, v; and «;).

5. A Taxonomy of Methods with Partially Missing Data

Below we provide a classification of missing data processes. The taxonomy covers
both parametric and non-parametric models, and iid and non-iid data structures.
Our principal focus will be on imputing data that is missing for a single endogenous
variable Y. The n data points are, as above, partitioned into ¢ observed, n — ¢
missing and in most cases we assume that the matrix M _; is fully observed. In
each case we indicate the assumptions underlying the imputation (other than
standard least squares), using the mar/oar/mcar distinction.

1. Case Deletion’

Row i of M is deleted if at least one element of row ¢ (m;;) is missing. This
method makes no use of the observed data for i.

Information assumptions: mcar.

Problem: as k (the number of columns in M) increases the probability of
discarding any given observation increases.

2. Imputation: Unconditional

Below we list two approaches based upon unconditional imputation. Both
are based upon different degrees of smoothing.

i) The most common form substitutes the mean (over observed data) for
missing values.

ii) An alternative procedure is to use information on one or more categorical
auxiliary variables which may serve to improve the accuracy of the
imputation. Consider the case of a single categorical variable v, which
has £ cells. Unconditional imputation using v simply replaces missing
values with the average of the observed values in each ky, cell. In this
respect we note that the form of the imputation utilises an ANOVA
model.

Information assumptions: mcar
i) E(my) = py Vi

"This procedure is also known as complete-case analysis.
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3 Imputation: Conditional and Independent (y continuous)

Conditional imputation methods such as those first proposed by Buck (1960),
are predicated upon a regression-based modelling strategy. That is, the focus
is upon the conditional expectation (or regression function) of the random
variable rather than unconditional.

Example: Assume that the underlying population regression function is
given by
y=a+M,-B+¢ (5.1)

where o and (3, are respectively an unknown scalar and a (k-1 x 1) vector
of unknown parameters. The stochastic error term ¢ is iid (0,0%). A com-
mon form of conditional imputation for the missing subset n — £° uses the

expectation

Eé(ynfﬁ ‘ Mfl) =a+ Mfl,n7€ﬁ7 (52)
and estimate R N

Eé(ynfﬁ ‘ Mfl) - a + Mfl,n7€ﬁ7 (53)

where E(-) denotes that the expectation is taken with respect to the infor-
mation available - namely over the partition /.

Information assumptions: mar

4 Random Regression-Based Imputation

Little (1988) has suggested that imputations should be drawn from the pre-
dictive distribution rather than simply substituting the conditional mean.
Employing this method, Wang and Jinn (1992) refer to two variants of condi-
tional imputation both based upon a modification to correct the systematic
underestimation of the variance of the resulting n x 1 vector containing a
mixture of observed and imputed values.

i) Random residuals (e) are drawn from N (0, 67) where

14

67 = S (y; — :)%/(¢ — k). These are then added to the conditional
-1
expectation (5.3). The ¢y, + 1 imputed value is therefore

Jer1 =&+ M1+ epyr. (5.4)

8Since the observations are independent then the partition of observations into subsets ¢ and
n — { is possible.

13



ii) As above, random residuals are added to (5.3). However, a total of
(n — £) residuals are randomly sampled (with replacement) from the ¢
observed residuals é; =y, — M;3, 1 =1, ..., L.

Information assumptions: mar.

Obviously the limitation of (i) is the assumed normality, whereas (ii) sam-
ples from the predicted residuals. A modification of this approach has
been used by ? with the idea to utilise resampled residuals for which
the predicted (not imputed!) value of y is close to that of the nonre-
spondents.

5 Imputation: Conditional and Independent (y is discrete)

We note that the regression-based imputation procedure above implicitly
assumes that the dependent variable is continuously distributed. In many
instances Y may be binary or polychotomous, and although this does not
invalidate the logic of conditional imputation, the procedure used must be
modified so that the imputed values have the same characteristics as the
observed values. Below we consider a variant of (?7) where Y is a binary
random variable.

As above n data points are partitioned into ¢ observed, n — ¢ missing and
the matrix M ; is fully observed. In this instance the only modification to
(5.2) is the introduction of a link function F', which maps the conditional
expectation Ej(-) into the unit interval. For this particular data variant we
may then rewrite (5.2) as Ey(yn—¢ | M_1) = F(a + M_1,,—¢3). Common
forms for F'(-) are the logistic and standard normal cumulative distribution
function.

Information assumptions: mar

6 Imputation: Conditional and Non-independent.

Based upon the discussion in example (2.3) the relationship between Y and
X for the lower frequency (quarterly) observation may be written

Y, =CY, =CX,,0+ Ce = X0 +¢,. (5.5)

Given an estimated form of (5.5), the interpolation (or distribution) of say
p observations for Y, is based upon the estimator

where 3 is the estimated regression coefficients from (5.5), V, = E(qu;)
and V,, = E(gmes;n). The principal problem with the above approach is

14



that imputation is based upon the identification of a static relationship
between the levels of the two series. As noted by Salazar, Smith, Weale,
and Wright (1997), since the stationarity properties of the two series will
determine whether estimation in levels or differences is appropriate and
most regressions are estimated in logarithms, this approach is problematic.
The procedures suggested by the authors are based upon estimating links
between the interpoland and the higher frequency variable which accounts
for lags and logarithmic terms”.

Information assumptions: mar.

