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modeling them is not trivial. This paper establishes that common stochastic spec-
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1 Introduction

Models with stochastic relative preferences are prevalent in many areas of economics,

for instance in the literature on monetary policy and micro-founded business cycle mod-

els. Relative preferences refer to the desirability of one good compared to others; they

could be stochastic due to genuine disturbances to preferences or Bayesian uncertainty.

Modeling stochastic relative preferences is not trivial. This paper shows that com-

mon specifications are biased in the sense that they amount to stochastic disturbances

that affect average relative preferences. This change in relative preferences could lead

to arbitrary and misleading conclusions. A solution is presented that generates pure

white noise shocks to relative preferences for a large class of problems. This unbiased

stochastic specification prevents spurious results.

Stochastic relative preferences arise naturally when the good that is preferred (e.g.

ice cream versus hot chocolate) depends on the state of nature (e.g. the weather). Typ-

ically, the states of nature are implicit and stochastic preferences are modeled as a

random shock to a utility parameter. The literature has made abundant use of three

kinds of stochastic specifications for relative preferences, unaware of the fact that

each tends to be biased. For concreteness, consider the simple objective function

U = α1u1 (x1) + α2u2 (x2), whereui (xi) is the sub-utility function for goodxi.

The first approach is to apply an additive, white noise shock to one of the relative

preference parameters, say,α1 and to normalize the other,α2. The problem is that

this specification alters average relative preferences (see Proposition 2). In particular,

it effectively makes the absolute value of the relative preference weightα1/α2 biased

towards zero, thereby reducing the weight put onx1. This parameterization is often

used in monetary policy games with asymmetric information, and Beetsma and Jensen

(2003) have pointed out the arbitrary effects on economic outcomes that arise depend-

ing on which preference parameter is normalized.

The second approach is to apply additive white noise shocks of equal size but oppo-

site sign to both coefficientsα1 andα2. It was first used by Sørensen (1991) to model

‘pure uncertainty effects’ to relative policy preferences. It turns out that this specifi-

cation is only unbiased for a particular parameter configuration, although it tends to

give rise to ‘stochastic neutrality’ such that the expected value of a variable of interest

corresponds to the deterministic outcome (see Section 3).

The third approach is to apply a multiplicative, lognormal shockκ to eitherα1 orα2,

with E [ln κ] = 0. This is common in micro-founded business cycle models, including

new open economy macroeconomics. This specification also tends to alter average
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relative preferences; it makes the absolute value of the marginal rate of substitution

biased towards one (see Proposition 5). In addition, although the parameterizationsκα1

andκα2 lead to the same stochastic distribution of the marginal rate of substitution, it is

problematic that their welfare effects are generally different. In the case of optimization

under preference uncertainty, they could even change the qualitative effect on economic

outcomes.

The main contribution of this paper is to present a solution to these problems and

provide a way to model pure white noise shocks to relative preferences. Unfortunately,

it is not fruitful to use the marginal rate of substitution to define a neutral or unbiased

stochastic specification that has no average effect on relative preferences. The reason is

that the two (reciprocal) definitions of the marginal rate of substitution yield different

average results due to Jensen’s inequality. Instead, this paper focuses on a more funda-

mental geometric measure of relative preferences that does not have this drawback and

allows for a very natural definition of white noise shocks to relative preferences.

The results in this paper are relevant to the literature on micro-founded business

cycle models, which regularly assumes relative preference shocks (e.g. Hall 1997, Ob-

stfeld and Rogoff 2000). Although the use of biased stochastic specifications may be

innocuous for calibration exercises, they are problematic when analyzing the economic

effects of uncertainty. The change in average relative preferences induced by a biased

specification is likely to affect economic outcomes and possibly also welfare effects,

which could be incorrectly attributed to the presence of risk. The findings of this paper

are also of particular interest to the literature on transparency of monetary policy, where

the use of stochastic relative preferences to model monetary uncertainty has generated

conclusions that hinge on the use of a biased specification (see Geraats 2002).

The formal analysis of stochastic relative preferences is in Section 2, with the key

result, an unbiased specification of the marginal rate of substitution, in Proposition 3.

In addition, Proposition 4 presents a simple specification for the stochastic preference

parametersαi that is unbiased in the deterministic optimum and holds for all (interior)

stochastic optima when the marginal rate of transformation is independent of the state

of preferences. Conveniently, this specification could also be applied to optimization

under preference uncertainty. Section 3 explains how the results generalize and apply

to heterogeneous preferences or an Arrow-Debreu endowment economy with no aggre-

gate preference uncertainty, which features a constant aggregate demand for all states of

nature. Subsequently, Section 4 illustrates some spurious effects resulting from biased

specifications in three simple examples related to consumer choice, monetary policy

and micro-founded business cycle models. Finally, Section 5 summarizes the main
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findings.

2 Stochastic Relative Preferences

Let U (x; s) denote a stochastic utility function, wherex = [x1, ..., xK ]′ with x ∈ X is

a vector of goods or decision choicesxi in the choice setX ⊂ RK , ands the state of

nature,s ∈ S.1 The relative preference for anyxi andxj (i, j ∈ {1, ..., K}, j 6= i) in

states is described by the stochastic marginal rate of substitution (MRS), which can be

expressed in two equivalent ways:2

MRSi,j (x; s) ≡ ∂U (x; s) /∂xi

∂U (x; s) /∂xj

(1)

MRSj,i (x; s) ≡ ∂U (x; s) /∂xj

∂U (x; s) /∂xi

(2)

These two definitions of the MRS are intrinsically related. Cursorily, they are simply

reciprocals asMRSi,j (x0; s) = 1/MRSj,i (x0; s) for anyx0 ∈ X . More fundamen-

tally, both correspond to the same tangent hyperplane of the indifference surface atx0,

and represent different ways of measuring its angle with respect to thexi andxj axes in

the two-dimensional subspace spanned byxi andxj. To be precise, letγi,j (x0; s) de-

note the angle within the subspacexi×xj ⊂ R2 between the hyperplane tangent to the

indifference surfaceU (x; s) = U (x0; s) at pointx0 for states, and the hyperplane de-

termined by
{
x ∈ RK |xj = 0

}
; and similarly,γj,i (x0; s) the angle with respect to the

hyperplane determined by
{
x ∈ RK |xi = 0

}
. Stochastic shocks to these two related

angles affect the marginal rates of substitution in a specific fashion.

Proposition 1 Without loss of generality, suppose that relative preferences are de-

scribed by

γi,j (x; s) = γ̄i,j (x) + ζ i,j (s;x) (3)

whereγ̄i,j (x) is deterministic andζ i,j (s;x) is stochastic with the conditional proba-

bility (mass or density) functionfζ

(
ζ i,j|x

)
. Then, the marginal rate of substitution for

U (x; s) associated with such stochastic relative preferences satisfies

MRSi,j (x; s) =
tan γ̄i,j (x) + ηi,j (s;x)

cot γ̄i,j (x)− ηi,j (s;x)
cot γ̄i,j (x) (4)

1The existence of a random utility representation is presumed. For a survey of axiomatic approaches

to stochastic utility, see Fishburn (1998).
2This holds for anyx where local nonsatiation applies. For any bliss pointsx = b where

∂U (b; s) /∂xi = 0, MRSj,i (x; s) is not well-defined butMRSi,j (x; s) = 0 for all s ∈ S, which

means that relative preferences are not stochastic.
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Figure 1: The geometry of relative preferences.

MRSj,i (x; s) =
tan γ̄j,i (x) + ηj,i (s;x)

cot γ̄j,i (x)− ηj,i (s;x)
cot γ̄j,i (x) (5)

whereηi,j (s;x) ≡ tan ζ i,j (s;x), ηj,i (s;x) = −ηi,j (s;x), s ∈ S, x ∈ X and i, j ∈
{1, ..., K}, i 6= j.

