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Abstract

Stochastic relative preferences are prevalent in the literature, but it appears that
modeling them is not trivial. This paper establishes that common stochastic spec-
ifications alter average relative preferences, which could induce spurious effects.
A simple solution is presented that provides an unbiased specification that param-
eterizes pure white noise shocks to relative preferences. The importance of the
results is illustrated by some instructive examples from consumer choice, mone-
tary policy and micro-founded business cycle models.
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1 Introduction

Models with stochastic relative preferences are prevalent in many areas of economics,
for instance in the literature on monetary policy and micro-founded business cycle mod-
els. Relative preferences refer to the desirability of one good compared to others; they
could be stochastic due to genuine disturbances to preferences or Bayesian uncertainty.
Modeling stochastic relative preferences is not trivial. This paper shows that com-
mon specifications are biased in the sense that they amount to stochastic disturbances
that affect average relative preferences. This change in relative preferences could lead
to arbitrary and misleading conclusions. A solution is presented that generates pure
white noise shocks to relative preferences for a large class of problems. This unbiased
stochastic specification prevents spurious results.

Stochastic relative preferences arise naturally when the good that is preferred (e.qg.
ice cream versus hot chocolate) depends on the state of nature (e.g. the weather). Typ-
ically, the states of nature are implicit and stochastic preferences are modeled as a
random shock to a utility parameter. The literature has made abundant use of three
kinds of stochastic specifications for relative preferences, unaware of the fact that
each tends to be biased. For concreteness, consider the simple objective function
U = aquy (1) + agus (x2), Whereu; (x;) is the sub-utility function for good;.

The first approach is to apply an additive, white noise shock to one of the relative
preference parameters, say, and to normalize the othety;. The problem is that
this specification alters average relative preferences (see Proposition 2). In particular,
it effectively makes the absolute value of the relative preference weighit, biased
towards zero, thereby reducing the weight putzgn This parameterization is often
used in monetary policy games with asymmetric information, and Beetsma and Jensen
(2003) have pointed out the arbitrary effects on economic outcomes that arise depend-
ing on which preference parameter is normalized.

The second approach is to apply additive white noise shocks of equal size but oppo-
site sign to both coefficients; andas. It was first used by Sgrensen (1991) to model
‘pure uncertainty effects’ to relative policy preferences. It turns out that this specifi-
cation is only unbiased for a particular parameter configuration, although it tends to
give rise to ‘stochastic neutrality’ such that the expected value of a variable of interest
corresponds to the deterministic outcome (see Section 3).

The third approach is to apply a multiplicative, lognormal sheti eithera; or s,
with E [In k] = 0. This is common in micro-founded business cycle models, including
new open economy macroeconomics. This specification also tends to alter average



relative preferences; it makes the absolute value of the marginal rate of substitution
biased towards one (see Proposition 5). In addition, although the parameterizatjons
andras lead to the same stochastic distribution of the marginal rate of substitution, it is
problematic that their welfare effects are generally different. In the case of optimization
under preference uncertainty, they could even change the qualitative effect on economic
outcomes.

The main contribution of this paper is to present a solution to these problems and
provide a way to model pure white noise shocks to relative preferences. Unfortunately,
it is not fruitful to use the marginal rate of substitution to define a neutral or unbiased
stochastic specification that has no average effect on relative preferences. The reason is
that the two (reciprocal) definitions of the marginal rate of substitution yield different
average results due to Jensen’s inequality. Instead, this paper focuses on a more funda-
mental geometric measure of relative preferences that does not have this drawback and
allows for a very natural definition of white noise shocks to relative preferences.

The results in this paper are relevant to the literature on micro-founded business
cycle models, which regularly assumes relative preference shocks (e.g. Hall 1997, Ob-
stfeld and Rogoff 2000). Although the use of biased stochastic specifications may be
innocuous for calibration exercises, they are problematic when analyzing the economic
effects of uncertainty. The change in average relative preferences induced by a biased
specification is likely to affect economic outcomes and possibly also welfare effects,
which could be incorrectly attributed to the presence of risk. The findings of this paper
are also of particular interest to the literature on transparency of monetary policy, where
the use of stochastic relative preferences to model monetary uncertainty has generated
conclusions that hinge on the use of a biased specification (see Geraats 2002).

The formal analysis of stochastic relative preferences is in Section 2, with the key
result, an unbiased specification of the marginal rate of substitution, in Proposition 3.
In addition, Proposition 4 presents a simple specification for the stochastic preference
parametersy; that is unbiased in the deterministic optimum and holds for all (interior)
stochastic optima when the marginal rate of transformation is independent of the state
of preferences. Conveniently, this specification could also be applied to optimization
under preference uncertainty. Section 3 explains how the results generalize and apply
to heterogeneous preferences or an Arrow-Debreu endowment economy with no aggre-
gate preference uncertainty, which features a constant aggregate demand for all states of
nature. Subsequently, Section 4 illustrates some spurious effects resulting from biased
specifications in three simple examples related to consumer choice, monetary policy
and micro-founded business cycle models. Finally, Section 5 summarizes the main



findings.

2 Stochastic Relative Preferences

Let U (x; s) denote a stochastic utility function, whexe= [z1, ..., 7] withx € X is

a vector of goods or decision choicesin the choice sei ¢ R¥, ands the state of
nature,s € S.! The relative preference for any andx; (i,j € {1,..., K}, j # 7)in
states is described by the stochastic marginal rate of substitution (MRS), which can be
expressed in two equivalent ways:

. _0U(x;8) J0x;
MRSZ-J (X, S) = W (1)
. 0U(x;s) /0x;

These two definitions of the MRS are intrinsically related. Cursorily, they are simply
reciprocals as\/ RS, ; (xo; s) = 1/MRS;; (xo; s) for anyx, € . More fundamen-
tally, both correspond to the same tangent hyperplane of the indifference surface at
and represent different ways of measuring its angle with respect tg trelz; axes in

the two-dimensional subspace spanned-pgndz;. To be precise, let; ; (xo; s) de-
note the angle within the subspacex z; C R? between the hyperplane tangent to the
indifference surfacé’ (x; s) = U (xo; ) at pointx, for states, and the hyperplane de-
termined by{x € RK|xj = 0}; and similarly,y, ; (xo; s) the angle with respect to the
hyperplane determined b&x c R¥|z; = 0}. Stochastic shocks to these two related
angles affect the marginal rates of substitution in a specific fashion.