7 Imputation: Missing Covariates

To date we have introduced a number of imputation techniques to handle the
problem of missing data in the endogenous variable Y with a fully observed
matrix (M_;) of covariates. Below we reverse the problem and assume that
Y is fully observed and that one of the covariates, say X; = M_;; has
missing values. As noted above, the key issue in terms of appropriate impu-
tation technique is the form of the missing data mechanism. For example,
Little (1992) notes that the probability that X; is missing for one or more
observations may be a) independent of data values, b) depend on Xj, ¢)
depend on Xy, M_19,..., M_1 4, or d) depend on M_14,..M_1; and Y.

A taxonomy of methods imputing missing covariates is provided by Little
(1992) and covers a similar range of procedures as outlined above such as
case deletion, unconditional and conditional imputation, alongside methods
based upon combining models for the data and missing-data mechanism.
Although the details are in principle the same as imputing missing data for
an endogenous variable, below we examine conditional mean imputation.

Conditional Mean Imputation

We assume that the underlying population regression function is the same
as (5.1) and instead of missing data on Y, we only observe ¢ data points for
X. In this instance conditional mean imputation follows exactly the same
logic as outlined in Section 3, except that we treat the missing values as ran-
dom variables and utilise an auxiliary regression based upon the conditional
expectation

E(X1|M_172, ceey M—Lk)'

Assuming that the missing data mechanism is mar, then the application
of OLS using observed and imputed data produces consistent parameter

9See Harvey (1989) for further discussion.
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estimates. However, following the work of Gourieroux and Montfort (1981),
we note that the use of imputed data adds an additional error component
thereby inflating the residual variance.

Information assumptions: mar.

8 Imputation: Nonparametric

The taxonomy of imputation procedures outlined in Section 3 included a
number of methods based upon a parametric conditional expectation (or
regression) function. An alternative procedure utilises a non-parametric
approach!’ and thereby avoids the imposition of parametric assumptions
on the conditional expectation function. The potential of non-parametric
techniques for missing value imputation stems, in part, from a focus upon the
“local” shape of the conditional mean function. For example, consider the
case where a single endogenous variable Y has missing values. A parametric
regression approach, imputes missing values based upon (5.3) and thereby
attaches equal weights to components of M ;. In contrast, a Kernel density
estimator of the missing values (for a given bandwidth) is simply a weighted
average of the covariates. We may also motivate nonparametric approaches
to missing data by interpolating between adjacent points, as in time series.

5.1. Non-Ignorable Response

The principal problem with many of the approaches listed above is the assump-
tion that the probability of nonresponse is independent of Y (i.e. mar) and as
such ignorable (see Little and Rubin (1987)). For example, regression based (con-
ditional) imputation (see Section 5, examples 3, 4, 5, and 6) are non-valid if, for
example, the dependent variable is constrained to lie within a given interval. This
was demonstrated in Example 2.1 in the case of truncated regression. In this in-
stance E(Y|X) # X (even if (§ is unbiased) since the stochastic component will
be correlated with X and will not have zero mean. As a result imputation based
upon the X LA? will produce biased estimates of the missing values (see Greenlees,
Reece, and Zieschang (1982) for further details). This is apparent if we consider
a simple univariate case. If the observational rule is Y = 1(Y* > ¢)Y™* and we
impute the missing values (i.e. observations for Y* < ¢) using the set of observed
values, imputed values will be systematically too large.

The problem of making inferences in models subject to a nonignorable non-
response has been treated extensively within the econometrics literature (see
Horowitz and Manski (1998)). A critical distinction can be made between meth-
ods which apply a set of observation-specific weights to the observed data, and

10See Hardle (1990) for an excellent overview of nonparametric regression.
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techniques which utilise the observed data and information on the mdgp to im-
pute missing values. We compare these two approaches by considering an example
which has generated a voluminous literature - namely missing wage data for in-
dividuals not in the labour market. The generic form of this problem is known as
stochastic censoring and involves the joint distribution of two variables, say v,
and gy, which we write as

(o)~ (o] 17 1)) 5

where BV N(u,Y) denotes the bivariate normal distribution with mean p and
covariance Y. x1, rs denote possibly overlapping sets of covariates, 3, and (3, are
unknown parameter vectors, y; is a partially observed outcome variable and - is
an unobserved variable which controls the observability of y;. In this example 1,
represents the observed wage for labour market participants and y, = y; — Wk,
where Wp is the reservation wage. ¥ is observed iff yo > 0. Subsequently we may
write the conditional regression function for the two groups as follows:

Labour Force Participants.

E(yly2 > 0) = 216, + a¢ (7)/(1 — ©(7)) (5.7)
@

Non Participants

E(ylys < 0) = 218, — ad(v)/®(v) (5.8)
Q2

where v = x93,. ¢ (P) denotes the density (distribution function) of the standard
normal distribution.

Note that if we base inference on sample observations for which y, > 0, then
we use (5.7) where @; (the inverse of the Mills ratio) represents an artificial
regressors used to correct for the non-random selection of the data. Alternately,
in other situations we may require estimates of wage rates for non-participants
then following the work of Heckman (1976), the following two-stage procedure is
now well known.

1. Run a probit regression of z = 1(y. > 0) on x5 and create an artificial
variable 4 = —x503,.

2. Estimate 3, « and o by running a regression of y; on x; and Qs.
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The Heckman procedure is highly sensitive to model misspecification partic-
ularly with respect to bivariate normality and the division of the total set of
covariates into sets z; and x3. Olsen (1980) has noted that if 21 and x5 coincide,
then the model is only identified by the nonlinear transformation on ¢(v)/®(7).
In practical applications it is necessary for z; and zs to be distinct. However,
prior knowledge as to the appropriate set of zero restrictions may be lacking.