The formal proof, which appears in the Appendix, proceeds in two steps. First, a

geometric argument is used to show that

MRSi,j (x; s) = tan γi,j (x; s) (6)

MRSj,i (x; s) = cot γi,j (x; s) (7)

This is illustrated in Figure 1 for an indifference curveŪ = U (x; s) in (xi, xj) space.

The MRS corresponds to the slope of the tangent line to the indifference curve and can

be described in two ways, as−dxj/dxi or −dxi/dxj, which yieldsMRSi,j (x; s) =

tan γi,j (x; s) and MRSj,i (x; s) = tan γj,i (x; s), respectively. Using the fact that

tan γj,i (x; s) = cot γi,j (x; s) gives the result. The second step of the proof consists of

substituting (3) and using trigonometric properties to obtain (4) and (5).
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Proposition 1 shows thatMRSi,j andMRSj,i are isomorphic. This is a neces-

sary condition for any proper specification of a stochastic MRS. In the special (pos-

sibly hypothetical) states0 (with Pr {s0} ≥ 0) in which there is no stochastic distur-

bance andζ i,j (s0;x) = 0, the deterministic expressions for the MRS are obtained:

MRSi,j (x; s0) = tan γ̄i,j (x) andMRSj,i (x; s0) = cot γ̄i,j (x).

The fact that instead ofMRSi,j andMRSj,i, γi,j andγj,i can be used to describe

stochastic relative preferences is the key insight to obtaining a specification for white

noise shocks to relative preferences. It leads to a natural definition of a neutral bench-

mark in which the stochastic variation only changes second moments without affecting

first moments of relative preferences.3

Definition 1 A specification of stochastic relative preferences betweenxi andxj (i, j ∈
{1, ..., K}, i 6= j) is unbiasedfor x ∈ X if E

[
ζ i,j|x

]
= E

[
ζj,i|x

]
= 0.

So, an unbiased specification of stochastic relative preferences amounts to a white

noise disturbanceζ i,j (s;x), which means a mean-preserving spread inγi,j (x; s). Of

course, this is equivalent to a mean-preserving spread inγj,i (x; s). In contrast, in-

troducing a mean-preserving spread inMRSi,j (x; s) is generallynot equivalent to a

mean-preserving spread inMRSj,i (x; s) due to Jensen’s inequality. But this problem

is resolved by focusing on the fundamental measures of relative preferences,γi,j (x; s)

andγj,i (x; s). With unbiased stochastic relative preferences, observers in(xi, xj) space

and(xj, xi) space both agree that the position of the tangent hyperplane to the indiffer-

ence surface atx has not changed on average (∆ E
[
γi,j|x

]
= ∆ E

[
γj,i|x

]
= 0).

Any biased specification of stochastic relative preferences can be decomposed into

a deterministic change in̄γi,j (x) and a white noise disturbance. This means that the

outcome of a biased stochastic specification is distorted by the fact that it effectively

incorporates a change in relative preferencesγ̄i,j instead of merely generating a second

moment effect. This makes it desirable to use an unbiased specification to analyze the

effects of stochastic relative preferences.

2.1 Biased Specifications

It appears that commonly used stochastic specifications are biased. Most parameteriza-

tions of stochastic relative preferences in the literature employ a utility function of the

form

U (x; s) = h

(
K∑

i=1

αi (s) ui (xi)

)
(8)

3Note that a specification that is unbiased for somex ∈ X may not be unbiased for allx ∈ X .

5



whereh (.) is a monotonic function soh′ (.) 6= 0, andui (.) is a differentiable sub-

utility function. The relative preference parametersαi (s) are stochastic and depend

on the state of natures ∈ S. The fact thatui (xi) is independent of the state of nature

implies thatabsolutepreferences reflected by bliss points are deterministic, so that only

relativepreferences are stochastic. The MRS equals

MRSi,j (x; s) =
αi (s)

αj (s)

u′i (xi)

u′j (xj)
andMRSj,i (x; s) =

αj (s)

αi (s)

u′j (xj)

u′i (xi)
(9)

The deterministic case indicated bys0 is denoted byαi (s0) = ᾱi for all i ∈ {1, ..., K}.
Equating (6) and (9) for states0 yields

tan γ̄i,j (x) =
ᾱiu

′
i (xi)

ᾱju′j (xj)
(10)

This shows how the deterministic angleγ̄i,j corresponds to the deterministic relative

preference parameters̄αi andᾱj.

The following result establishes that an additive, white noise shock to one of the

relative preference parameters affects average relative preferences.

Proposition 2 A utility function (8) for whichαi (s) = ᾱi + ξ (s) andαj (s) = ᾱj 6= 0

for all j 6= i, i, j ∈ {1, ..., K}, whereE [ξ] = 0 and sgn (αi (s)) = sgn (ᾱi) 6= 0 for

s ∈ S, is a biased specification of stochastic relative preferences betweenxi andxj for

all x ∈ X .

The proof appears in the Appendix.4 It first computes the relative preference shock

ζ i,j implied by this specification and subsequently shows thatE [ξ] = 0 implies that

E
[
ζ i,j|x

]
6= 0 so that the specification is biased. The Proposition implies that an

unbiased specification of stochastic relative preferences would require a biased shock

ξ to the preference parameterαi. Althoughζ i,j = 0 amounts toξ = 0, E
[
ζ i,j|x

]
= 0

does not correspond toE [ξ] = 0 due to nonlinearities.

For concreteness, consider the case in whichαi (s), ᾱj, u′i (xi) andu′j (xj) are all

strictly positive. Then,ζ i,j is monotonically increasing and concave inξ, so thatξ is

convex inζ i,j.
5 This means that an unbiased specification withE

[
ζ i,j|x

]
= 0 requires

E [ξ] > 0. In addition,E [ξ] = 0 impliesE
[
ζ i,j|x

]
< 0 so thatE

[
γi,j|x

]
< γ̄i,j (x). As

a result, the white noise shock toαi effectively lowers the average relative preference

weight onxi and gives rise to a bias.

4Incidentally, it is a corollary of Proposition 4 that an additive, symmetric (possibly normal) white

noise shockξ to ᾱi is biased. Nevertheless, the proof in the Appendix provides some useful additional

insights.
5See (32) and (33) in the Appendix. Table 1 also follows from (33).
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Table 1: Direction of bias for the specification in Proposition 2

Effect onE
[
γi,j|x

]
αi (s) ᾱj > 0 αi (s) ᾱj < 0

u′i (xi) u′j (xj) > 0 – +

u′i (xi) u′j (xj) < 0 + –

Intuitively, a white noise shock toαi does not affect the expected value ofMRSi,j (x; s),

which is linear inαi. This suggests no average change in relative preferences. However,

it increases the expected value ofMRSj,i (x; s), which is convex inαi. This suggests

an average increase in the relative preference weightαj/αi. Combining both results

suggests a white noise shock toαi reduces the average preference weight onxi.

More generally, the direction of the bias induced by the specification in Proposition

2 depends on the sign ofαi (s) ᾱj andu′i (xi) u′j (xj). The effect onE
[
γi,j|x

]
is pre-

sented in Table 1. It appears that the effect depends on the sign ofγi,j in such a way

that the specification makes the absolute value ofE
[
γi,j|x

]
biased towards zero. As a

result, the white noise shock toαi effectively diminishes the relative preference weight

put onxi.

Another common specification of stochastic relative preferences is to apply a multi-

plicative shockκ to one of the relative preference parameters, whereln κ is white noise.

It turns out that this parameterization is also typically biased, with one exception. When

the absolute value of the MRS is equal to one in the deterministic optimum, this spec-

ification is unbiased. This result is shown in Proposition 5 in the next subsection after

more general unbiased specifications are presented.