Proposition 1 Without loss of generality, suppose that relative preferences are de-
scribed by

Yij (x;5) = Vi (x) + ng (s;x) (3)
wherey, ; (x) is deterministic and;, ; (s; x) is stochastic with the conditional proba-
bility (mass or density) functiofy (g‘m—|x). Then, the marginal rate of substitution for
U (x; s) associated with such stochastic relative preferences satisfies
tan?y; ; (x) + Nij (s5%)
cot 7y, ; (x) — Nij (s;x)
1The existence of a random utility representation is presumed. For a survey of axiomatic approaches

to stochastic utility, see Fishburn (1998).
2This holds for anyx where local nonsatiation applies. For any bliss poirts= b where

U (b;s) /0x; = 0, MRS, ; (x;s) is not well-defined buM RS; ; (x;s) = 0 for all s € S, which
means that relative preferences are not stochastic.

MRS, ; (x;s) = cot 7, ; (x) (4)
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Figure 1: The geometry of relative preferences.

t o +1n..(s; 3
MRS;;(x;s) = an 7“ () + 154 () cot ., (x) (5)
' cot Vi (X) = N4 (S5 X) ’

wheren), ; (s;x) = tan Cij (s;%), Nj.i (s;x) = —1; (s;x),s € S,x € X andi,j €
{1, K}, i#].

The formal proof, which appears in the Appendix, proceeds in two steps. First, a
geometric argument is used to show that

MRS, ;(x;s) = tan Vi (x; 5) (6)
MRS;;(x;5) = coty,;(x;s) (7)

This is illustrated in Figure 1 for an indifference cut/e= U (x; s) in (x;, x;) space.

The MRS corresponds to the slope of the tangent line to the indifference curve and can
be described in two ways, asdz;/dx; or —dz;/dz;, which yieldsM RS; ; (x;s) =

tan~y, ; (x;s) and MRS;; (x;s) = tanv,, (x;s), respectively. Using the fact that
tan~y;, (x;s) = cot, ; (x; s) gives the result. The second step of the proof consists of
substituting (3) and using trigonometric properties to obtain (4) and (5).
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Proposition 1 shows thal/ RS; ; and M RS;,; are isomorphic. This is a neces-
sary condition for any proper specification of a stochastic MRS. In the special (pos-
sibly hypothetical) state, (with Pr{sq} > 0) in which there is no stochastic distur-
bance and;; ; (so;x) = 0, the deterministic expressions for the MRS are obtained:
MRS;; (x;80) = tan 7, ; (x) andM RS} ; (x; 89) = cot 7, ; (x).

The fact that instead a¥/ RS; ; and M RS ;, 7, ; and+y, ; can be used to describe
stochastic relative preferences is the key insight to obtaining a specification for white
noise shocks to relative preferences. It leads to a natural definition of a neutral bench-
mark in which the stochastic variation only changes second moments without affecting
first moments of relative preferences.

Definition 1 A specification of stochastic relative preferences betweandz; (i, j €
{1,..., K}, # j)isunbiasedorx € X if § {Ci,j|x} =E {Cj,i|x} = 0.

So, an unbiased specification of stochastic relative preferences amounts to a white
noise disturbancg; ; (s; x), which means a mean-preserving spread,in(x; s). Of
course, this is equivalent to a mean-preserving spread ifix; s). In contrast, in-
troducing a mean-preserving spreadlihRS; ; (x; s) is generallynot equivalent to a
mean-preserving spread i RS;; (x; s) due to Jensen’s inequality. But this problem
is resolved by focusing on the fundamental measures of relative preferences, s)
andvy;; (x; s). With unbiased stochastic relative preferences, observers,in;) space
and(z;, z;) space both agree that the position of the tangent hyperplane to the indiffer-
ence surface at has not changed on averagk[; [ymlx] =AE hm|x} =0).

Any biased specification of stochastic relative preferences can be decomposed into
a deterministic change i, ; (x) and a white noise disturbance. This means that the
outcome of a biased stochastic specification is distorted by the fact that it effectively
incorporates a change in relative preferengesnstead of merely generating a second
moment effect. This makes it desirable to use an unbiased specification to analyze the
effects of stochastic relative preferences.

2.1 Biased Specifications

It appears that commonly used stochastic specifications are biased. Most parameteriza-
tions of stochastic relative preferences in the literature employ a utility function of the
form

U(x;s) = h (f:l a; (8) wi (xi)> (8)

3Note that a specification that is unbiased for some X may not be unbiased for al € X'
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whereh (.) is a monotonic function sé’(.) # 0, andu; (.) is a differentiable sub-
utility function. The relative preference parametetss) are stochastic and depend
on the state of nature € S. The fact thaty; (x;) is independent of the state of nature
implies thatabsolutepreferences reflected by bliss points are deterministic, so that only
relative preferences are stochastic. The MRS equals

~—

@i (s) u,’ (z:) andMRS;; (x;s) = @ () uj, (;
a; (s) uj () a; (s) uj (z:)
The deterministic case indicated kyis denoted byy; (so) = a; foralli € {1, ..., K}.
Equating (6) and (9) for statg yields

MRS;; (x;s) =

(9)

au; (7;)

tan7, ; (x) = Gl (5) (10)

This shows how the deterministic angjg; corresponds to the deterministic relative
preference parametefis anda;.

The following result establishes that an additive, white noise shock to one of the
relative preference parameters affects average relative preferences.

Proposition 2 A utility function (8) for whichy; (s) = &; + ¢ (s) anda; (s) = a; # 0
forall j # 4,i,57 € {1,..., K}, whereE [{] = 0 andsgn («; (s)) = sgn (a;) # 0 for
s € S, is a biased specification of stochastic relative preferences betwesrdz; for
allx e X.

The proof appears in the Appendiit first computes the relative preference shock
¢, ; implied by this specification and subsequently shows Higf = 0 implies that
E {(i7j|x} # 0 so that the specification is biased. The Proposition implies that an
unbiased specification of stochastic relative preferences would require a biased shock
¢ to the preference parametey. Although(, ; = 0 amounts te¢ = 0, E {Ci7j|x} =0
does not correspond ©[£] = 0 due to nonlinearities.

For concreteness, consider the case in whicts), a;, u; (z;) andu) (x;) are all
strictly positive. Theng, ; is monotonically increasing and concaveginso that¢ is
convex ing"m-.5 This means that an unbiased specification \ﬂjt{h{iﬂx] = (0 requires
E [£] > 0. In addition,E [¢{] = 0 impliesE [Q—Ax] < 0 so thatg [%J—|x} <%, (x). As
a result, the white noise shock &g effectively lowers the average relative preference
weight onz; and gives rise to a bias.

4Incidentally, it is a corollary of Proposition 4 that an additive, symmetric (possibly normal) white
noise shock to @; is biased. Nevertheless, the proof in the Appendix provides some useful additional
insights.