Note that based upon (5.8) a test of whether the censored wage data may be
considered mar or equivalently if there is no sampling selectivity - is a test of
a = 0. In addition if x; # x5 then the missing-data mechanism is ignorable such
that estimation of the parameters 8, and o? based upon an application of OLS
on the participants will generate consistent and efficient parameter estimates.

In an analysis of imputation techniques applied to missing wage and salary
data in the Current Population Survey (conducted by the Census Bureau), a
number of studies have utilised a quasi-experimental framework. With access to
a secondary data source from the Internal Revenue Service (IRS), the authors are
able to compare imputed data with nonrespondents IRS wage data. Greenlees,
Reece, and Zieschang (1982) find that an approach which utilises a stochastic
censoring model represents an improvement over a standard regression approach
which assumes that the missing data process is mar. Given access to a complete
IRS wage series the authors were able to test hypothesis which in most circum-
stances are not verfiable. For example, a negative and highly significant coefficient
on the wage variable in a probability of response model resulted in the rejection of
non-ignorable nonresponse. In addition, despite finding approximate symmetry,
a large kurtosis value on the residuals from the wage equation resulted in the
rejection of the normality hypothesis.

David, Little, Samuhel, and Triest (1986) compare the CPS hot deck method
for imputing wages with regression approaches. One of the distinctive features
of this particular study is that. ....The hotdeck approach to imputation is based
upon the use of a set of fully observed covariates (in this case age, sex and educa-
tion) to allocate respondents and nonrespondents to groups which possess similar
characteristics. Thereafter respondents act as donors, with nonrespondents as-
signed a particular respondents wage datal!. Below we consider a variant of this
approach based upon an adaptation of a bootstrap methodology which has been
used for Bayesian imputation methods.

With reference to the stochastic censoring problem described above, let ® (x5 B)
represent an estimate of the probability that y» > 0. Using the quintiles of ®(x B)
we allocate the n data points into 5 equal parts. Within each quintile let Mg,
(Oq,) denote the number of censored (observed) values on y;. The total number

HSee Lillard, Smith, and Welch (1982) and Little and Rubin (1987) for details.
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of observed (censored) values is therefore

5 5
S 0g;=n;Y Mgi=no (n=mn+no). (5.9)
j=1 7j=1

A bootstrap variant of the hotdeck approach is based upon the following proce-
dure. Draw a random sample with replacement of size Mg; from Og;. Index these
draws by m and repeat M times. An estimate of censored observation i in the
Jth quintile is given by

1 M
Ui =77 > us;, (5.10)
m=1

where y,; denotes an observed value in the jth quantile.

An advantage of the bootstrap procedure is that it does not impose an as-
sumption of bivariate normality, nor does it impose a parametric model for the
mean equation when imputing censored observations. i.e. it does not assume that
imputed values are generated by (5.8). Instead differences between the two groups
are controlled for by the specification of a missing data probability model. There-
after the set of potential ‘donor’ values (y; > 0) are then stratified based upon the
quintiles of ®(+y). In this respect, the use of bootstrap approach is predicated on
the specification of a probability model with high predictive power. The principal
drawback of this methodology are analogous with the problems encountered with
hotdeck imputation. Respondents and nonrespondents have the same wages dis-
tribution within the quintile defined by the missing-data probability model.> As
noted above, the better the probability model, the better are we able to control
for possible differences between the two groups.

To examine this procedure more closely we consider four types of individuals
for whom z = 1. Let these four types be referred to as Group A = {a;, b;, ¢;,d;}.
Based on observed wages (W) for Group A and ®(z;5/3) we write the joint distri-
bution of high/low W and high/low ®(z;53) as

o (I 2 ﬁ )
low high
low | a; b;
W;

€; f i

12This implies that the ‘nonresponse’ mechanism is ignorable.
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In the case of individuals for which wage data is unobserved (i.e. 2 = 0) we
define two types of individuals which we denote Group B = {e;fi}. a; and ¢
are potential ‘donors’ for e;; b; and d; are potential ‘donors’ for f;. By treating all
censored observations within the jth quintile as 72d, the bootstrap approach cannot
account for the problem depicted in the diagram. Since the covariate sets x; and
x9 are not identical there is not a one-to-one mapping from a low F (m@) to the
wage rate. i.e. E (Vi/,]) is constant for each jth quintile. The obvious disadvantage
of this assumption may be circumvented by increasing the number of percentiles
on F (a:BQ) Therefore we randomly sample from a;, ¢; to impute values for e;. In
contrast, the Heckman procedure adjusts the predicted conditional mean x,ﬁl for
selection bias - in this case E(yi|ya < 0) = E(e1|e; > z20,). Therefore we utilise
both unconditional mean information and an adjustment based upon P(y < 0).

Also
L. lim L SSWP = Wy,

2. Wgin < Wi < e

6. Model-Based Imputation Techniques

6.1. The EM Algorithm

The consistency of parameter estimates subsequent upon conditional and uncon-
ditional imputation techniques described above depends upon the assumptions
that the missing data are missing at random (mar) and that the observed data
are observed at random (oar). Namely, the missing data is missing completely at
random (mcar). The model-based imputation technique using the EM algorithm
only requires the weaker mar assumption.