2.2 Unbiased Specifications

It appears that it is typically not possible to obtain an unbiased specification forU (x; s)

for all x ∈ X with preference parametersαi (s) that are independent ofx. However,

this paper provides two approaches that ensure unbiasedness for constrained optimiza-

tion problems involving (8). The first approach, presented in Proposition 3, is the most

general and formulates an unbiased specification of the MRS for anyx. The second

approach, given by Proposition 4, provides a simple specification of the utility function

U (x; s) that is only unbiased at the deterministic optimumx̄, but valid for all stochas-

tic optimax (s), and applies to the large class of economic problems that feature a

unique interior solution and a marginal rate of transformation that is independent of the

preference shocks (in equilibrium).
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The first result provides an unbiased stochastic specification of the MRS that fol-

lows from Proposition 1 in a quite straightforward way and corresponds to symmetric

white noise to the angleγi,j.

Proposition 3 For the utility function (8), the marginal rate of substitution

MRSi,j (x; s) =
1 + ξi,j (s;x)

1 + ξj,i (s;x)

ᾱi

ᾱj

u′i (xi)

u′j (xj)
(11)

provides an unbiased specification of stochastic relative preferences betweenxi and

xj for all x ∈ X , whereξi,j (s;x) ≡ ᾱju′j(xj)

ᾱiu′i(xi)
ηi,j (s;x), ηj,i (s;x) = −ηi,j (s;x) with

the conditional probability functionfη

(
ηi,j|x

)
= fη

(
−ηi,j|x

)
and i, j ∈ {1, ..., K},

i 6= j.

Proof. Substitute (10) into (4) and rearrange to get

MRSi,j (x; s) =

ᾱiu
′
i(xi)

ᾱju′j(xj)
+ ηi,j (s;x)

ᾱju′j(xj)

ᾱiu′i(xi)
− ηi,j (s;x)

ᾱju
′
j (xj)

ᾱiu′i (xi)
=

1 +
ᾱju′j(xj)

ᾱiu′i(xi)
ηi,j (s;x)

1− ᾱiu′i(xi)

ᾱju′j(xj)
ηi,j (s;x)

ᾱiu
′
i (xi)

ᾱju′j (xj)

Usingηj,i (s;x) = −ηi,j (s;x) and the definition ofξi,j (s;x) gives (11). Finally, using

ηi,j (s;x) = tan ζ i,j (s;x) andfη

(
ηi,j|x

)
= fη

(
−ηi,j|x

)
it follows thatfζ

(
ζ i,j|x

)
=∣∣∣∣1 +

(
tan ζ i,j

)2
∣∣∣∣ fη

(
tan ζ i,j|x

)
= fζ

(
−ζ i,j|x

)
, which implies thatE

[
ζ i,j|x

]
= 0 so

that the specification is unbiased.6

This unbiased specification of the MRS for stochastic relative preferences effec-

tively amounts to a multiplicative adjustment of both preference parametersᾱi and

ᾱj which depends on the deterministic MRS,ᾱi

ᾱj

u′i(xi)

u′j(xj)
. The preference shocks satisfy

E
[
ξi,j|x

]
= E

[
ξj,i|x

]
= 0 andCov

{
ξi,j, ξj,i|x

}
< 0, and they exhibit heteroskedas-

ticity. The fact that these properties are conditional onx is critical when considering

severalx for the same states. Also note that the expressions forMRSi,j (x; s) and

MRSj,i (x; s) are isomorphic, which is a necessary condition for any proper stochastic

MRS.

The specification in Proposition 3 is not only unbiased, but it also reflects a sym-

metric distribution of relative preference shocksζ i,j. In principle, it would be possible

to obtain unbiased specifications that are based on skewed distributions. However, the

assumption of symmetry is appealing because it is simpler and has the feature that the

6This shows thatfη

(
ηi,j |x

)
= fη

(−ηi,j |x
)

is only a sufficient condition. Other conditional distri-

butions forη could also yieldE
(
ζi,j |x

)
= 0.
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MRS associated with the median preference shockζ i,j = ηi,j = 0 is equal to the deter-

ministic value,MRSi,j (x; s0). In the presence of preference heterogeneity according

to (11), whereηi,j (s;x) captures the idiosyncratic preferences of agents, this means

that the MRS of the deterministic cases0 corresponds to the relative preferences of the

median agentsm: MRSi,j (x; s0) = MRSi,j (x; sm).

It may be tempting to consider a utility function with relative preference parame-

tersαi (s) =
(
1 + ξi,j (s;x)

)
ᾱi andαj (s) =

(
1 + ξj,i (s;x)

)
ᾱj, but note that such

a specification would generally not lead to the unbiased MRS in (11) because of the

dependence of the preference shocks onx. However, there is an unbiased utility spec-

ification that applies to a common situation. The constrained optimization problem

under consideration tends to yield a unique interior solutionx (s) that equates the MRS

to the marginal rate of transformation (MRT). For many economic problems, the MRT

is independent of the relative preference shocks (in equilibrium). In such cases, there is

a simple utility specification of stochastic relative preferences that is unbiased atx̄ and

holds forx (s).

Proposition 4 Suppose a constrained optimization problem based on the utility func-

tion (8) has a unique interior solutionx (s) satisfying

MRSi,j (x (s) ; s) = λ (12)

for all states of natures ∈ S. Then,

αi (s) = [1 + λξ (s)] ᾱi (13)

αj (s) =
[
1− 1

λ
ξ (s)

]
ᾱj (14)

αk (s) =
[
1− 1

λ
ξ (s)

]
ᾱk (15)

wherefξ (ξ) = fξ (−ξ), provides a specification of stochastic relative preferences be-

tweenxi andxj (i, j ∈ {1, ..., K}, i 6= j) that is unbiased at the deterministic optimum

x̄ for whichαn (s) = ᾱn for all n ∈ {1, ..., K}, holds for the stochastic optimax (s)

for all s ∈ S, and does not affect the relative preferences betweenxj and xk for all

k ∈ {1, ..., K} \ {i, j}.
Proof. Substituting the unbiased MRS (11) into (12) and simplifying gives

MRSi,j (x (s) ; s) =

ᾱiu
′
i(xi)

ᾱju′j(xj)
+ ηi,j (s;x (s))

1− ᾱiu′i(xi)

ᾱju′j(xj)
ηi,j (s;x (s))

= λ
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Denotingξ (s) ≡ ηi,j (s;x (s)) and rearranging yields the following Euler equation:

[1 + λξ (s)] ᾱiu
′
i (xi) = [λ− ξ (s)] ᾱju

′
j (xj) (16)

This can be rewritten as

λ =
[1 + λξ (s)] ᾱi[
1− 1

λ
ξ (s)

]
ᾱj

u′i (xi)

u′j (xj)
= MRSi,j (x (s) ; s)

where the latter MRS is constructed using (13) and (14). In addition,ξ (s) = ηi,j (s;x (s)) =

0 yields the deterministic case withMRSi,j (x̄; s), so the specification is unbiased at

x̄. Using (14) and (15),MRSj,k (x (s) ; s) is constant for alls, so that the relative

preferences betweenxj andxk are not affected.

The proof yields the stochastic Euler equation (16), which provides a convenient

way to characterize the stochastic optimax (s) associated with this unbiased specifi-

cation. It also shows how the results in Propositions 3 and 4 can be reconciled. An

alternative proof, which does not rely on the result in Proposition 3 but directly estab-

lishes unbiasedness, appears in the Appendix.

The unbiased specification in Proposition 4 is less general than in Proposition 3, but

it is applicable to any problem which has a unique interior solution and for which the

MRT is independent of the preference shock (in equilibrium). So, it holds whenever

the MRT stems from a technological or structural constraint that is linear inx but

otherwise independent of the preference shock. For instance, a policymaker could make

a decision about the policy variablesx (s) for each state of natures subject to a linear

constraint that reflects the structure of the economy. In addition, the specification can

be used to model the case of preference uncertainty in which an agent decides aboutx

under uncertainty about its own preferences or without knowing the realization of the

state of natures.