5See (32) and (33) in the Appendix. Table 1 also follows from (33).
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Table 1. Direction of bias for the specification in Proposition 2

Effect onE {’ym-lx} a;(s)a; >0 a;(s)a; <0
G @) >0 - :
v () <0 -

Intuitively, a white noise shock te; does not affect the expected value\dfzS; ; (x; s),
which is linear ino;. This suggests no average change in relative preferences. However,
it increases the expected valueMiRS;; (x; s), which is convex imy;. This suggests
an average increase in the relative preference weight;. Combining both results
suggests a white noise shockdpreduces the average preference weight.on

More generally, the direction of the bias induced by the specification in Proposition
2 depends on the sign af; (s) a; andu; (z;) v} (z;). The effect ong [vi’j|x} is pre-
sented in Table 1. It appears that the effect depends on the sigr of such a way
that the specification makes the absolute valug @fmyx} biased towards zero. As a
result, the white noise shock tq effectively diminishes the relative preference weight
put onz;.

Another common specification of stochastic relative preferences is to apply a multi-

plicative shock: to one of the relative preference parameters, whesds white noise.
It turns out that this parameterization is also typically biased, with one exception. When
the absolute value of the MRS is equal to one in the deterministic optimum, this spec-
ification is unbiased. This result is shown in Proposition 5 in the next subsection after
more general unbiased specifications are presented.

2.2 Unbiased Specifications

It appears that it is typically not possible to obtain an unbiased specificatiéh(fors)

for all x € X with preference parameters (s) that are independent of. However,

this paper provides two approaches that ensure unbiasedness for constrained optimiza-
tion problems involving (8). The first approach, presented in Proposition 3, is the most
general and formulates an unbiased specification of the MRS foxanhe second
approach, given by Proposition 4, provides a simple specification of the utility function

U (x; s) that is only unbiased at the deterministic optim&nbut valid for all stochas-

tic optimax (s), and applies to the large class of economic problems that feature a
unique interior solution and a marginal rate of transformation that is independent of the
preference shocks (in equilibrium).



The first result provides an unbiased stochastic specification of the MRS that fol-
lows from Proposition 1 in a quite straightforward way and corresponds to symmetric
white noise to the angle; ;.

Proposition 3 For the utility function (8), the marginal rate of substitution

MRS, ; (x;s) = — i (11)

provides an unbiased specification of stochastic relative preferences betweed
a;u’(z5)

z; forall x € X, where¢, ; (s;x) = Gl @) i (5:x), 1,4 (5;%) = —n;; (s;x) with

the conditional probability functiorf, (n, ;|x) = f, (—u.,/x) andi,j € {1,.., K},
i,

Proof. Substitute (10) into (4) and rearrange to get

aul () Do) ajul(z;) . B
MRS, (x:5) = 220 s (%) ) (25) L+ Gy (%) Gaud ()
12¥) ) CTACD) S TIA N a;u (i) . . .
Eu]luZ(zZ) — n%] (37 X) ;U (xl) 1-— a]"u;(fﬂj)/r/izj (S, X) a]u] (xj)

Usingn,; (s;x) = —n, ; (s;x) and the definition of, ; (s;x) gives (11). Finally, using
n:; (8;x) = tan(, ; (s;x) and f,, (ni’j\x) =/ (‘U@,ﬂx) it follows that f (Ci’j\x) =
’1 + (tan gm-)Q I (tan(i7j|x) = fc (—CW-|X), which implies thate [Ci,j‘x} = 0 so
that the specification is unbiaséds

This unbiased specification of the MRS for stochastic relative preferences effec-
tively amounts to a multiplicative adjustment of both preference parameteasd
a; which depends on the deterministic MR%ZJ&)) The preference shocks satisfy
E [Q,jlx} =E [fj,i|x} = 0 andCov {fi7j,§j7i|x} < 0, and they exhibit heteroskedas-
ticity. The fact that these properties are conditionalkois critical when considering
severalx for the same state. Also note that the expressions fof RS; ; (x; s) and
MRS;; (x; s) are isomorphic, which is a necessary condition for any proper stochastic
MRS.

The specification in Proposition 3 is not only unbiased, but it also reflects a sym-
metric distribution of relative preference shocks. In principle, it would be possible
to obtain unbiased specifications that are based on skewed distributions. However, the
assumption of symmetry is appealing because it is simpler and has the feature that the

®This shows thaf,, (n; ;|x) = f, (—n, ;|x) is only a sufficient condition. Other conditional distri-
butions fory could also yieldg (¢, ;|x) = 0.



MRS associated with the median preference shig¢k= 7, ; = 0 is equal to the deter-
ministic value,M RS, ; (x; s). In the presence of preference heterogeneity according
to (11), wheren, ; (s;x) captures the idiosyncratic preferences of ageithis means
that the MRS of the deterministic caggcorresponds to the relative preferences of the
median agent,,: M RS, ; (x;s0) = MRS, ; (X;5,).

It may be tempting to consider a utility function with relative preference parame-
tersa; (s) = (1 +&ij (s;x)) a; anda; (s) = (1 + & (55 x)) @;, but note that such
a specification would generally not lead to the unbiased MRS in (11) because of the
dependence of the preference shockscorlowever, there is an unbiased utility spec-
ification that applies to a common situation. The constrained optimization problem
under consideration tends to yield a unique interior solutios) that equates the MRS
to the marginal rate of transformation (MRT). For many economic problems, the MRT
is independent of the relative preference shocks (in equilibrium). In such cases, there is
a simple utility specification of stochastic relative preferences that is unbiageahai
holds forx (s).

Proposition 4 Suppose a constrained optimization problem based on the utility func-
tion (8) has a unique interior solutior (s) satisfying

MRS;; (x(s);s) = A (12)

for all states of nature € S. Then,

a; (s) = [T+ X (s)] (13)
a;(s) = {1 - ié (S)} a; (14)
ar(s) = {1 _ ig (s)} 5 (15)

wherefe (£) = fe (—&), provides a specification of stochastic relative preferences be-
tweenz; andz; (i,j € {1, ..., K}, i # j) thatis unbiased at the deterministic optimum
x for whicha,, (s) = a,, for all n € {1, ..., K'}, holds for the stochastic optima(s)

for all s € S, and does not affect the relative preferences betwgesnd z;, for all

ke {1, K}\ {i.j}.
Proof. Substituting the unbiased MRS (11) into (12) and simplifying gives

ajul (z;) + i (55%x(s))

a;ul(z;)

@ju;(x;)ni,j (53 X (5))

MRS, (x(s);s) = =\




Denoting¢ (s) = n;, ; (s;x (s)) and rearranging yields the following Euler equation:

[1+ 8 (s)] @iug (i) = [A =& (s)] auj () (16)

This can be rewritten as
[1+ A (s)] au i ()

A\ =
11— 16 ()] ay % (&)

= MRS, ; (x(s);s)

where the latter MRS is constructed using (13) and (14). In addgion,= », ; (s;x (s)) =
0 yields the deterministic case with/ RS, ; (X; s), so the specification is unbiased at
x. Using (14) and (15)M RS, (x(s);s) is constant for alls, so that the relative
preferences betweer andz, are not affecteds

The proof yields the stochastic Euler equation (16), which provides a convenient
way to characterize the stochastic optimés) associated with this unbiased specifi-
cation. It also shows how the results in Propositions 3 and 4 can be reconciled. An
alternative proof, which does not rely on the result in Proposition 3 but directly estab-
lishes unbiasedness, appears in the Appendix.