The estimation-maximisation (EM) algorithm initially proposed by Dempster,
Laird, and Rubin (1977) is a general framework for solving maximum likelihood
problems when an observable model is derived from an underlying latent model.
In this respect it is instructive to consider the observational rule introduced in
Section 4, which facilitates comparison of an observed endogenous variable Y, and
a latent variable Y* via the mapping Y = A(Y™*). Thus, if Y* were fully observed
A(.) could be written as 1(—oo < Y* < 00)Y™, such that the maximum likelihood
estimator of 0, (the vector of unknown parameters) would be the solution to the
maximisation of log ¢(y* | z; 6). In situations where the mapping from Y* to Y
results in either (non-random) missing observations or partial observability'®, the

13We point out that the EM algorithm is applicable in situations of both ignorable and non-
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expectation step of the EM algorithm introduces the following criterion function
Q(0, 0") = Eg(log l(y" | z; 0) | Y =y)

which is the expectation of log £(y* | x, §) given the observed data y. 6 denotes
the value of 6 at the ty, iteration of the optimisation routine.

The most transparent way to motivate this method is to present the following
generic algorithm (from Little and Rubin (1987)) for handling missing data.

1. Replace missing values with estimated values

In the EM algorithm this is the Expectation step, where estimated values
are based upon the expectation of the missing data, conditional upon the
observed data and any estimated parameters.

2. Estimate model parameters

This is the Maximisation step.
3. Re-estimate the missing values based upon ‘updated’ parameter values
4. Re-estimate model parameters

5. Iterate until prespecified convergence criteria is met.

Note that the iterative component of the EM algorithm follows from estimation
by maximum likelihood. If there exists a closed form solution for the parameters
of interest (as in ordinary least squares) then the algorithm would truncate at 2.
Rubin and Little provide an extensive overview of both the theory and applications
of the EM algorithm covering a broad range of multivariate statistical techniques.

6.2. The EM Algorithm for Incomplete Multivariate Normal Samples

Using the notation of Section 2 we assume that the k columns of M (M, My, ..., My)
~ MV N(u,X) where o = (fiq, ..., pt;) and X is the (k x k) covariance matrix.
We write the observed data as

Mobs = (Mobs,ly Mobs,Q, ) Mobs,n);

where M ; represents the set of variables which are observed for observation ¢,
it =1,...,n. The expectation step of the algorithm is written as

E(M; | My, 609) = MY

ij

ignorable missing-data mechanisms. In the case of the latter the Expectation step is modified
to condition on the process determining the observed data.
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where M, Z-(jt)is written

MZ.(;) — 1(M;; is observed) M;; 4+ 1(M;; is missing) - E(M; | Mops5,09).  (6.1)

In (6.1) we see that the EM algorithm partitions the data into observed and
missing subsets, and at each iteration missing values are replaced by the con-
ditional mean of M;; given the data observed for that observation (Mes;), and
current values of the parameter vector #. The maximisation step, again assum-
ing that 6 is not available in closed form, simply updates 8® by 8%+ using the
(estimated) complete data.'t

6.3. Time Series

In section 4 we examined the case of imputing values of a time-series when ob-
servations are subject to contemporaneous aggregation, and there exists an ‘indi-
cator’ variable which in a regression framework can be used to interpolate higher
frequency observations. In instances where observations are simply missing for
certain periods this is not possible. In this case a number of alternate methods
are possible.

Below we examine a situation where for a time-series y; (t = 1,...,m — 1,
m +1,...,T) there is a missing observation at time ¢t = m.

Example 6.1. y, = ay, 1 +¢ (Ja|< 1)
Using simple recursion, y,,,1 may be written

Ymi1 = U Wm—1 + Em) + Emp1 = Y1 + Emir + AEm.
Therefore, since Y, 1 = ym by definition, the best predicator of vy, is given by
E(ym | Qm—l) = a2ym—1a

which may then be substituted into the likelihood, along with the remaining T'— 1
fully observed components. (1, idenotes the information set at period m — 1.

6.3.1. The Kalman Filter

The Kalman filter, based upon the representation of a dynamic system in a state-
space form, is an algorithm for sequentially updating a linear projection for the
system. In this respect its potential for use within the context of missing values
is immediately obvious. Below we briefly introduce the main components of both

14 Details such as the importance of starting values are discussed at length in Rubin and Little.
Convergence properties are discussed in Ruud (1991).
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the state space model and the Kalman filter and link the exposition to a number
of missing value problems.

Let y; denote an (n x 1) vector of variables observed at date t. The state-space
representation of the dynamics of y may be represented by the following system
of equations:

61‘—}—1 = F(St + Vt+1 (62)
vy = Alg+ H'o +w, (6.3)

where F) A" and H' are, respectively, matrices of parameter of dimension (r x ),
(nxk)and (nx7). g is a (k x 1) vector of exogenous or predetermined variables.
Equation (6.2) is the state equation and (6.3) is the observation equation. v; and
w; are, respectively, (r X 1) and (n x 1) vectors of mean zero, iid observations.'?

As demonstrated below, the formulation of the state-space is based upon writ-
ing any finite-ordered dynamic system as a first-order system, thereby simplifying
the analysis (see (6.2) and (6.3)). The state vector 6, carries all of the dynam-
ics of the process, which itself is determined by the state (or transition) equation.
Allowance for observational error is made using the observation (or measurement)
equation!®. It is of course true that all linear (and many non-linear) models in
econometrics may be presented in a state-space form. However, in relatively sim-
ple models such as an AR(p) process, the state-space formulation is not such an
advantage.