The unbiased specification of Proposition 4 could also be described by

αn (s) = (1 + ξn (s)) ᾱn (17)

for everyn ∈ {1, ..., K}, whereξi (s) = λξ (s), ξj (s) = − 1
λ
ξ (s) andξk (s) = ξj (s),

with E [ξ] = 0 andVar [ξ] = σ2
ξ > 0. As a result, the preference shocks have the prop-

erty thatE [ξi] = E
[
ξj

]
= 0, Var [ξi] = λ2σ2

ξ , Var
[
ξj

]
= 1

λ2 σ2
ξ , andCov

{
ξi, ξj

}
=

−σ2
ξ .

This shows how unbiasedness could be achieved by applying additive, correlated,

heteroskedastic shocksξnᾱn to ᾱn. In addition, it indicates that an additive white noise

shock to only one of the preference parametersᾱi produces a bias, as was formally
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shown in Proposition 2. Another common stochastic specification is a multiplicative

shockκ to αi whereln κ is white noise. As mentioned above, such a specification is

typically biased, except for the special case in which the absolute value of the MRS

equals one in the deterministic optimum.

Proposition 5 If the deterministic optimum̄x satisfies|MRSi,j (x̄)| = 1, then there

exists aκ (s) with E [ln κ] = 0 such that the utility functionU (x; s) in (8) withαi (s) =

κ (s) ᾱi and αj (s) = ᾱj 6= 0 for all j 6= i, i, j ∈ {1, ..., K}, is a specification of

stochastic relative preferences betweenxi andxj that is unbiased at̄x.

The proof appears in the Appendix. It uses a Taylor series expansion of the log

of the unbiased MRS in (11) around the deterministic case to show that the specifica-

tion with αi = κᾱi andαj = ᾱj is observationally equivalent for a particularκ for

which ln κ is white noise if the absolute value of the deterministic MRS equals one. In

that case,ln MRSi,j (x̄; s) and ln MRSj,i (x̄; s) are (symmetric) white noise for both

specifications.

Without the restriction on the deterministic MRS, the proof shows that there still

exists aκ that produces unbiasedness, but nowln κ is no longer white noise. Instead,

it has the property thatE [ln κ] has the same sign as|MRSi,j (x̄)| − 1. So, in gen-

eral a specification withln κ white noise displays a systematic bias. In particular,

for |MRSi,j (x̄)| > 1 unbiasedness requiresE [ln κ] > 0, so the specification with

E [ln κ] = 0 effectively reduces the relative preference weight onxi in absolute value

and lowers|MRSi,j (x̄)|. Stated differently, for|MRSi,j (x̄)| 6= 1, a log white noise

shock makes|MRSi,j (x̄)| biased towards1. This suggests that one should be careful

with the interpretation of results based on the commonly used multiplicative, lognormal

specification withαi = κᾱi, whereln κ ∼ N (0, σ2
κ).

7

3 Discussion

The unbiased specifications in Propositions 3 and 4 are based on the commonly used

utility function (8), but it is straightforward to extend the results to other utility func-

tions. Of course, the expressions for the MRS in (9) should be updated, as well as (10),

but once they are replaced, Proposition 1 still holds. To generalize the specification of

the unbiased MRS in Proposition 3, simply substitutetan γ̄i,j (x) for ᾱiu
′
i(xi)

ᾱju′j(xj)
. Then,

one can proceed along the steps in the proof of Proposition 4 to obtain an unbiased

7Note that Proposition 5 does not guarantee that this lognormal specification is unbiased atx̄ for

|MRSi,j (x̄)| = 1, although numerical examples indicate it is nearly so.
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stochastic Euler equation or even utility specification for the case in which the MRT is

state-independent (in equilibrium).

In practice, a stochastic specification may be used without an explicit deterministic

benchmark. When the specification involves a continuous, parametric distribution of

a utility parameterα, it is natural to take as deterministic benchmark the limit as the

varianceVar [α] goes to zero. When the distribution is nonparametric or the states of

nature are discrete, the mean or median ofα provides a useful benchmark to assess to

what extent the stochastic specification distorts average relative preferences.

It is important to realize that an unbiased specification of stochastic relative prefer-

ences typically does not have a stochastically neutral effect on the economic outcomex

in the sense that the stochastic optimax (s) merely add white noise to the deterministic

optimumx̄.8

Definition 2 A stochastic optimization problem exhibitsstochastic neutralityin x if

the corresponding stochastic optimax(s) satisfyE[x] = x̄, wherex̄ denotes the deter-

ministic optimum.

Conceptually, the main distinction between unbiasedness of a preference specifi-

cation and stochastic neutrality is that the former reflects a pure uncertainty effect on

preferences, whereas the latter features a pure uncertainty effect on outcomes. Unbi-

asedness of a preference specification does not imply stochastic neutrality inx because

the optimumx (s) results from a combination of preferencesU (x; s) and constraints,

H (x; s) = 0, which typically involves a nonlinear interaction. As a result, an unbi-

ased specification of stochastic preferences coincides with stochastic neutrality only in

some special cases.9 Similarly, stochastic neutrality inx could hold despite a biased

preference specification.

The presence of stochastic neutrality inx could be analytically convenient for op-

timization problems in which the constraint depends onE [x], because the latter is not

affected by preference variability. An example would be modeling a policymaker who

decides about inflation and unemployment and faces a Phillips curve that depends on

expected inflation. Furthermore, stochastic neutrality inx is desirable when the focus

of the analysis is onx and preference shocks are merely an auxiliary assumption to

capture asymmetric information about preferences. Nevertheless, researchers should

8Stochastic neutrality is not implied by risk neutral preferences. In addition, it is different from

certainty equivalence, in which casex (s) = x̄ for all s. So, certainty equivalence implies stochastic

neutrality, but not vice versa.
9One example is the case in whichU (x; s) =

(
1 + β1

β2
ξ (s)

)
x2

1 +
(
1− β2

β1
ξ (s)

)
x2

2 andH (x; s) =
β0 + β1x1 + β2x2, with fξ (ξ) = fξ (−ξ).

12



be aware of the fact that stochastic neutrality typically involves a change in average

relative preferences that could induce spurious welfare effects. This does not arise with

an unbiased specification.

The present setup for modeling stochastic preferences of a representative agent

could also be applied to preference heterogeneity among multiple agents. In partic-

ular, uses = n to index agents instead of states of nature. Then, stochastic neutrality

in x amounts to an average optimal outcome ofx̄. For instance, consider an endow-

ment economy in whichN consumers have heterogeneous preferences aboutx. Then,

stochastic neutrality inx means that aggregate demand equalsN x̄ and therefore that

relative prices forx are the same regardless of the degree of preference heterogeneity.

This result can be extended to an endowment economy with heterogeneous and stochas-

tic preferences. In that case, stochastic neutrality inx for each state of nature implies

that for each state aggregate demand equalsN x̄ so that relative prices and the marginal

rates of transformation are constant in equilibrium. This means that Proposition 4 also

applies to such an endowment economy with no aggregate preference uncertainty.10

Definition 3 An endowment economy inhabited byN consumers with heterogeneous

and stochastic preferences featuresno aggregate preference uncertaintyif aggregate

demand,
∑N

n=1 xn (s), is constant for all states of natures ∈ S, wherexn (s) denotes

the individual demand function for consumern in states.

So, an endowment economy with no aggregate preference uncertainty and with the

stochastic specification in Proposition 4 features preferences that are unbiased in the

deterministic equilibrium. Except for these special cases, the concepts of unbiasedness,

stochastic neutrality and no aggregate preference uncertainty are generally not related.

The next section provides several examples that illustrate these concepts further.

4 Examples

The instructive examples in this section focus on consumer choice, monetary policy

and micro-founded business cycle models.

10This is exactly analogous to an Arrow-Debreu endowment economy with no aggregate (endowment)

uncertainty, in which case aggregate supply,
∑N

n=1 ωn (s), is constant for all states of natures, where

ωn (s) denotes the endowment of consumern in states.