The unbiased specification in Proposition 4 is less general than in Proposition 3, but
it is applicable to any problem which has a unique interior solution and for which the
MRT is independent of the preference shock (in equilibrium). So, it holds whenever
the MRT stems from a technological or structural constraint that is linear it
otherwise independent of the preference shock. For instance, a policymaker could make
a decision about the policy variablegs) for each state of naturesubject to a linear
constraint that reflects the structure of the economy. In addition, the specification can
be used to model the case of preference uncertainty in which an agent decides about
under uncertainty about its own preferences or without knowing the realization of the
state of nature.

The unbiased specification of Proposition 4 could also be described by

an (s) = (1+&,(5)) an (17)

for everyn € {1,..., K'}, whereg; (s) = A (s), &; (s) = —x& (s) and; (s) = &, (s),
with E [£] = 0 andVar [¢] = ag > 0. As a result, the preference shocks have the prop-
ety thate [¢] = E [¢;] = 0, Var[¢;] = X°0%, Var |¢;| = o2, andCov {¢,,¢;} =
—0%.

This shows how unbiasedness could be achieved by applying additive, correlated,
heteroskedastic shocksa,, to a,,. In addition, it indicates that an additive white noise
shock to only one of the preference parameterproduces a bias, as was formally
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shown in Proposition 2. Another common stochastic specification is a multiplicative
shockk to «; whereln « is white noise. As mentioned above, such a specification is
typically biased, except for the special case in which the absolute value of the MRS
equals one in the deterministic optimum.

Proposition 5 If the deterministic optimuri satisfies|A/RS; ; (X)| = 1, then there
exists ax (s) with E [In k] = 0 such that the utility functioy (x; s) in (8) witha; (s) =
k(s)a; anda; (s) = a; # 0forall j # i,4,5 € {1,..., K}, is a specification of
stochastic relative preferences betwegmndz; that is unbiased ak.

The proof appears in the Appendix. It uses a Taylor series expansion of the log
of the unbiased MRS in (11) around the deterministic case to show that the specifica-
tion with o; = ko, anda; = &, is observationally equivalent for a particularfor
whichIn k is white noise if the absolute value of the deterministic MRS equals one. In
that caseln M RS; ; (X;s) andln M RS;; (X; s) are (Symmetric) white noise for both
specifications.

Without the restriction on the deterministic MRS, the proof shows that there still
exists ax that produces unbiasedness, but Haw is no longer white noise. Instead,
it has the property that [In x| has the same sign 48/ RS, ; (X)| — 1. So, in gen-
eral a specification withn x white noise displays a systematic bias. In particular,
for [MRS;; (X)| > 1 unbiasedness requirgs[ln x| > 0, so the specification with
E [In x| = 0 effectively reduces the relative preference weightcpin absolute value
and lowerg M RS, ; (x)|. Stated differently, fof M RS; ; (X)| # 1, a log white noise
shock makesM RS, ; (x)| biased towards. This suggests that one should be careful
with the interpretation of results based on the commonly used multiplicative, lognormal
specification with; = xa;, whereln x ~ N (0,02).”

3 Discussion

The unbiased specifications in Propositions 3 and 4 are based on the commonly used
utility function (8), but it is straightforward to extend the results to other utility func-
tions. Of course, the expressions for the MRS in (9) should be updated, as well as (10),
but once they are replaced, Proposition 1 still holds. To generalize the specification of
the unbiased MRS in Proposition 3, simply substitute ¥, ; (x) for zﬂzﬂgij)) Then,

one can proceed along the steps in the proof of Proposition 4 to obtain an unbiased

’Note that Proposition 5 does not guarantee that this lognormal specification is unbiaséar at
IMRS; ; (X)| = 1, although numerical examples indicate it is nearly so.
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stochastic Euler equation or even utility specification for the case in which the MRT is
state-independent (in equilibrium).

In practice, a stochastic specification may be used without an explicit deterministic
benchmark. When the specification involves a continuous, parametric distribution of
a utility parametery, it is natural to take as deterministic benchmark the limit as the
varianceVar (o] goes to zero. When the distribution is nonparametric or the states of
nature are discrete, the mean or median @irovides a useful benchmark to assess to
what extent the stochastic specification distorts average relative preferences.

It is important to realize that an unbiased specification of stochastic relative prefer-
ences typically does not have a stochastically neutral effect on the economic ostcome
in the sense that the stochastic optir@) merely add white noise to the deterministic
optimumx.8

Definition 2 A stochastic optimization problem exhibigsochastic neutralityn x if
the corresponding stochastic optimé) satisfyE[x] = X, wherex denotes the deter-
ministic optimum.

Conceptually, the main distinction between unbiasedness of a preference specifi-
cation and stochastic neutrality is that the former reflects a pure uncertainty effect on
preferences, whereas the latter features a pure uncertainty effect on outcomes. Unbi-
asedness of a preference specification does not imply stochastic neutralligdause
the optimumx (s) results from a combination of preferendésx; s) and constraints,

H (x;s) = 0, which typically involves a nonlinear interaction. As a result, an unbi-
ased specification of stochastic preferences coincides with stochastic neutrality only in
some special cas@sSimilarly, stochastic neutrality i could hold despite a biased
preference specification.

The presence of stochastic neutralityxirtould be analytically convenient for op-
timization problems in which the constraint dependsidr], because the latter is not
affected by preference variability. An example would be modeling a policymaker who
decides about inflation and unemployment and faces a Phillips curve that depends on
expected inflation. Furthermore, stochastic neutrality is desirable when the focus
of the analysis is ox and preference shocks are merely an auxiliary assumption to
capture asymmetric information about preferences. Nevertheless, researchers should

8Stochastic neutrality is not implied by risk neutral preferences. In addition, it is different from
certainty equivalence, in which casds) = x for all s. So, certainty equivalence implies stochastic
neutrality, but not vice versa.

90One example is the case in whith(x; s) = (1 + g—;é (s)) i+ (1 — %5 (5)) x5 andH (x;s) =
Bo + Brx1 4 Bawa, With fe (§) = fe (=€)
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be aware of the fact that stochastic neutrality typically involves a change in average
relative preferences that could induce spurious welfare effects. This does not arise with
an unbiased specification.