The following example will clarify notation.

Example 6.2. AR(p) process

Yer1 = 01(Ye) + oY1) + oo + Op(Yep) + €01 (6.4)

where E(ee,) = 0 ¥V, = r and zero otherwise. The state space form proceeds by
writing the pth order difference equation (6.4) as a first-order difference equation
in a vector 0;, where the first element of 6, is the value of y at time t; and so on.

State (Transition) Equation (r = p) :

5For further details see Harvey (1989) and Hamilton (1994).
16Much of this discussion is taken from Diebold (1992).
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Yt — 1 I I I
yt.—,u o 1 -~ 0 0 ytfl._,u n 0 (6.5)
S N AL | P I
S——r-—r R | S——
St41 ~~ L 8¢ A L v
A F _
Observation (Measurement) Equation (n = 1) :
Y — K
Yt—1 — {4
y=p +[1,0..0] , (6.6)
S~~~ N e’ :
Alg H'=2
Yt—p+1 — M
N———
bi11

Note that the first equation in the system is identical to (6.4), the second
equation is simply the identity y,_; = ;1 and so on'”. In this way we see that
first-order vector difference equation (6.2) - the state equation - is an alternative
representation of the pth order scalar system (6.4), but has the advantage of being
expressed as a first-order system.

6.3.2. Projection and Missing Values

In Section 3 we considered a number of regression-based imputation procedures,
which essentially utilised conditional expectations. The Kalman filter may be
viewed in a similar light, namely as an algorithm for calculating forecasts of the
state vector based upon information available up to time ¢, (hereafter the infor-
mation set, €);). Using notation introduced in Section 4.3.1we may write this
forecast as

;S\tJrl\t = E(étﬂmt),

where Q = (Yo, Ye1, -+ Y1, Tty Tp1,-- - T, ) E() is sometimes referred to as the
linear projection of d;,1 on €, but is, within the linear context, no different than
the conditional expectation function.

1"Note that in this case A’ = w, zy = 1 and w; = 0.
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The Kalman filter calculates one-step-ahead forecasts recursively, proceeding
logically from unconditional projection at time ¢ = 1 (ie. FE(61) = 61)0), to
conditional projection for ¢t = 2 (i.e. (E(8:|Q = (y1, 7)) = 32‘1).18 Generically
the one-step-ahead forecast of the state variable is given by

b = E(6ra1|) (6.7)
F- E((St | Qt) + E(Ut+1|Qt)
- F . (St\t + 0

Based upon the above analysis, the logical step to missing values is simple given
that missing-values in time-series fall under the rubric of multi-step prediction.
For example, given (6.2), (6.3), and (6.7), the formulae for the m-period ahead
forecast, y;1m, emerges from application of the Kalman filter

erm = EWrem | Q) = Aquym + H,Fmgtlt-

In this instance we may either think of information being available for t = 1,...,T
and forecasting m periods ahead, or where a window of length m is missing within
a particular series.

7. Maximum and Cross-Entropy Formulation

The major problem with the parametric approaches to imputing missing values as
laid out in Section 5, is the need to specify some form of conditional mean regres-
sion model. Obviously the validity of such a procedure is completely dependent
upon the parametric specification of the regression equation, the availability of a
sufficiently large sample, and that covariates which enter the specified equation
are observed for the sub-sample where the left-hand side variable is missing.

An alternative approach to this problem is to use either maximum or cross-
entropy formulations. The fundamental distinction between this and the regression-
based approach is the concept and valuation of information. In the classical re-
gression framework the concept of information is inextricably linked to both the
number of observations and covariates. Within the maximum entropy framework,
adding information involves the inclusion of additional constraints which if con-
sistent with the data will reduce the entropy value. For example, in the case of
unknown regional wage data (and assuming a discrete probability distribution'?)

B Typically 51‘0 is set at 0.
19We may formulate a continuous version of ME as the number of possible states — oo.
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if we reduce the number of unknowns, then the degrees of freedom will fall, and
so will the number of possible ways of recovering the remaining unknowns.

To understand the concept of maximum entropy (ME) consider a set of unob-
servable frequencies p = (py, pa, ..., pr) Which represent a data generating process
for a random variable with k possible outcomes. The ME principle seeks to max-
imise a function of p, such that the chosen p can be realised in the largest number
of ways, conditional upon what we know. For example, based upon knowledge
of a fair dice, the p that maximises entropy (or uncertainty in the system) is
p1 = ps = ... =pg = 1/6, with attendant mean 3.5. Thus, if we know nothing
and the dice is fair then p must be uniformly distributed over the set of possible
outcomes.?’

As Golan, Judge, and Miller (1996) note, the maximum or cross entropy (CE)
framework offers a solution to a range of problems which given limited data, are
undetermined using conventional procedures.?! For example, in many economic
applications data may be available at the national level whereas at certain levels
of regional disaggregation, data is either incomplete or non-existent. In essence,
the use of the entropy principle facilitates data recovery using only the aggregate
data, or if using cross-entropy, we use aggregate data in conjunction with an
earlier set of disaggregate regional data. As such, the maximum level of entropy
(uncertainty) follows from maximising entropy without any constraints which then
yields a uniform distribution. The inclusion of additional, relevant information
will therefore reduce uncertainty, and will result in a departure from the uniform.