13



4.1 Consumer Choice

Consider a simple consumer optimization problem under perfect competition with two

goodsx1 andx2. The representative consumer maximizes the utility function

U (x1, x2) = α1 ln x1 + α2 ln x2 (18)

subject to the budget constraint

p1x1 + p2x2 = m (19)

wherepi is the price of goodi, m denotes nominal assets (in terms of a fictitious

numéraire good), andαi > 0, with i ∈ {1, 2}. The marginal rates of substitution

equal

MRS1,2 (x) =
α1

α2

x2

x1

andMRS2,1 (x) =
α2

α1

x1

x2

.

Maximizing (18) subject to (19) yields the optimal demand relationships

x1 =
α1

α1 + α2

m

p1

andx2 =
α2

α1 + α2

m

p2

. (20)

Two cases are considered: First, partial equilibrium, in whichp1 andp2 are ex-

ogenous and deterministic; subsequently, general equilibrium in which the stochastic

preferences of the representative consumer affect the equilibrium price.

4.1.1 Partial Equilibrium

There are several ways in which stochastic relative preferences betweenx1 andx2 could

be modeled.

First, suppose thatα1 = ᾱ1 + ξ andα2 = 1, whereξ is white noise. This has

no average effect onMRS1,2 (x), which is linear inα1, but it increases the expected

value of MRS2,1 (x), which depends inversely onα1. This asymmetry is peculiar,

becauseMRS1,2 (x) andMRS2,1 (x) are two equivalent ways of measuring the slope

of the indifference curve in(x1, x2) and(x2, x1) space, respectively, and they are simply

mirror images of each other. Furthermore, this specification of stochastic preferences

leads to a decrease in the expected demand for goodx1 (and an increase forx2) since

x1 is concave (andx2 is convex) inα1.

Now, suppose thatα1 = 1 andα2 = ᾱ2+ξ. Then, the expected value ofMRS1,2 (x)

increases, but there is no average effect onMRS2,1 (x). In addition, there is an increase

in the expected demand forx1 (and a decrease forx2). Clearly, the normalization ofαi

is not innocuous in the presence of stochastic relative preferences. More precisely, a
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white noise shock toαi effectively reduces the average relative preference that the con-

sumer attaches toxi, which is consistent with the conclusion obtained from Proposition

2.

An unbiased specification for the MRS is given by Proposition 3:

MRS1,2 (x) =
1 + ᾱ2

ᾱ1

x1

x2
η

1− ᾱ1

ᾱ2

x2

x1
η

ᾱ1

ᾱ2

x2

x1

(21)

whereη is symmetric white noise conditional onx, sofη (η|x) = fη (−η|x). To il-

lustrate unbiasedness, consider a simple numerical example. Suppose there are two

equally likely states of natures ∈ {1, 2} with η (1) = +η andη (2) = −η, where

0 < η < 1. Assume that̄α1 = ᾱ2 = 1 and focus onx1 = x2 = 1. Then,γ̄1,2 (x) =

arctan 1 = 1
4
π. In addition,γ1,2 (x; 1) = arctan 1+η

1−η
andγ1,2 (x; 2) = arctan 1−η

1+η
, so

E
[
γ1,2|x

]
= 1

4
π = γ̄1,2 (x) and the specification is unbiased.11

To derive the demand function associated with the unbiased MRS, substitute (21)

into the first order condition for optimization,MRS1,2 (x) = p1

p2
, and rearrange to get

the stochastic Euler equation
(

1 +
p1

p2

η

)
ᾱ1

x1

=

(
p1

p2

− η

)
ᾱ2

x2

(22)

Solve this forx2 and substitute it into (19) to find

x1 =

(
1 + p1

p2
η
)
ᾱ1(

1 + p1

p2
η
)
ᾱ1 +

(
1− p2

p1
η
)
ᾱ2

m

p1

(23)

Now consider the stochastic specification in Proposition 4 withα1 =
(
1 + p1

p2
ξ
)
ᾱ1

andα2 =
(
1− p2

p1
ξ
)
ᾱ2, whereξ is symmetric white noise, sofξ (ξ) = fξ (−ξ). Then,

MRS1,2 (x) =
1 + p1

p2
ξ

1− p2

p1
ξ

ᾱ1

ᾱ2

x2

x1

This MRS is only unbiased at the deterministic optimumx̄.12 However, it applies to all

(interior) stochastic optimax that satisfyMRS1,2 (x) = p1

p2
, and forξ = η it yields the

same stochastic Euler equation (22) and demand function (23).

11Use the trigonometric identitiesarctan z + arccot z = π/2 andarccot z = arctan (1/z).
12Note that this MRS cannot be used to check whetherE

[
γ1,2|x̄

]
= E [arctanMRS1,2|x̄] =

γ̄1,2 (x̄), because evaluating it at̄x for any state different froms0 violates the condition that

MRS1,2 (x (s) ; s) = p1
p2

.
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Expected demandE [x1] for these unbiased stochastic specifications is typically dif-

ferent from the deterministic outcomēx1 = ᾱ1

ᾱ1+ᾱ2

m
p1

, so the effect onx is not stochas-

tically neutral. Inspecting (23) reveals that only the special case in whichᾱ1/ᾱ2 =

p2
2/p

2
1, so thatx1 = α1

ᾱ1+ᾱ2

m
p1

, features both unbiasedness and stochastic neutrality in

x. A simple parameterization that is stochastically neutral inx is α1 = ᾱ1 + ξ̃ and

α2 = 1 − ᾱ1 − ξ̃, whereξ̃ is symmetric white noise, but this specification is biased

unlessp1/p2 = 1.13

4.1.2 General Equilibrium

Now consider consumer choice in general equilibrium whereωi is the endowment of

goodi for all states of natures, andpi (s) is the equilibrium price of goodi in states.14

As a result, the consumer’s nominal assets are stochastic and equal

m (s) = p1 (s) ω1 + p2 (s) ω2 (24)

Furthermore, goods market equilibrium requires that for all states of natures,

x1 (s) = ω1 and x2 (s) = ω2. (25)

Using (25), (20) and (24) gives the relative prices in equilibrium:

p1

p2

=
α1

α2

ω2

ω1

and
p2

p1

=
α2

α1

ω1

ω2

.

Suppose thatα1 = ᾱ1 + ξ andα2 = 1, whereξ is white noise. Then, the expected

relative price ofx1 is not affected, despite the lower expected demand forx1, but there

is an average increase in the relative price ofx2. In contrast, whenα1 = 1 andα2 =

ᾱ2 + ξ, the expected value of the relative price ofx1 increases, consistent with the

higher expected demand forx1, but there is no average effect on the relative price of

x2. Again, the results depend on the normalization of the relative preference parameter.

Next, consider the unbiased specification of Proposition 3 or 4. Substituting (24)

into (23) and using (25) gives

p1

p2

=
ᾱ1ω2 + ᾱ2ω1ξ

ᾱ2ω1 − ᾱ1ω2ξ

13More generally, foruk (xk) = ln xk andH (x; s) = β0 +
∑

k βkxk, there is stochastic neutrality in

x if αi = (1 + ξ) ᾱi, αj = (1− δξ) ᾱj andαk = (1− δξ) ᾱk, whereδ = ᾱi/Σk 6=iᾱk.
14An alternative approach to equilibrium analysis in an endowment economy with random preferences

is to consider a deterministic price vector such that expected excess demand equals zero and excess

demand per capita converges in probability to zero. (Hildenbrand 1971)
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Now the effect of the stochastic preference shockξ on the relative pricesp1/p2 and

p2/p1 is entirely isomorphic.

Instead of a representative consumer with stochastic preferences, suppose that this

economy is inhabited byN consumers with equal endowments but heterogenous pref-

erences. Each consumer can be characterized by the preference parameterξ = η,

which has the relative frequency functiong (ξ). The level of aggregate demand and

therefore the equilibrium relative price depend on the consumer heterogeneity. But,

when the specification is stochastically neutral inx, aggregate demand and the equi-

librium price are independent of the degree of preference heterogeneity. In particular,

consider the special case in which the preference specification is stochastically neutral

and unbiased, so demandx1,n by consumern is given by (23) withᾱ1/ᾱ2 = (p2/p1)
2

and g (ξ) = g (−ξ). Then, substitute (24) and impose the equilibrium condition,
1
N

∑N
n=1 x1,n = ω1, to get15

p1

p2

=
(

ω2

ω1

) 1
3

(26)

So, in this special case with̄α1/ᾱ2 = (ω1/ω2)
2/3 the economy with heterogenous

preferences is observationally equivalent to an economy with a single, representative

consumer, which by virtue of the unbiased specification corresponds to the median

consumer, regardless of the degree of preference heterogeneity.