The present setup for modeling stochastic preferences of a representative agent
could also be applied to preference heterogeneity among multiple agents. In partic-
ular, uses = n to index agents instead of states of nature. Then, stochastic neutrality
in x amounts to an average optimal outcomexoffFor instance, consider an endow-
ment economy in whictv. consumers have heterogeneous preferences abditen,
stochastic neutrality ik means that aggregate demand equésand therefore that
relative prices fox are the same regardless of the degree of preference heterogeneity.
This result can be extended to an endowment economy with heterogeneous and stochas-
tic preferences. In that case, stochastic neutrality for each state of nature implies
that for each state aggregate demand egialso that relative prices and the marginal
rates of transformation are constant in equilibrium. This means that Proposition 4 also
applies to such an endowment economy with no aggregate preference uncéttainty.

Definition 3 An endowment economy inhabited BY consumers with heterogeneous
and stochastic preferences featunesaggregate preference uncertainfyaggregate
demand>""_ x, (s), is constant for all states of natusec S, wherex,, (s) denotes
the individual demand function for consumem states.

So, an endowment economy with no aggregate preference uncertainty and with the
stochastic specification in Proposition 4 features preferences that are unbiased in the
deterministic equilibrium. Except for these special cases, the concepts of unbiasedness,
stochastic neutrality and no aggregate preference uncertainty are generally not related.
The next section provides several examples that illustrate these concepts further.

4 Examples

The instructive examples in this section focus on consumer choice, monetary policy
and micro-founded business cycle models.

1%This is exactly analogous to an Arrow-Debreu endowment economy with no aggregate (endowment)
uncertainty, in which case aggregate sup@}/f,\/’:1 wn, (8), is constant for all states of natusewhere
w,, (s) denotes the endowment of consumen states.
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4.1 Consumer Choice

Consider a simple consumer optimization problem under perfect competition with two
goodsz; andx,. The representative consumer maximizes the utility function

U(xy,22) = aplnz; + azlnmx,g (18)

subject to the budget constraint

P1T1 + Palo = m (29)

wherep; is the price of good, m denotes nominal assets (in terms of a fictitious
numeraire good), andy; > 0, with ; € {1,2}. The marginal rates of substitution
equal

MRS, 5 (x) = 222 and MRS, (x) = —22L

Qo T aq 1U2.

Maximizing (18) subject to (19) yields the optimal demand relationships

™ andz, = — (20)

Two cases are considered: First, partial equilibrium, in whictand p, are ex-
ogenous and deterministic; subsequently, general equilibrium in which the stochastic
preferences of the representative consumer affect the equilibrium price.

4.1.1 Partial Equilibrium

There are several ways in which stochastic relative preferences betwaedz, could
be modeled.

First, suppose that; = a; + £ anday, = 1, wheref is white noise. This has
no average effect oA/ RS, » (x), which is linear inay, but it increases the expected
value of M RS, ; (x), which depends inversely am;. This asymmetry is peculiar,
because\/ RS, » (x) andM RS, ; (x) are two equivalent ways of measuring the slope
of the indifference curve if, z5) and(x2, z1) space, respectively, and they are simply
mirror images of each other. Furthermore, this specification of stochastic preferences
leads to a decrease in the expected demand for gpgand an increase far;) since
x1 Is concave (ands is convex) ina;.

Now, suppose that; = 1 anda, = a»+¢. Then, the expected value df RS 5 (x)
increases, but there is no average effecdbR S, ; (x). In addition, there is an increase
in the expected demand fog (and a decrease fax). Clearly, the normalization af;
is not innocuous in the presence of stochastic relative preferences. More precisely, a
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white noise shock te; effectively reduces the average relative preference that the con-
sumer attaches to, which is consistent with the conclusion obtained from Proposition
2.

An unbiased specification for the MRS is given by Proposition 3:

Q2 T1 0y =
Lt aimf i

MRSLQ (X) = 1 1 6[2 1 (21)

_ Gz
Qg 1

wheren is symmetric white noise conditional an so f, (n|x) = f, (—n|x). To il-
lustrate unbiasedness, consider a simple numerical example. Suppose there are two
equally likely states of nature € {1,2} with (1) = +n andn(2) = —n, where
0 < n < 1. Assume thaty; = a, = 1 and focus onr; = z, = 1. Then,y,, (x) =
arctan 1 = . In addition,y, , (x;1) = arctan }Jj—z andvy, , (x;2) = arctan };—2, SO
E [71,2|x} = 17 = 7, (x) and the specification is unbiaséd.
To derive the demand function associated with the unbiased MRS, substitute (21)
into the first order condition for optimizatiod/ RS » (x) = E*, and rearrange to get

the stochastic Euler equation
(o))
b2 I P2 T2
Solve this forz, and substitute it into (19) to find

. (1+2p) ay m
(1+2n)an + (1= 27) aa 21

(23)

Now consider the stochastic specification in Proposition 4 with= (1 + %é) a

andas, = (1 -2 ) a2, Whereg is symmetric white noise, sfi (£) = fe (—&). Then,

1 + ﬂg 561 i)
MRS = e
1z (x) 1—-Bgasa
This MRS is only unbiased at the deterministic optim&it However, it applies to all
(interior) stochastic optima that satisfyM RS, » (x) = £, and for¢ = 7 it yields the
same stochastic Euler equation (22) and demand function (23).

1YUse the trigonometric identitiegctan z 4 arccot z = 7/2 andarccot z = arctan (1/2).
2Note that this MRS cannot be used to check whethéty, ,|X] = E [arctan MRS} [%] =

712 (X), because evaluating it a for any state different froms, violates the condition that
MRSy 2(x(s);s) =B

p2’
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Expected demanH [z, ] for these unbiased stochastic specifications is typically dif-
ferent from the deterministic outcomg = —2.— ™ so the effect ox is not stochas-

ai1+o2 p1
tically neutral. Inspecting (23) reveals that only the special case in whigh, =
pa/p?, so thatr; = =2 features both unbiasedness and stochastic neutrality in

ai1+a2 p1

x. A simple parameterization that is stochastically neutrat iis oy = a; + E and
as = 1 — & — &, wheref is symmetric white noise, but this specification is biased
unlessp; /p; = 1.1

4.1.2 General Equilibrium

Now consider consumer choice in general equilibrium wheres the endowment of
good: for all states of nature, andp; (s) is the equilibrium price of goodin states.**
As a result, the consumer’s nominal assets are stochastic and equal

m (s) = p1(s) w1 + p2 (s) wa (24)
Furthermore, goods market equilibrium requires that for all states of nature
z1(s) =w; and z3(s) = ws. (25)
Using (25), (20) and (24) gives the relative prices in equilibrium:
pL_aws

= and@ = )
D2 Qg W1 b1 a1 Wa

Qg W1

Suppose that; = @; + £ anday = 1, whereg is white noise. Then, the expected
relative price ofr, is not affected, despite the lower expected demand fobut there
is an average increase in the relative priceof In contrast, whemy; = 1 anda, =
as + &, the expected value of the relative priceqf increases, consistent with the
higher expected demand fog, but there is no average effect on the relative price of
x2. Again, the results depend on the normalization of the relative preference parameter.
Next, consider the unbiased specification of Proposition 3 or 4. Substituting (24)
into (23) and using (25) gives

p1 Qaws + wif
P2 Qowi — Qqwal

13More generally, fotuy, (z) = Inz, andH (x; s) = By + >, B2k, there is stochastic neutrality in
xif oy = (14§ a;, a; = (1 —08) a; andoy, = (1 — 0§) g, whered = &; /X0

An alternative approach to equilibrium analysis in an endowment economy with random preferences
is to consider a deterministic price vector such that expected excess demand equals zero and excess
demand per capita converges in probability to zero. (Hildenbrand 1971)
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Now the effect of the stochastic preference shéakn the relative pricesg, /p, and
pe/p1 IS entirely isomorphic.