Although entropy-based problems are usually cast in terms of probability dis-
tribution, Theil (1969) points out that the entropy measure, in its most general
form, may be considered as the degree to which an aggregate is subdivided into its
constituent parts. Obviously this problem may be immediately transformed into
an examination of the characteristics of the implied probability distribution, but
this need not define the original problem. For example, we might be interested
in aggregates such as total population or total income of a nation state and the
allocation across sub-regions. In Section 10 we demonstrate the use of entropy
procedures in the context of a particular type of missing data, where aggregate
wages are observed at the regional and industrial level but disaggregate data -
wages by industry and region - are not observed.

20For an excellent discussion of these methods see Golan, Judge, and Miller (1996).
2IThe implementation of ME and CE procedures for data imputation is relatively straight-
forward. The software package Shazam (see chapter 17) is particularly useful in this context.
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8. Accuracy of Estimation with Missing Data

To date we have focused upon the use of various imputation techniques as a tool
to facilitate the use of as many data points as possible within the context of pa-
rameter estimation. As noted by Efron (1994), the drawback of most imputation
techniques is that the process of replacing missing with fitted values ignores any
residual variation insofar as missing values are subsequently treated as if they
were known. As a result the unconditional variance (or conditional variance in
regression) will be less than that of the original unobserved series, with similar
implications for estimates of standard errors of model parameters.

Below we examine a number of techniques designed to examine the variability
of parameter estimates where a subset of the data points have been imputed.

i) Stochastic regression imputation

Stochastic regression imputation (as introduced in Section 5, example 4)
imputes missing values based upon the (estimated) conditional expectation
of y, E(y | ), plus a residual component to reflect uncertainty in the pre-
dicted value. Herzog and Rubin (1983) outline the two-stage procedure for
both normal and binary outcomes.

ii) Imputation: Confidence Bounds around Parameter Estimates

An approach suggested by Simon and Simonoff (1986), which does not assume
that the missing data is mar (or oar), utilises a graphical technique to
provide upper and lower limits for the parameter estimates. The authors
demonstrate that the range is a function of the nonrandomness of the missing
value process. For example, in the context of a non-random self-selection
model, the procedure advocated by Simon and Simonoff (1986) could be
utilised to compute an interval around the possibly biased set of estimated
parameters induced by self-selection. This is obviously different from com-
puting the inverse of the Mills ratio and correcting the bias.

iii) Multiple imputation

As noted above, regression-based imputation procedures will underestimate
the variance in any subsequent parameter estimates. Based upon the work
of Rubin (1987) and Rubin (1978), multiple imputation proceeds by nesting
the estimation procedure within an outer loop which iterates over multiple
random imputations of the missing data, rather than a single imputed value
as in, for example, examples 3 and 4 of Section 5. In this way, we may con-
struct a distribution of likely imputed values and thereby properly integrate
this element of uncertainty in model estimation.
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Although similar to bootstrap-based methods for parameter accuracy, mul-
tiple imputation is implemented (and best understood) using a Bayesian
updating scheme. For example, one of the main tools of Bayesian analysis
is the conditional distribution of the population parameters given the data.
However, this perspective becomes particularly useful where a portion of
the complete data has been imputed, and therefore there exists incertainty
beyond parameter uncertainty. In this instance the additional uncertainty
introduced by imputation can be examined by averaging the complete-data
posterior distribution (i.e. the conditional distribution given both observed
and missing data) over the posterior distribution of the missing data. *

9. Implementation

Below we focus on a number of issues related to the implementation of imputation
both in terms of modelling strategies and the availability of computer software.

9.1. Parameter Estimation with Imputed Values

The distinction between exploratory data analysis and statistical modelling has
an analogue in the missing data problem, insofar as the imputing of missing data
may be distinct from the subsequent use of a complete dataset to estimate model
parameters. Obviously this will be true if those in charge of imputing data are
separate from the modeler. In addition, if there is complete separation of these two
tasks, then the modeler may not have full information regarding the imputation
techniques that were employed.

If we assume that these tasks are undertaken simultaneously, the study by
Wang and Jinn (1992) presents an overview of a number of alternative strategies.
These are:

i) apply case deletion and use only observed values
ii) impute values for missing data and treat observed and imputed values equally

iii) utilise imputation as in ii) but implement improved variance estimation (see
Section 5, example 4)

iv) base parameter estimation on multiple imputation (see Section 8)

22See Efron (1994), Rubin and Schenker (1986), and Wei and Tanner (1990) for further details.
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9.2. Computer Software

In standard econometric software packages such as SAS (1985) there are, in gen-
eral, a limited number of in-built features for either imputing missing values or
model estimation which adjusts parameter estimates given the additional variabil-
ity introduced by imputation. Below we consider a number of exceptions.

i) STAMP 5.0 ((Structural Time Series Analyser Modeler and Predictor)
Koopman, Harvey, Doornik, and Shephard (1995)). STAMP is designed for
modelling time series data using unobserved components. Version 5.0 runs
on personal computers operating under DOS or Windows. Since STAMP
utilises the Kalman filter to construct the likelihood it offers extensively
powerful model-based procedures for imputing missing data in time series.??

ii) STATA (1997) (Release 5)

STATA is a statistical package for managing, analysing and graphing data.
Despite STATA’s impressive array of sophisticated modelling tools, it does
not have many features specifically designed to deal with missing data. How-
ever, the package does include an in-built impute function which fills in miss-
ing values using a parametric regression function as outlined in examples 3
and 4 in Section 5.

iii) GAUSS Third-Party Application: MISS

MISS, a program for missing data, includes procedures for the computa-
tion of covariance matrices and means, and for the imputation of data sets
with incomplete observations. Observations, mean vectors, and variance-
covariance matrices are estimated by maximum likelihood. Regression-based
imputation with or without variance adjustment is also provided.