Finally, introduce stochastic preferences into this endowment economy with het-

erogenous consumers. Letξn (s) denote the stochastic preference parameter for con-

sumern in state of natures. In particular, take the unbiased stochastic neutrality

case withᾱ1/ᾱ2 = (ω1/ω2)
2/3, whereξn (s) has the relative frequency (or frequency

density) functiong (ξn (s)) = g (−ξn (s)) for each states and probability function

fn (ξn (s)) = fn (−ξn (s)) for each consumern. Then, 1
N

∑N
n=1 x1,n (s) = ω1 for

all s, so there is no aggregate preference uncertainty. The equilibrium in this econ-

omy with heterogeneous and stochastic preferences is now identical to a deterministic

representative agent economy with relative price (26), regardless of the degree of con-

sumer heterogeneity and preference variability. This convenient property of both no

aggregate preference uncertainty and unbiased stochastic relative preferences for each

consumer holds for the preference parametersα1,n (s) =
(
1 +

(
ω2

ω1

) 1
3 ξn (s)

) (
ω1

ω2

) 2
3 ᾱ2

andα2,n (s) =
(
1−

(
ω1

ω2

) 1
3 ξn (s)

)
ᾱ2, which follow from Proposition 4.

This example from consumer choice has illustrated how a biased specification of

15In case of a continuum of consumers, use the equilibrium condition
∫

x1 (ξ) g (ξ) dξ = ω1, where

g (ξ) is the frequency density function, to get the same result.
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stochastic relative preferences could alter qualitative conclusions and it has shown use-

ful applications of the unbiased specification proposed in this paper.

4.2 Monetary Policy

Consider a simple monetary policy game in which the central bank maximizes

U (p, y) = −1

2
αpp

2 − 1

2
αyy

2 (27)

wherep denotes the (log) aggregate price level,y (log) aggregate output,αp the pref-

erence parameter for price stabilization andαy the preference parameter for output

stabilization (αp, αy > 0). The structure of the economy is described by the aggregate

supply relation

y = θ (p− w) (28)

wherew is the (log) nominal wage andθ the sensitivity of output to the real wage

(θ > 0). Maximizing (27) subject to (28) yields the optimal price and output levels:

p =
αyθ

2

αp + αyθ
2w andy = − αpθ

αp + αyθ
2w

The relative preferences of the monetary policymakers are assumed to be stochastic,

for instance to capture asymmetric information about the central bank’s objectives.

First, suppose thatαp = ᾱp + ξ andαy = 1, whereξ is white noise. Then, the

stochastic variation in preferences causes the expected price level and output to rise

becausep andy are convex inαp.

Now, suppose thatαp = 1 andαy = ᾱy + ξ. Then, the expected price level and

output drop becausep andy are concave inαy. Again, changing the normalization

of the relative preference parameter drastically alters the results. In particular, a white

noise shock toαp effectively reduces the central bank’s relative preference for price

stability, which is associated with less conservativeness, whereas a white noise shock

to αy has the opposite effect and essentially makes the central bank more conservative.

These findings are consistent with the general result obtained from Proposition 2.

These distortions to the degree of conservativeness can be avoided by applying spe-

cific white noise shocks to bothαp andαy. Using the unbiased stochastic specification

in Proposition 4,αp = (1− θξ) ᾱp andαy =
(
1 + 1

θ
ξ
)
ᾱy, whereξ is symmetric white

noise. This specification guarantees unbiasedness at the deterministic optimum, but the

expected price and output level are generally affected. Only the special case in which

ᾱp = ᾱy also gives stochastic neutrality inp andy.
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Finally, Sørensen (1991) and Beetsma and Jensen (2003) focus on the case in which

θ = 1 and use the specificationαp = ᾱp+ ξ̃ andαy = 1−ᾱp− ξ̃, wherẽξ is white noise.

This means thatp =
(
1− ᾱp − ξ̃

)
w andy = −

(
ᾱp + ξ̃

)
w, so stochastic neutrality

prevails.16 However, this preference specification is typically biased; unbiasedness at

the deterministic optimum holds for̄αp = ᾱy and symmetric white noisẽξ. Neverthe-

less, it could be sensible to use a specification that is stochastically neutral inp andy.

When stochastic preferences are merely used to capture asymmetric information about

the central bank’s behavior, it may be desirable to employ a specification that does

not directly distort variables of interest such asE [p] andE [y]. In addition, stochastic

neutrality is convenient when preset nominal wages and rational expectations imply

w = E [p], because this is not affected by the degree of preference variability.

This example has shown the pitfalls of applying a white noise shock to eitherαp

or αy in a monetary policy game. The problem with this biased specification is that

changing the normalization of the relative preference parameter could completely re-

verse results. Geraats (2002) discusses such spurious effects in the literature on central

bank transparency.

4.3 Microfounded Business Cycle Models

Consider the following simple, static Robinson Crusoe economy. The representative

agent maximizes the utility function

U (C, L) =
αC

1− ρ
C1−ρ − αL

ν
Lν

subject to the budget constraint

C = wL (29)

whereC is consumption,L labor supply,w the real wage,αC > 0, αL > 0, ρ > 0 and

ν ≥ 1. Assume a linear production technology,Y = AL, whereY is output andA

labor productivity (A > 0), and a competitive labor market so thatw = A. Then (29)

also corresponds to equilibrium in the goods market:C = Y . Optimal labor supply

and consumption equal

L =
(

αC

αL

A1−ρ
) 1

ρ+ν−1

andC =
(

αC

αL

Aν
) 1

ρ+ν−1

In the literature on dynamic stochastic general equilibrium models, stochastic rela-

tive preferences are typically modelled by lognormal shocks toαC or αL, soαC = κᾱC

16More generally,αp = ᾱp + θξ̃ andαy = ᾱy − 1
θ ξ̃ ensures stochastic neutrality inp andy in this

monetary policy game.
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and αL = ᾱL (e.g. Hall 1997), orαC = ᾱC and αL = κᾱL (e.g. Obstfeld and

Rogoff 2000), whereln κ ∼ N (0, σ2
κ). For both specifications,ln αC

αL
∼ N

(
ln ᾱC

ᾱL
, σ2

κ

)

which implies they are stochastically neutral inln L andln C. In fact, the two specifica-

tions are observationally equivalent in the sense that both generate the same probability

distributions forL andC. However, this equivalence does not extend to welfare effects.

A useful measure for welfare analysis in the presence of preference shocks is the

percentage change in deterministic consumptionC̄ that would bring about an equiv-

alent change in expected utility∆ E [U ].17 Using this measure, it is straightforward

to show that the welfare effect of stochastic preferences is typically different for the

two lognormal specifications.18 Intuitively, although the outcomesL andC have the

same (lognormal) distribution, the stochastic interaction ofC andL with the preference

parametersαC andαL is different for the two lognormal specifications.

Furthermore, for optimization under preference uncertainty, in which case the agent

decides aboutL andC before knowing the realization of the preference shocks, the two

lognormal specifications can easily generate qualitatively different results. In particular,

introducing preference uncertainty with a lognormal shock toαC leads to an increase in

labor supplyL, whereas a lognormal shock toαL gives a decline inL. Not surprisingly,

the magnitude of the welfare effect of preference uncertainty is also different for the two

lognormal specifications.19

So, the lognormal specification is problematic. In the case of optimization with

known preference shocks, the two lognormal specifications yield the same stochastic

outcomes, but different welfare effects. For optimization under preference uncertainty,

the outcomes also differ and could even affect qualitative conclusions. In addition, the

lognormal specifications are typically biased as indicated by Proposition 5, except for

A = 1 when they are virtually unbiased at the deterministic optimum. ForA 6= 1,

lognormal preference shocks make the absolute value of the MRS biased towards one.