Instead of a representative consumer with stochastic preferences, suppose that this
economy is inhabited byv consumers with equal endowments but heterogenous pref-
erences. Each consumer can be characterized by the preference patameter
which has the relative frequency functigri). The level of aggregate demand and
therefore the equilibrium relative price depend on the consumer heterogeneity. But,
when the specification is stochastically neutrakinaggregate demand and the equi-
librium price are independent of the degree of preference heterogeneity. In particular,
consider the special case in which the preference specification is stochastically neutral
and unbiased, so demand,, by consumer is given by (23) witha, /a, = (pg/pl)Q
andg () = g(—=¢). Then, substitute (24) and impose the equilibrium condition,
L3 @y, = wi, to get’

P <wz> (26)

D2 w1
So, in this special case with, /o, = (wl/w2)2/3 the economy with heterogenous
preferences is observationally equivalent to an economy with a single, representative
consumer, which by virtue of the unbiased specification corresponds to the median
consumer, regardless of the degree of preference heterogeneity.

Finally, introduce stochastic preferences into this endowment economy with het-
erogenous consumers. Lgf(s) denote the stochastic preference parameter for con-
sumern in state of natures. In particular, take the unbiased stochastic neutrality
case witha /as = (wy/ws)*®, where¢,, (s) has the relative frequency (or frequency
density) functiong (¢, (s)) = g(=¢,, (s)) for each states and probability function
fn (£, (8)) = [fa (=&, (s)) for each consumen. Then, L >N 21, (s) = w; for
all s, so there is no aggregate preference uncertainty. The equilibrium in this econ-
omy with heterogeneous and stochastic preferences is now identical to a deterministic
representative agent economy with relative price (26), regardless of the degree of con-
sumer heterogeneity and preference variability. This convenient property of both no
aggregate preference uncertainty and unbiased stochastic relative preferences for each

consumer holds for the preference parameigrs(s) = <1 + (g—j) *¢, (5)) (ﬂf o

w2
1

andas, (s) = (1 — (ﬂf ¢, (s) ) a2, which follow from Proposition 4.

w2

This example from consumer choice has illustrated how a biased specification of

%In case of a continuum of consumers, use the equilibrium condjtion(¢) g (€) d¢ = w1, where
g (&) is the frequency density function, to get the same result.

17



stochastic relative preferences could alter qualitative conclusions and it has shown use-
ful applications of the unbiased specification proposed in this paper.

4.2 Monetary Policy

Consider a simple monetary policy game in which the central bank maximizes

1 1,

Up,y) = —§Oépp2 — 3y (27)

wherep denotes the (log) aggregate price leve(log) aggregate outputy, the pref-
erence parameter for price stabilization amgdthe preference parameter for output
stabilization ¢, o, > 0). The structure of the economy is described by the aggregate
supply relation

y=10(p—w) (28)

wherew is the (log) nominal wage ané the sensitivity of output to the real wage
(¢ > 0). Maximizing (27) subject to (28) yields the optimal price and output levels:

2

a0 a,t

wandy = ————sw
2 Y a, + oy b

p:ap—irayH

The relative preferences of the monetary policymakers are assumed to be stochastic,
for instance to capture asymmetric information about the central bank’s objectives.
First, suppose that, = a, + ¢ anda,, = 1, where¢ is white noise. Then, the
stochastic variation in preferences causes the expected price level and output to rise
becausg andy are convex iny,.
Now, suppose that, = 1 ando,, = &, + £. Then, the expected price level and
output drop becausge andy are concave iny,. Again, changing the normalization
of the relative preference parameter drastically alters the results. In particular, a white
noise shock tay, effectively reduces the central bank’s relative preference for price
stability, which is associated with less conservativeness, whereas a white noise shock
to o, has the opposite effect and essentially makes the central bank more conservative.
These findings are consistent with the general result obtained from Proposition 2.
These distortions to the degree of conservativeness can be avoided by applying spe-
cific white noise shocks to both, anda,. Using the unbiased stochastic specification
in Proposition 4¢, = (1 — 6¢) &, anday, = (1 + %f) a,, where¢ is symmetric white
noise. This specification guarantees unbiasedness at the deterministic optimum, but the
expected price and output level are generally affected. Only the special case in which
o, = &, also gives stochastic neutrality grandy.
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Finally, Sgrensen (1991) and Beetsma and Jensen (2003) focus on the case in which
# = 1 and use the specification, = @, +¢ anda, = 1—a,—¢&, whereg is white noise.
This means thap = (1 — 0y — E) wandy = — (&p + E) w, SO stochastic neutrality
prevails!® However, this preference specification is typically biased; unbiasedness at
the deterministic optimum holds far, = a, and symmetric white noise¢ Neverthe-
less, it could be sensible to use a specification that is stochastically neytrahaty,.
When stochastic preferences are merely used to capture asymmetric information about
the central bank’s behavior, it may be desirable to employ a specification that does
not directly distort variables of interest such@®)| andE [y]. In addition, stochastic
neutrality is convenient when preset nominal wages and rational expectations imply
w = E [p], because this is not affected by the degree of preference variability.

This example has shown the pitfalls of applying a white noise shock to either
or a, in @ monetary policy game. The problem with this biased specification is that
changing the normalization of the relative preference parameter could completely re-
verse results. Geraats (2002) discusses such spurious effects in the literature on central
bank transparency.

4.3 Microfounded Business Cycle Models

Consider the following simple, static Robinson Crusoe economy. The representative
agent maximizes the utility function

ac 1—

UC,L)y=——C""

(CL)=1— ; .

Ly,
subject to the budget constraint
C=wL (29)

whereC' is consumption/ labor supplyuw the real wageq > 0, ayr, > 0, p > 0 and

v > 1. Assume a linear production technology,= AL, whereY is output andA

labor productivity @ > 0), and a competitive labor market so that= A. Then (29)

also corresponds to equilibrium in the goods markeét= Y. Optimal labor supply

and consumption equal

L= (%Al—p>”*”11 andC' = <O‘CA>+
ar, ar
In the literature on dynamic stochastic general equilibrium models, stochastic rela-

tive preferences are typically modelled by lognormal shockgtor o, soac = kage

®More generallyq, = a, + 0¢ andoy, = oy — %% ensures stochastic neutrality prandy in this
monetary policy game.
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anda; = aj (e.g. Hall 1997), orac = a¢ anday = kay (e.g. Obstfeld and
Rogoff 2000), wherén x ~ N (0,072). For both specificationn 5¢ ~ N (1n e, ai)

which implies they are stochastically neutralin/, andin C. In fact, the two specifica-

tions are observationally equivalent in the sense that both generate the same probability
distributions forL andC. However, this equivalence does not extend to welfare effects.