The two main components are:

e EM - computes maximum likelihood estimates (using the EM method)
of the covariance matrix and mean vector when data are missing and
imputes the data as requested.

e IMPUTE - imputes the data using either a mean or regression method
substitution with an “equalisation” by either the random sample or the
random variable method. Then the covariance matrix and mean vector
may be calculated from the imputed data set.

iv) SOLAS (1997)

2See Harvey, Koopman, and Penzer (1997) for a number of examples.
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vi)

SOLAS is a Windows-based statistical software package that incorporates a
range of techniques for treating missing values. The package can handle both
longitudinal and single observation survey data. Options for both single
and multiple imputation are included. Within the context of multiputation
it should be emphasised that SOLAS samples from the observed sample
point after stratifying the data using the propensity score. Therefore, if this
approach is to be viable it requires that within a given variable there are
enough ”donor” values available from which to sample. Subsequently there
are certain missing data mechanisms that are not suitable for this approach.
An obvious case is that given by example 4.3 (Section 4) where for any
given time period only aggregate variables are observed and estimates of
the disaggregate constituents are required.

NP-REG (Non-Parametric REGression: See Duncan and Jones (1992)).

NP-REG is an interactive software package for Kernel density estimation
and non-parametric regression. Written in GAUSS, it is menu-driven and
incorporates a considerable number of non-parametric techniques. Although
there is no specific missing data options, imputation using a non-parametric
conditional mean function can be implemented.

GAMS (General Algebraic Modelling System: See Brooke, Kendrick, and
Meeraus (1992))

GAMS provides a high-level language for the representation and solution of
large linear and non-linear mathematical programming problems. GAMS is
particulary useful for the solution of entropy and cross-entropy problems,
which may be used in specific missing-data problems (see Secton 4, example
4.3).

10. An Example

In this section we will examine the problem of missing data for regional analysis.
In particular, we focus upon situtaions where although data is available at, for
example, the national level, data at the regional level is either incomplete or non-
existent. Deutsch and Rodler (1990) highlight two key issues when the problem
of missing data is one of aggregation:

i)

there is an obvious information loss when aggregate observations are used
in place of disaggregate ones;
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ii) in terms of public policy, this loss of information may be critical when at-
tempting to formulate policy rules when only aggregate information is avail-
able. It is also likely that the costs of using aggregate information will vary
across different economic variables.

In a number of recent studies analysts have questioned the use of large macroe-
conomic models which focus on the modelling of income and output aggregates
measured at the level of nation states. For example, the extent to which indi-
vidual regions and industrial sectors exhibit heterogeneity in terms of the mecha-
nism that determine growth, will affect the usefulness of aggregate studies. Quah
(1994) notes that since the EC Cohesion Fund distributes resources at the level of
NUTS-3 subdivisions (with over 800 regional units), the use of aggregate models
is obviously misplaced. If one accepts that detailed disaggregate information is
required, then in the face of limited information, aggregate indicators must be
decomposed to reveal their constituent parts. As such, this problem is in general,
underdetermined.

10.1. Missing Wages at the Regional Level

We will focus on the following problem. In an economy comprised of R regions
we observe the average wage for sector k, denoted by wy. However, wy;, the wage
in sector k, region i is unobserved. We let W% denote a (R x 1) vector denoting
the total wage bill for each region W/ is a (n x 1) vector denoting the total
wage bill for each industry .

The missing data problem is the problem of determining additional informa-
tion from a single aggregate mean. Obviously in the case of an economy based
upon R identical regions, then it would be reasonable to set wy; = wi Vo = 1, ..., R.
Likewise, the more heterogenous the economy in terms of the processes that de-
termine wages, the more unreasonable this assumption.

If the aggregate (national) mean wage is observed and data is missing for a
single region, then a simple accounting constraint allows the missing data to be
imputed without the use of a statistical model. However, with R — 1 degrees of
freedom and two or more regional observations missing, the problem is underdeter-
mined. This type of problem is common in econometrics and applied mathematics
and may be solved by the use of prior or non-sample information. This may take
a number of forms, including for example, knowledge of wy; for the previous time
period and an assumed growth rate. If we only observe aggregate data, then one
possibility is to postulate an econometric model of wage determination at the
national level,?* and use this to impute the disaggregate regional wages.

24This obviously assumes we have time-series data for national wages.
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Below we consider a number of alternative strategies based upon the various
imputation techniques discussed and the extent of missing data.

10.1.1. Regression-Based: Only w; observed

First we propose a model of wage determination at the national level. This might
take the simple linear form

Wy, = o + X By, + €t (10.1)

where X is a (n x v) matrix of regressors, § is a (v x 1) parameter vector,
e ~ 4id(0,0%)?°, and t indexes time. Based upon this aggregate model of wage
determination, the imputed wages for region j, industry k at period ¢’ would be

~

o = a+ X, B, (10.2)

where Xt’j is the regressor matrix for region j, sector k. Obviously, the major
problem with this approach is the assumption of an economy-wide constant set

of parameters 3.26 Note that since wy, is observed the imputation procedure must
R

satisfy the constraint wy, = £ > ;. In addition (10.2) assumes that the missing-
i=1

data mechanism is mar.