17More precisely, it is the percent deviation of̃C from C̄, where C̃ satisfies ∆ E [U ] =
1

1−ρ E [αC ]
(
C̃1−ρ − C̄1−ρ

)
.

18In particular, for ln αC ∼ N
(
0, σ2

κ

)
, C̃ =

(
C̄1−ρ +

(
e

1
2 ( ν

ρ+ν−1 )
2
σ2

κ − 1
)

e−
1
2 σ2

κB
) 1

1−ρ

,

whereas for ln αL ∼ N
(
0, σ2

κ

)
, C̃ =

(
C̄1−ρ +

(
e

1
2 ( ρ−1

ρ+ν−1 )
2
σ2

κ − 1
)

B
) 1

1−ρ

, where B ≡
ν+ρ−1

ν

(
ᾱC

ᾱL
Aν

) 1−ρ
ρ+ν−1

, C̄ =
(

ᾱC

ᾱL
Aν

) 1
ρ+ν−1

, and usingE [κε] = e
1
2 ε2σ2

κ .

19For ln αC ∼ N
(
0, σ2

κ

)
, L =

(
ᾱC

ᾱL
A1−ρ

) 1
ρ+ν−1

e
1
2

1
ρ+ν−1 σ2

κ and C̃ =
(
C̄1−ρ +

(
e−

1
2

ρ−1
ρ+ν−1 σ2

κ − e−
1
2 σ2

κ

)
B

) 1
1−ρ

, whereas for ln αL ∼ N
(
0, σ2

κ

)
, L =

(
ᾱC

ᾱL
A1−ρ

) 1
ρ+ν−1

e−
1
2

1
ρ+ν−1 σ2

κ andC̃ =
(
C̄1−ρ +

(
e

1
2

ρ−1
ρ+ν−1 σ2

κ − 1
)

B
) 1

1−ρ

.
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The unbiased specification of Proposition 4 amounts toαC =
(
1− 1

A
ξ
)
ᾱC and

αL = (1 + Aξ) ᾱL, whereξ is symmetric white noise with varianceσ2
ξ . Using a Taylor

series expansion ofln αC

αL
aroundξ = 0 (similar to the proof of Proposition 5), it follows

that E
[
ln αC

αL

]
= ln ᾱC

ᾱL
for A = 1. As a result, the unbiased specification is only

stochastically neutral inln L andln C if A = 1.

Microfounded business cycle models often use calibration and it is important to

choose a sensible value forσ2
ξ . To setσ2

ξ such that the variances of the preference

shocksκ andξ are comparable, focus on the distribution of the MRS at the determinis-

tic optimum. For both lognormal specifications,ln
(
−MRSC,L

(
C̄, L̄

))
has a normal

distribution with varianceσ2
κ. For the unbiased specification, a first-order Taylor ap-

proximation of the unbiased MRS around the deterministic caseξ = 0 (as in the proof

of Proposition 5) shows thatln
(
−MRSC,L

(
C̄, L̄

))
is approximately normal with vari-

ance
(
A + 1

A

)2
σ2

ξ for ξ ∼ N
(
0, σ2

ξ

)
. So, the specifications yield comparable variances

whenσ2
ξ = A2

(A2+1)2
σ2

κ.

Regardingσ2
κ, most studies simply pick some plausible value; for instance Obstfeld

and Rogoff (2002) takeσ2
κ = 2%. A notable exception is Hall (1997), who establishes

econometrically that preference shocks are quantitatively important for employment

fluctuations. Using US data for 1947-1993 and assumingᾱC = ᾱL = 1, ρ = 1

andν = 2.7, Hall (1997, Table 1) finds that at high frequencies, the atemporal effect

of preference shocks on the log of hours of work,1
ν

ln κ, has a standard deviation of

1.97%, soσκ = 5.32%.

Given the fact that relative preference shocks appear to be empirically significant,

a proper justification of the stochastic specification is warranted. The lognormal speci-

fications common in microfounded business cycle models could affect qualitative con-

clusions and welfare effects, depending on which preference parameter is normalized.

The unbiased stochastic specification presented in this paper does not suffer from this

problem. It has the feature that it preserves average relative preferences and that the av-

erage and median preference shock correspond to the deterministic case. It also means

that shocks to relative preferences no longer have a similar effect as lognormal produc-

tivity shocks.

5 Conclusion

This paper shows that the specifications for stochastic relative preferences commonly

used in the literature are problematic because they distort the first moment of relative

preferences instead of merely affecting the second moment. For instance, an additive,
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white noise shock to the relative preference parameterαi reduces the relative preference

weight put onxi, and a multiplicative, lognormal shock makes the absolute value of the

MRS biased towards one. In each case, the corresponding change in average relative

preferences could induce spurious effects. This can be avoided by using an unbiased

specification that generates pure white noise shocks to relative preferences, which is

presented in this paper.

Researchers using biased specifications of stochastic relative preferences should be

aware of the fact that these are equivalent to a white noise shock plus a deterministic

change in relative preferences. Clearly, the latter should be properly motivated because

it generally affects (even deterministic) optimal outcomes as well as welfare results. In

addition, such biased specifications could lead to erroneous findings when analyzing

the effect of stochastic preferences on economic outcomes. In particular, the use of an

unbiased specification is critical when performing comparative statics with respect to

risk or uncertainty.

It should be noted that an unbiased specification of relative preferences does not

imply that the optimal stochastic outcomes simply add white noise to the deterministic

optimum, although such stochastic neutrality could be analytically convenient. Instead,

the interaction between preferences and constraints is typically nonlinear so that white

noise relative preference shocks tend to affect optimal outcomes on average, but this is

a genuine effect due to the stochastic nature of preferences.

The relevance of the results is illustrated by three examples based on consumer

choice, monetary policy and microfounded business cycle models. They show how

the biased stochastic specifications for relative preferences that are prevalent in the

literature could generate misleading conclusions. These pitfalls are easily avoided by

properly modeling stochastic relative preferences.
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A Appendix

This appendix contains the proofs of Propositions 1, 2 and 5, and an alternative proof

to Proposition 4.

Proof of Proposition 1:

The proof proceeds in two steps: (i) a geometric argument is used to show that (6) and

(7) hold for all states of natures ∈ S, for everyx ∈ X and everyi, j ∈ {1, ..., K},
i 6= j; (ii) trigonometric properties subsequently imply (4) and (5).

(i) Image two agents, A and B, observing the indifference sets associated with

U (x; s) in hyperspace. Both analyze the relative preference between goodsxi and

xj at pointx0 for states, focusing on the same subspace spanned byxi × xj ⊂ X , but

viewed from different perspectives. Agent A observes it in(xi, xj) space and finds that

the tangency plane to the indifference contour satisfies−d xj

d xi
= tan γi,j (x0; s). Agent

B observes the tangency plane in(xj, xi) space and finds that− d xi

d xj
= tan γj,i (x0; s).

Obviously,γi,j andγj,i are closely related. In particular,γi,j (x0; s) + γj,i (x0; s) = 1
2
π

andtan γj,i (x0; s) = cot γi,j (x0; s). Using the fact that−d xj

d xi
= MRSi,j (x0; s) and

− d xi

d xj
= MRSj,i (x0; s) gives

MRSi,j (x0; s) = tan γi,j (x0; s)

MRSj,i (x0; s) = cot γi,j (x0; s)

which holds for anyx0 ∈ X ands ∈ S.