A useful measure for welfare analysis in the presence of preference shocks is the
percentage change in deterministic consumptbthat would bring about an equiv-
alent change in expected utilitk £ [U].1” Using this measure, it is straightforward
to show that the welfare effect of stochastic preferences is typically different for the
two lognormal specification$. Intuitively, although the outcomes and C' have the
same (lognormal) distribution, the stochastic interactiof' @hd L with the preference
parameters.c anday, is different for the two lognormal specifications.

Furthermore, for optimization under preference uncertainty, in which case the agent
decides about andC' before knowing the realization of the preference shocks, the two
lognormal specifications can easily generate qualitatively different results. In particular,
introducing preference uncertainty with a lognormal shockddeads to an increase in
labor supplyL, whereas a lognormal shockdg, gives a decline irl.. Not surprisingly,
the magnitude of the welfare effect of preference uncertainty is also different for the two
lognormal specification®.

So, the lognormal specification is problematic. In the case of optimization with
known preference shocks, the two lognormal specifications yield the same stochastic
outcomes, but different welfare effects. For optimization under preference uncertainty,
the outcomes also differ and could even affect qualitative conclusions. In addition, the
lognormal specifications are typically biased as indicated by Proposition 5, except for
A = 1 when they are virtually unbiased at the deterministic optimum. &£ 1,
lognormal preference shocks make the absolute value of the MRS biased towards one.

"More precisely, it is the percent deviation @f from C, where C satisfiesAE[U] =
4 Elac] (€1 - C'r).

180 particular, forlnac ~ N (O,Ui), C = (C‘l“’ + (e2(p+ —)’or _ 1) e‘%"iB) o
— 1 —1 2 %
whereas forlna;, ~ N (0,02), C (Cl‘f’—s—(ei(ﬁwl) ® 1) B) , where B =
vto-l (aCA”) = e = (é—c ) ', and usingg [x°] = e2< 7%,
1
BFor mac  ~  N(00), L = (fa)TTedEET and ¢ =
(C"lfp (e TN _ e 30k ) ) ”, whereas for lnaj, ~ N (0,6%2), L =

(lA17p> T e 271 and( = (C’ P+ (e%/’i%gi - 1) B)ﬁ.

L

2l
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The unbiased specification of Proposition 4 amountso= (1 - %5) ac and
ap = (1 + A€) ar, wheref is symmetric white noise with variano@. Using a Taylor
series expansion ofi o around{ = 0 (similar to the proof of Proposition 5), it follows
that E [ln g—i] = lng—f for A = 1. As a result, the unbiased specification is only
stochastically neutral im L andIn C'if A = 1.

Microfounded business cycle models often use calibration and it is important to
choose a sensible value fog. To setag such that the variances of the preference
shockss and¢ are comparable, focus on the distribution of the MRS at the determinis-
tic optimum. For both lognormal specificationﬁ,(—MRSaL (C’, E)) has a normal
distribution with variancer?. For the unbiased specification, a first-order Taylor ap-
proximation of the unbiased MRS around the deterministic ¢ase) (as in the proof
of Proposition 5) shows that (— M RSc. .. (C, L) ) is approximately normal with vari-
ance(A + %)2 ag foré ~ N (0, ag) So, the specifications yield comparable variances
wheno? = (A;“jl)mz.

Regardingr?, most studies simply pick some plausible value; for instance Obstfeld
and Rogoff (2002) take? = 2%. A notable exception is Hall (1997), who establishes
econometrically that preference shocks are quantitatively important for employment
fluctuations. Using US data for 1947-1993 and assunaipg= a;, = 1, p = 1
andr = 2.7, Hall (1997, Table 1)finds that at high frequencies, the atemporal effect
of preference shocks on the log of hours of wokkn «, has a standard deviation of
1.97%, sar,, = 5.32%.

Given the fact that relative preference shocks appear to be empirically significant,
a proper justification of the stochastic specification is warranted. The lognormal speci-
fications common in microfounded business cycle models could affect qualitative con-
clusions and welfare effects, depending on which preference parameter is normalized.
The unbiased stochastic specification presented in this paper does not suffer from this
problem. It has the feature that it preserves average relative preferences and that the av-
erage and median preference shock correspond to the deterministic case. It also means
that shocks to relative preferences no longer have a similar effect as lognormal produc-
tivity shocks.

5 Conclusion

This paper shows that the specifications for stochastic relative preferences commonly
used in the literature are problematic because they distort the first moment of relative
preferences instead of merely affecting the second moment. For instance, an additive,
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white noise shock to the relative preference parametexduces the relative preference
weight put onz;, and a multiplicative, lognormal shock makes the absolute value of the
MRS biased towards one. In each case, the corresponding change in average relative
preferences could induce spurious effects. This can be avoided by using an unbiased
specification that generates pure white noise shocks to relative preferences, which is
presented in this paper.

Researchers using biased specifications of stochastic relative preferences should be
aware of the fact that these are equivalent to a white noise shock plus a deterministic
change in relative preferences. Clearly, the latter should be properly motivated because
it generally affects (even deterministic) optimal outcomes as well as welfare results. In
addition, such biased specifications could lead to erroneous findings when analyzing
the effect of stochastic preferences on economic outcomes. In particular, the use of an
unbiased specification is critical when performing comparative statics with respect to
risk or uncertainty.

It should be noted that an unbiased specification of relative preferences does not
imply that the optimal stochastic outcomes simply add white noise to the deterministic
optimum, although such stochastic neutrality could be analytically convenient. Instead,
the interaction between preferences and constraints is typically nonlinear so that white
noise relative preference shocks tend to affect optimal outcomes on average, but this is
a genuine effect due to the stochastic nature of preferences.

The relevance of the results is illustrated by three examples based on consumer
choice, monetary policy and microfounded business cycle models. They show how
the biased stochastic specifications for relative preferences that are prevalent in the
literature could generate misleading conclusions. These pitfalls are easily avoided by
properly modeling stochastic relative preferences.
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A Appendix

This appendix contains the proofs of Propositions 1, 2 and 5, and an alternative proof
to Proposition 4.

Proof of Proposition 1:
The proof proceeds in two steps: (i) a geometric argument is used to show that (6) and
(7) hold for all states of nature € S, for everyx € X and everyi,j € {1,..., K},
i # 7, (ii) trigonometric properties subsequently imply (4) and (5).