10.1.2. Regression-Based: w; observed and a sub-sample of wy;

Obviously if a subset of the wy; regional data is missing at random then we
may apply the same procedure as in (10.2). However, if there is some selection
process which is endogenous, then the imputation based on (10.1) would not be
appropriate since the information available in the selection process is not utilised.
As an example, let us postulate the following non-random observational rule for
regional wage data.

such that regional data is only observed if wages exceed 6. For notational purposes
let wB (wil) denote, respectively, the sub-sample of unobserved (observed) wages.

The total information we observe comprises the national figures, estimates of «
and 3 from (10.2) and wy}.

25This iid assumption may be relaxed.

26Note that the problems of using imputed values in a subsequent modelling exercise, such as
providing an accurate estimate of parameter uncertainty when elements of the regressand have
been imputed, are discussed in section 8.
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For the unobserved wage data, the population regression function conditional
upon the observational rule may be written

Wi | W < 6 = af + X,ﬁﬁB + 8. (10.4)
Since wy; is unobserved we cannot recover parameter estimates a?. We could
utilise (10.1) and set wf = & + X2 but this is incorrect since this implicitly
assumes that the data is both mar and oar, whereas in this instance F(e?) <
6—af + xﬁﬂB . Therefore, an appropriate modification of (10.1) would be to use

w%:a+x%+@, 10.5
where v = §—a+XJ LA? and ¢ (P) are respectively, the standard normal probability
density and cumulative distribution function. In (10.5) we note that we substitute
& and f3 for the unobserved &” and 3.7

10.1.3. An Entropy-based Solution

We introduce a (R x n) coefficient matrix A, with typical element
a;j = Wi/ wj, (10.6)

denoting the ratio of wages for industry j, region i to the total (aggregate) wage

bill for industry j, w; = > w;;. We may write the accounting identity
J

WHE = AWIND, (10.7)
with the first row of W given by

WEY = ay WINP + ap,WINP oo 4 aq,, WIND (10.8)

where each a;; coefficient allocates the total wage bill for the jth industry to region
1. Given (10.7), knowledge of the individual a;; coefficients allows us to estimate
the unobserved disaggregate wage data using w;; = w; X a;;.

The objective is to find an estimate of the unknown A matrix given aggregate
vectors WHY and WINP  which respects (10.7) and the following constraints and
non-negativity restrictions:

> agW¥P = WiOYi= 1. R (109)

J

33



R
day=1Vi=1,...,m; (10.10)

a; >0Vi=1,... Rj=1,....n (10.11)

This type of problem has a considerable lineage in multisectoral regional equi-
librium models (see Harrigan, McGilvray, and McNicoll (1980) and ?). For ex-
ample, in the context of updating input-output matrices the generic form of this
particular missing data problem follows from the need to determine n?,; pieces
of information from 2 x n,,; fully observed data points (for period ¢ + 1) and n?
pieces of information in period ¢. In this context, many data recovery procedures
such as RAS (see Schneider and Zenios (1990)) are based upon methods that rely
on accounting constraints. Recent work by Golan, Judge, and Robinson (1994)
have proposed an alternative method based upon the Maximum Entropy (ME)
Principle, which in the case of updating a (n x n) interindustry flow matrix A, ap-
plies an optimisation criterion such that the estimate of A, say A*, is that matrix
which can be realised in the greatest number of ways, given existing knowledge.?”

The maximum entropy solution to the above problem is to find the matrix A,
given the observed aggregate data and the constraints (10.9)-(10.11), that may be
realized in the largest number of ways. If certain w;; are known this information
may be incorporated via additional constraints, thereby reducing the amount of
entropy in the system. Formally, we may state the problem as

Maz H ==Y > a;;log(a;) (10.12)
J K2
subject to (10.9)-(10.11).

If w;; information is available from a previous period, say wfj’l, then this may
be incorporated into the problem?®. In this instance we note that the appropriate
reference distribution is not one which reflects a complete lack of prior information
as to the distribution of the total wage bill over industrial sectors and regions,
but rather we use the distribution of wages in a previous period as the reference
distribution. The resulting cross entropy problem?” may be written as

Min CE = Z Z a;;log(az; al; ") (10.13)

J

27The earliest reference is Shannon (1948). More recent discussion and applications are to be
found in Wilson (1970) and Zellner (1990).

28 A similar problem is described in Theil (1969), who uses entropy methods in the analysis
of financial statements.

29This is also referred to as the Kullback-Leibler information criterion.
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subject to the same data and adding up constraints.

In Golan, Judge, and Miller (1996) the use of ME and CE is demonstrated
using artificial data for a small inter-industry flow matrix. The authors show that
the use of CE to impute missing disaggregate data represents an improvement
over the traditional RAS approach. We could just as easily use the same data to
represent the missing wages problem. For example, in table 1 the rows represent
regions and columns industries, such that wy; = 45 signifies that 45 units of wages
are earned in industry 1, which is located in region 1; the total wage bill for region
1 is 140. Similarly, since w3 = 0 the data indicates that are no firms from industry
3 in region 2. If we normalise the wage data by total industry wages, the we can

generate the coefficient matrix A, with elements a;;.

Table 1: Wage Data and Coefficient Matrix

wage data w; A
451 0 [ 15| 80 | 140 0.726  0.000 0.165 0.301
10| 15| 0 | 120 | 145 0.161 0.268 0.000 0.451
713865 0 |110 0.113 0.678 0.714 0.000
0|3 |11] 66 | 80 0.000 0.054 0.121 0.248
w.; 62 56 91 266
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