(ii) Now, substituting (3) givesMRSi,j (x; s) = tan
(
γ̄i,j (x) + ζ i,j (s;x)

)
. Using

trigonometric identities it is straightforward to show that20

tan
(
γ̄i,j (x) + ζ i,j (s;x)

)
=

tan γ̄i,j (x) + tan ζ i,j (s;x)

1− tan γ̄i,j (x) tan ζ i,j (s;x)

=
tan γ̄i,j (x) + ηi,j (s;x)

cot γ̄i,j (x)− ηi,j (s;x)
cot γ̄i,j (x)

whereηi,j (s;x) = tan ζ i,j (s;x). This yields (4). Similarly,MRSj,i (x; s) = cot γi,j (x; s) =

tan γj,i (x; s), which gives (5). Finally,̄γj,i (x) + ζj,i (s;x) = γj,i (x; s) = 1
2
π −

γi,j (x; s) = 1
2
π − γ̄i,j (x)− ζ i,j (s;x) so thatζj,i (s;x) = −ζ i,j (s;x) andηj,i (s;x) =

tan ζj,i (s;x) = − tan ζ i,j (s;x) = −ηi,j (s;x).

20In particular, use the fact thattan a = sin a
cos a , sin (a + b) = sin a cos b + cos a sin b, cos (a + b) =

cos a cos b− sin a sin b andcot a = 1/ tan a.
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Proof of Proposition 2:

The proof that the specificationU (x; s) is biased proceeds in two steps: (i) Proposition

1 is used to compute the relative preference shockζ i,j (s;x) implied byU (x; s); (ii) it

is shown thatE
[
ζ i,j|x

]
6= 0.

(i) The MRS between goodxi andxj for j ∈ {1, ..., K} with j 6= i, equals

MRSi,j (x; s) =
αi (s) u′i (xi)

ᾱju′j (xj)
(30)

Using (4) and (30) to solve forηi,j (s;x) gives

ηi,j (s;x) =
αi (s) u′i (xi)− ᾱju

′
j (xj) tan γ̄i,j (x)

αi (s) u′i (xi) tan γ̄i,j (x) + ᾱju′j (xj)

Substituting (10) and rearranging produces

ηi,j (s;x) =
ξ (s) u′i (xi) ᾱju

′
j (xj)

ᾱ2
i (u′i (xi))

2 + ξ (s) ᾱi (u′i (xi))
2 + ᾱ2

j

(
u′j (xj)

)2 (31)

usingξ (s) = αi (s)−ᾱi. Then, the implied relative preference shock equalsζ i,j (s;x) =

arctan ηi,j (s;x).

(ii) Substituting (31) and differentiating gives after some simplification21

dζ i,j (s;x)

dξ (s)
=

u′i (xi) ᾱju
′
j (xj)

(ᾱi + ξ (s))2 (u′i (xi))
2 + ᾱ2

j

(
u′j (xj)

)2 (32)

d2ζ i,j (s;x)

d (ξ (s))2 = − 2 (ᾱi + ξ (s)) (u′i (xi))
3 ᾱju

′
j (xj)(

(ᾱi + ξ (s))2 (u′i (xi))
2 + ᾱ2

j

(
u′j (xj)

)2
)2 (33)

Note that any deterministic bliss pointsx = b with u′j (bj) = 0 or u′i (bi) = 0 can be

ignored because they yieldζ i,j (s;x) = 0 for all s ∈ S so that relative preferences are

not stochastic. Usingsgn (αi (s)) = sgn (ᾱi) 6= 0 andᾱj 6= 0 it follows that
d2ζi,j(s;x)

d(ξ(s))2
6=

0. So,ζ i,j (s;x) is either convex or concave inξ (s). Hence, usingE [ξ] = ξ (s0) = 0

and Jensen’s inequality,E
[
ζ i,j|x

]
6= ζ i,j (s0;x) = 0. Therefore,U (x; s) is a biased

specification of stochastic relative preferences betweenxi andxj for all x ∈ X .

21Use the fact thatd arctanx/dx = 1/
(
1 + x2

)
.
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Alternative Proof of Proposition 4:

This proof is similar to the one for Proposition 2. Using (1) and (4) to solve for

ηi,j (s;x) gives

ηi,j (s;x) =
αi (s) u′i (xi)− αj (s) u′j (xj) tan γ̄i,j (x)

αi (s) u′i (xi) tan γ̄i,j (x) + αj (s) u′j (xj)

Substituting (10), (13) and (14) gives

ηi,j (s;x) =

(
λ2 + 1

)
ξ (s) ᾱiu

′
i (xi) ᾱju

′
j (xj)

λ (1 + λξ (s)) ᾱ2
i (u′i (xi))

2 + (λ− ξ (s)) ᾱ2
j

(
u′j (xj)

)2 (34)

Substituting (1), (13) and (14) intoλ = MRSi,j (x; s) gives after rearranging

ᾱju
′
j (xj) =

1 + λξ (s)

λ− ξ (s)
ᾱiu

′
i (xi)

Substitute this into (34) and simplify to get

ηi,j (s;x) =

(
λ2 + 1

)
ξ (s)

λ (λ− ξ (s)) + (1 + λξ (s))
= ξ (s)

It follows from fξ (ξ) = fξ (−ξ) that fη

(
ηi,j|x

)
= fη

(
−ηi,j|x

)
, so fζ

(
ζ i,j|x

)
=

fζ

(
−ζ i,j|x

)
. Note thatξ = 0 corresponds toηi,j = ζ i,j = 0 and amounts to the

deterministic case. As a result, the specification of stochastic relative preferences be-

tweenxi andxj is unbiased at̄x. Finally, substituting (14) and (15) into (1) yields

MRSj,k (x; s) = ᾱju
′
j (xj) /ᾱku

′
k (xk), so that indeed the relative preferences between

xj andxk are not affected.
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Proof of Proposition 5:

For ease of notation, assumeMRSi,j (x̄; s) > 0. The proof for the general case is

cumbersome to write out but exactly similar.

For the multiplicative specification in the Proposition,

ln MRSi,j (x̄; s) = ln
ᾱiu

′
i (x̄i)

ᾱju′j (x̄j)
+ ln κ

For the unbiased MRS specification in (11), a Taylor series expansion around the

deterministic caseηi,j = 0 yields22

ln MRSi,j (x̄; s) = ln
ᾱiu

′
i (x̄i)

ᾱju′j (x̄j)
+ ln

(
1 +

1

λ̄
η
)
− ln

(
1− λ̄η

)

= ln λ̄ +
(
λ̄ +

1

λ̄

)
η +

1

2

(
λ̄

2 − 1

λ̄
2

)
η2 +

1

3

(
λ̄

3
+

1

λ̄
3

)
η3 +

1

4

(
λ̄

4 − 1

λ̄
4

)
η4 + ...

= ln λ̄ +
∞∑

j=0

1

1 + 2j

(
λ̄

1+2j
+

1

λ̄
1+2j

)
η1+2j +

∞∑

j=1

1

2j

(
λ̄

2j − 1

λ̄
2j

)
η2j

where λ̄ ≡ ᾱiu
′
i(x̄i)

ᾱju′j(x̄j)
and η = ηi,j (s; x̄). For |MRSi,j (x̄)| =

∣∣∣λ̄
∣∣∣ = 1, the sec-

ond summation term drops out. So, the two specifications are observationally equiv-

alent for ln κ =
∑∞

j=0
1

1+2j

(
λ̄

1+2j
+ 1

λ̄
1+2j

)
η1+2j. As a result, the specification in

the Proposition with thisκ is unbiased at̄x. Note thatfη (η|x) = fη (−η|x) im-

plies E [η1+2j|x] = 0, so E [ln κ] = 0. For |MRSi,j (x̄)| 6= 1, an adjustment is re-

quired so thatE [ln κ] =
∑∞

j=1
1
2j

(
λ̄

2j − 1

λ̄
2j

)
E [η2j], which means thatsgn E [ln κ] =

sgn
(∣∣∣λ̄

∣∣∣− 1
)
.

22Note that the unbiased specification (17) cannot be used to construct the MRS for this Taylor series

expansion because evaluating it atx̄ for any state different froms0 would violate the condition that

MRSi,j (x (s) ; s) = λ, so that this specification is not valid atx̄ for ηi,j 6= 0.
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