() Image two agents, A and B, observing the indifference sets associated with
U (x;s) in hyperspace. Both analyze the relative preference between goaisl
x; at pointx, for states, focusing on the same subspace spanned;byz; C X, but
viewed from different perspectives. Agent A observes {tin z;) space and finds that
the tangency plane to the indifference contour satisﬁ%% = tany, ; (xo; ). Agent
B observes the tangency plane(iy, z;) space and finds tha{g—;”; = tany,; (Xo; 5)-
Obviously,v; ; and~; ; are closely related. In particulay, ; (xo; s) + 7, (x0;8) = 57
andtany;, (xo;s) = coty, ; (Xo; s). Using the fact that—% = MRS, ; (x0;s) and
—d2 — MRS, ; (x0; s) gives

dz;

MRS, (x0;s) = tan-y, ; (x0; 8)
MRS;; (X0;8) = cotv,; (x0; 8)

which holds for anyk, € X ands € S.
(ii) Now, substituting (3) gives\/ RS; ; (x; ) = tan (7, (x) + ¢, ; (s;x)). Using
trigonometric identities it is straightforward to show tHat

tany; ; (x) 4 tan ¢; ; (s; x)
1 —tan¥,; (x)tan(,; (s;x)
tan 7y, ; (x) + Nij (5;%)

= - cot 7, ; (x)
cot 7y, ; (x) — Nij (s55%) 7

tan (’71’,]’ (%) + ¢, (55 X))

wheren, ; (s;x) = tan (, ; (s;x). Thisyields (4). SimilarlyM RS;; (x; 5) = cot 7, ; (x; s) =

tan 7y, ; (x; s), which gives (5). Finallyy; ; (x) + Cii(8%) = v, (x;8) = %w —

Vi (X;8) = %77 —%;; (x) = ¢ (s5x) sothat( ; (s;x) = —(; ; (s;x) andn,; (s;x) =
tan Cj,i (s;x) = —tan Qi,j (s;x) = i (5;x). 1

2OIn particular, use the fact thatna = 522 sin (a + b) = sinacosb + cosasinb, cos (a + b) =

cosacosb —sinasinb andcot a = 1/ tana.
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Proof of Proposition 2:
The proof that the specificatidn (x; s) is biased proceeds in two steps: (i) Proposition
1is used to compute the relative preference shiggks; x) implied by U (x; s); (ii) it
is shown thag [Cm|x} # 0.
(i) The MRS between good; andz; for j € {1,..., K'} with j # ¢, equals

MRS (x;s) = W (30)

Using (4) and (30) to solve foy; ; (s; x) gives

i (s) uj (;) — auf () tany, ; (x)
N (s;%x) = 7

a; (s) ug (x;) tan 3, 5 (x) + a;uj (x;)

Substituting (10) and rearranging produces

€ (s) wj (z:) azuf; (z5)

- 2
a2 (uf () + € (s) @ (u} ()" + 62 (] (7))

usingé (s) = a; (s)—a;. Then, the implied relative preference shock equalss; x) =

(31)

arctanm, ; (s;x).
(i) Substituting (31) and differentiating gives after some simplification

dg; ; (s;x) u; () ajuj (x5)
J _ J ; (32)
€ (s) (@ + € (3))* (ud () + 02 (u ()
Pyl 2(@+E(s)) () ag (@) (33)
d (€ (5)) (@ + € ) (@) + 8 (u ()

Note that any deterministic bliss points= b with v (b;) = 0 or u; (b;) = 0 can be
ignored because they yield; (s;x) = 0 for all s € S so that relative preferences are
not stochastic. Usinggn (o (s)) = sgn (a;) # 0 anda; # 0 it follows thatdzg(ﬂ;;f) #

0. So,(; ; (s;x) is either convex or concave §\(s). Hence, usings [¢] = £ (s¢) = 0
and Jensen’s inequality, [Cm|x] # (;; (s0;x) = 0. ThereforeU (x; s) is a biased
specification of stochastic relative preferences betweemdz; forallx € X.

1Use the fact that arctan z/dz = 1/ (1 4 2?).
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Alternative Proof of Proposition 4:
This proof is similar to the one for Proposition 2. Using (1) and (4) to solve for

M j (s;x) gives

0 (5) v (20) = 0 (s)  (25) tan Ty, ()
u; (z;) tan 7y, ; (x) + o (s) uj (25)

Substituting (10), (13) and (14) gives

A+ 1) & (s) agul (a;) ajulf (a;
N (51%) = ( _+>5() (1) gt (@) ; (39
M1+ AE(s)) a2 (uf (2,))° + (A = & (s)) a2 (u) ()

Substituting (1), (13) and (14) intb= M RS, ; (x; s) gives after rearranging

Nij (53 X) =

auy (z;) = Tg((;)amé (i)
Substitute this into (34) and simplify to get
(N +1)¢(s)

L YOI ET O A

It follows from f¢ (§) = f: (=€) that f; (ni,j’X) = fa (—m,j!X), SO f¢ (Ci,j‘x) =

fe (—gi7j|x). Note that{ = 0 corresponds ta), ; = ¢;; = 0 and amounts to the
deterministic case. As a result, the specification of stochastic relative preferences be-
tweenz; andz; is unbiased ak. Finally, substituting (14) and (15) into (1) yields
MRS;y, (x5 8) = ajuf (z;) /auy, (), SO that indeed the relative preferences between

x; andxy, are not affecteds
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Proof of Proposition 5:

For ease of notation, assumeéRsS, ; (X;s) > 0. The proof for the general case is
cumbersome to write out but exactly similar.

For the multiplicative specification in the Proposition,

v (7
In MRS, (X;s) =In W
(7

+Ink
U mj)

Q

For the unbiased MRS specification in (11), a Taylor series expansion around the
deterministic casg, ; = 0 yields*®

/ .
In MRS, ; (X;5) = 1nj7)

where A = jjzjgj)) andn = n,;(s;X). For|MRS;; (X)| = ‘5\’ = 1, the sec-
ond summation term drops out. So, the two specifications are observationally equiv-
alent forlnx = 332, ﬁ (5\1+2j - Al—i%) n'*2. As a result, the specification in

the Proposition with thisc is unbiased ak. Note thatf, (n|x) = f, (—n/x) im-
pliesE [n'™¥|x] = 0, SOE[lnx] = 0. For |MRS,; (X)| # 1, an adjustment is re-
quired so that [Inx] = 352, 4 (5\2j — A%) E [7*], which means thatgn E [In x| =

j=1 25
sgn (W — 1). |

22Note that the unbiased specification (17) cannot be used to construct the MRS for this Taylor series
expansion because evaluating itxafor any state different frons, would violate the condition that
MRS; j (x(s);s) = A, so that this specification is not valid&for », ; # 0.
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